blob: 15e5b6433af24cf971bd78a26bbab95905162d92 [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00006//
7//===----------------------------------------------------------------------===//
8//
9// The LoopPredication pass tries to convert loop variant range checks to loop
10// invariant by widening checks across loop iterations. For example, it will
11// convert
12//
13// for (i = 0; i < n; i++) {
14// guard(i < len);
15// ...
16// }
17//
18// to
19//
20// for (i = 0; i < n; i++) {
21// guard(n - 1 < len);
22// ...
23// }
24//
25// After this transformation the condition of the guard is loop invariant, so
26// loop-unswitch can later unswitch the loop by this condition which basically
27// predicates the loop by the widened condition:
28//
29// if (n - 1 < len)
30// for (i = 0; i < n; i++) {
31// ...
32// }
33// else
34// deoptimize
35//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000036// It's tempting to rely on SCEV here, but it has proven to be problematic.
37// Generally the facts SCEV provides about the increment step of add
38// recurrences are true if the backedge of the loop is taken, which implicitly
39// assumes that the guard doesn't fail. Using these facts to optimize the
40// guard results in a circular logic where the guard is optimized under the
41// assumption that it never fails.
42//
43// For example, in the loop below the induction variable will be marked as nuw
44// basing on the guard. Basing on nuw the guard predicate will be considered
45// monotonic. Given a monotonic condition it's tempting to replace the induction
46// variable in the condition with its value on the last iteration. But this
47// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48//
49// for (int i = b; i != e; i++)
50// guard(i u< len)
51//
52// One of the ways to reason about this problem is to use an inductive proof
53// approach. Given the loop:
54//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000055// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000056// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000057// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000058// I.INC = I + Step
59// guard(G(I));
Artur Pilipenko8aadc642017-10-27 14:46:17 +000060// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000061// }
62//
63// where B(x) and G(x) are predicates that map integers to booleans, we want a
64// loop invariant expression M such the following program has the same semantics
65// as the above:
66//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000067// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000068// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000069// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000070// I.INC = I + Step
Artur Pilipenko8aadc642017-10-27 14:46:17 +000071// guard(G(0) && M);
72// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000073// }
74//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000075// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
Fangrui Songf78650a2018-07-30 19:41:25 +000076//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000077// Informal proof that the transformation above is correct:
78//
79// By the definition of guards we can rewrite the guard condition to:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000080// G(I) && G(0) && M
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000081//
82// Let's prove that for each iteration of the loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000083// G(0) && M => G(I)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000084// And the condition above can be simplified to G(Start) && M.
Fangrui Songf78650a2018-07-30 19:41:25 +000085//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000086// Induction base.
Artur Pilipenko8aadc642017-10-27 14:46:17 +000087// G(0) && M => G(0)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000088//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000089// Induction step. Assuming G(0) && M => G(I) on the subsequent
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000090// iteration:
91//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000092// B(I) is true because it's the backedge condition.
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000093// G(I) is true because the backedge is guarded by this condition.
94//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000095// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000096//
97// Note that we can use anything stronger than M, i.e. any condition which
98// implies M.
99//
Anna Thomas7b360432017-12-04 15:11:48 +0000100// When S = 1 (i.e. forward iterating loop), the transformation is supported
101// when:
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000102// * The loop has a single latch with the condition of the form:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000103// B(X) = latchStart + X <pred> latchLimit,
104// where <pred> is u<, u<=, s<, or s<=.
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000105// * The guard condition is of the form
106// G(X) = guardStart + X u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000107//
Anna Thomas7b360432017-12-04 15:11:48 +0000108// For the ult latch comparison case M is:
109// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110// guardStart + X + 1 u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000111//
Anna Thomas7b360432017-12-04 15:11:48 +0000112// The only way the antecedent can be true and the consequent can be false is
113// if
114// X == guardLimit - 1 - guardStart
115// (and guardLimit is non-zero, but we won't use this latter fact).
116// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117// latchStart + guardLimit - 1 - guardStart u< latchLimit
118// and its negation is
119// latchStart + guardLimit - 1 - guardStart u>= latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000120//
Anna Thomas7b360432017-12-04 15:11:48 +0000121// In other words, if
122// latchLimit u<= latchStart + guardLimit - 1 - guardStart
123// then:
124// (the ranges below are written in ConstantRange notation, where [A, B) is the
125// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000126//
Anna Thomas7b360432017-12-04 15:11:48 +0000127// forall X . guardStart + X u< guardLimit &&
128// latchStart + X u< latchLimit =>
129// guardStart + X + 1 u< guardLimit
130// == forall X . guardStart + X u< guardLimit &&
131// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132// guardStart + X + 1 u< guardLimit
133// == forall X . (guardStart + X) in [0, guardLimit) &&
134// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135// (guardStart + X + 1) in [0, guardLimit)
136// == forall X . X in [-guardStart, guardLimit - guardStart) &&
137// X in [-latchStart, guardLimit - 1 - guardStart) =>
138// X in [-guardStart - 1, guardLimit - guardStart - 1)
139// == true
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000140//
Anna Thomas7b360432017-12-04 15:11:48 +0000141// So the widened condition is:
142// guardStart u< guardLimit &&
143// latchStart + guardLimit - 1 - guardStart u>= latchLimit
144// Similarly for ule condition the widened condition is:
145// guardStart u< guardLimit &&
146// latchStart + guardLimit - 1 - guardStart u> latchLimit
147// For slt condition the widened condition is:
148// guardStart u< guardLimit &&
149// latchStart + guardLimit - 1 - guardStart s>= latchLimit
150// For sle condition the widened condition is:
151// guardStart u< guardLimit &&
152// latchStart + guardLimit - 1 - guardStart s> latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000153//
Anna Thomas7b360432017-12-04 15:11:48 +0000154// When S = -1 (i.e. reverse iterating loop), the transformation is supported
155// when:
156// * The loop has a single latch with the condition of the form:
Serguei Katkovc8016e72018-02-08 10:34:08 +0000157// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
Anna Thomas7b360432017-12-04 15:11:48 +0000158// * The guard condition is of the form
159// G(X) = X - 1 u< guardLimit
160//
161// For the ugt latch comparison case M is:
162// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163//
164// The only way the antecedent can be true and the consequent can be false is if
165// X == 1.
166// If X == 1 then the second half of the antecedent is
167// 1 u> latchLimit, and its negation is latchLimit u>= 1.
168//
169// So the widened condition is:
170// guardStart u< guardLimit && latchLimit u>= 1.
171// Similarly for sgt condition the widened condition is:
172// guardStart u< guardLimit && latchLimit s>= 1.
Serguei Katkovc8016e72018-02-08 10:34:08 +0000173// For uge condition the widened condition is:
174// guardStart u< guardLimit && latchLimit u> 1.
175// For sge condition the widened condition is:
176// guardStart u< guardLimit && latchLimit s> 1.
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000177//===----------------------------------------------------------------------===//
178
179#include "llvm/Transforms/Scalar/LoopPredication.h"
Fedor Sergeevc297e842018-10-17 09:02:54 +0000180#include "llvm/ADT/Statistic.h"
Philip Reames92a71772019-04-18 16:33:17 +0000181#include "llvm/Analysis/AliasAnalysis.h"
Anna Thomas9b1176b2018-03-22 16:03:59 +0000182#include "llvm/Analysis/BranchProbabilityInfo.h"
Max Kazantsev28298e92018-12-26 08:22:25 +0000183#include "llvm/Analysis/GuardUtils.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000184#include "llvm/Analysis/LoopInfo.h"
185#include "llvm/Analysis/LoopPass.h"
186#include "llvm/Analysis/ScalarEvolution.h"
187#include "llvm/Analysis/ScalarEvolutionExpander.h"
188#include "llvm/Analysis/ScalarEvolutionExpressions.h"
189#include "llvm/IR/Function.h"
190#include "llvm/IR/GlobalValue.h"
191#include "llvm/IR/IntrinsicInst.h"
192#include "llvm/IR/Module.h"
193#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000194#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000195#include "llvm/Support/Debug.h"
196#include "llvm/Transforms/Scalar.h"
Philip Reamesd109e2a2019-04-01 16:05:15 +0000197#include "llvm/Transforms/Utils/Local.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000198#include "llvm/Transforms/Utils/LoopUtils.h"
199
200#define DEBUG_TYPE "loop-predication"
201
Fedor Sergeevc297e842018-10-17 09:02:54 +0000202STATISTIC(TotalConsidered, "Number of guards considered");
203STATISTIC(TotalWidened, "Number of checks widened");
204
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000205using namespace llvm;
206
Anna Thomas1d02b132017-11-02 21:21:02 +0000207static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
208 cl::Hidden, cl::init(true));
209
Anna Thomas7b360432017-12-04 15:11:48 +0000210static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
211 cl::Hidden, cl::init(true));
Anna Thomas9b1176b2018-03-22 16:03:59 +0000212
213static cl::opt<bool>
214 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
215 cl::Hidden, cl::init(false));
216
217// This is the scale factor for the latch probability. We use this during
218// profitability analysis to find other exiting blocks that have a much higher
219// probability of exiting the loop instead of loop exiting via latch.
220// This value should be greater than 1 for a sane profitability check.
221static cl::opt<float> LatchExitProbabilityScale(
222 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
223 cl::desc("scale factor for the latch probability. Value should be greater "
224 "than 1. Lower values are ignored"));
225
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000226static cl::opt<bool> PredicateWidenableBranchGuards(
227 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
228 cl::desc("Whether or not we should predicate guards "
229 "expressed as widenable branches to deoptimize blocks"),
230 cl::init(true));
231
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000232namespace {
233class LoopPredication {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000234 /// Represents an induction variable check:
235 /// icmp Pred, <induction variable>, <loop invariant limit>
236 struct LoopICmp {
237 ICmpInst::Predicate Pred;
238 const SCEVAddRecExpr *IV;
239 const SCEV *Limit;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000240 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
241 const SCEV *Limit)
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000242 : Pred(Pred), IV(IV), Limit(Limit) {}
243 LoopICmp() {}
Anna Thomas68797212017-11-03 14:25:39 +0000244 void dump() {
245 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
246 << ", Limit = " << *Limit << "\n";
247 }
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000248 };
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000249
Philip Reames92a71772019-04-18 16:33:17 +0000250 AliasAnalysis *AA;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000251 ScalarEvolution *SE;
Anna Thomas9b1176b2018-03-22 16:03:59 +0000252 BranchProbabilityInfo *BPI;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000253
254 Loop *L;
255 const DataLayout *DL;
256 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000257 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000258
Anna Thomas68797212017-11-03 14:25:39 +0000259 bool isSupportedStep(const SCEV* Step);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000260 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
261 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
262 ICI->getOperand(1));
263 }
264 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
265 Value *RHS);
266
267 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000268
Philip Reamesfbe64a22019-04-15 15:53:25 +0000269 /// Return an insertion point suitable for inserting a safe to speculate
270 /// instruction whose only user will be 'User' which has operands 'Ops'. A
271 /// trivial result would be the at the User itself, but we try to return a
272 /// loop invariant location if possible.
273 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
Philip Reamese46d77d2019-04-15 18:15:08 +0000274 /// Same as above, *except* that this uses the SCEV definition of invariant
275 /// which is that an expression *can be made* invariant via SCEVExpander.
276 /// Thus, this version is only suitable for finding an insert point to be be
277 /// passed to SCEVExpander!
278 Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
Philip Reamesfbe64a22019-04-15 15:53:25 +0000279
Philip Reames92a71772019-04-18 16:33:17 +0000280 /// Return true if the value is known to produce a single fixed value across
281 /// all iterations on which it executes. Note that this does not imply
282 /// speculation safety. That must be established seperately.
283 bool isLoopInvariantValue(const SCEV* S);
284
Philip Reamese46d77d2019-04-15 18:15:08 +0000285 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
Philip Reames3d4e1082019-03-29 23:06:57 +0000286 ICmpInst::Predicate Pred, const SCEV *LHS,
287 const SCEV *RHS);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000288
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000289 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000290 Instruction *Guard);
Anna Thomas68797212017-11-03 14:25:39 +0000291 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
292 LoopICmp RangeCheck,
293 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000294 Instruction *Guard);
Anna Thomas7b360432017-12-04 15:11:48 +0000295 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
296 LoopICmp RangeCheck,
297 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000298 Instruction *Guard);
Max Kazantsevca450872019-01-22 10:13:36 +0000299 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
Philip Reamese46d77d2019-04-15 18:15:08 +0000300 SCEVExpander &Expander, Instruction *Guard);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000301 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000302 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
Anna Thomas9b1176b2018-03-22 16:03:59 +0000303 // If the loop always exits through another block in the loop, we should not
304 // predicate based on the latch check. For example, the latch check can be a
305 // very coarse grained check and there can be more fine grained exit checks
306 // within the loop. We identify such unprofitable loops through BPI.
307 bool isLoopProfitableToPredicate();
308
Anna Thomas1d02b132017-11-02 21:21:02 +0000309 // When the IV type is wider than the range operand type, we can still do loop
310 // predication, by generating SCEVs for the range and latch that are of the
311 // same type. We achieve this by generating a SCEV truncate expression for the
312 // latch IV. This is done iff truncation of the IV is a safe operation,
313 // without loss of information.
314 // Another way to achieve this is by generating a wider type SCEV for the
315 // range check operand, however, this needs a more involved check that
316 // operands do not overflow. This can lead to loss of information when the
317 // range operand is of the form: add i32 %offset, %iv. We need to prove that
318 // sext(x + y) is same as sext(x) + sext(y).
319 // This function returns true if we can safely represent the IV type in
320 // the RangeCheckType without loss of information.
321 bool isSafeToTruncateWideIVType(Type *RangeCheckType);
322 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
323 // so.
324 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
Serguei Katkovebc90312018-02-07 06:53:37 +0000325
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000326public:
Philip Reames92a71772019-04-18 16:33:17 +0000327 LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE,
328 BranchProbabilityInfo *BPI)
329 : AA(AA), SE(SE), BPI(BPI){};
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000330 bool runOnLoop(Loop *L);
331};
332
333class LoopPredicationLegacyPass : public LoopPass {
334public:
335 static char ID;
336 LoopPredicationLegacyPass() : LoopPass(ID) {
337 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
338 }
339
340 void getAnalysisUsage(AnalysisUsage &AU) const override {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000341 AU.addRequired<BranchProbabilityInfoWrapperPass>();
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000342 getLoopAnalysisUsage(AU);
343 }
344
345 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
346 if (skipLoop(L))
347 return false;
348 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Anna Thomas9b1176b2018-03-22 16:03:59 +0000349 BranchProbabilityInfo &BPI =
350 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
Philip Reames92a71772019-04-18 16:33:17 +0000351 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
352 LoopPredication LP(AA, SE, &BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000353 return LP.runOnLoop(L);
354 }
355};
356
357char LoopPredicationLegacyPass::ID = 0;
358} // end namespace llvm
359
360INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
361 "Loop predication", false, false)
Anna Thomas9b1176b2018-03-22 16:03:59 +0000362INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000363INITIALIZE_PASS_DEPENDENCY(LoopPass)
364INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
365 "Loop predication", false, false)
366
367Pass *llvm::createLoopPredicationPass() {
368 return new LoopPredicationLegacyPass();
369}
370
371PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
372 LoopStandardAnalysisResults &AR,
373 LPMUpdater &U) {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000374 const auto &FAM =
375 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
376 Function *F = L.getHeader()->getParent();
377 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
Philip Reames92a71772019-04-18 16:33:17 +0000378 LoopPredication LP(&AR.AA, &AR.SE, BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000379 if (!LP.runOnLoop(&L))
380 return PreservedAnalyses::all();
381
382 return getLoopPassPreservedAnalyses();
383}
384
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000385Optional<LoopPredication::LoopICmp>
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000386LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
387 Value *RHS) {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000388 const SCEV *LHSS = SE->getSCEV(LHS);
389 if (isa<SCEVCouldNotCompute>(LHSS))
390 return None;
391 const SCEV *RHSS = SE->getSCEV(RHS);
392 if (isa<SCEVCouldNotCompute>(RHSS))
393 return None;
394
395 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
396 if (SE->isLoopInvariant(LHSS, L)) {
397 std::swap(LHS, RHS);
398 std::swap(LHSS, RHSS);
399 Pred = ICmpInst::getSwappedPredicate(Pred);
400 }
401
402 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
403 if (!AR || AR->getLoop() != L)
404 return None;
405
406 return LoopICmp(Pred, AR, RHSS);
407}
408
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000409Value *LoopPredication::expandCheck(SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000410 Instruction *Guard,
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000411 ICmpInst::Predicate Pred, const SCEV *LHS,
Philip Reames3d4e1082019-03-29 23:06:57 +0000412 const SCEV *RHS) {
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000413 Type *Ty = LHS->getType();
414 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000415
Philip Reamese46d77d2019-04-15 18:15:08 +0000416 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
417 IRBuilder<> Builder(Guard);
418 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
419 return Builder.getTrue();
420 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
421 LHS, RHS))
422 return Builder.getFalse();
423 }
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000424
Philip Reamese46d77d2019-04-15 18:15:08 +0000425 Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
426 Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
427 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000428 return Builder.CreateICmp(Pred, LHSV, RHSV);
429}
430
Anna Thomas1d02b132017-11-02 21:21:02 +0000431Optional<LoopPredication::LoopICmp>
432LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
433
434 auto *LatchType = LatchCheck.IV->getType();
435 if (RangeCheckType == LatchType)
436 return LatchCheck;
437 // For now, bail out if latch type is narrower than range type.
438 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
439 return None;
440 if (!isSafeToTruncateWideIVType(RangeCheckType))
441 return None;
442 // We can now safely identify the truncated version of the IV and limit for
443 // RangeCheckType.
444 LoopICmp NewLatchCheck;
445 NewLatchCheck.Pred = LatchCheck.Pred;
446 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
447 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
448 if (!NewLatchCheck.IV)
449 return None;
450 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000451 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
452 << "can be represented as range check type:"
453 << *RangeCheckType << "\n");
454 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
455 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
Anna Thomas1d02b132017-11-02 21:21:02 +0000456 return NewLatchCheck;
457}
458
Anna Thomas68797212017-11-03 14:25:39 +0000459bool LoopPredication::isSupportedStep(const SCEV* Step) {
Anna Thomas7b360432017-12-04 15:11:48 +0000460 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
Anna Thomas68797212017-11-03 14:25:39 +0000461}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000462
Philip Reamesfbe64a22019-04-15 15:53:25 +0000463Instruction *LoopPredication::findInsertPt(Instruction *Use,
464 ArrayRef<Value*> Ops) {
465 for (Value *Op : Ops)
466 if (!L->isLoopInvariant(Op))
467 return Use;
468 return Preheader->getTerminator();
469}
470
Philip Reamese46d77d2019-04-15 18:15:08 +0000471Instruction *LoopPredication::findInsertPt(Instruction *Use,
472 ArrayRef<const SCEV*> Ops) {
Philip Reames92a71772019-04-18 16:33:17 +0000473 // Subtlety: SCEV considers things to be invariant if the value produced is
474 // the same across iterations. This is not the same as being able to
475 // evaluate outside the loop, which is what we actually need here.
Philip Reamese46d77d2019-04-15 18:15:08 +0000476 for (const SCEV *Op : Ops)
Philip Reames92a71772019-04-18 16:33:17 +0000477 if (!SE->isLoopInvariant(Op, L) ||
478 !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
Philip Reamese46d77d2019-04-15 18:15:08 +0000479 return Use;
480 return Preheader->getTerminator();
481}
482
Philip Reames92a71772019-04-18 16:33:17 +0000483bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
484 // Handling expressions which produce invariant results, but *haven't* yet
485 // been removed from the loop serves two important purposes.
486 // 1) Most importantly, it resolves a pass ordering cycle which would
487 // otherwise need us to iteration licm, loop-predication, and either
488 // loop-unswitch or loop-peeling to make progress on examples with lots of
489 // predicable range checks in a row. (Since, in the general case, we can't
490 // hoist the length checks until the dominating checks have been discharged
491 // as we can't prove doing so is safe.)
492 // 2) As a nice side effect, this exposes the value of peeling or unswitching
493 // much more obviously in the IR. Otherwise, the cost modeling for other
494 // transforms would end up needing to duplicate all of this logic to model a
495 // check which becomes predictable based on a modeled peel or unswitch.
496 //
497 // The cost of doing so in the worst case is an extra fill from the stack in
498 // the loop to materialize the loop invariant test value instead of checking
499 // against the original IV which is presumable in a register inside the loop.
500 // Such cases are presumably rare, and hint at missing oppurtunities for
501 // other passes.
Philip Reamese46d77d2019-04-15 18:15:08 +0000502
Philip Reames92a71772019-04-18 16:33:17 +0000503 if (SE->isLoopInvariant(S, L))
504 // Note: This the SCEV variant, so the original Value* may be within the
505 // loop even though SCEV has proven it is loop invariant.
506 return true;
507
508 // Handle a particular important case which SCEV doesn't yet know about which
509 // shows up in range checks on arrays with immutable lengths.
510 // TODO: This should be sunk inside SCEV.
511 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
512 if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
Philip Reamesadf288c2019-04-18 17:01:19 +0000513 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
Philip Reames92a71772019-04-18 16:33:17 +0000514 if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
515 LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
516 return true;
517 return false;
Anna Thomas68797212017-11-03 14:25:39 +0000518}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000519
Anna Thomas68797212017-11-03 14:25:39 +0000520Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
521 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000522 SCEVExpander &Expander, Instruction *Guard) {
Anna Thomas68797212017-11-03 14:25:39 +0000523 auto *Ty = RangeCheck.IV->getType();
524 // Generate the widened condition for the forward loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000525 // guardStart u< guardLimit &&
526 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000527 // where <pred> depends on the latch condition predicate. See the file
528 // header comment for the reasoning.
Anna Thomas68797212017-11-03 14:25:39 +0000529 // guardLimit - guardStart + latchStart - 1
530 const SCEV *GuardStart = RangeCheck.IV->getStart();
531 const SCEV *GuardLimit = RangeCheck.Limit;
532 const SCEV *LatchStart = LatchCheck.IV->getStart();
533 const SCEV *LatchLimit = LatchCheck.Limit;
Philip Reames92a71772019-04-18 16:33:17 +0000534 // Subtlety: We need all the values to be *invariant* across all iterations,
535 // but we only need to check expansion safety for those which *aren't*
536 // already guaranteed to dominate the guard.
537 if (!isLoopInvariantValue(GuardStart) ||
538 !isLoopInvariantValue(GuardLimit) ||
539 !isLoopInvariantValue(LatchStart) ||
540 !isLoopInvariantValue(LatchLimit)) {
541 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
542 return None;
543 }
544 if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
545 !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
546 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
547 return None;
548 }
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000549
550 // guardLimit - guardStart + latchStart - 1
551 const SCEV *RHS =
552 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
553 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000554 auto LimitCheckPred =
555 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000556
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000557 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
558 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
559 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
Philip Reames3d4e1082019-03-29 23:06:57 +0000560
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000561 auto *LimitCheck =
Philip Reamese46d77d2019-04-15 18:15:08 +0000562 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
563 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
Philip Reames3d4e1082019-03-29 23:06:57 +0000564 GuardStart, GuardLimit);
Philip Reamese46d77d2019-04-15 18:15:08 +0000565 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000566 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000567}
Anna Thomas7b360432017-12-04 15:11:48 +0000568
569Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
570 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000571 SCEVExpander &Expander, Instruction *Guard) {
Anna Thomas7b360432017-12-04 15:11:48 +0000572 auto *Ty = RangeCheck.IV->getType();
573 const SCEV *GuardStart = RangeCheck.IV->getStart();
574 const SCEV *GuardLimit = RangeCheck.Limit;
Philip Reames92a71772019-04-18 16:33:17 +0000575 const SCEV *LatchStart = LatchCheck.IV->getStart();
Anna Thomas7b360432017-12-04 15:11:48 +0000576 const SCEV *LatchLimit = LatchCheck.Limit;
Philip Reames92a71772019-04-18 16:33:17 +0000577 // Subtlety: We need all the values to be *invariant* across all iterations,
578 // but we only need to check expansion safety for those which *aren't*
579 // already guaranteed to dominate the guard.
580 if (!isLoopInvariantValue(GuardStart) ||
581 !isLoopInvariantValue(GuardLimit) ||
582 !isLoopInvariantValue(LatchStart) ||
583 !isLoopInvariantValue(LatchLimit)) {
584 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
585 return None;
586 }
587 if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
588 !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000589 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000590 return None;
591 }
592 // The decrement of the latch check IV should be the same as the
593 // rangeCheckIV.
594 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
595 if (RangeCheck.IV != PostDecLatchCheckIV) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000596 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
597 << *PostDecLatchCheckIV
598 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000599 return None;
600 }
601
602 // Generate the widened condition for CountDownLoop:
603 // guardStart u< guardLimit &&
604 // latchLimit <pred> 1.
605 // See the header comment for reasoning of the checks.
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000606 auto LimitCheckPred =
607 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Philip Reamese46d77d2019-04-15 18:15:08 +0000608 auto *FirstIterationCheck = expandCheck(Expander, Guard,
609 ICmpInst::ICMP_ULT,
Philip Reames3d4e1082019-03-29 23:06:57 +0000610 GuardStart, GuardLimit);
Philip Reamese46d77d2019-04-15 18:15:08 +0000611 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
Philip Reames3d4e1082019-03-29 23:06:57 +0000612 SE->getOne(Ty));
Philip Reamese46d77d2019-04-15 18:15:08 +0000613 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
Anna Thomas7b360432017-12-04 15:11:48 +0000614 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
615}
616
Anna Thomas68797212017-11-03 14:25:39 +0000617/// If ICI can be widened to a loop invariant condition emits the loop
618/// invariant condition in the loop preheader and return it, otherwise
619/// returns None.
620Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
621 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000622 Instruction *Guard) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000623 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
624 LLVM_DEBUG(ICI->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000625
626 // parseLoopStructure guarantees that the latch condition is:
627 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
628 // We are looking for the range checks of the form:
629 // i u< guardLimit
630 auto RangeCheck = parseLoopICmp(ICI);
631 if (!RangeCheck) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000632 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000633 return None;
634 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000635 LLVM_DEBUG(dbgs() << "Guard check:\n");
636 LLVM_DEBUG(RangeCheck->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000637 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000638 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
639 << RangeCheck->Pred << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000640 return None;
641 }
642 auto *RangeCheckIV = RangeCheck->IV;
643 if (!RangeCheckIV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000644 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000645 return None;
646 }
647 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
648 // We cannot just compare with latch IV step because the latch and range IVs
649 // may have different types.
650 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000651 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000652 return None;
653 }
654 auto *Ty = RangeCheckIV->getType();
655 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
656 if (!CurrLatchCheckOpt) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000657 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
658 "corresponding to range type: "
659 << *Ty << "\n");
Anna Thomas68797212017-11-03 14:25:39 +0000660 return None;
661 }
662
663 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
Anna Thomas7b360432017-12-04 15:11:48 +0000664 // At this point, the range and latch step should have the same type, but need
665 // not have the same value (we support both 1 and -1 steps).
666 assert(Step->getType() ==
667 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
668 "Range and latch steps should be of same type!");
669 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000670 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000671 return None;
672 }
Anna Thomas68797212017-11-03 14:25:39 +0000673
Anna Thomas7b360432017-12-04 15:11:48 +0000674 if (Step->isOne())
675 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000676 Expander, Guard);
Anna Thomas7b360432017-12-04 15:11:48 +0000677 else {
678 assert(Step->isAllOnesValue() && "Step should be -1!");
679 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000680 Expander, Guard);
Anna Thomas7b360432017-12-04 15:11:48 +0000681 }
Anna Thomas68797212017-11-03 14:25:39 +0000682}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000683
Max Kazantsevca450872019-01-22 10:13:36 +0000684unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
685 Value *Condition,
686 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000687 Instruction *Guard) {
Max Kazantsevca450872019-01-22 10:13:36 +0000688 unsigned NumWidened = 0;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000689 // The guard condition is expected to be in form of:
690 // cond1 && cond2 && cond3 ...
Hiroshi Inoue0909ca12018-01-26 08:15:29 +0000691 // Iterate over subconditions looking for icmp conditions which can be
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000692 // widened across loop iterations. Widening these conditions remember the
693 // resulting list of subconditions in Checks vector.
Max Kazantsevca450872019-01-22 10:13:36 +0000694 SmallVector<Value *, 4> Worklist(1, Condition);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000695 SmallPtrSet<Value *, 4> Visited;
Philip Reamesadb3ece2019-04-02 02:42:57 +0000696 Value *WideableCond = nullptr;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000697 do {
698 Value *Condition = Worklist.pop_back_val();
699 if (!Visited.insert(Condition).second)
700 continue;
701
702 Value *LHS, *RHS;
703 using namespace llvm::PatternMatch;
704 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
705 Worklist.push_back(LHS);
706 Worklist.push_back(RHS);
707 continue;
708 }
709
Philip Reamesadb3ece2019-04-02 02:42:57 +0000710 if (match(Condition,
711 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
712 // Pick any, we don't care which
713 WideableCond = Condition;
714 continue;
715 }
716
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000717 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
Philip Reames3d4e1082019-03-29 23:06:57 +0000718 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000719 Guard)) {
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000720 Checks.push_back(NewRangeCheck.getValue());
721 NumWidened++;
722 continue;
723 }
724 }
725
726 // Save the condition as is if we can't widen it
727 Checks.push_back(Condition);
Max Kazantsevca450872019-01-22 10:13:36 +0000728 } while (!Worklist.empty());
Philip Reamesadb3ece2019-04-02 02:42:57 +0000729 // At the moment, our matching logic for wideable conditions implicitly
730 // assumes we preserve the form: (br (and Cond, WC())). FIXME
731 // Note that if there were multiple calls to wideable condition in the
732 // traversal, we only need to keep one, and which one is arbitrary.
733 if (WideableCond)
734 Checks.push_back(WideableCond);
Max Kazantsevca450872019-01-22 10:13:36 +0000735 return NumWidened;
736}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000737
Max Kazantsevca450872019-01-22 10:13:36 +0000738bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
739 SCEVExpander &Expander) {
740 LLVM_DEBUG(dbgs() << "Processing guard:\n");
741 LLVM_DEBUG(Guard->dump());
742
743 TotalConsidered++;
744 SmallVector<Value *, 4> Checks;
Max Kazantsevca450872019-01-22 10:13:36 +0000745 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000746 Guard);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000747 if (NumWidened == 0)
748 return false;
749
Fedor Sergeevc297e842018-10-17 09:02:54 +0000750 TotalWidened += NumWidened;
751
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000752 // Emit the new guard condition
Philip Reamese46d77d2019-04-15 18:15:08 +0000753 IRBuilder<> Builder(findInsertPt(Guard, Checks));
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000754 Value *LastCheck = nullptr;
755 for (auto *Check : Checks)
756 if (!LastCheck)
757 LastCheck = Check;
758 else
759 LastCheck = Builder.CreateAnd(LastCheck, Check);
Philip Reamesd109e2a2019-04-01 16:05:15 +0000760 auto *OldCond = Guard->getOperand(0);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000761 Guard->setOperand(0, LastCheck);
Philip Reamesd109e2a2019-04-01 16:05:15 +0000762 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000763
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000764 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000765 return true;
766}
767
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000768bool LoopPredication::widenWidenableBranchGuardConditions(
Philip Reamesf6086782019-04-01 22:39:54 +0000769 BranchInst *BI, SCEVExpander &Expander) {
770 assert(isGuardAsWidenableBranch(BI) && "Must be!");
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000771 LLVM_DEBUG(dbgs() << "Processing guard:\n");
Philip Reamesf6086782019-04-01 22:39:54 +0000772 LLVM_DEBUG(BI->dump());
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000773
774 TotalConsidered++;
775 SmallVector<Value *, 4> Checks;
Philip Reamesadb3ece2019-04-02 02:42:57 +0000776 unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
Philip Reamese46d77d2019-04-15 18:15:08 +0000777 Expander, BI);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000778 if (NumWidened == 0)
779 return false;
780
781 TotalWidened += NumWidened;
782
783 // Emit the new guard condition
Philip Reamese46d77d2019-04-15 18:15:08 +0000784 IRBuilder<> Builder(findInsertPt(BI, Checks));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000785 Value *LastCheck = nullptr;
786 for (auto *Check : Checks)
787 if (!LastCheck)
788 LastCheck = Check;
789 else
790 LastCheck = Builder.CreateAnd(LastCheck, Check);
Philip Reamesadb3ece2019-04-02 02:42:57 +0000791 auto *OldCond = BI->getCondition();
792 BI->setCondition(LastCheck);
Philip Reamesf6086782019-04-01 22:39:54 +0000793 assert(isGuardAsWidenableBranch(BI) &&
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000794 "Stopped being a guard after transform?");
Philip Reamesd109e2a2019-04-01 16:05:15 +0000795 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000796
797 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
798 return true;
799}
800
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000801Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
802 using namespace PatternMatch;
803
804 BasicBlock *LoopLatch = L->getLoopLatch();
805 if (!LoopLatch) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000806 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000807 return None;
808 }
809
810 ICmpInst::Predicate Pred;
811 Value *LHS, *RHS;
812 BasicBlock *TrueDest, *FalseDest;
813
814 if (!match(LoopLatch->getTerminator(),
815 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
816 FalseDest))) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000817 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000818 return None;
819 }
820 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
821 "One of the latch's destinations must be the header");
822 if (TrueDest != L->getHeader())
823 Pred = ICmpInst::getInversePredicate(Pred);
824
825 auto Result = parseLoopICmp(Pred, LHS, RHS);
826 if (!Result) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000827 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000828 return None;
829 }
830
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000831 // Check affine first, so if it's not we don't try to compute the step
832 // recurrence.
833 if (!Result->IV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000834 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000835 return None;
836 }
837
838 auto *Step = Result->IV->getStepRecurrence(*SE);
Anna Thomas68797212017-11-03 14:25:39 +0000839 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000840 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000841 return None;
842 }
843
Anna Thomas68797212017-11-03 14:25:39 +0000844 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
Anna Thomas7b360432017-12-04 15:11:48 +0000845 if (Step->isOne()) {
846 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
847 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
848 } else {
849 assert(Step->isAllOnesValue() && "Step should be -1!");
Serguei Katkovc8016e72018-02-08 10:34:08 +0000850 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
851 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
Anna Thomas7b360432017-12-04 15:11:48 +0000852 }
Anna Thomas68797212017-11-03 14:25:39 +0000853 };
854
855 if (IsUnsupportedPredicate(Step, Result->Pred)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000856 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
857 << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000858 return None;
859 }
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000860 return Result;
861}
862
Anna Thomas1d02b132017-11-02 21:21:02 +0000863// Returns true if its safe to truncate the IV to RangeCheckType.
864bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
865 if (!EnableIVTruncation)
866 return false;
867 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
868 DL->getTypeSizeInBits(RangeCheckType) &&
869 "Expected latch check IV type to be larger than range check operand "
870 "type!");
871 // The start and end values of the IV should be known. This is to guarantee
872 // that truncating the wide type will not lose information.
873 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
874 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
875 if (!Limit || !Start)
876 return false;
877 // This check makes sure that the IV does not change sign during loop
878 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
879 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
880 // IV wraps around, and the truncation of the IV would lose the range of
881 // iterations between 2^32 and 2^64.
882 bool Increasing;
883 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
884 return false;
885 // The active bits should be less than the bits in the RangeCheckType. This
886 // guarantees that truncating the latch check to RangeCheckType is a safe
887 // operation.
888 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
889 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
890 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
891}
892
Anna Thomas9b1176b2018-03-22 16:03:59 +0000893bool LoopPredication::isLoopProfitableToPredicate() {
894 if (SkipProfitabilityChecks || !BPI)
895 return true;
896
897 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
898 L->getExitEdges(ExitEdges);
899 // If there is only one exiting edge in the loop, it is always profitable to
900 // predicate the loop.
901 if (ExitEdges.size() == 1)
902 return true;
903
904 // Calculate the exiting probabilities of all exiting edges from the loop,
905 // starting with the LatchExitProbability.
906 // Heuristic for profitability: If any of the exiting blocks' probability of
907 // exiting the loop is larger than exiting through the latch block, it's not
908 // profitable to predicate the loop.
909 auto *LatchBlock = L->getLoopLatch();
910 assert(LatchBlock && "Should have a single latch at this point!");
911 auto *LatchTerm = LatchBlock->getTerminator();
912 assert(LatchTerm->getNumSuccessors() == 2 &&
913 "expected to be an exiting block with 2 succs!");
914 unsigned LatchBrExitIdx =
915 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
916 BranchProbability LatchExitProbability =
917 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
918
919 // Protect against degenerate inputs provided by the user. Providing a value
920 // less than one, can invert the definition of profitable loop predication.
921 float ScaleFactor = LatchExitProbabilityScale;
922 if (ScaleFactor < 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000923 LLVM_DEBUG(
Anna Thomas9b1176b2018-03-22 16:03:59 +0000924 dbgs()
925 << "Ignored user setting for loop-predication-latch-probability-scale: "
926 << LatchExitProbabilityScale << "\n");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000927 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000928 ScaleFactor = 1.0;
929 }
930 const auto LatchProbabilityThreshold =
931 LatchExitProbability * ScaleFactor;
932
933 for (const auto &ExitEdge : ExitEdges) {
934 BranchProbability ExitingBlockProbability =
935 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
936 // Some exiting edge has higher probability than the latch exiting edge.
937 // No longer profitable to predicate.
938 if (ExitingBlockProbability > LatchProbabilityThreshold)
939 return false;
940 }
941 // Using BPI, we have concluded that the most probable way to exit from the
942 // loop is through the latch (or there's no profile information and all
943 // exits are equally likely).
944 return true;
945}
946
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000947bool LoopPredication::runOnLoop(Loop *Loop) {
948 L = Loop;
949
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000950 LLVM_DEBUG(dbgs() << "Analyzing ");
951 LLVM_DEBUG(L->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000952
953 Module *M = L->getHeader()->getModule();
954
955 // There is nothing to do if the module doesn't use guards
956 auto *GuardDecl =
957 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000958 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
959 auto *WCDecl = M->getFunction(
960 Intrinsic::getName(Intrinsic::experimental_widenable_condition));
961 bool HasWidenableConditions =
962 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
963 if (!HasIntrinsicGuards && !HasWidenableConditions)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000964 return false;
965
966 DL = &M->getDataLayout();
967
968 Preheader = L->getLoopPreheader();
969 if (!Preheader)
970 return false;
971
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000972 auto LatchCheckOpt = parseLoopLatchICmp();
973 if (!LatchCheckOpt)
974 return false;
975 LatchCheck = *LatchCheckOpt;
976
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000977 LLVM_DEBUG(dbgs() << "Latch check:\n");
978 LLVM_DEBUG(LatchCheck.dump());
Anna Thomas68797212017-11-03 14:25:39 +0000979
Anna Thomas9b1176b2018-03-22 16:03:59 +0000980 if (!isLoopProfitableToPredicate()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000981 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000982 return false;
983 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000984 // Collect all the guards into a vector and process later, so as not
985 // to invalidate the instruction iterator.
986 SmallVector<IntrinsicInst *, 4> Guards;
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000987 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
988 for (const auto BB : L->blocks()) {
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000989 for (auto &I : *BB)
Max Kazantsev28298e92018-12-26 08:22:25 +0000990 if (isGuard(&I))
991 Guards.push_back(cast<IntrinsicInst>(&I));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000992 if (PredicateWidenableBranchGuards &&
993 isGuardAsWidenableBranch(BB->getTerminator()))
994 GuardsAsWidenableBranches.push_back(
995 cast<BranchInst>(BB->getTerminator()));
996 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000997
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000998 if (Guards.empty() && GuardsAsWidenableBranches.empty())
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +0000999 return false;
1000
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001001 SCEVExpander Expander(*SE, *DL, "loop-predication");
1002
1003 bool Changed = false;
1004 for (auto *Guard : Guards)
1005 Changed |= widenGuardConditions(Guard, Expander);
Max Kazantsevfeb475f2019-01-22 11:49:06 +00001006 for (auto *Guard : GuardsAsWidenableBranches)
1007 Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001008
1009 return Changed;
1010}