blob: 30e9b88226bcce598c1fe1a0af6ab561d9d66bd5 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000029#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/Constants.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000036#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000037#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000038#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000039#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000040#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000041#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000042using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000043
Chandler Carruth964daaa2014-04-22 02:55:47 +000044#define DEBUG_TYPE "reassociate"
45
Chris Lattner79a42ac2006-12-19 21:40:18 +000046STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000049
Chris Lattner79a42ac2006-12-19 21:40:18 +000050namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000051 struct ValueEntry {
Chris Lattner1e506502005-05-07 21:59:39 +000052 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
Chris Lattner4c065092006-03-04 09:31:13 +000059}
Chris Lattner1e506502005-05-07 21:59:39 +000060
Devang Patel702f45d2008-11-21 21:00:20 +000061#ifndef NDEBUG
Chris Lattner4c065092006-03-04 09:31:13 +000062/// PrintOps - Print out the expression identified in the Ops list.
63///
Chris Lattner38abecb2009-12-31 18:40:32 +000064static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +000065 Module *M = I->getParent()->getParent()->getParent();
David Greened17c3912010-01-05 01:27:24 +000066 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000067 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000068 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000069 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000070 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000071 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000072 }
Chris Lattner4c065092006-03-04 09:31:13 +000073}
Devang Patelcb181bb2008-11-21 20:00:59 +000074#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000075
Dan Gohmand78c4002008-05-13 00:00:25 +000076namespace {
Chandler Carruth739ef802012-04-26 05:30:30 +000077 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000113
114 /// Utility class representing a non-constant Xor-operand. We classify
115 /// non-constant Xor-Operands into two categories:
116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
117 /// C2)
118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
119 /// constant.
120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121 /// operand as "E | 0"
122 class XorOpnd {
123 public:
124 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000125
Craig Topperf40110f2014-04-25 05:29:35 +0000126 bool isInvalid() const { return SymbolicPart == nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000127 bool isOrExpr() const { return isOr; }
128 Value *getValue() const { return OrigVal; }
129 Value *getSymbolicPart() const { return SymbolicPart; }
130 unsigned getSymbolicRank() const { return SymbolicRank; }
131 const APInt &getConstPart() const { return ConstPart; }
132
Craig Topperf40110f2014-04-25 05:29:35 +0000133 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000134 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
135
136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
137 // The purpose is twofold:
138 // 1) Cluster together the operands sharing the same symbolic-value.
139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
140 // could potentially shorten crital path, and expose more loop-invariants.
141 // Note that values' rank are basically defined in RPO order (FIXME).
142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
144 // "z" in the order of X-Y-Z is better than any other orders.
Shuxin Yang331f01d2013-04-08 22:00:43 +0000145 struct PtrSortFunctor {
146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
147 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000148 }
149 };
150 private:
151 Value *OrigVal;
152 Value *SymbolicPart;
153 APInt ConstPart;
154 unsigned SymbolicRank;
155 bool isOr;
156 };
Chandler Carruth739ef802012-04-26 05:30:30 +0000157}
158
159namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +0000160 class Reassociate : public FunctionPass {
Chris Lattner17229a72010-01-01 00:01:34 +0000161 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topper6e80c282012-03-26 06:58:25 +0000162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Shuxin Yangc94c3bb2012-11-13 00:08:49 +0000163 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattner1e506502005-05-07 21:59:39 +0000164 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000165 public:
Nick Lewyckye7da2d62007-05-06 13:37:16 +0000166 static char ID; // Pass identification, replacement for typeid
Owen Anderson6c18d1a2010-10-19 17:21:58 +0000167 Reassociate() : FunctionPass(ID) {
168 initializeReassociatePass(*PassRegistry::getPassRegistry());
169 }
Devang Patel09f162c2007-05-01 21:15:47 +0000170
Craig Topper3e4c6972014-03-05 09:10:37 +0000171 bool runOnFunction(Function &F) override;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000172
Craig Topper3e4c6972014-03-05 09:10:37 +0000173 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chris Lattner820d9712002-10-21 20:00:28 +0000174 AU.setPreservesCFG();
Chris Lattnerc0f58002002-05-08 22:19:27 +0000175 }
176 private:
Chris Lattner113f4f42002-06-25 16:13:24 +0000177 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000178 unsigned getRank(Value *V);
Chad Rosierf8b55f12014-11-14 17:05:59 +0000179 void canonicalizeOperands(Instruction *I);
Duncan Sands78386032012-06-15 08:37:50 +0000180 void ReassociateExpression(BinaryOperator *I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000181 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner38abecb2009-12-31 18:40:32 +0000182 Value *OptimizeExpression(BinaryOperator *I,
183 SmallVectorImpl<ValueEntry> &Ops);
184 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000185 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
186 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
187 Value *&Res);
188 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
189 APInt &ConstOpnd, Value *&Res);
Chandler Carruth739ef802012-04-26 05:30:30 +0000190 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
191 SmallVectorImpl<Factor> &Factors);
192 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
193 SmallVectorImpl<Factor> &Factors);
194 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000195 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands3293f462012-06-08 20:15:33 +0000196 void EraseInst(Instruction *I);
197 void OptimizeInst(Instruction *I);
Chad Rosier094ac772014-11-11 22:58:35 +0000198 Instruction *canonicalizeNegConstExpr(Instruction *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000199 };
200}
201
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000202XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000203 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000204 OrigVal = V;
205 Instruction *I = dyn_cast<Instruction>(V);
206 SymbolicRank = 0;
207
208 if (I && (I->getOpcode() == Instruction::Or ||
209 I->getOpcode() == Instruction::And)) {
210 Value *V0 = I->getOperand(0);
211 Value *V1 = I->getOperand(1);
212 if (isa<ConstantInt>(V0))
213 std::swap(V0, V1);
214
215 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
216 ConstPart = C->getValue();
217 SymbolicPart = V0;
218 isOr = (I->getOpcode() == Instruction::Or);
219 return;
220 }
221 }
222
223 // view the operand as "V | 0"
224 SymbolicPart = V;
225 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
226 isOr = true;
227}
228
Dan Gohmand78c4002008-05-13 00:00:25 +0000229char Reassociate::ID = 0;
Owen Andersona57b97e2010-07-21 22:09:45 +0000230INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000231 "Reassociate expressions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000232
Brian Gaeke960707c2003-11-11 22:41:34 +0000233// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +0000234FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000235
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000236/// isReassociableOp - Return true if V is an instruction of the specified
237/// opcode and if it only has one use.
238static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
239 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000240 cast<Instruction>(V)->getOpcode() == Opcode &&
241 (!isa<FPMathOperator>(V) ||
242 cast<Instruction>(V)->hasUnsafeAlgebra()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000243 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000244 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000245}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000246
Chad Rosier11ab9412014-08-14 15:23:01 +0000247static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
248 unsigned Opcode2) {
249 if (V->hasOneUse() && isa<Instruction>(V) &&
250 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000251 cast<Instruction>(V)->getOpcode() == Opcode2) &&
252 (!isa<FPMathOperator>(V) ||
253 cast<Instruction>(V)->hasUnsafeAlgebra()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000254 return cast<BinaryOperator>(V);
255 return nullptr;
256}
257
Chris Lattner9f284e02005-05-08 20:57:04 +0000258static bool isUnmovableInstruction(Instruction *I) {
Jakub Staszakd4d94062013-07-22 23:38:16 +0000259 switch (I->getOpcode()) {
260 case Instruction::PHI:
261 case Instruction::LandingPad:
262 case Instruction::Alloca:
263 case Instruction::Load:
264 case Instruction::Invoke:
265 case Instruction::UDiv:
266 case Instruction::SDiv:
267 case Instruction::FDiv:
268 case Instruction::URem:
269 case Instruction::SRem:
270 case Instruction::FRem:
Chris Lattner9f284e02005-05-08 20:57:04 +0000271 return true;
Jakub Staszakd4d94062013-07-22 23:38:16 +0000272 case Instruction::Call:
273 return !isa<DbgInfoIntrinsic>(I);
274 default:
275 return false;
276 }
Chris Lattner9f284e02005-05-08 20:57:04 +0000277}
278
Chris Lattner113f4f42002-06-25 16:13:24 +0000279void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000280 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000281
Chad Rosierf59e5482014-11-14 15:01:38 +0000282 // Assign distinct ranks to function arguments.
283 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000284 ValueRankMap[&*I] = ++i;
Chad Rosierf59e5482014-11-14 15:01:38 +0000285 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
286 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000287
Chris Lattner113f4f42002-06-25 16:13:24 +0000288 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000289 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000290 E = RPOT.end(); I != E; ++I) {
291 BasicBlock *BB = *I;
292 unsigned BBRank = RankMap[BB] = ++i << 16;
293
294 // Walk the basic block, adding precomputed ranks for any instructions that
295 // we cannot move. This ensures that the ranks for these instructions are
296 // all different in the block.
297 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
298 if (isUnmovableInstruction(I))
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000299 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000300 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000301}
302
303unsigned Reassociate::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000304 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000305 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000306 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
307 return 0; // Otherwise it's a global or constant, rank 0.
308 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000309
Chris Lattner17229a72010-01-01 00:01:34 +0000310 if (unsigned Rank = ValueRankMap[I])
311 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000312
Chris Lattnerf43e9742005-05-07 04:08:02 +0000313 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
314 // we can reassociate expressions for code motion! Since we do not recurse
315 // for PHI nodes, we cannot have infinite recursion here, because there
316 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000317 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
318 for (unsigned i = 0, e = I->getNumOperands();
319 i != e && Rank != MaxRank; ++i)
320 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000321
Chris Lattner6e2086d2005-05-08 00:08:33 +0000322 // If this is a not or neg instruction, do not count it for rank. This
323 // assures us that X and ~X will have the same rank.
Chad Rosier11ab9412014-08-14 15:23:01 +0000324 Type *Ty = V->getType();
325 if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) ||
326 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
327 !BinaryOperator::isFNeg(I)))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000328 ++Rank;
329
Chad Rosierf59e5482014-11-14 15:01:38 +0000330 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000331
Chris Lattner17229a72010-01-01 00:01:34 +0000332 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000333}
334
Chad Rosierf8b55f12014-11-14 17:05:59 +0000335void Reassociate::canonicalizeOperands(Instruction *I) {
336 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
337 assert(I->isCommutative() && "Expected commutative operator.");
338
339 Value *LHS = I->getOperand(0);
340 Value *RHS = I->getOperand(1);
341 unsigned LHSRank = getRank(LHS);
342 unsigned RHSRank = getRank(RHS);
343
344 // Canonicalize constants to RHS. Otherwise, sort the operands by rank.
345 if (isa<Constant>(LHS) || RHSRank < LHSRank)
346 cast<BinaryOperator>(I)->swapOperands();
347}
348
Chad Rosier11ab9412014-08-14 15:23:01 +0000349static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
350 Instruction *InsertBefore, Value *FlagsOp) {
351 if (S1->getType()->isIntegerTy())
352 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
353 else {
354 BinaryOperator *Res =
355 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
356 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
357 return Res;
358 }
359}
360
361static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
362 Instruction *InsertBefore, Value *FlagsOp) {
363 if (S1->getType()->isIntegerTy())
364 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
365 else {
366 BinaryOperator *Res =
367 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
368 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
369 return Res;
370 }
371}
372
373static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
374 Instruction *InsertBefore, Value *FlagsOp) {
375 if (S1->getType()->isIntegerTy())
376 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
377 else {
378 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
379 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
380 return Res;
381 }
382}
383
Chris Lattner877b1142005-05-08 21:28:52 +0000384/// LowerNegateToMultiply - Replace 0-X with X*-1.
385///
Duncan Sands3293f462012-06-08 20:15:33 +0000386static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000387 Type *Ty = Neg->getType();
388 Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty)
389 : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000390
Chad Rosier11ab9412014-08-14 15:23:01 +0000391 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
392 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000393 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000394 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000395 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000396 return Res;
397}
398
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000399/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
400/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
401/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
402/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
403/// even x in Bitwidth-bit arithmetic.
404static unsigned CarmichaelShift(unsigned Bitwidth) {
405 if (Bitwidth < 3)
406 return Bitwidth - 1;
407 return Bitwidth - 2;
408}
409
410/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
411/// reducing the combined weight using any special properties of the operation.
412/// The existing weight LHS represents the computation X op X op ... op X where
413/// X occurs LHS times. The combined weight represents X op X op ... op X with
414/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
415/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
416/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
417static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
418 // If we were working with infinite precision arithmetic then the combined
419 // weight would be LHS + RHS. But we are using finite precision arithmetic,
420 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
421 // for nilpotent operations and addition, but not for idempotent operations
422 // and multiplication), so it is important to correctly reduce the combined
423 // weight back into range if wrapping would be wrong.
424
425 // If RHS is zero then the weight didn't change.
426 if (RHS.isMinValue())
427 return;
428 // If LHS is zero then the combined weight is RHS.
429 if (LHS.isMinValue()) {
430 LHS = RHS;
431 return;
432 }
433 // From this point on we know that neither LHS nor RHS is zero.
434
435 if (Instruction::isIdempotent(Opcode)) {
436 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
437 // weight of 1. Keeping weights at zero or one also means that wrapping is
438 // not a problem.
439 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
440 return; // Return a weight of 1.
441 }
442 if (Instruction::isNilpotent(Opcode)) {
443 // Nilpotent means X op X === 0, so reduce weights modulo 2.
444 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
445 LHS = 0; // 1 + 1 === 0 modulo 2.
446 return;
447 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000448 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000449 // TODO: Reduce the weight by exploiting nsw/nuw?
450 LHS += RHS;
451 return;
452 }
453
Chad Rosier11ab9412014-08-14 15:23:01 +0000454 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
455 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000456 unsigned Bitwidth = LHS.getBitWidth();
457 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
458 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
459 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
460 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
461 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
462 // which by a happy accident means that they can always be represented using
463 // Bitwidth bits.
464 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
465 // the Carmichael number).
466 if (Bitwidth > 3) {
467 /// CM - The value of Carmichael's lambda function.
468 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
469 // Any weight W >= Threshold can be replaced with W - CM.
470 APInt Threshold = CM + Bitwidth;
471 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
472 // For Bitwidth 4 or more the following sum does not overflow.
473 LHS += RHS;
474 while (LHS.uge(Threshold))
475 LHS -= CM;
476 } else {
477 // To avoid problems with overflow do everything the same as above but using
478 // a larger type.
479 unsigned CM = 1U << CarmichaelShift(Bitwidth);
480 unsigned Threshold = CM + Bitwidth;
481 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
482 "Weights not reduced!");
483 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
484 while (Total >= Threshold)
485 Total -= CM;
486 LHS = Total;
487 }
488}
489
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000490typedef std::pair<Value*, APInt> RepeatedValue;
491
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000492/// LinearizeExprTree - Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000493/// nodes in Ops along with their weights (how many times the leaf occurs). The
494/// original expression is the same as
495/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000496/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000497/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
498/// op
499/// ...
500/// op
501/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
502///
Duncan Sandsac852c72012-11-15 09:58:38 +0000503/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000504///
505/// This routine may modify the function, in which case it returns 'true'. The
506/// changes it makes may well be destructive, changing the value computed by 'I'
507/// to something completely different. Thus if the routine returns 'true' then
508/// you MUST either replace I with a new expression computed from the Ops array,
509/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000510///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000511/// A leaf node is either not a binary operation of the same kind as the root
512/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
513/// opcode), or is the same kind of binary operator but has a use which either
514/// does not belong to the expression, or does belong to the expression but is
515/// a leaf node. Every leaf node has at least one use that is a non-leaf node
516/// of the expression, while for non-leaf nodes (except for the root 'I') every
517/// use is a non-leaf node of the expression.
518///
519/// For example:
520/// expression graph node names
521///
522/// + | I
523/// / \ |
524/// + + | A, B
525/// / \ / \ |
526/// * + * | C, D, E
527/// / \ / \ / \ |
528/// + * | F, G
529///
530/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000531/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000532///
533/// The expression is maximal: if some instruction is a binary operator of the
534/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
535/// then the instruction also belongs to the expression, is not a leaf node of
536/// it, and its operands also belong to the expression (but may be leaf nodes).
537///
538/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
539/// order to ensure that every non-root node in the expression has *exactly one*
540/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000541/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000542/// RewriteExprTree to put the values back in if the routine indicates that it
543/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000544///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000545/// In the above example either the right operand of A or the left operand of B
546/// will be replaced by undef. If it is B's operand then this gives:
547///
548/// + | I
549/// / \ |
550/// + + | A, B - operand of B replaced with undef
551/// / \ \ |
552/// * + * | C, D, E
553/// / \ / \ / \ |
554/// + * | F, G
555///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000556/// Note that such undef operands can only be reached by passing through 'I'.
557/// For example, if you visit operands recursively starting from a leaf node
558/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000559/// which requires passing through a phi node.
560///
561/// Note that this routine may also mutate binary operators of the wrong type
562/// that have all uses inside the expression (i.e. only used by non-leaf nodes
563/// of the expression) if it can turn them into binary operators of the right
564/// type and thus make the expression bigger.
565
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000566static bool LinearizeExprTree(BinaryOperator *I,
567 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000568 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000569 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
570 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000571 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000572 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000573
574 // Visit all operands of the expression, keeping track of their weight (the
575 // number of paths from the expression root to the operand, or if you like
576 // the number of times that operand occurs in the linearized expression).
577 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
578 // while A has weight two.
579
580 // Worklist of non-leaf nodes (their operands are in the expression too) along
581 // with their weights, representing a certain number of paths to the operator.
582 // If an operator occurs in the worklist multiple times then we found multiple
583 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000584 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
585 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
586 bool MadeChange = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000587
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000588 // Leaves of the expression are values that either aren't the right kind of
589 // operation (eg: a constant, or a multiply in an add tree), or are, but have
590 // some uses that are not inside the expression. For example, in I = X + X,
591 // X = A + B, the value X has two uses (by I) that are in the expression. If
592 // X has any other uses, for example in a return instruction, then we consider
593 // X to be a leaf, and won't analyze it further. When we first visit a value,
594 // if it has more than one use then at first we conservatively consider it to
595 // be a leaf. Later, as the expression is explored, we may discover some more
596 // uses of the value from inside the expression. If all uses turn out to be
597 // from within the expression (and the value is a binary operator of the right
598 // kind) then the value is no longer considered to be a leaf, and its operands
599 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000600
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000601 // Leaves - Keeps track of the set of putative leaves as well as the number of
602 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000603 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000604 LeafMap Leaves; // Leaf -> Total weight so far.
605 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
606
607#ifndef NDEBUG
608 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
609#endif
610 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000611 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000612 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000613
614 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
615 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000616 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000617 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
618 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
619
620 // If this is a binary operation of the right kind with only one use then
621 // add its operands to the expression.
622 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
623 assert(Visited.insert(Op) && "Not first visit!");
624 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
625 Worklist.push_back(std::make_pair(BO, Weight));
626 continue;
627 }
628
629 // Appears to be a leaf. Is the operand already in the set of leaves?
630 LeafMap::iterator It = Leaves.find(Op);
631 if (It == Leaves.end()) {
632 // Not in the leaf map. Must be the first time we saw this operand.
633 assert(Visited.insert(Op) && "Not first visit!");
634 if (!Op->hasOneUse()) {
635 // This value has uses not accounted for by the expression, so it is
636 // not safe to modify. Mark it as being a leaf.
637 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
638 LeafOrder.push_back(Op);
639 Leaves[Op] = Weight;
640 continue;
641 }
642 // No uses outside the expression, try morphing it.
643 } else if (It != Leaves.end()) {
644 // Already in the leaf map.
645 assert(Visited.count(Op) && "In leaf map but not visited!");
646
647 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000648 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000649
Duncan Sands56514522012-07-26 09:26:40 +0000650#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000651 // The leaf already has one use from inside the expression. As we want
652 // exactly one such use, drop this new use of the leaf.
653 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
654 I->setOperand(OpIdx, UndefValue::get(I->getType()));
655 MadeChange = true;
656
657 // If the leaf is a binary operation of the right kind and we now see
658 // that its multiple original uses were in fact all by nodes belonging
659 // to the expression, then no longer consider it to be a leaf and add
660 // its operands to the expression.
661 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
662 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
663 Worklist.push_back(std::make_pair(BO, It->second));
664 Leaves.erase(It);
665 continue;
666 }
Duncan Sands56514522012-07-26 09:26:40 +0000667#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000668
669 // If we still have uses that are not accounted for by the expression
670 // then it is not safe to modify the value.
671 if (!Op->hasOneUse())
672 continue;
673
674 // No uses outside the expression, try morphing it.
675 Weight = It->second;
676 Leaves.erase(It); // Since the value may be morphed below.
677 }
678
679 // At this point we have a value which, first of all, is not a binary
680 // expression of the right kind, and secondly, is only used inside the
681 // expression. This means that it can safely be modified. See if we
682 // can usefully morph it into an expression of the right kind.
683 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000684 cast<Instruction>(Op)->getOpcode() != Opcode
685 || (isa<FPMathOperator>(Op) &&
686 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000687 "Should have been handled above!");
688 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
689
690 // If this is a multiply expression, turn any internal negations into
691 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000692 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
693 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
694 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
695 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
696 BO = LowerNegateToMultiply(BO);
697 DEBUG(dbgs() << *BO << '\n');
698 Worklist.push_back(std::make_pair(BO, Weight));
699 MadeChange = true;
700 continue;
701 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000702
703 // Failed to morph into an expression of the right type. This really is
704 // a leaf.
705 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
706 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
707 LeafOrder.push_back(Op);
708 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000709 }
710 }
711
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000712 // The leaves, repeated according to their weights, represent the linearized
713 // form of the expression.
714 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
715 Value *V = LeafOrder[i];
716 LeafMap::iterator It = Leaves.find(V);
717 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000718 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000719 continue;
720 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000721 APInt Weight = It->second;
722 if (Weight.isMinValue())
723 // Leaf already output or weight reduction eliminated it.
724 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000725 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000726 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000727 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000728 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000729
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000730 // For nilpotent operations or addition there may be no operands, for example
731 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
732 // in both cases the weight reduces to 0 causing the value to be skipped.
733 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000734 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000735 assert(Identity && "Associative operation without identity!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000736 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
737 }
738
739 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000740}
741
Chris Lattner1e506502005-05-07 21:59:39 +0000742// RewriteExprTree - Now that the operands for this expression tree are
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000743// linearized and optimized, emit them in-order.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000744void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000745 SmallVectorImpl<ValueEntry> &Ops) {
746 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000747
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000748 // Since our optimizations should never increase the number of operations, the
749 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000750 // from the original expression tree, without creating any new instructions,
751 // though the rewritten expression may have a completely different topology.
752 // We take care to not change anything if the new expression will be the same
753 // as the original. If more than trivial changes (like commuting operands)
754 // were made then we are obliged to clear out any optional subclass data like
755 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000756
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000757 /// NodesToRewrite - Nodes from the original expression available for writing
758 /// the new expression into.
759 SmallVector<BinaryOperator*, 8> NodesToRewrite;
760 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000761 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000762
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000763 /// NotRewritable - The operands being written will be the leaves of the new
764 /// expression and must not be used as inner nodes (via NodesToRewrite) by
765 /// mistake. Inner nodes are always reassociable, and usually leaves are not
766 /// (if they were they would have been incorporated into the expression and so
767 /// would not be leaves), so most of the time there is no danger of this. But
768 /// in rare cases a leaf may become reassociable if an optimization kills uses
769 /// of it, or it may momentarily become reassociable during rewriting (below)
770 /// due it being removed as an operand of one of its uses. Ensure that misuse
771 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
772 /// leaves and refusing to reuse any of them as inner nodes.
773 SmallPtrSet<Value*, 8> NotRewritable;
774 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
775 NotRewritable.insert(Ops[i].Op);
776
Duncan Sands3c05cd32012-05-26 16:42:52 +0000777 // ExpressionChanged - Non-null if the rewritten expression differs from the
778 // original in some non-trivial way, requiring the clearing of optional flags.
779 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000780 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000781 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000782 // The last operation (which comes earliest in the IR) is special as both
783 // operands will come from Ops, rather than just one with the other being
784 // a subexpression.
785 if (i+2 == Ops.size()) {
786 Value *NewLHS = Ops[i].Op;
787 Value *NewRHS = Ops[i+1].Op;
788 Value *OldLHS = Op->getOperand(0);
789 Value *OldRHS = Op->getOperand(1);
790
791 if (NewLHS == OldLHS && NewRHS == OldRHS)
792 // Nothing changed, leave it alone.
793 break;
794
795 if (NewLHS == OldRHS && NewRHS == OldLHS) {
796 // The order of the operands was reversed. Swap them.
797 DEBUG(dbgs() << "RA: " << *Op << '\n');
798 Op->swapOperands();
799 DEBUG(dbgs() << "TO: " << *Op << '\n');
800 MadeChange = true;
801 ++NumChanged;
802 break;
803 }
804
805 // The new operation differs non-trivially from the original. Overwrite
806 // the old operands with the new ones.
807 DEBUG(dbgs() << "RA: " << *Op << '\n');
808 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000809 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
810 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000811 NodesToRewrite.push_back(BO);
812 Op->setOperand(0, NewLHS);
813 }
814 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000815 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
816 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000817 NodesToRewrite.push_back(BO);
818 Op->setOperand(1, NewRHS);
819 }
820 DEBUG(dbgs() << "TO: " << *Op << '\n');
821
Duncan Sands3c05cd32012-05-26 16:42:52 +0000822 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000823 MadeChange = true;
824 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000825
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000826 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000827 }
Chris Lattner1e506502005-05-07 21:59:39 +0000828
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000829 // Not the last operation. The left-hand side will be a sub-expression
830 // while the right-hand side will be the current element of Ops.
831 Value *NewRHS = Ops[i].Op;
832 if (NewRHS != Op->getOperand(1)) {
833 DEBUG(dbgs() << "RA: " << *Op << '\n');
834 if (NewRHS == Op->getOperand(0)) {
835 // The new right-hand side was already present as the left operand. If
836 // we are lucky then swapping the operands will sort out both of them.
837 Op->swapOperands();
838 } else {
839 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000840 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
841 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000842 NodesToRewrite.push_back(BO);
843 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000844 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000845 }
846 DEBUG(dbgs() << "TO: " << *Op << '\n');
847 MadeChange = true;
848 ++NumChanged;
849 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000850
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000851 // Now deal with the left-hand side. If this is already an operation node
852 // from the original expression then just rewrite the rest of the expression
853 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000854 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
855 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000856 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000857 continue;
858 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000859
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000860 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000861 // the left-hand side. If there are no nodes left then the optimizers made
862 // an expression with more nodes than the original! This usually means that
863 // they did something stupid but it might mean that the problem was just too
864 // hard (finding the mimimal number of multiplications needed to realize a
865 // multiplication expression is NP-complete). Whatever the reason, smart or
866 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000867 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000868 if (NodesToRewrite.empty()) {
869 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000870 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
871 Undef, Undef, "", I);
Chad Rosier11ab9412014-08-14 15:23:01 +0000872 if (NewOp->getType()->isFloatingPointTy())
873 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000874 } else {
875 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000876 }
877
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000878 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000879 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000880 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000881 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000882 MadeChange = true;
883 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000884 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000885 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000886
Duncan Sands3c05cd32012-05-26 16:42:52 +0000887 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000888 // starting from the operator specified in ExpressionChanged, and compactify
889 // the operators to just before the expression root to guarantee that the
890 // expression tree is dominated by all of Ops.
891 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000892 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000893 // Preserve FastMathFlags.
894 if (isa<FPMathOperator>(I)) {
895 FastMathFlags Flags = I->getFastMathFlags();
896 ExpressionChanged->clearSubclassOptionalData();
897 ExpressionChanged->setFastMathFlags(Flags);
898 } else
899 ExpressionChanged->clearSubclassOptionalData();
900
Duncan Sands3c05cd32012-05-26 16:42:52 +0000901 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000902 break;
Duncan Sands514db112012-06-27 14:19:00 +0000903 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000904 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000905 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000906
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000907 // Throw away any left over nodes from the original expression.
908 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000909 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000910}
911
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000912/// NegateValue - Insert instructions before the instruction pointed to by BI,
913/// that computes the negative version of the value specified. The negative
914/// version of the value is returned, and BI is left pointing at the instruction
915/// that should be processed next by the reassociation pass.
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000916static Value *NegateValue(Value *V, Instruction *BI) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000917 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
918 return ConstantExpr::getFNeg(C);
Chris Lattnerfed33972009-12-31 20:34:32 +0000919 if (Constant *C = dyn_cast<Constant>(V))
920 return ConstantExpr::getNeg(C);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000921
Chris Lattner7bc532d2002-05-16 04:37:07 +0000922 // We are trying to expose opportunity for reassociation. One of the things
923 // that we want to do to achieve this is to push a negation as deep into an
924 // expression chain as possible, to expose the add instructions. In practice,
925 // this means that we turn this:
926 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
927 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
928 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000929 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000930 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000931 if (BinaryOperator *I =
932 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000933 // Push the negates through the add.
934 I->setOperand(0, NegateValue(I->getOperand(0), BI));
935 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattner7bc532d2002-05-16 04:37:07 +0000936
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000937 // We must move the add instruction here, because the neg instructions do
938 // not dominate the old add instruction in general. By moving it, we are
939 // assured that the neg instructions we just inserted dominate the
940 // instruction we are about to insert after them.
941 //
942 I->moveBefore(BI);
943 I->setName(I->getName()+".neg");
944 return I;
945 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000946
Chris Lattnerfed33972009-12-31 20:34:32 +0000947 // Okay, we need to materialize a negated version of V with an instruction.
948 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000949 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000950 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
951 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000952
953 // We found one! Now we have to make sure that the definition dominates
954 // this use. We do this by moving it to the entry block (if it is a
955 // non-instruction value) or right after the definition. These negates will
956 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000957 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000958
959 // Verify that the negate is in this function, V might be a constant expr.
960 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
961 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000962
Chris Lattnerfed33972009-12-31 20:34:32 +0000963 BasicBlock::iterator InsertPt;
964 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
965 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
966 InsertPt = II->getNormalDest()->begin();
967 } else {
968 InsertPt = InstInput;
969 ++InsertPt;
970 }
971 while (isa<PHINode>(InsertPt)) ++InsertPt;
972 } else {
973 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
974 }
975 TheNeg->moveBefore(InsertPt);
976 return TheNeg;
977 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000978
979 // Insert a 'neg' instruction that subtracts the value from zero to get the
980 // negation.
Chad Rosier11ab9412014-08-14 15:23:01 +0000981 return CreateNeg(V, V->getName() + ".neg", BI, BI);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000982}
983
Chris Lattner902537c2008-02-17 20:44:51 +0000984/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
985/// X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000986static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000987 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000988 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000989 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000990
Chad Rosierbd64d462014-10-09 20:06:29 +0000991 // Don't breakup X - undef.
992 if (isa<UndefValue>(Sub->getOperand(1)))
993 return false;
994
Chris Lattner902537c2008-02-17 20:44:51 +0000995 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000996 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000997 Value *V0 = Sub->getOperand(0);
998 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
999 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +00001000 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +00001001 Value *V1 = Sub->getOperand(1);
1002 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1003 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +00001004 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +00001005 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001006 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +00001007 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1008 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +00001009 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001010
Chris Lattner902537c2008-02-17 20:44:51 +00001011 return false;
1012}
1013
Chris Lattnerf43e9742005-05-07 04:08:02 +00001014/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
1015/// only used by an add, transform this into (X+(0-Y)) to promote better
1016/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001017static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
Chris Lattnera5526832010-01-01 00:04:26 +00001018 // Convert a subtract into an add and a neg instruction. This allows sub
1019 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001020 //
Chris Lattnera5526832010-01-01 00:04:26 +00001021 // Calculate the negative value of Operand 1 of the sub instruction,
1022 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001023 //
Nick Lewycky7935bcb2009-11-14 07:25:54 +00001024 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chad Rosier11ab9412014-08-14 15:23:01 +00001025 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +00001026 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1027 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +00001028 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +00001029
1030 // Everyone now refers to the add instruction.
1031 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001032 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00001033
David Greened17c3912010-01-05 01:27:24 +00001034 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +00001035 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +00001036}
1037
Chris Lattnercea57992005-05-07 04:24:13 +00001038/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
1039/// by one, change this into a multiply by a constant to assist with further
1040/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001041static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1042 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1043 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001044
Duncan Sands3293f462012-06-08 20:15:33 +00001045 BinaryOperator *Mul =
1046 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1047 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1048 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +00001049
1050 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +00001051 Shl->replaceAllUsesWith(Mul);
1052 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +00001053
1054 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1055 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1056 // handling.
1057 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1058 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1059 if (NSW && NUW)
1060 Mul->setHasNoSignedWrap(true);
1061 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +00001062 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +00001063}
1064
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001065/// FindInOperandList - Scan backwards and forwards among values with the same
1066/// rank as element i to see if X exists. If X does not exist, return i. This
1067/// is useful when scanning for 'x' when we see '-x' because they both get the
1068/// same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +00001069static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +00001070 Value *X) {
1071 unsigned XRank = Ops[i].Rank;
1072 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +00001073 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001074 if (Ops[j].Op == X)
1075 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001076 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1077 if (Instruction *I2 = dyn_cast<Instruction>(X))
1078 if (I1->isIdenticalTo(I2))
1079 return j;
1080 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001081 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +00001082 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001083 if (Ops[j].Op == X)
1084 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001085 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1086 if (Instruction *I2 = dyn_cast<Instruction>(X))
1087 if (I1->isIdenticalTo(I2))
1088 return j;
1089 }
Chris Lattner5847e5e2005-05-08 18:59:37 +00001090 return i;
1091}
1092
Chris Lattner4c065092006-03-04 09:31:13 +00001093/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
1094/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001095static Value *EmitAddTreeOfValues(Instruction *I,
1096 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +00001097 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001098
Chris Lattner4c065092006-03-04 09:31:13 +00001099 Value *V1 = Ops.back();
1100 Ops.pop_back();
1101 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +00001102 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001103}
1104
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001105/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattner4c065092006-03-04 09:31:13 +00001106/// multiplication sequence, and if this sequence contains a multiply by Factor,
1107/// remove Factor from the tree and return the new tree.
1108Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001109 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1110 if (!BO)
1111 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001112
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001113 SmallVector<RepeatedValue, 8> Tree;
1114 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001115 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001116 Factors.reserve(Tree.size());
1117 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1118 RepeatedValue E = Tree[i];
1119 Factors.append(E.second.getZExtValue(),
1120 ValueEntry(getRank(E.first), E.first));
1121 }
Chris Lattner4c065092006-03-04 09:31:13 +00001122
1123 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001124 bool NeedsNegate = false;
1125 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001126 if (Factors[i].Op == Factor) {
1127 FoundFactor = true;
1128 Factors.erase(Factors.begin()+i);
1129 break;
1130 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001131
Chris Lattner0c59ac32010-01-01 01:13:15 +00001132 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001133 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001134 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1135 if (FC1->getValue() == -FC2->getValue()) {
1136 FoundFactor = NeedsNegate = true;
1137 Factors.erase(Factors.begin()+i);
1138 break;
1139 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001140 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1141 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1142 APFloat F1(FC1->getValueAPF());
1143 APFloat F2(FC2->getValueAPF());
1144 F2.changeSign();
1145 if (F1.compare(F2) == APFloat::cmpEqual) {
1146 FoundFactor = NeedsNegate = true;
1147 Factors.erase(Factors.begin() + i);
1148 break;
1149 }
1150 }
1151 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001152 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001153
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001154 if (!FoundFactor) {
1155 // Make sure to restore the operands to the expression tree.
1156 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001157 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001158 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001159
Chris Lattner0c59ac32010-01-01 01:13:15 +00001160 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001161
Chris Lattner1d897942009-12-31 19:34:45 +00001162 // If this was just a single multiply, remove the multiply and return the only
1163 // remaining operand.
1164 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001165 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001166 V = Factors[0].Op;
1167 } else {
1168 RewriteExprTree(BO, Factors);
1169 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001170 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001171
Chris Lattner0c59ac32010-01-01 01:13:15 +00001172 if (NeedsNegate)
Chad Rosier11ab9412014-08-14 15:23:01 +00001173 V = CreateNeg(V, "neg", InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001174
Chris Lattner0c59ac32010-01-01 01:13:15 +00001175 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001176}
1177
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001178/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1179/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001180///
1181/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001182static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001183 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001184 const SmallVectorImpl<ValueEntry> &Ops) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001185 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001186 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001187 Factors.push_back(V);
1188 return;
1189 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001190
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001191 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001192 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1193 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001194}
1195
Chris Lattner5f8a0052009-12-31 07:59:34 +00001196/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1197/// instruction. This optimizes based on identities. If it can be reduced to
1198/// a single Value, it is returned, otherwise the Ops list is mutated as
1199/// necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001200static Value *OptimizeAndOrXor(unsigned Opcode,
1201 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001202 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1203 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1204 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1205 // First, check for X and ~X in the operand list.
1206 assert(i < Ops.size());
1207 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1208 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1209 unsigned FoundX = FindInOperandList(Ops, i, X);
1210 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001211 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001212 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001213
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001214 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001215 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001216 }
1217 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001218
Chris Lattner5f8a0052009-12-31 07:59:34 +00001219 // Next, check for duplicate pairs of values, which we assume are next to
1220 // each other, due to our sorting criteria.
1221 assert(i < Ops.size());
1222 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1223 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001224 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001225 Ops.erase(Ops.begin()+i);
1226 --i; --e;
1227 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001228 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001229 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001230
Chris Lattner60c2ca72009-12-31 19:49:01 +00001231 // Drop pairs of values for Xor.
1232 assert(Opcode == Instruction::Xor);
1233 if (e == 2)
1234 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001235
Chris Lattnera5526832010-01-01 00:04:26 +00001236 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001237 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1238 i -= 1; e -= 2;
1239 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001240 }
1241 }
Craig Topperf40110f2014-04-25 05:29:35 +00001242 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001243}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001244
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001245/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1246/// instruction with the given two operands, and return the resulting
1247/// instruction. There are two special cases: 1) if the constant operand is 0,
1248/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1249/// be returned.
1250static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1251 const APInt &ConstOpnd) {
1252 if (ConstOpnd != 0) {
1253 if (!ConstOpnd.isAllOnesValue()) {
1254 LLVMContext &Ctx = Opnd->getType()->getContext();
1255 Instruction *I;
1256 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1257 "and.ra", InsertBefore);
1258 I->setDebugLoc(InsertBefore->getDebugLoc());
1259 return I;
1260 }
1261 return Opnd;
1262 }
Craig Topperf40110f2014-04-25 05:29:35 +00001263 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001264}
1265
1266// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1267// into "R ^ C", where C would be 0, and R is a symbolic value.
1268//
1269// If it was successful, true is returned, and the "R" and "C" is returned
1270// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1271// and both "Res" and "ConstOpnd" remain unchanged.
1272//
1273bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1274 APInt &ConstOpnd, Value *&Res) {
1275 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1276 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1277 // = (x & ~c1) ^ (c1 ^ c2)
1278 // It is useful only when c1 == c2.
1279 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1280 if (!Opnd1->getValue()->hasOneUse())
1281 return false;
1282
1283 const APInt &C1 = Opnd1->getConstPart();
1284 if (C1 != ConstOpnd)
1285 return false;
1286
1287 Value *X = Opnd1->getSymbolicPart();
1288 Res = createAndInstr(I, X, ~C1);
1289 // ConstOpnd was C2, now C1 ^ C2.
1290 ConstOpnd ^= C1;
1291
1292 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1293 RedoInsts.insert(T);
1294 return true;
1295 }
1296 return false;
1297}
1298
1299
1300// Helper function of OptimizeXor(). It tries to simplify
1301// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1302// symbolic value.
1303//
1304// If it was successful, true is returned, and the "R" and "C" is returned
1305// via "Res" and "ConstOpnd", respectively (If the entire expression is
1306// evaluated to a constant, the Res is set to NULL); otherwise, false is
1307// returned, and both "Res" and "ConstOpnd" remain unchanged.
1308bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1309 APInt &ConstOpnd, Value *&Res) {
1310 Value *X = Opnd1->getSymbolicPart();
1311 if (X != Opnd2->getSymbolicPart())
1312 return false;
1313
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001314 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1315 int DeadInstNum = 1;
1316 if (Opnd1->getValue()->hasOneUse())
1317 DeadInstNum++;
1318 if (Opnd2->getValue()->hasOneUse())
1319 DeadInstNum++;
1320
1321 // Xor-Rule 2:
1322 // (x | c1) ^ (x & c2)
1323 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1324 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1325 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1326 //
1327 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1328 if (Opnd2->isOrExpr())
1329 std::swap(Opnd1, Opnd2);
1330
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001331 const APInt &C1 = Opnd1->getConstPart();
1332 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001333 APInt C3((~C1) ^ C2);
1334
1335 // Do not increase code size!
1336 if (C3 != 0 && !C3.isAllOnesValue()) {
1337 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1338 if (NewInstNum > DeadInstNum)
1339 return false;
1340 }
1341
1342 Res = createAndInstr(I, X, C3);
1343 ConstOpnd ^= C1;
1344
1345 } else if (Opnd1->isOrExpr()) {
1346 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1347 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001348 const APInt &C1 = Opnd1->getConstPart();
1349 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001350 APInt C3 = C1 ^ C2;
1351
1352 // Do not increase code size
1353 if (C3 != 0 && !C3.isAllOnesValue()) {
1354 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1355 if (NewInstNum > DeadInstNum)
1356 return false;
1357 }
1358
1359 Res = createAndInstr(I, X, C3);
1360 ConstOpnd ^= C3;
1361 } else {
1362 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1363 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001364 const APInt &C1 = Opnd1->getConstPart();
1365 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001366 APInt C3 = C1 ^ C2;
1367 Res = createAndInstr(I, X, C3);
1368 }
1369
1370 // Put the original operands in the Redo list; hope they will be deleted
1371 // as dead code.
1372 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1373 RedoInsts.insert(T);
1374 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1375 RedoInsts.insert(T);
1376
1377 return true;
1378}
1379
1380/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1381/// to a single Value, it is returned, otherwise the Ops list is mutated as
1382/// necessary.
1383Value *Reassociate::OptimizeXor(Instruction *I,
1384 SmallVectorImpl<ValueEntry> &Ops) {
1385 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1386 return V;
1387
1388 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001389 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001390
1391 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001392 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001393 Type *Ty = Ops[0].Op->getType();
1394 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1395
1396 // Step 1: Convert ValueEntry to XorOpnd
1397 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1398 Value *V = Ops[i].Op;
1399 if (!isa<ConstantInt>(V)) {
1400 XorOpnd O(V);
1401 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1402 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001403 } else
1404 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1405 }
1406
Shuxin Yang331f01d2013-04-08 22:00:43 +00001407 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1408 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1409 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1410 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1411 // when new elements are added to the vector.
1412 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1413 OpndPtrs.push_back(&Opnds[i]);
1414
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001415 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1416 // the same symbolic value cluster together. For instance, the input operand
1417 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1418 // ("x | 123", "x & 789", "y & 456").
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001419 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001420
1421 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001422 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001423 bool Changed = false;
1424 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001425 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001426 // The combined value
1427 Value *CV;
1428
1429 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1430 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1431 Changed = true;
1432 if (CV)
1433 *CurrOpnd = XorOpnd(CV);
1434 else {
1435 CurrOpnd->Invalidate();
1436 continue;
1437 }
1438 }
1439
1440 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1441 PrevOpnd = CurrOpnd;
1442 continue;
1443 }
1444
1445 // step 3.2: When previous and current operands share the same symbolic
1446 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1447 //
1448 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1449 // Remove previous operand
1450 PrevOpnd->Invalidate();
1451 if (CV) {
1452 *CurrOpnd = XorOpnd(CV);
1453 PrevOpnd = CurrOpnd;
1454 } else {
1455 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001456 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001457 }
1458 Changed = true;
1459 }
1460 }
1461
1462 // Step 4: Reassemble the Ops
1463 if (Changed) {
1464 Ops.clear();
1465 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1466 XorOpnd &O = Opnds[i];
1467 if (O.isInvalid())
1468 continue;
1469 ValueEntry VE(getRank(O.getValue()), O.getValue());
1470 Ops.push_back(VE);
1471 }
1472 if (ConstOpnd != 0) {
1473 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1474 ValueEntry VE(getRank(C), C);
1475 Ops.push_back(VE);
1476 }
1477 int Sz = Ops.size();
1478 if (Sz == 1)
1479 return Ops.back().Op;
1480 else if (Sz == 0) {
1481 assert(ConstOpnd == 0);
1482 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1483 }
1484 }
1485
Craig Topperf40110f2014-04-25 05:29:35 +00001486 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001487}
1488
Chris Lattner5f8a0052009-12-31 07:59:34 +00001489/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1490/// optimizes based on identities. If it can be reduced to a single Value, it
1491/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001492Value *Reassociate::OptimizeAdd(Instruction *I,
1493 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001494 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001495 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1496 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001497 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001498
Chris Lattner5f8a0052009-12-31 07:59:34 +00001499 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001500 Value *TheOp = Ops[i].Op;
1501 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001502 // instances of the operand together. Due to our sorting criteria, we know
1503 // that these need to be next to each other in the vector.
1504 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1505 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001506 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001507 do {
1508 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001509 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001510 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001511
Chris Lattnered189172009-12-31 19:25:19 +00001512 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001513 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001514
Chris Lattner60b71b52009-12-31 19:24:52 +00001515 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001516 Type *Ty = TheOp->getType();
1517 Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound)
1518 : ConstantFP::get(Ty, NumFound);
1519 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001520
Chris Lattner60b71b52009-12-31 19:24:52 +00001521 // Now that we have inserted a multiply, optimize it. This allows us to
1522 // handle cases that require multiple factoring steps, such as this:
1523 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001524 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001525
Chris Lattner60b71b52009-12-31 19:24:52 +00001526 // If every add operand was a duplicate, return the multiply.
1527 if (Ops.empty())
1528 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001529
Chris Lattner60b71b52009-12-31 19:24:52 +00001530 // Otherwise, we had some input that didn't have the dupe, such as
1531 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1532 // things being added by this operation.
1533 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001534
Chris Lattner60c2ca72009-12-31 19:49:01 +00001535 --i;
1536 e = Ops.size();
1537 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001538 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001539
Benjamin Kramer49689442014-05-31 15:01:54 +00001540 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001541 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1542 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001543 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001544
Benjamin Kramer49689442014-05-31 15:01:54 +00001545 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001546 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001547 X = BinaryOperator::getNegArgument(TheOp);
1548 else if (BinaryOperator::isNot(TheOp))
1549 X = BinaryOperator::getNotArgument(TheOp);
1550
Chris Lattner5f8a0052009-12-31 07:59:34 +00001551 unsigned FoundX = FindInOperandList(Ops, i, X);
1552 if (FoundX == i)
1553 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001554
Chris Lattner5f8a0052009-12-31 07:59:34 +00001555 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001556 if (Ops.size() == 2 &&
1557 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001558 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001559
Benjamin Kramer49689442014-05-31 15:01:54 +00001560 // Remove X and ~X from the operand list.
1561 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1562 return Constant::getAllOnesValue(X->getType());
1563
Chris Lattner5f8a0052009-12-31 07:59:34 +00001564 Ops.erase(Ops.begin()+i);
1565 if (i < FoundX)
1566 --FoundX;
1567 else
1568 --i; // Need to back up an extra one.
1569 Ops.erase(Ops.begin()+FoundX);
1570 ++NumAnnihil;
1571 --i; // Revisit element.
1572 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001573
1574 // if X and ~X we append -1 to the operand list.
1575 if (BinaryOperator::isNot(TheOp)) {
1576 Value *V = Constant::getAllOnesValue(X->getType());
1577 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1578 e += 1;
1579 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001580 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001581
Chris Lattner177140a2009-12-31 18:17:13 +00001582 // Scan the operand list, checking to see if there are any common factors
1583 // between operands. Consider something like A*A+A*B*C+D. We would like to
1584 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1585 // To efficiently find this, we count the number of times a factor occurs
1586 // for any ADD operands that are MULs.
1587 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001588
Chris Lattner177140a2009-12-31 18:17:13 +00001589 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1590 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001591 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001592 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001593 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001594 BinaryOperator *BOp =
1595 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001596 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001597 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001598
Chris Lattner177140a2009-12-31 18:17:13 +00001599 // Compute all of the factors of this added value.
1600 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001601 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001602 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001603
Chris Lattner177140a2009-12-31 18:17:13 +00001604 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001605 SmallPtrSet<Value*, 8> Duplicates;
1606 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1607 Value *Factor = Factors[i];
Chad Rosier11ab9412014-08-14 15:23:01 +00001608 if (!Duplicates.insert(Factor))
1609 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001610
Chris Lattner0c59ac32010-01-01 01:13:15 +00001611 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001612 if (Occ > MaxOcc) {
1613 MaxOcc = Occ;
1614 MaxOccVal = Factor;
1615 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001616
Chris Lattner0c59ac32010-01-01 01:13:15 +00001617 // If Factor is a negative constant, add the negated value as a factor
1618 // because we can percolate the negate out. Watch for minint, which
1619 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001620 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001621 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001622 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1623 assert(!Duplicates.count(Factor) &&
1624 "Shouldn't have two constant factors, missed a canonicalize");
Chris Lattner0c59ac32010-01-01 01:13:15 +00001625 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001626 if (Occ > MaxOcc) {
1627 MaxOcc = Occ;
1628 MaxOccVal = Factor;
1629 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001630 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001631 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1632 if (CF->isNegative()) {
1633 APFloat F(CF->getValueAPF());
1634 F.changeSign();
1635 Factor = ConstantFP::get(CF->getContext(), F);
1636 assert(!Duplicates.count(Factor) &&
1637 "Shouldn't have two constant factors, missed a canonicalize");
1638 unsigned Occ = ++FactorOccurrences[Factor];
1639 if (Occ > MaxOcc) {
1640 MaxOcc = Occ;
1641 MaxOccVal = Factor;
1642 }
1643 }
1644 }
Chris Lattner177140a2009-12-31 18:17:13 +00001645 }
1646 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001647
Chris Lattner177140a2009-12-31 18:17:13 +00001648 // If any factor occurred more than one time, we can pull it out.
1649 if (MaxOcc > 1) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001650 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001651 ++NumFactor;
1652
1653 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1654 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001655 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001656 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001657 Instruction *DummyInst =
1658 I->getType()->isIntegerTy()
1659 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1660 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1661
Bill Wendling274ba892012-05-02 09:59:45 +00001662 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001663 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001664 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001665 BinaryOperator *BOp =
1666 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001667 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001668 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001669
Chris Lattner177140a2009-12-31 18:17:13 +00001670 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001671 // The factorized operand may occur several times. Convert them all in
1672 // one fell swoop.
1673 for (unsigned j = Ops.size(); j != i;) {
1674 --j;
1675 if (Ops[j].Op == Ops[i].Op) {
1676 NewMulOps.push_back(V);
1677 Ops.erase(Ops.begin()+j);
1678 }
1679 }
1680 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001681 }
1682 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001683
Chris Lattner177140a2009-12-31 18:17:13 +00001684 // No need for extra uses anymore.
1685 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001686
Chris Lattner177140a2009-12-31 18:17:13 +00001687 unsigned NumAddedValues = NewMulOps.size();
1688 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001689
Chris Lattner60b71b52009-12-31 19:24:52 +00001690 // Now that we have inserted the add tree, optimize it. This allows us to
1691 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001692 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001693 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001694 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001695 if (Instruction *VI = dyn_cast<Instruction>(V))
1696 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001697
1698 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001699 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001700
Chris Lattner60c2ca72009-12-31 19:49:01 +00001701 // Rerun associate on the multiply in case the inner expression turned into
1702 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001703 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001704
Chris Lattner177140a2009-12-31 18:17:13 +00001705 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1706 // entire result expression is just the multiply "A*(B+C)".
1707 if (Ops.empty())
1708 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001709
Chris Lattnerac615502009-12-31 18:18:46 +00001710 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001711 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001712 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001713 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1714 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001715
Craig Topperf40110f2014-04-25 05:29:35 +00001716 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001717}
Chris Lattner4c065092006-03-04 09:31:13 +00001718
Chandler Carruth739ef802012-04-26 05:30:30 +00001719/// \brief Build up a vector of value/power pairs factoring a product.
1720///
1721/// Given a series of multiplication operands, build a vector of factors and
1722/// the powers each is raised to when forming the final product. Sort them in
1723/// the order of descending power.
1724///
1725/// (x*x) -> [(x, 2)]
1726/// ((x*x)*x) -> [(x, 3)]
1727/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1728///
1729/// \returns Whether any factors have a power greater than one.
1730bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1731 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001732 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1733 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001734 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001735 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1736 Value *Op = Ops[Idx-1].Op;
1737
1738 // Count the number of occurrences of this value.
1739 unsigned Count = 1;
1740 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1741 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001742 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001743 if (Count > 1)
1744 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001745 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001746
Chandler Carruth739ef802012-04-26 05:30:30 +00001747 // We can only simplify factors if the sum of the powers of our simplifiable
1748 // factors is 4 or higher. When that is the case, we will *always* have
1749 // a simplification. This is an important invariant to prevent cyclicly
1750 // trying to simplify already minimal formations.
1751 if (FactorPowerSum < 4)
1752 return false;
1753
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001754 // Now gather the simplifiable factors, removing them from Ops.
1755 FactorPowerSum = 0;
1756 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1757 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001758
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001759 // Count the number of occurrences of this value.
1760 unsigned Count = 1;
1761 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1762 ++Count;
1763 if (Count == 1)
1764 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001765 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001766 Count &= ~1U;
1767 Idx -= Count;
1768 FactorPowerSum += Count;
1769 Factors.push_back(Factor(Op, Count));
1770 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001771 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001772
Chandler Carruth739ef802012-04-26 05:30:30 +00001773 // None of the adjustments above should have reduced the sum of factor powers
1774 // below our mininum of '4'.
1775 assert(FactorPowerSum >= 4);
1776
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001777 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
Chandler Carruth739ef802012-04-26 05:30:30 +00001778 return true;
1779}
1780
1781/// \brief Build a tree of multiplies, computing the product of Ops.
1782static Value *buildMultiplyTree(IRBuilder<> &Builder,
1783 SmallVectorImpl<Value*> &Ops) {
1784 if (Ops.size() == 1)
1785 return Ops.back();
1786
1787 Value *LHS = Ops.pop_back_val();
1788 do {
Chad Rosier11ab9412014-08-14 15:23:01 +00001789 if (LHS->getType()->isIntegerTy())
1790 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1791 else
1792 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001793 } while (!Ops.empty());
1794
1795 return LHS;
1796}
1797
1798/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1799///
1800/// Given a vector of values raised to various powers, where no two values are
1801/// equal and the powers are sorted in decreasing order, compute the minimal
1802/// DAG of multiplies to compute the final product, and return that product
1803/// value.
1804Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1805 SmallVectorImpl<Factor> &Factors) {
1806 assert(Factors[0].Power);
1807 SmallVector<Value *, 4> OuterProduct;
1808 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1809 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1810 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1811 LastIdx = Idx;
1812 continue;
1813 }
1814
1815 // We want to multiply across all the factors with the same power so that
1816 // we can raise them to that power as a single entity. Build a mini tree
1817 // for that.
1818 SmallVector<Value *, 4> InnerProduct;
1819 InnerProduct.push_back(Factors[LastIdx].Base);
1820 do {
1821 InnerProduct.push_back(Factors[Idx].Base);
1822 ++Idx;
1823 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1824
1825 // Reset the base value of the first factor to the new expression tree.
1826 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001827 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1828 if (Instruction *MI = dyn_cast<Instruction>(M))
1829 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001830
1831 LastIdx = Idx;
1832 }
1833 // Unique factors with equal powers -- we've folded them into the first one's
1834 // base.
1835 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1836 Factor::PowerEqual()),
1837 Factors.end());
1838
1839 // Iteratively collect the base of each factor with an add power into the
1840 // outer product, and halve each power in preparation for squaring the
1841 // expression.
1842 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1843 if (Factors[Idx].Power & 1)
1844 OuterProduct.push_back(Factors[Idx].Base);
1845 Factors[Idx].Power >>= 1;
1846 }
1847 if (Factors[0].Power) {
1848 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1849 OuterProduct.push_back(SquareRoot);
1850 OuterProduct.push_back(SquareRoot);
1851 }
1852 if (OuterProduct.size() == 1)
1853 return OuterProduct.front();
1854
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001855 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001856 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001857}
1858
1859Value *Reassociate::OptimizeMul(BinaryOperator *I,
1860 SmallVectorImpl<ValueEntry> &Ops) {
1861 // We can only optimize the multiplies when there is a chain of more than
1862 // three, such that a balanced tree might require fewer total multiplies.
1863 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001864 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001865
1866 // Try to turn linear trees of multiplies without other uses of the
1867 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1868 // re-use.
1869 SmallVector<Factor, 4> Factors;
1870 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001871 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001872
1873 IRBuilder<> Builder(I);
1874 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1875 if (Ops.empty())
1876 return V;
1877
1878 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1879 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001880 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001881}
1882
Chris Lattner4c065092006-03-04 09:31:13 +00001883Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner38abecb2009-12-31 18:40:32 +00001884 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001885 // Now that we have the linearized expression tree, try to optimize it.
1886 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001887 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001888 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001889 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1890 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1891 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1892 }
1893 // If there was nothing but constants then we are done.
1894 if (Ops.empty())
1895 return Cst;
1896
1897 // Put the combined constant back at the end of the operand list, except if
1898 // there is no point. For example, an add of 0 gets dropped here, while a
1899 // multiplication by zero turns the whole expression into zero.
1900 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1901 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1902 return Cst;
1903 Ops.push_back(ValueEntry(0, Cst));
1904 }
1905
1906 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001907
Chris Lattner9039ff82009-12-31 07:33:14 +00001908 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001909 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001910 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001911 switch (Opcode) {
1912 default: break;
1913 case Instruction::And:
1914 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001915 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1916 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001917 break;
1918
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001919 case Instruction::Xor:
1920 if (Value *Result = OptimizeXor(I, Ops))
1921 return Result;
1922 break;
1923
Chandler Carruth739ef802012-04-26 05:30:30 +00001924 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001925 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001926 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001927 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001928 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001929
1930 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001931 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001932 if (Value *Result = OptimizeMul(I, Ops))
1933 return Result;
1934 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001935 }
1936
Duncan Sands3293f462012-06-08 20:15:33 +00001937 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001938 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001939 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001940}
1941
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001942/// EraseInst - Zap the given instruction, adding interesting operands to the
1943/// work list.
1944void Reassociate::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001945 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1946 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1947 // Erase the dead instruction.
1948 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001949 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001950 I->eraseFromParent();
1951 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001952 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001953 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1954 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1955 // If this is a node in an expression tree, climb to the expression root
1956 // and add that since that's where optimization actually happens.
1957 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001958 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
Duncan Sands78386032012-06-15 08:37:50 +00001959 Visited.insert(Op))
Chandler Carruthcdf47882014-03-09 03:16:01 +00001960 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001961 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001962 }
1963}
1964
Chad Rosier094ac772014-11-11 22:58:35 +00001965// Canonicalize expressions of the following form:
1966// x + (-Constant * y) -> x - (Constant * y)
1967// x - (-Constant * y) -> x + (Constant * y)
1968Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1969 if (!I->hasOneUse() || I->getType()->isVectorTy())
1970 return nullptr;
1971
Chad Rosier9074b182014-11-13 15:40:20 +00001972 // Must be a mul, fmul, or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001973 unsigned Opcode = I->getOpcode();
Chad Rosierf53f0702014-11-11 23:36:42 +00001974 if (Opcode != Instruction::Mul && Opcode != Instruction::FMul &&
1975 Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001976 return nullptr;
1977
1978 // Must have at least one constant operand.
1979 Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
1980 Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
1981 if (!C0 && !C1)
1982 return nullptr;
1983
1984 // Must be a negative ConstantInt or ConstantFP.
1985 Constant *C = C0 ? C0 : C1;
1986 unsigned ConstIdx = C0 ? 0 : 1;
1987 if (auto *CI = dyn_cast<ConstantInt>(C)) {
1988 if (!CI->isNegative())
1989 return nullptr;
1990 } else if (auto *CF = dyn_cast<ConstantFP>(C)) {
1991 if (!CF->isNegative())
1992 return nullptr;
1993 } else
1994 return nullptr;
1995
1996 // User must be a binary operator with one or more uses.
1997 Instruction *User = I->user_back();
1998 if (!isa<BinaryOperator>(User) || !User->getNumUses())
1999 return nullptr;
2000
2001 unsigned UserOpcode = User->getOpcode();
2002 if (UserOpcode != Instruction::Add && UserOpcode != Instruction::FAdd &&
2003 UserOpcode != Instruction::Sub && UserOpcode != Instruction::FSub)
2004 return nullptr;
2005
2006 // Subtraction is not commutative. Explicitly, the following transform is
2007 // not valid: (-Constant * y) - x -> x + (Constant * y)
2008 if (!User->isCommutative() && User->getOperand(1) != I)
2009 return nullptr;
2010
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002011 // Change the sign of the constant.
Chad Rosier094ac772014-11-11 22:58:35 +00002012 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
2013 I->setOperand(ConstIdx, ConstantInt::get(CI->getContext(), -CI->getValue()));
2014 else {
2015 ConstantFP *CF = cast<ConstantFP>(C);
2016 APFloat Val = CF->getValueAPF();
2017 Val.changeSign();
2018 I->setOperand(ConstIdx, ConstantFP::get(CF->getContext(), Val));
2019 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002020
Chad Rosier094ac772014-11-11 22:58:35 +00002021 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
2022 // ((-Const*y) + x) -> (x + (-Const*y)).
2023 if (User->getOperand(0) == I && User->isCommutative())
2024 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002025
Chad Rosier094ac772014-11-11 22:58:35 +00002026 Value *Op0 = User->getOperand(0);
2027 Value *Op1 = User->getOperand(1);
2028 BinaryOperator *NI;
2029 switch(UserOpcode) {
2030 default:
2031 llvm_unreachable("Unexpected Opcode!");
2032 case Instruction::Add:
2033 NI = BinaryOperator::CreateSub(Op0, Op1);
2034 break;
2035 case Instruction::Sub:
2036 NI = BinaryOperator::CreateAdd(Op0, Op1);
2037 break;
2038 case Instruction::FAdd:
2039 NI = BinaryOperator::CreateFSub(Op0, Op1);
2040 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2041 break;
2042 case Instruction::FSub:
2043 NI = BinaryOperator::CreateFAdd(Op0, Op1);
2044 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2045 break;
2046 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002047
Chad Rosier094ac772014-11-11 22:58:35 +00002048 NI->insertBefore(User);
2049 NI->setName(User->getName());
2050 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002051 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00002052 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002053 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00002054 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002055}
2056
Duncan Sands3293f462012-06-08 20:15:33 +00002057/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
2058/// instructions is not allowed.
2059void Reassociate::OptimizeInst(Instruction *I) {
2060 // Only consider operations that we understand.
2061 if (!isa<BinaryOperator>(I))
2062 return;
2063
Chad Rosier11ab9412014-08-14 15:23:01 +00002064 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00002065 // If an operand of this shift is a reassociable multiply, or if the shift
2066 // is used by a reassociable multiply or add, turn into a multiply.
2067 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2068 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002069 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2070 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002071 Instruction *NI = ConvertShiftToMul(I);
2072 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002073 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002074 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002075 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002076
Chad Rosier094ac772014-11-11 22:58:35 +00002077 // Canonicalize negative constants out of expressions.
2078 if (Instruction *Res = canonicalizeNegConstExpr(I))
2079 I = Res;
2080
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002081 // Commute binary operators, to canonicalize the order of their operands.
2082 // This can potentially expose more CSE opportunities, and makes writing other
2083 // transformations simpler.
2084 if (I->isCommutative())
2085 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002086
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002087 // Don't optimize vector instructions.
2088 if (I->getType()->isVectorTy())
2089 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002090
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002091 // Don't optimize floating point instructions that don't have unsafe algebra.
2092 if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra())
2093 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002094
Dan Gohman1c6c3482011-04-12 00:11:56 +00002095 // Do not reassociate boolean (i1) expressions. We want to preserve the
2096 // original order of evaluation for short-circuited comparisons that
2097 // SimplifyCFG has folded to AND/OR expressions. If the expression
2098 // is not further optimized, it is likely to be transformed back to a
2099 // short-circuited form for code gen, and the source order may have been
2100 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002101 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002102 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002103
Dan Gohman1c6c3482011-04-12 00:11:56 +00002104 // If this is a subtract instruction which is not already in negate form,
2105 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002106 if (I->getOpcode() == Instruction::Sub) {
2107 if (ShouldBreakUpSubtract(I)) {
2108 Instruction *NI = BreakUpSubtract(I);
2109 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002110 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002111 I = NI;
2112 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002113 // Otherwise, this is a negation. See if the operand is a multiply tree
2114 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002115 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2116 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002117 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002118 Instruction *NI = LowerNegateToMultiply(I);
2119 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002120 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002121 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002122 }
2123 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002124 } else if (I->getOpcode() == Instruction::FSub) {
2125 if (ShouldBreakUpSubtract(I)) {
2126 Instruction *NI = BreakUpSubtract(I);
2127 RedoInsts.insert(I);
2128 MadeChange = true;
2129 I = NI;
2130 } else if (BinaryOperator::isFNeg(I)) {
2131 // Otherwise, this is a negation. See if the operand is a multiply tree
2132 // and if this is not an inner node of a multiply tree.
2133 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2134 (!I->hasOneUse() ||
2135 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2136 Instruction *NI = LowerNegateToMultiply(I);
2137 RedoInsts.insert(I);
2138 MadeChange = true;
2139 I = NI;
2140 }
2141 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002142 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002143
Duncan Sands3293f462012-06-08 20:15:33 +00002144 // If this instruction is an associative binary operator, process it.
2145 if (!I->isAssociative()) return;
2146 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002147
2148 // If this is an interior node of a reassociable tree, ignore it until we
2149 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002150 unsigned Opcode = BO->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00002151 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002152 return;
2153
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002154 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002155 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002156 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002157 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002158 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002159 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2160 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2161 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002162
Duncan Sands3293f462012-06-08 20:15:33 +00002163 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002164}
Chris Lattner1e506502005-05-07 21:59:39 +00002165
Duncan Sands78386032012-06-15 08:37:50 +00002166void Reassociate::ReassociateExpression(BinaryOperator *I) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002167 assert(!I->getType()->isVectorTy() &&
2168 "Reassociation of vector instructions is not supported.");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002169
Chris Lattner60b71b52009-12-31 19:24:52 +00002170 // First, walk the expression tree, linearizing the tree, collecting the
2171 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002172 SmallVector<RepeatedValue, 8> Tree;
2173 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002174 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002175 Ops.reserve(Tree.size());
2176 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2177 RepeatedValue E = Tree[i];
2178 Ops.append(E.second.getZExtValue(),
2179 ValueEntry(getRank(E.first), E.first));
2180 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002181
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002182 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2183
Chris Lattner2fc319d2006-03-14 07:11:11 +00002184 // Now that we have linearized the tree to a list and have gathered all of
2185 // the operands and their ranks, sort the operands by their rank. Use a
2186 // stable_sort so that values with equal ranks will have their relative
2187 // positions maintained (and so the compiler is deterministic). Note that
2188 // this sorts so that the highest ranking values end up at the beginning of
2189 // the vector.
2190 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002191
Chris Lattner2fc319d2006-03-14 07:11:11 +00002192 // OptimizeExpression - Now that we have the expression tree in a convenient
2193 // sorted form, optimize it globally if possible.
2194 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002195 if (V == I)
2196 // Self-referential expression in unreachable code.
2197 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002198 // This expression tree simplified to something that isn't a tree,
2199 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002200 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002201 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002202 if (Instruction *VI = dyn_cast<Instruction>(V))
2203 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002204 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002205 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002206 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002207 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002208
Chris Lattner2fc319d2006-03-14 07:11:11 +00002209 // We want to sink immediates as deeply as possible except in the case where
2210 // this is a multiply tree used only by an add, and the immediate is a -1.
2211 // In this case we reassociate to put the negation on the outside so that we
2212 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002213 if (I->hasOneUse()) {
2214 if (I->getOpcode() == Instruction::Mul &&
2215 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2216 isa<ConstantInt>(Ops.back().Op) &&
2217 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2218 ValueEntry Tmp = Ops.pop_back_val();
2219 Ops.insert(Ops.begin(), Tmp);
2220 } else if (I->getOpcode() == Instruction::FMul &&
2221 cast<Instruction>(I->user_back())->getOpcode() ==
2222 Instruction::FAdd &&
2223 isa<ConstantFP>(Ops.back().Op) &&
2224 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2225 ValueEntry Tmp = Ops.pop_back_val();
2226 Ops.insert(Ops.begin(), Tmp);
2227 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002228 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002229
David Greened17c3912010-01-05 01:27:24 +00002230 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002231
Chris Lattner2fc319d2006-03-14 07:11:11 +00002232 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002233 if (Ops[0].Op == I)
2234 // Self-referential expression in unreachable code.
2235 return;
2236
Chris Lattner2fc319d2006-03-14 07:11:11 +00002237 // This expression tree simplified to something that isn't a tree,
2238 // eliminate it.
2239 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002240 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2241 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002242 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002243 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002244 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002245
Chris Lattner60b71b52009-12-31 19:24:52 +00002246 // Now that we ordered and optimized the expressions, splat them back into
2247 // the expression tree, removing any unneeded nodes.
2248 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002249}
2250
Chris Lattner113f4f42002-06-25 16:13:24 +00002251bool Reassociate::runOnFunction(Function &F) {
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00002252 if (skipOptnoneFunction(F))
2253 return false;
2254
Duncan Sands3293f462012-06-08 20:15:33 +00002255 // Calculate the rank map for F
Chris Lattnerc0f58002002-05-08 22:19:27 +00002256 BuildRankMap(F);
2257
Chris Lattner1e506502005-05-07 21:59:39 +00002258 MadeChange = false;
Duncan Sands3293f462012-06-08 20:15:33 +00002259 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2260 // Optimize every instruction in the basic block.
2261 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
2262 if (isInstructionTriviallyDead(II)) {
2263 EraseInst(II++);
2264 } else {
2265 OptimizeInst(II);
2266 assert(II->getParent() == BI && "Moved to a different block!");
2267 ++II;
2268 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002269
Duncan Sands3293f462012-06-08 20:15:33 +00002270 // If this produced extra instructions to optimize, handle them now.
2271 while (!RedoInsts.empty()) {
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00002272 Instruction *I = RedoInsts.pop_back_val();
Duncan Sands3293f462012-06-08 20:15:33 +00002273 if (isInstructionTriviallyDead(I))
2274 EraseInst(I);
2275 else
2276 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002277 }
Duncan Sands3293f462012-06-08 20:15:33 +00002278 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002279
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002280 // We are done with the rank map.
2281 RankMap.clear();
2282 ValueRankMap.clear();
2283
Chris Lattner1e506502005-05-07 21:59:39 +00002284 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002285}