blob: b337b6a8571f857634156ed510a48d798d259f17 [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher455c5772009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencercb84e432004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
28 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
29 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
30 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
31 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
32 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
33 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000034 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000035 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
36 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
37 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
38 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000039 </ol>
40 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000041 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000042 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000043 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000044 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000045 <li><a href="#aliasstructure">Aliases</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +000046 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000047 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000048 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000049 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000050 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000051 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000052 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000053 </ol>
54 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000055 <li><a href="#typesystem">Type System</a>
56 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000057 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher455c5772009-12-05 02:46:03 +000058 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000059 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000060 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000061 <li><a href="#t_floating">Floating Point Types</a></li>
62 <li><a href="#t_void">Void Type</a></li>
63 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000064 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000065 </ol>
66 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000067 <li><a href="#t_derived">Derived Types</a>
68 <ol>
Chris Lattner392be582010-02-12 20:49:41 +000069 <li><a href="#t_aggregate">Aggregate Types</a>
70 <ol>
71 <li><a href="#t_array">Array Type</a></li>
72 <li><a href="#t_struct">Structure Type</a></li>
73 <li><a href="#t_pstruct">Packed Structure Type</a></li>
74 <li><a href="#t_union">Union Type</a></li>
75 <li><a href="#t_vector">Vector Type</a></li>
76 </ol>
77 </li>
Misha Brukman76307852003-11-08 01:05:38 +000078 <li><a href="#t_function">Function Type</a></li>
79 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000080 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000081 </ol>
82 </li>
Chris Lattnercf7a5842009-02-02 07:32:36 +000083 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000084 </ol>
85 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000086 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000087 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000088 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000089 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000090 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
91 <li><a href="#undefvalues">Undefined Values</a></li>
Chris Lattner2bfd3202009-10-27 21:19:13 +000092 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000093 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000094 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000095 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +000096 <li><a href="#othervalues">Other Values</a>
97 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000098 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +000099 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000100 </ol>
101 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000102 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
103 <ol>
104 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +0000105 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
106 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000107 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
108 Global Variable</a></li>
109 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
110 Global Variable</a></li>
111 </ol>
112 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000113 <li><a href="#instref">Instruction Reference</a>
114 <ol>
115 <li><a href="#terminators">Terminator Instructions</a>
116 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000117 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
118 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000119 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +0000120 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000121 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000122 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000123 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000124 </ol>
125 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000126 <li><a href="#binaryops">Binary Operations</a>
127 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000128 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000129 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000130 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000131 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000132 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000133 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000134 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
135 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
136 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000137 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
138 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
139 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000140 </ol>
141 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000142 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
143 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000144 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
145 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
146 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000147 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000148 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000149 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000150 </ol>
151 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000152 <li><a href="#vectorops">Vector Operations</a>
153 <ol>
154 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
155 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
156 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000157 </ol>
158 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000159 <li><a href="#aggregateops">Aggregate Operations</a>
160 <ol>
161 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
162 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
163 </ol>
164 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000165 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000166 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000167 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000168 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
169 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
170 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000171 </ol>
172 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000173 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000174 <ol>
175 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
176 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
177 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
178 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
179 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000180 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
181 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
182 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
183 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000184 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
185 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000186 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000187 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000188 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000189 <li><a href="#otherops">Other Operations</a>
190 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000191 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
192 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000193 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000194 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000195 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000196 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000197 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000198 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000199 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000200 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000201 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000202 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000203 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
204 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000205 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
206 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
207 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000208 </ol>
209 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000210 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
211 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000212 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
213 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
214 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000215 </ol>
216 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000217 <li><a href="#int_codegen">Code Generator Intrinsics</a>
218 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000219 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
220 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
221 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
222 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
223 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
224 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
225 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000226 </ol>
227 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000228 <li><a href="#int_libc">Standard C Library Intrinsics</a>
229 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000230 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
231 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
232 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
233 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
234 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000235 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
236 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
237 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000238 </ol>
239 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000240 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000241 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000242 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000243 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
244 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
245 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000246 </ol>
247 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000248 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
249 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000250 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
251 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
252 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
253 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
254 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000255 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000256 </ol>
257 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000258 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000259 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000260 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000261 <ol>
262 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000263 </ol>
264 </li>
Bill Wendlingf85850f2008-11-18 22:10:53 +0000265 <li><a href="#int_atomics">Atomic intrinsics</a>
266 <ol>
267 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
268 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
269 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
270 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
271 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
272 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
273 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
274 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
275 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
276 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
277 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
278 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
279 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
280 </ol>
281 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000282 <li><a href="#int_memorymarkers">Memory Use Markers</a>
283 <ol>
284 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
285 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
286 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
287 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
288 </ol>
289 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000290 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000291 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000292 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000293 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000294 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000295 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000296 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000297 '<tt>llvm.trap</tt>' Intrinsic</a></li>
298 <li><a href="#int_stackprotector">
299 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher73484322009-11-30 08:03:53 +0000300 <li><a href="#int_objectsize">
301 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000302 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000303 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000304 </ol>
305 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000306</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000307
308<div class="doc_author">
309 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
310 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000311</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000312
Chris Lattner2f7c9632001-06-06 20:29:01 +0000313<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000314<div class="doc_section"> <a name="abstract">Abstract </a></div>
315<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000316
Misha Brukman76307852003-11-08 01:05:38 +0000317<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000318
319<p>This document is a reference manual for the LLVM assembly language. LLVM is
320 a Static Single Assignment (SSA) based representation that provides type
321 safety, low-level operations, flexibility, and the capability of representing
322 'all' high-level languages cleanly. It is the common code representation
323 used throughout all phases of the LLVM compilation strategy.</p>
324
Misha Brukman76307852003-11-08 01:05:38 +0000325</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000326
Chris Lattner2f7c9632001-06-06 20:29:01 +0000327<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000328<div class="doc_section"> <a name="introduction">Introduction</a> </div>
329<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000330
Misha Brukman76307852003-11-08 01:05:38 +0000331<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000332
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000333<p>The LLVM code representation is designed to be used in three different forms:
334 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
335 for fast loading by a Just-In-Time compiler), and as a human readable
336 assembly language representation. This allows LLVM to provide a powerful
337 intermediate representation for efficient compiler transformations and
338 analysis, while providing a natural means to debug and visualize the
339 transformations. The three different forms of LLVM are all equivalent. This
340 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000341
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000342<p>The LLVM representation aims to be light-weight and low-level while being
343 expressive, typed, and extensible at the same time. It aims to be a
344 "universal IR" of sorts, by being at a low enough level that high-level ideas
345 may be cleanly mapped to it (similar to how microprocessors are "universal
346 IR's", allowing many source languages to be mapped to them). By providing
347 type information, LLVM can be used as the target of optimizations: for
348 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling7f4a3362009-11-02 00:24:16 +0000349 variable is never accessed outside of the current function, allowing it to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000350 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000351
Misha Brukman76307852003-11-08 01:05:38 +0000352</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000353
Chris Lattner2f7c9632001-06-06 20:29:01 +0000354<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000355<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000356
Misha Brukman76307852003-11-08 01:05:38 +0000357<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000358
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000359<p>It is important to note that this document describes 'well formed' LLVM
360 assembly language. There is a difference between what the parser accepts and
361 what is considered 'well formed'. For example, the following instruction is
362 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000363
Bill Wendling3716c5d2007-05-29 09:04:49 +0000364<div class="doc_code">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000365<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000366%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000367</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000368</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000369
Bill Wendling7f4a3362009-11-02 00:24:16 +0000370<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
371 LLVM infrastructure provides a verification pass that may be used to verify
372 that an LLVM module is well formed. This pass is automatically run by the
373 parser after parsing input assembly and by the optimizer before it outputs
374 bitcode. The violations pointed out by the verifier pass indicate bugs in
375 transformation passes or input to the parser.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000376
Bill Wendling3716c5d2007-05-29 09:04:49 +0000377</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000378
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000379<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000380
Chris Lattner2f7c9632001-06-06 20:29:01 +0000381<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000382<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000383<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000384
Misha Brukman76307852003-11-08 01:05:38 +0000385<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000386
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000387<p>LLVM identifiers come in two basic types: global and local. Global
388 identifiers (functions, global variables) begin with the <tt>'@'</tt>
389 character. Local identifiers (register names, types) begin with
390 the <tt>'%'</tt> character. Additionally, there are three different formats
391 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000392
Chris Lattner2f7c9632001-06-06 20:29:01 +0000393<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000394 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000395 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
396 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
397 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
398 other characters in their names can be surrounded with quotes. Special
399 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
400 ASCII code for the character in hexadecimal. In this way, any character
401 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000402
Reid Spencerb23b65f2007-08-07 14:34:28 +0000403 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000404 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000405
Reid Spencer8f08d802004-12-09 18:02:53 +0000406 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000407 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000408</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000409
Reid Spencerb23b65f2007-08-07 14:34:28 +0000410<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000411 don't need to worry about name clashes with reserved words, and the set of
412 reserved words may be expanded in the future without penalty. Additionally,
413 unnamed identifiers allow a compiler to quickly come up with a temporary
414 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000415
Chris Lattner48b383b02003-11-25 01:02:51 +0000416<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000417 languages. There are keywords for different opcodes
418 ('<tt><a href="#i_add">add</a></tt>',
419 '<tt><a href="#i_bitcast">bitcast</a></tt>',
420 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
421 ('<tt><a href="#t_void">void</a></tt>',
422 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
423 reserved words cannot conflict with variable names, because none of them
424 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000425
426<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000427 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000428
Misha Brukman76307852003-11-08 01:05:38 +0000429<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000430
Bill Wendling3716c5d2007-05-29 09:04:49 +0000431<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000432<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000433%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000434</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000435</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000436
Misha Brukman76307852003-11-08 01:05:38 +0000437<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000438
Bill Wendling3716c5d2007-05-29 09:04:49 +0000439<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000440<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000441%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000442</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000443</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000444
Misha Brukman76307852003-11-08 01:05:38 +0000445<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000446
Bill Wendling3716c5d2007-05-29 09:04:49 +0000447<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000448<pre>
Gabor Greifbd0328f2009-10-28 13:05:07 +0000449%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
450%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000451%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000452</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000453</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000454
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000455<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
456 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000457
Chris Lattner2f7c9632001-06-06 20:29:01 +0000458<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000459 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000460 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000461
462 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000463 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000464
Misha Brukman76307852003-11-08 01:05:38 +0000465 <li>Unnamed temporaries are numbered sequentially</li>
466</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000467
Bill Wendling7f4a3362009-11-02 00:24:16 +0000468<p>It also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000469 demonstrating instructions, we will follow an instruction with a comment that
470 defines the type and name of value produced. Comments are shown in italic
471 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000472
Misha Brukman76307852003-11-08 01:05:38 +0000473</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000474
475<!-- *********************************************************************** -->
476<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
477<!-- *********************************************************************** -->
478
479<!-- ======================================================================= -->
480<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
481</div>
482
483<div class="doc_text">
484
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000485<p>LLVM programs are composed of "Module"s, each of which is a translation unit
486 of the input programs. Each module consists of functions, global variables,
487 and symbol table entries. Modules may be combined together with the LLVM
488 linker, which merges function (and global variable) definitions, resolves
489 forward declarations, and merges symbol table entries. Here is an example of
490 the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000491
Bill Wendling3716c5d2007-05-29 09:04:49 +0000492<div class="doc_code">
Bill Wendling7f4a3362009-11-02 00:24:16 +0000493<pre>
494<i>; Declare the string constant as a global constant.</i>
495<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000496
497<i>; External declaration of the puts function</i>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000498<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000499
500<i>; Definition of main function</i>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000501define i32 @main() { <i>; i32()* </i>
502 <i>; Convert [13 x i8]* to i8 *...</i>
503 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000504
Bill Wendling7f4a3362009-11-02 00:24:16 +0000505 <i>; Call puts function to write out the string to stdout.</i>
506 <a href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Devang Pateld1a89692010-01-11 19:35:55 +0000507 <a href="#i_ret">ret</a> i32 0<br>}
508
509<i>; Named metadata</i>
510!1 = metadata !{i32 41}
511!foo = !{!1, null}
Bill Wendling3716c5d2007-05-29 09:04:49 +0000512</pre>
513</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000514
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000515<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Pateld1a89692010-01-11 19:35:55 +0000516 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000517 a <a href="#functionstructure">function definition</a> for
Devang Pateld1a89692010-01-11 19:35:55 +0000518 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
519 "<tt>foo"</tt>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000520
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000521<p>In general, a module is made up of a list of global values, where both
522 functions and global variables are global values. Global values are
523 represented by a pointer to a memory location (in this case, a pointer to an
524 array of char, and a pointer to a function), and have one of the
525 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000526
Chris Lattnerd79749a2004-12-09 16:36:40 +0000527</div>
528
529<!-- ======================================================================= -->
530<div class="doc_subsection">
531 <a name="linkage">Linkage Types</a>
532</div>
533
534<div class="doc_text">
535
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000536<p>All Global Variables and Functions have one of the following types of
537 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000538
539<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000540 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000541 <dd>Global values with private linkage are only directly accessible by objects
542 in the current module. In particular, linking code into a module with an
543 private global value may cause the private to be renamed as necessary to
544 avoid collisions. Because the symbol is private to the module, all
545 references can be updated. This doesn't show up in any symbol table in the
546 object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000547
Bill Wendling7f4a3362009-11-02 00:24:16 +0000548 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000549 <dd>Similar to private, but the symbol is passed through the assembler and
Chris Lattnere7f064e2009-08-24 04:32:16 +0000550 removed by the linker after evaluation. Note that (unlike private
551 symbols) linker_private symbols are subject to coalescing by the linker:
552 weak symbols get merged and redefinitions are rejected. However, unlike
553 normal strong symbols, they are removed by the linker from the final
554 linked image (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000555
Bill Wendling7f4a3362009-11-02 00:24:16 +0000556 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000557 <dd>Similar to private, but the value shows as a local symbol
558 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
559 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000560
Bill Wendling7f4a3362009-11-02 00:24:16 +0000561 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000562 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000563 into the object file corresponding to the LLVM module. They exist to
564 allow inlining and other optimizations to take place given knowledge of
565 the definition of the global, which is known to be somewhere outside the
566 module. Globals with <tt>available_externally</tt> linkage are allowed to
567 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
568 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000569
Bill Wendling7f4a3362009-11-02 00:24:16 +0000570 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000571 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner0de4caa2010-01-09 19:15:14 +0000572 the same name when linkage occurs. This can be used to implement
573 some forms of inline functions, templates, or other code which must be
574 generated in each translation unit that uses it, but where the body may
575 be overridden with a more definitive definition later. Unreferenced
576 <tt>linkonce</tt> globals are allowed to be discarded. Note that
577 <tt>linkonce</tt> linkage does not actually allow the optimizer to
578 inline the body of this function into callers because it doesn't know if
579 this definition of the function is the definitive definition within the
580 program or whether it will be overridden by a stronger definition.
581 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
582 linkage.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000583
Bill Wendling7f4a3362009-11-02 00:24:16 +0000584 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000585 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
586 <tt>linkonce</tt> linkage, except that unreferenced globals with
587 <tt>weak</tt> linkage may not be discarded. This is used for globals that
588 are declared "weak" in C source code.</dd>
589
Bill Wendling7f4a3362009-11-02 00:24:16 +0000590 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000591 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
592 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
593 global scope.
594 Symbols with "<tt>common</tt>" linkage are merged in the same way as
595 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000596 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher455c5772009-12-05 02:46:03 +0000597 must have a zero initializer, and may not be marked '<a
Chris Lattner0aff0b22009-08-05 05:41:44 +0000598 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
599 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000600
Chris Lattnerd79749a2004-12-09 16:36:40 +0000601
Bill Wendling7f4a3362009-11-02 00:24:16 +0000602 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000603 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000604 pointer to array type. When two global variables with appending linkage
605 are linked together, the two global arrays are appended together. This is
606 the LLVM, typesafe, equivalent of having the system linker append together
607 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000608
Bill Wendling7f4a3362009-11-02 00:24:16 +0000609 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000610 <dd>The semantics of this linkage follow the ELF object file model: the symbol
611 is weak until linked, if not linked, the symbol becomes null instead of
612 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000613
Bill Wendling7f4a3362009-11-02 00:24:16 +0000614 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
615 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000616 <dd>Some languages allow differing globals to be merged, such as two functions
617 with different semantics. Other languages, such as <tt>C++</tt>, ensure
618 that only equivalent globals are ever merged (the "one definition rule" -
619 "ODR"). Such languages can use the <tt>linkonce_odr</tt>
620 and <tt>weak_odr</tt> linkage types to indicate that the global will only
621 be merged with equivalent globals. These linkage types are otherwise the
622 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000623
Chris Lattner6af02f32004-12-09 16:11:40 +0000624 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000625 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000626 visible, meaning that it participates in linkage and can be used to
627 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000628</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000629
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000630<p>The next two types of linkage are targeted for Microsoft Windows platform
631 only. They are designed to support importing (exporting) symbols from (to)
632 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000633
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000634<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000635 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000636 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000637 or variable via a global pointer to a pointer that is set up by the DLL
638 exporting the symbol. On Microsoft Windows targets, the pointer name is
639 formed by combining <code>__imp_</code> and the function or variable
640 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000641
Bill Wendling7f4a3362009-11-02 00:24:16 +0000642 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000643 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000644 pointer to a pointer in a DLL, so that it can be referenced with the
645 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
646 name is formed by combining <code>__imp_</code> and the function or
647 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000648</dl>
649
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000650<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
651 another module defined a "<tt>.LC0</tt>" variable and was linked with this
652 one, one of the two would be renamed, preventing a collision. Since
653 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
654 declarations), they are accessible outside of the current module.</p>
655
656<p>It is illegal for a function <i>declaration</i> to have any linkage type
657 other than "externally visible", <tt>dllimport</tt>
658 or <tt>extern_weak</tt>.</p>
659
Duncan Sands12da8ce2009-03-07 15:45:40 +0000660<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000661 or <tt>weak_odr</tt> linkages.</p>
662
Chris Lattner6af02f32004-12-09 16:11:40 +0000663</div>
664
665<!-- ======================================================================= -->
666<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000667 <a name="callingconv">Calling Conventions</a>
668</div>
669
670<div class="doc_text">
671
672<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000673 and <a href="#i_invoke">invokes</a> can all have an optional calling
674 convention specified for the call. The calling convention of any pair of
675 dynamic caller/callee must match, or the behavior of the program is
676 undefined. The following calling conventions are supported by LLVM, and more
677 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000678
679<dl>
680 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000681 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000682 specified) matches the target C calling conventions. This calling
683 convention supports varargs function calls and tolerates some mismatch in
684 the declared prototype and implemented declaration of the function (as
685 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000686
687 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000688 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000689 (e.g. by passing things in registers). This calling convention allows the
690 target to use whatever tricks it wants to produce fast code for the
691 target, without having to conform to an externally specified ABI
Jeffrey Yasskinb8677462010-01-09 19:44:16 +0000692 (Application Binary Interface).
693 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
694 when this convention is used.</a> This calling convention does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000695 support varargs and requires the prototype of all callees to exactly match
696 the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000697
698 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000699 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000700 as possible under the assumption that the call is not commonly executed.
701 As such, these calls often preserve all registers so that the call does
702 not break any live ranges in the caller side. This calling convention
703 does not support varargs and requires the prototype of all callees to
704 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000705
Chris Lattner573f64e2005-05-07 01:46:40 +0000706 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000707 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000708 target-specific calling conventions to be used. Target specific calling
709 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000710</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000711
712<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000713 support Pascal conventions or any other well-known target-independent
714 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000715
716</div>
717
718<!-- ======================================================================= -->
719<div class="doc_subsection">
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000720 <a name="visibility">Visibility Styles</a>
721</div>
722
723<div class="doc_text">
724
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000725<p>All Global Variables and Functions have one of the following visibility
726 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000727
728<dl>
729 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000730 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000731 that the declaration is visible to other modules and, in shared libraries,
732 means that the declared entity may be overridden. On Darwin, default
733 visibility means that the declaration is visible to other modules. Default
734 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000735
736 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000737 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000738 object if they are in the same shared object. Usually, hidden visibility
739 indicates that the symbol will not be placed into the dynamic symbol
740 table, so no other module (executable or shared library) can reference it
741 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000742
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000743 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000744 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000745 the dynamic symbol table, but that references within the defining module
746 will bind to the local symbol. That is, the symbol cannot be overridden by
747 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000748</dl>
749
750</div>
751
752<!-- ======================================================================= -->
753<div class="doc_subsection">
Chris Lattnerbc088212009-01-11 20:53:49 +0000754 <a name="namedtypes">Named Types</a>
755</div>
756
757<div class="doc_text">
758
759<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000760 it easier to read the IR and make the IR more condensed (particularly when
761 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000762
763<div class="doc_code">
764<pre>
765%mytype = type { %mytype*, i32 }
766</pre>
767</div>
768
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000769<p>You may give a name to any <a href="#typesystem">type</a> except
770 "<a href="t_void">void</a>". Type name aliases may be used anywhere a type
771 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000772
773<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000774 and that you can therefore specify multiple names for the same type. This
775 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
776 uses structural typing, the name is not part of the type. When printing out
777 LLVM IR, the printer will pick <em>one name</em> to render all types of a
778 particular shape. This means that if you have code where two different
779 source types end up having the same LLVM type, that the dumper will sometimes
780 print the "wrong" or unexpected type. This is an important design point and
781 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000782
783</div>
784
Chris Lattnerbc088212009-01-11 20:53:49 +0000785<!-- ======================================================================= -->
786<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000787 <a name="globalvars">Global Variables</a>
788</div>
789
790<div class="doc_text">
791
Chris Lattner5d5aede2005-02-12 19:30:21 +0000792<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000793 instead of run-time. Global variables may optionally be initialized, may
794 have an explicit section to be placed in, and may have an optional explicit
795 alignment specified. A variable may be defined as "thread_local", which
796 means that it will not be shared by threads (each thread will have a
797 separated copy of the variable). A variable may be defined as a global
798 "constant," which indicates that the contents of the variable
799 will <b>never</b> be modified (enabling better optimization, allowing the
800 global data to be placed in the read-only section of an executable, etc).
801 Note that variables that need runtime initialization cannot be marked
802 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000803
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000804<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
805 constant, even if the final definition of the global is not. This capability
806 can be used to enable slightly better optimization of the program, but
807 requires the language definition to guarantee that optimizations based on the
808 'constantness' are valid for the translation units that do not include the
809 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000810
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000811<p>As SSA values, global variables define pointer values that are in scope
812 (i.e. they dominate) all basic blocks in the program. Global variables
813 always define a pointer to their "content" type because they describe a
814 region of memory, and all memory objects in LLVM are accessed through
815 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000816
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000817<p>A global variable may be declared to reside in a target-specific numbered
818 address space. For targets that support them, address spaces may affect how
819 optimizations are performed and/or what target instructions are used to
820 access the variable. The default address space is zero. The address space
821 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000822
Chris Lattner662c8722005-11-12 00:45:07 +0000823<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000824 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000825
Chris Lattner54611b42005-11-06 08:02:57 +0000826<p>An explicit alignment may be specified for a global. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000827 the alignment is set to zero, the alignment of the global is set by the
828 target to whatever it feels convenient. If an explicit alignment is
829 specified, the global is forced to have at least that much alignment. All
830 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000831
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000832<p>For example, the following defines a global in a numbered address space with
833 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000834
Bill Wendling3716c5d2007-05-29 09:04:49 +0000835<div class="doc_code">
Chris Lattner5760c502007-01-14 00:27:09 +0000836<pre>
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000837@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000838</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000839</div>
Chris Lattner5760c502007-01-14 00:27:09 +0000840
Chris Lattner6af02f32004-12-09 16:11:40 +0000841</div>
842
843
844<!-- ======================================================================= -->
845<div class="doc_subsection">
846 <a name="functionstructure">Functions</a>
847</div>
848
849<div class="doc_text">
850
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000851<p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an
852 optional <a href="#linkage">linkage type</a>, an optional
853 <a href="#visibility">visibility style</a>, an optional
854 <a href="#callingconv">calling convention</a>, a return type, an optional
855 <a href="#paramattrs">parameter attribute</a> for the return type, a function
856 name, a (possibly empty) argument list (each with optional
857 <a href="#paramattrs">parameter attributes</a>), optional
858 <a href="#fnattrs">function attributes</a>, an optional section, an optional
859 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
860 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000861
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000862<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
863 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher455c5772009-12-05 02:46:03 +0000864 <a href="#visibility">visibility style</a>, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000865 <a href="#callingconv">calling convention</a>, a return type, an optional
866 <a href="#paramattrs">parameter attribute</a> for the return type, a function
867 name, a possibly empty list of arguments, an optional alignment, and an
868 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000869
Chris Lattner67c37d12008-08-05 18:29:16 +0000870<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000871 (Control Flow Graph) for the function. Each basic block may optionally start
872 with a label (giving the basic block a symbol table entry), contains a list
873 of instructions, and ends with a <a href="#terminators">terminator</a>
874 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000875
Chris Lattnera59fb102007-06-08 16:52:14 +0000876<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000877 executed on entrance to the function, and it is not allowed to have
878 predecessor basic blocks (i.e. there can not be any branches to the entry
879 block of a function). Because the block can have no predecessors, it also
880 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000881
Chris Lattner662c8722005-11-12 00:45:07 +0000882<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000883 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000884
Chris Lattner54611b42005-11-06 08:02:57 +0000885<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000886 the alignment is set to zero, the alignment of the function is set by the
887 target to whatever it feels convenient. If an explicit alignment is
888 specified, the function is forced to have at least that much alignment. All
889 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000890
Bill Wendling30235112009-07-20 02:39:26 +0000891<h5>Syntax:</h5>
Devang Patel02256232008-10-07 17:48:33 +0000892<div class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000893<pre>
Chris Lattner0ae02092008-10-13 16:55:18 +0000894define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000895 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
896 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
897 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
898 [<a href="#gc">gc</a>] { ... }
899</pre>
Devang Patel02256232008-10-07 17:48:33 +0000900</div>
901
Chris Lattner6af02f32004-12-09 16:11:40 +0000902</div>
903
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000904<!-- ======================================================================= -->
905<div class="doc_subsection">
906 <a name="aliasstructure">Aliases</a>
907</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000908
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000909<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000910
911<p>Aliases act as "second name" for the aliasee value (which can be either
912 function, global variable, another alias or bitcast of global value). Aliases
913 may have an optional <a href="#linkage">linkage type</a>, and an
914 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000915
Bill Wendling30235112009-07-20 02:39:26 +0000916<h5>Syntax:</h5>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000917<div class="doc_code">
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000918<pre>
Duncan Sands7e99a942008-09-12 20:48:21 +0000919@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000920</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000921</div>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000922
923</div>
924
Chris Lattner91c15c42006-01-23 23:23:47 +0000925<!-- ======================================================================= -->
Devang Pateld1a89692010-01-11 19:35:55 +0000926<div class="doc_subsection">
927 <a name="namedmetadatastructure">Named Metadata</a>
928</div>
929
930<div class="doc_text">
931
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000932<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
933 nodes</a> (but not metadata strings) and null are the only valid operands for
934 a named metadata.</p>
Devang Pateld1a89692010-01-11 19:35:55 +0000935
936<h5>Syntax:</h5>
937<div class="doc_code">
938<pre>
939!1 = metadata !{metadata !"one"}
940!name = !{null, !1}
941</pre>
942</div>
943
944</div>
945
946<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000947<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000948
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000949<div class="doc_text">
950
951<p>The return type and each parameter of a function type may have a set of
952 <i>parameter attributes</i> associated with them. Parameter attributes are
953 used to communicate additional information about the result or parameters of
954 a function. Parameter attributes are considered to be part of the function,
955 not of the function type, so functions with different parameter attributes
956 can have the same function type.</p>
957
958<p>Parameter attributes are simple keywords that follow the type specified. If
959 multiple parameter attributes are needed, they are space separated. For
960 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000961
962<div class="doc_code">
963<pre>
Nick Lewyckydac78d82009-02-15 23:06:14 +0000964declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +0000965declare i32 @atoi(i8 zeroext)
966declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +0000967</pre>
968</div>
969
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000970<p>Note that any attributes for the function result (<tt>nounwind</tt>,
971 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000972
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000973<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000974
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000975<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000976 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000977 <dd>This indicates to the code generator that the parameter or return value
978 should be zero-extended to a 32-bit value by the caller (for a parameter)
979 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000980
Bill Wendling7f4a3362009-11-02 00:24:16 +0000981 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000982 <dd>This indicates to the code generator that the parameter or return value
983 should be sign-extended to a 32-bit value by the caller (for a parameter)
984 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000985
Bill Wendling7f4a3362009-11-02 00:24:16 +0000986 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000987 <dd>This indicates that this parameter or return value should be treated in a
988 special target-dependent fashion during while emitting code for a function
989 call or return (usually, by putting it in a register as opposed to memory,
990 though some targets use it to distinguish between two different kinds of
991 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000992
Bill Wendling7f4a3362009-11-02 00:24:16 +0000993 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000994 <dd>This indicates that the pointer parameter should really be passed by value
995 to the function. The attribute implies that a hidden copy of the pointee
996 is made between the caller and the callee, so the callee is unable to
997 modify the value in the callee. This attribute is only valid on LLVM
998 pointer arguments. It is generally used to pass structs and arrays by
999 value, but is also valid on pointers to scalars. The copy is considered
1000 to belong to the caller not the callee (for example,
1001 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1002 <tt>byval</tt> parameters). This is not a valid attribute for return
1003 values. The byval attribute also supports specifying an alignment with
1004 the align attribute. This has a target-specific effect on the code
1005 generator that usually indicates a desired alignment for the synthesized
1006 stack slot.</dd>
1007
Bill Wendling7f4a3362009-11-02 00:24:16 +00001008 <dt><tt><b>sret</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001009 <dd>This indicates that the pointer parameter specifies the address of a
1010 structure that is the return value of the function in the source program.
1011 This pointer must be guaranteed by the caller to be valid: loads and
1012 stores to the structure may be assumed by the callee to not to trap. This
1013 may only be applied to the first parameter. This is not a valid attribute
1014 for return values. </dd>
1015
Bill Wendling7f4a3362009-11-02 00:24:16 +00001016 <dt><tt><b>noalias</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001017 <dd>This indicates that the pointer does not alias any global or any other
1018 parameter. The caller is responsible for ensuring that this is the
1019 case. On a function return value, <tt>noalias</tt> additionally indicates
1020 that the pointer does not alias any other pointers visible to the
1021 caller. For further details, please see the discussion of the NoAlias
1022 response in
1023 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
1024 analysis</a>.</dd>
1025
Bill Wendling7f4a3362009-11-02 00:24:16 +00001026 <dt><tt><b>nocapture</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001027 <dd>This indicates that the callee does not make any copies of the pointer
1028 that outlive the callee itself. This is not a valid attribute for return
1029 values.</dd>
1030
Bill Wendling7f4a3362009-11-02 00:24:16 +00001031 <dt><tt><b>nest</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001032 <dd>This indicates that the pointer parameter can be excised using the
1033 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1034 attribute for return values.</dd>
1035</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001036
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001037</div>
1038
1039<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +00001040<div class="doc_subsection">
Gordon Henriksen71183b62007-12-10 03:18:06 +00001041 <a name="gc">Garbage Collector Names</a>
1042</div>
1043
1044<div class="doc_text">
Gordon Henriksen71183b62007-12-10 03:18:06 +00001045
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001046<p>Each function may specify a garbage collector name, which is simply a
1047 string:</p>
1048
1049<div class="doc_code">
1050<pre>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001051define void @f() gc "name" { ... }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001052</pre>
1053</div>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001054
1055<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001056 collector which will cause the compiler to alter its output in order to
1057 support the named garbage collection algorithm.</p>
1058
Gordon Henriksen71183b62007-12-10 03:18:06 +00001059</div>
1060
1061<!-- ======================================================================= -->
1062<div class="doc_subsection">
Devang Patel9eb525d2008-09-26 23:51:19 +00001063 <a name="fnattrs">Function Attributes</a>
Devang Patelcaacdba2008-09-04 23:05:13 +00001064</div>
1065
1066<div class="doc_text">
Devang Patel9eb525d2008-09-26 23:51:19 +00001067
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001068<p>Function attributes are set to communicate additional information about a
1069 function. Function attributes are considered to be part of the function, not
1070 of the function type, so functions with different parameter attributes can
1071 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001072
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001073<p>Function attributes are simple keywords that follow the type specified. If
1074 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001075
1076<div class="doc_code">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001077<pre>
Devang Patel9eb525d2008-09-26 23:51:19 +00001078define void @f() noinline { ... }
1079define void @f() alwaysinline { ... }
1080define void @f() alwaysinline optsize { ... }
Bill Wendling7f4a3362009-11-02 00:24:16 +00001081define void @f() optsize { ... }
Bill Wendlingb175fa42008-09-07 10:26:33 +00001082</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001083</div>
1084
Bill Wendlingb175fa42008-09-07 10:26:33 +00001085<dl>
Charles Davisbe5557e2010-02-12 00:31:15 +00001086 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1087 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1088 the backend should forcibly align the stack pointer. Specify the
1089 desired alignment, which must be a power of two, in parentheses.
1090
Bill Wendling7f4a3362009-11-02 00:24:16 +00001091 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001092 <dd>This attribute indicates that the inliner should attempt to inline this
1093 function into callers whenever possible, ignoring any active inlining size
1094 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001095
Jakob Stoklund Olesen74bb06c2010-02-06 01:16:28 +00001096 <dt><tt><b>inlinehint</b></tt></dt>
1097 <dd>This attribute indicates that the source code contained a hint that inlining
1098 this function is desirable (such as the "inline" keyword in C/C++). It
1099 is just a hint; it imposes no requirements on the inliner.</dd>
1100
Bill Wendling7f4a3362009-11-02 00:24:16 +00001101 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001102 <dd>This attribute indicates that the inliner should never inline this
1103 function in any situation. This attribute may not be used together with
1104 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001105
Bill Wendling7f4a3362009-11-02 00:24:16 +00001106 <dt><tt><b>optsize</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001107 <dd>This attribute suggests that optimization passes and code generator passes
1108 make choices that keep the code size of this function low, and otherwise
1109 do optimizations specifically to reduce code size.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001110
Bill Wendling7f4a3362009-11-02 00:24:16 +00001111 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001112 <dd>This function attribute indicates that the function never returns
1113 normally. This produces undefined behavior at runtime if the function
1114 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001115
Bill Wendling7f4a3362009-11-02 00:24:16 +00001116 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001117 <dd>This function attribute indicates that the function never returns with an
1118 unwind or exceptional control flow. If the function does unwind, its
1119 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001120
Bill Wendling7f4a3362009-11-02 00:24:16 +00001121 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001122 <dd>This attribute indicates that the function computes its result (or decides
1123 to unwind an exception) based strictly on its arguments, without
1124 dereferencing any pointer arguments or otherwise accessing any mutable
1125 state (e.g. memory, control registers, etc) visible to caller functions.
1126 It does not write through any pointer arguments
1127 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1128 changes any state visible to callers. This means that it cannot unwind
1129 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1130 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001131
Bill Wendling7f4a3362009-11-02 00:24:16 +00001132 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001133 <dd>This attribute indicates that the function does not write through any
1134 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1135 arguments) or otherwise modify any state (e.g. memory, control registers,
1136 etc) visible to caller functions. It may dereference pointer arguments
1137 and read state that may be set in the caller. A readonly function always
1138 returns the same value (or unwinds an exception identically) when called
1139 with the same set of arguments and global state. It cannot unwind an
1140 exception by calling the <tt>C++</tt> exception throwing methods, but may
1141 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001142
Bill Wendling7f4a3362009-11-02 00:24:16 +00001143 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001144 <dd>This attribute indicates that the function should emit a stack smashing
1145 protector. It is in the form of a "canary"&mdash;a random value placed on
1146 the stack before the local variables that's checked upon return from the
1147 function to see if it has been overwritten. A heuristic is used to
1148 determine if a function needs stack protectors or not.<br>
1149<br>
1150 If a function that has an <tt>ssp</tt> attribute is inlined into a
1151 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1152 function will have an <tt>ssp</tt> attribute.</dd>
1153
Bill Wendling7f4a3362009-11-02 00:24:16 +00001154 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001155 <dd>This attribute indicates that the function should <em>always</em> emit a
1156 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001157 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1158<br>
1159 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1160 function that doesn't have an <tt>sspreq</tt> attribute or which has
1161 an <tt>ssp</tt> attribute, then the resulting function will have
1162 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001163
Bill Wendling7f4a3362009-11-02 00:24:16 +00001164 <dt><tt><b>noredzone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001165 <dd>This attribute indicates that the code generator should not use a red
1166 zone, even if the target-specific ABI normally permits it.</dd>
1167
Bill Wendling7f4a3362009-11-02 00:24:16 +00001168 <dt><tt><b>noimplicitfloat</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001169 <dd>This attributes disables implicit floating point instructions.</dd>
1170
Bill Wendling7f4a3362009-11-02 00:24:16 +00001171 <dt><tt><b>naked</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001172 <dd>This attribute disables prologue / epilogue emission for the function.
1173 This can have very system-specific consequences.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001174</dl>
1175
Devang Patelcaacdba2008-09-04 23:05:13 +00001176</div>
1177
1178<!-- ======================================================================= -->
1179<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +00001180 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +00001181</div>
1182
1183<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001184
1185<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1186 the GCC "file scope inline asm" blocks. These blocks are internally
1187 concatenated by LLVM and treated as a single unit, but may be separated in
1188 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001189
Bill Wendling3716c5d2007-05-29 09:04:49 +00001190<div class="doc_code">
1191<pre>
1192module asm "inline asm code goes here"
1193module asm "more can go here"
1194</pre>
1195</div>
Chris Lattner91c15c42006-01-23 23:23:47 +00001196
1197<p>The strings can contain any character by escaping non-printable characters.
1198 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001199 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001200
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001201<p>The inline asm code is simply printed to the machine code .s file when
1202 assembly code is generated.</p>
1203
Chris Lattner91c15c42006-01-23 23:23:47 +00001204</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001205
Reid Spencer50c723a2007-02-19 23:54:10 +00001206<!-- ======================================================================= -->
1207<div class="doc_subsection">
1208 <a name="datalayout">Data Layout</a>
1209</div>
1210
1211<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001212
Reid Spencer50c723a2007-02-19 23:54:10 +00001213<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001214 data is to be laid out in memory. The syntax for the data layout is
1215 simply:</p>
1216
1217<div class="doc_code">
1218<pre>
1219target datalayout = "<i>layout specification</i>"
1220</pre>
1221</div>
1222
1223<p>The <i>layout specification</i> consists of a list of specifications
1224 separated by the minus sign character ('-'). Each specification starts with
1225 a letter and may include other information after the letter to define some
1226 aspect of the data layout. The specifications accepted are as follows:</p>
1227
Reid Spencer50c723a2007-02-19 23:54:10 +00001228<dl>
1229 <dt><tt>E</tt></dt>
1230 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001231 bits with the most significance have the lowest address location.</dd>
1232
Reid Spencer50c723a2007-02-19 23:54:10 +00001233 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001234 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001235 the bits with the least significance have the lowest address
1236 location.</dd>
1237
Reid Spencer50c723a2007-02-19 23:54:10 +00001238 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001239 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001240 <i>preferred</i> alignments. All sizes are in bits. Specifying
1241 the <i>pref</i> alignment is optional. If omitted, the
1242 preceding <tt>:</tt> should be omitted too.</dd>
1243
Reid Spencer50c723a2007-02-19 23:54:10 +00001244 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1245 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001246 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1247
Reid Spencer50c723a2007-02-19 23:54:10 +00001248 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001249 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001250 <i>size</i>.</dd>
1251
Reid Spencer50c723a2007-02-19 23:54:10 +00001252 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001253 <dd>This specifies the alignment for a floating point type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001254 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1255 (double).</dd>
1256
Reid Spencer50c723a2007-02-19 23:54:10 +00001257 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1258 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001259 <i>size</i>.</dd>
1260
Daniel Dunbar7921a592009-06-08 22:17:53 +00001261 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1262 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001263 <i>size</i>.</dd>
Chris Lattnera381eff2009-11-07 09:35:34 +00001264
1265 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1266 <dd>This specifies a set of native integer widths for the target CPU
1267 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1268 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher455c5772009-12-05 02:46:03 +00001269 this set are considered to support most general arithmetic
Chris Lattnera381eff2009-11-07 09:35:34 +00001270 operations efficiently.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001271</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001272
Reid Spencer50c723a2007-02-19 23:54:10 +00001273<p>When constructing the data layout for a given target, LLVM starts with a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001274 default set of specifications which are then (possibly) overriden by the
1275 specifications in the <tt>datalayout</tt> keyword. The default specifications
1276 are given in this list:</p>
1277
Reid Spencer50c723a2007-02-19 23:54:10 +00001278<ul>
1279 <li><tt>E</tt> - big endian</li>
1280 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1281 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1282 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1283 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1284 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001285 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001286 alignment of 64-bits</li>
1287 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1288 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1289 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1290 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1291 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001292 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001293</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001294
1295<p>When LLVM is determining the alignment for a given type, it uses the
1296 following rules:</p>
1297
Reid Spencer50c723a2007-02-19 23:54:10 +00001298<ol>
1299 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001300 specification is used.</li>
1301
Reid Spencer50c723a2007-02-19 23:54:10 +00001302 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001303 smallest integer type that is larger than the bitwidth of the sought type
1304 is used. If none of the specifications are larger than the bitwidth then
1305 the the largest integer type is used. For example, given the default
1306 specifications above, the i7 type will use the alignment of i8 (next
1307 largest) while both i65 and i256 will use the alignment of i64 (largest
1308 specified).</li>
1309
Reid Spencer50c723a2007-02-19 23:54:10 +00001310 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001311 largest vector type that is smaller than the sought vector type will be
1312 used as a fall back. This happens because &lt;128 x double&gt; can be
1313 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001314</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001315
Reid Spencer50c723a2007-02-19 23:54:10 +00001316</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001317
Dan Gohman6154a012009-07-27 18:07:55 +00001318<!-- ======================================================================= -->
1319<div class="doc_subsection">
1320 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1321</div>
1322
1323<div class="doc_text">
1324
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001325<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001326with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001327is undefined. Pointer values are associated with address ranges
1328according to the following rules:</p>
1329
1330<ul>
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001331 <li>A pointer value formed from a
1332 <tt><a href="#i_getelementptr">getelementptr</a></tt> instruction
1333 is associated with the addresses associated with the first operand
1334 of the <tt>getelementptr</tt>.</li>
1335 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001336 range of the variable's storage.</li>
1337 <li>The result value of an allocation instruction is associated with
1338 the address range of the allocated storage.</li>
1339 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001340 no address.</li>
1341 <li>A pointer value formed by an
1342 <tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all
1343 address ranges of all pointer values that contribute (directly or
1344 indirectly) to the computation of the pointer's value.</li>
1345 <li>The result value of a
1346 <tt><a href="#i_bitcast">bitcast</a></tt> is associated with all
Dan Gohman6154a012009-07-27 18:07:55 +00001347 addresses associated with the operand of the <tt>bitcast</tt>.</li>
1348 <li>An integer constant other than zero or a pointer value returned
1349 from a function not defined within LLVM may be associated with address
1350 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001351 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001352 allocated by mechanisms provided by LLVM.</li>
1353 </ul>
1354
1355<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001356<tt><a href="#i_load">load</a></tt> merely indicates the size and
1357alignment of the memory from which to load, as well as the
1358interpretation of the value. The first operand of a
1359<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1360and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001361
1362<p>Consequently, type-based alias analysis, aka TBAA, aka
1363<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1364LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1365additional information which specialized optimization passes may use
1366to implement type-based alias analysis.</p>
1367
1368</div>
1369
Chris Lattner2f7c9632001-06-06 20:29:01 +00001370<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001371<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1372<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001373
Misha Brukman76307852003-11-08 01:05:38 +00001374<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +00001375
Misha Brukman76307852003-11-08 01:05:38 +00001376<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001377 intermediate representation. Being typed enables a number of optimizations
1378 to be performed on the intermediate representation directly, without having
1379 to do extra analyses on the side before the transformation. A strong type
1380 system makes it easier to read the generated code and enables novel analyses
1381 and transformations that are not feasible to perform on normal three address
1382 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001383
1384</div>
1385
Chris Lattner2f7c9632001-06-06 20:29:01 +00001386<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001387<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner48b383b02003-11-25 01:02:51 +00001388Classifications</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001389
Misha Brukman76307852003-11-08 01:05:38 +00001390<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001391
1392<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001393
1394<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001395 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001396 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001397 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001398 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001399 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001400 </tr>
1401 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001402 <td><a href="#t_floating">floating point</a></td>
1403 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001404 </tr>
1405 <tr>
1406 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001407 <td><a href="#t_integer">integer</a>,
1408 <a href="#t_floating">floating point</a>,
1409 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001410 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001411 <a href="#t_struct">structure</a>,
Chris Lattner392be582010-02-12 20:49:41 +00001412 <a href="#t_union">union</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001413 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001414 <a href="#t_label">label</a>,
1415 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001416 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001417 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001418 <tr>
1419 <td><a href="#t_primitive">primitive</a></td>
1420 <td><a href="#t_label">label</a>,
1421 <a href="#t_void">void</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001422 <a href="#t_floating">floating point</a>,
1423 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001424 </tr>
1425 <tr>
1426 <td><a href="#t_derived">derived</a></td>
Chris Lattner392be582010-02-12 20:49:41 +00001427 <td><a href="#t_array">array</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001428 <a href="#t_function">function</a>,
1429 <a href="#t_pointer">pointer</a>,
1430 <a href="#t_struct">structure</a>,
1431 <a href="#t_pstruct">packed structure</a>,
Chris Lattner392be582010-02-12 20:49:41 +00001432 <a href="#t_union">union</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001433 <a href="#t_vector">vector</a>,
1434 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001435 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001436 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001437 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001438</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001439
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001440<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1441 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001442 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001443
Misha Brukman76307852003-11-08 01:05:38 +00001444</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001445
Chris Lattner2f7c9632001-06-06 20:29:01 +00001446<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001447<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner43542b32008-01-04 04:34:14 +00001448
Chris Lattner7824d182008-01-04 04:32:38 +00001449<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001450
Chris Lattner7824d182008-01-04 04:32:38 +00001451<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001452 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001453
Chris Lattner43542b32008-01-04 04:34:14 +00001454</div>
1455
Chris Lattner7824d182008-01-04 04:32:38 +00001456<!-- _______________________________________________________________________ -->
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001457<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1458
1459<div class="doc_text">
1460
1461<h5>Overview:</h5>
1462<p>The integer type is a very simple type that simply specifies an arbitrary
1463 bit width for the integer type desired. Any bit width from 1 bit to
1464 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1465
1466<h5>Syntax:</h5>
1467<pre>
1468 iN
1469</pre>
1470
1471<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1472 value.</p>
1473
1474<h5>Examples:</h5>
1475<table class="layout">
1476 <tr class="layout">
1477 <td class="left"><tt>i1</tt></td>
1478 <td class="left">a single-bit integer.</td>
1479 </tr>
1480 <tr class="layout">
1481 <td class="left"><tt>i32</tt></td>
1482 <td class="left">a 32-bit integer.</td>
1483 </tr>
1484 <tr class="layout">
1485 <td class="left"><tt>i1942652</tt></td>
1486 <td class="left">a really big integer of over 1 million bits.</td>
1487 </tr>
1488</table>
1489
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001490</div>
1491
1492<!-- _______________________________________________________________________ -->
Chris Lattner7824d182008-01-04 04:32:38 +00001493<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1494
1495<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001496
1497<table>
1498 <tbody>
1499 <tr><th>Type</th><th>Description</th></tr>
1500 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1501 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1502 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1503 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1504 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1505 </tbody>
1506</table>
1507
Chris Lattner7824d182008-01-04 04:32:38 +00001508</div>
1509
1510<!-- _______________________________________________________________________ -->
1511<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1512
1513<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001514
Chris Lattner7824d182008-01-04 04:32:38 +00001515<h5>Overview:</h5>
1516<p>The void type does not represent any value and has no size.</p>
1517
1518<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001519<pre>
1520 void
1521</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001522
Chris Lattner7824d182008-01-04 04:32:38 +00001523</div>
1524
1525<!-- _______________________________________________________________________ -->
1526<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1527
1528<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001529
Chris Lattner7824d182008-01-04 04:32:38 +00001530<h5>Overview:</h5>
1531<p>The label type represents code labels.</p>
1532
1533<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001534<pre>
1535 label
1536</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001537
Chris Lattner7824d182008-01-04 04:32:38 +00001538</div>
1539
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001540<!-- _______________________________________________________________________ -->
1541<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1542
1543<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001544
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001545<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001546<p>The metadata type represents embedded metadata. No derived types may be
1547 created from metadata except for <a href="#t_function">function</a>
1548 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001549
1550<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001551<pre>
1552 metadata
1553</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001554
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001555</div>
1556
Chris Lattner7824d182008-01-04 04:32:38 +00001557
1558<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001559<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001560
Misha Brukman76307852003-11-08 01:05:38 +00001561<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001562
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001563<p>The real power in LLVM comes from the derived types in the system. This is
1564 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001565 useful types. Each of these types contain one or more element types which
1566 may be a primitive type, or another derived type. For example, it is
1567 possible to have a two dimensional array, using an array as the element type
1568 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001569
Chris Lattner392be582010-02-12 20:49:41 +00001570
1571</div>
1572
1573<!-- _______________________________________________________________________ -->
1574<div class="doc_subsubsection"> <a name="t_aggregate">Aggregate Types</a> </div>
1575
1576<div class="doc_text">
1577
1578<p>Aggregate Types are a subset of derived types that can contain multiple
1579 member types. <a href="#t_array">Arrays</a>,
1580 <a href="#t_struct">structs</a>, <a href="#t_vector">vectors</a> and
1581 <a href="#t_union">unions</a> are aggregate types.</p>
1582
1583</div>
1584
Bill Wendling3716c5d2007-05-29 09:04:49 +00001585</div>
Reid Spencer138249b2007-05-16 18:44:01 +00001586
1587<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001588<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001589
Misha Brukman76307852003-11-08 01:05:38 +00001590<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001591
Chris Lattner2f7c9632001-06-06 20:29:01 +00001592<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001593<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001594 sequentially in memory. The array type requires a size (number of elements)
1595 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001596
Chris Lattner590645f2002-04-14 06:13:44 +00001597<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001598<pre>
1599 [&lt;# elements&gt; x &lt;elementtype&gt;]
1600</pre>
1601
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001602<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1603 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001604
Chris Lattner590645f2002-04-14 06:13:44 +00001605<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001606<table class="layout">
1607 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001608 <td class="left"><tt>[40 x i32]</tt></td>
1609 <td class="left">Array of 40 32-bit integer values.</td>
1610 </tr>
1611 <tr class="layout">
1612 <td class="left"><tt>[41 x i32]</tt></td>
1613 <td class="left">Array of 41 32-bit integer values.</td>
1614 </tr>
1615 <tr class="layout">
1616 <td class="left"><tt>[4 x i8]</tt></td>
1617 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001618 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001619</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001620<p>Here are some examples of multidimensional arrays:</p>
1621<table class="layout">
1622 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001623 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1624 <td class="left">3x4 array of 32-bit integer values.</td>
1625 </tr>
1626 <tr class="layout">
1627 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1628 <td class="left">12x10 array of single precision floating point values.</td>
1629 </tr>
1630 <tr class="layout">
1631 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1632 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001633 </tr>
1634</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001635
Dan Gohmanc74bc282009-11-09 19:01:53 +00001636<p>There is no restriction on indexing beyond the end of the array implied by
1637 a static type (though there are restrictions on indexing beyond the bounds
1638 of an allocated object in some cases). This means that single-dimension
1639 'variable sized array' addressing can be implemented in LLVM with a zero
1640 length array type. An implementation of 'pascal style arrays' in LLVM could
1641 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001642
Misha Brukman76307852003-11-08 01:05:38 +00001643</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001644
Chris Lattner2f7c9632001-06-06 20:29:01 +00001645<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001646<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001647
Misha Brukman76307852003-11-08 01:05:38 +00001648<div class="doc_text">
Chris Lattnerda508ac2008-04-23 04:59:35 +00001649
Chris Lattner2f7c9632001-06-06 20:29:01 +00001650<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001651<p>The function type can be thought of as a function signature. It consists of
1652 a return type and a list of formal parameter types. The return type of a
Chris Lattner392be582010-02-12 20:49:41 +00001653 function type is a scalar type, a void type, a struct type, or a union
1654 type. If the return type is a struct type then all struct elements must be
1655 of first class types, and the struct must have at least one element.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001656
Chris Lattner2f7c9632001-06-06 20:29:01 +00001657<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001658<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001659 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00001660</pre>
1661
John Criswell4c0cf7f2005-10-24 16:17:18 +00001662<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001663 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1664 which indicates that the function takes a variable number of arguments.
1665 Variable argument functions can access their arguments with
1666 the <a href="#int_varargs">variable argument handling intrinsic</a>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001667 functions. '<tt>&lt;returntype&gt;</tt>' is a any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00001668 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001669
Chris Lattner2f7c9632001-06-06 20:29:01 +00001670<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001671<table class="layout">
1672 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001673 <td class="left"><tt>i32 (i32)</tt></td>
1674 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001675 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001676 </tr><tr class="layout">
Reid Spencer314e1cb2007-07-19 23:13:04 +00001677 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001678 </tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00001679 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1680 an <tt>i16</tt> that should be sign extended and a
1681 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer58c08712006-12-31 07:18:34 +00001682 <tt>float</tt>.
1683 </td>
1684 </tr><tr class="layout">
1685 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00001686 <td class="left">A vararg function that takes at least one
1687 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1688 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer58c08712006-12-31 07:18:34 +00001689 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001690 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001691 </tr><tr class="layout">
1692 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001693 <td class="left">A function taking an <tt>i32</tt>, returning a
1694 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00001695 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001696 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001697</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001698
Misha Brukman76307852003-11-08 01:05:38 +00001699</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001700
Chris Lattner2f7c9632001-06-06 20:29:01 +00001701<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001702<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001703
Misha Brukman76307852003-11-08 01:05:38 +00001704<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001705
Chris Lattner2f7c9632001-06-06 20:29:01 +00001706<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001707<p>The structure type is used to represent a collection of data members together
1708 in memory. The packing of the field types is defined to match the ABI of the
1709 underlying processor. The elements of a structure may be any type that has a
1710 size.</p>
1711
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00001712<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
1713 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
1714 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1715 Structures in registers are accessed using the
1716 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
1717 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001718<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001719<pre>
1720 { &lt;type list&gt; }
1721</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001722
Chris Lattner2f7c9632001-06-06 20:29:01 +00001723<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001724<table class="layout">
1725 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001726 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1727 <td class="left">A triple of three <tt>i32</tt> values</td>
1728 </tr><tr class="layout">
1729 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1730 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1731 second element is a <a href="#t_pointer">pointer</a> to a
1732 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1733 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001734 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001735</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001736
Misha Brukman76307852003-11-08 01:05:38 +00001737</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001738
Chris Lattner2f7c9632001-06-06 20:29:01 +00001739<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001740<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1741</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001742
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001743<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001744
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001745<h5>Overview:</h5>
1746<p>The packed structure type is used to represent a collection of data members
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001747 together in memory. There is no padding between fields. Further, the
1748 alignment of a packed structure is 1 byte. The elements of a packed
1749 structure may be any type that has a size.</p>
1750
1751<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1752 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1753 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1754
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001755<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001756<pre>
1757 &lt; { &lt;type list&gt; } &gt;
1758</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001759
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001760<h5>Examples:</h5>
1761<table class="layout">
1762 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001763 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1764 <td class="left">A triple of three <tt>i32</tt> values</td>
1765 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001766 <td class="left">
1767<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001768 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1769 second element is a <a href="#t_pointer">pointer</a> to a
1770 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1771 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001772 </tr>
1773</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001774
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001775</div>
1776
1777<!-- _______________________________________________________________________ -->
Chris Lattner392be582010-02-12 20:49:41 +00001778<div class="doc_subsubsection"> <a name="t_union">Union Type</a> </div>
1779
1780<div class="doc_text">
1781
1782<h5>Overview:</h5>
1783<p>A union type describes an object with size and alignment suitable for
1784 an object of any one of a given set of types (also known as an "untagged"
1785 union). It is similar in concept and usage to a
1786 <a href="#t_struct">struct</a>, except that all members of the union
1787 have an offset of zero. The elements of a union may be any type that has a
1788 size. Unions must have at least one member - empty unions are not allowed.
1789 </p>
1790
1791<p>The size of the union as a whole will be the size of its largest member,
1792 and the alignment requirements of the union as a whole will be the largest
1793 alignment requirement of any member.</p>
1794
1795<p>Unions members are accessed using '<tt><a href="#i_load">load</a></tt> and
1796 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1797 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1798 Since all members are at offset zero, the getelementptr instruction does
1799 not affect the address, only the type of the resulting pointer.</p>
1800
1801<h5>Syntax:</h5>
1802<pre>
1803 union { &lt;type list&gt; }
1804</pre>
1805
1806<h5>Examples:</h5>
1807<table class="layout">
1808 <tr class="layout">
1809 <td class="left"><tt>union { i32, i32*, float }</tt></td>
1810 <td class="left">A union of three types: an <tt>i32</tt>, a pointer to
1811 an <tt>i32</tt>, and a <tt>float</tt>.</td>
1812 </tr><tr class="layout">
1813 <td class="left">
1814 <tt>union {&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1815 <td class="left">A union, where the first element is a <tt>float</tt> and the
1816 second element is a <a href="#t_pointer">pointer</a> to a
1817 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1818 an <tt>i32</tt>.</td>
1819 </tr>
1820</table>
1821
1822</div>
1823
1824<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001825<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Chris Lattner4a67c912009-02-08 19:53:29 +00001826
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001827<div class="doc_text">
1828
1829<h5>Overview:</h5>
1830<p>As in many languages, the pointer type represents a pointer or reference to
1831 another object, which must live in memory. Pointer types may have an optional
1832 address space attribute defining the target-specific numbered address space
1833 where the pointed-to object resides. The default address space is zero.</p>
1834
1835<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1836 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001837
Chris Lattner590645f2002-04-14 06:13:44 +00001838<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001839<pre>
1840 &lt;type&gt; *
1841</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001842
Chris Lattner590645f2002-04-14 06:13:44 +00001843<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001844<table class="layout">
1845 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00001846 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001847 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1848 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1849 </tr>
1850 <tr class="layout">
1851 <td class="left"><tt>i32 (i32 *) *</tt></td>
1852 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001853 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001854 <tt>i32</tt>.</td>
1855 </tr>
1856 <tr class="layout">
1857 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1858 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1859 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001860 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001861</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001862
Misha Brukman76307852003-11-08 01:05:38 +00001863</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001864
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001865<!-- _______________________________________________________________________ -->
Reid Spencer404a3252007-02-15 03:07:05 +00001866<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001867
Misha Brukman76307852003-11-08 01:05:38 +00001868<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001869
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001870<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001871<p>A vector type is a simple derived type that represents a vector of elements.
1872 Vector types are used when multiple primitive data are operated in parallel
1873 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands31c0e0e2009-11-27 13:38:03 +00001874 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001875 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001876
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001877<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001878<pre>
1879 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1880</pre>
1881
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001882<p>The number of elements is a constant integer value; elementtype may be any
1883 integer or floating point type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001884
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001885<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001886<table class="layout">
1887 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001888 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1889 <td class="left">Vector of 4 32-bit integer values.</td>
1890 </tr>
1891 <tr class="layout">
1892 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1893 <td class="left">Vector of 8 32-bit floating-point values.</td>
1894 </tr>
1895 <tr class="layout">
1896 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1897 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001898 </tr>
1899</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001900
Misha Brukman76307852003-11-08 01:05:38 +00001901</div>
1902
Chris Lattner37b6b092005-04-25 17:34:15 +00001903<!-- _______________________________________________________________________ -->
1904<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1905<div class="doc_text">
1906
1907<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001908<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001909 corresponds (for example) to the C notion of a forward declared structure
1910 type. In LLVM, opaque types can eventually be resolved to any type (not just
1911 a structure type).</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001912
1913<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001914<pre>
1915 opaque
1916</pre>
1917
1918<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001919<table class="layout">
1920 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001921 <td class="left"><tt>opaque</tt></td>
1922 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00001923 </tr>
1924</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001925
Chris Lattner37b6b092005-04-25 17:34:15 +00001926</div>
1927
Chris Lattnercf7a5842009-02-02 07:32:36 +00001928<!-- ======================================================================= -->
1929<div class="doc_subsection">
1930 <a name="t_uprefs">Type Up-references</a>
1931</div>
1932
1933<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001934
Chris Lattnercf7a5842009-02-02 07:32:36 +00001935<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001936<p>An "up reference" allows you to refer to a lexically enclosing type without
1937 requiring it to have a name. For instance, a structure declaration may
1938 contain a pointer to any of the types it is lexically a member of. Example
1939 of up references (with their equivalent as named type declarations)
1940 include:</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001941
1942<pre>
Chris Lattnerbf1d5452009-02-09 10:00:56 +00001943 { \2 * } %x = type { %x* }
Chris Lattnercf7a5842009-02-02 07:32:36 +00001944 { \2 }* %y = type { %y }*
1945 \1* %z = type %z*
1946</pre>
1947
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001948<p>An up reference is needed by the asmprinter for printing out cyclic types
1949 when there is no declared name for a type in the cycle. Because the
1950 asmprinter does not want to print out an infinite type string, it needs a
1951 syntax to handle recursive types that have no names (all names are optional
1952 in llvm IR).</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001953
1954<h5>Syntax:</h5>
1955<pre>
1956 \&lt;level&gt;
1957</pre>
1958
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001959<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001960
1961<h5>Examples:</h5>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001962<table class="layout">
1963 <tr class="layout">
1964 <td class="left"><tt>\1*</tt></td>
1965 <td class="left">Self-referential pointer.</td>
1966 </tr>
1967 <tr class="layout">
1968 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1969 <td class="left">Recursive structure where the upref refers to the out-most
1970 structure.</td>
1971 </tr>
1972</table>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001973
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001974</div>
Chris Lattner37b6b092005-04-25 17:34:15 +00001975
Chris Lattner74d3f822004-12-09 17:30:23 +00001976<!-- *********************************************************************** -->
1977<div class="doc_section"> <a name="constants">Constants</a> </div>
1978<!-- *********************************************************************** -->
1979
1980<div class="doc_text">
1981
1982<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001983 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001984
1985</div>
1986
1987<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00001988<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001989
1990<div class="doc_text">
1991
1992<dl>
1993 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001994 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001995 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001996
1997 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001998 <dd>Standard integers (such as '4') are constants of
1999 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2000 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002001
2002 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002003 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002004 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2005 notation (see below). The assembler requires the exact decimal value of a
2006 floating-point constant. For example, the assembler accepts 1.25 but
2007 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2008 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002009
2010 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00002011 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002012 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002013</dl>
2014
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002015<p>The one non-intuitive notation for constants is the hexadecimal form of
2016 floating point constants. For example, the form '<tt>double
2017 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2018 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2019 constants are required (and the only time that they are generated by the
2020 disassembler) is when a floating point constant must be emitted but it cannot
2021 be represented as a decimal floating point number in a reasonable number of
2022 digits. For example, NaN's, infinities, and other special values are
2023 represented in their IEEE hexadecimal format so that assembly and disassembly
2024 do not cause any bits to change in the constants.</p>
2025
Dale Johannesencd4a3012009-02-11 22:14:51 +00002026<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002027 represented using the 16-digit form shown above (which matches the IEEE754
2028 representation for double); float values must, however, be exactly
2029 representable as IEE754 single precision. Hexadecimal format is always used
2030 for long double, and there are three forms of long double. The 80-bit format
2031 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2032 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2033 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2034 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2035 currently supported target uses this format. Long doubles will only work if
2036 they match the long double format on your target. All hexadecimal formats
2037 are big-endian (sign bit at the left).</p>
2038
Chris Lattner74d3f822004-12-09 17:30:23 +00002039</div>
2040
2041<!-- ======================================================================= -->
Chris Lattner361bfcd2009-02-28 18:32:25 +00002042<div class="doc_subsection">
Bill Wendling972b7202009-07-20 02:32:41 +00002043<a name="aggregateconstants"></a> <!-- old anchor -->
2044<a name="complexconstants">Complex Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +00002045</div>
2046
2047<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002048
Chris Lattner361bfcd2009-02-28 18:32:25 +00002049<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002050 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002051
2052<dl>
2053 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002054 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002055 type definitions (a comma separated list of elements, surrounded by braces
2056 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2057 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2058 Structure constants must have <a href="#t_struct">structure type</a>, and
2059 the number and types of elements must match those specified by the
2060 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002061
Chris Lattner392be582010-02-12 20:49:41 +00002062 <dt><b>Union constants</b></dt>
2063 <dd>Union constants are represented with notation similar to a structure with
2064 a single element - that is, a single typed element surrounded
2065 by braces (<tt>{}</tt>)). For example: "<tt>{ i32 4 }</tt>". The
2066 <a href="#t_union">union type</a> can be initialized with a single-element
2067 struct as long as the type of the struct element matches the type of
2068 one of the union members.</dd>
2069
Chris Lattner74d3f822004-12-09 17:30:23 +00002070 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002071 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002072 definitions (a comma separated list of elements, surrounded by square
2073 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2074 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2075 the number and types of elements must match those specified by the
2076 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002077
Reid Spencer404a3252007-02-15 03:07:05 +00002078 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00002079 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002080 definitions (a comma separated list of elements, surrounded by
2081 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2082 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2083 have <a href="#t_vector">vector type</a>, and the number and types of
2084 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002085
2086 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002087 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattner392be582010-02-12 20:49:41 +00002088 value to zero of <em>any</em> type, including scalar and
2089 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002090 This is often used to avoid having to print large zero initializers
2091 (e.g. for large arrays) and is always exactly equivalent to using explicit
2092 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00002093
2094 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00002095 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002096 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2097 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2098 be interpreted as part of the instruction stream, metadata is a place to
2099 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002100</dl>
2101
2102</div>
2103
2104<!-- ======================================================================= -->
2105<div class="doc_subsection">
2106 <a name="globalconstants">Global Variable and Function Addresses</a>
2107</div>
2108
2109<div class="doc_text">
2110
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002111<p>The addresses of <a href="#globalvars">global variables</a>
2112 and <a href="#functionstructure">functions</a> are always implicitly valid
2113 (link-time) constants. These constants are explicitly referenced when
2114 the <a href="#identifiers">identifier for the global</a> is used and always
2115 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2116 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002117
Bill Wendling3716c5d2007-05-29 09:04:49 +00002118<div class="doc_code">
Chris Lattner74d3f822004-12-09 17:30:23 +00002119<pre>
Chris Lattner00538a12007-06-06 18:28:13 +00002120@X = global i32 17
2121@Y = global i32 42
2122@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002123</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002124</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002125
2126</div>
2127
2128<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00002129<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002130<div class="doc_text">
2131
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002132<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002133 indicates that the user of the value may receive an unspecified bit-pattern.
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002134 Undefined values may be of any type (other than label or void) and be used
2135 anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002136
Chris Lattner92ada5d2009-09-11 01:49:31 +00002137<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002138 program is well defined no matter what value is used. This gives the
2139 compiler more freedom to optimize. Here are some examples of (potentially
2140 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002141
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002142
2143<div class="doc_code">
2144<pre>
2145 %A = add %X, undef
2146 %B = sub %X, undef
2147 %C = xor %X, undef
2148Safe:
2149 %A = undef
2150 %B = undef
2151 %C = undef
2152</pre>
2153</div>
2154
2155<p>This is safe because all of the output bits are affected by the undef bits.
2156Any output bit can have a zero or one depending on the input bits.</p>
2157
2158<div class="doc_code">
2159<pre>
2160 %A = or %X, undef
2161 %B = and %X, undef
2162Safe:
2163 %A = -1
2164 %B = 0
2165Unsafe:
2166 %A = undef
2167 %B = undef
2168</pre>
2169</div>
2170
2171<p>These logical operations have bits that are not always affected by the input.
2172For example, if "%X" has a zero bit, then the output of the 'and' operation will
2173always be a zero, no matter what the corresponding bit from the undef is. As
Chris Lattner92ada5d2009-09-11 01:49:31 +00002174such, it is unsafe to optimize or assume that the result of the and is undef.
Eric Christopher455c5772009-12-05 02:46:03 +00002175However, it is safe to assume that all bits of the undef could be 0, and
2176optimize the and to 0. Likewise, it is safe to assume that all the bits of
2177the undef operand to the or could be set, allowing the or to be folded to
Chris Lattner92ada5d2009-09-11 01:49:31 +00002178-1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002179
2180<div class="doc_code">
2181<pre>
2182 %A = select undef, %X, %Y
2183 %B = select undef, 42, %Y
2184 %C = select %X, %Y, undef
2185Safe:
2186 %A = %X (or %Y)
2187 %B = 42 (or %Y)
2188 %C = %Y
2189Unsafe:
2190 %A = undef
2191 %B = undef
2192 %C = undef
2193</pre>
2194</div>
2195
2196<p>This set of examples show that undefined select (and conditional branch)
2197conditions can go "either way" but they have to come from one of the two
2198operands. In the %A example, if %X and %Y were both known to have a clear low
2199bit, then %A would have to have a cleared low bit. However, in the %C example,
2200the optimizer is allowed to assume that the undef operand could be the same as
2201%Y, allowing the whole select to be eliminated.</p>
2202
2203
2204<div class="doc_code">
2205<pre>
2206 %A = xor undef, undef
Eric Christopher455c5772009-12-05 02:46:03 +00002207
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002208 %B = undef
2209 %C = xor %B, %B
2210
2211 %D = undef
2212 %E = icmp lt %D, 4
2213 %F = icmp gte %D, 4
2214
2215Safe:
2216 %A = undef
2217 %B = undef
2218 %C = undef
2219 %D = undef
2220 %E = undef
2221 %F = undef
2222</pre>
2223</div>
2224
2225<p>This example points out that two undef operands are not necessarily the same.
2226This can be surprising to people (and also matches C semantics) where they
2227assume that "X^X" is always zero, even if X is undef. This isn't true for a
2228number of reasons, but the short answer is that an undef "variable" can
2229arbitrarily change its value over its "live range". This is true because the
2230"variable" doesn't actually <em>have a live range</em>. Instead, the value is
2231logically read from arbitrary registers that happen to be around when needed,
Benjamin Kramer0f420382009-10-12 14:46:08 +00002232so the value is not necessarily consistent over time. In fact, %A and %C need
Chris Lattner6760e542009-09-08 15:13:16 +00002233to have the same semantics or the core LLVM "replace all uses with" concept
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002234would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002235
2236<div class="doc_code">
2237<pre>
2238 %A = fdiv undef, %X
2239 %B = fdiv %X, undef
2240Safe:
2241 %A = undef
2242b: unreachable
2243</pre>
2244</div>
2245
2246<p>These examples show the crucial difference between an <em>undefined
2247value</em> and <em>undefined behavior</em>. An undefined value (like undef) is
2248allowed to have an arbitrary bit-pattern. This means that the %A operation
2249can be constant folded to undef because the undef could be an SNaN, and fdiv is
2250not (currently) defined on SNaN's. However, in the second example, we can make
2251a more aggressive assumption: because the undef is allowed to be an arbitrary
2252value, we are allowed to assume that it could be zero. Since a divide by zero
Chris Lattner10ff0c12009-09-08 19:45:34 +00002253has <em>undefined behavior</em>, we are allowed to assume that the operation
Chris Lattnera34a7182009-09-07 23:33:52 +00002254does not execute at all. This allows us to delete the divide and all code after
2255it: since the undefined operation "can't happen", the optimizer can assume that
2256it occurs in dead code.
2257</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002258
Chris Lattnera34a7182009-09-07 23:33:52 +00002259<div class="doc_code">
2260<pre>
2261a: store undef -> %X
2262b: store %X -> undef
2263Safe:
2264a: &lt;deleted&gt;
2265b: unreachable
2266</pre>
2267</div>
2268
2269<p>These examples reiterate the fdiv example: a store "of" an undefined value
Eric Christopher455c5772009-12-05 02:46:03 +00002270can be assumed to not have any effect: we can assume that the value is
Chris Lattnera34a7182009-09-07 23:33:52 +00002271overwritten with bits that happen to match what was already there. However, a
2272store "to" an undefined location could clobber arbitrary memory, therefore, it
2273has undefined behavior.</p>
2274
Chris Lattner74d3f822004-12-09 17:30:23 +00002275</div>
2276
2277<!-- ======================================================================= -->
Chris Lattner2bfd3202009-10-27 21:19:13 +00002278<div class="doc_subsection"><a name="blockaddress">Addresses of Basic
2279 Blocks</a></div>
Chris Lattnere4801f72009-10-27 21:01:34 +00002280<div class="doc_text">
2281
Chris Lattneraa99c942009-11-01 01:27:45 +00002282<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002283
2284<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner5c5f0ac2009-10-27 21:49:40 +00002285 basic block in the specified function, and always has an i8* type. Taking
Chris Lattneraa99c942009-11-01 01:27:45 +00002286 the address of the entry block is illegal.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002287
Chris Lattnere4801f72009-10-27 21:01:34 +00002288<p>This value only has defined behavior when used as an operand to the
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002289 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction or for comparisons
Chris Lattnere4801f72009-10-27 21:01:34 +00002290 against null. Pointer equality tests between labels addresses is undefined
2291 behavior - though, again, comparison against null is ok, and no label is
Chris Lattner2bfd3202009-10-27 21:19:13 +00002292 equal to the null pointer. This may also be passed around as an opaque
2293 pointer sized value as long as the bits are not inspected. This allows
Chris Lattnerda37b302009-10-27 21:44:20 +00002294 <tt>ptrtoint</tt> and arithmetic to be performed on these values so long as
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002295 the original value is reconstituted before the <tt>indirectbr</tt>.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002296
Chris Lattner2bfd3202009-10-27 21:19:13 +00002297<p>Finally, some targets may provide defined semantics when
Chris Lattnere4801f72009-10-27 21:01:34 +00002298 using the value as the operand to an inline assembly, but that is target
2299 specific.
2300 </p>
2301
2302</div>
2303
2304
2305<!-- ======================================================================= -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002306<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2307</div>
2308
2309<div class="doc_text">
2310
2311<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002312 to be used as constants. Constant expressions may be of
2313 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2314 operation that does not have side effects (e.g. load and call are not
2315 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002316
2317<dl>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002318 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002319 <dd>Truncate a constant to another type. The bit size of CST must be larger
2320 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002321
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002322 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002323 <dd>Zero extend a constant to another type. The bit size of CST must be
2324 smaller or equal to the bit size of TYPE. Both types must be
2325 integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002326
2327 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002328 <dd>Sign extend a constant to another type. The bit size of CST must be
2329 smaller or equal to the bit size of TYPE. Both types must be
2330 integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002331
2332 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002333 <dd>Truncate a floating point constant to another floating point type. The
2334 size of CST must be larger than the size of TYPE. Both types must be
2335 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002336
2337 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002338 <dd>Floating point extend a constant to another type. The size of CST must be
2339 smaller or equal to the size of TYPE. Both types must be floating
2340 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002341
Reid Spencer753163d2007-07-31 14:40:14 +00002342 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002343 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002344 constant. TYPE must be a scalar or vector integer type. CST must be of
2345 scalar or vector floating point type. Both CST and TYPE must be scalars,
2346 or vectors of the same number of elements. If the value won't fit in the
2347 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002348
Reid Spencer51b07252006-11-09 23:03:26 +00002349 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002350 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002351 constant. TYPE must be a scalar or vector integer type. CST must be of
2352 scalar or vector floating point type. Both CST and TYPE must be scalars,
2353 or vectors of the same number of elements. If the value won't fit in the
2354 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002355
Reid Spencer51b07252006-11-09 23:03:26 +00002356 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002357 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002358 constant. TYPE must be a scalar or vector floating point type. CST must be
2359 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2360 vectors of the same number of elements. If the value won't fit in the
2361 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002362
Reid Spencer51b07252006-11-09 23:03:26 +00002363 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002364 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002365 constant. TYPE must be a scalar or vector floating point type. CST must be
2366 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2367 vectors of the same number of elements. If the value won't fit in the
2368 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002369
Reid Spencer5b950642006-11-11 23:08:07 +00002370 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2371 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002372 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2373 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2374 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002375
2376 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002377 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2378 type. CST must be of integer type. The CST value is zero extended,
2379 truncated, or unchanged to make it fit in a pointer size. This one is
2380 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002381
2382 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002383 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2384 are the same as those for the <a href="#i_bitcast">bitcast
2385 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002386
2387 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohman1639c392009-07-27 21:53:46 +00002388 <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002389 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002390 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2391 instruction, the index list may have zero or more indexes, which are
2392 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002393
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002394 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002395 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002396
2397 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2398 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2399
2400 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2401 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002402
2403 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002404 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2405 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002406
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00002407 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002408 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2409 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002410
2411 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002412 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2413 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002414
Chris Lattner74d3f822004-12-09 17:30:23 +00002415 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002416 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2417 be any of the <a href="#binaryops">binary</a>
2418 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2419 on operands are the same as those for the corresponding instruction
2420 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002421</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002422
Chris Lattner74d3f822004-12-09 17:30:23 +00002423</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002424
Chris Lattner2f7c9632001-06-06 20:29:01 +00002425<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00002426<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2427<!-- *********************************************************************** -->
2428
2429<!-- ======================================================================= -->
2430<div class="doc_subsection">
2431<a name="inlineasm">Inline Assembler Expressions</a>
2432</div>
2433
2434<div class="doc_text">
2435
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002436<p>LLVM supports inline assembler expressions (as opposed
2437 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2438 a special value. This value represents the inline assembler as a string
2439 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002440 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002441 expression has side effects, and a flag indicating whether the function
2442 containing the asm needs to align its stack conservatively. An example
2443 inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002444
Bill Wendling3716c5d2007-05-29 09:04:49 +00002445<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002446<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002447i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002448</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002449</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002450
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002451<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2452 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2453 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002454
Bill Wendling3716c5d2007-05-29 09:04:49 +00002455<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002456<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002457%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002458</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002459</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002460
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002461<p>Inline asms with side effects not visible in the constraint list must be
2462 marked as having side effects. This is done through the use of the
2463 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002464
Bill Wendling3716c5d2007-05-29 09:04:49 +00002465<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002466<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002467call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002468</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002469</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002470
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002471<p>In some cases inline asms will contain code that will not work unless the
2472 stack is aligned in some way, such as calls or SSE instructions on x86,
2473 yet will not contain code that does that alignment within the asm.
2474 The compiler should make conservative assumptions about what the asm might
2475 contain and should generate its usual stack alignment code in the prologue
2476 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002477
2478<div class="doc_code">
2479<pre>
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002480call void asm alignstack "eieio", ""()
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002481</pre>
2482</div>
2483
2484<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2485 first.</p>
2486
Chris Lattner98f013c2006-01-25 23:47:57 +00002487<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002488 documented here. Constraints on what can be done (e.g. duplication, moving,
2489 etc need to be documented). This is probably best done by reference to
2490 another document that covers inline asm from a holistic perspective.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002491
2492</div>
2493
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002494<!-- ======================================================================= -->
2495<div class="doc_subsection"><a name="metadata">Metadata Nodes and Metadata
2496 Strings</a>
2497</div>
2498
2499<div class="doc_text">
2500
2501<p>LLVM IR allows metadata to be attached to instructions in the program that
2502 can convey extra information about the code to the optimizers and code
2503 generator. One example application of metadata is source-level debug
2504 information. There are two metadata primitives: strings and nodes. All
2505 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2506 preceding exclamation point ('<tt>!</tt>').</p>
2507
2508<p>A metadata string is a string surrounded by double quotes. It can contain
2509 any character by escaping non-printable characters with "\xx" where "xx" is
2510 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2511
2512<p>Metadata nodes are represented with notation similar to structure constants
2513 (a comma separated list of elements, surrounded by braces and preceded by an
2514 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2515 10}</tt>". Metadata nodes can have any values as their operand.</p>
2516
2517<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2518 metadata nodes, which can be looked up in the module symbol table. For
2519 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2520
2521</div>
2522
Chris Lattnerae76db52009-07-20 05:55:19 +00002523
2524<!-- *********************************************************************** -->
2525<div class="doc_section">
2526 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2527</div>
2528<!-- *********************************************************************** -->
2529
2530<p>LLVM has a number of "magic" global variables that contain data that affect
2531code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00002532of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2533section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2534by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002535
2536<!-- ======================================================================= -->
2537<div class="doc_subsection">
2538<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2539</div>
2540
2541<div class="doc_text">
2542
2543<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2544href="#linkage_appending">appending linkage</a>. This array contains a list of
2545pointers to global variables and functions which may optionally have a pointer
2546cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2547
2548<pre>
2549 @X = global i8 4
2550 @Y = global i32 123
2551
2552 @llvm.used = appending global [2 x i8*] [
2553 i8* @X,
2554 i8* bitcast (i32* @Y to i8*)
2555 ], section "llvm.metadata"
2556</pre>
2557
2558<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2559compiler, assembler, and linker are required to treat the symbol as if there is
2560a reference to the global that it cannot see. For example, if a variable has
2561internal linkage and no references other than that from the <tt>@llvm.used</tt>
2562list, it cannot be deleted. This is commonly used to represent references from
2563inline asms and other things the compiler cannot "see", and corresponds to
2564"attribute((used))" in GNU C.</p>
2565
2566<p>On some targets, the code generator must emit a directive to the assembler or
2567object file to prevent the assembler and linker from molesting the symbol.</p>
2568
2569</div>
2570
2571<!-- ======================================================================= -->
2572<div class="doc_subsection">
Chris Lattner58f9bb22009-07-20 06:14:25 +00002573<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2574</div>
2575
2576<div class="doc_text">
2577
2578<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2579<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2580touching the symbol. On targets that support it, this allows an intelligent
2581linker to optimize references to the symbol without being impeded as it would be
2582by <tt>@llvm.used</tt>.</p>
2583
2584<p>This is a rare construct that should only be used in rare circumstances, and
2585should not be exposed to source languages.</p>
2586
2587</div>
2588
2589<!-- ======================================================================= -->
2590<div class="doc_subsection">
Chris Lattnerae76db52009-07-20 05:55:19 +00002591<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2592</div>
2593
2594<div class="doc_text">
2595
2596<p>TODO: Describe this.</p>
2597
2598</div>
2599
2600<!-- ======================================================================= -->
2601<div class="doc_subsection">
2602<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2603</div>
2604
2605<div class="doc_text">
2606
2607<p>TODO: Describe this.</p>
2608
2609</div>
2610
2611
Chris Lattner98f013c2006-01-25 23:47:57 +00002612<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002613<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2614<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002615
Misha Brukman76307852003-11-08 01:05:38 +00002616<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002617
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002618<p>The LLVM instruction set consists of several different classifications of
2619 instructions: <a href="#terminators">terminator
2620 instructions</a>, <a href="#binaryops">binary instructions</a>,
2621 <a href="#bitwiseops">bitwise binary instructions</a>,
2622 <a href="#memoryops">memory instructions</a>, and
2623 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002624
Misha Brukman76307852003-11-08 01:05:38 +00002625</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002626
Chris Lattner2f7c9632001-06-06 20:29:01 +00002627<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002628<div class="doc_subsection"> <a name="terminators">Terminator
2629Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002630
Misha Brukman76307852003-11-08 01:05:38 +00002631<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002632
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002633<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2634 in a program ends with a "Terminator" instruction, which indicates which
2635 block should be executed after the current block is finished. These
2636 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2637 control flow, not values (the one exception being the
2638 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2639
2640<p>There are six different terminator instructions: the
2641 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2642 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2643 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
Bill Wendling33fef7e2009-11-02 00:25:26 +00002644 '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002645 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2646 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2647 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002648
Misha Brukman76307852003-11-08 01:05:38 +00002649</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002650
Chris Lattner2f7c9632001-06-06 20:29:01 +00002651<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002652<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2653Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002654
Misha Brukman76307852003-11-08 01:05:38 +00002655<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002656
Chris Lattner2f7c9632001-06-06 20:29:01 +00002657<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002658<pre>
2659 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002660 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002661</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002662
Chris Lattner2f7c9632001-06-06 20:29:01 +00002663<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002664<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2665 a value) from a function back to the caller.</p>
2666
2667<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2668 value and then causes control flow, and one that just causes control flow to
2669 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002670
Chris Lattner2f7c9632001-06-06 20:29:01 +00002671<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002672<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2673 return value. The type of the return value must be a
2674 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002675
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002676<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2677 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2678 value or a return value with a type that does not match its type, or if it
2679 has a void return type and contains a '<tt>ret</tt>' instruction with a
2680 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002681
Chris Lattner2f7c9632001-06-06 20:29:01 +00002682<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002683<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2684 the calling function's context. If the caller is a
2685 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2686 instruction after the call. If the caller was an
2687 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2688 the beginning of the "normal" destination block. If the instruction returns
2689 a value, that value shall set the call or invoke instruction's return
2690 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002691
Chris Lattner2f7c9632001-06-06 20:29:01 +00002692<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002693<pre>
2694 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002695 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00002696 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002697</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00002698
Misha Brukman76307852003-11-08 01:05:38 +00002699</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002700<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002701<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002702
Misha Brukman76307852003-11-08 01:05:38 +00002703<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002704
Chris Lattner2f7c9632001-06-06 20:29:01 +00002705<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002706<pre>
2707 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002708</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002709
Chris Lattner2f7c9632001-06-06 20:29:01 +00002710<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002711<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2712 different basic block in the current function. There are two forms of this
2713 instruction, corresponding to a conditional branch and an unconditional
2714 branch.</p>
2715
Chris Lattner2f7c9632001-06-06 20:29:01 +00002716<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002717<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2718 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2719 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2720 target.</p>
2721
Chris Lattner2f7c9632001-06-06 20:29:01 +00002722<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002723<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002724 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2725 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2726 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2727
Chris Lattner2f7c9632001-06-06 20:29:01 +00002728<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002729<pre>
2730Test:
2731 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2732 br i1 %cond, label %IfEqual, label %IfUnequal
2733IfEqual:
2734 <a href="#i_ret">ret</a> i32 1
2735IfUnequal:
2736 <a href="#i_ret">ret</a> i32 0
2737</pre>
2738
Misha Brukman76307852003-11-08 01:05:38 +00002739</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002740
Chris Lattner2f7c9632001-06-06 20:29:01 +00002741<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002742<div class="doc_subsubsection">
2743 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2744</div>
2745
Misha Brukman76307852003-11-08 01:05:38 +00002746<div class="doc_text">
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002747
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002748<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002749<pre>
2750 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2751</pre>
2752
Chris Lattner2f7c9632001-06-06 20:29:01 +00002753<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002754<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002755 several different places. It is a generalization of the '<tt>br</tt>'
2756 instruction, allowing a branch to occur to one of many possible
2757 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002758
Chris Lattner2f7c9632001-06-06 20:29:01 +00002759<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002760<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002761 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2762 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2763 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002764
Chris Lattner2f7c9632001-06-06 20:29:01 +00002765<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002766<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002767 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2768 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00002769 transferred to the corresponding destination; otherwise, control flow is
2770 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002771
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002772<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002773<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002774 <tt>switch</tt> instruction, this instruction may be code generated in
2775 different ways. For example, it could be generated as a series of chained
2776 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002777
2778<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002779<pre>
2780 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002781 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00002782 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002783
2784 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002785 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002786
2787 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00002788 switch i32 %val, label %otherwise [ i32 0, label %onzero
2789 i32 1, label %onone
2790 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00002791</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002792
Misha Brukman76307852003-11-08 01:05:38 +00002793</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00002794
Chris Lattner3ed871f2009-10-27 19:13:16 +00002795
2796<!-- _______________________________________________________________________ -->
2797<div class="doc_subsubsection">
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002798 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
Chris Lattner3ed871f2009-10-27 19:13:16 +00002799</div>
2800
2801<div class="doc_text">
2802
2803<h5>Syntax:</h5>
2804<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002805 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00002806</pre>
2807
2808<h5>Overview:</h5>
2809
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002810<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattner3ed871f2009-10-27 19:13:16 +00002811 within the current function, whose address is specified by
Chris Lattnere4801f72009-10-27 21:01:34 +00002812 "<tt>address</tt>". Address must be derived from a <a
2813 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattner3ed871f2009-10-27 19:13:16 +00002814
2815<h5>Arguments:</h5>
2816
2817<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
2818 rest of the arguments indicate the full set of possible destinations that the
2819 address may point to. Blocks are allowed to occur multiple times in the
2820 destination list, though this isn't particularly useful.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002821
Chris Lattner3ed871f2009-10-27 19:13:16 +00002822<p>This destination list is required so that dataflow analysis has an accurate
2823 understanding of the CFG.</p>
2824
2825<h5>Semantics:</h5>
2826
2827<p>Control transfers to the block specified in the address argument. All
2828 possible destination blocks must be listed in the label list, otherwise this
2829 instruction has undefined behavior. This implies that jumps to labels
2830 defined in other functions have undefined behavior as well.</p>
2831
2832<h5>Implementation:</h5>
2833
2834<p>This is typically implemented with a jump through a register.</p>
2835
2836<h5>Example:</h5>
2837<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002838 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00002839</pre>
2840
2841</div>
2842
2843
Chris Lattner2f7c9632001-06-06 20:29:01 +00002844<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00002845<div class="doc_subsubsection">
2846 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2847</div>
2848
Misha Brukman76307852003-11-08 01:05:38 +00002849<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00002850
Chris Lattner2f7c9632001-06-06 20:29:01 +00002851<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002852<pre>
Devang Patel02256232008-10-07 17:48:33 +00002853 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00002854 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00002855</pre>
2856
Chris Lattnera8292f32002-05-06 22:08:29 +00002857<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002858<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002859 function, with the possibility of control flow transfer to either the
2860 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
2861 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
2862 control flow will return to the "normal" label. If the callee (or any
2863 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
2864 instruction, control is interrupted and continued at the dynamically nearest
2865 "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002866
Chris Lattner2f7c9632001-06-06 20:29:01 +00002867<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002868<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002869
Chris Lattner2f7c9632001-06-06 20:29:01 +00002870<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002871 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
2872 convention</a> the call should use. If none is specified, the call
2873 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002874
2875 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002876 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
2877 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002878
Chris Lattner0132aff2005-05-06 22:57:40 +00002879 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002880 function value being invoked. In most cases, this is a direct function
2881 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
2882 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002883
2884 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002885 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002886
2887 <li>'<tt>function args</tt>': argument list whose types match the function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002888 signature argument types. If the function signature indicates the
2889 function accepts a variable number of arguments, the extra arguments can
2890 be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002891
2892 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002893 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002894
2895 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002896 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002897
Devang Patel02256232008-10-07 17:48:33 +00002898 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002899 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2900 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002901</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002902
Chris Lattner2f7c9632001-06-06 20:29:01 +00002903<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002904<p>This instruction is designed to operate as a standard
2905 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
2906 primary difference is that it establishes an association with a label, which
2907 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002908
2909<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002910 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2911 exception. Additionally, this is important for implementation of
2912 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002913
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002914<p>For the purposes of the SSA form, the definition of the value returned by the
2915 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
2916 block to the "normal" label. If the callee unwinds then no return value is
2917 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00002918
Chris Lattner97257f82010-01-15 18:08:37 +00002919<p>Note that the code generator does not yet completely support unwind, and
2920that the invoke/unwind semantics are likely to change in future versions.</p>
2921
Chris Lattner2f7c9632001-06-06 20:29:01 +00002922<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002923<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00002924 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002925 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00002926 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002927 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002928</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002929
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002930</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002931
Chris Lattner5ed60612003-09-03 00:41:47 +00002932<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002933
Chris Lattner48b383b02003-11-25 01:02:51 +00002934<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2935Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002936
Misha Brukman76307852003-11-08 01:05:38 +00002937<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002938
Chris Lattner5ed60612003-09-03 00:41:47 +00002939<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002940<pre>
2941 unwind
2942</pre>
2943
Chris Lattner5ed60612003-09-03 00:41:47 +00002944<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002945<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002946 at the first callee in the dynamic call stack which used
2947 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
2948 This is primarily used to implement exception handling.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002949
Chris Lattner5ed60612003-09-03 00:41:47 +00002950<h5>Semantics:</h5>
Chris Lattnerfe8519c2008-04-19 21:01:16 +00002951<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002952 immediately halt. The dynamic call stack is then searched for the
2953 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
2954 Once found, execution continues at the "exceptional" destination block
2955 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
2956 instruction in the dynamic call chain, undefined behavior results.</p>
2957
Chris Lattner97257f82010-01-15 18:08:37 +00002958<p>Note that the code generator does not yet completely support unwind, and
2959that the invoke/unwind semantics are likely to change in future versions.</p>
2960
Misha Brukman76307852003-11-08 01:05:38 +00002961</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002962
2963<!-- _______________________________________________________________________ -->
2964
2965<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2966Instruction</a> </div>
2967
2968<div class="doc_text">
2969
2970<h5>Syntax:</h5>
2971<pre>
2972 unreachable
2973</pre>
2974
2975<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002976<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002977 instruction is used to inform the optimizer that a particular portion of the
2978 code is not reachable. This can be used to indicate that the code after a
2979 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002980
2981<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002982<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002983
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002984</div>
2985
Chris Lattner2f7c9632001-06-06 20:29:01 +00002986<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002987<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002988
Misha Brukman76307852003-11-08 01:05:38 +00002989<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002990
2991<p>Binary operators are used to do most of the computation in a program. They
2992 require two operands of the same type, execute an operation on them, and
2993 produce a single value. The operands might represent multiple data, as is
2994 the case with the <a href="#t_vector">vector</a> data type. The result value
2995 has the same type as its operands.</p>
2996
Misha Brukman76307852003-11-08 01:05:38 +00002997<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002998
Misha Brukman76307852003-11-08 01:05:38 +00002999</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003000
Chris Lattner2f7c9632001-06-06 20:29:01 +00003001<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003002<div class="doc_subsubsection">
3003 <a name="i_add">'<tt>add</tt>' Instruction</a>
3004</div>
3005
Misha Brukman76307852003-11-08 01:05:38 +00003006<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003007
Chris Lattner2f7c9632001-06-06 20:29:01 +00003008<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003009<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003010 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003011 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3012 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3013 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003014</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003015
Chris Lattner2f7c9632001-06-06 20:29:01 +00003016<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003017<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003018
Chris Lattner2f7c9632001-06-06 20:29:01 +00003019<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003020<p>The two arguments to the '<tt>add</tt>' instruction must
3021 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3022 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003023
Chris Lattner2f7c9632001-06-06 20:29:01 +00003024<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003025<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003026
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003027<p>If the sum has unsigned overflow, the result returned is the mathematical
3028 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003029
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003030<p>Because LLVM integers use a two's complement representation, this instruction
3031 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003032
Dan Gohman902dfff2009-07-22 22:44:56 +00003033<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3034 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3035 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
3036 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003037
Chris Lattner2f7c9632001-06-06 20:29:01 +00003038<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003039<pre>
3040 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003041</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003042
Misha Brukman76307852003-11-08 01:05:38 +00003043</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003044
Chris Lattner2f7c9632001-06-06 20:29:01 +00003045<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003046<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00003047 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
3048</div>
3049
3050<div class="doc_text">
3051
3052<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003053<pre>
3054 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3055</pre>
3056
3057<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003058<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3059
3060<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003061<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003062 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3063 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003064
3065<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003066<p>The value produced is the floating point sum of the two operands.</p>
3067
3068<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003069<pre>
3070 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3071</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003072
Dan Gohmana5b96452009-06-04 22:49:04 +00003073</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003074
Dan Gohmana5b96452009-06-04 22:49:04 +00003075<!-- _______________________________________________________________________ -->
3076<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003077 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
3078</div>
3079
Misha Brukman76307852003-11-08 01:05:38 +00003080<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003081
Chris Lattner2f7c9632001-06-06 20:29:01 +00003082<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003083<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003084 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003085 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3086 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3087 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003088</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003089
Chris Lattner2f7c9632001-06-06 20:29:01 +00003090<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003091<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003092 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003093
3094<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003095 '<tt>neg</tt>' instruction present in most other intermediate
3096 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003097
Chris Lattner2f7c9632001-06-06 20:29:01 +00003098<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003099<p>The two arguments to the '<tt>sub</tt>' instruction must
3100 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3101 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003102
Chris Lattner2f7c9632001-06-06 20:29:01 +00003103<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003104<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003105
Dan Gohmana5b96452009-06-04 22:49:04 +00003106<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003107 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3108 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003109
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003110<p>Because LLVM integers use a two's complement representation, this instruction
3111 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003112
Dan Gohman902dfff2009-07-22 22:44:56 +00003113<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3114 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3115 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
3116 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003117
Chris Lattner2f7c9632001-06-06 20:29:01 +00003118<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003119<pre>
3120 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003121 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003122</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003123
Misha Brukman76307852003-11-08 01:05:38 +00003124</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003125
Chris Lattner2f7c9632001-06-06 20:29:01 +00003126<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003127<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00003128 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3129</div>
3130
3131<div class="doc_text">
3132
3133<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003134<pre>
3135 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3136</pre>
3137
3138<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003139<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003140 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003141
3142<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003143 '<tt>fneg</tt>' instruction present in most other intermediate
3144 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003145
3146<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00003147<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003148 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3149 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003150
3151<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003152<p>The value produced is the floating point difference of the two operands.</p>
3153
3154<h5>Example:</h5>
3155<pre>
3156 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3157 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3158</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003159
Dan Gohmana5b96452009-06-04 22:49:04 +00003160</div>
3161
3162<!-- _______________________________________________________________________ -->
3163<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003164 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3165</div>
3166
Misha Brukman76307852003-11-08 01:05:38 +00003167<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003168
Chris Lattner2f7c9632001-06-06 20:29:01 +00003169<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003170<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003171 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003172 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3173 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3174 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003175</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003176
Chris Lattner2f7c9632001-06-06 20:29:01 +00003177<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003178<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003179
Chris Lattner2f7c9632001-06-06 20:29:01 +00003180<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003181<p>The two arguments to the '<tt>mul</tt>' instruction must
3182 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3183 integer values. Both arguments must have identical types.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003184
Chris Lattner2f7c9632001-06-06 20:29:01 +00003185<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003186<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003187
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003188<p>If the result of the multiplication has unsigned overflow, the result
3189 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3190 width of the result.</p>
3191
3192<p>Because LLVM integers use a two's complement representation, and the result
3193 is the same width as the operands, this instruction returns the correct
3194 result for both signed and unsigned integers. If a full product
3195 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3196 be sign-extended or zero-extended as appropriate to the width of the full
3197 product.</p>
3198
Dan Gohman902dfff2009-07-22 22:44:56 +00003199<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3200 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3201 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
3202 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003203
Chris Lattner2f7c9632001-06-06 20:29:01 +00003204<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003205<pre>
3206 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003207</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003208
Misha Brukman76307852003-11-08 01:05:38 +00003209</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003210
Chris Lattner2f7c9632001-06-06 20:29:01 +00003211<!-- _______________________________________________________________________ -->
Dan Gohmana5b96452009-06-04 22:49:04 +00003212<div class="doc_subsubsection">
3213 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3214</div>
3215
3216<div class="doc_text">
3217
3218<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003219<pre>
3220 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003221</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003222
Dan Gohmana5b96452009-06-04 22:49:04 +00003223<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003224<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003225
3226<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003227<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003228 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3229 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003230
3231<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003232<p>The value produced is the floating point product of the two operands.</p>
3233
3234<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003235<pre>
3236 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003237</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003238
Dan Gohmana5b96452009-06-04 22:49:04 +00003239</div>
3240
3241<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003242<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
3243</a></div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003244
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003245<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003246
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003247<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003248<pre>
3249 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003250</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003251
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003252<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003253<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003254
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003255<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003256<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003257 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3258 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003259
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003260<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00003261<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003262
Chris Lattner2f2427e2008-01-28 00:36:27 +00003263<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003264 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3265
Chris Lattner2f2427e2008-01-28 00:36:27 +00003266<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003267
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003268<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003269<pre>
3270 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003271</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003272
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003273</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003274
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003275<!-- _______________________________________________________________________ -->
3276<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
3277</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003278
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003279<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003280
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003281<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003282<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003283 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003284 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003285</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003286
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003287<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003288<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003289
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003290<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003291<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003292 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3293 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003294
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003295<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003296<p>The value produced is the signed integer quotient of the two operands rounded
3297 towards zero.</p>
3298
Chris Lattner2f2427e2008-01-28 00:36:27 +00003299<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003300 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3301
Chris Lattner2f2427e2008-01-28 00:36:27 +00003302<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003303 undefined behavior; this is a rare case, but can occur, for example, by doing
3304 a 32-bit division of -2147483648 by -1.</p>
3305
Dan Gohman71dfd782009-07-22 00:04:19 +00003306<p>If the <tt>exact</tt> keyword is present, the result value of the
3307 <tt>sdiv</tt> is undefined if the result would be rounded or if overflow
3308 would occur.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003309
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003310<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003311<pre>
3312 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003313</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003314
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003315</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003316
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003317<!-- _______________________________________________________________________ -->
3318<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00003319Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003320
Misha Brukman76307852003-11-08 01:05:38 +00003321<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003322
Chris Lattner2f7c9632001-06-06 20:29:01 +00003323<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003324<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003325 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003326</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003327
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003328<h5>Overview:</h5>
3329<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003330
Chris Lattner48b383b02003-11-25 01:02:51 +00003331<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003332<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003333 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3334 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003335
Chris Lattner48b383b02003-11-25 01:02:51 +00003336<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003337<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003338
Chris Lattner48b383b02003-11-25 01:02:51 +00003339<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003340<pre>
3341 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003342</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003343
Chris Lattner48b383b02003-11-25 01:02:51 +00003344</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003345
Chris Lattner48b383b02003-11-25 01:02:51 +00003346<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00003347<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3348</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003349
Reid Spencer7eb55b32006-11-02 01:53:59 +00003350<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003351
Reid Spencer7eb55b32006-11-02 01:53:59 +00003352<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003353<pre>
3354 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003355</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003356
Reid Spencer7eb55b32006-11-02 01:53:59 +00003357<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003358<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3359 division of its two arguments.</p>
3360
Reid Spencer7eb55b32006-11-02 01:53:59 +00003361<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003362<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003363 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3364 values. Both arguments must have identical types.</p>
3365
Reid Spencer7eb55b32006-11-02 01:53:59 +00003366<h5>Semantics:</h5>
3367<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003368 This instruction always performs an unsigned division to get the
3369 remainder.</p>
3370
Chris Lattner2f2427e2008-01-28 00:36:27 +00003371<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003372 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3373
Chris Lattner2f2427e2008-01-28 00:36:27 +00003374<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003375
Reid Spencer7eb55b32006-11-02 01:53:59 +00003376<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003377<pre>
3378 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003379</pre>
3380
3381</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003382
Reid Spencer7eb55b32006-11-02 01:53:59 +00003383<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003384<div class="doc_subsubsection">
3385 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3386</div>
3387
Chris Lattner48b383b02003-11-25 01:02:51 +00003388<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003389
Chris Lattner48b383b02003-11-25 01:02:51 +00003390<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003391<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003392 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003393</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003394
Chris Lattner48b383b02003-11-25 01:02:51 +00003395<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003396<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3397 division of its two operands. This instruction can also take
3398 <a href="#t_vector">vector</a> versions of the values in which case the
3399 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00003400
Chris Lattner48b383b02003-11-25 01:02:51 +00003401<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003402<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003403 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3404 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003405
Chris Lattner48b383b02003-11-25 01:02:51 +00003406<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003407<p>This instruction returns the <i>remainder</i> of a division (where the result
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003408 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3409 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3410 a value. For more information about the difference,
3411 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3412 Math Forum</a>. For a table of how this is implemented in various languages,
3413 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3414 Wikipedia: modulo operation</a>.</p>
3415
Chris Lattner2f2427e2008-01-28 00:36:27 +00003416<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003417 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3418
Chris Lattner2f2427e2008-01-28 00:36:27 +00003419<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003420 Overflow also leads to undefined behavior; this is a rare case, but can
3421 occur, for example, by taking the remainder of a 32-bit division of
3422 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3423 lets srem be implemented using instructions that return both the result of
3424 the division and the remainder.)</p>
3425
Chris Lattner48b383b02003-11-25 01:02:51 +00003426<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003427<pre>
3428 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003429</pre>
3430
3431</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003432
Reid Spencer7eb55b32006-11-02 01:53:59 +00003433<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003434<div class="doc_subsubsection">
3435 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3436
Reid Spencer7eb55b32006-11-02 01:53:59 +00003437<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003438
Reid Spencer7eb55b32006-11-02 01:53:59 +00003439<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003440<pre>
3441 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003442</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003443
Reid Spencer7eb55b32006-11-02 01:53:59 +00003444<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003445<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3446 its two operands.</p>
3447
Reid Spencer7eb55b32006-11-02 01:53:59 +00003448<h5>Arguments:</h5>
3449<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003450 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3451 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003452
Reid Spencer7eb55b32006-11-02 01:53:59 +00003453<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003454<p>This instruction returns the <i>remainder</i> of a division. The remainder
3455 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003456
Reid Spencer7eb55b32006-11-02 01:53:59 +00003457<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003458<pre>
3459 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003460</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003461
Misha Brukman76307852003-11-08 01:05:38 +00003462</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00003463
Reid Spencer2ab01932007-02-02 13:57:07 +00003464<!-- ======================================================================= -->
3465<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3466Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003467
Reid Spencer2ab01932007-02-02 13:57:07 +00003468<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003469
3470<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3471 program. They are generally very efficient instructions and can commonly be
3472 strength reduced from other instructions. They require two operands of the
3473 same type, execute an operation on them, and produce a single value. The
3474 resulting value is the same type as its operands.</p>
3475
Reid Spencer2ab01932007-02-02 13:57:07 +00003476</div>
3477
Reid Spencer04e259b2007-01-31 21:39:12 +00003478<!-- _______________________________________________________________________ -->
3479<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3480Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003481
Reid Spencer04e259b2007-01-31 21:39:12 +00003482<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003483
Reid Spencer04e259b2007-01-31 21:39:12 +00003484<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003485<pre>
3486 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003487</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003488
Reid Spencer04e259b2007-01-31 21:39:12 +00003489<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003490<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3491 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003492
Reid Spencer04e259b2007-01-31 21:39:12 +00003493<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003494<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3495 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3496 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003497
Reid Spencer04e259b2007-01-31 21:39:12 +00003498<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003499<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3500 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3501 is (statically or dynamically) negative or equal to or larger than the number
3502 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3503 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3504 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003505
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003506<h5>Example:</h5>
3507<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00003508 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3509 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3510 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003511 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003512 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003513</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003514
Reid Spencer04e259b2007-01-31 21:39:12 +00003515</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003516
Reid Spencer04e259b2007-01-31 21:39:12 +00003517<!-- _______________________________________________________________________ -->
3518<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3519Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003520
Reid Spencer04e259b2007-01-31 21:39:12 +00003521<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003522
Reid Spencer04e259b2007-01-31 21:39:12 +00003523<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003524<pre>
3525 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003526</pre>
3527
3528<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003529<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3530 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003531
3532<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003533<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003534 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3535 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003536
3537<h5>Semantics:</h5>
3538<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003539 significant bits of the result will be filled with zero bits after the shift.
3540 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3541 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3542 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3543 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003544
3545<h5>Example:</h5>
3546<pre>
3547 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3548 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3549 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3550 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003551 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003552 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003553</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003554
Reid Spencer04e259b2007-01-31 21:39:12 +00003555</div>
3556
Reid Spencer2ab01932007-02-02 13:57:07 +00003557<!-- _______________________________________________________________________ -->
Reid Spencer04e259b2007-01-31 21:39:12 +00003558<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3559Instruction</a> </div>
3560<div class="doc_text">
3561
3562<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003563<pre>
3564 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003565</pre>
3566
3567<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003568<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3569 operand shifted to the right a specified number of bits with sign
3570 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003571
3572<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003573<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003574 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3575 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003576
3577<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003578<p>This instruction always performs an arithmetic shift right operation, The
3579 most significant bits of the result will be filled with the sign bit
3580 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3581 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3582 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3583 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003584
3585<h5>Example:</h5>
3586<pre>
3587 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3588 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3589 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3590 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003591 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003592 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003593</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003594
Reid Spencer04e259b2007-01-31 21:39:12 +00003595</div>
3596
Chris Lattner2f7c9632001-06-06 20:29:01 +00003597<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003598<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3599Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003600
Misha Brukman76307852003-11-08 01:05:38 +00003601<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003602
Chris Lattner2f7c9632001-06-06 20:29:01 +00003603<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003604<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003605 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003606</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003607
Chris Lattner2f7c9632001-06-06 20:29:01 +00003608<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003609<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3610 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003611
Chris Lattner2f7c9632001-06-06 20:29:01 +00003612<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003613<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003614 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3615 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003616
Chris Lattner2f7c9632001-06-06 20:29:01 +00003617<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003618<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003619
Misha Brukman76307852003-11-08 01:05:38 +00003620<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00003621 <tbody>
3622 <tr>
3623 <td>In0</td>
3624 <td>In1</td>
3625 <td>Out</td>
3626 </tr>
3627 <tr>
3628 <td>0</td>
3629 <td>0</td>
3630 <td>0</td>
3631 </tr>
3632 <tr>
3633 <td>0</td>
3634 <td>1</td>
3635 <td>0</td>
3636 </tr>
3637 <tr>
3638 <td>1</td>
3639 <td>0</td>
3640 <td>0</td>
3641 </tr>
3642 <tr>
3643 <td>1</td>
3644 <td>1</td>
3645 <td>1</td>
3646 </tr>
3647 </tbody>
3648</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003649
Chris Lattner2f7c9632001-06-06 20:29:01 +00003650<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003651<pre>
3652 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003653 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3654 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003655</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003656</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003657<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003658<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003659
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003660<div class="doc_text">
3661
3662<h5>Syntax:</h5>
3663<pre>
3664 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3665</pre>
3666
3667<h5>Overview:</h5>
3668<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3669 two operands.</p>
3670
3671<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003672<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003673 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3674 values. Both arguments must have identical types.</p>
3675
Chris Lattner2f7c9632001-06-06 20:29:01 +00003676<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003677<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003678
Chris Lattner48b383b02003-11-25 01:02:51 +00003679<table border="1" cellspacing="0" cellpadding="4">
3680 <tbody>
3681 <tr>
3682 <td>In0</td>
3683 <td>In1</td>
3684 <td>Out</td>
3685 </tr>
3686 <tr>
3687 <td>0</td>
3688 <td>0</td>
3689 <td>0</td>
3690 </tr>
3691 <tr>
3692 <td>0</td>
3693 <td>1</td>
3694 <td>1</td>
3695 </tr>
3696 <tr>
3697 <td>1</td>
3698 <td>0</td>
3699 <td>1</td>
3700 </tr>
3701 <tr>
3702 <td>1</td>
3703 <td>1</td>
3704 <td>1</td>
3705 </tr>
3706 </tbody>
3707</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003708
Chris Lattner2f7c9632001-06-06 20:29:01 +00003709<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003710<pre>
3711 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003712 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3713 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003714</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003715
Misha Brukman76307852003-11-08 01:05:38 +00003716</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003717
Chris Lattner2f7c9632001-06-06 20:29:01 +00003718<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003719<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3720Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003721
Misha Brukman76307852003-11-08 01:05:38 +00003722<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003723
Chris Lattner2f7c9632001-06-06 20:29:01 +00003724<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003725<pre>
3726 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003727</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003728
Chris Lattner2f7c9632001-06-06 20:29:01 +00003729<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003730<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3731 its two operands. The <tt>xor</tt> is used to implement the "one's
3732 complement" operation, which is the "~" operator in C.</p>
3733
Chris Lattner2f7c9632001-06-06 20:29:01 +00003734<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003735<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003736 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3737 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003738
Chris Lattner2f7c9632001-06-06 20:29:01 +00003739<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003740<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003741
Chris Lattner48b383b02003-11-25 01:02:51 +00003742<table border="1" cellspacing="0" cellpadding="4">
3743 <tbody>
3744 <tr>
3745 <td>In0</td>
3746 <td>In1</td>
3747 <td>Out</td>
3748 </tr>
3749 <tr>
3750 <td>0</td>
3751 <td>0</td>
3752 <td>0</td>
3753 </tr>
3754 <tr>
3755 <td>0</td>
3756 <td>1</td>
3757 <td>1</td>
3758 </tr>
3759 <tr>
3760 <td>1</td>
3761 <td>0</td>
3762 <td>1</td>
3763 </tr>
3764 <tr>
3765 <td>1</td>
3766 <td>1</td>
3767 <td>0</td>
3768 </tr>
3769 </tbody>
3770</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003771
Chris Lattner2f7c9632001-06-06 20:29:01 +00003772<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003773<pre>
3774 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003775 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3776 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3777 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003778</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003779
Misha Brukman76307852003-11-08 01:05:38 +00003780</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003781
Chris Lattner2f7c9632001-06-06 20:29:01 +00003782<!-- ======================================================================= -->
Eric Christopher455c5772009-12-05 02:46:03 +00003783<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00003784 <a name="vectorops">Vector Operations</a>
3785</div>
3786
3787<div class="doc_text">
3788
3789<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003790 target-independent manner. These instructions cover the element-access and
3791 vector-specific operations needed to process vectors effectively. While LLVM
3792 does directly support these vector operations, many sophisticated algorithms
3793 will want to use target-specific intrinsics to take full advantage of a
3794 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003795
3796</div>
3797
3798<!-- _______________________________________________________________________ -->
3799<div class="doc_subsubsection">
3800 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3801</div>
3802
3803<div class="doc_text">
3804
3805<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003806<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003807 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003808</pre>
3809
3810<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003811<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
3812 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003813
3814
3815<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003816<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
3817 of <a href="#t_vector">vector</a> type. The second operand is an index
3818 indicating the position from which to extract the element. The index may be
3819 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003820
3821<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003822<p>The result is a scalar of the same type as the element type of
3823 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3824 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3825 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003826
3827<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003828<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00003829 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003830</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003831
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003832</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003833
3834<!-- _______________________________________________________________________ -->
3835<div class="doc_subsubsection">
3836 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3837</div>
3838
3839<div class="doc_text">
3840
3841<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003842<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00003843 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003844</pre>
3845
3846<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003847<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
3848 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003849
3850<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003851<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
3852 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
3853 whose type must equal the element type of the first operand. The third
3854 operand is an index indicating the position at which to insert the value.
3855 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003856
3857<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003858<p>The result is a vector of the same type as <tt>val</tt>. Its element values
3859 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
3860 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3861 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003862
3863<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003864<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00003865 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003866</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003867
Chris Lattnerce83bff2006-04-08 23:07:04 +00003868</div>
3869
3870<!-- _______________________________________________________________________ -->
3871<div class="doc_subsubsection">
3872 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3873</div>
3874
3875<div class="doc_text">
3876
3877<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003878<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00003879 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003880</pre>
3881
3882<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003883<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
3884 from two input vectors, returning a vector with the same element type as the
3885 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003886
3887<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003888<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3889 with types that match each other. The third argument is a shuffle mask whose
3890 element type is always 'i32'. The result of the instruction is a vector
3891 whose length is the same as the shuffle mask and whose element type is the
3892 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003893
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003894<p>The shuffle mask operand is required to be a constant vector with either
3895 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003896
3897<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003898<p>The elements of the two input vectors are numbered from left to right across
3899 both of the vectors. The shuffle mask operand specifies, for each element of
3900 the result vector, which element of the two input vectors the result element
3901 gets. The element selector may be undef (meaning "don't care") and the
3902 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003903
3904<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003905<pre>
Eric Christopher455c5772009-12-05 02:46:03 +00003906 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00003907 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00003908 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003909 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher455c5772009-12-05 02:46:03 +00003910 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wang25f01062008-11-10 04:46:22 +00003911 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00003912 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wang25f01062008-11-10 04:46:22 +00003913 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003914</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003915
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003916</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00003917
Chris Lattnerce83bff2006-04-08 23:07:04 +00003918<!-- ======================================================================= -->
Eric Christopher455c5772009-12-05 02:46:03 +00003919<div class="doc_subsection">
Dan Gohmanb9d66602008-05-12 23:51:09 +00003920 <a name="aggregateops">Aggregate Operations</a>
3921</div>
3922
3923<div class="doc_text">
3924
Chris Lattner392be582010-02-12 20:49:41 +00003925<p>LLVM supports several instructions for working with
3926 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003927
3928</div>
3929
3930<!-- _______________________________________________________________________ -->
3931<div class="doc_subsubsection">
3932 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3933</div>
3934
3935<div class="doc_text">
3936
3937<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003938<pre>
3939 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3940</pre>
3941
3942<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00003943<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
3944 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003945
3946<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003947<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner392be582010-02-12 20:49:41 +00003948 of <a href="#t_struct">struct</a>, <a href="#t_union">union</a> or
3949 <a href="#t_array">array</a> type. The operands are constant indices to
3950 specify which value to extract in a similar manner as indices in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003951 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003952
3953<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003954<p>The result is the value at the position in the aggregate specified by the
3955 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003956
3957<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003958<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00003959 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003960</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003961
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003962</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003963
3964<!-- _______________________________________________________________________ -->
3965<div class="doc_subsubsection">
3966 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3967</div>
3968
3969<div class="doc_text">
3970
3971<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003972<pre>
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00003973 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt; <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003974</pre>
3975
3976<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00003977<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
3978 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003979
3980<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003981<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner392be582010-02-12 20:49:41 +00003982 of <a href="#t_struct">struct</a>, <a href="#t_union">union</a> or
3983 <a href="#t_array">array</a> type. The second operand is a first-class
3984 value to insert. The following operands are constant indices indicating
3985 the position at which to insert the value in a similar manner as indices in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003986 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
3987 value to insert must have the same type as the value identified by the
3988 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003989
3990<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003991<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
3992 that of <tt>val</tt> except that the value at the position specified by the
3993 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003994
3995<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003996<pre>
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00003997 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
3998 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003999</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004000
Dan Gohmanb9d66602008-05-12 23:51:09 +00004001</div>
4002
4003
4004<!-- ======================================================================= -->
Eric Christopher455c5772009-12-05 02:46:03 +00004005<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00004006 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00004007</div>
4008
Misha Brukman76307852003-11-08 01:05:38 +00004009<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00004010
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004011<p>A key design point of an SSA-based representation is how it represents
4012 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandeza70c6df2009-10-26 23:44:29 +00004013 very simple. This section describes how to read, write, and allocate
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004014 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004015
Misha Brukman76307852003-11-08 01:05:38 +00004016</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004017
Chris Lattner2f7c9632001-06-06 20:29:01 +00004018<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00004019<div class="doc_subsubsection">
Chris Lattner54611b42005-11-06 08:02:57 +00004020 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
4021</div>
4022
Misha Brukman76307852003-11-08 01:05:38 +00004023<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00004024
Chris Lattner2f7c9632001-06-06 20:29:01 +00004025<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004026<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004027 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004028</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00004029
Chris Lattner2f7c9632001-06-06 20:29:01 +00004030<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004031<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004032 currently executing function, to be automatically released when this function
4033 returns to its caller. The object is always allocated in the generic address
4034 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004035
Chris Lattner2f7c9632001-06-06 20:29:01 +00004036<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004037<p>The '<tt>alloca</tt>' instruction
4038 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4039 runtime stack, returning a pointer of the appropriate type to the program.
4040 If "NumElements" is specified, it is the number of elements allocated,
4041 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4042 specified, the value result of the allocation is guaranteed to be aligned to
4043 at least that boundary. If not specified, or if zero, the target can choose
4044 to align the allocation on any convenient boundary compatible with the
4045 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004046
Misha Brukman76307852003-11-08 01:05:38 +00004047<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004048
Chris Lattner2f7c9632001-06-06 20:29:01 +00004049<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00004050<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004051 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4052 memory is automatically released when the function returns. The
4053 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4054 variables that must have an address available. When the function returns
4055 (either with the <tt><a href="#i_ret">ret</a></tt>
4056 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4057 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004058
Chris Lattner2f7c9632001-06-06 20:29:01 +00004059<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004060<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00004061 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4062 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4063 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4064 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004065</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004066
Misha Brukman76307852003-11-08 01:05:38 +00004067</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004068
Chris Lattner2f7c9632001-06-06 20:29:01 +00004069<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004070<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
4071Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004072
Misha Brukman76307852003-11-08 01:05:38 +00004073<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004074
Chris Lattner095735d2002-05-06 03:03:22 +00004075<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004076<pre>
4077 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
4078 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
4079</pre>
4080
Chris Lattner095735d2002-05-06 03:03:22 +00004081<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004082<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004083
Chris Lattner095735d2002-05-06 03:03:22 +00004084<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004085<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4086 from which to load. The pointer must point to
4087 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4088 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
4089 number or order of execution of this <tt>load</tt> with other
4090 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
4091 instructions. </p>
4092
4093<p>The optional constant "align" argument specifies the alignment of the
4094 operation (that is, the alignment of the memory address). A value of 0 or an
4095 omitted "align" argument means that the operation has the preferential
4096 alignment for the target. It is the responsibility of the code emitter to
4097 ensure that the alignment information is correct. Overestimating the
4098 alignment results in an undefined behavior. Underestimating the alignment may
4099 produce less efficient code. An alignment of 1 is always safe.</p>
4100
Chris Lattner095735d2002-05-06 03:03:22 +00004101<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004102<p>The location of memory pointed to is loaded. If the value being loaded is of
4103 scalar type then the number of bytes read does not exceed the minimum number
4104 of bytes needed to hold all bits of the type. For example, loading an
4105 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4106 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4107 is undefined if the value was not originally written using a store of the
4108 same type.</p>
4109
Chris Lattner095735d2002-05-06 03:03:22 +00004110<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004111<pre>
4112 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4113 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004114 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004115</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004116
Misha Brukman76307852003-11-08 01:05:38 +00004117</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004118
Chris Lattner095735d2002-05-06 03:03:22 +00004119<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004120<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
4121Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004122
Reid Spencera89fb182006-11-09 21:18:01 +00004123<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004124
Chris Lattner095735d2002-05-06 03:03:22 +00004125<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004126<pre>
4127 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Christopher Lambbff50202007-04-21 08:16:25 +00004128 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004129</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004130
Chris Lattner095735d2002-05-06 03:03:22 +00004131<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004132<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004133
Chris Lattner095735d2002-05-06 03:03:22 +00004134<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004135<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4136 and an address at which to store it. The type of the
4137 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4138 the <a href="#t_firstclass">first class</a> type of the
4139 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
4140 as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
4141 or order of execution of this <tt>store</tt> with other
4142 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
4143 instructions.</p>
4144
4145<p>The optional constant "align" argument specifies the alignment of the
4146 operation (that is, the alignment of the memory address). A value of 0 or an
4147 omitted "align" argument means that the operation has the preferential
4148 alignment for the target. It is the responsibility of the code emitter to
4149 ensure that the alignment information is correct. Overestimating the
4150 alignment results in an undefined behavior. Underestimating the alignment may
4151 produce less efficient code. An alignment of 1 is always safe.</p>
4152
Chris Lattner48b383b02003-11-25 01:02:51 +00004153<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004154<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4155 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4156 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4157 does not exceed the minimum number of bytes needed to hold all bits of the
4158 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4159 writing a value of a type like <tt>i20</tt> with a size that is not an
4160 integral number of bytes, it is unspecified what happens to the extra bits
4161 that do not belong to the type, but they will typically be overwritten.</p>
4162
Chris Lattner095735d2002-05-06 03:03:22 +00004163<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004164<pre>
4165 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00004166 store i32 3, i32* %ptr <i>; yields {void}</i>
4167 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004168</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004169
Reid Spencer443460a2006-11-09 21:15:49 +00004170</div>
4171
Chris Lattner095735d2002-05-06 03:03:22 +00004172<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00004173<div class="doc_subsubsection">
4174 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4175</div>
4176
Misha Brukman76307852003-11-08 01:05:38 +00004177<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004178
Chris Lattner590645f2002-04-14 06:13:44 +00004179<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004180<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004181 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00004182 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00004183</pre>
4184
Chris Lattner590645f2002-04-14 06:13:44 +00004185<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004186<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner392be582010-02-12 20:49:41 +00004187 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4188 It performs address calculation only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004189
Chris Lattner590645f2002-04-14 06:13:44 +00004190<h5>Arguments:</h5>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004191<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00004192 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004193 elements of the aggregate object are indexed. The interpretation of each
4194 index is dependent on the type being indexed into. The first index always
4195 indexes the pointer value given as the first argument, the second index
4196 indexes a value of the type pointed to (not necessarily the value directly
4197 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattner392be582010-02-12 20:49:41 +00004198 indexed into must be a pointer value, subsequent types can be arrays,
4199 vectors, structs and unions. Note that subsequent types being indexed into
4200 can never be pointers, since that would require loading the pointer before
4201 continuing calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004202
4203<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner392be582010-02-12 20:49:41 +00004204 When indexing into a (optionally packed) structure or union, only <tt>i32</tt>
4205 integer <b>constants</b> are allowed. When indexing into an array, pointer
4206 or vector, integers of any width are allowed, and they are not required to be
Chris Lattnera40b9122009-07-29 06:44:13 +00004207 constant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004208
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004209<p>For example, let's consider a C code fragment and how it gets compiled to
4210 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004211
Bill Wendling3716c5d2007-05-29 09:04:49 +00004212<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00004213<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00004214struct RT {
4215 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00004216 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00004217 char C;
4218};
4219struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00004220 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00004221 double Y;
4222 struct RT Z;
4223};
Chris Lattner33fd7022004-04-05 01:30:49 +00004224
Chris Lattnera446f1b2007-05-29 15:43:56 +00004225int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00004226 return &amp;s[1].Z.B[5][13];
4227}
Chris Lattner33fd7022004-04-05 01:30:49 +00004228</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00004229</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00004230
Misha Brukman76307852003-11-08 01:05:38 +00004231<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004232
Bill Wendling3716c5d2007-05-29 09:04:49 +00004233<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00004234<pre>
Chris Lattnerbc088212009-01-11 20:53:49 +00004235%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4236%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00004237
Dan Gohman6b867702009-07-25 02:23:48 +00004238define i32* @foo(%ST* %s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00004239entry:
4240 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4241 ret i32* %reg
4242}
Chris Lattner33fd7022004-04-05 01:30:49 +00004243</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00004244</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00004245
Chris Lattner590645f2002-04-14 06:13:44 +00004246<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004247<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004248 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4249 }</tt>' type, a structure. The second index indexes into the third element
4250 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4251 i8 }</tt>' type, another structure. The third index indexes into the second
4252 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4253 array. The two dimensions of the array are subscripted into, yielding an
4254 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4255 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004256
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004257<p>Note that it is perfectly legal to index partially through a structure,
4258 returning a pointer to an inner element. Because of this, the LLVM code for
4259 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004260
4261<pre>
Dan Gohman6b867702009-07-25 02:23:48 +00004262 define i32* @foo(%ST* %s) {
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004263 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00004264 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4265 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004266 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4267 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4268 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00004269 }
Chris Lattnera8292f32002-05-06 22:08:29 +00004270</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00004271
Dan Gohman1639c392009-07-27 21:53:46 +00004272<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman61acaaa2009-07-29 16:00:30 +00004273 <tt>getelementptr</tt> is undefined if the base pointer is not an
4274 <i>in bounds</i> address of an allocated object, or if any of the addresses
Dan Gohman2de532c2009-08-20 17:08:17 +00004275 that would be formed by successive addition of the offsets implied by the
4276 indices to the base address with infinitely precise arithmetic are not an
4277 <i>in bounds</i> address of that allocated object.
Dan Gohman61acaaa2009-07-29 16:00:30 +00004278 The <i>in bounds</i> addresses for an allocated object are all the addresses
Dan Gohman2de532c2009-08-20 17:08:17 +00004279 that point into the object, plus the address one byte past the end.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00004280
4281<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4282 the base address with silently-wrapping two's complement arithmetic, and
4283 the result value of the <tt>getelementptr</tt> may be outside the object
4284 pointed to by the base pointer. The result value may not necessarily be
4285 used to access memory though, even if it happens to point into allocated
4286 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4287 section for more information.</p>
4288
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004289<p>The getelementptr instruction is often confusing. For some more insight into
4290 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00004291
Chris Lattner590645f2002-04-14 06:13:44 +00004292<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004293<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004294 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004295 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4296 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004297 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004298 <i>; yields i8*:eptr</i>
4299 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00004300 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00004301 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00004302</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004303
Chris Lattner33fd7022004-04-05 01:30:49 +00004304</div>
Reid Spencer443460a2006-11-09 21:15:49 +00004305
Chris Lattner2f7c9632001-06-06 20:29:01 +00004306<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00004307<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00004308</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004309
Misha Brukman76307852003-11-08 01:05:38 +00004310<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004311
Reid Spencer97c5fa42006-11-08 01:18:52 +00004312<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004313 which all take a single operand and a type. They perform various bit
4314 conversions on the operand.</p>
4315
Misha Brukman76307852003-11-08 01:05:38 +00004316</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004317
Chris Lattnera8292f32002-05-06 22:08:29 +00004318<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004319<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004320 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4321</div>
4322<div class="doc_text">
4323
4324<h5>Syntax:</h5>
4325<pre>
4326 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4327</pre>
4328
4329<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004330<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4331 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004332
4333<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004334<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4335 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4336 size and type of the result, which must be
4337 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4338 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4339 allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004340
4341<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004342<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4343 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4344 source size must be larger than the destination size, <tt>trunc</tt> cannot
4345 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004346
4347<h5>Example:</h5>
4348<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004349 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004350 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004351 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004352</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004353
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004354</div>
4355
4356<!-- _______________________________________________________________________ -->
4357<div class="doc_subsubsection">
4358 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4359</div>
4360<div class="doc_text">
4361
4362<h5>Syntax:</h5>
4363<pre>
4364 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4365</pre>
4366
4367<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004368<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004369 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004370
4371
4372<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004373<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004374 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4375 also be of <a href="#t_integer">integer</a> type. The bit size of the
Eric Christopher455c5772009-12-05 02:46:03 +00004376 <tt>value</tt> must be smaller than the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004377 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004378
4379<h5>Semantics:</h5>
4380<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004381 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004382
Reid Spencer07c9c682007-01-12 15:46:11 +00004383<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004384
4385<h5>Example:</h5>
4386<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004387 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004388 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004389</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004390
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004391</div>
4392
4393<!-- _______________________________________________________________________ -->
4394<div class="doc_subsubsection">
4395 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4396</div>
4397<div class="doc_text">
4398
4399<h5>Syntax:</h5>
4400<pre>
4401 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4402</pre>
4403
4404<h5>Overview:</h5>
4405<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4406
4407<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004408<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004409 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4410 also be of <a href="#t_integer">integer</a> type. The bit size of the
Eric Christopher455c5772009-12-05 02:46:03 +00004411 <tt>value</tt> must be smaller than the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004412 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004413
4414<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004415<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4416 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4417 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004418
Reid Spencer36a15422007-01-12 03:35:51 +00004419<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004420
4421<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004422<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004423 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004424 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004425</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004426
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004427</div>
4428
4429<!-- _______________________________________________________________________ -->
4430<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00004431 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4432</div>
4433
4434<div class="doc_text">
4435
4436<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004437<pre>
4438 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4439</pre>
4440
4441<h5>Overview:</h5>
4442<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004443 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004444
4445<h5>Arguments:</h5>
4446<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004447 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4448 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher455c5772009-12-05 02:46:03 +00004449 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004450 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004451
4452<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004453<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher455c5772009-12-05 02:46:03 +00004454 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004455 <a href="#t_floating">floating point</a> type. If the value cannot fit
4456 within the destination type, <tt>ty2</tt>, then the results are
4457 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004458
4459<h5>Example:</h5>
4460<pre>
4461 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4462 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4463</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004464
Reid Spencer2e2740d2006-11-09 21:48:10 +00004465</div>
4466
4467<!-- _______________________________________________________________________ -->
4468<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004469 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4470</div>
4471<div class="doc_text">
4472
4473<h5>Syntax:</h5>
4474<pre>
4475 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4476</pre>
4477
4478<h5>Overview:</h5>
4479<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004480 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004481
4482<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004483<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004484 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4485 a <a href="#t_floating">floating point</a> type to cast it to. The source
4486 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004487
4488<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004489<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004490 <a href="#t_floating">floating point</a> type to a larger
4491 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4492 used to make a <i>no-op cast</i> because it always changes bits. Use
4493 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004494
4495<h5>Example:</h5>
4496<pre>
4497 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4498 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4499</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004500
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004501</div>
4502
4503<!-- _______________________________________________________________________ -->
4504<div class="doc_subsubsection">
Reid Spencer2eadb532007-01-21 00:29:26 +00004505 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004506</div>
4507<div class="doc_text">
4508
4509<h5>Syntax:</h5>
4510<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004511 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004512</pre>
4513
4514<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004515<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004516 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004517
4518<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004519<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4520 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4521 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4522 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4523 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004524
4525<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004526<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004527 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4528 towards zero) unsigned integer value. If the value cannot fit
4529 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004530
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004531<h5>Example:</h5>
4532<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004533 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004534 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004535 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004536</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004537
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004538</div>
4539
4540<!-- _______________________________________________________________________ -->
4541<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004542 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004543</div>
4544<div class="doc_text">
4545
4546<h5>Syntax:</h5>
4547<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004548 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004549</pre>
4550
4551<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004552<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004553 <a href="#t_floating">floating point</a> <tt>value</tt> to
4554 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004555
Chris Lattnera8292f32002-05-06 22:08:29 +00004556<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004557<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4558 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4559 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4560 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4561 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004562
Chris Lattnera8292f32002-05-06 22:08:29 +00004563<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004564<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004565 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4566 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4567 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004568
Chris Lattner70de6632001-07-09 00:26:23 +00004569<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004570<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004571 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004572 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004573 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004574</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004575
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004576</div>
4577
4578<!-- _______________________________________________________________________ -->
4579<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004580 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004581</div>
4582<div class="doc_text">
4583
4584<h5>Syntax:</h5>
4585<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004586 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004587</pre>
4588
4589<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004590<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004591 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004592
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004593<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004594<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004595 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4596 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4597 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4598 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004599
4600<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004601<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004602 integer quantity and converts it to the corresponding floating point
4603 value. If the value cannot fit in the floating point value, the results are
4604 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004605
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004606<h5>Example:</h5>
4607<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004608 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004609 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004610</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004611
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004612</div>
4613
4614<!-- _______________________________________________________________________ -->
4615<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004616 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004617</div>
4618<div class="doc_text">
4619
4620<h5>Syntax:</h5>
4621<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004622 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004623</pre>
4624
4625<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004626<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4627 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004628
4629<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004630<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004631 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4632 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4633 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4634 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004635
4636<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004637<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4638 quantity and converts it to the corresponding floating point value. If the
4639 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004640
4641<h5>Example:</h5>
4642<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004643 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004644 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004645</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004646
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004647</div>
4648
4649<!-- _______________________________________________________________________ -->
4650<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00004651 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4652</div>
4653<div class="doc_text">
4654
4655<h5>Syntax:</h5>
4656<pre>
4657 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4658</pre>
4659
4660<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004661<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4662 the integer type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004663
4664<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004665<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4666 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4667 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004668
4669<h5>Semantics:</h5>
4670<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004671 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4672 truncating or zero extending that value to the size of the integer type. If
4673 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4674 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4675 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4676 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004677
4678<h5>Example:</h5>
4679<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004680 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4681 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004682</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004683
Reid Spencerb7344ff2006-11-11 21:00:47 +00004684</div>
4685
4686<!-- _______________________________________________________________________ -->
4687<div class="doc_subsubsection">
4688 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4689</div>
4690<div class="doc_text">
4691
4692<h5>Syntax:</h5>
4693<pre>
4694 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4695</pre>
4696
4697<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004698<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4699 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004700
4701<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00004702<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004703 value to cast, and a type to cast it to, which must be a
4704 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004705
4706<h5>Semantics:</h5>
4707<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004708 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4709 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4710 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4711 than the size of a pointer then a zero extension is done. If they are the
4712 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004713
4714<h5>Example:</h5>
4715<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004716 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004717 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4718 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004719</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004720
Reid Spencerb7344ff2006-11-11 21:00:47 +00004721</div>
4722
4723<!-- _______________________________________________________________________ -->
4724<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00004725 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004726</div>
4727<div class="doc_text">
4728
4729<h5>Syntax:</h5>
4730<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00004731 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004732</pre>
4733
4734<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004735<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004736 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004737
4738<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004739<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4740 non-aggregate first class value, and a type to cast it to, which must also be
4741 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4742 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4743 identical. If the source type is a pointer, the destination type must also be
4744 a pointer. This instruction supports bitwise conversion of vectors to
4745 integers and to vectors of other types (as long as they have the same
4746 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004747
4748<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004749<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004750 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4751 this conversion. The conversion is done as if the <tt>value</tt> had been
4752 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4753 be converted to other pointer types with this instruction. To convert
4754 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4755 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004756
4757<h5>Example:</h5>
4758<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004759 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004760 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004761 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00004762</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004763
Misha Brukman76307852003-11-08 01:05:38 +00004764</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004765
Reid Spencer97c5fa42006-11-08 01:18:52 +00004766<!-- ======================================================================= -->
4767<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004768
Reid Spencer97c5fa42006-11-08 01:18:52 +00004769<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004770
4771<p>The instructions in this category are the "miscellaneous" instructions, which
4772 defy better classification.</p>
4773
Reid Spencer97c5fa42006-11-08 01:18:52 +00004774</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004775
4776<!-- _______________________________________________________________________ -->
4777<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4778</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004779
Reid Spencerc828a0e2006-11-18 21:50:54 +00004780<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004781
Reid Spencerc828a0e2006-11-18 21:50:54 +00004782<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004783<pre>
4784 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004785</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004786
Reid Spencerc828a0e2006-11-18 21:50:54 +00004787<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004788<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4789 boolean values based on comparison of its two integer, integer vector, or
4790 pointer operands.</p>
4791
Reid Spencerc828a0e2006-11-18 21:50:54 +00004792<h5>Arguments:</h5>
4793<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004794 the condition code indicating the kind of comparison to perform. It is not a
4795 value, just a keyword. The possible condition code are:</p>
4796
Reid Spencerc828a0e2006-11-18 21:50:54 +00004797<ol>
4798 <li><tt>eq</tt>: equal</li>
4799 <li><tt>ne</tt>: not equal </li>
4800 <li><tt>ugt</tt>: unsigned greater than</li>
4801 <li><tt>uge</tt>: unsigned greater or equal</li>
4802 <li><tt>ult</tt>: unsigned less than</li>
4803 <li><tt>ule</tt>: unsigned less or equal</li>
4804 <li><tt>sgt</tt>: signed greater than</li>
4805 <li><tt>sge</tt>: signed greater or equal</li>
4806 <li><tt>slt</tt>: signed less than</li>
4807 <li><tt>sle</tt>: signed less or equal</li>
4808</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004809
Chris Lattnerc0f423a2007-01-15 01:54:13 +00004810<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004811 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
4812 typed. They must also be identical types.</p>
4813
Reid Spencerc828a0e2006-11-18 21:50:54 +00004814<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004815<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
4816 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00004817 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004818 result, as follows:</p>
4819
Reid Spencerc828a0e2006-11-18 21:50:54 +00004820<ol>
Eric Christopher455c5772009-12-05 02:46:03 +00004821 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004822 <tt>false</tt> otherwise. No sign interpretation is necessary or
4823 performed.</li>
4824
Eric Christopher455c5772009-12-05 02:46:03 +00004825 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004826 <tt>false</tt> otherwise. No sign interpretation is necessary or
4827 performed.</li>
4828
Reid Spencerc828a0e2006-11-18 21:50:54 +00004829 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004830 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4831
Reid Spencerc828a0e2006-11-18 21:50:54 +00004832 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004833 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4834 to <tt>op2</tt>.</li>
4835
Reid Spencerc828a0e2006-11-18 21:50:54 +00004836 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004837 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4838
Reid Spencerc828a0e2006-11-18 21:50:54 +00004839 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004840 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4841
Reid Spencerc828a0e2006-11-18 21:50:54 +00004842 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004843 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4844
Reid Spencerc828a0e2006-11-18 21:50:54 +00004845 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004846 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4847 to <tt>op2</tt>.</li>
4848
Reid Spencerc828a0e2006-11-18 21:50:54 +00004849 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004850 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4851
Reid Spencerc828a0e2006-11-18 21:50:54 +00004852 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004853 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004854</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004855
Reid Spencerc828a0e2006-11-18 21:50:54 +00004856<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004857 values are compared as if they were integers.</p>
4858
4859<p>If the operands are integer vectors, then they are compared element by
4860 element. The result is an <tt>i1</tt> vector with the same number of elements
4861 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004862
4863<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004864<pre>
4865 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004866 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4867 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4868 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4869 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4870 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004871</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004872
4873<p>Note that the code generator does not yet support vector types with
4874 the <tt>icmp</tt> instruction.</p>
4875
Reid Spencerc828a0e2006-11-18 21:50:54 +00004876</div>
4877
4878<!-- _______________________________________________________________________ -->
4879<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4880</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004881
Reid Spencerc828a0e2006-11-18 21:50:54 +00004882<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004883
Reid Spencerc828a0e2006-11-18 21:50:54 +00004884<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004885<pre>
4886 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004887</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004888
Reid Spencerc828a0e2006-11-18 21:50:54 +00004889<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004890<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
4891 values based on comparison of its operands.</p>
4892
4893<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00004894(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004895
4896<p>If the operands are floating point vectors, then the result type is a vector
4897 of boolean with the same number of elements as the operands being
4898 compared.</p>
4899
Reid Spencerc828a0e2006-11-18 21:50:54 +00004900<h5>Arguments:</h5>
4901<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004902 the condition code indicating the kind of comparison to perform. It is not a
4903 value, just a keyword. The possible condition code are:</p>
4904
Reid Spencerc828a0e2006-11-18 21:50:54 +00004905<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00004906 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004907 <li><tt>oeq</tt>: ordered and equal</li>
4908 <li><tt>ogt</tt>: ordered and greater than </li>
4909 <li><tt>oge</tt>: ordered and greater than or equal</li>
4910 <li><tt>olt</tt>: ordered and less than </li>
4911 <li><tt>ole</tt>: ordered and less than or equal</li>
4912 <li><tt>one</tt>: ordered and not equal</li>
4913 <li><tt>ord</tt>: ordered (no nans)</li>
4914 <li><tt>ueq</tt>: unordered or equal</li>
4915 <li><tt>ugt</tt>: unordered or greater than </li>
4916 <li><tt>uge</tt>: unordered or greater than or equal</li>
4917 <li><tt>ult</tt>: unordered or less than </li>
4918 <li><tt>ule</tt>: unordered or less than or equal</li>
4919 <li><tt>une</tt>: unordered or not equal</li>
4920 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004921 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004922</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004923
Jeff Cohen222a8a42007-04-29 01:07:00 +00004924<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004925 <i>unordered</i> means that either operand may be a QNAN.</p>
4926
4927<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
4928 a <a href="#t_floating">floating point</a> type or
4929 a <a href="#t_vector">vector</a> of floating point type. They must have
4930 identical types.</p>
4931
Reid Spencerc828a0e2006-11-18 21:50:54 +00004932<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004933<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004934 according to the condition code given as <tt>cond</tt>. If the operands are
4935 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00004936 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004937 follows:</p>
4938
Reid Spencerc828a0e2006-11-18 21:50:54 +00004939<ol>
4940 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004941
Eric Christopher455c5772009-12-05 02:46:03 +00004942 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004943 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4944
Reid Spencerf69acf32006-11-19 03:00:14 +00004945 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004946 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
4947
Eric Christopher455c5772009-12-05 02:46:03 +00004948 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004949 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4950
Eric Christopher455c5772009-12-05 02:46:03 +00004951 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004952 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4953
Eric Christopher455c5772009-12-05 02:46:03 +00004954 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004955 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4956
Eric Christopher455c5772009-12-05 02:46:03 +00004957 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004958 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4959
Reid Spencerf69acf32006-11-19 03:00:14 +00004960 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004961
Eric Christopher455c5772009-12-05 02:46:03 +00004962 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004963 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4964
Eric Christopher455c5772009-12-05 02:46:03 +00004965 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004966 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4967
Eric Christopher455c5772009-12-05 02:46:03 +00004968 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004969 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4970
Eric Christopher455c5772009-12-05 02:46:03 +00004971 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004972 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4973
Eric Christopher455c5772009-12-05 02:46:03 +00004974 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004975 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4976
Eric Christopher455c5772009-12-05 02:46:03 +00004977 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004978 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4979
Reid Spencerf69acf32006-11-19 03:00:14 +00004980 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004981
Reid Spencerc828a0e2006-11-18 21:50:54 +00004982 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4983</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004984
4985<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004986<pre>
4987 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00004988 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4989 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4990 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004991</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004992
4993<p>Note that the code generator does not yet support vector types with
4994 the <tt>fcmp</tt> instruction.</p>
4995
Reid Spencerc828a0e2006-11-18 21:50:54 +00004996</div>
4997
Reid Spencer97c5fa42006-11-08 01:18:52 +00004998<!-- _______________________________________________________________________ -->
Nate Begemand2195702008-05-12 19:01:56 +00004999<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005000 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
5001</div>
5002
Reid Spencer97c5fa42006-11-08 01:18:52 +00005003<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005004
Reid Spencer97c5fa42006-11-08 01:18:52 +00005005<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005006<pre>
5007 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5008</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005009
Reid Spencer97c5fa42006-11-08 01:18:52 +00005010<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005011<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5012 SSA graph representing the function.</p>
5013
Reid Spencer97c5fa42006-11-08 01:18:52 +00005014<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005015<p>The type of the incoming values is specified with the first type field. After
5016 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5017 one pair for each predecessor basic block of the current block. Only values
5018 of <a href="#t_firstclass">first class</a> type may be used as the value
5019 arguments to the PHI node. Only labels may be used as the label
5020 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005021
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005022<p>There must be no non-phi instructions between the start of a basic block and
5023 the PHI instructions: i.e. PHI instructions must be first in a basic
5024 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005025
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005026<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5027 occur on the edge from the corresponding predecessor block to the current
5028 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5029 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00005030
Reid Spencer97c5fa42006-11-08 01:18:52 +00005031<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005032<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005033 specified by the pair corresponding to the predecessor basic block that
5034 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005035
Reid Spencer97c5fa42006-11-08 01:18:52 +00005036<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005037<pre>
5038Loop: ; Infinite loop that counts from 0 on up...
5039 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5040 %nextindvar = add i32 %indvar, 1
5041 br label %Loop
5042</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005043
Reid Spencer97c5fa42006-11-08 01:18:52 +00005044</div>
5045
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005046<!-- _______________________________________________________________________ -->
5047<div class="doc_subsubsection">
5048 <a name="i_select">'<tt>select</tt>' Instruction</a>
5049</div>
5050
5051<div class="doc_text">
5052
5053<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005054<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00005055 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5056
Dan Gohmanef9462f2008-10-14 16:51:45 +00005057 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005058</pre>
5059
5060<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005061<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5062 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005063
5064
5065<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005066<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5067 values indicating the condition, and two values of the
5068 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5069 vectors and the condition is a scalar, then entire vectors are selected, not
5070 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005071
5072<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005073<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5074 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005075
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005076<p>If the condition is a vector of i1, then the value arguments must be vectors
5077 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005078
5079<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005080<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005081 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005082</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005083
5084<p>Note that the code generator does not yet support conditions
5085 with vector type.</p>
5086
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005087</div>
5088
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00005089<!-- _______________________________________________________________________ -->
5090<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00005091 <a name="i_call">'<tt>call</tt>' Instruction</a>
5092</div>
5093
Misha Brukman76307852003-11-08 01:05:38 +00005094<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00005095
Chris Lattner2f7c9632001-06-06 20:29:01 +00005096<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005097<pre>
Devang Patel02256232008-10-07 17:48:33 +00005098 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00005099</pre>
5100
Chris Lattner2f7c9632001-06-06 20:29:01 +00005101<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005102<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005103
Chris Lattner2f7c9632001-06-06 20:29:01 +00005104<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005105<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005106
Chris Lattnera8292f32002-05-06 22:08:29 +00005107<ol>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005108 <li>The optional "tail" marker indicates that the callee function does not
5109 access any allocas or varargs in the caller. Note that calls may be
5110 marked "tail" even if they do not occur before
5111 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5112 present, the function call is eligible for tail call optimization,
5113 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
5114 optimized into a jump</a>. As of this writing, the extra requirements for
5115 a call to actually be optimized are:
5116 <ul>
5117 <li>Caller and callee both have the calling
5118 convention <tt>fastcc</tt>.</li>
5119 <li>The call is in tail position (ret immediately follows call and ret
5120 uses value of call or is void).</li>
5121 <li>Option <tt>-tailcallopt</tt> is enabled,
5122 or <code>llvm::PerformTailCallOpt</code> is <code>true</code>.</li>
5123 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5124 constraints are met.</a></li>
5125 </ul>
5126 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00005127
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005128 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5129 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005130 defaults to using C calling conventions. The calling convention of the
5131 call must match the calling convention of the target function, or else the
5132 behavior is undefined.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00005133
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005134 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5135 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5136 '<tt>inreg</tt>' attributes are valid here.</li>
5137
5138 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5139 type of the return value. Functions that return no value are marked
5140 <tt><a href="#t_void">void</a></tt>.</li>
5141
5142 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5143 being invoked. The argument types must match the types implied by this
5144 signature. This type can be omitted if the function is not varargs and if
5145 the function type does not return a pointer to a function.</li>
5146
5147 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5148 be invoked. In most cases, this is a direct function invocation, but
5149 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5150 to function value.</li>
5151
5152 <li>'<tt>function args</tt>': argument list whose types match the function
5153 signature argument types. All arguments must be of
5154 <a href="#t_firstclass">first class</a> type. If the function signature
5155 indicates the function accepts a variable number of arguments, the extra
5156 arguments can be specified.</li>
5157
5158 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5159 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5160 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00005161</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00005162
Chris Lattner2f7c9632001-06-06 20:29:01 +00005163<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005164<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5165 a specified function, with its incoming arguments bound to the specified
5166 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5167 function, control flow continues with the instruction after the function
5168 call, and the return value of the function is bound to the result
5169 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005170
Chris Lattner2f7c9632001-06-06 20:29:01 +00005171<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005172<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00005173 %retval = call i32 @test(i32 %argc)
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00005174 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
5175 %X = tail call i32 @foo() <i>; yields i32</i>
5176 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5177 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00005178
5179 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00005180 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00005181 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5182 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00005183 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00005184 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00005185</pre>
5186
Dale Johannesen68f971b2009-09-24 18:38:21 +00005187<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00005188standard C99 library as being the C99 library functions, and may perform
5189optimizations or generate code for them under that assumption. This is
5190something we'd like to change in the future to provide better support for
5191freestanding environments and non-C-based langauges.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00005192
Misha Brukman76307852003-11-08 01:05:38 +00005193</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005194
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005195<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00005196<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00005197 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005198</div>
5199
Misha Brukman76307852003-11-08 01:05:38 +00005200<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00005201
Chris Lattner26ca62e2003-10-18 05:51:36 +00005202<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005203<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005204 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00005205</pre>
5206
Chris Lattner26ca62e2003-10-18 05:51:36 +00005207<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005208<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005209 the "variable argument" area of a function call. It is used to implement the
5210 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005211
Chris Lattner26ca62e2003-10-18 05:51:36 +00005212<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005213<p>This instruction takes a <tt>va_list*</tt> value and the type of the
5214 argument. It returns a value of the specified argument type and increments
5215 the <tt>va_list</tt> to point to the next argument. The actual type
5216 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005217
Chris Lattner26ca62e2003-10-18 05:51:36 +00005218<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005219<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5220 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5221 to the next argument. For more information, see the variable argument
5222 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005223
5224<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005225 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5226 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005227
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005228<p><tt>va_arg</tt> is an LLVM instruction instead of
5229 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5230 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005231
Chris Lattner26ca62e2003-10-18 05:51:36 +00005232<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005233<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5234
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005235<p>Note that the code generator does not yet fully support va_arg on many
5236 targets. Also, it does not currently support va_arg with aggregate types on
5237 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00005238
Misha Brukman76307852003-11-08 01:05:38 +00005239</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005240
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005241<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00005242<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
5243<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00005244
Misha Brukman76307852003-11-08 01:05:38 +00005245<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00005246
5247<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005248 well known names and semantics and are required to follow certain
5249 restrictions. Overall, these intrinsics represent an extension mechanism for
5250 the LLVM language that does not require changing all of the transformations
5251 in LLVM when adding to the language (or the bitcode reader/writer, the
5252 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005253
John Criswell88190562005-05-16 16:17:45 +00005254<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005255 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5256 begin with this prefix. Intrinsic functions must always be external
5257 functions: you cannot define the body of intrinsic functions. Intrinsic
5258 functions may only be used in call or invoke instructions: it is illegal to
5259 take the address of an intrinsic function. Additionally, because intrinsic
5260 functions are part of the LLVM language, it is required if any are added that
5261 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005262
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005263<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5264 family of functions that perform the same operation but on different data
5265 types. Because LLVM can represent over 8 million different integer types,
5266 overloading is used commonly to allow an intrinsic function to operate on any
5267 integer type. One or more of the argument types or the result type can be
5268 overloaded to accept any integer type. Argument types may also be defined as
5269 exactly matching a previous argument's type or the result type. This allows
5270 an intrinsic function which accepts multiple arguments, but needs all of them
5271 to be of the same type, to only be overloaded with respect to a single
5272 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005273
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005274<p>Overloaded intrinsics will have the names of its overloaded argument types
5275 encoded into its function name, each preceded by a period. Only those types
5276 which are overloaded result in a name suffix. Arguments whose type is matched
5277 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5278 can take an integer of any width and returns an integer of exactly the same
5279 integer width. This leads to a family of functions such as
5280 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5281 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5282 suffix is required. Because the argument's type is matched against the return
5283 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005284
Eric Christopher455c5772009-12-05 02:46:03 +00005285<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005286 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005287
Misha Brukman76307852003-11-08 01:05:38 +00005288</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005289
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005290<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00005291<div class="doc_subsection">
5292 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5293</div>
5294
Misha Brukman76307852003-11-08 01:05:38 +00005295<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005296
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005297<p>Variable argument support is defined in LLVM with
5298 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5299 intrinsic functions. These functions are related to the similarly named
5300 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005301
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005302<p>All of these functions operate on arguments that use a target-specific value
5303 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5304 not define what this type is, so all transformations should be prepared to
5305 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005306
Chris Lattner30b868d2006-05-15 17:26:46 +00005307<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005308 instruction and the variable argument handling intrinsic functions are
5309 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005310
Bill Wendling3716c5d2007-05-29 09:04:49 +00005311<div class="doc_code">
Chris Lattnerfee11462004-02-12 17:01:32 +00005312<pre>
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005313define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00005314 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00005315 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005316 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005317 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005318
5319 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00005320 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00005321
5322 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00005323 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005324 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00005325 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005326 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005327
5328 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005329 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005330 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00005331}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005332
5333declare void @llvm.va_start(i8*)
5334declare void @llvm.va_copy(i8*, i8*)
5335declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00005336</pre>
Misha Brukman76307852003-11-08 01:05:38 +00005337</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005338
Bill Wendling3716c5d2007-05-29 09:04:49 +00005339</div>
5340
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005341<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005342<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005343 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005344</div>
5345
5346
Misha Brukman76307852003-11-08 01:05:38 +00005347<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005348
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005349<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005350<pre>
5351 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5352</pre>
5353
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005354<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005355<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5356 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005357
5358<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005359<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005360
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005361<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005362<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005363 macro available in C. In a target-dependent way, it initializes
5364 the <tt>va_list</tt> element to which the argument points, so that the next
5365 call to <tt>va_arg</tt> will produce the first variable argument passed to
5366 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5367 need to know the last argument of the function as the compiler can figure
5368 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005369
Misha Brukman76307852003-11-08 01:05:38 +00005370</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005371
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005372<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005373<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005374 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005375</div>
5376
Misha Brukman76307852003-11-08 01:05:38 +00005377<div class="doc_text">
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005378
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005379<h5>Syntax:</h5>
5380<pre>
5381 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5382</pre>
5383
5384<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005385<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005386 which has been initialized previously
5387 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5388 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005389
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005390<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005391<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005392
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005393<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005394<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005395 macro available in C. In a target-dependent way, it destroys
5396 the <tt>va_list</tt> element to which the argument points. Calls
5397 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5398 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5399 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005400
Misha Brukman76307852003-11-08 01:05:38 +00005401</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005402
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005403<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005404<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005405 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005406</div>
5407
Misha Brukman76307852003-11-08 01:05:38 +00005408<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005409
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005410<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005411<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005412 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005413</pre>
5414
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005415<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005416<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005417 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005418
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005419<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005420<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005421 The second argument is a pointer to a <tt>va_list</tt> element to copy
5422 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005423
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005424<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005425<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005426 macro available in C. In a target-dependent way, it copies the
5427 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5428 element. This intrinsic is necessary because
5429 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5430 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005431
Misha Brukman76307852003-11-08 01:05:38 +00005432</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005433
Chris Lattnerfee11462004-02-12 17:01:32 +00005434<!-- ======================================================================= -->
5435<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005436 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5437</div>
5438
5439<div class="doc_text">
5440
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005441<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00005442Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005443intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5444roots on the stack</a>, as well as garbage collector implementations that
5445require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5446barriers. Front-ends for type-safe garbage collected languages should generate
5447these intrinsics to make use of the LLVM garbage collectors. For more details,
5448see <a href="GarbageCollection.html">Accurate Garbage Collection with
5449LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005450
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005451<p>The garbage collection intrinsics only operate on objects in the generic
5452 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005453
Chris Lattner757528b0b2004-05-23 21:06:01 +00005454</div>
5455
5456<!-- _______________________________________________________________________ -->
5457<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005458 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005459</div>
5460
5461<div class="doc_text">
5462
5463<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005464<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005465 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005466</pre>
5467
5468<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00005469<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005470 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005471
5472<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005473<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005474 root pointer. The second pointer (which must be either a constant or a
5475 global value address) contains the meta-data to be associated with the
5476 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005477
5478<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00005479<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005480 location. At compile-time, the code generator generates information to allow
5481 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5482 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5483 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005484
5485</div>
5486
Chris Lattner757528b0b2004-05-23 21:06:01 +00005487<!-- _______________________________________________________________________ -->
5488<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005489 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005490</div>
5491
5492<div class="doc_text">
5493
5494<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005495<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005496 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005497</pre>
5498
5499<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005500<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005501 locations, allowing garbage collector implementations that require read
5502 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005503
5504<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005505<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005506 allocated from the garbage collector. The first object is a pointer to the
5507 start of the referenced object, if needed by the language runtime (otherwise
5508 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005509
5510<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005511<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005512 instruction, but may be replaced with substantially more complex code by the
5513 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5514 may only be used in a function which <a href="#gc">specifies a GC
5515 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005516
5517</div>
5518
Chris Lattner757528b0b2004-05-23 21:06:01 +00005519<!-- _______________________________________________________________________ -->
5520<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005521 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005522</div>
5523
5524<div class="doc_text">
5525
5526<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005527<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005528 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005529</pre>
5530
5531<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005532<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005533 locations, allowing garbage collector implementations that require write
5534 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005535
5536<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005537<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005538 object to store it to, and the third is the address of the field of Obj to
5539 store to. If the runtime does not require a pointer to the object, Obj may
5540 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005541
5542<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005543<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005544 instruction, but may be replaced with substantially more complex code by the
5545 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5546 may only be used in a function which <a href="#gc">specifies a GC
5547 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005548
5549</div>
5550
Chris Lattner757528b0b2004-05-23 21:06:01 +00005551<!-- ======================================================================= -->
5552<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00005553 <a name="int_codegen">Code Generator Intrinsics</a>
5554</div>
5555
5556<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005557
5558<p>These intrinsics are provided by LLVM to expose special features that may
5559 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005560
5561</div>
5562
5563<!-- _______________________________________________________________________ -->
5564<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005565 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005566</div>
5567
5568<div class="doc_text">
5569
5570<h5>Syntax:</h5>
5571<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005572 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005573</pre>
5574
5575<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005576<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5577 target-specific value indicating the return address of the current function
5578 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005579
5580<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005581<p>The argument to this intrinsic indicates which function to return the address
5582 for. Zero indicates the calling function, one indicates its caller, etc.
5583 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005584
5585<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005586<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5587 indicating the return address of the specified call frame, or zero if it
5588 cannot be identified. The value returned by this intrinsic is likely to be
5589 incorrect or 0 for arguments other than zero, so it should only be used for
5590 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005591
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005592<p>Note that calling this intrinsic does not prevent function inlining or other
5593 aggressive transformations, so the value returned may not be that of the
5594 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005595
Chris Lattner3649c3a2004-02-14 04:08:35 +00005596</div>
5597
Chris Lattner3649c3a2004-02-14 04:08:35 +00005598<!-- _______________________________________________________________________ -->
5599<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005600 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005601</div>
5602
5603<div class="doc_text">
5604
5605<h5>Syntax:</h5>
5606<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005607 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005608</pre>
5609
5610<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005611<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5612 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005613
5614<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005615<p>The argument to this intrinsic indicates which function to return the frame
5616 pointer for. Zero indicates the calling function, one indicates its caller,
5617 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005618
5619<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005620<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5621 indicating the frame address of the specified call frame, or zero if it
5622 cannot be identified. The value returned by this intrinsic is likely to be
5623 incorrect or 0 for arguments other than zero, so it should only be used for
5624 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005625
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005626<p>Note that calling this intrinsic does not prevent function inlining or other
5627 aggressive transformations, so the value returned may not be that of the
5628 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005629
Chris Lattner3649c3a2004-02-14 04:08:35 +00005630</div>
5631
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005632<!-- _______________________________________________________________________ -->
5633<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005634 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005635</div>
5636
5637<div class="doc_text">
5638
5639<h5>Syntax:</h5>
5640<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005641 declare i8 *@llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00005642</pre>
5643
5644<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005645<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5646 of the function stack, for use
5647 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5648 useful for implementing language features like scoped automatic variable
5649 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005650
5651<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005652<p>This intrinsic returns a opaque pointer value that can be passed
5653 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5654 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5655 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5656 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5657 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5658 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005659
5660</div>
5661
5662<!-- _______________________________________________________________________ -->
5663<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005664 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005665</div>
5666
5667<div class="doc_text">
5668
5669<h5>Syntax:</h5>
5670<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005671 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00005672</pre>
5673
5674<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005675<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5676 the function stack to the state it was in when the
5677 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5678 executed. This is useful for implementing language features like scoped
5679 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005680
5681<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005682<p>See the description
5683 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005684
5685</div>
5686
Chris Lattner2f0f0012006-01-13 02:03:13 +00005687<!-- _______________________________________________________________________ -->
5688<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005689 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005690</div>
5691
5692<div class="doc_text">
5693
5694<h5>Syntax:</h5>
5695<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005696 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005697</pre>
5698
5699<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005700<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5701 insert a prefetch instruction if supported; otherwise, it is a noop.
5702 Prefetches have no effect on the behavior of the program but can change its
5703 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005704
5705<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005706<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5707 specifier determining if the fetch should be for a read (0) or write (1),
5708 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5709 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5710 and <tt>locality</tt> arguments must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005711
5712<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005713<p>This intrinsic does not modify the behavior of the program. In particular,
5714 prefetches cannot trap and do not produce a value. On targets that support
5715 this intrinsic, the prefetch can provide hints to the processor cache for
5716 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005717
5718</div>
5719
Andrew Lenharthb4427912005-03-28 20:05:49 +00005720<!-- _______________________________________________________________________ -->
5721<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005722 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005723</div>
5724
5725<div class="doc_text">
5726
5727<h5>Syntax:</h5>
5728<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005729 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00005730</pre>
5731
5732<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005733<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5734 Counter (PC) in a region of code to simulators and other tools. The method
5735 is target specific, but it is expected that the marker will use exported
5736 symbols to transmit the PC of the marker. The marker makes no guarantees
5737 that it will remain with any specific instruction after optimizations. It is
5738 possible that the presence of a marker will inhibit optimizations. The
5739 intended use is to be inserted after optimizations to allow correlations of
5740 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005741
5742<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005743<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005744
5745<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005746<p>This intrinsic does not modify the behavior of the program. Backends that do
5747 not support this intrinisic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005748
5749</div>
5750
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005751<!-- _______________________________________________________________________ -->
5752<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005753 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005754</div>
5755
5756<div class="doc_text">
5757
5758<h5>Syntax:</h5>
5759<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005760 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005761</pre>
5762
5763<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005764<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5765 counter register (or similar low latency, high accuracy clocks) on those
5766 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5767 should map to RPCC. As the backing counters overflow quickly (on the order
5768 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005769
5770<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005771<p>When directly supported, reading the cycle counter should not modify any
5772 memory. Implementations are allowed to either return a application specific
5773 value or a system wide value. On backends without support, this is lowered
5774 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005775
5776</div>
5777
Chris Lattner3649c3a2004-02-14 04:08:35 +00005778<!-- ======================================================================= -->
5779<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00005780 <a name="int_libc">Standard C Library Intrinsics</a>
5781</div>
5782
5783<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005784
5785<p>LLVM provides intrinsics for a few important standard C library functions.
5786 These intrinsics allow source-language front-ends to pass information about
5787 the alignment of the pointer arguments to the code generator, providing
5788 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005789
5790</div>
5791
5792<!-- _______________________________________________________________________ -->
5793<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005794 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattnerfee11462004-02-12 17:01:32 +00005795</div>
5796
5797<div class="doc_text">
5798
5799<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005800<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
5801 integer bit width. Not all targets support all bit widths however.</p>
5802
Chris Lattnerfee11462004-02-12 17:01:32 +00005803<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005804 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005805 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerdd708342008-11-21 16:42:48 +00005806 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5807 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005808 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005809 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005810 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005811 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00005812</pre>
5813
5814<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005815<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5816 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005817
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005818<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5819 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005820
5821<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005822<p>The first argument is a pointer to the destination, the second is a pointer
5823 to the source. The third argument is an integer argument specifying the
5824 number of bytes to copy, and the fourth argument is the alignment of the
5825 source and destination locations.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005826
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005827<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5828 then the caller guarantees that both the source and destination pointers are
5829 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00005830
Chris Lattnerfee11462004-02-12 17:01:32 +00005831<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005832<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5833 source location to the destination location, which are not allowed to
5834 overlap. It copies "len" bytes of memory over. If the argument is known to
5835 be aligned to some boundary, this can be specified as the fourth argument,
5836 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005837
Chris Lattnerfee11462004-02-12 17:01:32 +00005838</div>
5839
Chris Lattnerf30152e2004-02-12 18:10:10 +00005840<!-- _______________________________________________________________________ -->
5841<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005842 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005843</div>
5844
5845<div class="doc_text">
5846
5847<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005848<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005849 width. Not all targets support all bit widths however.</p>
5850
Chris Lattnerf30152e2004-02-12 18:10:10 +00005851<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005852 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005853 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerdd708342008-11-21 16:42:48 +00005854 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5855 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005856 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005857 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005858 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005859 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00005860</pre>
5861
5862<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005863<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
5864 source location to the destination location. It is similar to the
5865 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
5866 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005867
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005868<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5869 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005870
5871<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005872<p>The first argument is a pointer to the destination, the second is a pointer
5873 to the source. The third argument is an integer argument specifying the
5874 number of bytes to copy, and the fourth argument is the alignment of the
5875 source and destination locations.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005876
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005877<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5878 then the caller guarantees that the source and destination pointers are
5879 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00005880
Chris Lattnerf30152e2004-02-12 18:10:10 +00005881<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005882<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
5883 source location to the destination location, which may overlap. It copies
5884 "len" bytes of memory over. If the argument is known to be aligned to some
5885 boundary, this can be specified as the fourth argument, otherwise it should
5886 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005887
Chris Lattnerf30152e2004-02-12 18:10:10 +00005888</div>
5889
Chris Lattner3649c3a2004-02-14 04:08:35 +00005890<!-- _______________________________________________________________________ -->
5891<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005892 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005893</div>
5894
5895<div class="doc_text">
5896
5897<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005898<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005899 width. Not all targets support all bit widths however.</p>
5900
Chris Lattner3649c3a2004-02-14 04:08:35 +00005901<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005902 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005903 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerdd708342008-11-21 16:42:48 +00005904 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5905 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005906 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005907 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005908 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005909 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005910</pre>
5911
5912<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005913<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
5914 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005915
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005916<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
5917 intrinsic does not return a value, and takes an extra alignment argument.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005918
5919<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005920<p>The first argument is a pointer to the destination to fill, the second is the
5921 byte value to fill it with, the third argument is an integer argument
5922 specifying the number of bytes to fill, and the fourth argument is the known
5923 alignment of destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005924
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005925<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5926 then the caller guarantees that the destination pointer is aligned to that
5927 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005928
5929<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005930<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
5931 at the destination location. If the argument is known to be aligned to some
5932 boundary, this can be specified as the fourth argument, otherwise it should
5933 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005934
Chris Lattner3649c3a2004-02-14 04:08:35 +00005935</div>
5936
Chris Lattner3b4f4372004-06-11 02:28:03 +00005937<!-- _______________________________________________________________________ -->
5938<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005939 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005940</div>
5941
5942<div class="doc_text">
5943
5944<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005945<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
5946 floating point or vector of floating point type. Not all targets support all
5947 types however.</p>
5948
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005949<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005950 declare float @llvm.sqrt.f32(float %Val)
5951 declare double @llvm.sqrt.f64(double %Val)
5952 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5953 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5954 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005955</pre>
5956
5957<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005958<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
5959 returning the same value as the libm '<tt>sqrt</tt>' functions would.
5960 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
5961 behavior for negative numbers other than -0.0 (which allows for better
5962 optimization, because there is no need to worry about errno being
5963 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005964
5965<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005966<p>The argument and return value are floating point numbers of the same
5967 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005968
5969<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005970<p>This function returns the sqrt of the specified operand if it is a
5971 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005972
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005973</div>
5974
Chris Lattner33b73f92006-09-08 06:34:02 +00005975<!-- _______________________________________________________________________ -->
5976<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005977 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattner33b73f92006-09-08 06:34:02 +00005978</div>
5979
5980<div class="doc_text">
5981
5982<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005983<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
5984 floating point or vector of floating point type. Not all targets support all
5985 types however.</p>
5986
Chris Lattner33b73f92006-09-08 06:34:02 +00005987<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005988 declare float @llvm.powi.f32(float %Val, i32 %power)
5989 declare double @llvm.powi.f64(double %Val, i32 %power)
5990 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5991 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5992 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00005993</pre>
5994
5995<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005996<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5997 specified (positive or negative) power. The order of evaluation of
5998 multiplications is not defined. When a vector of floating point type is
5999 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006000
6001<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006002<p>The second argument is an integer power, and the first is a value to raise to
6003 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006004
6005<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006006<p>This function returns the first value raised to the second power with an
6007 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006008
Chris Lattner33b73f92006-09-08 06:34:02 +00006009</div>
6010
Dan Gohmanb6324c12007-10-15 20:30:11 +00006011<!-- _______________________________________________________________________ -->
6012<div class="doc_subsubsection">
6013 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
6014</div>
6015
6016<div class="doc_text">
6017
6018<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006019<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6020 floating point or vector of floating point type. Not all targets support all
6021 types however.</p>
6022
Dan Gohmanb6324c12007-10-15 20:30:11 +00006023<pre>
6024 declare float @llvm.sin.f32(float %Val)
6025 declare double @llvm.sin.f64(double %Val)
6026 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6027 declare fp128 @llvm.sin.f128(fp128 %Val)
6028 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6029</pre>
6030
6031<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006032<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006033
6034<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006035<p>The argument and return value are floating point numbers of the same
6036 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006037
6038<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006039<p>This function returns the sine of the specified operand, returning the same
6040 values as the libm <tt>sin</tt> functions would, and handles error conditions
6041 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006042
Dan Gohmanb6324c12007-10-15 20:30:11 +00006043</div>
6044
6045<!-- _______________________________________________________________________ -->
6046<div class="doc_subsubsection">
6047 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
6048</div>
6049
6050<div class="doc_text">
6051
6052<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006053<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6054 floating point or vector of floating point type. Not all targets support all
6055 types however.</p>
6056
Dan Gohmanb6324c12007-10-15 20:30:11 +00006057<pre>
6058 declare float @llvm.cos.f32(float %Val)
6059 declare double @llvm.cos.f64(double %Val)
6060 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6061 declare fp128 @llvm.cos.f128(fp128 %Val)
6062 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6063</pre>
6064
6065<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006066<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006067
6068<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006069<p>The argument and return value are floating point numbers of the same
6070 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006071
6072<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006073<p>This function returns the cosine of the specified operand, returning the same
6074 values as the libm <tt>cos</tt> functions would, and handles error conditions
6075 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006076
Dan Gohmanb6324c12007-10-15 20:30:11 +00006077</div>
6078
6079<!-- _______________________________________________________________________ -->
6080<div class="doc_subsubsection">
6081 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
6082</div>
6083
6084<div class="doc_text">
6085
6086<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006087<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6088 floating point or vector of floating point type. Not all targets support all
6089 types however.</p>
6090
Dan Gohmanb6324c12007-10-15 20:30:11 +00006091<pre>
6092 declare float @llvm.pow.f32(float %Val, float %Power)
6093 declare double @llvm.pow.f64(double %Val, double %Power)
6094 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6095 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6096 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6097</pre>
6098
6099<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006100<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6101 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006102
6103<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006104<p>The second argument is a floating point power, and the first is a value to
6105 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006106
6107<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006108<p>This function returns the first value raised to the second power, returning
6109 the same values as the libm <tt>pow</tt> functions would, and handles error
6110 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006111
Dan Gohmanb6324c12007-10-15 20:30:11 +00006112</div>
6113
Andrew Lenharth1d463522005-05-03 18:01:48 +00006114<!-- ======================================================================= -->
6115<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00006116 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006117</div>
6118
6119<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006120
6121<p>LLVM provides intrinsics for a few important bit manipulation operations.
6122 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006123
6124</div>
6125
6126<!-- _______________________________________________________________________ -->
6127<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006128 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006129</div>
6130
6131<div class="doc_text">
6132
6133<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006134<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006135 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6136
Nate Begeman0f223bb2006-01-13 23:26:38 +00006137<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006138 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6139 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6140 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00006141</pre>
6142
6143<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006144<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6145 values with an even number of bytes (positive multiple of 16 bits). These
6146 are useful for performing operations on data that is not in the target's
6147 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006148
6149<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006150<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6151 and low byte of the input i16 swapped. Similarly,
6152 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6153 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6154 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6155 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6156 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6157 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006158
6159</div>
6160
6161<!-- _______________________________________________________________________ -->
6162<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00006163 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006164</div>
6165
6166<div class="doc_text">
6167
6168<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006169<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006170 width. Not all targets support all bit widths however.</p>
6171
Andrew Lenharth1d463522005-05-03 18:01:48 +00006172<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006173 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006174 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006175 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006176 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6177 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00006178</pre>
6179
6180<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006181<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6182 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006183
6184<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006185<p>The only argument is the value to be counted. The argument may be of any
6186 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006187
6188<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006189<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006190
Andrew Lenharth1d463522005-05-03 18:01:48 +00006191</div>
6192
6193<!-- _______________________________________________________________________ -->
6194<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00006195 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006196</div>
6197
6198<div class="doc_text">
6199
6200<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006201<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6202 integer bit width. Not all targets support all bit widths however.</p>
6203
Andrew Lenharth1d463522005-05-03 18:01:48 +00006204<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006205 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6206 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006207 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006208 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6209 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00006210</pre>
6211
6212<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006213<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6214 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006215
6216<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006217<p>The only argument is the value to be counted. The argument may be of any
6218 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006219
6220<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006221<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6222 zeros in a variable. If the src == 0 then the result is the size in bits of
6223 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006224
Andrew Lenharth1d463522005-05-03 18:01:48 +00006225</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00006226
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006227<!-- _______________________________________________________________________ -->
6228<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00006229 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006230</div>
6231
6232<div class="doc_text">
6233
6234<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006235<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6236 integer bit width. Not all targets support all bit widths however.</p>
6237
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006238<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006239 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6240 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006241 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006242 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6243 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006244</pre>
6245
6246<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006247<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6248 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006249
6250<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006251<p>The only argument is the value to be counted. The argument may be of any
6252 integer type. The return type must match the argument type.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006253
6254<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006255<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6256 zeros in a variable. If the src == 0 then the result is the size in bits of
6257 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006258
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006259</div>
6260
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006261<!-- ======================================================================= -->
6262<div class="doc_subsection">
6263 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6264</div>
6265
6266<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006267
6268<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006269
6270</div>
6271
Bill Wendlingf4d70622009-02-08 01:40:31 +00006272<!-- _______________________________________________________________________ -->
6273<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006274 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006275</div>
6276
6277<div class="doc_text">
6278
6279<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006280<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006281 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006282
6283<pre>
6284 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6285 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6286 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6287</pre>
6288
6289<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006290<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006291 a signed addition of the two arguments, and indicate whether an overflow
6292 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006293
6294<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006295<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006296 be of integer types of any bit width, but they must have the same bit
6297 width. The second element of the result structure must be of
6298 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6299 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006300
6301<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006302<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006303 a signed addition of the two variables. They return a structure &mdash; the
6304 first element of which is the signed summation, and the second element of
6305 which is a bit specifying if the signed summation resulted in an
6306 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006307
6308<h5>Examples:</h5>
6309<pre>
6310 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6311 %sum = extractvalue {i32, i1} %res, 0
6312 %obit = extractvalue {i32, i1} %res, 1
6313 br i1 %obit, label %overflow, label %normal
6314</pre>
6315
6316</div>
6317
6318<!-- _______________________________________________________________________ -->
6319<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006320 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006321</div>
6322
6323<div class="doc_text">
6324
6325<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006326<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006327 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006328
6329<pre>
6330 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6331 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6332 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6333</pre>
6334
6335<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006336<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006337 an unsigned addition of the two arguments, and indicate whether a carry
6338 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006339
6340<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006341<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006342 be of integer types of any bit width, but they must have the same bit
6343 width. The second element of the result structure must be of
6344 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6345 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006346
6347<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006348<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006349 an unsigned addition of the two arguments. They return a structure &mdash;
6350 the first element of which is the sum, and the second element of which is a
6351 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006352
6353<h5>Examples:</h5>
6354<pre>
6355 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6356 %sum = extractvalue {i32, i1} %res, 0
6357 %obit = extractvalue {i32, i1} %res, 1
6358 br i1 %obit, label %carry, label %normal
6359</pre>
6360
6361</div>
6362
6363<!-- _______________________________________________________________________ -->
6364<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006365 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006366</div>
6367
6368<div class="doc_text">
6369
6370<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006371<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006372 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006373
6374<pre>
6375 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6376 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6377 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6378</pre>
6379
6380<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006381<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006382 a signed subtraction of the two arguments, and indicate whether an overflow
6383 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006384
6385<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006386<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006387 be of integer types of any bit width, but they must have the same bit
6388 width. The second element of the result structure must be of
6389 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6390 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006391
6392<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006393<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006394 a signed subtraction of the two arguments. They return a structure &mdash;
6395 the first element of which is the subtraction, and the second element of
6396 which is a bit specifying if the signed subtraction resulted in an
6397 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006398
6399<h5>Examples:</h5>
6400<pre>
6401 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6402 %sum = extractvalue {i32, i1} %res, 0
6403 %obit = extractvalue {i32, i1} %res, 1
6404 br i1 %obit, label %overflow, label %normal
6405</pre>
6406
6407</div>
6408
6409<!-- _______________________________________________________________________ -->
6410<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006411 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006412</div>
6413
6414<div class="doc_text">
6415
6416<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006417<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006418 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006419
6420<pre>
6421 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6422 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6423 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6424</pre>
6425
6426<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006427<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006428 an unsigned subtraction of the two arguments, and indicate whether an
6429 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006430
6431<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006432<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006433 be of integer types of any bit width, but they must have the same bit
6434 width. The second element of the result structure must be of
6435 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6436 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006437
6438<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006439<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006440 an unsigned subtraction of the two arguments. They return a structure &mdash;
6441 the first element of which is the subtraction, and the second element of
6442 which is a bit specifying if the unsigned subtraction resulted in an
6443 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006444
6445<h5>Examples:</h5>
6446<pre>
6447 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6448 %sum = extractvalue {i32, i1} %res, 0
6449 %obit = extractvalue {i32, i1} %res, 1
6450 br i1 %obit, label %overflow, label %normal
6451</pre>
6452
6453</div>
6454
6455<!-- _______________________________________________________________________ -->
6456<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006457 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006458</div>
6459
6460<div class="doc_text">
6461
6462<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006463<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006464 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006465
6466<pre>
6467 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6468 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6469 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6470</pre>
6471
6472<h5>Overview:</h5>
6473
6474<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006475 a signed multiplication of the two arguments, and indicate whether an
6476 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006477
6478<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006479<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006480 be of integer types of any bit width, but they must have the same bit
6481 width. The second element of the result structure must be of
6482 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6483 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006484
6485<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006486<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006487 a signed multiplication of the two arguments. They return a structure &mdash;
6488 the first element of which is the multiplication, and the second element of
6489 which is a bit specifying if the signed multiplication resulted in an
6490 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006491
6492<h5>Examples:</h5>
6493<pre>
6494 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6495 %sum = extractvalue {i32, i1} %res, 0
6496 %obit = extractvalue {i32, i1} %res, 1
6497 br i1 %obit, label %overflow, label %normal
6498</pre>
6499
Reid Spencer5bf54c82007-04-11 23:23:49 +00006500</div>
6501
Bill Wendlingb9a73272009-02-08 23:00:09 +00006502<!-- _______________________________________________________________________ -->
6503<div class="doc_subsubsection">
6504 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6505</div>
6506
6507<div class="doc_text">
6508
6509<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006510<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006511 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006512
6513<pre>
6514 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6515 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6516 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6517</pre>
6518
6519<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006520<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006521 a unsigned multiplication of the two arguments, and indicate whether an
6522 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006523
6524<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006525<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006526 be of integer types of any bit width, but they must have the same bit
6527 width. The second element of the result structure must be of
6528 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6529 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006530
6531<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006532<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006533 an unsigned multiplication of the two arguments. They return a structure
6534 &mdash; the first element of which is the multiplication, and the second
6535 element of which is a bit specifying if the unsigned multiplication resulted
6536 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006537
6538<h5>Examples:</h5>
6539<pre>
6540 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6541 %sum = extractvalue {i32, i1} %res, 0
6542 %obit = extractvalue {i32, i1} %res, 1
6543 br i1 %obit, label %overflow, label %normal
6544</pre>
6545
6546</div>
6547
Chris Lattner941515c2004-01-06 05:31:32 +00006548<!-- ======================================================================= -->
6549<div class="doc_subsection">
6550 <a name="int_debugger">Debugger Intrinsics</a>
6551</div>
6552
6553<div class="doc_text">
Chris Lattner941515c2004-01-06 05:31:32 +00006554
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006555<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6556 prefix), are described in
6557 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6558 Level Debugging</a> document.</p>
6559
6560</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006561
Jim Laskey2211f492007-03-14 19:31:19 +00006562<!-- ======================================================================= -->
6563<div class="doc_subsection">
6564 <a name="int_eh">Exception Handling Intrinsics</a>
6565</div>
6566
6567<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006568
6569<p>The LLVM exception handling intrinsics (which all start with
6570 <tt>llvm.eh.</tt> prefix), are described in
6571 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6572 Handling</a> document.</p>
6573
Jim Laskey2211f492007-03-14 19:31:19 +00006574</div>
6575
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006576<!-- ======================================================================= -->
6577<div class="doc_subsection">
Duncan Sands86e01192007-09-11 14:10:23 +00006578 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +00006579</div>
6580
6581<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006582
6583<p>This intrinsic makes it possible to excise one parameter, marked with
6584 the <tt>nest</tt> attribute, from a function. The result is a callable
6585 function pointer lacking the nest parameter - the caller does not need to
6586 provide a value for it. Instead, the value to use is stored in advance in a
6587 "trampoline", a block of memory usually allocated on the stack, which also
6588 contains code to splice the nest value into the argument list. This is used
6589 to implement the GCC nested function address extension.</p>
6590
6591<p>For example, if the function is
6592 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6593 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6594 follows:</p>
6595
6596<div class="doc_code">
Duncan Sands644f9172007-07-27 12:58:54 +00006597<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00006598 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6599 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6600 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6601 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00006602</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006603</div>
6604
6605<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6606 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
6607
Duncan Sands644f9172007-07-27 12:58:54 +00006608</div>
6609
6610<!-- _______________________________________________________________________ -->
6611<div class="doc_subsubsection">
6612 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6613</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006614
Duncan Sands644f9172007-07-27 12:58:54 +00006615<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006616
Duncan Sands644f9172007-07-27 12:58:54 +00006617<h5>Syntax:</h5>
6618<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006619 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00006620</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006621
Duncan Sands644f9172007-07-27 12:58:54 +00006622<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006623<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6624 function pointer suitable for executing it.</p>
6625
Duncan Sands644f9172007-07-27 12:58:54 +00006626<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006627<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6628 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6629 sufficiently aligned block of memory; this memory is written to by the
6630 intrinsic. Note that the size and the alignment are target-specific - LLVM
6631 currently provides no portable way of determining them, so a front-end that
6632 generates this intrinsic needs to have some target-specific knowledge.
6633 The <tt>func</tt> argument must hold a function bitcast to
6634 an <tt>i8*</tt>.</p>
6635
Duncan Sands644f9172007-07-27 12:58:54 +00006636<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006637<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6638 dependent code, turning it into a function. A pointer to this function is
6639 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6640 function pointer type</a> before being called. The new function's signature
6641 is the same as that of <tt>func</tt> with any arguments marked with
6642 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6643 is allowed, and it must be of pointer type. Calling the new function is
6644 equivalent to calling <tt>func</tt> with the same argument list, but
6645 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6646 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6647 by <tt>tramp</tt> is modified, then the effect of any later call to the
6648 returned function pointer is undefined.</p>
6649
Duncan Sands644f9172007-07-27 12:58:54 +00006650</div>
6651
6652<!-- ======================================================================= -->
6653<div class="doc_subsection">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006654 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6655</div>
6656
6657<div class="doc_text">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006658
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006659<p>These intrinsic functions expand the "universal IR" of LLVM to represent
6660 hardware constructs for atomic operations and memory synchronization. This
6661 provides an interface to the hardware, not an interface to the programmer. It
6662 is aimed at a low enough level to allow any programming models or APIs
6663 (Application Programming Interfaces) which need atomic behaviors to map
6664 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6665 hardware provides a "universal IR" for source languages, it also provides a
6666 starting point for developing a "universal" atomic operation and
6667 synchronization IR.</p>
6668
6669<p>These do <em>not</em> form an API such as high-level threading libraries,
6670 software transaction memory systems, atomic primitives, and intrinsic
6671 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6672 application libraries. The hardware interface provided by LLVM should allow
6673 a clean implementation of all of these APIs and parallel programming models.
6674 No one model or paradigm should be selected above others unless the hardware
6675 itself ubiquitously does so.</p>
6676
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006677</div>
6678
6679<!-- _______________________________________________________________________ -->
6680<div class="doc_subsubsection">
6681 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6682</div>
6683<div class="doc_text">
6684<h5>Syntax:</h5>
6685<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006686 declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006687</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006688
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006689<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006690<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6691 specific pairs of memory access types.</p>
6692
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006693<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006694<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6695 The first four arguments enables a specific barrier as listed below. The
6696 fith argument specifies that the barrier applies to io or device or uncached
6697 memory.</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006698
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006699<ul>
6700 <li><tt>ll</tt>: load-load barrier</li>
6701 <li><tt>ls</tt>: load-store barrier</li>
6702 <li><tt>sl</tt>: store-load barrier</li>
6703 <li><tt>ss</tt>: store-store barrier</li>
6704 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
6705</ul>
6706
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006707<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006708<p>This intrinsic causes the system to enforce some ordering constraints upon
6709 the loads and stores of the program. This barrier does not
6710 indicate <em>when</em> any events will occur, it only enforces
6711 an <em>order</em> in which they occur. For any of the specified pairs of load
6712 and store operations (f.ex. load-load, or store-load), all of the first
6713 operations preceding the barrier will complete before any of the second
6714 operations succeeding the barrier begin. Specifically the semantics for each
6715 pairing is as follows:</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006716
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006717<ul>
6718 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6719 after the barrier begins.</li>
Eric Christopher455c5772009-12-05 02:46:03 +00006720 <li><tt>ls</tt>: All loads before the barrier must complete before any
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006721 store after the barrier begins.</li>
Eric Christopher455c5772009-12-05 02:46:03 +00006722 <li><tt>ss</tt>: All stores before the barrier must complete before any
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006723 store after the barrier begins.</li>
Eric Christopher455c5772009-12-05 02:46:03 +00006724 <li><tt>sl</tt>: All stores before the barrier must complete before any
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006725 load after the barrier begins.</li>
6726</ul>
6727
6728<p>These semantics are applied with a logical "and" behavior when more than one
6729 is enabled in a single memory barrier intrinsic.</p>
6730
6731<p>Backends may implement stronger barriers than those requested when they do
6732 not support as fine grained a barrier as requested. Some architectures do
6733 not need all types of barriers and on such architectures, these become
6734 noops.</p>
6735
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006736<h5>Example:</h5>
6737<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00006738%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6739%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006740 store i32 4, %ptr
6741
6742%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6743 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6744 <i>; guarantee the above finishes</i>
6745 store i32 8, %ptr <i>; before this begins</i>
6746</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006747
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006748</div>
6749
Andrew Lenharth95528942008-02-21 06:45:13 +00006750<!-- _______________________________________________________________________ -->
6751<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006752 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006753</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006754
Andrew Lenharth95528942008-02-21 06:45:13 +00006755<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006756
Andrew Lenharth95528942008-02-21 06:45:13 +00006757<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006758<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6759 any integer bit width and for different address spaces. Not all targets
6760 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006761
6762<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006763 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6764 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6765 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6766 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006767</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006768
Andrew Lenharth95528942008-02-21 06:45:13 +00006769<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006770<p>This loads a value in memory and compares it to a given value. If they are
6771 equal, it stores a new value into the memory.</p>
6772
Andrew Lenharth95528942008-02-21 06:45:13 +00006773<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006774<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
6775 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6776 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6777 this integer type. While any bit width integer may be used, targets may only
6778 lower representations they support in hardware.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006779
Andrew Lenharth95528942008-02-21 06:45:13 +00006780<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006781<p>This entire intrinsic must be executed atomically. It first loads the value
6782 in memory pointed to by <tt>ptr</tt> and compares it with the
6783 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
6784 memory. The loaded value is yielded in all cases. This provides the
6785 equivalent of an atomic compare-and-swap operation within the SSA
6786 framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006787
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006788<h5>Examples:</h5>
Andrew Lenharth95528942008-02-21 06:45:13 +00006789<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00006790%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6791%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth95528942008-02-21 06:45:13 +00006792 store i32 4, %ptr
6793
6794%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006795%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006796 <i>; yields {i32}:result1 = 4</i>
6797%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6798%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6799
6800%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006801%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006802 <i>; yields {i32}:result2 = 8</i>
6803%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6804
6805%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6806</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006807
Andrew Lenharth95528942008-02-21 06:45:13 +00006808</div>
6809
6810<!-- _______________________________________________________________________ -->
6811<div class="doc_subsubsection">
6812 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6813</div>
6814<div class="doc_text">
6815<h5>Syntax:</h5>
6816
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006817<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6818 integer bit width. Not all targets support all bit widths however.</p>
6819
Andrew Lenharth95528942008-02-21 06:45:13 +00006820<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006821 declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6822 declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6823 declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6824 declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006825</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006826
Andrew Lenharth95528942008-02-21 06:45:13 +00006827<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006828<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6829 the value from memory. It then stores the value in <tt>val</tt> in the memory
6830 at <tt>ptr</tt>.</p>
6831
Andrew Lenharth95528942008-02-21 06:45:13 +00006832<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006833<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
6834 the <tt>val</tt> argument and the result must be integers of the same bit
6835 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6836 integer type. The targets may only lower integer representations they
6837 support.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006838
Andrew Lenharth95528942008-02-21 06:45:13 +00006839<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006840<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6841 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6842 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006843
Andrew Lenharth95528942008-02-21 06:45:13 +00006844<h5>Examples:</h5>
6845<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00006846%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6847%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth95528942008-02-21 06:45:13 +00006848 store i32 4, %ptr
6849
6850%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006851%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006852 <i>; yields {i32}:result1 = 4</i>
6853%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6854%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6855
6856%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006857%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006858 <i>; yields {i32}:result2 = 8</i>
6859
6860%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6861%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6862</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006863
Andrew Lenharth95528942008-02-21 06:45:13 +00006864</div>
6865
6866<!-- _______________________________________________________________________ -->
6867<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006868 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006869
6870</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006871
Andrew Lenharth95528942008-02-21 06:45:13 +00006872<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006873
Andrew Lenharth95528942008-02-21 06:45:13 +00006874<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006875<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
6876 any integer bit width. Not all targets support all bit widths however.</p>
6877
Andrew Lenharth95528942008-02-21 06:45:13 +00006878<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006879 declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6880 declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6881 declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6882 declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006883</pre>
Andrew Lenharth95528942008-02-21 06:45:13 +00006884
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006885<h5>Overview:</h5>
6886<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
6887 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6888
6889<h5>Arguments:</h5>
6890<p>The intrinsic takes two arguments, the first a pointer to an integer value
6891 and the second an integer value. The result is also an integer value. These
6892 integer types can have any bit width, but they must all have the same bit
6893 width. The targets may only lower integer representations they support.</p>
6894
Andrew Lenharth95528942008-02-21 06:45:13 +00006895<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006896<p>This intrinsic does a series of operations atomically. It first loads the
6897 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6898 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006899
6900<h5>Examples:</h5>
6901<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00006902%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6903%ptr = bitcast i8* %mallocP to i32*
6904 store i32 4, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006905%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006906 <i>; yields {i32}:result1 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006907%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006908 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006909%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006910 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00006911%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00006912</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006913
Andrew Lenharth95528942008-02-21 06:45:13 +00006914</div>
6915
Mon P Wang6a490372008-06-25 08:15:39 +00006916<!-- _______________________________________________________________________ -->
6917<div class="doc_subsubsection">
6918 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6919
6920</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006921
Mon P Wang6a490372008-06-25 08:15:39 +00006922<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006923
Mon P Wang6a490372008-06-25 08:15:39 +00006924<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006925<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
6926 any integer bit width and for different address spaces. Not all targets
6927 support all bit widths however.</p>
6928
Mon P Wang6a490372008-06-25 08:15:39 +00006929<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006930 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6931 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6932 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6933 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006934</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00006935
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006936<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00006937<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006938 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6939
6940<h5>Arguments:</h5>
6941<p>The intrinsic takes two arguments, the first a pointer to an integer value
6942 and the second an integer value. The result is also an integer value. These
6943 integer types can have any bit width, but they must all have the same bit
6944 width. The targets may only lower integer representations they support.</p>
6945
Mon P Wang6a490372008-06-25 08:15:39 +00006946<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006947<p>This intrinsic does a series of operations atomically. It first loads the
6948 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6949 result to <tt>ptr</tt>. It yields the original value stored
6950 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006951
6952<h5>Examples:</h5>
6953<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00006954%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6955%ptr = bitcast i8* %mallocP to i32*
6956 store i32 8, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006957%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6a490372008-06-25 08:15:39 +00006958 <i>; yields {i32}:result1 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006959%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006960 <i>; yields {i32}:result2 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006961%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6a490372008-06-25 08:15:39 +00006962 <i>; yields {i32}:result3 = 2</i>
6963%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6964</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006965
Mon P Wang6a490372008-06-25 08:15:39 +00006966</div>
6967
6968<!-- _______________________________________________________________________ -->
6969<div class="doc_subsubsection">
6970 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6971 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6972 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6973 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
Mon P Wang6a490372008-06-25 08:15:39 +00006974</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006975
Mon P Wang6a490372008-06-25 08:15:39 +00006976<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006977
Mon P Wang6a490372008-06-25 08:15:39 +00006978<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006979<p>These are overloaded intrinsics. You can
6980 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
6981 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
6982 bit width and for different address spaces. Not all targets support all bit
6983 widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006984
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006985<pre>
6986 declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6987 declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6988 declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6989 declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006990</pre>
6991
6992<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006993 declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6994 declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6995 declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6996 declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006997</pre>
6998
6999<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007000 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7001 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7002 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7003 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00007004</pre>
7005
7006<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007007 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7008 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7009 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7010 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00007011</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007012
Mon P Wang6a490372008-06-25 08:15:39 +00007013<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007014<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
7015 the value stored in memory at <tt>ptr</tt>. It yields the original value
7016 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007017
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007018<h5>Arguments:</h5>
7019<p>These intrinsics take two arguments, the first a pointer to an integer value
7020 and the second an integer value. The result is also an integer value. These
7021 integer types can have any bit width, but they must all have the same bit
7022 width. The targets may only lower integer representations they support.</p>
7023
Mon P Wang6a490372008-06-25 08:15:39 +00007024<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007025<p>These intrinsics does a series of operations atomically. They first load the
7026 value stored at <tt>ptr</tt>. They then do the bitwise
7027 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
7028 original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007029
7030<h5>Examples:</h5>
7031<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007032%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7033%ptr = bitcast i8* %mallocP to i32*
7034 store i32 0x0F0F, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00007035%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00007036 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00007037%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00007038 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00007039%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00007040 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00007041%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00007042 <i>; yields {i32}:result3 = FF</i>
7043%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
7044</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00007045
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007046</div>
Mon P Wang6a490372008-06-25 08:15:39 +00007047
7048<!-- _______________________________________________________________________ -->
7049<div class="doc_subsubsection">
7050 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
7051 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
7052 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
7053 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
Mon P Wang6a490372008-06-25 08:15:39 +00007054</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007055
Mon P Wang6a490372008-06-25 08:15:39 +00007056<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007057
Mon P Wang6a490372008-06-25 08:15:39 +00007058<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007059<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
7060 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
7061 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
7062 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007063
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007064<pre>
7065 declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7066 declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7067 declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7068 declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00007069</pre>
7070
7071<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007072 declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7073 declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7074 declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7075 declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00007076</pre>
7077
7078<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007079 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7080 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7081 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7082 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00007083</pre>
7084
7085<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007086 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7087 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7088 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7089 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00007090</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007091
Mon P Wang6a490372008-06-25 08:15:39 +00007092<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00007093<p>These intrinsics takes the signed or unsigned minimum or maximum of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007094 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7095 original value at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007096
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007097<h5>Arguments:</h5>
7098<p>These intrinsics take two arguments, the first a pointer to an integer value
7099 and the second an integer value. The result is also an integer value. These
7100 integer types can have any bit width, but they must all have the same bit
7101 width. The targets may only lower integer representations they support.</p>
7102
Mon P Wang6a490372008-06-25 08:15:39 +00007103<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007104<p>These intrinsics does a series of operations atomically. They first load the
7105 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
7106 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
7107 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007108
7109<h5>Examples:</h5>
7110<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007111%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7112%ptr = bitcast i8* %mallocP to i32*
7113 store i32 7, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00007114%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6a490372008-06-25 08:15:39 +00007115 <i>; yields {i32}:result0 = 7</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00007116%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6a490372008-06-25 08:15:39 +00007117 <i>; yields {i32}:result1 = -2</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00007118%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6a490372008-06-25 08:15:39 +00007119 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00007120%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6a490372008-06-25 08:15:39 +00007121 <i>; yields {i32}:result3 = 8</i>
7122%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7123</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007124
Mon P Wang6a490372008-06-25 08:15:39 +00007125</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007126
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007127
7128<!-- ======================================================================= -->
7129<div class="doc_subsection">
7130 <a name="int_memorymarkers">Memory Use Markers</a>
7131</div>
7132
7133<div class="doc_text">
7134
7135<p>This class of intrinsics exists to information about the lifetime of memory
7136 objects and ranges where variables are immutable.</p>
7137
7138</div>
7139
7140<!-- _______________________________________________________________________ -->
7141<div class="doc_subsubsection">
7142 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7143</div>
7144
7145<div class="doc_text">
7146
7147<h5>Syntax:</h5>
7148<pre>
7149 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7150</pre>
7151
7152<h5>Overview:</h5>
7153<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7154 object's lifetime.</p>
7155
7156<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007157<p>The first argument is a constant integer representing the size of the
7158 object, or -1 if it is variable sized. The second argument is a pointer to
7159 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007160
7161<h5>Semantics:</h5>
7162<p>This intrinsic indicates that before this point in the code, the value of the
7163 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyd20fd592009-10-27 16:56:58 +00007164 never be used and has an undefined value. A load from the pointer that
7165 precedes this intrinsic can be replaced with
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007166 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7167
7168</div>
7169
7170<!-- _______________________________________________________________________ -->
7171<div class="doc_subsubsection">
7172 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7173</div>
7174
7175<div class="doc_text">
7176
7177<h5>Syntax:</h5>
7178<pre>
7179 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7180</pre>
7181
7182<h5>Overview:</h5>
7183<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7184 object's lifetime.</p>
7185
7186<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007187<p>The first argument is a constant integer representing the size of the
7188 object, or -1 if it is variable sized. The second argument is a pointer to
7189 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007190
7191<h5>Semantics:</h5>
7192<p>This intrinsic indicates that after this point in the code, the value of the
7193 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7194 never be used and has an undefined value. Any stores into the memory object
7195 following this intrinsic may be removed as dead.
7196
7197</div>
7198
7199<!-- _______________________________________________________________________ -->
7200<div class="doc_subsubsection">
7201 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7202</div>
7203
7204<div class="doc_text">
7205
7206<h5>Syntax:</h5>
7207<pre>
7208 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;) readonly
7209</pre>
7210
7211<h5>Overview:</h5>
7212<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7213 a memory object will not change.</p>
7214
7215<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007216<p>The first argument is a constant integer representing the size of the
7217 object, or -1 if it is variable sized. The second argument is a pointer to
7218 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007219
7220<h5>Semantics:</h5>
7221<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7222 the return value, the referenced memory location is constant and
7223 unchanging.</p>
7224
7225</div>
7226
7227<!-- _______________________________________________________________________ -->
7228<div class="doc_subsubsection">
7229 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7230</div>
7231
7232<div class="doc_text">
7233
7234<h5>Syntax:</h5>
7235<pre>
7236 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7237</pre>
7238
7239<h5>Overview:</h5>
7240<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7241 a memory object are mutable.</p>
7242
7243<h5>Arguments:</h5>
7244<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky9bc89042009-10-13 07:57:33 +00007245 The second argument is a constant integer representing the size of the
7246 object, or -1 if it is variable sized and the third argument is a pointer
7247 to the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007248
7249<h5>Semantics:</h5>
7250<p>This intrinsic indicates that the memory is mutable again.</p>
7251
7252</div>
7253
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007254<!-- ======================================================================= -->
7255<div class="doc_subsection">
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007256 <a name="int_general">General Intrinsics</a>
7257</div>
7258
7259<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007260
7261<p>This class of intrinsics is designed to be generic and has no specific
7262 purpose.</p>
7263
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007264</div>
7265
7266<!-- _______________________________________________________________________ -->
7267<div class="doc_subsubsection">
7268 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7269</div>
7270
7271<div class="doc_text">
7272
7273<h5>Syntax:</h5>
7274<pre>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00007275 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007276</pre>
7277
7278<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007279<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007280
7281<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007282<p>The first argument is a pointer to a value, the second is a pointer to a
7283 global string, the third is a pointer to a global string which is the source
7284 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007285
7286<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007287<p>This intrinsic allows annotation of local variables with arbitrary strings.
7288 This can be useful for special purpose optimizations that want to look for
7289 these annotations. These have no other defined use, they are ignored by code
7290 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007291
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007292</div>
7293
Tanya Lattner293c0372007-09-21 22:59:12 +00007294<!-- _______________________________________________________________________ -->
7295<div class="doc_subsubsection">
Tanya Lattner0186a652007-09-21 23:57:59 +00007296 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattner293c0372007-09-21 22:59:12 +00007297</div>
7298
7299<div class="doc_text">
7300
7301<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007302<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7303 any integer bit width.</p>
7304
Tanya Lattner293c0372007-09-21 22:59:12 +00007305<pre>
Tanya Lattnercf3e26f2007-09-22 00:03:01 +00007306 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7307 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7308 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7309 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7310 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner293c0372007-09-21 22:59:12 +00007311</pre>
7312
7313<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007314<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007315
7316<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007317<p>The first argument is an integer value (result of some expression), the
7318 second is a pointer to a global string, the third is a pointer to a global
7319 string which is the source file name, and the last argument is the line
7320 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007321
7322<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007323<p>This intrinsic allows annotations to be put on arbitrary expressions with
7324 arbitrary strings. This can be useful for special purpose optimizations that
7325 want to look for these annotations. These have no other defined use, they
7326 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007327
Tanya Lattner293c0372007-09-21 22:59:12 +00007328</div>
Jim Laskey2211f492007-03-14 19:31:19 +00007329
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007330<!-- _______________________________________________________________________ -->
7331<div class="doc_subsubsection">
7332 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7333</div>
7334
7335<div class="doc_text">
7336
7337<h5>Syntax:</h5>
7338<pre>
7339 declare void @llvm.trap()
7340</pre>
7341
7342<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007343<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007344
7345<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007346<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007347
7348<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007349<p>This intrinsics is lowered to the target dependent trap instruction. If the
7350 target does not have a trap instruction, this intrinsic will be lowered to
7351 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007352
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007353</div>
7354
Bill Wendling14313312008-11-19 05:56:17 +00007355<!-- _______________________________________________________________________ -->
7356<div class="doc_subsubsection">
Misha Brukman50de2b22008-11-22 23:55:29 +00007357 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling14313312008-11-19 05:56:17 +00007358</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007359
Bill Wendling14313312008-11-19 05:56:17 +00007360<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007361
Bill Wendling14313312008-11-19 05:56:17 +00007362<h5>Syntax:</h5>
7363<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007364 declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
Bill Wendling14313312008-11-19 05:56:17 +00007365</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007366
Bill Wendling14313312008-11-19 05:56:17 +00007367<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007368<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7369 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7370 ensure that it is placed on the stack before local variables.</p>
7371
Bill Wendling14313312008-11-19 05:56:17 +00007372<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007373<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7374 arguments. The first argument is the value loaded from the stack
7375 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7376 that has enough space to hold the value of the guard.</p>
7377
Bill Wendling14313312008-11-19 05:56:17 +00007378<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007379<p>This intrinsic causes the prologue/epilogue inserter to force the position of
7380 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7381 stack. This is to ensure that if a local variable on the stack is
7382 overwritten, it will destroy the value of the guard. When the function exits,
7383 the guard on the stack is checked against the original guard. If they're
7384 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7385 function.</p>
7386
Bill Wendling14313312008-11-19 05:56:17 +00007387</div>
7388
Eric Christopher73484322009-11-30 08:03:53 +00007389<!-- _______________________________________________________________________ -->
7390<div class="doc_subsubsection">
7391 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
7392</div>
7393
7394<div class="doc_text">
7395
7396<h5>Syntax:</h5>
7397<pre>
Eric Christopher31e39bd2009-12-23 00:29:49 +00007398 declare i32 @llvm.objectsize.i32( i8* &lt;object&gt;, i1 &lt;type&gt; )
7399 declare i64 @llvm.objectsize.i64( i8* &lt;object&gt;, i1 &lt;type&gt; )
Eric Christopher73484322009-11-30 08:03:53 +00007400</pre>
7401
7402<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00007403<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information
Eric Christopher3070e162010-01-08 21:42:39 +00007404 to the optimizers to discover at compile time either a) when an
Eric Christopher455c5772009-12-05 02:46:03 +00007405 operation like memcpy will either overflow a buffer that corresponds to
7406 an object, or b) to determine that a runtime check for overflow isn't
7407 necessary. An object in this context means an allocation of a
Eric Christopher31e39bd2009-12-23 00:29:49 +00007408 specific class, structure, array, or other object.</p>
Eric Christopher73484322009-11-30 08:03:53 +00007409
7410<h5>Arguments:</h5>
7411<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher31e39bd2009-12-23 00:29:49 +00007412 argument is a pointer to or into the <tt>object</tt>. The second argument
7413 is a boolean 0 or 1. This argument determines whether you want the
7414 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
7415 1, variables are not allowed.</p>
7416
Eric Christopher73484322009-11-30 08:03:53 +00007417<h5>Semantics:</h5>
7418<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Eric Christopher455c5772009-12-05 02:46:03 +00007419 representing the size of the object concerned or <tt>i32/i64 -1 or 0</tt>
7420 (depending on the <tt>type</tt> argument if the size cannot be determined
7421 at compile time.</p>
Eric Christopher73484322009-11-30 08:03:53 +00007422
7423</div>
7424
Chris Lattner2f7c9632001-06-06 20:29:01 +00007425<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00007426<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00007427<address>
7428 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007429 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007430 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007431 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007432
7433 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00007434 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00007435 Last modified: $Date$
7436</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00007437
Misha Brukman76307852003-11-08 01:05:38 +00007438</body>
7439</html>