blob: 8015eda16052ac311c1ee1a8e6d0a8e5ff015786 [file] [log] [blame]
Eugene Zelenko32a40562017-09-11 23:00:48 +00001//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
Brendon Cahoon254f8892016-07-29 16:44:44 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11//
12// Software pipelining (SWP) is an instruction scheduling technique for loops
Roorda, Jan-Willem20a0e552018-03-06 16:26:01 +000013// that overlap loop iterations and exploits ILP via a compiler transformation.
Brendon Cahoon254f8892016-07-29 16:44:44 +000014//
15// Swing Modulo Scheduling is an implementation of software pipelining
16// that generates schedules that are near optimal in terms of initiation
17// interval, register requirements, and stage count. See the papers:
18//
19// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
21// Conference on Parallel Architectures and Compilation Techiniques.
22//
23// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25// Transactions on Computers, Vol. 50, No. 3, 2001.
26//
27// "An Implementation of Swing Modulo Scheduling With Extensions for
28// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29// Urbana-Chambpain, 2005.
30//
31//
32// The SMS algorithm consists of three main steps after computing the minimal
33// initiation interval (MII).
34// 1) Analyze the dependence graph and compute information about each
35// instruction in the graph.
36// 2) Order the nodes (instructions) by priority based upon the heuristics
37// described in the algorithm.
38// 3) Attempt to schedule the nodes in the specified order using the MII.
39//
40// This SMS implementation is a target-independent back-end pass. When enabled,
41// the pass runs just prior to the register allocation pass, while the machine
42// IR is in SSA form. If software pipelining is successful, then the original
43// loop is replaced by the optimized loop. The optimized loop contains one or
44// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45// the instructions cannot be scheduled in a given MII, we increase the MII by
46// one and try again.
47//
48// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49// represent loop carried dependences in the DAG as order edges to the Phi
50// nodes. We also perform several passes over the DAG to eliminate unnecessary
51// edges that inhibit the ability to pipeline. The implementation uses the
52// DFAPacketizer class to compute the minimum initiation interval and the check
53// where an instruction may be inserted in the pipelined schedule.
54//
55// In order for the SMS pass to work, several target specific hooks need to be
56// implemented to get information about the loop structure and to rewrite
57// instructions.
58//
59//===----------------------------------------------------------------------===//
60
Eugene Zelenkocdc71612016-08-11 17:20:18 +000061#include "llvm/ADT/ArrayRef.h"
62#include "llvm/ADT/BitVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000063#include "llvm/ADT/DenseMap.h"
64#include "llvm/ADT/MapVector.h"
65#include "llvm/ADT/PriorityQueue.h"
66#include "llvm/ADT/SetVector.h"
67#include "llvm/ADT/SmallPtrSet.h"
68#include "llvm/ADT/SmallSet.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000069#include "llvm/ADT/SmallVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000070#include "llvm/ADT/Statistic.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000071#include "llvm/ADT/iterator_range.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000072#include "llvm/Analysis/AliasAnalysis.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000073#include "llvm/Analysis/MemoryLocation.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000074#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/CodeGen/DFAPacketizer.h"
Matthias Braunf8422972017-12-13 02:51:04 +000076#include "llvm/CodeGen/LiveIntervals.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000077#include "llvm/CodeGen/MachineBasicBlock.h"
78#include "llvm/CodeGen/MachineDominators.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000079#include "llvm/CodeGen/MachineFunction.h"
80#include "llvm/CodeGen/MachineFunctionPass.h"
81#include "llvm/CodeGen/MachineInstr.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000082#include "llvm/CodeGen/MachineInstrBuilder.h"
83#include "llvm/CodeGen/MachineLoopInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000084#include "llvm/CodeGen/MachineMemOperand.h"
85#include "llvm/CodeGen/MachineOperand.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000086#include "llvm/CodeGen/MachineRegisterInfo.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000087#include "llvm/CodeGen/RegisterClassInfo.h"
88#include "llvm/CodeGen/RegisterPressure.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000089#include "llvm/CodeGen/ScheduleDAG.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000090#include "llvm/CodeGen/ScheduleDAGInstrs.h"
Krzysztof Parzyszek88391242016-12-22 19:21:20 +000091#include "llvm/CodeGen/ScheduleDAGMutation.h"
David Blaikie3f833ed2017-11-08 01:01:31 +000092#include "llvm/CodeGen/TargetInstrInfo.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000093#include "llvm/CodeGen/TargetOpcodes.h"
94#include "llvm/CodeGen/TargetRegisterInfo.h"
95#include "llvm/CodeGen/TargetSubtargetInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000096#include "llvm/IR/Attributes.h"
97#include "llvm/IR/DebugLoc.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +000098#include "llvm/IR/Function.h"
99#include "llvm/MC/LaneBitmask.h"
100#include "llvm/MC/MCInstrDesc.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000101#include "llvm/MC/MCInstrItineraries.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000102#include "llvm/MC/MCRegisterInfo.h"
103#include "llvm/Pass.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000104#include "llvm/Support/CommandLine.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000105#include "llvm/Support/Compiler.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000106#include "llvm/Support/Debug.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000107#include "llvm/Support/MathExtras.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000108#include "llvm/Support/raw_ostream.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000109#include <algorithm>
110#include <cassert>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000111#include <climits>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000112#include <cstdint>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000113#include <deque>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000114#include <functional>
115#include <iterator>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000116#include <map>
Eugene Zelenko32a40562017-09-11 23:00:48 +0000117#include <memory>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000118#include <tuple>
119#include <utility>
120#include <vector>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000121
122using namespace llvm;
123
124#define DEBUG_TYPE "pipeliner"
125
126STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
127STATISTIC(NumPipelined, "Number of loops software pipelined");
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000128STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
Brendon Cahoon254f8892016-07-29 16:44:44 +0000129
130/// A command line option to turn software pipelining on or off.
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000131static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
132 cl::ZeroOrMore,
133 cl::desc("Enable Software Pipelining"));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000134
135/// A command line option to enable SWP at -Os.
136static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
137 cl::desc("Enable SWP at Os."), cl::Hidden,
138 cl::init(false));
139
140/// A command line argument to limit minimum initial interval for pipelining.
141static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000142 cl::desc("Size limit for the MII."),
Brendon Cahoon254f8892016-07-29 16:44:44 +0000143 cl::Hidden, cl::init(27));
144
145/// A command line argument to limit the number of stages in the pipeline.
146static cl::opt<int>
147 SwpMaxStages("pipeliner-max-stages",
148 cl::desc("Maximum stages allowed in the generated scheduled."),
149 cl::Hidden, cl::init(3));
150
151/// A command line option to disable the pruning of chain dependences due to
152/// an unrelated Phi.
153static cl::opt<bool>
154 SwpPruneDeps("pipeliner-prune-deps",
155 cl::desc("Prune dependences between unrelated Phi nodes."),
156 cl::Hidden, cl::init(true));
157
158/// A command line option to disable the pruning of loop carried order
159/// dependences.
160static cl::opt<bool>
161 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
162 cl::desc("Prune loop carried order dependences."),
163 cl::Hidden, cl::init(true));
164
165#ifndef NDEBUG
166static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
167#endif
168
169static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
170 cl::ReallyHidden, cl::init(false),
171 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
172
173namespace {
174
175class NodeSet;
176class SMSchedule;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000177
178/// The main class in the implementation of the target independent
179/// software pipeliner pass.
180class MachinePipeliner : public MachineFunctionPass {
181public:
182 MachineFunction *MF = nullptr;
183 const MachineLoopInfo *MLI = nullptr;
184 const MachineDominatorTree *MDT = nullptr;
185 const InstrItineraryData *InstrItins;
186 const TargetInstrInfo *TII = nullptr;
187 RegisterClassInfo RegClassInfo;
188
189#ifndef NDEBUG
190 static int NumTries;
191#endif
Eugene Zelenko32a40562017-09-11 23:00:48 +0000192
Brendon Cahoon254f8892016-07-29 16:44:44 +0000193 /// Cache the target analysis information about the loop.
194 struct LoopInfo {
195 MachineBasicBlock *TBB = nullptr;
196 MachineBasicBlock *FBB = nullptr;
197 SmallVector<MachineOperand, 4> BrCond;
198 MachineInstr *LoopInductionVar = nullptr;
199 MachineInstr *LoopCompare = nullptr;
200 };
201 LoopInfo LI;
202
203 static char ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000204
Brendon Cahoon254f8892016-07-29 16:44:44 +0000205 MachinePipeliner() : MachineFunctionPass(ID) {
206 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
207 }
208
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000209 bool runOnMachineFunction(MachineFunction &MF) override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000210
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000211 void getAnalysisUsage(AnalysisUsage &AU) const override {
Brendon Cahoon254f8892016-07-29 16:44:44 +0000212 AU.addRequired<AAResultsWrapperPass>();
213 AU.addPreserved<AAResultsWrapperPass>();
214 AU.addRequired<MachineLoopInfo>();
215 AU.addRequired<MachineDominatorTree>();
216 AU.addRequired<LiveIntervals>();
217 MachineFunctionPass::getAnalysisUsage(AU);
218 }
219
220private:
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000221 void preprocessPhiNodes(MachineBasicBlock &B);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000222 bool canPipelineLoop(MachineLoop &L);
223 bool scheduleLoop(MachineLoop &L);
224 bool swingModuloScheduler(MachineLoop &L);
225};
226
227/// This class builds the dependence graph for the instructions in a loop,
228/// and attempts to schedule the instructions using the SMS algorithm.
229class SwingSchedulerDAG : public ScheduleDAGInstrs {
230 MachinePipeliner &Pass;
231 /// The minimum initiation interval between iterations for this schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000232 unsigned MII = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000233 /// Set to true if a valid pipelined schedule is found for the loop.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000234 bool Scheduled = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000235 MachineLoop &Loop;
236 LiveIntervals &LIS;
237 const RegisterClassInfo &RegClassInfo;
238
239 /// A toplogical ordering of the SUnits, which is needed for changing
240 /// dependences and iterating over the SUnits.
241 ScheduleDAGTopologicalSort Topo;
242
243 struct NodeInfo {
Eugene Zelenko32a40562017-09-11 23:00:48 +0000244 int ASAP = 0;
245 int ALAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000246 int ZeroLatencyDepth = 0;
247 int ZeroLatencyHeight = 0;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000248
249 NodeInfo() = default;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000250 };
251 /// Computed properties for each node in the graph.
252 std::vector<NodeInfo> ScheduleInfo;
253
254 enum OrderKind { BottomUp = 0, TopDown = 1 };
255 /// Computed node ordering for scheduling.
256 SetVector<SUnit *> NodeOrder;
257
Eugene Zelenko32a40562017-09-11 23:00:48 +0000258 using NodeSetType = SmallVector<NodeSet, 8>;
259 using ValueMapTy = DenseMap<unsigned, unsigned>;
260 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
261 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000262
263 /// Instructions to change when emitting the final schedule.
264 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
265
266 /// We may create a new instruction, so remember it because it
267 /// must be deleted when the pass is finished.
268 SmallPtrSet<MachineInstr *, 4> NewMIs;
269
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000270 /// Ordered list of DAG postprocessing steps.
271 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
272
Brendon Cahoon254f8892016-07-29 16:44:44 +0000273 /// Helper class to implement Johnson's circuit finding algorithm.
274 class Circuits {
275 std::vector<SUnit> &SUnits;
276 SetVector<SUnit *> Stack;
277 BitVector Blocked;
278 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
279 SmallVector<SmallVector<int, 4>, 16> AdjK;
280 unsigned NumPaths;
281 static unsigned MaxPaths;
282
283 public:
284 Circuits(std::vector<SUnit> &SUs)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000285 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {}
286
Brendon Cahoon254f8892016-07-29 16:44:44 +0000287 /// Reset the data structures used in the circuit algorithm.
288 void reset() {
289 Stack.clear();
290 Blocked.reset();
291 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
292 NumPaths = 0;
293 }
Eugene Zelenko32a40562017-09-11 23:00:48 +0000294
Brendon Cahoon254f8892016-07-29 16:44:44 +0000295 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
296 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
297 void unblock(int U);
298 };
299
300public:
301 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
302 const RegisterClassInfo &rci)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000303 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
304 RegClassInfo(rci), Topo(SUnits, &ExitSU) {
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000305 P.MF->getSubtarget().getSMSMutations(Mutations);
306 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000307
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000308 void schedule() override;
309 void finishBlock() override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000310
311 /// Return true if the loop kernel has been scheduled.
312 bool hasNewSchedule() { return Scheduled; }
313
314 /// Return the earliest time an instruction may be scheduled.
315 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
316
317 /// Return the latest time an instruction my be scheduled.
318 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
319
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000320 /// The mobility function, which the number of slots in which
Brendon Cahoon254f8892016-07-29 16:44:44 +0000321 /// an instruction may be scheduled.
322 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
323
324 /// The depth, in the dependence graph, for a node.
325 int getDepth(SUnit *Node) { return Node->getDepth(); }
326
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000327 /// The maximum unweighted length of a path from an arbitrary node to the
328 /// given node in which each edge has latency 0
329 int getZeroLatencyDepth(SUnit *Node) {
330 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
331 }
332
Brendon Cahoon254f8892016-07-29 16:44:44 +0000333 /// The height, in the dependence graph, for a node.
334 int getHeight(SUnit *Node) { return Node->getHeight(); }
335
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000336 /// The maximum unweighted length of a path from the given node to an
337 /// arbitrary node in which each edge has latency 0
338 int getZeroLatencyHeight(SUnit *Node) {
339 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
340 }
341
Brendon Cahoon254f8892016-07-29 16:44:44 +0000342 /// Return true if the dependence is a back-edge in the data dependence graph.
343 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
344 /// using an anti dependence from a Phi to an instruction.
345 bool isBackedge(SUnit *Source, const SDep &Dep) {
346 if (Dep.getKind() != SDep::Anti)
347 return false;
348 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
349 }
350
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +0000351 bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000352
Brendon Cahoon254f8892016-07-29 16:44:44 +0000353 /// The distance function, which indicates that operation V of iteration I
354 /// depends on operations U of iteration I-distance.
355 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
356 // Instructions that feed a Phi have a distance of 1. Computing larger
357 // values for arrays requires data dependence information.
358 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
359 return 1;
360 return 0;
361 }
362
363 /// Set the Minimum Initiation Interval for this schedule attempt.
364 void setMII(unsigned mii) { MII = mii; }
365
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +0000366 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
367
368 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000369
370 /// Return the new base register that was stored away for the changed
371 /// instruction.
372 unsigned getInstrBaseReg(SUnit *SU) {
373 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
374 InstrChanges.find(SU);
375 if (It != InstrChanges.end())
376 return It->second.first;
377 return 0;
378 }
379
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000380 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
381 Mutations.push_back(std::move(Mutation));
382 }
383
Brendon Cahoon254f8892016-07-29 16:44:44 +0000384private:
385 void addLoopCarriedDependences(AliasAnalysis *AA);
386 void updatePhiDependences();
387 void changeDependences();
388 unsigned calculateResMII();
389 unsigned calculateRecMII(NodeSetType &RecNodeSets);
390 void findCircuits(NodeSetType &NodeSets);
391 void fuseRecs(NodeSetType &NodeSets);
392 void removeDuplicateNodes(NodeSetType &NodeSets);
393 void computeNodeFunctions(NodeSetType &NodeSets);
394 void registerPressureFilter(NodeSetType &NodeSets);
395 void colocateNodeSets(NodeSetType &NodeSets);
396 void checkNodeSets(NodeSetType &NodeSets);
397 void groupRemainingNodes(NodeSetType &NodeSets);
398 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
399 SetVector<SUnit *> &NodesAdded);
400 void computeNodeOrder(NodeSetType &NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000401 void checkValidNodeOrder(const NodeSetType &Circuits) const;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000402 bool schedulePipeline(SMSchedule &Schedule);
403 void generatePipelinedLoop(SMSchedule &Schedule);
404 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
405 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
406 MBBVectorTy &PrologBBs);
407 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
408 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
409 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
410 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
411 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
412 SMSchedule &Schedule, ValueMapTy *VRMap,
413 InstrMapTy &InstrMap, unsigned LastStageNum,
414 unsigned CurStageNum, bool IsLast);
415 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
416 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
417 SMSchedule &Schedule, ValueMapTy *VRMap,
418 InstrMapTy &InstrMap, unsigned LastStageNum,
419 unsigned CurStageNum, bool IsLast);
420 void removeDeadInstructions(MachineBasicBlock *KernelBB,
421 MBBVectorTy &EpilogBBs);
422 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
423 SMSchedule &Schedule);
424 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
425 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
426 ValueMapTy *VRMap);
427 bool computeDelta(MachineInstr &MI, unsigned &Delta);
428 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
429 unsigned Num);
430 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
431 unsigned InstStageNum);
432 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
433 unsigned InstStageNum,
434 SMSchedule &Schedule);
435 void updateInstruction(MachineInstr *NewMI, bool LastDef,
436 unsigned CurStageNum, unsigned InstStageNum,
437 SMSchedule &Schedule, ValueMapTy *VRMap);
438 MachineInstr *findDefInLoop(unsigned Reg);
439 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
440 unsigned LoopStage, ValueMapTy *VRMap,
441 MachineBasicBlock *BB);
442 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
443 SMSchedule &Schedule, ValueMapTy *VRMap,
444 InstrMapTy &InstrMap);
445 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
446 InstrMapTy &InstrMap, unsigned CurStageNum,
447 unsigned PhiNum, MachineInstr *Phi,
448 unsigned OldReg, unsigned NewReg,
449 unsigned PrevReg = 0);
450 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
451 unsigned &OffsetPos, unsigned &NewBase,
452 int64_t &NewOffset);
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000453 void postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000454};
455
456/// A NodeSet contains a set of SUnit DAG nodes with additional information
457/// that assigns a priority to the set.
458class NodeSet {
459 SetVector<SUnit *> Nodes;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000460 bool HasRecurrence = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000461 unsigned RecMII = 0;
462 int MaxMOV = 0;
463 int MaxDepth = 0;
464 unsigned Colocate = 0;
465 SUnit *ExceedPressure = nullptr;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000466 unsigned Latency = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000467
468public:
Eugene Zelenko32a40562017-09-11 23:00:48 +0000469 using iterator = SetVector<SUnit *>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000470
Eugene Zelenko32a40562017-09-11 23:00:48 +0000471 NodeSet() = default;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000472 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
473 Latency = 0;
474 for (unsigned i = 0, e = Nodes.size(); i < e; ++i)
475 for (const SDep &Succ : Nodes[i]->Succs)
476 if (Nodes.count(Succ.getSUnit()))
477 Latency += Succ.getLatency();
478 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000479
480 bool insert(SUnit *SU) { return Nodes.insert(SU); }
481
482 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
483
484 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
485 return Nodes.remove_if(P);
486 }
487
488 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
489
490 bool hasRecurrence() { return HasRecurrence; };
491
492 unsigned size() const { return Nodes.size(); }
493
494 bool empty() const { return Nodes.empty(); }
495
496 SUnit *getNode(unsigned i) const { return Nodes[i]; };
497
498 void setRecMII(unsigned mii) { RecMII = mii; };
499
500 void setColocate(unsigned c) { Colocate = c; };
501
502 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
503
504 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
505
506 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
507
508 int getRecMII() { return RecMII; }
509
510 /// Summarize node functions for the entire node set.
511 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
512 for (SUnit *SU : *this) {
513 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
514 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
515 }
516 }
517
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +0000518 unsigned getLatency() { return Latency; }
519
Brendon Cahoon254f8892016-07-29 16:44:44 +0000520 void clear() {
521 Nodes.clear();
522 RecMII = 0;
523 HasRecurrence = false;
524 MaxMOV = 0;
525 MaxDepth = 0;
526 Colocate = 0;
527 ExceedPressure = nullptr;
528 }
529
530 operator SetVector<SUnit *> &() { return Nodes; }
531
532 /// Sort the node sets by importance. First, rank them by recurrence MII,
533 /// then by mobility (least mobile done first), and finally by depth.
534 /// Each node set may contain a colocate value which is used as the first
535 /// tie breaker, if it's set.
536 bool operator>(const NodeSet &RHS) const {
537 if (RecMII == RHS.RecMII) {
538 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
539 return Colocate < RHS.Colocate;
540 if (MaxMOV == RHS.MaxMOV)
541 return MaxDepth > RHS.MaxDepth;
542 return MaxMOV < RHS.MaxMOV;
543 }
544 return RecMII > RHS.RecMII;
545 }
546
547 bool operator==(const NodeSet &RHS) const {
548 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
549 MaxDepth == RHS.MaxDepth;
550 }
551
552 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
553
554 iterator begin() { return Nodes.begin(); }
555 iterator end() { return Nodes.end(); }
556
557 void print(raw_ostream &os) const {
558 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
559 << " depth " << MaxDepth << " col " << Colocate << "\n";
560 for (const auto &I : Nodes)
561 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
562 os << "\n";
563 }
564
Aaron Ballman615eb472017-10-15 14:32:27 +0000565#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Matthias Braun8c209aa2017-01-28 02:02:38 +0000566 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
567#endif
Brendon Cahoon254f8892016-07-29 16:44:44 +0000568};
569
570/// This class repesents the scheduled code. The main data structure is a
571/// map from scheduled cycle to instructions. During scheduling, the
572/// data structure explicitly represents all stages/iterations. When
573/// the algorithm finshes, the schedule is collapsed into a single stage,
574/// which represents instructions from different loop iterations.
575///
576/// The SMS algorithm allows negative values for cycles, so the first cycle
577/// in the schedule is the smallest cycle value.
578class SMSchedule {
579private:
580 /// Map from execution cycle to instructions.
581 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
582
583 /// Map from instruction to execution cycle.
584 std::map<SUnit *, int> InstrToCycle;
585
586 /// Map for each register and the max difference between its uses and def.
587 /// The first element in the pair is the max difference in stages. The
588 /// second is true if the register defines a Phi value and loop value is
589 /// scheduled before the Phi.
590 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
591
592 /// Keep track of the first cycle value in the schedule. It starts
593 /// as zero, but the algorithm allows negative values.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000594 int FirstCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000595
596 /// Keep track of the last cycle value in the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000597 int LastCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000598
599 /// The initiation interval (II) for the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000600 int InitiationInterval = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000601
602 /// Target machine information.
603 const TargetSubtargetInfo &ST;
604
605 /// Virtual register information.
606 MachineRegisterInfo &MRI;
607
Benjamin Kramer3f6260c2017-02-16 20:26:51 +0000608 std::unique_ptr<DFAPacketizer> Resources;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000609
610public:
611 SMSchedule(MachineFunction *mf)
612 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
Eugene Zelenko32a40562017-09-11 23:00:48 +0000613 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
Brendon Cahoon254f8892016-07-29 16:44:44 +0000614
Brendon Cahoon254f8892016-07-29 16:44:44 +0000615 void reset() {
616 ScheduledInstrs.clear();
617 InstrToCycle.clear();
618 RegToStageDiff.clear();
619 FirstCycle = 0;
620 LastCycle = 0;
621 InitiationInterval = 0;
622 }
623
624 /// Set the initiation interval for this schedule.
625 void setInitiationInterval(int ii) { InitiationInterval = ii; }
626
627 /// Return the first cycle in the completed schedule. This
628 /// can be a negative value.
629 int getFirstCycle() const { return FirstCycle; }
630
631 /// Return the last cycle in the finalized schedule.
632 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
633
634 /// Return the cycle of the earliest scheduled instruction in the dependence
635 /// chain.
636 int earliestCycleInChain(const SDep &Dep);
637
638 /// Return the cycle of the latest scheduled instruction in the dependence
639 /// chain.
640 int latestCycleInChain(const SDep &Dep);
641
642 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
643 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
644 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
645
646 /// Iterators for the cycle to instruction map.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000647 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
648 using const_sched_iterator =
649 DenseMap<int, std::deque<SUnit *>>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000650
651 /// Return true if the instruction is scheduled at the specified stage.
652 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
653 return (stageScheduled(SU) == (int)StageNum);
654 }
655
656 /// Return the stage for a scheduled instruction. Return -1 if
657 /// the instruction has not been scheduled.
658 int stageScheduled(SUnit *SU) const {
659 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
660 if (it == InstrToCycle.end())
661 return -1;
662 return (it->second - FirstCycle) / InitiationInterval;
663 }
664
665 /// Return the cycle for a scheduled instruction. This function normalizes
666 /// the first cycle to be 0.
667 unsigned cycleScheduled(SUnit *SU) const {
668 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
669 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
670 return (it->second - FirstCycle) % InitiationInterval;
671 }
672
673 /// Return the maximum stage count needed for this schedule.
674 unsigned getMaxStageCount() {
675 return (LastCycle - FirstCycle) / InitiationInterval;
676 }
677
678 /// Return the max. number of stages/iterations that can occur between a
679 /// register definition and its uses.
680 unsigned getStagesForReg(int Reg, unsigned CurStage) {
681 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
682 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
683 return 1;
684 return Stages.first;
685 }
686
687 /// The number of stages for a Phi is a little different than other
688 /// instructions. The minimum value computed in RegToStageDiff is 1
689 /// because we assume the Phi is needed for at least 1 iteration.
690 /// This is not the case if the loop value is scheduled prior to the
691 /// Phi in the same stage. This function returns the number of stages
692 /// or iterations needed between the Phi definition and any uses.
693 unsigned getStagesForPhi(int Reg) {
694 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
695 if (Stages.second)
696 return Stages.first;
697 return Stages.first - 1;
698 }
699
700 /// Return the instructions that are scheduled at the specified cycle.
701 std::deque<SUnit *> &getInstructions(int cycle) {
702 return ScheduledInstrs[cycle];
703 }
704
705 bool isValidSchedule(SwingSchedulerDAG *SSD);
706 void finalizeSchedule(SwingSchedulerDAG *SSD);
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +0000707 void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000708 std::deque<SUnit *> &Insts);
709 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
710 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
711 MachineOperand &MO);
712 void print(raw_ostream &os) const;
713 void dump() const;
714};
715
716} // end anonymous namespace
717
718unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
719char MachinePipeliner::ID = 0;
720#ifndef NDEBUG
721int MachinePipeliner::NumTries = 0;
722#endif
723char &llvm::MachinePipelinerID = MachinePipeliner::ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000724
Matthias Braun1527baa2017-05-25 21:26:32 +0000725INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000726 "Modulo Software Pipelining", false, false)
727INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
728INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
729INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
730INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
Matthias Braun1527baa2017-05-25 21:26:32 +0000731INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000732 "Modulo Software Pipelining", false, false)
733
734/// The "main" function for implementing Swing Modulo Scheduling.
735bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
Matthias Braunf1caa282017-12-15 22:22:58 +0000736 if (skipFunction(mf.getFunction()))
Brendon Cahoon254f8892016-07-29 16:44:44 +0000737 return false;
738
739 if (!EnableSWP)
740 return false;
741
Matthias Braunf1caa282017-12-15 22:22:58 +0000742 if (mf.getFunction().getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +0000743 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
Brendon Cahoon254f8892016-07-29 16:44:44 +0000744 !EnableSWPOptSize.getPosition())
745 return false;
746
747 MF = &mf;
748 MLI = &getAnalysis<MachineLoopInfo>();
749 MDT = &getAnalysis<MachineDominatorTree>();
750 TII = MF->getSubtarget().getInstrInfo();
751 RegClassInfo.runOnMachineFunction(*MF);
752
753 for (auto &L : *MLI)
754 scheduleLoop(*L);
755
756 return false;
757}
758
759/// Attempt to perform the SMS algorithm on the specified loop. This function is
760/// the main entry point for the algorithm. The function identifies candidate
761/// loops, calculates the minimum initiation interval, and attempts to schedule
762/// the loop.
763bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
764 bool Changed = false;
765 for (auto &InnerLoop : L)
766 Changed |= scheduleLoop(*InnerLoop);
767
768#ifndef NDEBUG
769 // Stop trying after reaching the limit (if any).
770 int Limit = SwpLoopLimit;
771 if (Limit >= 0) {
772 if (NumTries >= SwpLoopLimit)
773 return Changed;
774 NumTries++;
775 }
776#endif
777
778 if (!canPipelineLoop(L))
779 return Changed;
780
781 ++NumTrytoPipeline;
782
783 Changed = swingModuloScheduler(L);
784
785 return Changed;
786}
787
788/// Return true if the loop can be software pipelined. The algorithm is
789/// restricted to loops with a single basic block. Make sure that the
790/// branch in the loop can be analyzed.
791bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
792 if (L.getNumBlocks() != 1)
793 return false;
794
795 // Check if the branch can't be understood because we can't do pipelining
796 // if that's the case.
797 LI.TBB = nullptr;
798 LI.FBB = nullptr;
799 LI.BrCond.clear();
800 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
801 return false;
802
803 LI.LoopInductionVar = nullptr;
804 LI.LoopCompare = nullptr;
805 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
806 return false;
807
808 if (!L.getLoopPreheader())
809 return false;
810
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000811 // Remove any subregisters from inputs to phi nodes.
812 preprocessPhiNodes(*L.getHeader());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000813 return true;
814}
815
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000816void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
817 MachineRegisterInfo &MRI = MF->getRegInfo();
818 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
819
820 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
821 MachineOperand &DefOp = PI.getOperand(0);
822 assert(DefOp.getSubReg() == 0);
823 auto *RC = MRI.getRegClass(DefOp.getReg());
824
825 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
826 MachineOperand &RegOp = PI.getOperand(i);
827 if (RegOp.getSubReg() == 0)
828 continue;
829
830 // If the operand uses a subregister, replace it with a new register
831 // without subregisters, and generate a copy to the new register.
832 unsigned NewReg = MRI.createVirtualRegister(RC);
833 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
834 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
835 const DebugLoc &DL = PredB.findDebugLoc(At);
836 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
837 .addReg(RegOp.getReg(), getRegState(RegOp),
838 RegOp.getSubReg());
839 Slots.insertMachineInstrInMaps(*Copy);
840 RegOp.setReg(NewReg);
841 RegOp.setSubReg(0);
842 }
843 }
844}
845
Brendon Cahoon254f8892016-07-29 16:44:44 +0000846/// The SMS algorithm consists of the following main steps:
847/// 1. Computation and analysis of the dependence graph.
848/// 2. Ordering of the nodes (instructions).
849/// 3. Attempt to Schedule the loop.
850bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
851 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
852
853 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
854
855 MachineBasicBlock *MBB = L.getHeader();
856 // The kernel should not include any terminator instructions. These
857 // will be added back later.
858 SMS.startBlock(MBB);
859
860 // Compute the number of 'real' instructions in the basic block by
861 // ignoring terminators.
862 unsigned size = MBB->size();
863 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
864 E = MBB->instr_end();
865 I != E; ++I, --size)
866 ;
867
868 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
869 SMS.schedule();
870 SMS.exitRegion();
871
872 SMS.finishBlock();
873 return SMS.hasNewSchedule();
874}
875
876/// We override the schedule function in ScheduleDAGInstrs to implement the
877/// scheduling part of the Swing Modulo Scheduling algorithm.
878void SwingSchedulerDAG::schedule() {
879 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
880 buildSchedGraph(AA);
881 addLoopCarriedDependences(AA);
882 updatePhiDependences();
883 Topo.InitDAGTopologicalSorting();
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000884 postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000885 changeDependences();
886 DEBUG({
887 for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
888 SUnits[su].dumpAll(this);
889 });
890
891 NodeSetType NodeSets;
892 findCircuits(NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000893 NodeSetType Circuits = NodeSets;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000894
895 // Calculate the MII.
896 unsigned ResMII = calculateResMII();
897 unsigned RecMII = calculateRecMII(NodeSets);
898
899 fuseRecs(NodeSets);
900
901 // This flag is used for testing and can cause correctness problems.
902 if (SwpIgnoreRecMII)
903 RecMII = 0;
904
905 MII = std::max(ResMII, RecMII);
906 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
907 << ")\n");
908
909 // Can't schedule a loop without a valid MII.
910 if (MII == 0)
911 return;
912
913 // Don't pipeline large loops.
914 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
915 return;
916
917 computeNodeFunctions(NodeSets);
918
919 registerPressureFilter(NodeSets);
920
921 colocateNodeSets(NodeSets);
922
923 checkNodeSets(NodeSets);
924
925 DEBUG({
926 for (auto &I : NodeSets) {
927 dbgs() << " Rec NodeSet ";
928 I.dump();
929 }
930 });
931
932 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
933
934 groupRemainingNodes(NodeSets);
935
936 removeDuplicateNodes(NodeSets);
937
938 DEBUG({
939 for (auto &I : NodeSets) {
940 dbgs() << " NodeSet ";
941 I.dump();
942 }
943 });
944
945 computeNodeOrder(NodeSets);
946
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000947 // check for node order issues
948 checkValidNodeOrder(Circuits);
949
Brendon Cahoon254f8892016-07-29 16:44:44 +0000950 SMSchedule Schedule(Pass.MF);
951 Scheduled = schedulePipeline(Schedule);
952
953 if (!Scheduled)
954 return;
955
956 unsigned numStages = Schedule.getMaxStageCount();
957 // No need to generate pipeline if there are no overlapped iterations.
958 if (numStages == 0)
959 return;
960
961 // Check that the maximum stage count is less than user-defined limit.
962 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
963 return;
964
965 generatePipelinedLoop(Schedule);
966 ++NumPipelined;
967}
968
969/// Clean up after the software pipeliner runs.
970void SwingSchedulerDAG::finishBlock() {
971 for (MachineInstr *I : NewMIs)
972 MF.DeleteMachineInstr(I);
973 NewMIs.clear();
974
975 // Call the superclass.
976 ScheduleDAGInstrs::finishBlock();
977}
978
979/// Return the register values for the operands of a Phi instruction.
980/// This function assume the instruction is a Phi.
981static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
982 unsigned &InitVal, unsigned &LoopVal) {
983 assert(Phi.isPHI() && "Expecting a Phi.");
984
985 InitVal = 0;
986 LoopVal = 0;
987 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
988 if (Phi.getOperand(i + 1).getMBB() != Loop)
989 InitVal = Phi.getOperand(i).getReg();
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +0000990 else
Brendon Cahoon254f8892016-07-29 16:44:44 +0000991 LoopVal = Phi.getOperand(i).getReg();
992
993 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
994}
995
996/// Return the Phi register value that comes from the incoming block.
997static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
998 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
999 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
1000 return Phi.getOperand(i).getReg();
1001 return 0;
1002}
1003
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +00001004/// Return the Phi register value that comes the loop block.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001005static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
1006 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
1007 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
1008 return Phi.getOperand(i).getReg();
1009 return 0;
1010}
1011
1012/// Return true if SUb can be reached from SUa following the chain edges.
1013static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
1014 SmallPtrSet<SUnit *, 8> Visited;
1015 SmallVector<SUnit *, 8> Worklist;
1016 Worklist.push_back(SUa);
1017 while (!Worklist.empty()) {
1018 const SUnit *SU = Worklist.pop_back_val();
1019 for (auto &SI : SU->Succs) {
1020 SUnit *SuccSU = SI.getSUnit();
1021 if (SI.getKind() == SDep::Order) {
1022 if (Visited.count(SuccSU))
1023 continue;
1024 if (SuccSU == SUb)
1025 return true;
1026 Worklist.push_back(SuccSU);
1027 Visited.insert(SuccSU);
1028 }
1029 }
1030 }
1031 return false;
1032}
1033
1034/// Return true if the instruction causes a chain between memory
1035/// references before and after it.
1036static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
1037 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
1038 (MI.hasOrderedMemoryRef() &&
Justin Lebard98cf002016-09-10 01:03:20 +00001039 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001040}
1041
1042/// Return the underlying objects for the memory references of an instruction.
1043/// This function calls the code in ValueTracking, but first checks that the
1044/// instruction has a memory operand.
1045static void getUnderlyingObjects(MachineInstr *MI,
1046 SmallVectorImpl<Value *> &Objs,
1047 const DataLayout &DL) {
1048 if (!MI->hasOneMemOperand())
1049 return;
1050 MachineMemOperand *MM = *MI->memoperands_begin();
1051 if (!MM->getValue())
1052 return;
1053 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001054 for (Value *V : Objs) {
1055 if (!isIdentifiedObject(V)) {
1056 Objs.clear();
1057 return;
1058 }
1059 Objs.push_back(V);
1060 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001061}
1062
1063/// Add a chain edge between a load and store if the store can be an
1064/// alias of the load on a subsequent iteration, i.e., a loop carried
1065/// dependence. This code is very similar to the code in ScheduleDAGInstrs
1066/// but that code doesn't create loop carried dependences.
1067void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
1068 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001069 Value *UnknownValue =
1070 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001071 for (auto &SU : SUnits) {
1072 MachineInstr &MI = *SU.getInstr();
1073 if (isDependenceBarrier(MI, AA))
1074 PendingLoads.clear();
1075 else if (MI.mayLoad()) {
1076 SmallVector<Value *, 4> Objs;
1077 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001078 if (Objs.empty())
1079 Objs.push_back(UnknownValue);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001080 for (auto V : Objs) {
1081 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1082 SUs.push_back(&SU);
1083 }
1084 } else if (MI.mayStore()) {
1085 SmallVector<Value *, 4> Objs;
1086 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001087 if (Objs.empty())
1088 Objs.push_back(UnknownValue);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001089 for (auto V : Objs) {
1090 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1091 PendingLoads.find(V);
1092 if (I == PendingLoads.end())
1093 continue;
1094 for (auto Load : I->second) {
1095 if (isSuccOrder(Load, &SU))
1096 continue;
1097 MachineInstr &LdMI = *Load->getInstr();
1098 // First, perform the cheaper check that compares the base register.
1099 // If they are the same and the load offset is less than the store
1100 // offset, then mark the dependence as loop carried potentially.
1101 unsigned BaseReg1, BaseReg2;
1102 int64_t Offset1, Offset2;
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001103 if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) &&
1104 TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1105 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1106 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1107 "What happened to the chain edge?");
1108 SDep Dep(Load, SDep::Barrier);
1109 Dep.setLatency(1);
1110 SU.addPred(Dep);
1111 continue;
1112 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001113 }
1114 // Second, the more expensive check that uses alias analysis on the
1115 // base registers. If they alias, and the load offset is less than
1116 // the store offset, the mark the dependence as loop carried.
1117 if (!AA) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001118 SDep Dep(Load, SDep::Barrier);
1119 Dep.setLatency(1);
1120 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001121 continue;
1122 }
1123 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1124 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1125 if (!MMO1->getValue() || !MMO2->getValue()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001126 SDep Dep(Load, SDep::Barrier);
1127 Dep.setLatency(1);
1128 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001129 continue;
1130 }
1131 if (MMO1->getValue() == MMO2->getValue() &&
1132 MMO1->getOffset() <= MMO2->getOffset()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001133 SDep Dep(Load, SDep::Barrier);
1134 Dep.setLatency(1);
1135 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001136 continue;
1137 }
1138 AliasResult AAResult = AA->alias(
1139 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1140 MMO1->getAAInfo()),
1141 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1142 MMO2->getAAInfo()));
1143
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001144 if (AAResult != NoAlias) {
1145 SDep Dep(Load, SDep::Barrier);
1146 Dep.setLatency(1);
1147 SU.addPred(Dep);
1148 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001149 }
1150 }
1151 }
1152 }
1153}
1154
1155/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1156/// processes dependences for PHIs. This function adds true dependences
1157/// from a PHI to a use, and a loop carried dependence from the use to the
1158/// PHI. The loop carried dependence is represented as an anti dependence
1159/// edge. This function also removes chain dependences between unrelated
1160/// PHIs.
1161void SwingSchedulerDAG::updatePhiDependences() {
1162 SmallVector<SDep, 4> RemoveDeps;
1163 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1164
1165 // Iterate over each DAG node.
1166 for (SUnit &I : SUnits) {
1167 RemoveDeps.clear();
1168 // Set to true if the instruction has an operand defined by a Phi.
1169 unsigned HasPhiUse = 0;
1170 unsigned HasPhiDef = 0;
1171 MachineInstr *MI = I.getInstr();
1172 // Iterate over each operand, and we process the definitions.
1173 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1174 MOE = MI->operands_end();
1175 MOI != MOE; ++MOI) {
1176 if (!MOI->isReg())
1177 continue;
1178 unsigned Reg = MOI->getReg();
1179 if (MOI->isDef()) {
1180 // If the register is used by a Phi, then create an anti dependence.
1181 for (MachineRegisterInfo::use_instr_iterator
1182 UI = MRI.use_instr_begin(Reg),
1183 UE = MRI.use_instr_end();
1184 UI != UE; ++UI) {
1185 MachineInstr *UseMI = &*UI;
1186 SUnit *SU = getSUnit(UseMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001187 if (SU != nullptr && UseMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001188 if (!MI->isPHI()) {
1189 SDep Dep(SU, SDep::Anti, Reg);
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001190 Dep.setLatency(1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001191 I.addPred(Dep);
1192 } else {
1193 HasPhiDef = Reg;
1194 // Add a chain edge to a dependent Phi that isn't an existing
1195 // predecessor.
1196 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1197 I.addPred(SDep(SU, SDep::Barrier));
1198 }
1199 }
1200 }
1201 } else if (MOI->isUse()) {
1202 // If the register is defined by a Phi, then create a true dependence.
1203 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001204 if (DefMI == nullptr)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001205 continue;
1206 SUnit *SU = getSUnit(DefMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001207 if (SU != nullptr && DefMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001208 if (!MI->isPHI()) {
1209 SDep Dep(SU, SDep::Data, Reg);
1210 Dep.setLatency(0);
1211 ST.adjustSchedDependency(SU, &I, Dep);
1212 I.addPred(Dep);
1213 } else {
1214 HasPhiUse = Reg;
1215 // Add a chain edge to a dependent Phi that isn't an existing
1216 // predecessor.
1217 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1218 I.addPred(SDep(SU, SDep::Barrier));
1219 }
1220 }
1221 }
1222 }
1223 // Remove order dependences from an unrelated Phi.
1224 if (!SwpPruneDeps)
1225 continue;
1226 for (auto &PI : I.Preds) {
1227 MachineInstr *PMI = PI.getSUnit()->getInstr();
1228 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1229 if (I.getInstr()->isPHI()) {
1230 if (PMI->getOperand(0).getReg() == HasPhiUse)
1231 continue;
1232 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1233 continue;
1234 }
1235 RemoveDeps.push_back(PI);
1236 }
1237 }
1238 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1239 I.removePred(RemoveDeps[i]);
1240 }
1241}
1242
1243/// Iterate over each DAG node and see if we can change any dependences
1244/// in order to reduce the recurrence MII.
1245void SwingSchedulerDAG::changeDependences() {
1246 // See if an instruction can use a value from the previous iteration.
1247 // If so, we update the base and offset of the instruction and change
1248 // the dependences.
1249 for (SUnit &I : SUnits) {
1250 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1251 int64_t NewOffset = 0;
1252 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1253 NewOffset))
1254 continue;
1255
1256 // Get the MI and SUnit for the instruction that defines the original base.
1257 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1258 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1259 if (!DefMI)
1260 continue;
1261 SUnit *DefSU = getSUnit(DefMI);
1262 if (!DefSU)
1263 continue;
1264 // Get the MI and SUnit for the instruction that defins the new base.
1265 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1266 if (!LastMI)
1267 continue;
1268 SUnit *LastSU = getSUnit(LastMI);
1269 if (!LastSU)
1270 continue;
1271
1272 if (Topo.IsReachable(&I, LastSU))
1273 continue;
1274
1275 // Remove the dependence. The value now depends on a prior iteration.
1276 SmallVector<SDep, 4> Deps;
1277 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1278 ++P)
1279 if (P->getSUnit() == DefSU)
1280 Deps.push_back(*P);
1281 for (int i = 0, e = Deps.size(); i != e; i++) {
1282 Topo.RemovePred(&I, Deps[i].getSUnit());
1283 I.removePred(Deps[i]);
1284 }
1285 // Remove the chain dependence between the instructions.
1286 Deps.clear();
1287 for (auto &P : LastSU->Preds)
1288 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1289 Deps.push_back(P);
1290 for (int i = 0, e = Deps.size(); i != e; i++) {
1291 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1292 LastSU->removePred(Deps[i]);
1293 }
1294
1295 // Add a dependence between the new instruction and the instruction
1296 // that defines the new base.
1297 SDep Dep(&I, SDep::Anti, NewBase);
1298 LastSU->addPred(Dep);
1299
1300 // Remember the base and offset information so that we can update the
1301 // instruction during code generation.
1302 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1303 }
1304}
1305
1306namespace {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001307
Brendon Cahoon254f8892016-07-29 16:44:44 +00001308// FuncUnitSorter - Comparison operator used to sort instructions by
1309// the number of functional unit choices.
1310struct FuncUnitSorter {
1311 const InstrItineraryData *InstrItins;
1312 DenseMap<unsigned, unsigned> Resources;
1313
Eugene Zelenko32a40562017-09-11 23:00:48 +00001314 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1315
Brendon Cahoon254f8892016-07-29 16:44:44 +00001316 // Compute the number of functional unit alternatives needed
1317 // at each stage, and take the minimum value. We prioritize the
1318 // instructions by the least number of choices first.
1319 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1320 unsigned schedClass = Inst->getDesc().getSchedClass();
1321 unsigned min = UINT_MAX;
1322 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1323 *IE = InstrItins->endStage(schedClass);
1324 IS != IE; ++IS) {
1325 unsigned funcUnits = IS->getUnits();
1326 unsigned numAlternatives = countPopulation(funcUnits);
1327 if (numAlternatives < min) {
1328 min = numAlternatives;
1329 F = funcUnits;
1330 }
1331 }
1332 return min;
1333 }
1334
1335 // Compute the critical resources needed by the instruction. This
1336 // function records the functional units needed by instructions that
1337 // must use only one functional unit. We use this as a tie breaker
1338 // for computing the resource MII. The instrutions that require
1339 // the same, highly used, functional unit have high priority.
1340 void calcCriticalResources(MachineInstr &MI) {
1341 unsigned SchedClass = MI.getDesc().getSchedClass();
1342 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1343 *IE = InstrItins->endStage(SchedClass);
1344 IS != IE; ++IS) {
1345 unsigned FuncUnits = IS->getUnits();
1346 if (countPopulation(FuncUnits) == 1)
1347 Resources[FuncUnits]++;
1348 }
1349 }
1350
Brendon Cahoon254f8892016-07-29 16:44:44 +00001351 /// Return true if IS1 has less priority than IS2.
1352 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1353 unsigned F1 = 0, F2 = 0;
1354 unsigned MFUs1 = minFuncUnits(IS1, F1);
1355 unsigned MFUs2 = minFuncUnits(IS2, F2);
1356 if (MFUs1 == 1 && MFUs2 == 1)
1357 return Resources.lookup(F1) < Resources.lookup(F2);
1358 return MFUs1 > MFUs2;
1359 }
1360};
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001361
1362} // end anonymous namespace
Brendon Cahoon254f8892016-07-29 16:44:44 +00001363
1364/// Calculate the resource constrained minimum initiation interval for the
1365/// specified loop. We use the DFA to model the resources needed for
1366/// each instruction, and we ignore dependences. A different DFA is created
1367/// for each cycle that is required. When adding a new instruction, we attempt
1368/// to add it to each existing DFA, until a legal space is found. If the
1369/// instruction cannot be reserved in an existing DFA, we create a new one.
1370unsigned SwingSchedulerDAG::calculateResMII() {
1371 SmallVector<DFAPacketizer *, 8> Resources;
1372 MachineBasicBlock *MBB = Loop.getHeader();
1373 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1374
1375 // Sort the instructions by the number of available choices for scheduling,
1376 // least to most. Use the number of critical resources as the tie breaker.
1377 FuncUnitSorter FUS =
1378 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1379 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1380 E = MBB->getFirstTerminator();
1381 I != E; ++I)
1382 FUS.calcCriticalResources(*I);
1383 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1384 FuncUnitOrder(FUS);
1385
1386 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1387 E = MBB->getFirstTerminator();
1388 I != E; ++I)
1389 FuncUnitOrder.push(&*I);
1390
1391 while (!FuncUnitOrder.empty()) {
1392 MachineInstr *MI = FuncUnitOrder.top();
1393 FuncUnitOrder.pop();
1394 if (TII->isZeroCost(MI->getOpcode()))
1395 continue;
1396 // Attempt to reserve the instruction in an existing DFA. At least one
1397 // DFA is needed for each cycle.
1398 unsigned NumCycles = getSUnit(MI)->Latency;
1399 unsigned ReservedCycles = 0;
1400 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1401 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1402 for (unsigned C = 0; C < NumCycles; ++C)
1403 while (RI != RE) {
1404 if ((*RI++)->canReserveResources(*MI)) {
1405 ++ReservedCycles;
1406 break;
1407 }
1408 }
1409 // Start reserving resources using existing DFAs.
1410 for (unsigned C = 0; C < ReservedCycles; ++C) {
1411 --RI;
1412 (*RI)->reserveResources(*MI);
1413 }
1414 // Add new DFAs, if needed, to reserve resources.
1415 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1416 DFAPacketizer *NewResource =
1417 TII->CreateTargetScheduleState(MF.getSubtarget());
1418 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1419 NewResource->reserveResources(*MI);
1420 Resources.push_back(NewResource);
1421 }
1422 }
1423 int Resmii = Resources.size();
1424 // Delete the memory for each of the DFAs that were created earlier.
1425 for (DFAPacketizer *RI : Resources) {
1426 DFAPacketizer *D = RI;
1427 delete D;
1428 }
1429 Resources.clear();
1430 return Resmii;
1431}
1432
1433/// Calculate the recurrence-constrainted minimum initiation interval.
1434/// Iterate over each circuit. Compute the delay(c) and distance(c)
1435/// for each circuit. The II needs to satisfy the inequality
1436/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1437/// II that satistifies the inequality, and the RecMII is the maximum
1438/// of those values.
1439unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1440 unsigned RecMII = 0;
1441
1442 for (NodeSet &Nodes : NodeSets) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00001443 if (Nodes.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001444 continue;
1445
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00001446 unsigned Delay = Nodes.getLatency();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001447 unsigned Distance = 1;
1448
1449 // ii = ceil(delay / distance)
1450 unsigned CurMII = (Delay + Distance - 1) / Distance;
1451 Nodes.setRecMII(CurMII);
1452 if (CurMII > RecMII)
1453 RecMII = CurMII;
1454 }
1455
1456 return RecMII;
1457}
1458
1459/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1460/// but we do this to find the circuits, and then change them back.
1461static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1462 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1463 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1464 SUnit *SU = &SUnits[i];
1465 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1466 IP != EP; ++IP) {
1467 if (IP->getKind() != SDep::Anti)
1468 continue;
1469 DepsAdded.push_back(std::make_pair(SU, *IP));
1470 }
1471 }
1472 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1473 E = DepsAdded.end();
1474 I != E; ++I) {
1475 // Remove this anti dependency and add one in the reverse direction.
1476 SUnit *SU = I->first;
1477 SDep &D = I->second;
1478 SUnit *TargetSU = D.getSUnit();
1479 unsigned Reg = D.getReg();
1480 unsigned Lat = D.getLatency();
1481 SU->removePred(D);
1482 SDep Dep(SU, SDep::Anti, Reg);
1483 Dep.setLatency(Lat);
1484 TargetSU->addPred(Dep);
1485 }
1486}
1487
1488/// Create the adjacency structure of the nodes in the graph.
1489void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1490 SwingSchedulerDAG *DAG) {
1491 BitVector Added(SUnits.size());
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001492 DenseMap<int, int> OutputDeps;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001493 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1494 Added.reset();
1495 // Add any successor to the adjacency matrix and exclude duplicates.
1496 for (auto &SI : SUnits[i].Succs) {
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001497 // Only create a back-edge on the first and last nodes of a dependence
1498 // chain. This records any chains and adds them later.
1499 if (SI.getKind() == SDep::Output) {
1500 int N = SI.getSUnit()->NodeNum;
1501 int BackEdge = i;
1502 auto Dep = OutputDeps.find(BackEdge);
1503 if (Dep != OutputDeps.end()) {
1504 BackEdge = Dep->second;
1505 OutputDeps.erase(Dep);
1506 }
1507 OutputDeps[N] = BackEdge;
1508 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001509 // Do not process a boundary node and a back-edge is processed only
1510 // if it goes to a Phi.
1511 if (SI.getSUnit()->isBoundaryNode() ||
1512 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1513 continue;
1514 int N = SI.getSUnit()->NodeNum;
1515 if (!Added.test(N)) {
1516 AdjK[i].push_back(N);
1517 Added.set(N);
1518 }
1519 }
1520 // A chain edge between a store and a load is treated as a back-edge in the
1521 // adjacency matrix.
1522 for (auto &PI : SUnits[i].Preds) {
1523 if (!SUnits[i].getInstr()->mayStore() ||
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001524 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001525 continue;
1526 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1527 int N = PI.getSUnit()->NodeNum;
1528 if (!Added.test(N)) {
1529 AdjK[i].push_back(N);
1530 Added.set(N);
1531 }
1532 }
1533 }
1534 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001535 // Add back-eges in the adjacency matrix for the output dependences.
1536 for (auto &OD : OutputDeps)
1537 if (!Added.test(OD.second)) {
1538 AdjK[OD.first].push_back(OD.second);
1539 Added.set(OD.second);
1540 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001541}
1542
1543/// Identify an elementary circuit in the dependence graph starting at the
1544/// specified node.
1545bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1546 bool HasBackedge) {
1547 SUnit *SV = &SUnits[V];
1548 bool F = false;
1549 Stack.insert(SV);
1550 Blocked.set(V);
1551
1552 for (auto W : AdjK[V]) {
1553 if (NumPaths > MaxPaths)
1554 break;
1555 if (W < S)
1556 continue;
1557 if (W == S) {
1558 if (!HasBackedge)
1559 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1560 F = true;
1561 ++NumPaths;
1562 break;
1563 } else if (!Blocked.test(W)) {
1564 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1565 F = true;
1566 }
1567 }
1568
1569 if (F)
1570 unblock(V);
1571 else {
1572 for (auto W : AdjK[V]) {
1573 if (W < S)
1574 continue;
1575 if (B[W].count(SV) == 0)
1576 B[W].insert(SV);
1577 }
1578 }
1579 Stack.pop_back();
1580 return F;
1581}
1582
1583/// Unblock a node in the circuit finding algorithm.
1584void SwingSchedulerDAG::Circuits::unblock(int U) {
1585 Blocked.reset(U);
1586 SmallPtrSet<SUnit *, 4> &BU = B[U];
1587 while (!BU.empty()) {
1588 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1589 assert(SI != BU.end() && "Invalid B set.");
1590 SUnit *W = *SI;
1591 BU.erase(W);
1592 if (Blocked.test(W->NodeNum))
1593 unblock(W->NodeNum);
1594 }
1595}
1596
1597/// Identify all the elementary circuits in the dependence graph using
1598/// Johnson's circuit algorithm.
1599void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1600 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1601 // but we do this to find the circuits, and then change them back.
1602 swapAntiDependences(SUnits);
1603
1604 Circuits Cir(SUnits);
1605 // Create the adjacency structure.
1606 Cir.createAdjacencyStructure(this);
1607 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1608 Cir.reset();
1609 Cir.circuit(i, i, NodeSets);
1610 }
1611
1612 // Change the dependences back so that we've created a DAG again.
1613 swapAntiDependences(SUnits);
1614}
1615
1616/// Return true for DAG nodes that we ignore when computing the cost functions.
1617/// We ignore the back-edge recurrence in order to avoid unbounded recurison
1618/// in the calculation of the ASAP, ALAP, etc functions.
1619static bool ignoreDependence(const SDep &D, bool isPred) {
1620 if (D.isArtificial())
1621 return true;
1622 return D.getKind() == SDep::Anti && isPred;
1623}
1624
1625/// Compute several functions need to order the nodes for scheduling.
1626/// ASAP - Earliest time to schedule a node.
1627/// ALAP - Latest time to schedule a node.
1628/// MOV - Mobility function, difference between ALAP and ASAP.
1629/// D - Depth of each node.
1630/// H - Height of each node.
1631void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001632 ScheduleInfo.resize(SUnits.size());
1633
1634 DEBUG({
1635 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1636 E = Topo.end();
1637 I != E; ++I) {
1638 SUnit *SU = &SUnits[*I];
1639 SU->dump(this);
1640 }
1641 });
1642
1643 int maxASAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001644 // Compute ASAP and ZeroLatencyDepth.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001645 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1646 E = Topo.end();
1647 I != E; ++I) {
1648 int asap = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001649 int zeroLatencyDepth = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001650 SUnit *SU = &SUnits[*I];
1651 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1652 EP = SU->Preds.end();
1653 IP != EP; ++IP) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001654 SUnit *pred = IP->getSUnit();
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001655 if (IP->getLatency() == 0)
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001656 zeroLatencyDepth =
1657 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001658 if (ignoreDependence(*IP, true))
1659 continue;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001660 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00001661 getDistance(pred, SU, *IP) * MII));
1662 }
1663 maxASAP = std::max(maxASAP, asap);
1664 ScheduleInfo[*I].ASAP = asap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001665 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001666 }
1667
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001668 // Compute ALAP, ZeroLatencyHeight, and MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001669 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1670 E = Topo.rend();
1671 I != E; ++I) {
1672 int alap = maxASAP;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001673 int zeroLatencyHeight = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001674 SUnit *SU = &SUnits[*I];
1675 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1676 ES = SU->Succs.end();
1677 IS != ES; ++IS) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001678 SUnit *succ = IS->getSUnit();
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001679 if (IS->getLatency() == 0)
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001680 zeroLatencyHeight =
1681 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001682 if (ignoreDependence(*IS, true))
1683 continue;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001684 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00001685 getDistance(SU, succ, *IS) * MII));
1686 }
1687
1688 ScheduleInfo[*I].ALAP = alap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001689 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001690 }
1691
1692 // After computing the node functions, compute the summary for each node set.
1693 for (NodeSet &I : NodeSets)
1694 I.computeNodeSetInfo(this);
1695
1696 DEBUG({
1697 for (unsigned i = 0; i < SUnits.size(); i++) {
1698 dbgs() << "\tNode " << i << ":\n";
1699 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1700 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1701 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1702 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1703 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001704 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1705 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
Brendon Cahoon254f8892016-07-29 16:44:44 +00001706 }
1707 });
1708}
1709
1710/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1711/// as the predecessors of the elements of NodeOrder that are not also in
1712/// NodeOrder.
1713static bool pred_L(SetVector<SUnit *> &NodeOrder,
1714 SmallSetVector<SUnit *, 8> &Preds,
1715 const NodeSet *S = nullptr) {
1716 Preds.clear();
1717 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1718 I != E; ++I) {
1719 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1720 PI != PE; ++PI) {
1721 if (S && S->count(PI->getSUnit()) == 0)
1722 continue;
1723 if (ignoreDependence(*PI, true))
1724 continue;
1725 if (NodeOrder.count(PI->getSUnit()) == 0)
1726 Preds.insert(PI->getSUnit());
1727 }
1728 // Back-edges are predecessors with an anti-dependence.
1729 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1730 ES = (*I)->Succs.end();
1731 IS != ES; ++IS) {
1732 if (IS->getKind() != SDep::Anti)
1733 continue;
1734 if (S && S->count(IS->getSUnit()) == 0)
1735 continue;
1736 if (NodeOrder.count(IS->getSUnit()) == 0)
1737 Preds.insert(IS->getSUnit());
1738 }
1739 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001740 return !Preds.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001741}
1742
1743/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1744/// as the successors of the elements of NodeOrder that are not also in
1745/// NodeOrder.
1746static bool succ_L(SetVector<SUnit *> &NodeOrder,
1747 SmallSetVector<SUnit *, 8> &Succs,
1748 const NodeSet *S = nullptr) {
1749 Succs.clear();
1750 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1751 I != E; ++I) {
1752 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1753 SI != SE; ++SI) {
1754 if (S && S->count(SI->getSUnit()) == 0)
1755 continue;
1756 if (ignoreDependence(*SI, false))
1757 continue;
1758 if (NodeOrder.count(SI->getSUnit()) == 0)
1759 Succs.insert(SI->getSUnit());
1760 }
1761 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1762 PE = (*I)->Preds.end();
1763 PI != PE; ++PI) {
1764 if (PI->getKind() != SDep::Anti)
1765 continue;
1766 if (S && S->count(PI->getSUnit()) == 0)
1767 continue;
1768 if (NodeOrder.count(PI->getSUnit()) == 0)
1769 Succs.insert(PI->getSUnit());
1770 }
1771 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001772 return !Succs.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001773}
1774
1775/// Return true if there is a path from the specified node to any of the nodes
1776/// in DestNodes. Keep track and return the nodes in any path.
1777static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1778 SetVector<SUnit *> &DestNodes,
1779 SetVector<SUnit *> &Exclude,
1780 SmallPtrSet<SUnit *, 8> &Visited) {
1781 if (Cur->isBoundaryNode())
1782 return false;
1783 if (Exclude.count(Cur) != 0)
1784 return false;
1785 if (DestNodes.count(Cur) != 0)
1786 return true;
1787 if (!Visited.insert(Cur).second)
1788 return Path.count(Cur) != 0;
1789 bool FoundPath = false;
1790 for (auto &SI : Cur->Succs)
1791 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1792 for (auto &PI : Cur->Preds)
1793 if (PI.getKind() == SDep::Anti)
1794 FoundPath |=
1795 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1796 if (FoundPath)
1797 Path.insert(Cur);
1798 return FoundPath;
1799}
1800
1801/// Return true if Set1 is a subset of Set2.
1802template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1803 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1804 if (Set2.count(*I) == 0)
1805 return false;
1806 return true;
1807}
1808
1809/// Compute the live-out registers for the instructions in a node-set.
1810/// The live-out registers are those that are defined in the node-set,
1811/// but not used. Except for use operands of Phis.
1812static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1813 NodeSet &NS) {
1814 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1815 MachineRegisterInfo &MRI = MF.getRegInfo();
1816 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1817 SmallSet<unsigned, 4> Uses;
1818 for (SUnit *SU : NS) {
1819 const MachineInstr *MI = SU->getInstr();
1820 if (MI->isPHI())
1821 continue;
Matthias Braunfc371552016-10-24 21:36:43 +00001822 for (const MachineOperand &MO : MI->operands())
1823 if (MO.isReg() && MO.isUse()) {
1824 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001825 if (TargetRegisterInfo::isVirtualRegister(Reg))
1826 Uses.insert(Reg);
1827 else if (MRI.isAllocatable(Reg))
1828 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1829 Uses.insert(*Units);
1830 }
1831 }
1832 for (SUnit *SU : NS)
Matthias Braunfc371552016-10-24 21:36:43 +00001833 for (const MachineOperand &MO : SU->getInstr()->operands())
1834 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1835 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001836 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1837 if (!Uses.count(Reg))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001838 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1839 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001840 } else if (MRI.isAllocatable(Reg)) {
1841 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1842 if (!Uses.count(*Units))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001843 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1844 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001845 }
1846 }
1847 RPTracker.addLiveRegs(LiveOutRegs);
1848}
1849
1850/// A heuristic to filter nodes in recurrent node-sets if the register
1851/// pressure of a set is too high.
1852void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1853 for (auto &NS : NodeSets) {
1854 // Skip small node-sets since they won't cause register pressure problems.
1855 if (NS.size() <= 2)
1856 continue;
1857 IntervalPressure RecRegPressure;
1858 RegPressureTracker RecRPTracker(RecRegPressure);
1859 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1860 computeLiveOuts(MF, RecRPTracker, NS);
1861 RecRPTracker.closeBottom();
1862
1863 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1864 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
1865 return A->NodeNum > B->NodeNum;
1866 });
1867
1868 for (auto &SU : SUnits) {
1869 // Since we're computing the register pressure for a subset of the
1870 // instructions in a block, we need to set the tracker for each
1871 // instruction in the node-set. The tracker is set to the instruction
1872 // just after the one we're interested in.
1873 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1874 RecRPTracker.setPos(std::next(CurInstI));
1875
1876 RegPressureDelta RPDelta;
1877 ArrayRef<PressureChange> CriticalPSets;
1878 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1879 CriticalPSets,
1880 RecRegPressure.MaxSetPressure);
1881 if (RPDelta.Excess.isValid()) {
1882 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1883 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1884 << ":" << RPDelta.Excess.getUnitInc());
1885 NS.setExceedPressure(SU);
1886 break;
1887 }
1888 RecRPTracker.recede();
1889 }
1890 }
1891}
1892
1893/// A heuristic to colocate node sets that have the same set of
1894/// successors.
1895void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1896 unsigned Colocate = 0;
1897 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1898 NodeSet &N1 = NodeSets[i];
1899 SmallSetVector<SUnit *, 8> S1;
1900 if (N1.empty() || !succ_L(N1, S1))
1901 continue;
1902 for (int j = i + 1; j < e; ++j) {
1903 NodeSet &N2 = NodeSets[j];
1904 if (N1.compareRecMII(N2) != 0)
1905 continue;
1906 SmallSetVector<SUnit *, 8> S2;
1907 if (N2.empty() || !succ_L(N2, S2))
1908 continue;
1909 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1910 N1.setColocate(++Colocate);
1911 N2.setColocate(Colocate);
1912 break;
1913 }
1914 }
1915 }
1916}
1917
1918/// Check if the existing node-sets are profitable. If not, then ignore the
1919/// recurrent node-sets, and attempt to schedule all nodes together. This is
1920/// a heuristic. If the MII is large and there is a non-recurrent node with
1921/// a large depth compared to the MII, then it's best to try and schedule
1922/// all instruction together instead of starting with the recurrent node-sets.
1923void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1924 // Look for loops with a large MII.
1925 if (MII <= 20)
1926 return;
1927 // Check if the node-set contains only a simple add recurrence.
1928 for (auto &NS : NodeSets)
1929 if (NS.size() > 2)
1930 return;
1931 // If the depth of any instruction is significantly larger than the MII, then
1932 // ignore the recurrent node-sets and treat all instructions equally.
1933 for (auto &SU : SUnits)
1934 if (SU.getDepth() > MII * 1.5) {
1935 NodeSets.clear();
1936 DEBUG(dbgs() << "Clear recurrence node-sets\n");
1937 return;
1938 }
1939}
1940
1941/// Add the nodes that do not belong to a recurrence set into groups
1942/// based upon connected componenets.
1943void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1944 SetVector<SUnit *> NodesAdded;
1945 SmallPtrSet<SUnit *, 8> Visited;
1946 // Add the nodes that are on a path between the previous node sets and
1947 // the current node set.
1948 for (NodeSet &I : NodeSets) {
1949 SmallSetVector<SUnit *, 8> N;
1950 // Add the nodes from the current node set to the previous node set.
1951 if (succ_L(I, N)) {
1952 SetVector<SUnit *> Path;
1953 for (SUnit *NI : N) {
1954 Visited.clear();
1955 computePath(NI, Path, NodesAdded, I, Visited);
1956 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001957 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001958 I.insert(Path.begin(), Path.end());
1959 }
1960 // Add the nodes from the previous node set to the current node set.
1961 N.clear();
1962 if (succ_L(NodesAdded, N)) {
1963 SetVector<SUnit *> Path;
1964 for (SUnit *NI : N) {
1965 Visited.clear();
1966 computePath(NI, Path, I, NodesAdded, Visited);
1967 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001968 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001969 I.insert(Path.begin(), Path.end());
1970 }
1971 NodesAdded.insert(I.begin(), I.end());
1972 }
1973
1974 // Create a new node set with the connected nodes of any successor of a node
1975 // in a recurrent set.
1976 NodeSet NewSet;
1977 SmallSetVector<SUnit *, 8> N;
1978 if (succ_L(NodesAdded, N))
1979 for (SUnit *I : N)
1980 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001981 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001982 NodeSets.push_back(NewSet);
1983
1984 // Create a new node set with the connected nodes of any predecessor of a node
1985 // in a recurrent set.
1986 NewSet.clear();
1987 if (pred_L(NodesAdded, N))
1988 for (SUnit *I : N)
1989 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001990 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001991 NodeSets.push_back(NewSet);
1992
1993 // Create new nodes sets with the connected nodes any any remaining node that
1994 // has no predecessor.
1995 for (unsigned i = 0; i < SUnits.size(); ++i) {
1996 SUnit *SU = &SUnits[i];
1997 if (NodesAdded.count(SU) == 0) {
1998 NewSet.clear();
1999 addConnectedNodes(SU, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00002000 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00002001 NodeSets.push_back(NewSet);
2002 }
2003 }
2004}
2005
2006/// Add the node to the set, and add all is its connected nodes to the set.
2007void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
2008 SetVector<SUnit *> &NodesAdded) {
2009 NewSet.insert(SU);
2010 NodesAdded.insert(SU);
2011 for (auto &SI : SU->Succs) {
2012 SUnit *Successor = SI.getSUnit();
2013 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
2014 addConnectedNodes(Successor, NewSet, NodesAdded);
2015 }
2016 for (auto &PI : SU->Preds) {
2017 SUnit *Predecessor = PI.getSUnit();
2018 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
2019 addConnectedNodes(Predecessor, NewSet, NodesAdded);
2020 }
2021}
2022
2023/// Return true if Set1 contains elements in Set2. The elements in common
2024/// are returned in a different container.
2025static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
2026 SmallSetVector<SUnit *, 8> &Result) {
2027 Result.clear();
2028 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
2029 SUnit *SU = Set1[i];
2030 if (Set2.count(SU) != 0)
2031 Result.insert(SU);
2032 }
2033 return !Result.empty();
2034}
2035
2036/// Merge the recurrence node sets that have the same initial node.
2037void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
2038 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2039 ++I) {
2040 NodeSet &NI = *I;
2041 for (NodeSetType::iterator J = I + 1; J != E;) {
2042 NodeSet &NJ = *J;
2043 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
2044 if (NJ.compareRecMII(NI) > 0)
2045 NI.setRecMII(NJ.getRecMII());
2046 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
2047 ++NII)
2048 I->insert(*NII);
2049 NodeSets.erase(J);
2050 E = NodeSets.end();
2051 } else {
2052 ++J;
2053 }
2054 }
2055 }
2056}
2057
2058/// Remove nodes that have been scheduled in previous NodeSets.
2059void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
2060 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2061 ++I)
2062 for (NodeSetType::iterator J = I + 1; J != E;) {
2063 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
2064
Eugene Zelenko32a40562017-09-11 23:00:48 +00002065 if (J->empty()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002066 NodeSets.erase(J);
2067 E = NodeSets.end();
2068 } else {
2069 ++J;
2070 }
2071 }
2072}
2073
Brendon Cahoon254f8892016-07-29 16:44:44 +00002074/// Compute an ordered list of the dependence graph nodes, which
2075/// indicates the order that the nodes will be scheduled. This is a
2076/// two-level algorithm. First, a partial order is created, which
2077/// consists of a list of sets ordered from highest to lowest priority.
2078void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2079 SmallSetVector<SUnit *, 8> R;
2080 NodeOrder.clear();
2081
2082 for (auto &Nodes : NodeSets) {
2083 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
2084 OrderKind Order;
2085 SmallSetVector<SUnit *, 8> N;
2086 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
2087 R.insert(N.begin(), N.end());
2088 Order = BottomUp;
2089 DEBUG(dbgs() << " Bottom up (preds) ");
2090 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
2091 R.insert(N.begin(), N.end());
2092 Order = TopDown;
2093 DEBUG(dbgs() << " Top down (succs) ");
2094 } else if (isIntersect(N, Nodes, R)) {
2095 // If some of the successors are in the existing node-set, then use the
2096 // top-down ordering.
2097 Order = TopDown;
2098 DEBUG(dbgs() << " Top down (intersect) ");
2099 } else if (NodeSets.size() == 1) {
2100 for (auto &N : Nodes)
2101 if (N->Succs.size() == 0)
2102 R.insert(N);
2103 Order = BottomUp;
2104 DEBUG(dbgs() << " Bottom up (all) ");
2105 } else {
2106 // Find the node with the highest ASAP.
2107 SUnit *maxASAP = nullptr;
2108 for (SUnit *SU : Nodes) {
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00002109 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
2110 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002111 maxASAP = SU;
2112 }
2113 R.insert(maxASAP);
2114 Order = BottomUp;
2115 DEBUG(dbgs() << " Bottom up (default) ");
2116 }
2117
2118 while (!R.empty()) {
2119 if (Order == TopDown) {
2120 // Choose the node with the maximum height. If more than one, choose
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00002121 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002122 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002123 while (!R.empty()) {
2124 SUnit *maxHeight = nullptr;
2125 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002126 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002127 maxHeight = I;
2128 else if (getHeight(I) == getHeight(maxHeight) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002129 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002130 maxHeight = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002131 else if (getHeight(I) == getHeight(maxHeight) &&
2132 getZeroLatencyHeight(I) ==
2133 getZeroLatencyHeight(maxHeight) &&
2134 getMOV(I) < getMOV(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002135 maxHeight = I;
2136 }
2137 NodeOrder.insert(maxHeight);
2138 DEBUG(dbgs() << maxHeight->NodeNum << " ");
2139 R.remove(maxHeight);
2140 for (const auto &I : maxHeight->Succs) {
2141 if (Nodes.count(I.getSUnit()) == 0)
2142 continue;
2143 if (NodeOrder.count(I.getSUnit()) != 0)
2144 continue;
2145 if (ignoreDependence(I, false))
2146 continue;
2147 R.insert(I.getSUnit());
2148 }
2149 // Back-edges are predecessors with an anti-dependence.
2150 for (const auto &I : maxHeight->Preds) {
2151 if (I.getKind() != SDep::Anti)
2152 continue;
2153 if (Nodes.count(I.getSUnit()) == 0)
2154 continue;
2155 if (NodeOrder.count(I.getSUnit()) != 0)
2156 continue;
2157 R.insert(I.getSUnit());
2158 }
2159 }
2160 Order = BottomUp;
2161 DEBUG(dbgs() << "\n Switching order to bottom up ");
2162 SmallSetVector<SUnit *, 8> N;
2163 if (pred_L(NodeOrder, N, &Nodes))
2164 R.insert(N.begin(), N.end());
2165 } else {
2166 // Choose the node with the maximum depth. If more than one, choose
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002167 // the node with the maximum ZeroLatencyDepth. If still more than one,
2168 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002169 while (!R.empty()) {
2170 SUnit *maxDepth = nullptr;
2171 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002172 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002173 maxDepth = I;
2174 else if (getDepth(I) == getDepth(maxDepth) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002175 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002176 maxDepth = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002177 else if (getDepth(I) == getDepth(maxDepth) &&
2178 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
2179 getMOV(I) < getMOV(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002180 maxDepth = I;
2181 }
2182 NodeOrder.insert(maxDepth);
2183 DEBUG(dbgs() << maxDepth->NodeNum << " ");
2184 R.remove(maxDepth);
2185 if (Nodes.isExceedSU(maxDepth)) {
2186 Order = TopDown;
2187 R.clear();
2188 R.insert(Nodes.getNode(0));
2189 break;
2190 }
2191 for (const auto &I : maxDepth->Preds) {
2192 if (Nodes.count(I.getSUnit()) == 0)
2193 continue;
2194 if (NodeOrder.count(I.getSUnit()) != 0)
2195 continue;
2196 if (I.getKind() == SDep::Anti)
2197 continue;
2198 R.insert(I.getSUnit());
2199 }
2200 // Back-edges are predecessors with an anti-dependence.
2201 for (const auto &I : maxDepth->Succs) {
2202 if (I.getKind() != SDep::Anti)
2203 continue;
2204 if (Nodes.count(I.getSUnit()) == 0)
2205 continue;
2206 if (NodeOrder.count(I.getSUnit()) != 0)
2207 continue;
2208 R.insert(I.getSUnit());
2209 }
2210 }
2211 Order = TopDown;
2212 DEBUG(dbgs() << "\n Switching order to top down ");
2213 SmallSetVector<SUnit *, 8> N;
2214 if (succ_L(NodeOrder, N, &Nodes))
2215 R.insert(N.begin(), N.end());
2216 }
2217 }
2218 DEBUG(dbgs() << "\nDone with Nodeset\n");
2219 }
2220
2221 DEBUG({
2222 dbgs() << "Node order: ";
2223 for (SUnit *I : NodeOrder)
2224 dbgs() << " " << I->NodeNum << " ";
2225 dbgs() << "\n";
2226 });
2227}
2228
2229/// Process the nodes in the computed order and create the pipelined schedule
2230/// of the instructions, if possible. Return true if a schedule is found.
2231bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00002232 if (NodeOrder.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00002233 return false;
2234
2235 bool scheduleFound = false;
2236 // Keep increasing II until a valid schedule is found.
2237 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2238 Schedule.reset();
2239 Schedule.setInitiationInterval(II);
2240 DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2241
2242 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2243 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2244 do {
2245 SUnit *SU = *NI;
2246
2247 // Compute the schedule time for the instruction, which is based
2248 // upon the scheduled time for any predecessors/successors.
2249 int EarlyStart = INT_MIN;
2250 int LateStart = INT_MAX;
2251 // These values are set when the size of the schedule window is limited
2252 // due to chain dependences.
2253 int SchedEnd = INT_MAX;
2254 int SchedStart = INT_MIN;
2255 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2256 II, this);
2257 DEBUG({
2258 dbgs() << "Inst (" << SU->NodeNum << ") ";
2259 SU->getInstr()->dump();
2260 dbgs() << "\n";
2261 });
2262 DEBUG({
2263 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2264 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2265 });
2266
2267 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2268 SchedStart > LateStart)
2269 scheduleFound = false;
2270 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2271 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2272 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2273 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2274 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2275 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2276 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2277 SchedEnd =
2278 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2279 // When scheduling a Phi it is better to start at the late cycle and go
2280 // backwards. The default order may insert the Phi too far away from
2281 // its first dependence.
2282 if (SU->getInstr()->isPHI())
2283 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2284 else
2285 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2286 } else {
2287 int FirstCycle = Schedule.getFirstCycle();
2288 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2289 FirstCycle + getASAP(SU) + II - 1, II);
2290 }
2291 // Even if we find a schedule, make sure the schedule doesn't exceed the
2292 // allowable number of stages. We keep trying if this happens.
2293 if (scheduleFound)
2294 if (SwpMaxStages > -1 &&
2295 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2296 scheduleFound = false;
2297
2298 DEBUG({
2299 if (!scheduleFound)
2300 dbgs() << "\tCan't schedule\n";
2301 });
2302 } while (++NI != NE && scheduleFound);
2303
2304 // If a schedule is found, check if it is a valid schedule too.
2305 if (scheduleFound)
2306 scheduleFound = Schedule.isValidSchedule(this);
2307 }
2308
2309 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
2310
2311 if (scheduleFound)
2312 Schedule.finalizeSchedule(this);
2313 else
2314 Schedule.reset();
2315
2316 return scheduleFound && Schedule.getMaxStageCount() > 0;
2317}
2318
2319/// Given a schedule for the loop, generate a new version of the loop,
2320/// and replace the old version. This function generates a prolog
2321/// that contains the initial iterations in the pipeline, and kernel
2322/// loop, and the epilogue that contains the code for the final
2323/// iterations.
2324void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2325 // Create a new basic block for the kernel and add it to the CFG.
2326 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2327
2328 unsigned MaxStageCount = Schedule.getMaxStageCount();
2329
2330 // Remember the registers that are used in different stages. The index is
2331 // the iteration, or stage, that the instruction is scheduled in. This is
2332 // a map between register names in the orignal block and the names created
2333 // in each stage of the pipelined loop.
2334 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2335 InstrMapTy InstrMap;
2336
2337 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2338 // Generate the prolog instructions that set up the pipeline.
2339 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2340 MF.insert(BB->getIterator(), KernelBB);
2341
2342 // Rearrange the instructions to generate the new, pipelined loop,
2343 // and update register names as needed.
2344 for (int Cycle = Schedule.getFirstCycle(),
2345 LastCycle = Schedule.getFinalCycle();
2346 Cycle <= LastCycle; ++Cycle) {
2347 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2348 // This inner loop schedules each instruction in the cycle.
2349 for (SUnit *CI : CycleInstrs) {
2350 if (CI->getInstr()->isPHI())
2351 continue;
2352 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2353 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2354 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2355 KernelBB->push_back(NewMI);
2356 InstrMap[NewMI] = CI->getInstr();
2357 }
2358 }
2359
2360 // Copy any terminator instructions to the new kernel, and update
2361 // names as needed.
2362 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2363 E = BB->instr_end();
2364 I != E; ++I) {
2365 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2366 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2367 KernelBB->push_back(NewMI);
2368 InstrMap[NewMI] = &*I;
2369 }
2370
2371 KernelBB->transferSuccessors(BB);
2372 KernelBB->replaceSuccessor(BB, KernelBB);
2373
2374 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2375 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2376 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2377 InstrMap, MaxStageCount, MaxStageCount, false);
2378
2379 DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2380
2381 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2382 // Generate the epilog instructions to complete the pipeline.
2383 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2384 PrologBBs);
2385
2386 // We need this step because the register allocation doesn't handle some
2387 // situations well, so we insert copies to help out.
2388 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2389
2390 // Remove dead instructions due to loop induction variables.
2391 removeDeadInstructions(KernelBB, EpilogBBs);
2392
2393 // Add branches between prolog and epilog blocks.
2394 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2395
2396 // Remove the original loop since it's no longer referenced.
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002397 for (auto &I : *BB)
2398 LIS.RemoveMachineInstrFromMaps(I);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002399 BB->clear();
2400 BB->eraseFromParent();
2401
2402 delete[] VRMap;
2403}
2404
2405/// Generate the pipeline prolog code.
2406void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2407 MachineBasicBlock *KernelBB,
2408 ValueMapTy *VRMap,
2409 MBBVectorTy &PrologBBs) {
2410 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
Eugene Zelenko32a40562017-09-11 23:00:48 +00002411 assert(PreheaderBB != nullptr &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002412 "Need to add code to handle loops w/o preheader");
2413 MachineBasicBlock *PredBB = PreheaderBB;
2414 InstrMapTy InstrMap;
2415
2416 // Generate a basic block for each stage, not including the last stage,
2417 // which will be generated in the kernel. Each basic block may contain
2418 // instructions from multiple stages/iterations.
2419 for (unsigned i = 0; i < LastStage; ++i) {
2420 // Create and insert the prolog basic block prior to the original loop
2421 // basic block. The original loop is removed later.
2422 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2423 PrologBBs.push_back(NewBB);
2424 MF.insert(BB->getIterator(), NewBB);
2425 NewBB->transferSuccessors(PredBB);
2426 PredBB->addSuccessor(NewBB);
2427 PredBB = NewBB;
2428
2429 // Generate instructions for each appropriate stage. Process instructions
2430 // in original program order.
2431 for (int StageNum = i; StageNum >= 0; --StageNum) {
2432 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2433 BBE = BB->getFirstTerminator();
2434 BBI != BBE; ++BBI) {
2435 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2436 if (BBI->isPHI())
2437 continue;
2438 MachineInstr *NewMI =
2439 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2440 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2441 VRMap);
2442 NewBB->push_back(NewMI);
2443 InstrMap[NewMI] = &*BBI;
2444 }
2445 }
2446 }
2447 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2448 DEBUG({
2449 dbgs() << "prolog:\n";
2450 NewBB->dump();
2451 });
2452 }
2453
2454 PredBB->replaceSuccessor(BB, KernelBB);
2455
2456 // Check if we need to remove the branch from the preheader to the original
2457 // loop, and replace it with a branch to the new loop.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002458 unsigned numBranches = TII->removeBranch(*PreheaderBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002459 if (numBranches) {
2460 SmallVector<MachineOperand, 0> Cond;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002461 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002462 }
2463}
2464
2465/// Generate the pipeline epilog code. The epilog code finishes the iterations
2466/// that were started in either the prolog or the kernel. We create a basic
2467/// block for each stage that needs to complete.
2468void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2469 MachineBasicBlock *KernelBB,
2470 ValueMapTy *VRMap,
2471 MBBVectorTy &EpilogBBs,
2472 MBBVectorTy &PrologBBs) {
2473 // We need to change the branch from the kernel to the first epilog block, so
2474 // this call to analyze branch uses the kernel rather than the original BB.
2475 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2476 SmallVector<MachineOperand, 4> Cond;
2477 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2478 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2479 if (checkBranch)
2480 return;
2481
2482 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2483 if (*LoopExitI == KernelBB)
2484 ++LoopExitI;
2485 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2486 MachineBasicBlock *LoopExitBB = *LoopExitI;
2487
2488 MachineBasicBlock *PredBB = KernelBB;
2489 MachineBasicBlock *EpilogStart = LoopExitBB;
2490 InstrMapTy InstrMap;
2491
2492 // Generate a basic block for each stage, not including the last stage,
2493 // which was generated for the kernel. Each basic block may contain
2494 // instructions from multiple stages/iterations.
2495 int EpilogStage = LastStage + 1;
2496 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2497 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2498 EpilogBBs.push_back(NewBB);
2499 MF.insert(BB->getIterator(), NewBB);
2500
2501 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2502 NewBB->addSuccessor(LoopExitBB);
2503
2504 if (EpilogStart == LoopExitBB)
2505 EpilogStart = NewBB;
2506
2507 // Add instructions to the epilog depending on the current block.
2508 // Process instructions in original program order.
2509 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2510 for (auto &BBI : *BB) {
2511 if (BBI.isPHI())
2512 continue;
2513 MachineInstr *In = &BBI;
2514 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
Krzysztof Parzyszek785b6ce2018-03-26 15:45:55 +00002515 // Instructions with memoperands in the epilog are updated with
2516 // conservative values.
2517 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002518 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2519 NewBB->push_back(NewMI);
2520 InstrMap[NewMI] = In;
2521 }
2522 }
2523 }
2524 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2525 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2526 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2527 InstrMap, LastStage, EpilogStage, i == 1);
2528 PredBB = NewBB;
2529
2530 DEBUG({
2531 dbgs() << "epilog:\n";
2532 NewBB->dump();
2533 });
2534 }
2535
2536 // Fix any Phi nodes in the loop exit block.
2537 for (MachineInstr &MI : *LoopExitBB) {
2538 if (!MI.isPHI())
2539 break;
2540 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2541 MachineOperand &MO = MI.getOperand(i);
2542 if (MO.getMBB() == BB)
2543 MO.setMBB(PredBB);
2544 }
2545 }
2546
2547 // Create a branch to the new epilog from the kernel.
2548 // Remove the original branch and add a new branch to the epilog.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002549 TII->removeBranch(*KernelBB);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002550 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002551 // Add a branch to the loop exit.
2552 if (EpilogBBs.size() > 0) {
2553 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2554 SmallVector<MachineOperand, 4> Cond1;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002555 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002556 }
2557}
2558
2559/// Replace all uses of FromReg that appear outside the specified
2560/// basic block with ToReg.
2561static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2562 MachineBasicBlock *MBB,
2563 MachineRegisterInfo &MRI,
2564 LiveIntervals &LIS) {
2565 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2566 E = MRI.use_end();
2567 I != E;) {
2568 MachineOperand &O = *I;
2569 ++I;
2570 if (O.getParent()->getParent() != MBB)
2571 O.setReg(ToReg);
2572 }
2573 if (!LIS.hasInterval(ToReg))
2574 LIS.createEmptyInterval(ToReg);
2575}
2576
2577/// Return true if the register has a use that occurs outside the
2578/// specified loop.
2579static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2580 MachineRegisterInfo &MRI) {
2581 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2582 E = MRI.use_end();
2583 I != E; ++I)
2584 if (I->getParent()->getParent() != BB)
2585 return true;
2586 return false;
2587}
2588
2589/// Generate Phis for the specific block in the generated pipelined code.
2590/// This function looks at the Phis from the original code to guide the
2591/// creation of new Phis.
2592void SwingSchedulerDAG::generateExistingPhis(
2593 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2594 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2595 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2596 bool IsLast) {
Simon Pilgrim6bdc7552017-03-31 10:59:37 +00002597 // Compute the stage number for the initial value of the Phi, which
Brendon Cahoon254f8892016-07-29 16:44:44 +00002598 // comes from the prolog. The prolog to use depends on to which kernel/
2599 // epilog that we're adding the Phi.
2600 unsigned PrologStage = 0;
2601 unsigned PrevStage = 0;
2602 bool InKernel = (LastStageNum == CurStageNum);
2603 if (InKernel) {
2604 PrologStage = LastStageNum - 1;
2605 PrevStage = CurStageNum;
2606 } else {
2607 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2608 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2609 }
2610
2611 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2612 BBE = BB->getFirstNonPHI();
2613 BBI != BBE; ++BBI) {
2614 unsigned Def = BBI->getOperand(0).getReg();
2615
2616 unsigned InitVal = 0;
2617 unsigned LoopVal = 0;
2618 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2619
2620 unsigned PhiOp1 = 0;
2621 // The Phi value from the loop body typically is defined in the loop, but
2622 // not always. So, we need to check if the value is defined in the loop.
2623 unsigned PhiOp2 = LoopVal;
2624 if (VRMap[LastStageNum].count(LoopVal))
2625 PhiOp2 = VRMap[LastStageNum][LoopVal];
2626
2627 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2628 int LoopValStage =
2629 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2630 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2631 if (NumStages == 0) {
2632 // We don't need to generate a Phi anymore, but we need to rename any uses
2633 // of the Phi value.
2634 unsigned NewReg = VRMap[PrevStage][LoopVal];
2635 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
Krzysztof Parzyszek16e66f52018-03-26 16:41:36 +00002636 Def, InitVal, NewReg);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002637 if (VRMap[CurStageNum].count(LoopVal))
2638 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2639 }
2640 // Adjust the number of Phis needed depending on the number of prologs left,
Krzysztof Parzyszek3f72a6b2018-03-26 16:37:55 +00002641 // and the distance from where the Phi is first scheduled. The number of
2642 // Phis cannot exceed the number of prolog stages. Each stage can
2643 // potentially define two values.
2644 unsigned MaxPhis = PrologStage + 2;
2645 if (!InKernel && (int)PrologStage <= LoopValStage)
2646 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
2647 unsigned NumPhis = std::min(NumStages, MaxPhis);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002648
2649 unsigned NewReg = 0;
2650
2651 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2652 // In the epilog, we may need to look back one stage to get the correct
2653 // Phi name because the epilog and prolog blocks execute the same stage.
2654 // The correct name is from the previous block only when the Phi has
2655 // been completely scheduled prior to the epilog, and Phi value is not
2656 // needed in multiple stages.
2657 int StageDiff = 0;
2658 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2659 NumPhis == 1)
2660 StageDiff = 1;
2661 // Adjust the computations below when the phi and the loop definition
2662 // are scheduled in different stages.
2663 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2664 StageDiff = StageScheduled - LoopValStage;
2665 for (unsigned np = 0; np < NumPhis; ++np) {
2666 // If the Phi hasn't been scheduled, then use the initial Phi operand
2667 // value. Otherwise, use the scheduled version of the instruction. This
2668 // is a little complicated when a Phi references another Phi.
2669 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2670 PhiOp1 = InitVal;
2671 // Check if the Phi has already been scheduled in a prolog stage.
2672 else if (PrologStage >= AccessStage + StageDiff + np &&
2673 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2674 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2675 // Check if the Phi has already been scheduled, but the loop intruction
2676 // is either another Phi, or doesn't occur in the loop.
2677 else if (PrologStage >= AccessStage + StageDiff + np) {
2678 // If the Phi references another Phi, we need to examine the other
2679 // Phi to get the correct value.
2680 PhiOp1 = LoopVal;
2681 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2682 int Indirects = 1;
2683 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2684 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2685 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2686 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2687 else
2688 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2689 InstOp1 = MRI.getVRegDef(PhiOp1);
2690 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2691 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2692 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2693 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2694 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2695 break;
2696 }
2697 ++Indirects;
2698 }
2699 } else
2700 PhiOp1 = InitVal;
2701 // If this references a generated Phi in the kernel, get the Phi operand
2702 // from the incoming block.
2703 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2704 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2705 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2706
2707 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2708 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2709 // In the epilog, a map lookup is needed to get the value from the kernel,
2710 // or previous epilog block. How is does this depends on if the
2711 // instruction is scheduled in the previous block.
2712 if (!InKernel) {
2713 int StageDiffAdj = 0;
2714 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2715 StageDiffAdj = StageScheduled - LoopValStage;
2716 // Use the loop value defined in the kernel, unless the kernel
2717 // contains the last definition of the Phi.
2718 if (np == 0 && PrevStage == LastStageNum &&
2719 (StageScheduled != 0 || LoopValStage != 0) &&
2720 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2721 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2722 // Use the value defined by the Phi. We add one because we switch
2723 // from looking at the loop value to the Phi definition.
2724 else if (np > 0 && PrevStage == LastStageNum &&
2725 VRMap[PrevStage - np + 1].count(Def))
2726 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2727 // Use the loop value defined in the kernel.
2728 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2729 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2730 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2731 // Use the value defined by the Phi, unless we're generating the first
2732 // epilog and the Phi refers to a Phi in a different stage.
2733 else if (VRMap[PrevStage - np].count(Def) &&
2734 (!LoopDefIsPhi || PrevStage != LastStageNum))
2735 PhiOp2 = VRMap[PrevStage - np][Def];
2736 }
2737
2738 // Check if we can reuse an existing Phi. This occurs when a Phi
2739 // references another Phi, and the other Phi is scheduled in an
2740 // earlier stage. We can try to reuse an existing Phi up until the last
2741 // stage of the current Phi.
Krzysztof Parzyszek55cb49862018-03-26 16:10:48 +00002742 if (LoopDefIsPhi && (int)(PrologStage - np) >= StageScheduled) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002743 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2744 int StageDiff = (StageScheduled - LoopValStage);
2745 LVNumStages -= StageDiff;
Krzysztof Parzyszek3a0a15a2018-03-26 15:58:16 +00002746 // Make sure the loop value Phi has been processed already.
2747 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002748 NewReg = PhiOp2;
2749 unsigned ReuseStage = CurStageNum;
2750 if (Schedule.isLoopCarried(this, *PhiInst))
2751 ReuseStage -= LVNumStages;
2752 // Check if the Phi to reuse has been generated yet. If not, then
2753 // there is nothing to reuse.
Krzysztof Parzyszek55cb49862018-03-26 16:10:48 +00002754 if (VRMap[ReuseStage - np].count(LoopVal)) {
2755 NewReg = VRMap[ReuseStage - np][LoopVal];
Brendon Cahoon254f8892016-07-29 16:44:44 +00002756
2757 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2758 &*BBI, Def, NewReg);
2759 // Update the map with the new Phi name.
2760 VRMap[CurStageNum - np][Def] = NewReg;
2761 PhiOp2 = NewReg;
2762 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2763 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2764
2765 if (IsLast && np == NumPhis - 1)
2766 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2767 continue;
2768 }
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00002769 } else if (InKernel && StageDiff > 0 &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002770 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2771 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2772 }
2773
2774 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2775 NewReg = MRI.createVirtualRegister(RC);
2776
2777 MachineInstrBuilder NewPhi =
2778 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2779 TII->get(TargetOpcode::PHI), NewReg);
2780 NewPhi.addReg(PhiOp1).addMBB(BB1);
2781 NewPhi.addReg(PhiOp2).addMBB(BB2);
2782 if (np == 0)
2783 InstrMap[NewPhi] = &*BBI;
2784
2785 // We define the Phis after creating the new pipelined code, so
2786 // we need to rename the Phi values in scheduled instructions.
2787
2788 unsigned PrevReg = 0;
2789 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2790 PrevReg = VRMap[PrevStage - np][LoopVal];
2791 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2792 Def, NewReg, PrevReg);
2793 // If the Phi has been scheduled, use the new name for rewriting.
2794 if (VRMap[CurStageNum - np].count(Def)) {
2795 unsigned R = VRMap[CurStageNum - np][Def];
2796 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2797 R, NewReg);
2798 }
2799
2800 // Check if we need to rename any uses that occurs after the loop. The
2801 // register to replace depends on whether the Phi is scheduled in the
2802 // epilog.
2803 if (IsLast && np == NumPhis - 1)
2804 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2805
2806 // In the kernel, a dependent Phi uses the value from this Phi.
2807 if (InKernel)
2808 PhiOp2 = NewReg;
2809
2810 // Update the map with the new Phi name.
2811 VRMap[CurStageNum - np][Def] = NewReg;
2812 }
2813
2814 while (NumPhis++ < NumStages) {
2815 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2816 &*BBI, Def, NewReg, 0);
2817 }
2818
2819 // Check if we need to rename a Phi that has been eliminated due to
2820 // scheduling.
2821 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2822 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2823 }
2824}
2825
2826/// Generate Phis for the specified block in the generated pipelined code.
2827/// These are new Phis needed because the definition is scheduled after the
2828/// use in the pipelened sequence.
2829void SwingSchedulerDAG::generatePhis(
2830 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2831 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2832 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2833 bool IsLast) {
2834 // Compute the stage number that contains the initial Phi value, and
2835 // the Phi from the previous stage.
2836 unsigned PrologStage = 0;
2837 unsigned PrevStage = 0;
2838 unsigned StageDiff = CurStageNum - LastStageNum;
2839 bool InKernel = (StageDiff == 0);
2840 if (InKernel) {
2841 PrologStage = LastStageNum - 1;
2842 PrevStage = CurStageNum;
2843 } else {
2844 PrologStage = LastStageNum - StageDiff;
2845 PrevStage = LastStageNum + StageDiff - 1;
2846 }
2847
2848 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2849 BBE = BB->instr_end();
2850 BBI != BBE; ++BBI) {
2851 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2852 MachineOperand &MO = BBI->getOperand(i);
2853 if (!MO.isReg() || !MO.isDef() ||
2854 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2855 continue;
2856
2857 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2858 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2859 unsigned Def = MO.getReg();
2860 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2861 // An instruction scheduled in stage 0 and is used after the loop
2862 // requires a phi in the epilog for the last definition from either
2863 // the kernel or prolog.
2864 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2865 hasUseAfterLoop(Def, BB, MRI))
2866 NumPhis = 1;
2867 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2868 continue;
2869
2870 unsigned PhiOp2 = VRMap[PrevStage][Def];
2871 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2872 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2873 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2874 // The number of Phis can't exceed the number of prolog stages. The
2875 // prolog stage number is zero based.
2876 if (NumPhis > PrologStage + 1 - StageScheduled)
2877 NumPhis = PrologStage + 1 - StageScheduled;
2878 for (unsigned np = 0; np < NumPhis; ++np) {
2879 unsigned PhiOp1 = VRMap[PrologStage][Def];
2880 if (np <= PrologStage)
2881 PhiOp1 = VRMap[PrologStage - np][Def];
2882 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2883 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2884 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2885 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2886 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2887 }
2888 if (!InKernel)
2889 PhiOp2 = VRMap[PrevStage - np][Def];
2890
2891 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2892 unsigned NewReg = MRI.createVirtualRegister(RC);
2893
2894 MachineInstrBuilder NewPhi =
2895 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2896 TII->get(TargetOpcode::PHI), NewReg);
2897 NewPhi.addReg(PhiOp1).addMBB(BB1);
2898 NewPhi.addReg(PhiOp2).addMBB(BB2);
2899 if (np == 0)
2900 InstrMap[NewPhi] = &*BBI;
2901
2902 // Rewrite uses and update the map. The actions depend upon whether
2903 // we generating code for the kernel or epilog blocks.
2904 if (InKernel) {
2905 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2906 &*BBI, PhiOp1, NewReg);
2907 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2908 &*BBI, PhiOp2, NewReg);
2909
2910 PhiOp2 = NewReg;
2911 VRMap[PrevStage - np - 1][Def] = NewReg;
2912 } else {
2913 VRMap[CurStageNum - np][Def] = NewReg;
2914 if (np == NumPhis - 1)
2915 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2916 &*BBI, Def, NewReg);
2917 }
2918 if (IsLast && np == NumPhis - 1)
2919 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2920 }
2921 }
2922 }
2923}
2924
2925/// Remove instructions that generate values with no uses.
2926/// Typically, these are induction variable operations that generate values
2927/// used in the loop itself. A dead instruction has a definition with
2928/// no uses, or uses that occur in the original loop only.
2929void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2930 MBBVectorTy &EpilogBBs) {
2931 // For each epilog block, check that the value defined by each instruction
2932 // is used. If not, delete it.
2933 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2934 MBE = EpilogBBs.rend();
2935 MBB != MBE; ++MBB)
2936 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2937 ME = (*MBB)->instr_rend();
2938 MI != ME;) {
2939 // From DeadMachineInstructionElem. Don't delete inline assembly.
2940 if (MI->isInlineAsm()) {
2941 ++MI;
2942 continue;
2943 }
2944 bool SawStore = false;
2945 // Check if it's safe to remove the instruction due to side effects.
2946 // We can, and want to, remove Phis here.
2947 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2948 ++MI;
2949 continue;
2950 }
2951 bool used = true;
2952 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2953 MOE = MI->operands_end();
2954 MOI != MOE; ++MOI) {
2955 if (!MOI->isReg() || !MOI->isDef())
2956 continue;
2957 unsigned reg = MOI->getReg();
Krzysztof Parzyszekb9b75b82018-03-26 15:53:23 +00002958 // Assume physical registers are used, unless they are marked dead.
2959 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
2960 used = !MOI->isDead();
2961 if (used)
2962 break;
2963 continue;
2964 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00002965 unsigned realUses = 0;
2966 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2967 EI = MRI.use_end();
2968 UI != EI; ++UI) {
2969 // Check if there are any uses that occur only in the original
2970 // loop. If so, that's not a real use.
2971 if (UI->getParent()->getParent() != BB) {
2972 realUses++;
2973 used = true;
2974 break;
2975 }
2976 }
2977 if (realUses > 0)
2978 break;
2979 used = false;
2980 }
2981 if (!used) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002982 LIS.RemoveMachineInstrFromMaps(*MI);
Duncan P. N. Exon Smith5c001c32016-08-30 00:13:12 +00002983 MI++->eraseFromParent();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002984 continue;
2985 }
2986 ++MI;
2987 }
2988 // In the kernel block, check if we can remove a Phi that generates a value
2989 // used in an instruction removed in the epilog block.
2990 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2991 BBE = KernelBB->getFirstNonPHI();
2992 BBI != BBE;) {
2993 MachineInstr *MI = &*BBI;
2994 ++BBI;
2995 unsigned reg = MI->getOperand(0).getReg();
2996 if (MRI.use_begin(reg) == MRI.use_end()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002997 LIS.RemoveMachineInstrFromMaps(*MI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002998 MI->eraseFromParent();
2999 }
3000 }
3001}
3002
3003/// For loop carried definitions, we split the lifetime of a virtual register
3004/// that has uses past the definition in the next iteration. A copy with a new
3005/// virtual register is inserted before the definition, which helps with
3006/// generating a better register assignment.
3007///
3008/// v1 = phi(a, v2) v1 = phi(a, v2)
3009/// v2 = phi(b, v3) v2 = phi(b, v3)
3010/// v3 = .. v4 = copy v1
3011/// .. = V1 v3 = ..
3012/// .. = v4
3013void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
3014 MBBVectorTy &EpilogBBs,
3015 SMSchedule &Schedule) {
3016 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Bob Wilson90ecac02018-01-04 02:58:15 +00003017 for (auto &PHI : KernelBB->phis()) {
3018 unsigned Def = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003019 // Check for any Phi definition that used as an operand of another Phi
3020 // in the same block.
3021 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
3022 E = MRI.use_instr_end();
3023 I != E; ++I) {
3024 if (I->isPHI() && I->getParent() == KernelBB) {
3025 // Get the loop carried definition.
Bob Wilson90ecac02018-01-04 02:58:15 +00003026 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003027 if (!LCDef)
3028 continue;
3029 MachineInstr *MI = MRI.getVRegDef(LCDef);
3030 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
3031 continue;
3032 // Search through the rest of the block looking for uses of the Phi
3033 // definition. If one occurs, then split the lifetime.
3034 unsigned SplitReg = 0;
3035 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
3036 KernelBB->instr_end()))
3037 if (BBJ.readsRegister(Def)) {
3038 // We split the lifetime when we find the first use.
3039 if (SplitReg == 0) {
3040 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
3041 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
3042 TII->get(TargetOpcode::COPY), SplitReg)
3043 .addReg(Def);
3044 }
3045 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
3046 }
3047 if (!SplitReg)
3048 continue;
3049 // Search through each of the epilog blocks for any uses to be renamed.
3050 for (auto &Epilog : EpilogBBs)
3051 for (auto &I : *Epilog)
3052 if (I.readsRegister(Def))
3053 I.substituteRegister(Def, SplitReg, 0, *TRI);
3054 break;
3055 }
3056 }
3057 }
3058}
3059
3060/// Remove the incoming block from the Phis in a basic block.
3061static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
3062 for (MachineInstr &MI : *BB) {
3063 if (!MI.isPHI())
3064 break;
3065 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
3066 if (MI.getOperand(i + 1).getMBB() == Incoming) {
3067 MI.RemoveOperand(i + 1);
3068 MI.RemoveOperand(i);
3069 break;
3070 }
3071 }
3072}
3073
3074/// Create branches from each prolog basic block to the appropriate epilog
3075/// block. These edges are needed if the loop ends before reaching the
3076/// kernel.
3077void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
3078 MachineBasicBlock *KernelBB,
3079 MBBVectorTy &EpilogBBs,
3080 SMSchedule &Schedule, ValueMapTy *VRMap) {
3081 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
3082 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
3083 MachineInstr *Cmp = Pass.LI.LoopCompare;
3084 MachineBasicBlock *LastPro = KernelBB;
3085 MachineBasicBlock *LastEpi = KernelBB;
3086
3087 // Start from the blocks connected to the kernel and work "out"
3088 // to the first prolog and the last epilog blocks.
3089 SmallVector<MachineInstr *, 4> PrevInsts;
3090 unsigned MaxIter = PrologBBs.size() - 1;
3091 unsigned LC = UINT_MAX;
3092 unsigned LCMin = UINT_MAX;
3093 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
3094 // Add branches to the prolog that go to the corresponding
3095 // epilog, and the fall-thru prolog/kernel block.
3096 MachineBasicBlock *Prolog = PrologBBs[j];
3097 MachineBasicBlock *Epilog = EpilogBBs[i];
3098 // We've executed one iteration, so decrement the loop count and check for
3099 // the loop end.
3100 SmallVector<MachineOperand, 4> Cond;
3101 // Check if the LOOP0 has already been removed. If so, then there is no need
3102 // to reduce the trip count.
3103 if (LC != 0)
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003104 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003105 MaxIter);
3106
3107 // Record the value of the first trip count, which is used to determine if
3108 // branches and blocks can be removed for constant trip counts.
3109 if (LCMin == UINT_MAX)
3110 LCMin = LC;
3111
3112 unsigned numAdded = 0;
3113 if (TargetRegisterInfo::isVirtualRegister(LC)) {
3114 Prolog->addSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003115 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003116 } else if (j >= LCMin) {
3117 Prolog->addSuccessor(Epilog);
3118 Prolog->removeSuccessor(LastPro);
3119 LastEpi->removeSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003120 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003121 removePhis(Epilog, LastEpi);
3122 // Remove the blocks that are no longer referenced.
3123 if (LastPro != LastEpi) {
3124 LastEpi->clear();
3125 LastEpi->eraseFromParent();
3126 }
3127 LastPro->clear();
3128 LastPro->eraseFromParent();
3129 } else {
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003130 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003131 removePhis(Epilog, Prolog);
3132 }
3133 LastPro = Prolog;
3134 LastEpi = Epilog;
3135 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3136 E = Prolog->instr_rend();
3137 I != E && numAdded > 0; ++I, --numAdded)
3138 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3139 }
3140}
3141
3142/// Return true if we can compute the amount the instruction changes
3143/// during each iteration. Set Delta to the amount of the change.
3144bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3145 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3146 unsigned BaseReg;
3147 int64_t Offset;
3148 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3149 return false;
3150
3151 MachineRegisterInfo &MRI = MF.getRegInfo();
3152 // Check if there is a Phi. If so, get the definition in the loop.
3153 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3154 if (BaseDef && BaseDef->isPHI()) {
3155 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3156 BaseDef = MRI.getVRegDef(BaseReg);
3157 }
3158 if (!BaseDef)
3159 return false;
3160
3161 int D = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003162 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003163 return false;
3164
3165 Delta = D;
3166 return true;
3167}
3168
3169/// Update the memory operand with a new offset when the pipeliner
Justin Lebarcf56e922016-08-12 23:58:19 +00003170/// generates a new copy of the instruction that refers to a
Brendon Cahoon254f8892016-07-29 16:44:44 +00003171/// different memory location.
3172void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3173 MachineInstr &OldMI, unsigned Num) {
3174 if (Num == 0)
3175 return;
3176 // If the instruction has memory operands, then adjust the offset
3177 // when the instruction appears in different stages.
3178 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3179 if (NumRefs == 0)
3180 return;
3181 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3182 unsigned Refs = 0;
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003183 for (MachineMemOperand *MMO : NewMI.memoperands()) {
Justin Lebaradbf09e2016-09-11 01:38:58 +00003184 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
3185 (!MMO->getValue())) {
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003186 NewMemRefs[Refs++] = MMO;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003187 continue;
3188 }
3189 unsigned Delta;
Krzysztof Parzyszek785b6ce2018-03-26 15:45:55 +00003190 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003191 int64_t AdjOffset = Delta * Num;
3192 NewMemRefs[Refs++] =
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003193 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
Krzysztof Parzyszek2d790172018-02-27 22:40:52 +00003194 } else {
3195 NewMI.dropMemRefs();
3196 return;
3197 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003198 }
3199 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3200}
3201
3202/// Clone the instruction for the new pipelined loop and update the
3203/// memory operands, if needed.
3204MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3205 unsigned CurStageNum,
3206 unsigned InstStageNum) {
3207 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3208 // Check for tied operands in inline asm instructions. This should be handled
3209 // elsewhere, but I'm not sure of the best solution.
3210 if (OldMI->isInlineAsm())
3211 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3212 const auto &MO = OldMI->getOperand(i);
3213 if (MO.isReg() && MO.isUse())
3214 break;
3215 unsigned UseIdx;
3216 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3217 NewMI->tieOperands(i, UseIdx);
3218 }
3219 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3220 return NewMI;
3221}
3222
3223/// Clone the instruction for the new pipelined loop. If needed, this
3224/// function updates the instruction using the values saved in the
3225/// InstrChanges structure.
3226MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3227 unsigned CurStageNum,
3228 unsigned InstStageNum,
3229 SMSchedule &Schedule) {
3230 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3231 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3232 InstrChanges.find(getSUnit(OldMI));
3233 if (It != InstrChanges.end()) {
3234 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3235 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003236 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003237 return nullptr;
3238 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3239 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3240 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3241 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3242 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3243 }
3244 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3245 return NewMI;
3246}
3247
3248/// Update the machine instruction with new virtual registers. This
3249/// function may change the defintions and/or uses.
3250void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3251 unsigned CurStageNum,
3252 unsigned InstrStageNum,
3253 SMSchedule &Schedule,
3254 ValueMapTy *VRMap) {
3255 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3256 MachineOperand &MO = NewMI->getOperand(i);
3257 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3258 continue;
3259 unsigned reg = MO.getReg();
3260 if (MO.isDef()) {
3261 // Create a new virtual register for the definition.
3262 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3263 unsigned NewReg = MRI.createVirtualRegister(RC);
3264 MO.setReg(NewReg);
3265 VRMap[CurStageNum][reg] = NewReg;
3266 if (LastDef)
3267 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3268 } else if (MO.isUse()) {
3269 MachineInstr *Def = MRI.getVRegDef(reg);
3270 // Compute the stage that contains the last definition for instruction.
3271 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3272 unsigned StageNum = CurStageNum;
3273 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3274 // Compute the difference in stages between the defintion and the use.
3275 unsigned StageDiff = (InstrStageNum - DefStageNum);
3276 // Make an adjustment to get the last definition.
3277 StageNum -= StageDiff;
3278 }
3279 if (VRMap[StageNum].count(reg))
3280 MO.setReg(VRMap[StageNum][reg]);
3281 }
3282 }
3283}
3284
3285/// Return the instruction in the loop that defines the register.
3286/// If the definition is a Phi, then follow the Phi operand to
3287/// the instruction in the loop.
3288MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3289 SmallPtrSet<MachineInstr *, 8> Visited;
3290 MachineInstr *Def = MRI.getVRegDef(Reg);
3291 while (Def->isPHI()) {
3292 if (!Visited.insert(Def).second)
3293 break;
3294 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3295 if (Def->getOperand(i + 1).getMBB() == BB) {
3296 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3297 break;
3298 }
3299 }
3300 return Def;
3301}
3302
3303/// Return the new name for the value from the previous stage.
3304unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3305 unsigned LoopVal, unsigned LoopStage,
3306 ValueMapTy *VRMap,
3307 MachineBasicBlock *BB) {
3308 unsigned PrevVal = 0;
3309 if (StageNum > PhiStage) {
3310 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3311 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3312 // The name is defined in the previous stage.
3313 PrevVal = VRMap[StageNum - 1][LoopVal];
3314 else if (VRMap[StageNum].count(LoopVal))
3315 // The previous name is defined in the current stage when the instruction
3316 // order is swapped.
3317 PrevVal = VRMap[StageNum][LoopVal];
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00003318 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003319 // The loop value hasn't yet been scheduled.
3320 PrevVal = LoopVal;
3321 else if (StageNum == PhiStage + 1)
3322 // The loop value is another phi, which has not been scheduled.
3323 PrevVal = getInitPhiReg(*LoopInst, BB);
3324 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3325 // The loop value is another phi, which has been scheduled.
3326 PrevVal =
3327 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3328 LoopStage, VRMap, BB);
3329 }
3330 return PrevVal;
3331}
3332
3333/// Rewrite the Phi values in the specified block to use the mappings
3334/// from the initial operand. Once the Phi is scheduled, we switch
3335/// to using the loop value instead of the Phi value, so those names
3336/// do not need to be rewritten.
3337void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3338 unsigned StageNum,
3339 SMSchedule &Schedule,
3340 ValueMapTy *VRMap,
3341 InstrMapTy &InstrMap) {
Bob Wilson90ecac02018-01-04 02:58:15 +00003342 for (auto &PHI : BB->phis()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003343 unsigned InitVal = 0;
3344 unsigned LoopVal = 0;
Bob Wilson90ecac02018-01-04 02:58:15 +00003345 getPhiRegs(PHI, BB, InitVal, LoopVal);
3346 unsigned PhiDef = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003347
3348 unsigned PhiStage =
3349 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3350 unsigned LoopStage =
3351 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3352 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3353 if (NumPhis > StageNum)
3354 NumPhis = StageNum;
3355 for (unsigned np = 0; np <= NumPhis; ++np) {
3356 unsigned NewVal =
3357 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3358 if (!NewVal)
3359 NewVal = InitVal;
Bob Wilson90ecac02018-01-04 02:58:15 +00003360 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003361 PhiDef, NewVal);
3362 }
3363 }
3364}
3365
3366/// Rewrite a previously scheduled instruction to use the register value
3367/// from the new instruction. Make sure the instruction occurs in the
3368/// basic block, and we don't change the uses in the new instruction.
3369void SwingSchedulerDAG::rewriteScheduledInstr(
3370 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3371 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3372 unsigned NewReg, unsigned PrevReg) {
3373 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3374 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3375 // Rewrite uses that have been scheduled already to use the new
3376 // Phi register.
3377 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3378 EI = MRI.use_end();
3379 UI != EI;) {
3380 MachineOperand &UseOp = *UI;
3381 MachineInstr *UseMI = UseOp.getParent();
3382 ++UI;
3383 if (UseMI->getParent() != BB)
3384 continue;
3385 if (UseMI->isPHI()) {
3386 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3387 continue;
3388 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3389 continue;
3390 }
3391 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3392 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3393 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3394 int StageSched = Schedule.stageScheduled(OrigMISU);
3395 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3396 unsigned ReplaceReg = 0;
3397 // This is the stage for the scheduled instruction.
3398 if (StagePhi == StageSched && Phi->isPHI()) {
3399 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3400 if (PrevReg && InProlog)
3401 ReplaceReg = PrevReg;
3402 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3403 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3404 ReplaceReg = PrevReg;
3405 else
3406 ReplaceReg = NewReg;
3407 }
3408 // The scheduled instruction occurs before the scheduled Phi, and the
3409 // Phi is not loop carried.
3410 if (!InProlog && StagePhi + 1 == StageSched &&
3411 !Schedule.isLoopCarried(this, *Phi))
3412 ReplaceReg = NewReg;
3413 if (StagePhi > StageSched && Phi->isPHI())
3414 ReplaceReg = NewReg;
3415 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3416 ReplaceReg = NewReg;
3417 if (ReplaceReg) {
3418 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3419 UseOp.setReg(ReplaceReg);
3420 }
3421 }
3422}
3423
3424/// Check if we can change the instruction to use an offset value from the
3425/// previous iteration. If so, return true and set the base and offset values
3426/// so that we can rewrite the load, if necessary.
3427/// v1 = Phi(v0, v3)
3428/// v2 = load v1, 0
3429/// v3 = post_store v1, 4, x
3430/// This function enables the load to be rewritten as v2 = load v3, 4.
3431bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3432 unsigned &BasePos,
3433 unsigned &OffsetPos,
3434 unsigned &NewBase,
3435 int64_t &Offset) {
3436 // Get the load instruction.
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003437 if (TII->isPostIncrement(*MI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003438 return false;
3439 unsigned BasePosLd, OffsetPosLd;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003440 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003441 return false;
3442 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3443
3444 // Look for the Phi instruction.
Justin Bognerfdf9bf42017-10-10 23:50:49 +00003445 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003446 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3447 if (!Phi || !Phi->isPHI())
3448 return false;
3449 // Get the register defined in the loop block.
3450 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3451 if (!PrevReg)
3452 return false;
3453
3454 // Check for the post-increment load/store instruction.
3455 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3456 if (!PrevDef || PrevDef == MI)
3457 return false;
3458
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003459 if (!TII->isPostIncrement(*PrevDef))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003460 return false;
3461
3462 unsigned BasePos1 = 0, OffsetPos1 = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003463 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003464 return false;
3465
Krzysztof Parzyszek40df8a22018-03-26 16:17:06 +00003466 // Make sure that the instructions do not access the same memory location in
3467 // the next iteration.
Brendon Cahoon254f8892016-07-29 16:44:44 +00003468 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3469 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
Krzysztof Parzyszek40df8a22018-03-26 16:17:06 +00003470 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3471 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
3472 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
3473 MF.DeleteMachineInstr(NewMI);
3474 if (!Disjoint)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003475 return false;
3476
3477 // Set the return value once we determine that we return true.
3478 BasePos = BasePosLd;
3479 OffsetPos = OffsetPosLd;
3480 NewBase = PrevReg;
3481 Offset = StoreOffset;
3482 return true;
3483}
3484
3485/// Apply changes to the instruction if needed. The changes are need
3486/// to improve the scheduling and depend up on the final schedule.
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003487void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3488 SMSchedule &Schedule) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003489 SUnit *SU = getSUnit(MI);
3490 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3491 InstrChanges.find(SU);
3492 if (It != InstrChanges.end()) {
3493 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3494 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003495 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003496 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003497 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3498 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3499 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3500 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3501 int BaseStageNum = Schedule.stageScheduled(SU);
3502 int BaseCycleNum = Schedule.cycleScheduled(SU);
3503 if (BaseStageNum < DefStageNum) {
3504 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3505 int OffsetDiff = DefStageNum - BaseStageNum;
3506 if (DefCycleNum < BaseCycleNum) {
3507 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3508 if (OffsetDiff > 0)
3509 --OffsetDiff;
3510 }
3511 int64_t NewOffset =
3512 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3513 NewMI->getOperand(OffsetPos).setImm(NewOffset);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003514 SU->setInstr(NewMI);
3515 MISUnitMap[NewMI] = SU;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003516 NewMIs.insert(NewMI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003517 }
3518 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003519}
3520
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003521/// Return true for an order or output dependence that is loop carried
3522/// potentially. A dependence is loop carried if the destination defines a valu
3523/// that may be used or defined by the source in a subsequent iteration.
3524bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
3525 bool isSucc) {
3526 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
3527 Dep.isArtificial())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003528 return false;
3529
3530 if (!SwpPruneLoopCarried)
3531 return true;
3532
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003533 if (Dep.getKind() == SDep::Output)
3534 return true;
3535
Brendon Cahoon254f8892016-07-29 16:44:44 +00003536 MachineInstr *SI = Source->getInstr();
3537 MachineInstr *DI = Dep.getSUnit()->getInstr();
3538 if (!isSucc)
3539 std::swap(SI, DI);
3540 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3541
3542 // Assume ordered loads and stores may have a loop carried dependence.
3543 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3544 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3545 return true;
3546
3547 // Only chain dependences between a load and store can be loop carried.
3548 if (!DI->mayStore() || !SI->mayLoad())
3549 return false;
3550
3551 unsigned DeltaS, DeltaD;
3552 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3553 return true;
3554
3555 unsigned BaseRegS, BaseRegD;
3556 int64_t OffsetS, OffsetD;
3557 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3558 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3559 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3560 return true;
3561
3562 if (BaseRegS != BaseRegD)
3563 return true;
3564
3565 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3566 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3567
3568 // This is the main test, which checks the offset values and the loop
3569 // increment value to determine if the accesses may be loop carried.
3570 if (OffsetS >= OffsetD)
3571 return OffsetS + AccessSizeS > DeltaS;
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +00003572 else
Brendon Cahoon254f8892016-07-29 16:44:44 +00003573 return OffsetD + AccessSizeD > DeltaD;
3574
3575 return true;
3576}
3577
Krzysztof Parzyszek88391242016-12-22 19:21:20 +00003578void SwingSchedulerDAG::postprocessDAG() {
3579 for (auto &M : Mutations)
3580 M->apply(this);
3581}
3582
Brendon Cahoon254f8892016-07-29 16:44:44 +00003583/// Try to schedule the node at the specified StartCycle and continue
3584/// until the node is schedule or the EndCycle is reached. This function
3585/// returns true if the node is scheduled. This routine may search either
3586/// forward or backward for a place to insert the instruction based upon
3587/// the relative values of StartCycle and EndCycle.
3588bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3589 bool forward = true;
3590 if (StartCycle > EndCycle)
3591 forward = false;
3592
3593 // The terminating condition depends on the direction.
3594 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3595 for (int curCycle = StartCycle; curCycle != termCycle;
3596 forward ? ++curCycle : --curCycle) {
3597
3598 // Add the already scheduled instructions at the specified cycle to the DFA.
3599 Resources->clearResources();
3600 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3601 checkCycle <= LastCycle; checkCycle += II) {
3602 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3603
3604 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3605 E = cycleInstrs.end();
3606 I != E; ++I) {
3607 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3608 continue;
3609 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3610 "These instructions have already been scheduled.");
3611 Resources->reserveResources(*(*I)->getInstr());
3612 }
3613 }
3614 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3615 Resources->canReserveResources(*SU->getInstr())) {
3616 DEBUG({
3617 dbgs() << "\tinsert at cycle " << curCycle << " ";
3618 SU->getInstr()->dump();
3619 });
3620
3621 ScheduledInstrs[curCycle].push_back(SU);
3622 InstrToCycle.insert(std::make_pair(SU, curCycle));
3623 if (curCycle > LastCycle)
3624 LastCycle = curCycle;
3625 if (curCycle < FirstCycle)
3626 FirstCycle = curCycle;
3627 return true;
3628 }
3629 DEBUG({
3630 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3631 SU->getInstr()->dump();
3632 });
3633 }
3634 return false;
3635}
3636
3637// Return the cycle of the earliest scheduled instruction in the chain.
3638int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3639 SmallPtrSet<SUnit *, 8> Visited;
3640 SmallVector<SDep, 8> Worklist;
3641 Worklist.push_back(Dep);
3642 int EarlyCycle = INT_MAX;
3643 while (!Worklist.empty()) {
3644 const SDep &Cur = Worklist.pop_back_val();
3645 SUnit *PrevSU = Cur.getSUnit();
3646 if (Visited.count(PrevSU))
3647 continue;
3648 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3649 if (it == InstrToCycle.end())
3650 continue;
3651 EarlyCycle = std::min(EarlyCycle, it->second);
3652 for (const auto &PI : PrevSU->Preds)
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003653 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003654 Worklist.push_back(PI);
3655 Visited.insert(PrevSU);
3656 }
3657 return EarlyCycle;
3658}
3659
3660// Return the cycle of the latest scheduled instruction in the chain.
3661int SMSchedule::latestCycleInChain(const SDep &Dep) {
3662 SmallPtrSet<SUnit *, 8> Visited;
3663 SmallVector<SDep, 8> Worklist;
3664 Worklist.push_back(Dep);
3665 int LateCycle = INT_MIN;
3666 while (!Worklist.empty()) {
3667 const SDep &Cur = Worklist.pop_back_val();
3668 SUnit *SuccSU = Cur.getSUnit();
3669 if (Visited.count(SuccSU))
3670 continue;
3671 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3672 if (it == InstrToCycle.end())
3673 continue;
3674 LateCycle = std::max(LateCycle, it->second);
3675 for (const auto &SI : SuccSU->Succs)
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003676 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003677 Worklist.push_back(SI);
3678 Visited.insert(SuccSU);
3679 }
3680 return LateCycle;
3681}
3682
3683/// If an instruction has a use that spans multiple iterations, then
3684/// return true. These instructions are characterized by having a back-ege
3685/// to a Phi, which contains a reference to another Phi.
3686static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3687 for (auto &P : SU->Preds)
3688 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3689 for (auto &S : P.getSUnit()->Succs)
Krzysztof Parzyszekb9b75b82018-03-26 15:53:23 +00003690 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003691 return P.getSUnit();
3692 return nullptr;
3693}
3694
3695/// Compute the scheduling start slot for the instruction. The start slot
3696/// depends on any predecessor or successor nodes scheduled already.
3697void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3698 int *MinEnd, int *MaxStart, int II,
3699 SwingSchedulerDAG *DAG) {
3700 // Iterate over each instruction that has been scheduled already. The start
3701 // slot computuation depends on whether the previously scheduled instruction
3702 // is a predecessor or successor of the specified instruction.
3703 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3704
3705 // Iterate over each instruction in the current cycle.
3706 for (SUnit *I : getInstructions(cycle)) {
3707 // Because we're processing a DAG for the dependences, we recognize
3708 // the back-edge in recurrences by anti dependences.
3709 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3710 const SDep &Dep = SU->Preds[i];
3711 if (Dep.getSUnit() == I) {
3712 if (!DAG->isBackedge(SU, Dep)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003713 int EarlyStart = cycle + Dep.getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00003714 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3715 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003716 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003717 int End = earliestCycleInChain(Dep) + (II - 1);
3718 *MinEnd = std::min(*MinEnd, End);
3719 }
3720 } else {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003721 int LateStart = cycle - Dep.getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00003722 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3723 *MinLateStart = std::min(*MinLateStart, LateStart);
3724 }
3725 }
3726 // For instruction that requires multiple iterations, make sure that
3727 // the dependent instruction is not scheduled past the definition.
3728 SUnit *BE = multipleIterations(I, DAG);
3729 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3730 !SU->isPred(I))
3731 *MinLateStart = std::min(*MinLateStart, cycle);
3732 }
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00003733 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003734 if (SU->Succs[i].getSUnit() == I) {
3735 const SDep &Dep = SU->Succs[i];
3736 if (!DAG->isBackedge(SU, Dep)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003737 int LateStart = cycle - Dep.getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00003738 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3739 *MinLateStart = std::min(*MinLateStart, LateStart);
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003740 if (DAG->isLoopCarriedDep(SU, Dep)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003741 int Start = latestCycleInChain(Dep) + 1 - II;
3742 *MaxStart = std::max(*MaxStart, Start);
3743 }
3744 } else {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003745 int EarlyStart = cycle + Dep.getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00003746 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3747 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3748 }
3749 }
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00003750 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003751 }
3752 }
3753}
3754
3755/// Order the instructions within a cycle so that the definitions occur
3756/// before the uses. Returns true if the instruction is added to the start
3757/// of the list, or false if added to the end.
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003758void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003759 std::deque<SUnit *> &Insts) {
3760 MachineInstr *MI = SU->getInstr();
3761 bool OrderBeforeUse = false;
3762 bool OrderAfterDef = false;
3763 bool OrderBeforeDef = false;
3764 unsigned MoveDef = 0;
3765 unsigned MoveUse = 0;
3766 int StageInst1 = stageScheduled(SU);
3767
3768 unsigned Pos = 0;
3769 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3770 ++I, ++Pos) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003771 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3772 MachineOperand &MO = MI->getOperand(i);
3773 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3774 continue;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003775
Brendon Cahoon254f8892016-07-29 16:44:44 +00003776 unsigned Reg = MO.getReg();
3777 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003778 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003779 if (MI->getOperand(BasePos).getReg() == Reg)
3780 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3781 Reg = NewReg;
3782 bool Reads, Writes;
3783 std::tie(Reads, Writes) =
3784 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3785 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3786 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003787 if (MoveUse == 0)
3788 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003789 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3790 // Add the instruction after the scheduled instruction.
3791 OrderAfterDef = true;
3792 MoveDef = Pos;
3793 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3794 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3795 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003796 if (MoveUse == 0)
3797 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003798 } else {
3799 OrderAfterDef = true;
3800 MoveDef = Pos;
3801 }
3802 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3803 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003804 if (MoveUse == 0)
3805 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003806 if (MoveUse != 0) {
3807 OrderAfterDef = true;
3808 MoveDef = Pos - 1;
3809 }
3810 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3811 // Add the instruction before the scheduled instruction.
3812 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003813 if (MoveUse == 0)
3814 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003815 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3816 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003817 if (MoveUse == 0) {
3818 OrderBeforeDef = true;
3819 MoveUse = Pos;
3820 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003821 }
3822 }
3823 // Check for order dependences between instructions. Make sure the source
3824 // is ordered before the destination.
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003825 for (auto &S : SU->Succs) {
3826 if (S.getSUnit() != *I)
3827 continue;
3828 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3829 OrderBeforeUse = true;
3830 if (Pos < MoveUse)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003831 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003832 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003833 }
3834 for (auto &P : SU->Preds) {
3835 if (P.getSUnit() != *I)
3836 continue;
3837 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3838 OrderAfterDef = true;
3839 MoveDef = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003840 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003841 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003842 }
3843
3844 // A circular dependence.
3845 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3846 OrderBeforeUse = false;
3847
3848 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3849 // to a loop-carried dependence.
3850 if (OrderBeforeDef)
3851 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3852
3853 // The uncommon case when the instruction order needs to be updated because
3854 // there is both a use and def.
3855 if (OrderBeforeUse && OrderAfterDef) {
3856 SUnit *UseSU = Insts.at(MoveUse);
3857 SUnit *DefSU = Insts.at(MoveDef);
3858 if (MoveUse > MoveDef) {
3859 Insts.erase(Insts.begin() + MoveUse);
3860 Insts.erase(Insts.begin() + MoveDef);
3861 } else {
3862 Insts.erase(Insts.begin() + MoveDef);
3863 Insts.erase(Insts.begin() + MoveUse);
3864 }
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003865 orderDependence(SSD, UseSU, Insts);
3866 orderDependence(SSD, SU, Insts);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003867 orderDependence(SSD, DefSU, Insts);
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003868 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003869 }
3870 // Put the new instruction first if there is a use in the list. Otherwise,
3871 // put it at the end of the list.
3872 if (OrderBeforeUse)
3873 Insts.push_front(SU);
3874 else
3875 Insts.push_back(SU);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003876}
3877
3878/// Return true if the scheduled Phi has a loop carried operand.
3879bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3880 if (!Phi.isPHI())
3881 return false;
3882 assert(Phi.isPHI() && "Expecing a Phi.");
3883 SUnit *DefSU = SSD->getSUnit(&Phi);
3884 unsigned DefCycle = cycleScheduled(DefSU);
3885 int DefStage = stageScheduled(DefSU);
3886
3887 unsigned InitVal = 0;
3888 unsigned LoopVal = 0;
3889 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3890 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3891 if (!UseSU)
3892 return true;
3893 if (UseSU->getInstr()->isPHI())
3894 return true;
3895 unsigned LoopCycle = cycleScheduled(UseSU);
3896 int LoopStage = stageScheduled(UseSU);
Simon Pilgrim3d8482a2016-11-14 10:40:23 +00003897 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003898}
3899
3900/// Return true if the instruction is a definition that is loop carried
3901/// and defines the use on the next iteration.
3902/// v1 = phi(v2, v3)
3903/// (Def) v3 = op v1
3904/// (MO) = v1
3905/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3906/// register.
3907bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3908 MachineInstr *Def, MachineOperand &MO) {
3909 if (!MO.isReg())
3910 return false;
3911 if (Def->isPHI())
3912 return false;
3913 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3914 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3915 return false;
3916 if (!isLoopCarried(SSD, *Phi))
3917 return false;
3918 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3919 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3920 MachineOperand &DMO = Def->getOperand(i);
3921 if (!DMO.isReg() || !DMO.isDef())
3922 continue;
3923 if (DMO.getReg() == LoopReg)
3924 return true;
3925 }
3926 return false;
3927}
3928
3929// Check if the generated schedule is valid. This function checks if
3930// an instruction that uses a physical register is scheduled in a
3931// different stage than the definition. The pipeliner does not handle
3932// physical register values that may cross a basic block boundary.
3933bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003934 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3935 SUnit &SU = SSD->SUnits[i];
3936 if (!SU.hasPhysRegDefs)
3937 continue;
3938 int StageDef = stageScheduled(&SU);
3939 assert(StageDef != -1 && "Instruction should have been scheduled.");
3940 for (auto &SI : SU.Succs)
3941 if (SI.isAssignedRegDep())
Simon Pilgrimb39236b2016-07-29 18:57:32 +00003942 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003943 if (stageScheduled(SI.getSUnit()) != StageDef)
3944 return false;
3945 }
3946 return true;
3947}
3948
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003949/// A property of the node order in swing-modulo-scheduling is
3950/// that for nodes outside circuits the following holds:
3951/// none of them is scheduled after both a successor and a
3952/// predecessor.
3953/// The method below checks whether the property is met.
3954/// If not, debug information is printed and statistics information updated.
3955/// Note that we do not use an assert statement.
3956/// The reason is that although an invalid node oder may prevent
3957/// the pipeliner from finding a pipelined schedule for arbitrary II,
3958/// it does not lead to the generation of incorrect code.
3959void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3960
3961 // a sorted vector that maps each SUnit to its index in the NodeOrder
3962 typedef std::pair<SUnit *, unsigned> UnitIndex;
3963 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3964
3965 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3966 Indices.push_back(std::make_pair(NodeOrder[i], i));
3967
3968 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3969 return std::get<0>(i1) < std::get<0>(i2);
3970 };
3971
3972 // sort, so that we can perform a binary search
3973 std::sort(Indices.begin(), Indices.end(), CompareKey);
3974
3975 bool Valid = true;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00003976 (void)Valid;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003977 // for each SUnit in the NodeOrder, check whether
3978 // it appears after both a successor and a predecessor
3979 // of the SUnit. If this is the case, and the SUnit
3980 // is not part of circuit, then the NodeOrder is not
3981 // valid.
3982 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3983 SUnit *SU = NodeOrder[i];
3984 unsigned Index = i;
3985
3986 bool PredBefore = false;
3987 bool SuccBefore = false;
3988
3989 SUnit *Succ;
3990 SUnit *Pred;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00003991 (void)Succ;
3992 (void)Pred;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003993
3994 for (SDep &PredEdge : SU->Preds) {
3995 SUnit *PredSU = PredEdge.getSUnit();
3996 unsigned PredIndex =
3997 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
3998 std::make_pair(PredSU, 0), CompareKey));
3999 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
4000 PredBefore = true;
4001 Pred = PredSU;
4002 break;
4003 }
4004 }
4005
4006 for (SDep &SuccEdge : SU->Succs) {
4007 SUnit *SuccSU = SuccEdge.getSUnit();
4008 unsigned SuccIndex =
4009 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
4010 std::make_pair(SuccSU, 0), CompareKey));
4011 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
4012 SuccBefore = true;
4013 Succ = SuccSU;
4014 break;
4015 }
4016 }
4017
4018 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
4019 // instructions in circuits are allowed to be scheduled
4020 // after both a successor and predecessor.
4021 bool InCircuit = std::any_of(
4022 Circuits.begin(), Circuits.end(),
4023 [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
4024 if (InCircuit)
4025 DEBUG(dbgs() << "In a circuit, predecessor ";);
4026 else {
4027 Valid = false;
4028 NumNodeOrderIssues++;
4029 DEBUG(dbgs() << "Predecessor ";);
4030 }
4031 DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
4032 << " are scheduled before node " << SU->NodeNum << "\n";);
4033 }
4034 }
4035
4036 DEBUG({
4037 if (!Valid)
4038 dbgs() << "Invalid node order found!\n";
4039 });
4040}
4041
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004042/// Attempt to fix the degenerate cases when the instruction serialization
4043/// causes the register lifetimes to overlap. For example,
4044/// p' = store_pi(p, b)
4045/// = load p, offset
4046/// In this case p and p' overlap, which means that two registers are needed.
4047/// Instead, this function changes the load to use p' and updates the offset.
4048void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
4049 unsigned OverlapReg = 0;
4050 unsigned NewBaseReg = 0;
4051 for (SUnit *SU : Instrs) {
4052 MachineInstr *MI = SU->getInstr();
4053 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4054 const MachineOperand &MO = MI->getOperand(i);
4055 // Look for an instruction that uses p. The instruction occurs in the
4056 // same cycle but occurs later in the serialized order.
4057 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
4058 // Check that the instruction appears in the InstrChanges structure,
4059 // which contains instructions that can have the offset updated.
4060 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
4061 InstrChanges.find(SU);
4062 if (It != InstrChanges.end()) {
4063 unsigned BasePos, OffsetPos;
4064 // Update the base register and adjust the offset.
4065 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
Krzysztof Parzyszek12bdcab2017-10-11 15:59:51 +00004066 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
4067 NewMI->getOperand(BasePos).setReg(NewBaseReg);
4068 int64_t NewOffset =
4069 MI->getOperand(OffsetPos).getImm() - It->second.second;
4070 NewMI->getOperand(OffsetPos).setImm(NewOffset);
4071 SU->setInstr(NewMI);
4072 MISUnitMap[NewMI] = SU;
4073 NewMIs.insert(NewMI);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004074 }
4075 }
4076 OverlapReg = 0;
4077 NewBaseReg = 0;
4078 break;
4079 }
4080 // Look for an instruction of the form p' = op(p), which uses and defines
4081 // two virtual registers that get allocated to the same physical register.
4082 unsigned TiedUseIdx = 0;
4083 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
4084 // OverlapReg is p in the example above.
4085 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
4086 // NewBaseReg is p' in the example above.
4087 NewBaseReg = MI->getOperand(i).getReg();
4088 break;
4089 }
4090 }
4091 }
4092}
4093
Brendon Cahoon254f8892016-07-29 16:44:44 +00004094/// After the schedule has been formed, call this function to combine
4095/// the instructions from the different stages/cycles. That is, this
4096/// function creates a schedule that represents a single iteration.
4097void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
4098 // Move all instructions to the first stage from later stages.
4099 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4100 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
4101 ++stage) {
4102 std::deque<SUnit *> &cycleInstrs =
4103 ScheduledInstrs[cycle + (stage * InitiationInterval)];
4104 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
4105 E = cycleInstrs.rend();
4106 I != E; ++I)
4107 ScheduledInstrs[cycle].push_front(*I);
4108 }
4109 }
4110 // Iterate over the definitions in each instruction, and compute the
4111 // stage difference for each use. Keep the maximum value.
4112 for (auto &I : InstrToCycle) {
4113 int DefStage = stageScheduled(I.first);
4114 MachineInstr *MI = I.first->getInstr();
4115 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4116 MachineOperand &Op = MI->getOperand(i);
4117 if (!Op.isReg() || !Op.isDef())
4118 continue;
4119
4120 unsigned Reg = Op.getReg();
4121 unsigned MaxDiff = 0;
4122 bool PhiIsSwapped = false;
4123 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
4124 EI = MRI.use_end();
4125 UI != EI; ++UI) {
4126 MachineOperand &UseOp = *UI;
4127 MachineInstr *UseMI = UseOp.getParent();
4128 SUnit *SUnitUse = SSD->getSUnit(UseMI);
4129 int UseStage = stageScheduled(SUnitUse);
4130 unsigned Diff = 0;
4131 if (UseStage != -1 && UseStage >= DefStage)
4132 Diff = UseStage - DefStage;
4133 if (MI->isPHI()) {
4134 if (isLoopCarried(SSD, *MI))
4135 ++Diff;
4136 else
4137 PhiIsSwapped = true;
4138 }
4139 MaxDiff = std::max(Diff, MaxDiff);
4140 }
4141 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
4142 }
4143 }
4144
4145 // Erase all the elements in the later stages. Only one iteration should
4146 // remain in the scheduled list, and it contains all the instructions.
4147 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
4148 ScheduledInstrs.erase(cycle);
4149
4150 // Change the registers in instruction as specified in the InstrChanges
4151 // map. We need to use the new registers to create the correct order.
4152 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
4153 SUnit *SU = &SSD->SUnits[i];
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004154 SSD->applyInstrChange(SU->getInstr(), *this);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004155 }
4156
4157 // Reorder the instructions in each cycle to fix and improve the
4158 // generated code.
4159 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
4160 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004161 std::deque<SUnit *> newOrderPhi;
Brendon Cahoon254f8892016-07-29 16:44:44 +00004162 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4163 SUnit *SU = cycleInstrs[i];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004164 if (SU->getInstr()->isPHI())
4165 newOrderPhi.push_back(SU);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004166 }
4167 std::deque<SUnit *> newOrderI;
Brendon Cahoon254f8892016-07-29 16:44:44 +00004168 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4169 SUnit *SU = cycleInstrs[i];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004170 if (!SU->getInstr()->isPHI())
Brendon Cahoon254f8892016-07-29 16:44:44 +00004171 orderDependence(SSD, SU, newOrderI);
4172 }
4173 // Replace the old order with the new order.
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004174 cycleInstrs.swap(newOrderPhi);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004175 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004176 SSD->fixupRegisterOverlaps(cycleInstrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004177 }
4178
4179 DEBUG(dump(););
4180}
4181
Aaron Ballman615eb472017-10-15 14:32:27 +00004182#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Brendon Cahoon254f8892016-07-29 16:44:44 +00004183/// Print the schedule information to the given output.
4184void SMSchedule::print(raw_ostream &os) const {
4185 // Iterate over each cycle.
4186 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4187 // Iterate over each instruction in the cycle.
4188 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
4189 for (SUnit *CI : cycleInstrs->second) {
4190 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
4191 os << "(" << CI->NodeNum << ") ";
4192 CI->getInstr()->print(os);
4193 os << "\n";
4194 }
4195 }
4196}
4197
4198/// Utility function used for debugging to print the schedule.
Matthias Braun8c209aa2017-01-28 02:02:38 +00004199LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
4200#endif