blob: a9d6c89a35c139f1e86d8035b2cebd1bc651ff2e [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000029#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/Constants.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000036#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000037#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000038#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000039#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000040#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000041#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000042using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000043
Chandler Carruth964daaa2014-04-22 02:55:47 +000044#define DEBUG_TYPE "reassociate"
45
Chris Lattner79a42ac2006-12-19 21:40:18 +000046STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000049
Chris Lattner79a42ac2006-12-19 21:40:18 +000050namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000051 struct ValueEntry {
Chris Lattner1e506502005-05-07 21:59:39 +000052 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
Chris Lattner4c065092006-03-04 09:31:13 +000059}
Chris Lattner1e506502005-05-07 21:59:39 +000060
Devang Patel702f45d2008-11-21 21:00:20 +000061#ifndef NDEBUG
Chris Lattner4c065092006-03-04 09:31:13 +000062/// PrintOps - Print out the expression identified in the Ops list.
63///
Chris Lattner38abecb2009-12-31 18:40:32 +000064static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +000065 Module *M = I->getParent()->getParent()->getParent();
David Greened17c3912010-01-05 01:27:24 +000066 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000067 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000068 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000069 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000070 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000071 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000072 }
Chris Lattner4c065092006-03-04 09:31:13 +000073}
Devang Patelcb181bb2008-11-21 20:00:59 +000074#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000075
Dan Gohmand78c4002008-05-13 00:00:25 +000076namespace {
Chandler Carruth739ef802012-04-26 05:30:30 +000077 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000113
114 /// Utility class representing a non-constant Xor-operand. We classify
115 /// non-constant Xor-Operands into two categories:
116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
117 /// C2)
118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
119 /// constant.
120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121 /// operand as "E | 0"
122 class XorOpnd {
123 public:
124 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000125
Craig Topperf40110f2014-04-25 05:29:35 +0000126 bool isInvalid() const { return SymbolicPart == nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000127 bool isOrExpr() const { return isOr; }
128 Value *getValue() const { return OrigVal; }
129 Value *getSymbolicPart() const { return SymbolicPart; }
130 unsigned getSymbolicRank() const { return SymbolicRank; }
131 const APInt &getConstPart() const { return ConstPart; }
132
Craig Topperf40110f2014-04-25 05:29:35 +0000133 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000134 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
135
136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
137 // The purpose is twofold:
138 // 1) Cluster together the operands sharing the same symbolic-value.
139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
140 // could potentially shorten crital path, and expose more loop-invariants.
141 // Note that values' rank are basically defined in RPO order (FIXME).
142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
144 // "z" in the order of X-Y-Z is better than any other orders.
Shuxin Yang331f01d2013-04-08 22:00:43 +0000145 struct PtrSortFunctor {
146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
147 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000148 }
149 };
150 private:
151 Value *OrigVal;
152 Value *SymbolicPart;
153 APInt ConstPart;
154 unsigned SymbolicRank;
155 bool isOr;
156 };
Chandler Carruth739ef802012-04-26 05:30:30 +0000157}
158
159namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +0000160 class Reassociate : public FunctionPass {
Chris Lattner17229a72010-01-01 00:01:34 +0000161 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topper6e80c282012-03-26 06:58:25 +0000162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Shuxin Yangc94c3bb2012-11-13 00:08:49 +0000163 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattner1e506502005-05-07 21:59:39 +0000164 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000165 public:
Nick Lewyckye7da2d62007-05-06 13:37:16 +0000166 static char ID; // Pass identification, replacement for typeid
Owen Anderson6c18d1a2010-10-19 17:21:58 +0000167 Reassociate() : FunctionPass(ID) {
168 initializeReassociatePass(*PassRegistry::getPassRegistry());
169 }
Devang Patel09f162c2007-05-01 21:15:47 +0000170
Craig Topper3e4c6972014-03-05 09:10:37 +0000171 bool runOnFunction(Function &F) override;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000172
Craig Topper3e4c6972014-03-05 09:10:37 +0000173 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chris Lattner820d9712002-10-21 20:00:28 +0000174 AU.setPreservesCFG();
Chris Lattnerc0f58002002-05-08 22:19:27 +0000175 }
176 private:
Chris Lattner113f4f42002-06-25 16:13:24 +0000177 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000178 unsigned getRank(Value *V);
Duncan Sands78386032012-06-15 08:37:50 +0000179 void ReassociateExpression(BinaryOperator *I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000180 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner38abecb2009-12-31 18:40:32 +0000181 Value *OptimizeExpression(BinaryOperator *I,
182 SmallVectorImpl<ValueEntry> &Ops);
183 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000184 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
185 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
186 Value *&Res);
187 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
188 APInt &ConstOpnd, Value *&Res);
Chandler Carruth739ef802012-04-26 05:30:30 +0000189 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
190 SmallVectorImpl<Factor> &Factors);
191 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
192 SmallVectorImpl<Factor> &Factors);
193 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000194 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands3293f462012-06-08 20:15:33 +0000195 void EraseInst(Instruction *I);
196 void OptimizeInst(Instruction *I);
Chad Rosier005505b2014-11-03 19:11:30 +0000197 Instruction *canonicalizeNegConstExpr(Instruction *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000198 };
199}
200
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000201XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000202 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000203 OrigVal = V;
204 Instruction *I = dyn_cast<Instruction>(V);
205 SymbolicRank = 0;
206
207 if (I && (I->getOpcode() == Instruction::Or ||
208 I->getOpcode() == Instruction::And)) {
209 Value *V0 = I->getOperand(0);
210 Value *V1 = I->getOperand(1);
211 if (isa<ConstantInt>(V0))
212 std::swap(V0, V1);
213
214 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
215 ConstPart = C->getValue();
216 SymbolicPart = V0;
217 isOr = (I->getOpcode() == Instruction::Or);
218 return;
219 }
220 }
221
222 // view the operand as "V | 0"
223 SymbolicPart = V;
224 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
225 isOr = true;
226}
227
Dan Gohmand78c4002008-05-13 00:00:25 +0000228char Reassociate::ID = 0;
Owen Andersona57b97e2010-07-21 22:09:45 +0000229INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000230 "Reassociate expressions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000231
Brian Gaeke960707c2003-11-11 22:41:34 +0000232// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +0000233FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000234
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000235/// isReassociableOp - Return true if V is an instruction of the specified
236/// opcode and if it only has one use.
237static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
238 if (V->hasOneUse() && isa<Instruction>(V) &&
239 cast<Instruction>(V)->getOpcode() == Opcode)
240 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000241 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000242}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000243
Chad Rosier11ab9412014-08-14 15:23:01 +0000244static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
245 unsigned Opcode2) {
246 if (V->hasOneUse() && isa<Instruction>(V) &&
247 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
248 cast<Instruction>(V)->getOpcode() == Opcode2))
249 return cast<BinaryOperator>(V);
250 return nullptr;
251}
252
Chris Lattner9f284e02005-05-08 20:57:04 +0000253static bool isUnmovableInstruction(Instruction *I) {
Jakub Staszakd4d94062013-07-22 23:38:16 +0000254 switch (I->getOpcode()) {
255 case Instruction::PHI:
256 case Instruction::LandingPad:
257 case Instruction::Alloca:
258 case Instruction::Load:
259 case Instruction::Invoke:
260 case Instruction::UDiv:
261 case Instruction::SDiv:
262 case Instruction::FDiv:
263 case Instruction::URem:
264 case Instruction::SRem:
265 case Instruction::FRem:
Chris Lattner9f284e02005-05-08 20:57:04 +0000266 return true;
Jakub Staszakd4d94062013-07-22 23:38:16 +0000267 case Instruction::Call:
268 return !isa<DbgInfoIntrinsic>(I);
269 default:
270 return false;
271 }
Chris Lattner9f284e02005-05-08 20:57:04 +0000272}
273
Chris Lattner113f4f42002-06-25 16:13:24 +0000274void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000275 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000276
277 // Assign distinct ranks to function arguments
Chris Lattner531f9e92005-03-15 04:54:21 +0000278 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000279 ValueRankMap[&*I] = ++i;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000280
Chris Lattner113f4f42002-06-25 16:13:24 +0000281 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000282 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000283 E = RPOT.end(); I != E; ++I) {
284 BasicBlock *BB = *I;
285 unsigned BBRank = RankMap[BB] = ++i << 16;
286
287 // Walk the basic block, adding precomputed ranks for any instructions that
288 // we cannot move. This ensures that the ranks for these instructions are
289 // all different in the block.
290 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
291 if (isUnmovableInstruction(I))
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000292 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000293 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000294}
295
296unsigned Reassociate::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000297 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000298 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000299 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
300 return 0; // Otherwise it's a global or constant, rank 0.
301 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000302
Chris Lattner17229a72010-01-01 00:01:34 +0000303 if (unsigned Rank = ValueRankMap[I])
304 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000305
Chris Lattnerf43e9742005-05-07 04:08:02 +0000306 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
307 // we can reassociate expressions for code motion! Since we do not recurse
308 // for PHI nodes, we cannot have infinite recursion here, because there
309 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000310 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
311 for (unsigned i = 0, e = I->getNumOperands();
312 i != e && Rank != MaxRank; ++i)
313 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000314
Chris Lattner6e2086d2005-05-08 00:08:33 +0000315 // If this is a not or neg instruction, do not count it for rank. This
316 // assures us that X and ~X will have the same rank.
Chad Rosier11ab9412014-08-14 15:23:01 +0000317 Type *Ty = V->getType();
318 if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) ||
319 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
320 !BinaryOperator::isFNeg(I)))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000321 ++Rank;
322
David Greened17c3912010-01-05 01:27:24 +0000323 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerb25de3f2009-08-23 04:37:46 +0000324 // << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000325
Chris Lattner17229a72010-01-01 00:01:34 +0000326 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000327}
328
Chad Rosier11ab9412014-08-14 15:23:01 +0000329static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
330 Instruction *InsertBefore, Value *FlagsOp) {
331 if (S1->getType()->isIntegerTy())
332 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
333 else {
334 BinaryOperator *Res =
335 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
336 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
337 return Res;
338 }
339}
340
341static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
342 Instruction *InsertBefore, Value *FlagsOp) {
343 if (S1->getType()->isIntegerTy())
344 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
345 else {
346 BinaryOperator *Res =
347 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
348 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
349 return Res;
350 }
351}
352
353static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
354 Instruction *InsertBefore, Value *FlagsOp) {
355 if (S1->getType()->isIntegerTy())
356 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
357 else {
358 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
359 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
360 return Res;
361 }
362}
363
Chris Lattner877b1142005-05-08 21:28:52 +0000364/// LowerNegateToMultiply - Replace 0-X with X*-1.
365///
Duncan Sands3293f462012-06-08 20:15:33 +0000366static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000367 Type *Ty = Neg->getType();
368 Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty)
369 : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000370
Chad Rosier11ab9412014-08-14 15:23:01 +0000371 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
372 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000373 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000374 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000375 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000376 return Res;
377}
378
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000379/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
380/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
381/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
382/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
383/// even x in Bitwidth-bit arithmetic.
384static unsigned CarmichaelShift(unsigned Bitwidth) {
385 if (Bitwidth < 3)
386 return Bitwidth - 1;
387 return Bitwidth - 2;
388}
389
390/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
391/// reducing the combined weight using any special properties of the operation.
392/// The existing weight LHS represents the computation X op X op ... op X where
393/// X occurs LHS times. The combined weight represents X op X op ... op X with
394/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
395/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
396/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
397static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
398 // If we were working with infinite precision arithmetic then the combined
399 // weight would be LHS + RHS. But we are using finite precision arithmetic,
400 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
401 // for nilpotent operations and addition, but not for idempotent operations
402 // and multiplication), so it is important to correctly reduce the combined
403 // weight back into range if wrapping would be wrong.
404
405 // If RHS is zero then the weight didn't change.
406 if (RHS.isMinValue())
407 return;
408 // If LHS is zero then the combined weight is RHS.
409 if (LHS.isMinValue()) {
410 LHS = RHS;
411 return;
412 }
413 // From this point on we know that neither LHS nor RHS is zero.
414
415 if (Instruction::isIdempotent(Opcode)) {
416 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
417 // weight of 1. Keeping weights at zero or one also means that wrapping is
418 // not a problem.
419 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
420 return; // Return a weight of 1.
421 }
422 if (Instruction::isNilpotent(Opcode)) {
423 // Nilpotent means X op X === 0, so reduce weights modulo 2.
424 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
425 LHS = 0; // 1 + 1 === 0 modulo 2.
426 return;
427 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000428 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000429 // TODO: Reduce the weight by exploiting nsw/nuw?
430 LHS += RHS;
431 return;
432 }
433
Chad Rosier11ab9412014-08-14 15:23:01 +0000434 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
435 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000436 unsigned Bitwidth = LHS.getBitWidth();
437 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
438 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
439 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
440 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
441 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
442 // which by a happy accident means that they can always be represented using
443 // Bitwidth bits.
444 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
445 // the Carmichael number).
446 if (Bitwidth > 3) {
447 /// CM - The value of Carmichael's lambda function.
448 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
449 // Any weight W >= Threshold can be replaced with W - CM.
450 APInt Threshold = CM + Bitwidth;
451 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
452 // For Bitwidth 4 or more the following sum does not overflow.
453 LHS += RHS;
454 while (LHS.uge(Threshold))
455 LHS -= CM;
456 } else {
457 // To avoid problems with overflow do everything the same as above but using
458 // a larger type.
459 unsigned CM = 1U << CarmichaelShift(Bitwidth);
460 unsigned Threshold = CM + Bitwidth;
461 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
462 "Weights not reduced!");
463 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
464 while (Total >= Threshold)
465 Total -= CM;
466 LHS = Total;
467 }
468}
469
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000470typedef std::pair<Value*, APInt> RepeatedValue;
471
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000472/// LinearizeExprTree - Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000473/// nodes in Ops along with their weights (how many times the leaf occurs). The
474/// original expression is the same as
475/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000476/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000477/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
478/// op
479/// ...
480/// op
481/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
482///
Duncan Sandsac852c72012-11-15 09:58:38 +0000483/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000484///
485/// This routine may modify the function, in which case it returns 'true'. The
486/// changes it makes may well be destructive, changing the value computed by 'I'
487/// to something completely different. Thus if the routine returns 'true' then
488/// you MUST either replace I with a new expression computed from the Ops array,
489/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000490///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000491/// A leaf node is either not a binary operation of the same kind as the root
492/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
493/// opcode), or is the same kind of binary operator but has a use which either
494/// does not belong to the expression, or does belong to the expression but is
495/// a leaf node. Every leaf node has at least one use that is a non-leaf node
496/// of the expression, while for non-leaf nodes (except for the root 'I') every
497/// use is a non-leaf node of the expression.
498///
499/// For example:
500/// expression graph node names
501///
502/// + | I
503/// / \ |
504/// + + | A, B
505/// / \ / \ |
506/// * + * | C, D, E
507/// / \ / \ / \ |
508/// + * | F, G
509///
510/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000511/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000512///
513/// The expression is maximal: if some instruction is a binary operator of the
514/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
515/// then the instruction also belongs to the expression, is not a leaf node of
516/// it, and its operands also belong to the expression (but may be leaf nodes).
517///
518/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
519/// order to ensure that every non-root node in the expression has *exactly one*
520/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000521/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000522/// RewriteExprTree to put the values back in if the routine indicates that it
523/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000524///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000525/// In the above example either the right operand of A or the left operand of B
526/// will be replaced by undef. If it is B's operand then this gives:
527///
528/// + | I
529/// / \ |
530/// + + | A, B - operand of B replaced with undef
531/// / \ \ |
532/// * + * | C, D, E
533/// / \ / \ / \ |
534/// + * | F, G
535///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000536/// Note that such undef operands can only be reached by passing through 'I'.
537/// For example, if you visit operands recursively starting from a leaf node
538/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000539/// which requires passing through a phi node.
540///
541/// Note that this routine may also mutate binary operators of the wrong type
542/// that have all uses inside the expression (i.e. only used by non-leaf nodes
543/// of the expression) if it can turn them into binary operators of the right
544/// type and thus make the expression bigger.
545
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000546static bool LinearizeExprTree(BinaryOperator *I,
547 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000548 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000549 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
550 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000551 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000552 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000553
554 // Visit all operands of the expression, keeping track of their weight (the
555 // number of paths from the expression root to the operand, or if you like
556 // the number of times that operand occurs in the linearized expression).
557 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
558 // while A has weight two.
559
560 // Worklist of non-leaf nodes (their operands are in the expression too) along
561 // with their weights, representing a certain number of paths to the operator.
562 // If an operator occurs in the worklist multiple times then we found multiple
563 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000564 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
565 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
566 bool MadeChange = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000567
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000568 // Leaves of the expression are values that either aren't the right kind of
569 // operation (eg: a constant, or a multiply in an add tree), or are, but have
570 // some uses that are not inside the expression. For example, in I = X + X,
571 // X = A + B, the value X has two uses (by I) that are in the expression. If
572 // X has any other uses, for example in a return instruction, then we consider
573 // X to be a leaf, and won't analyze it further. When we first visit a value,
574 // if it has more than one use then at first we conservatively consider it to
575 // be a leaf. Later, as the expression is explored, we may discover some more
576 // uses of the value from inside the expression. If all uses turn out to be
577 // from within the expression (and the value is a binary operator of the right
578 // kind) then the value is no longer considered to be a leaf, and its operands
579 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000580
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000581 // Leaves - Keeps track of the set of putative leaves as well as the number of
582 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000583 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000584 LeafMap Leaves; // Leaf -> Total weight so far.
585 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
586
587#ifndef NDEBUG
588 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
589#endif
590 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000591 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000592 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000593
594 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
595 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000596 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000597 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
598 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
599
600 // If this is a binary operation of the right kind with only one use then
601 // add its operands to the expression.
602 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
603 assert(Visited.insert(Op) && "Not first visit!");
604 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
605 Worklist.push_back(std::make_pair(BO, Weight));
606 continue;
607 }
608
609 // Appears to be a leaf. Is the operand already in the set of leaves?
610 LeafMap::iterator It = Leaves.find(Op);
611 if (It == Leaves.end()) {
612 // Not in the leaf map. Must be the first time we saw this operand.
613 assert(Visited.insert(Op) && "Not first visit!");
614 if (!Op->hasOneUse()) {
615 // This value has uses not accounted for by the expression, so it is
616 // not safe to modify. Mark it as being a leaf.
617 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
618 LeafOrder.push_back(Op);
619 Leaves[Op] = Weight;
620 continue;
621 }
622 // No uses outside the expression, try morphing it.
623 } else if (It != Leaves.end()) {
624 // Already in the leaf map.
625 assert(Visited.count(Op) && "In leaf map but not visited!");
626
627 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000628 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000629
Duncan Sands56514522012-07-26 09:26:40 +0000630#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000631 // The leaf already has one use from inside the expression. As we want
632 // exactly one such use, drop this new use of the leaf.
633 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
634 I->setOperand(OpIdx, UndefValue::get(I->getType()));
635 MadeChange = true;
636
637 // If the leaf is a binary operation of the right kind and we now see
638 // that its multiple original uses were in fact all by nodes belonging
639 // to the expression, then no longer consider it to be a leaf and add
640 // its operands to the expression.
641 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
642 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
643 Worklist.push_back(std::make_pair(BO, It->second));
644 Leaves.erase(It);
645 continue;
646 }
Duncan Sands56514522012-07-26 09:26:40 +0000647#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000648
649 // If we still have uses that are not accounted for by the expression
650 // then it is not safe to modify the value.
651 if (!Op->hasOneUse())
652 continue;
653
654 // No uses outside the expression, try morphing it.
655 Weight = It->second;
656 Leaves.erase(It); // Since the value may be morphed below.
657 }
658
659 // At this point we have a value which, first of all, is not a binary
660 // expression of the right kind, and secondly, is only used inside the
661 // expression. This means that it can safely be modified. See if we
662 // can usefully morph it into an expression of the right kind.
663 assert((!isa<Instruction>(Op) ||
664 cast<Instruction>(Op)->getOpcode() != Opcode) &&
665 "Should have been handled above!");
666 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
667
668 // If this is a multiply expression, turn any internal negations into
669 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000670 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
671 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
672 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
673 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
674 BO = LowerNegateToMultiply(BO);
675 DEBUG(dbgs() << *BO << '\n');
676 Worklist.push_back(std::make_pair(BO, Weight));
677 MadeChange = true;
678 continue;
679 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000680
681 // Failed to morph into an expression of the right type. This really is
682 // a leaf.
683 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
684 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
685 LeafOrder.push_back(Op);
686 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000687 }
688 }
689
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000690 // The leaves, repeated according to their weights, represent the linearized
691 // form of the expression.
692 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
693 Value *V = LeafOrder[i];
694 LeafMap::iterator It = Leaves.find(V);
695 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000696 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000697 continue;
698 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000699 APInt Weight = It->second;
700 if (Weight.isMinValue())
701 // Leaf already output or weight reduction eliminated it.
702 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000703 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000704 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000705 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000706 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000707
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000708 // For nilpotent operations or addition there may be no operands, for example
709 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
710 // in both cases the weight reduces to 0 causing the value to be skipped.
711 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000712 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000713 assert(Identity && "Associative operation without identity!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000714 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
715 }
716
717 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000718}
719
Chris Lattner1e506502005-05-07 21:59:39 +0000720// RewriteExprTree - Now that the operands for this expression tree are
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000721// linearized and optimized, emit them in-order.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000722void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000723 SmallVectorImpl<ValueEntry> &Ops) {
724 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000725
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000726 // Since our optimizations should never increase the number of operations, the
727 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000728 // from the original expression tree, without creating any new instructions,
729 // though the rewritten expression may have a completely different topology.
730 // We take care to not change anything if the new expression will be the same
731 // as the original. If more than trivial changes (like commuting operands)
732 // were made then we are obliged to clear out any optional subclass data like
733 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000734
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000735 /// NodesToRewrite - Nodes from the original expression available for writing
736 /// the new expression into.
737 SmallVector<BinaryOperator*, 8> NodesToRewrite;
738 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000739 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000740
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000741 /// NotRewritable - The operands being written will be the leaves of the new
742 /// expression and must not be used as inner nodes (via NodesToRewrite) by
743 /// mistake. Inner nodes are always reassociable, and usually leaves are not
744 /// (if they were they would have been incorporated into the expression and so
745 /// would not be leaves), so most of the time there is no danger of this. But
746 /// in rare cases a leaf may become reassociable if an optimization kills uses
747 /// of it, or it may momentarily become reassociable during rewriting (below)
748 /// due it being removed as an operand of one of its uses. Ensure that misuse
749 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
750 /// leaves and refusing to reuse any of them as inner nodes.
751 SmallPtrSet<Value*, 8> NotRewritable;
752 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
753 NotRewritable.insert(Ops[i].Op);
754
Duncan Sands3c05cd32012-05-26 16:42:52 +0000755 // ExpressionChanged - Non-null if the rewritten expression differs from the
756 // original in some non-trivial way, requiring the clearing of optional flags.
757 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000758 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000759 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000760 // The last operation (which comes earliest in the IR) is special as both
761 // operands will come from Ops, rather than just one with the other being
762 // a subexpression.
763 if (i+2 == Ops.size()) {
764 Value *NewLHS = Ops[i].Op;
765 Value *NewRHS = Ops[i+1].Op;
766 Value *OldLHS = Op->getOperand(0);
767 Value *OldRHS = Op->getOperand(1);
768
769 if (NewLHS == OldLHS && NewRHS == OldRHS)
770 // Nothing changed, leave it alone.
771 break;
772
773 if (NewLHS == OldRHS && NewRHS == OldLHS) {
774 // The order of the operands was reversed. Swap them.
775 DEBUG(dbgs() << "RA: " << *Op << '\n');
776 Op->swapOperands();
777 DEBUG(dbgs() << "TO: " << *Op << '\n');
778 MadeChange = true;
779 ++NumChanged;
780 break;
781 }
782
783 // The new operation differs non-trivially from the original. Overwrite
784 // the old operands with the new ones.
785 DEBUG(dbgs() << "RA: " << *Op << '\n');
786 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000787 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
788 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000789 NodesToRewrite.push_back(BO);
790 Op->setOperand(0, NewLHS);
791 }
792 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000793 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
794 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000795 NodesToRewrite.push_back(BO);
796 Op->setOperand(1, NewRHS);
797 }
798 DEBUG(dbgs() << "TO: " << *Op << '\n');
799
Duncan Sands3c05cd32012-05-26 16:42:52 +0000800 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000801 MadeChange = true;
802 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000803
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000804 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000805 }
Chris Lattner1e506502005-05-07 21:59:39 +0000806
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000807 // Not the last operation. The left-hand side will be a sub-expression
808 // while the right-hand side will be the current element of Ops.
809 Value *NewRHS = Ops[i].Op;
810 if (NewRHS != Op->getOperand(1)) {
811 DEBUG(dbgs() << "RA: " << *Op << '\n');
812 if (NewRHS == Op->getOperand(0)) {
813 // The new right-hand side was already present as the left operand. If
814 // we are lucky then swapping the operands will sort out both of them.
815 Op->swapOperands();
816 } else {
817 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000818 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
819 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000820 NodesToRewrite.push_back(BO);
821 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000822 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000823 }
824 DEBUG(dbgs() << "TO: " << *Op << '\n');
825 MadeChange = true;
826 ++NumChanged;
827 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000828
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000829 // Now deal with the left-hand side. If this is already an operation node
830 // from the original expression then just rewrite the rest of the expression
831 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000832 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
833 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000834 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000835 continue;
836 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000837
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000838 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000839 // the left-hand side. If there are no nodes left then the optimizers made
840 // an expression with more nodes than the original! This usually means that
841 // they did something stupid but it might mean that the problem was just too
842 // hard (finding the mimimal number of multiplications needed to realize a
843 // multiplication expression is NP-complete). Whatever the reason, smart or
844 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000845 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000846 if (NodesToRewrite.empty()) {
847 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000848 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
849 Undef, Undef, "", I);
Chad Rosier11ab9412014-08-14 15:23:01 +0000850 if (NewOp->getType()->isFloatingPointTy())
851 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000852 } else {
853 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000854 }
855
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000856 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000857 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000858 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000859 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000860 MadeChange = true;
861 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000862 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000863 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000864
Duncan Sands3c05cd32012-05-26 16:42:52 +0000865 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000866 // starting from the operator specified in ExpressionChanged, and compactify
867 // the operators to just before the expression root to guarantee that the
868 // expression tree is dominated by all of Ops.
869 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000870 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000871 // Preserve FastMathFlags.
872 if (isa<FPMathOperator>(I)) {
873 FastMathFlags Flags = I->getFastMathFlags();
874 ExpressionChanged->clearSubclassOptionalData();
875 ExpressionChanged->setFastMathFlags(Flags);
876 } else
877 ExpressionChanged->clearSubclassOptionalData();
878
Duncan Sands3c05cd32012-05-26 16:42:52 +0000879 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000880 break;
Duncan Sands514db112012-06-27 14:19:00 +0000881 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000882 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000883 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000884
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000885 // Throw away any left over nodes from the original expression.
886 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000887 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000888}
889
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000890/// NegateValue - Insert instructions before the instruction pointed to by BI,
891/// that computes the negative version of the value specified. The negative
892/// version of the value is returned, and BI is left pointing at the instruction
893/// that should be processed next by the reassociation pass.
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000894static Value *NegateValue(Value *V, Instruction *BI) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000895 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
896 return ConstantExpr::getFNeg(C);
Chris Lattnerfed33972009-12-31 20:34:32 +0000897 if (Constant *C = dyn_cast<Constant>(V))
898 return ConstantExpr::getNeg(C);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000899
Chris Lattner7bc532d2002-05-16 04:37:07 +0000900 // We are trying to expose opportunity for reassociation. One of the things
901 // that we want to do to achieve this is to push a negation as deep into an
902 // expression chain as possible, to expose the add instructions. In practice,
903 // this means that we turn this:
904 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
905 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
906 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000907 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000908 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000909 if (BinaryOperator *I =
910 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000911 // Push the negates through the add.
912 I->setOperand(0, NegateValue(I->getOperand(0), BI));
913 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattner7bc532d2002-05-16 04:37:07 +0000914
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000915 // We must move the add instruction here, because the neg instructions do
916 // not dominate the old add instruction in general. By moving it, we are
917 // assured that the neg instructions we just inserted dominate the
918 // instruction we are about to insert after them.
919 //
920 I->moveBefore(BI);
921 I->setName(I->getName()+".neg");
922 return I;
923 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000924
Chris Lattnerfed33972009-12-31 20:34:32 +0000925 // Okay, we need to materialize a negated version of V with an instruction.
926 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000927 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000928 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
929 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000930
931 // We found one! Now we have to make sure that the definition dominates
932 // this use. We do this by moving it to the entry block (if it is a
933 // non-instruction value) or right after the definition. These negates will
934 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000935 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000936
937 // Verify that the negate is in this function, V might be a constant expr.
938 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
939 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000940
Chris Lattnerfed33972009-12-31 20:34:32 +0000941 BasicBlock::iterator InsertPt;
942 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
943 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
944 InsertPt = II->getNormalDest()->begin();
945 } else {
946 InsertPt = InstInput;
947 ++InsertPt;
948 }
949 while (isa<PHINode>(InsertPt)) ++InsertPt;
950 } else {
951 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
952 }
953 TheNeg->moveBefore(InsertPt);
954 return TheNeg;
955 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000956
957 // Insert a 'neg' instruction that subtracts the value from zero to get the
958 // negation.
Chad Rosier11ab9412014-08-14 15:23:01 +0000959 return CreateNeg(V, V->getName() + ".neg", BI, BI);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000960}
961
Chris Lattner902537c2008-02-17 20:44:51 +0000962/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
963/// X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000964static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000965 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000966 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000967 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000968
Chad Rosierbd64d462014-10-09 20:06:29 +0000969 // Don't breakup X - undef.
970 if (isa<UndefValue>(Sub->getOperand(1)))
971 return false;
972
Chris Lattner902537c2008-02-17 20:44:51 +0000973 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000974 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000975 Value *V0 = Sub->getOperand(0);
976 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
977 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000978 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000979 Value *V1 = Sub->getOperand(1);
980 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
981 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000982 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000983 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000984 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000985 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
986 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000987 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000988
Chris Lattner902537c2008-02-17 20:44:51 +0000989 return false;
990}
991
Chris Lattnerf43e9742005-05-07 04:08:02 +0000992/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
993/// only used by an add, transform this into (X+(0-Y)) to promote better
994/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000995static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
Chris Lattnera5526832010-01-01 00:04:26 +0000996 // Convert a subtract into an add and a neg instruction. This allows sub
997 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000998 //
Chris Lattnera5526832010-01-01 00:04:26 +0000999 // Calculate the negative value of Operand 1 of the sub instruction,
1000 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001001 //
Nick Lewycky7935bcb2009-11-14 07:25:54 +00001002 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chad Rosier11ab9412014-08-14 15:23:01 +00001003 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +00001004 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1005 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +00001006 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +00001007
1008 // Everyone now refers to the add instruction.
1009 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001010 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00001011
David Greened17c3912010-01-05 01:27:24 +00001012 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +00001013 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +00001014}
1015
Chris Lattnercea57992005-05-07 04:24:13 +00001016/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
1017/// by one, change this into a multiply by a constant to assist with further
1018/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001019static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1020 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1021 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001022
Duncan Sands3293f462012-06-08 20:15:33 +00001023 BinaryOperator *Mul =
1024 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1025 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1026 Mul->takeName(Shl);
1027 Shl->replaceAllUsesWith(Mul);
1028 Mul->setDebugLoc(Shl->getDebugLoc());
1029 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +00001030}
1031
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001032/// FindInOperandList - Scan backwards and forwards among values with the same
1033/// rank as element i to see if X exists. If X does not exist, return i. This
1034/// is useful when scanning for 'x' when we see '-x' because they both get the
1035/// same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +00001036static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +00001037 Value *X) {
1038 unsigned XRank = Ops[i].Rank;
1039 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +00001040 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001041 if (Ops[j].Op == X)
1042 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001043 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1044 if (Instruction *I2 = dyn_cast<Instruction>(X))
1045 if (I1->isIdenticalTo(I2))
1046 return j;
1047 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001048 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +00001049 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001050 if (Ops[j].Op == X)
1051 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001052 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1053 if (Instruction *I2 = dyn_cast<Instruction>(X))
1054 if (I1->isIdenticalTo(I2))
1055 return j;
1056 }
Chris Lattner5847e5e2005-05-08 18:59:37 +00001057 return i;
1058}
1059
Chris Lattner4c065092006-03-04 09:31:13 +00001060/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
1061/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001062static Value *EmitAddTreeOfValues(Instruction *I,
1063 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +00001064 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001065
Chris Lattner4c065092006-03-04 09:31:13 +00001066 Value *V1 = Ops.back();
1067 Ops.pop_back();
1068 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +00001069 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001070}
1071
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001072/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattner4c065092006-03-04 09:31:13 +00001073/// multiplication sequence, and if this sequence contains a multiply by Factor,
1074/// remove Factor from the tree and return the new tree.
1075Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001076 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1077 if (!BO)
1078 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001079
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001080 SmallVector<RepeatedValue, 8> Tree;
1081 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001082 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001083 Factors.reserve(Tree.size());
1084 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1085 RepeatedValue E = Tree[i];
1086 Factors.append(E.second.getZExtValue(),
1087 ValueEntry(getRank(E.first), E.first));
1088 }
Chris Lattner4c065092006-03-04 09:31:13 +00001089
1090 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001091 bool NeedsNegate = false;
1092 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001093 if (Factors[i].Op == Factor) {
1094 FoundFactor = true;
1095 Factors.erase(Factors.begin()+i);
1096 break;
1097 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001098
Chris Lattner0c59ac32010-01-01 01:13:15 +00001099 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001100 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001101 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1102 if (FC1->getValue() == -FC2->getValue()) {
1103 FoundFactor = NeedsNegate = true;
1104 Factors.erase(Factors.begin()+i);
1105 break;
1106 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001107 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1108 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1109 APFloat F1(FC1->getValueAPF());
1110 APFloat F2(FC2->getValueAPF());
1111 F2.changeSign();
1112 if (F1.compare(F2) == APFloat::cmpEqual) {
1113 FoundFactor = NeedsNegate = true;
1114 Factors.erase(Factors.begin() + i);
1115 break;
1116 }
1117 }
1118 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001119 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001120
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001121 if (!FoundFactor) {
1122 // Make sure to restore the operands to the expression tree.
1123 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001124 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001125 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001126
Chris Lattner0c59ac32010-01-01 01:13:15 +00001127 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001128
Chris Lattner1d897942009-12-31 19:34:45 +00001129 // If this was just a single multiply, remove the multiply and return the only
1130 // remaining operand.
1131 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001132 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001133 V = Factors[0].Op;
1134 } else {
1135 RewriteExprTree(BO, Factors);
1136 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001137 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001138
Chris Lattner0c59ac32010-01-01 01:13:15 +00001139 if (NeedsNegate)
Chad Rosier11ab9412014-08-14 15:23:01 +00001140 V = CreateNeg(V, "neg", InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001141
Chris Lattner0c59ac32010-01-01 01:13:15 +00001142 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001143}
1144
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001145/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1146/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001147///
1148/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001149static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001150 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001151 const SmallVectorImpl<ValueEntry> &Ops) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001152 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001153 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001154 Factors.push_back(V);
1155 return;
1156 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001157
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001158 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001159 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1160 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001161}
1162
Chris Lattner5f8a0052009-12-31 07:59:34 +00001163/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1164/// instruction. This optimizes based on identities. If it can be reduced to
1165/// a single Value, it is returned, otherwise the Ops list is mutated as
1166/// necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001167static Value *OptimizeAndOrXor(unsigned Opcode,
1168 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001169 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1170 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1171 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1172 // First, check for X and ~X in the operand list.
1173 assert(i < Ops.size());
1174 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1175 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1176 unsigned FoundX = FindInOperandList(Ops, i, X);
1177 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001178 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001179 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001180
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001181 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001182 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001183 }
1184 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001185
Chris Lattner5f8a0052009-12-31 07:59:34 +00001186 // Next, check for duplicate pairs of values, which we assume are next to
1187 // each other, due to our sorting criteria.
1188 assert(i < Ops.size());
1189 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1190 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001191 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001192 Ops.erase(Ops.begin()+i);
1193 --i; --e;
1194 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001195 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001196 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001197
Chris Lattner60c2ca72009-12-31 19:49:01 +00001198 // Drop pairs of values for Xor.
1199 assert(Opcode == Instruction::Xor);
1200 if (e == 2)
1201 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001202
Chris Lattnera5526832010-01-01 00:04:26 +00001203 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001204 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1205 i -= 1; e -= 2;
1206 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001207 }
1208 }
Craig Topperf40110f2014-04-25 05:29:35 +00001209 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001210}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001211
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001212/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1213/// instruction with the given two operands, and return the resulting
1214/// instruction. There are two special cases: 1) if the constant operand is 0,
1215/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1216/// be returned.
1217static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1218 const APInt &ConstOpnd) {
1219 if (ConstOpnd != 0) {
1220 if (!ConstOpnd.isAllOnesValue()) {
1221 LLVMContext &Ctx = Opnd->getType()->getContext();
1222 Instruction *I;
1223 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1224 "and.ra", InsertBefore);
1225 I->setDebugLoc(InsertBefore->getDebugLoc());
1226 return I;
1227 }
1228 return Opnd;
1229 }
Craig Topperf40110f2014-04-25 05:29:35 +00001230 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001231}
1232
1233// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1234// into "R ^ C", where C would be 0, and R is a symbolic value.
1235//
1236// If it was successful, true is returned, and the "R" and "C" is returned
1237// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1238// and both "Res" and "ConstOpnd" remain unchanged.
1239//
1240bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1241 APInt &ConstOpnd, Value *&Res) {
1242 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1243 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1244 // = (x & ~c1) ^ (c1 ^ c2)
1245 // It is useful only when c1 == c2.
1246 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1247 if (!Opnd1->getValue()->hasOneUse())
1248 return false;
1249
1250 const APInt &C1 = Opnd1->getConstPart();
1251 if (C1 != ConstOpnd)
1252 return false;
1253
1254 Value *X = Opnd1->getSymbolicPart();
1255 Res = createAndInstr(I, X, ~C1);
1256 // ConstOpnd was C2, now C1 ^ C2.
1257 ConstOpnd ^= C1;
1258
1259 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1260 RedoInsts.insert(T);
1261 return true;
1262 }
1263 return false;
1264}
1265
1266
1267// Helper function of OptimizeXor(). It tries to simplify
1268// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1269// symbolic value.
1270//
1271// If it was successful, true is returned, and the "R" and "C" is returned
1272// via "Res" and "ConstOpnd", respectively (If the entire expression is
1273// evaluated to a constant, the Res is set to NULL); otherwise, false is
1274// returned, and both "Res" and "ConstOpnd" remain unchanged.
1275bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1276 APInt &ConstOpnd, Value *&Res) {
1277 Value *X = Opnd1->getSymbolicPart();
1278 if (X != Opnd2->getSymbolicPart())
1279 return false;
1280
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001281 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1282 int DeadInstNum = 1;
1283 if (Opnd1->getValue()->hasOneUse())
1284 DeadInstNum++;
1285 if (Opnd2->getValue()->hasOneUse())
1286 DeadInstNum++;
1287
1288 // Xor-Rule 2:
1289 // (x | c1) ^ (x & c2)
1290 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1291 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1292 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1293 //
1294 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1295 if (Opnd2->isOrExpr())
1296 std::swap(Opnd1, Opnd2);
1297
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001298 const APInt &C1 = Opnd1->getConstPart();
1299 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001300 APInt C3((~C1) ^ C2);
1301
1302 // Do not increase code size!
1303 if (C3 != 0 && !C3.isAllOnesValue()) {
1304 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1305 if (NewInstNum > DeadInstNum)
1306 return false;
1307 }
1308
1309 Res = createAndInstr(I, X, C3);
1310 ConstOpnd ^= C1;
1311
1312 } else if (Opnd1->isOrExpr()) {
1313 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1314 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001315 const APInt &C1 = Opnd1->getConstPart();
1316 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001317 APInt C3 = C1 ^ C2;
1318
1319 // Do not increase code size
1320 if (C3 != 0 && !C3.isAllOnesValue()) {
1321 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1322 if (NewInstNum > DeadInstNum)
1323 return false;
1324 }
1325
1326 Res = createAndInstr(I, X, C3);
1327 ConstOpnd ^= C3;
1328 } else {
1329 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1330 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001331 const APInt &C1 = Opnd1->getConstPart();
1332 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001333 APInt C3 = C1 ^ C2;
1334 Res = createAndInstr(I, X, C3);
1335 }
1336
1337 // Put the original operands in the Redo list; hope they will be deleted
1338 // as dead code.
1339 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1340 RedoInsts.insert(T);
1341 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1342 RedoInsts.insert(T);
1343
1344 return true;
1345}
1346
1347/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1348/// to a single Value, it is returned, otherwise the Ops list is mutated as
1349/// necessary.
1350Value *Reassociate::OptimizeXor(Instruction *I,
1351 SmallVectorImpl<ValueEntry> &Ops) {
1352 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1353 return V;
1354
1355 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001356 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001357
1358 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001359 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001360 Type *Ty = Ops[0].Op->getType();
1361 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1362
1363 // Step 1: Convert ValueEntry to XorOpnd
1364 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1365 Value *V = Ops[i].Op;
1366 if (!isa<ConstantInt>(V)) {
1367 XorOpnd O(V);
1368 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1369 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001370 } else
1371 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1372 }
1373
Shuxin Yang331f01d2013-04-08 22:00:43 +00001374 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1375 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1376 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1377 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1378 // when new elements are added to the vector.
1379 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1380 OpndPtrs.push_back(&Opnds[i]);
1381
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001382 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1383 // the same symbolic value cluster together. For instance, the input operand
1384 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1385 // ("x | 123", "x & 789", "y & 456").
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001386 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001387
1388 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001389 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001390 bool Changed = false;
1391 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001392 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001393 // The combined value
1394 Value *CV;
1395
1396 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1397 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1398 Changed = true;
1399 if (CV)
1400 *CurrOpnd = XorOpnd(CV);
1401 else {
1402 CurrOpnd->Invalidate();
1403 continue;
1404 }
1405 }
1406
1407 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1408 PrevOpnd = CurrOpnd;
1409 continue;
1410 }
1411
1412 // step 3.2: When previous and current operands share the same symbolic
1413 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1414 //
1415 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1416 // Remove previous operand
1417 PrevOpnd->Invalidate();
1418 if (CV) {
1419 *CurrOpnd = XorOpnd(CV);
1420 PrevOpnd = CurrOpnd;
1421 } else {
1422 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001423 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001424 }
1425 Changed = true;
1426 }
1427 }
1428
1429 // Step 4: Reassemble the Ops
1430 if (Changed) {
1431 Ops.clear();
1432 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1433 XorOpnd &O = Opnds[i];
1434 if (O.isInvalid())
1435 continue;
1436 ValueEntry VE(getRank(O.getValue()), O.getValue());
1437 Ops.push_back(VE);
1438 }
1439 if (ConstOpnd != 0) {
1440 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1441 ValueEntry VE(getRank(C), C);
1442 Ops.push_back(VE);
1443 }
1444 int Sz = Ops.size();
1445 if (Sz == 1)
1446 return Ops.back().Op;
1447 else if (Sz == 0) {
1448 assert(ConstOpnd == 0);
1449 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1450 }
1451 }
1452
Craig Topperf40110f2014-04-25 05:29:35 +00001453 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001454}
1455
Chris Lattner5f8a0052009-12-31 07:59:34 +00001456/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1457/// optimizes based on identities. If it can be reduced to a single Value, it
1458/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001459Value *Reassociate::OptimizeAdd(Instruction *I,
1460 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001461 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001462 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1463 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001464 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001465
Chris Lattner5f8a0052009-12-31 07:59:34 +00001466 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001467 Value *TheOp = Ops[i].Op;
1468 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001469 // instances of the operand together. Due to our sorting criteria, we know
1470 // that these need to be next to each other in the vector.
1471 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1472 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001473 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001474 do {
1475 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001476 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001477 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001478
Chris Lattnered189172009-12-31 19:25:19 +00001479 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001480 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001481
Chris Lattner60b71b52009-12-31 19:24:52 +00001482 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001483 Type *Ty = TheOp->getType();
1484 Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound)
1485 : ConstantFP::get(Ty, NumFound);
1486 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001487
Chris Lattner60b71b52009-12-31 19:24:52 +00001488 // Now that we have inserted a multiply, optimize it. This allows us to
1489 // handle cases that require multiple factoring steps, such as this:
1490 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001491 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001492
Chris Lattner60b71b52009-12-31 19:24:52 +00001493 // If every add operand was a duplicate, return the multiply.
1494 if (Ops.empty())
1495 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001496
Chris Lattner60b71b52009-12-31 19:24:52 +00001497 // Otherwise, we had some input that didn't have the dupe, such as
1498 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1499 // things being added by this operation.
1500 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001501
Chris Lattner60c2ca72009-12-31 19:49:01 +00001502 --i;
1503 e = Ops.size();
1504 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001505 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001506
Benjamin Kramer49689442014-05-31 15:01:54 +00001507 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001508 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1509 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001510 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001511
Benjamin Kramer49689442014-05-31 15:01:54 +00001512 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001513 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001514 X = BinaryOperator::getNegArgument(TheOp);
1515 else if (BinaryOperator::isNot(TheOp))
1516 X = BinaryOperator::getNotArgument(TheOp);
1517
Chris Lattner5f8a0052009-12-31 07:59:34 +00001518 unsigned FoundX = FindInOperandList(Ops, i, X);
1519 if (FoundX == i)
1520 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001521
Chris Lattner5f8a0052009-12-31 07:59:34 +00001522 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001523 if (Ops.size() == 2 &&
1524 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001525 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001526
Benjamin Kramer49689442014-05-31 15:01:54 +00001527 // Remove X and ~X from the operand list.
1528 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1529 return Constant::getAllOnesValue(X->getType());
1530
Chris Lattner5f8a0052009-12-31 07:59:34 +00001531 Ops.erase(Ops.begin()+i);
1532 if (i < FoundX)
1533 --FoundX;
1534 else
1535 --i; // Need to back up an extra one.
1536 Ops.erase(Ops.begin()+FoundX);
1537 ++NumAnnihil;
1538 --i; // Revisit element.
1539 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001540
1541 // if X and ~X we append -1 to the operand list.
1542 if (BinaryOperator::isNot(TheOp)) {
1543 Value *V = Constant::getAllOnesValue(X->getType());
1544 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1545 e += 1;
1546 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001547 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001548
Chris Lattner177140a2009-12-31 18:17:13 +00001549 // Scan the operand list, checking to see if there are any common factors
1550 // between operands. Consider something like A*A+A*B*C+D. We would like to
1551 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1552 // To efficiently find this, we count the number of times a factor occurs
1553 // for any ADD operands that are MULs.
1554 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001555
Chris Lattner177140a2009-12-31 18:17:13 +00001556 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1557 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001558 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001559 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001560 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001561 BinaryOperator *BOp =
1562 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001563 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001564 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001565
Chris Lattner177140a2009-12-31 18:17:13 +00001566 // Compute all of the factors of this added value.
1567 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001568 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001569 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001570
Chris Lattner177140a2009-12-31 18:17:13 +00001571 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001572 SmallPtrSet<Value*, 8> Duplicates;
1573 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1574 Value *Factor = Factors[i];
Chad Rosier11ab9412014-08-14 15:23:01 +00001575 if (!Duplicates.insert(Factor))
1576 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001577
Chris Lattner0c59ac32010-01-01 01:13:15 +00001578 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001579 if (Occ > MaxOcc) {
1580 MaxOcc = Occ;
1581 MaxOccVal = Factor;
1582 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001583
Chris Lattner0c59ac32010-01-01 01:13:15 +00001584 // If Factor is a negative constant, add the negated value as a factor
1585 // because we can percolate the negate out. Watch for minint, which
1586 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001587 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001588 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001589 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1590 assert(!Duplicates.count(Factor) &&
1591 "Shouldn't have two constant factors, missed a canonicalize");
Chris Lattner0c59ac32010-01-01 01:13:15 +00001592 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001593 if (Occ > MaxOcc) {
1594 MaxOcc = Occ;
1595 MaxOccVal = Factor;
1596 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001597 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001598 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1599 if (CF->isNegative()) {
1600 APFloat F(CF->getValueAPF());
1601 F.changeSign();
1602 Factor = ConstantFP::get(CF->getContext(), F);
1603 assert(!Duplicates.count(Factor) &&
1604 "Shouldn't have two constant factors, missed a canonicalize");
1605 unsigned Occ = ++FactorOccurrences[Factor];
1606 if (Occ > MaxOcc) {
1607 MaxOcc = Occ;
1608 MaxOccVal = Factor;
1609 }
1610 }
1611 }
Chris Lattner177140a2009-12-31 18:17:13 +00001612 }
1613 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001614
Chris Lattner177140a2009-12-31 18:17:13 +00001615 // If any factor occurred more than one time, we can pull it out.
1616 if (MaxOcc > 1) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001617 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001618 ++NumFactor;
1619
1620 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1621 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001622 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001623 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001624 Instruction *DummyInst =
1625 I->getType()->isIntegerTy()
1626 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1627 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1628
Bill Wendling274ba892012-05-02 09:59:45 +00001629 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001630 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001631 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001632 BinaryOperator *BOp =
1633 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001634 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001635 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001636
Chris Lattner177140a2009-12-31 18:17:13 +00001637 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001638 // The factorized operand may occur several times. Convert them all in
1639 // one fell swoop.
1640 for (unsigned j = Ops.size(); j != i;) {
1641 --j;
1642 if (Ops[j].Op == Ops[i].Op) {
1643 NewMulOps.push_back(V);
1644 Ops.erase(Ops.begin()+j);
1645 }
1646 }
1647 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001648 }
1649 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001650
Chris Lattner177140a2009-12-31 18:17:13 +00001651 // No need for extra uses anymore.
1652 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001653
Chris Lattner177140a2009-12-31 18:17:13 +00001654 unsigned NumAddedValues = NewMulOps.size();
1655 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001656
Chris Lattner60b71b52009-12-31 19:24:52 +00001657 // Now that we have inserted the add tree, optimize it. This allows us to
1658 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001659 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001660 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001661 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001662 if (Instruction *VI = dyn_cast<Instruction>(V))
1663 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001664
1665 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001666 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001667
Chris Lattner60c2ca72009-12-31 19:49:01 +00001668 // Rerun associate on the multiply in case the inner expression turned into
1669 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001670 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001671
Chris Lattner177140a2009-12-31 18:17:13 +00001672 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1673 // entire result expression is just the multiply "A*(B+C)".
1674 if (Ops.empty())
1675 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001676
Chris Lattnerac615502009-12-31 18:18:46 +00001677 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001678 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001679 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001680 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1681 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001682
Craig Topperf40110f2014-04-25 05:29:35 +00001683 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001684}
Chris Lattner4c065092006-03-04 09:31:13 +00001685
Chandler Carruth739ef802012-04-26 05:30:30 +00001686/// \brief Build up a vector of value/power pairs factoring a product.
1687///
1688/// Given a series of multiplication operands, build a vector of factors and
1689/// the powers each is raised to when forming the final product. Sort them in
1690/// the order of descending power.
1691///
1692/// (x*x) -> [(x, 2)]
1693/// ((x*x)*x) -> [(x, 3)]
1694/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1695///
1696/// \returns Whether any factors have a power greater than one.
1697bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1698 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001699 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1700 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001701 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001702 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1703 Value *Op = Ops[Idx-1].Op;
1704
1705 // Count the number of occurrences of this value.
1706 unsigned Count = 1;
1707 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1708 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001709 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001710 if (Count > 1)
1711 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001712 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001713
Chandler Carruth739ef802012-04-26 05:30:30 +00001714 // We can only simplify factors if the sum of the powers of our simplifiable
1715 // factors is 4 or higher. When that is the case, we will *always* have
1716 // a simplification. This is an important invariant to prevent cyclicly
1717 // trying to simplify already minimal formations.
1718 if (FactorPowerSum < 4)
1719 return false;
1720
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001721 // Now gather the simplifiable factors, removing them from Ops.
1722 FactorPowerSum = 0;
1723 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1724 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001725
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001726 // Count the number of occurrences of this value.
1727 unsigned Count = 1;
1728 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1729 ++Count;
1730 if (Count == 1)
1731 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001732 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001733 Count &= ~1U;
1734 Idx -= Count;
1735 FactorPowerSum += Count;
1736 Factors.push_back(Factor(Op, Count));
1737 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001738 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001739
Chandler Carruth739ef802012-04-26 05:30:30 +00001740 // None of the adjustments above should have reduced the sum of factor powers
1741 // below our mininum of '4'.
1742 assert(FactorPowerSum >= 4);
1743
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001744 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
Chandler Carruth739ef802012-04-26 05:30:30 +00001745 return true;
1746}
1747
1748/// \brief Build a tree of multiplies, computing the product of Ops.
1749static Value *buildMultiplyTree(IRBuilder<> &Builder,
1750 SmallVectorImpl<Value*> &Ops) {
1751 if (Ops.size() == 1)
1752 return Ops.back();
1753
1754 Value *LHS = Ops.pop_back_val();
1755 do {
Chad Rosier11ab9412014-08-14 15:23:01 +00001756 if (LHS->getType()->isIntegerTy())
1757 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1758 else
1759 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001760 } while (!Ops.empty());
1761
1762 return LHS;
1763}
1764
1765/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1766///
1767/// Given a vector of values raised to various powers, where no two values are
1768/// equal and the powers are sorted in decreasing order, compute the minimal
1769/// DAG of multiplies to compute the final product, and return that product
1770/// value.
1771Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1772 SmallVectorImpl<Factor> &Factors) {
1773 assert(Factors[0].Power);
1774 SmallVector<Value *, 4> OuterProduct;
1775 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1776 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1777 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1778 LastIdx = Idx;
1779 continue;
1780 }
1781
1782 // We want to multiply across all the factors with the same power so that
1783 // we can raise them to that power as a single entity. Build a mini tree
1784 // for that.
1785 SmallVector<Value *, 4> InnerProduct;
1786 InnerProduct.push_back(Factors[LastIdx].Base);
1787 do {
1788 InnerProduct.push_back(Factors[Idx].Base);
1789 ++Idx;
1790 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1791
1792 // Reset the base value of the first factor to the new expression tree.
1793 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001794 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1795 if (Instruction *MI = dyn_cast<Instruction>(M))
1796 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001797
1798 LastIdx = Idx;
1799 }
1800 // Unique factors with equal powers -- we've folded them into the first one's
1801 // base.
1802 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1803 Factor::PowerEqual()),
1804 Factors.end());
1805
1806 // Iteratively collect the base of each factor with an add power into the
1807 // outer product, and halve each power in preparation for squaring the
1808 // expression.
1809 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1810 if (Factors[Idx].Power & 1)
1811 OuterProduct.push_back(Factors[Idx].Base);
1812 Factors[Idx].Power >>= 1;
1813 }
1814 if (Factors[0].Power) {
1815 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1816 OuterProduct.push_back(SquareRoot);
1817 OuterProduct.push_back(SquareRoot);
1818 }
1819 if (OuterProduct.size() == 1)
1820 return OuterProduct.front();
1821
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001822 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001823 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001824}
1825
1826Value *Reassociate::OptimizeMul(BinaryOperator *I,
1827 SmallVectorImpl<ValueEntry> &Ops) {
1828 // We can only optimize the multiplies when there is a chain of more than
1829 // three, such that a balanced tree might require fewer total multiplies.
1830 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001831 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001832
1833 // Try to turn linear trees of multiplies without other uses of the
1834 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1835 // re-use.
1836 SmallVector<Factor, 4> Factors;
1837 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001838 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001839
1840 IRBuilder<> Builder(I);
1841 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1842 if (Ops.empty())
1843 return V;
1844
1845 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1846 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001847 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001848}
1849
Chris Lattner4c065092006-03-04 09:31:13 +00001850Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner38abecb2009-12-31 18:40:32 +00001851 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001852 // Now that we have the linearized expression tree, try to optimize it.
1853 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001854 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001855 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001856 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1857 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1858 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1859 }
1860 // If there was nothing but constants then we are done.
1861 if (Ops.empty())
1862 return Cst;
1863
1864 // Put the combined constant back at the end of the operand list, except if
1865 // there is no point. For example, an add of 0 gets dropped here, while a
1866 // multiplication by zero turns the whole expression into zero.
1867 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1868 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1869 return Cst;
1870 Ops.push_back(ValueEntry(0, Cst));
1871 }
1872
1873 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001874
Chris Lattner9039ff82009-12-31 07:33:14 +00001875 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001876 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001877 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001878 switch (Opcode) {
1879 default: break;
1880 case Instruction::And:
1881 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001882 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1883 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001884 break;
1885
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001886 case Instruction::Xor:
1887 if (Value *Result = OptimizeXor(I, Ops))
1888 return Result;
1889 break;
1890
Chandler Carruth739ef802012-04-26 05:30:30 +00001891 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001892 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001893 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001894 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001895 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001896
1897 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001898 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001899 if (Value *Result = OptimizeMul(I, Ops))
1900 return Result;
1901 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001902 }
1903
Duncan Sands3293f462012-06-08 20:15:33 +00001904 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001905 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001906 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001907}
1908
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001909/// EraseInst - Zap the given instruction, adding interesting operands to the
1910/// work list.
1911void Reassociate::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001912 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1913 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1914 // Erase the dead instruction.
1915 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001916 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001917 I->eraseFromParent();
1918 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001919 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001920 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1921 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1922 // If this is a node in an expression tree, climb to the expression root
1923 // and add that since that's where optimization actually happens.
1924 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001925 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
Duncan Sands78386032012-06-15 08:37:50 +00001926 Visited.insert(Op))
Chandler Carruthcdf47882014-03-09 03:16:01 +00001927 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001928 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001929 }
1930}
1931
Chad Rosier005505b2014-11-03 19:11:30 +00001932// Canonicalize expressions of the following form:
1933// x + (-Constant * y) -> x - (Constant * y)
1934// x - (-Constant * y) -> x + (Constant * y)
1935Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1936 if (!I->hasOneUse() || I->getType()->isVectorTy())
1937 return nullptr;
1938
1939 // Must have at least one constant operand.
1940 Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
1941 Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
1942 if (!C0 && !C1)
1943 return nullptr;
1944
1945 // Must be a negative ConstantInt or ConstantFP.
1946 Constant *C = C0 ? C0 : C1;
1947 unsigned ConstIdx = C0 ? 0 : 1;
1948 if (auto *CI = dyn_cast<ConstantInt>(C)) {
1949 if (!CI->isNegative())
1950 return nullptr;
1951 } else if (auto *CF = dyn_cast<ConstantFP>(C)) {
1952 if (!CF->isNegative())
1953 return nullptr;
1954 } else
1955 return nullptr;
1956
1957 // User must be a binary operator with one or more uses.
1958 Instruction *User = I->user_back();
1959 if (!isa<BinaryOperator>(User) || !User->getNumUses())
1960 return nullptr;
1961
1962 // Must be a binary operator with higher precedence that add/sub.
1963 switch(I->getOpcode()) {
1964 default:
1965 return nullptr;
1966 case Instruction::Mul:
1967 case Instruction::FMul:
1968 case Instruction::UDiv:
1969 case Instruction::SDiv:
1970 case Instruction::FDiv:
1971 case Instruction::URem:
1972 case Instruction::SRem:
1973 case Instruction::FRem:
1974 break;
1975 }
1976
1977 unsigned UserOpcode = User->getOpcode();
1978 if (UserOpcode != Instruction::Add && UserOpcode != Instruction::FAdd &&
1979 UserOpcode != Instruction::Sub && UserOpcode != Instruction::FSub)
1980 return nullptr;
1981
1982 // Subtraction is not commutative. Explicitly, the following transform is
1983 // not valid: (-Constant * y) - x -> x + (Constant * y)
1984 if (!User->isCommutative() && User->getOperand(1) != I)
1985 return nullptr;
1986
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001987 // Change the sign of the constant.
Chad Rosier005505b2014-11-03 19:11:30 +00001988 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1989 I->setOperand(ConstIdx, ConstantInt::get(CI->getContext(), -CI->getValue()));
1990 else {
1991 ConstantFP *CF = cast<ConstantFP>(C);
1992 APFloat Val = CF->getValueAPF();
1993 Val.changeSign();
1994 I->setOperand(ConstIdx, ConstantFP::get(CF->getContext(), Val));
1995 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001996
Chad Rosier005505b2014-11-03 19:11:30 +00001997 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1998 // ((-Const*y) + x) -> (x + (-Const*y)).
1999 if (User->getOperand(0) == I && User->isCommutative())
2000 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002001
Chad Rosier005505b2014-11-03 19:11:30 +00002002 Value *Op0 = User->getOperand(0);
2003 Value *Op1 = User->getOperand(1);
2004 BinaryOperator *NI;
2005 switch(UserOpcode) {
2006 default:
2007 llvm_unreachable("Unexpected Opcode!");
2008 case Instruction::Add:
2009 NI = BinaryOperator::CreateSub(Op0, Op1);
2010 break;
2011 case Instruction::Sub:
2012 NI = BinaryOperator::CreateAdd(Op0, Op1);
2013 break;
2014 case Instruction::FAdd:
2015 NI = BinaryOperator::CreateFSub(Op0, Op1);
2016 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2017 break;
2018 case Instruction::FSub:
2019 NI = BinaryOperator::CreateFAdd(Op0, Op1);
2020 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2021 break;
2022 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002023
Chad Rosier005505b2014-11-03 19:11:30 +00002024 NI->insertBefore(User);
2025 NI->setName(User->getName());
2026 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002027 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier005505b2014-11-03 19:11:30 +00002028 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002029 MadeChange = true;
Chad Rosier005505b2014-11-03 19:11:30 +00002030 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002031}
2032
Duncan Sands3293f462012-06-08 20:15:33 +00002033/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
2034/// instructions is not allowed.
2035void Reassociate::OptimizeInst(Instruction *I) {
2036 // Only consider operations that we understand.
2037 if (!isa<BinaryOperator>(I))
2038 return;
2039
Chad Rosier11ab9412014-08-14 15:23:01 +00002040 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00002041 // If an operand of this shift is a reassociable multiply, or if the shift
2042 // is used by a reassociable multiply or add, turn into a multiply.
2043 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2044 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002045 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2046 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002047 Instruction *NI = ConvertShiftToMul(I);
2048 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002049 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002050 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002051 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002052
Chad Rosier005505b2014-11-03 19:11:30 +00002053 // Canonicalize negative constants out of expressions.
2054 if (Instruction *Res = canonicalizeNegConstExpr(I))
2055 I = Res;
2056
Chad Rosier11ab9412014-08-14 15:23:01 +00002057 // Commute floating point binary operators, to canonicalize the order of their
2058 // operands. This can potentially expose more CSE opportunities, and makes
2059 // writing other transformations simpler.
2060 if (I->getType()->isFloatingPointTy() || I->getType()->isVectorTy()) {
2061
Owen Andersonf4f80e12012-05-07 20:47:23 +00002062 // FAdd and FMul can be commuted.
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002063 unsigned Opcode = I->getOpcode();
2064 if (Opcode == Instruction::FMul || Opcode == Instruction::FAdd) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002065 Value *LHS = I->getOperand(0);
2066 Value *RHS = I->getOperand(1);
2067 unsigned LHSRank = getRank(LHS);
2068 unsigned RHSRank = getRank(RHS);
Owen Andersonf4f80e12012-05-07 20:47:23 +00002069
Chad Rosier11ab9412014-08-14 15:23:01 +00002070 // Sort the operands by rank.
2071 if (RHSRank < LHSRank) {
2072 I->setOperand(0, RHS);
2073 I->setOperand(1, LHS);
2074 }
Owen Andersonf4f80e12012-05-07 20:47:23 +00002075 }
2076
Chad Rosier11ab9412014-08-14 15:23:01 +00002077 // FIXME: We should commute vector instructions as well. However, this
2078 // requires further analysis to determine the effect on later passes.
2079
2080 // Don't try to optimize vector instructions or anything that doesn't have
2081 // unsafe algebra.
2082 if (I->getType()->isVectorTy() || !I->hasUnsafeAlgebra())
2083 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002084 }
2085
Dan Gohman1c6c3482011-04-12 00:11:56 +00002086 // Do not reassociate boolean (i1) expressions. We want to preserve the
2087 // original order of evaluation for short-circuited comparisons that
2088 // SimplifyCFG has folded to AND/OR expressions. If the expression
2089 // is not further optimized, it is likely to be transformed back to a
2090 // short-circuited form for code gen, and the source order may have been
2091 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002092 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002093 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002094
Dan Gohman1c6c3482011-04-12 00:11:56 +00002095 // If this is a subtract instruction which is not already in negate form,
2096 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002097 if (I->getOpcode() == Instruction::Sub) {
2098 if (ShouldBreakUpSubtract(I)) {
2099 Instruction *NI = BreakUpSubtract(I);
2100 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002101 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002102 I = NI;
2103 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002104 // Otherwise, this is a negation. See if the operand is a multiply tree
2105 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002106 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2107 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002108 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002109 Instruction *NI = LowerNegateToMultiply(I);
2110 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002111 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002112 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002113 }
2114 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002115 } else if (I->getOpcode() == Instruction::FSub) {
2116 if (ShouldBreakUpSubtract(I)) {
2117 Instruction *NI = BreakUpSubtract(I);
2118 RedoInsts.insert(I);
2119 MadeChange = true;
2120 I = NI;
2121 } else if (BinaryOperator::isFNeg(I)) {
2122 // Otherwise, this is a negation. See if the operand is a multiply tree
2123 // and if this is not an inner node of a multiply tree.
2124 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2125 (!I->hasOneUse() ||
2126 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2127 Instruction *NI = LowerNegateToMultiply(I);
2128 RedoInsts.insert(I);
2129 MadeChange = true;
2130 I = NI;
2131 }
2132 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002133 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002134
Duncan Sands3293f462012-06-08 20:15:33 +00002135 // If this instruction is an associative binary operator, process it.
2136 if (!I->isAssociative()) return;
2137 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002138
2139 // If this is an interior node of a reassociable tree, ignore it until we
2140 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002141 unsigned Opcode = BO->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00002142 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002143 return;
2144
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002145 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002146 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002147 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002148 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002149 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002150 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2151 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2152 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002153
Duncan Sands3293f462012-06-08 20:15:33 +00002154 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002155}
Chris Lattner1e506502005-05-07 21:59:39 +00002156
Duncan Sands78386032012-06-15 08:37:50 +00002157void Reassociate::ReassociateExpression(BinaryOperator *I) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002158 assert(!I->getType()->isVectorTy() &&
2159 "Reassociation of vector instructions is not supported.");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002160
Chris Lattner60b71b52009-12-31 19:24:52 +00002161 // First, walk the expression tree, linearizing the tree, collecting the
2162 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002163 SmallVector<RepeatedValue, 8> Tree;
2164 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002165 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002166 Ops.reserve(Tree.size());
2167 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2168 RepeatedValue E = Tree[i];
2169 Ops.append(E.second.getZExtValue(),
2170 ValueEntry(getRank(E.first), E.first));
2171 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002172
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002173 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2174
Chris Lattner2fc319d2006-03-14 07:11:11 +00002175 // Now that we have linearized the tree to a list and have gathered all of
2176 // the operands and their ranks, sort the operands by their rank. Use a
2177 // stable_sort so that values with equal ranks will have their relative
2178 // positions maintained (and so the compiler is deterministic). Note that
2179 // this sorts so that the highest ranking values end up at the beginning of
2180 // the vector.
2181 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002182
Chris Lattner2fc319d2006-03-14 07:11:11 +00002183 // OptimizeExpression - Now that we have the expression tree in a convenient
2184 // sorted form, optimize it globally if possible.
2185 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002186 if (V == I)
2187 // Self-referential expression in unreachable code.
2188 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002189 // This expression tree simplified to something that isn't a tree,
2190 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002191 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002192 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002193 if (Instruction *VI = dyn_cast<Instruction>(V))
2194 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002195 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002196 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002197 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002198 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002199
Chris Lattner2fc319d2006-03-14 07:11:11 +00002200 // We want to sink immediates as deeply as possible except in the case where
2201 // this is a multiply tree used only by an add, and the immediate is a -1.
2202 // In this case we reassociate to put the negation on the outside so that we
2203 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002204 if (I->hasOneUse()) {
2205 if (I->getOpcode() == Instruction::Mul &&
2206 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2207 isa<ConstantInt>(Ops.back().Op) &&
2208 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2209 ValueEntry Tmp = Ops.pop_back_val();
2210 Ops.insert(Ops.begin(), Tmp);
2211 } else if (I->getOpcode() == Instruction::FMul &&
2212 cast<Instruction>(I->user_back())->getOpcode() ==
2213 Instruction::FAdd &&
2214 isa<ConstantFP>(Ops.back().Op) &&
2215 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2216 ValueEntry Tmp = Ops.pop_back_val();
2217 Ops.insert(Ops.begin(), Tmp);
2218 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002219 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002220
David Greened17c3912010-01-05 01:27:24 +00002221 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002222
Chris Lattner2fc319d2006-03-14 07:11:11 +00002223 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002224 if (Ops[0].Op == I)
2225 // Self-referential expression in unreachable code.
2226 return;
2227
Chris Lattner2fc319d2006-03-14 07:11:11 +00002228 // This expression tree simplified to something that isn't a tree,
2229 // eliminate it.
2230 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002231 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2232 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002233 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002234 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002235 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002236
Chris Lattner60b71b52009-12-31 19:24:52 +00002237 // Now that we ordered and optimized the expressions, splat them back into
2238 // the expression tree, removing any unneeded nodes.
2239 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002240}
2241
Chris Lattner113f4f42002-06-25 16:13:24 +00002242bool Reassociate::runOnFunction(Function &F) {
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00002243 if (skipOptnoneFunction(F))
2244 return false;
2245
Duncan Sands3293f462012-06-08 20:15:33 +00002246 // Calculate the rank map for F
Chris Lattnerc0f58002002-05-08 22:19:27 +00002247 BuildRankMap(F);
2248
Chris Lattner1e506502005-05-07 21:59:39 +00002249 MadeChange = false;
Duncan Sands3293f462012-06-08 20:15:33 +00002250 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2251 // Optimize every instruction in the basic block.
2252 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
2253 if (isInstructionTriviallyDead(II)) {
2254 EraseInst(II++);
2255 } else {
2256 OptimizeInst(II);
2257 assert(II->getParent() == BI && "Moved to a different block!");
2258 ++II;
2259 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002260
Duncan Sands3293f462012-06-08 20:15:33 +00002261 // If this produced extra instructions to optimize, handle them now.
2262 while (!RedoInsts.empty()) {
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00002263 Instruction *I = RedoInsts.pop_back_val();
Duncan Sands3293f462012-06-08 20:15:33 +00002264 if (isInstructionTriviallyDead(I))
2265 EraseInst(I);
2266 else
2267 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002268 }
Duncan Sands3293f462012-06-08 20:15:33 +00002269 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002270
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002271 // We are done with the rank map.
2272 RankMap.clear();
2273 ValueRankMap.clear();
2274
Chris Lattner1e506502005-05-07 21:59:39 +00002275 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002276}