blob: 25a3b14a64b461f26ed8ec9c888e463b38547ed0 [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Tim Northover3c55cca2014-11-27 21:02:42 +000015#include "AArch64CallingConvention.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000016#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000017#include "AArch64PerfectShuffle.h"
18#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000019#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "MCTargetDesc/AArch64AddressingModes.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/Type.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetOptions.h"
35using namespace llvm;
36
37#define DEBUG_TYPE "aarch64-lower"
38
39STATISTIC(NumTailCalls, "Number of tail calls");
40STATISTIC(NumShiftInserts, "Number of vector shift inserts");
41
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000042namespace {
Tim Northover3b0846e2014-05-24 12:50:23 +000043enum AlignMode {
44 StrictAlign,
45 NoStrictAlign
46};
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000047}
Tim Northover3b0846e2014-05-24 12:50:23 +000048
49static cl::opt<AlignMode>
50Align(cl::desc("Load/store alignment support"),
51 cl::Hidden, cl::init(NoStrictAlign),
52 cl::values(
53 clEnumValN(StrictAlign, "aarch64-strict-align",
54 "Disallow all unaligned memory accesses"),
55 clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
56 "Allow unaligned memory accesses"),
57 clEnumValEnd));
58
59// Place holder until extr generation is tested fully.
60static cl::opt<bool>
61EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
62 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
63 cl::init(true));
64
65static cl::opt<bool>
66EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
Kristof Beylsaea84612015-03-04 09:12:08 +000067 cl::desc("Allow AArch64 SLI/SRI formation"),
68 cl::init(false));
69
70// FIXME: The necessary dtprel relocations don't seem to be supported
71// well in the GNU bfd and gold linkers at the moment. Therefore, by
72// default, for now, fall back to GeneralDynamic code generation.
73cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
74 "aarch64-elf-ldtls-generation", cl::Hidden,
75 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
76 cl::init(false));
Tim Northover3b0846e2014-05-24 12:50:23 +000077
Eric Christopher905f12d2015-01-29 00:19:42 +000078AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
79 const AArch64Subtarget &STI)
80 : TargetLowering(TM), Subtarget(&STI) {
Tim Northover3b0846e2014-05-24 12:50:23 +000081
82 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
83 // we have to make something up. Arbitrarily, choose ZeroOrOne.
84 setBooleanContents(ZeroOrOneBooleanContent);
85 // When comparing vectors the result sets the different elements in the
86 // vector to all-one or all-zero.
87 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
88
89 // Set up the register classes.
90 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
91 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
92
93 if (Subtarget->hasFPARMv8()) {
94 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
95 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
96 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
97 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
98 }
99
100 if (Subtarget->hasNEON()) {
101 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
102 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
103 // Someone set us up the NEON.
104 addDRTypeForNEON(MVT::v2f32);
105 addDRTypeForNEON(MVT::v8i8);
106 addDRTypeForNEON(MVT::v4i16);
107 addDRTypeForNEON(MVT::v2i32);
108 addDRTypeForNEON(MVT::v1i64);
109 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000110 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000111
112 addQRTypeForNEON(MVT::v4f32);
113 addQRTypeForNEON(MVT::v2f64);
114 addQRTypeForNEON(MVT::v16i8);
115 addQRTypeForNEON(MVT::v8i16);
116 addQRTypeForNEON(MVT::v4i32);
117 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000118 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000119 }
120
121 // Compute derived properties from the register classes
Eric Christopher23a3a7c2015-02-26 00:00:24 +0000122 computeRegisterProperties(Subtarget->getRegisterInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +0000123
124 // Provide all sorts of operation actions
125 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
126 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
127 setOperationAction(ISD::SETCC, MVT::i32, Custom);
128 setOperationAction(ISD::SETCC, MVT::i64, Custom);
129 setOperationAction(ISD::SETCC, MVT::f32, Custom);
130 setOperationAction(ISD::SETCC, MVT::f64, Custom);
131 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
132 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
133 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
134 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
135 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
136 setOperationAction(ISD::SELECT, MVT::i32, Custom);
137 setOperationAction(ISD::SELECT, MVT::i64, Custom);
138 setOperationAction(ISD::SELECT, MVT::f32, Custom);
139 setOperationAction(ISD::SELECT, MVT::f64, Custom);
140 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
141 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
142 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
143 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
144 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
145 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
146
147 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
148 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
149 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
150
151 setOperationAction(ISD::FREM, MVT::f32, Expand);
152 setOperationAction(ISD::FREM, MVT::f64, Expand);
153 setOperationAction(ISD::FREM, MVT::f80, Expand);
154
155 // Custom lowering hooks are needed for XOR
156 // to fold it into CSINC/CSINV.
157 setOperationAction(ISD::XOR, MVT::i32, Custom);
158 setOperationAction(ISD::XOR, MVT::i64, Custom);
159
160 // Virtually no operation on f128 is legal, but LLVM can't expand them when
161 // there's a valid register class, so we need custom operations in most cases.
162 setOperationAction(ISD::FABS, MVT::f128, Expand);
163 setOperationAction(ISD::FADD, MVT::f128, Custom);
164 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
165 setOperationAction(ISD::FCOS, MVT::f128, Expand);
166 setOperationAction(ISD::FDIV, MVT::f128, Custom);
167 setOperationAction(ISD::FMA, MVT::f128, Expand);
168 setOperationAction(ISD::FMUL, MVT::f128, Custom);
169 setOperationAction(ISD::FNEG, MVT::f128, Expand);
170 setOperationAction(ISD::FPOW, MVT::f128, Expand);
171 setOperationAction(ISD::FREM, MVT::f128, Expand);
172 setOperationAction(ISD::FRINT, MVT::f128, Expand);
173 setOperationAction(ISD::FSIN, MVT::f128, Expand);
174 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
175 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
176 setOperationAction(ISD::FSUB, MVT::f128, Custom);
177 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
178 setOperationAction(ISD::SETCC, MVT::f128, Custom);
179 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
180 setOperationAction(ISD::SELECT, MVT::f128, Custom);
181 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
182 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
183
184 // Lowering for many of the conversions is actually specified by the non-f128
185 // type. The LowerXXX function will be trivial when f128 isn't involved.
186 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
187 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
188 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
189 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
190 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
191 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
192 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
193 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
194 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
195 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
196 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
197 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
198 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
199 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
200
201 // Variable arguments.
202 setOperationAction(ISD::VASTART, MVT::Other, Custom);
203 setOperationAction(ISD::VAARG, MVT::Other, Custom);
204 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
205 setOperationAction(ISD::VAEND, MVT::Other, Expand);
206
207 // Variable-sized objects.
208 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
209 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
210 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
211
212 // Exception handling.
213 // FIXME: These are guesses. Has this been defined yet?
214 setExceptionPointerRegister(AArch64::X0);
215 setExceptionSelectorRegister(AArch64::X1);
216
217 // Constant pool entries
218 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
219
220 // BlockAddress
221 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
222
223 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
224 setOperationAction(ISD::ADDC, MVT::i32, Custom);
225 setOperationAction(ISD::ADDE, MVT::i32, Custom);
226 setOperationAction(ISD::SUBC, MVT::i32, Custom);
227 setOperationAction(ISD::SUBE, MVT::i32, Custom);
228 setOperationAction(ISD::ADDC, MVT::i64, Custom);
229 setOperationAction(ISD::ADDE, MVT::i64, Custom);
230 setOperationAction(ISD::SUBC, MVT::i64, Custom);
231 setOperationAction(ISD::SUBE, MVT::i64, Custom);
232
233 // AArch64 lacks both left-rotate and popcount instructions.
234 setOperationAction(ISD::ROTL, MVT::i32, Expand);
235 setOperationAction(ISD::ROTL, MVT::i64, Expand);
236
237 // AArch64 doesn't have {U|S}MUL_LOHI.
238 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
239 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
240
241
242 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
243 // counterparts, which AArch64 supports directly.
244 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
245 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
246 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
247 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
248
249 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
250 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
251
252 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
253 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
254 setOperationAction(ISD::SREM, MVT::i32, Expand);
255 setOperationAction(ISD::SREM, MVT::i64, Expand);
256 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
257 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
258 setOperationAction(ISD::UREM, MVT::i32, Expand);
259 setOperationAction(ISD::UREM, MVT::i64, Expand);
260
261 // Custom lower Add/Sub/Mul with overflow.
262 setOperationAction(ISD::SADDO, MVT::i32, Custom);
263 setOperationAction(ISD::SADDO, MVT::i64, Custom);
264 setOperationAction(ISD::UADDO, MVT::i32, Custom);
265 setOperationAction(ISD::UADDO, MVT::i64, Custom);
266 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
267 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
268 setOperationAction(ISD::USUBO, MVT::i32, Custom);
269 setOperationAction(ISD::USUBO, MVT::i64, Custom);
270 setOperationAction(ISD::SMULO, MVT::i32, Custom);
271 setOperationAction(ISD::SMULO, MVT::i64, Custom);
272 setOperationAction(ISD::UMULO, MVT::i32, Custom);
273 setOperationAction(ISD::UMULO, MVT::i64, Custom);
274
275 setOperationAction(ISD::FSIN, MVT::f32, Expand);
276 setOperationAction(ISD::FSIN, MVT::f64, Expand);
277 setOperationAction(ISD::FCOS, MVT::f32, Expand);
278 setOperationAction(ISD::FCOS, MVT::f64, Expand);
279 setOperationAction(ISD::FPOW, MVT::f32, Expand);
280 setOperationAction(ISD::FPOW, MVT::f64, Expand);
281 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
282 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
283
Oliver Stannardf5469be2014-08-18 14:22:39 +0000284 // f16 is storage-only, so we promote operations to f32 if we know this is
285 // valid, and ignore them otherwise. The operations not mentioned here will
286 // fail to select, but this is not a major problem as no source language
287 // should be emitting native f16 operations yet.
288 setOperationAction(ISD::FADD, MVT::f16, Promote);
289 setOperationAction(ISD::FDIV, MVT::f16, Promote);
290 setOperationAction(ISD::FMUL, MVT::f16, Promote);
291 setOperationAction(ISD::FSUB, MVT::f16, Promote);
292
Oliver Stannard89d15422014-08-27 16:16:04 +0000293 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
294 // known to be safe.
295 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
296 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
297 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
298 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
299 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
300 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
301 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
302 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
303 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
304 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
305 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
306 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
307
308 // Expand all other v4f16 operations.
309 // FIXME: We could generate better code by promoting some operations to
310 // a pair of v4f32s
311 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
312 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
313 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
314 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
315 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
316 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
317 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
318 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
319 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
320 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
321 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
322 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
323 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
324 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
325 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
326 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
327 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
328 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
329 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
330 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
331 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
332 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
333 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
334 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
335 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
336 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
337
338
339 // v8f16 is also a storage-only type, so expand it.
340 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
341 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
342 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
343 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
344 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
345 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
346 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
347 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
348 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
349 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
350 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
351 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
352 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
353 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
354 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
355 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
356 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
357 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
358 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
359 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
360 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
361 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
362 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
363 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
364 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
365 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
366 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
367 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
368 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
369 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
370 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
371
Tim Northover3b0846e2014-05-24 12:50:23 +0000372 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000373 for (MVT Ty : {MVT::f32, MVT::f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000374 setOperationAction(ISD::FFLOOR, Ty, Legal);
375 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
376 setOperationAction(ISD::FCEIL, Ty, Legal);
377 setOperationAction(ISD::FRINT, Ty, Legal);
378 setOperationAction(ISD::FTRUNC, Ty, Legal);
379 setOperationAction(ISD::FROUND, Ty, Legal);
380 }
381
382 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
383
384 if (Subtarget->isTargetMachO()) {
385 // For iOS, we don't want to the normal expansion of a libcall to
386 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
387 // traffic.
388 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
389 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
390 } else {
391 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
392 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
393 }
394
Juergen Ributzka23266502014-12-10 19:43:32 +0000395 // Make floating-point constants legal for the large code model, so they don't
396 // become loads from the constant pool.
397 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
398 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
399 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
400 }
401
Tim Northover3b0846e2014-05-24 12:50:23 +0000402 // AArch64 does not have floating-point extending loads, i1 sign-extending
403 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000404 for (MVT VT : MVT::fp_valuetypes()) {
405 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
406 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
407 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
408 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
409 }
410 for (MVT VT : MVT::integer_valuetypes())
411 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
412
Tim Northover3b0846e2014-05-24 12:50:23 +0000413 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
414 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
415 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
416 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
417 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
418 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
419 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000420
421 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
422 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
423
Tim Northover3b0846e2014-05-24 12:50:23 +0000424 // Indexed loads and stores are supported.
425 for (unsigned im = (unsigned)ISD::PRE_INC;
426 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
427 setIndexedLoadAction(im, MVT::i8, Legal);
428 setIndexedLoadAction(im, MVT::i16, Legal);
429 setIndexedLoadAction(im, MVT::i32, Legal);
430 setIndexedLoadAction(im, MVT::i64, Legal);
431 setIndexedLoadAction(im, MVT::f64, Legal);
432 setIndexedLoadAction(im, MVT::f32, Legal);
433 setIndexedStoreAction(im, MVT::i8, Legal);
434 setIndexedStoreAction(im, MVT::i16, Legal);
435 setIndexedStoreAction(im, MVT::i32, Legal);
436 setIndexedStoreAction(im, MVT::i64, Legal);
437 setIndexedStoreAction(im, MVT::f64, Legal);
438 setIndexedStoreAction(im, MVT::f32, Legal);
439 }
440
441 // Trap.
442 setOperationAction(ISD::TRAP, MVT::Other, Legal);
443
444 // We combine OR nodes for bitfield operations.
445 setTargetDAGCombine(ISD::OR);
446
447 // Vector add and sub nodes may conceal a high-half opportunity.
448 // Also, try to fold ADD into CSINC/CSINV..
449 setTargetDAGCombine(ISD::ADD);
450 setTargetDAGCombine(ISD::SUB);
451
452 setTargetDAGCombine(ISD::XOR);
453 setTargetDAGCombine(ISD::SINT_TO_FP);
454 setTargetDAGCombine(ISD::UINT_TO_FP);
455
456 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
457
458 setTargetDAGCombine(ISD::ANY_EXTEND);
459 setTargetDAGCombine(ISD::ZERO_EXTEND);
460 setTargetDAGCombine(ISD::SIGN_EXTEND);
461 setTargetDAGCombine(ISD::BITCAST);
462 setTargetDAGCombine(ISD::CONCAT_VECTORS);
463 setTargetDAGCombine(ISD::STORE);
464
465 setTargetDAGCombine(ISD::MUL);
466
467 setTargetDAGCombine(ISD::SELECT);
468 setTargetDAGCombine(ISD::VSELECT);
469
470 setTargetDAGCombine(ISD::INTRINSIC_VOID);
471 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
472 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
473
474 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
475 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
476 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
477
478 setStackPointerRegisterToSaveRestore(AArch64::SP);
479
480 setSchedulingPreference(Sched::Hybrid);
481
482 // Enable TBZ/TBNZ
483 MaskAndBranchFoldingIsLegal = true;
484
485 setMinFunctionAlignment(2);
486
487 RequireStrictAlign = (Align == StrictAlign);
488
489 setHasExtractBitsInsn(true);
490
491 if (Subtarget->hasNEON()) {
492 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
493 // silliness like this:
494 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
495 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
496 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
497 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
498 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
499 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
500 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
501 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
502 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
503 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
504 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
505 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
506 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
507 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
508 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
509 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
510 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
511 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
512 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
513 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
514 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
515 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
516 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
517 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
518 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
519
520 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
521 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
522 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
523 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
524 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
525
526 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
527
528 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
529 // elements smaller than i32, so promote the input to i32 first.
530 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
531 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
532 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
533 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
534 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
535 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
536 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
537 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
538 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
539
540 // AArch64 doesn't have MUL.2d:
541 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
Chad Rosierd9d0f862014-10-08 02:31:24 +0000542 // Custom handling for some quad-vector types to detect MULL.
543 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
544 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
545 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
546
Tim Northover3b0846e2014-05-24 12:50:23 +0000547 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
548 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
549 // Likewise, narrowing and extending vector loads/stores aren't handled
550 // directly.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000551 for (MVT VT : MVT::vector_valuetypes()) {
552 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000553
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000554 setOperationAction(ISD::MULHS, VT, Expand);
555 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
556 setOperationAction(ISD::MULHU, VT, Expand);
557 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000558
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000559 setOperationAction(ISD::BSWAP, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000560
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000561 for (MVT InnerVT : MVT::vector_valuetypes()) {
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000562 setTruncStoreAction(VT, InnerVT, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000563 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
564 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
565 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
566 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000567 }
568
569 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000570 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000571 setOperationAction(ISD::FFLOOR, Ty, Legal);
572 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
573 setOperationAction(ISD::FCEIL, Ty, Legal);
574 setOperationAction(ISD::FRINT, Ty, Legal);
575 setOperationAction(ISD::FTRUNC, Ty, Legal);
576 setOperationAction(ISD::FROUND, Ty, Legal);
577 }
578 }
James Molloyf089ab72014-08-06 10:42:18 +0000579
580 // Prefer likely predicted branches to selects on out-of-order cores.
581 if (Subtarget->isCortexA57())
582 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000583}
584
585void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000586 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000587 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
588 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
589
590 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
591 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000592 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000593 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
594 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
595
596 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
597 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
598 }
599
600 // Mark vector float intrinsics as expand.
601 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
602 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
603 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
604 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
605 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
606 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
607 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
608 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
609 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
610 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
611 }
612
613 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
614 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
615 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
616 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
617 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
618 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
619 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
620 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
621 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
622 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
623 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
624 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
625
626 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
627 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
628 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000629 for (MVT InnerVT : MVT::all_valuetypes())
630 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000631
632 // CNT supports only B element sizes.
633 if (VT != MVT::v8i8 && VT != MVT::v16i8)
634 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
635
636 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
637 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
638 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
639 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
640 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
641
642 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
643 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
644
645 if (Subtarget->isLittleEndian()) {
646 for (unsigned im = (unsigned)ISD::PRE_INC;
647 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
648 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
649 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
650 }
651 }
652}
653
654void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
655 addRegisterClass(VT, &AArch64::FPR64RegClass);
656 addTypeForNEON(VT, MVT::v2i32);
657}
658
659void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
660 addRegisterClass(VT, &AArch64::FPR128RegClass);
661 addTypeForNEON(VT, MVT::v4i32);
662}
663
664EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
665 if (!VT.isVector())
666 return MVT::i32;
667 return VT.changeVectorElementTypeToInteger();
668}
669
670/// computeKnownBitsForTargetNode - Determine which of the bits specified in
671/// Mask are known to be either zero or one and return them in the
672/// KnownZero/KnownOne bitsets.
673void AArch64TargetLowering::computeKnownBitsForTargetNode(
674 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
675 const SelectionDAG &DAG, unsigned Depth) const {
676 switch (Op.getOpcode()) {
677 default:
678 break;
679 case AArch64ISD::CSEL: {
680 APInt KnownZero2, KnownOne2;
681 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
682 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
683 KnownZero &= KnownZero2;
684 KnownOne &= KnownOne2;
685 break;
686 }
687 case ISD::INTRINSIC_W_CHAIN: {
688 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
689 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
690 switch (IntID) {
691 default: return;
692 case Intrinsic::aarch64_ldaxr:
693 case Intrinsic::aarch64_ldxr: {
694 unsigned BitWidth = KnownOne.getBitWidth();
695 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
696 unsigned MemBits = VT.getScalarType().getSizeInBits();
697 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
698 return;
699 }
700 }
701 break;
702 }
703 case ISD::INTRINSIC_WO_CHAIN:
704 case ISD::INTRINSIC_VOID: {
705 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
706 switch (IntNo) {
707 default:
708 break;
709 case Intrinsic::aarch64_neon_umaxv:
710 case Intrinsic::aarch64_neon_uminv: {
711 // Figure out the datatype of the vector operand. The UMINV instruction
712 // will zero extend the result, so we can mark as known zero all the
713 // bits larger than the element datatype. 32-bit or larget doesn't need
714 // this as those are legal types and will be handled by isel directly.
715 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
716 unsigned BitWidth = KnownZero.getBitWidth();
717 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
718 assert(BitWidth >= 8 && "Unexpected width!");
719 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
720 KnownZero |= Mask;
721 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
722 assert(BitWidth >= 16 && "Unexpected width!");
723 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
724 KnownZero |= Mask;
725 }
726 break;
727 } break;
728 }
729 }
730 }
731}
732
733MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
734 return MVT::i64;
735}
736
Tim Northover3b0846e2014-05-24 12:50:23 +0000737FastISel *
738AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
739 const TargetLibraryInfo *libInfo) const {
740 return AArch64::createFastISel(funcInfo, libInfo);
741}
742
743const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
744 switch (Opcode) {
745 default:
746 return nullptr;
747 case AArch64ISD::CALL: return "AArch64ISD::CALL";
748 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
749 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
750 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
751 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
752 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
753 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
754 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
755 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
756 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
757 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
758 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
Kristof Beylsaea84612015-03-04 09:12:08 +0000759 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
Tim Northover3b0846e2014-05-24 12:50:23 +0000760 case AArch64ISD::ADC: return "AArch64ISD::ADC";
761 case AArch64ISD::SBC: return "AArch64ISD::SBC";
762 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
763 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
764 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
765 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
766 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
767 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
768 case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
769 case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
770 case AArch64ISD::DUP: return "AArch64ISD::DUP";
771 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
772 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
773 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
774 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
775 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
776 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
777 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
778 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
779 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
780 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
781 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
782 case AArch64ISD::BICi: return "AArch64ISD::BICi";
783 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
784 case AArch64ISD::BSL: return "AArch64ISD::BSL";
785 case AArch64ISD::NEG: return "AArch64ISD::NEG";
786 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
787 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
788 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
789 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
790 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
791 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
792 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
793 case AArch64ISD::REV16: return "AArch64ISD::REV16";
794 case AArch64ISD::REV32: return "AArch64ISD::REV32";
795 case AArch64ISD::REV64: return "AArch64ISD::REV64";
796 case AArch64ISD::EXT: return "AArch64ISD::EXT";
797 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
798 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
799 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
800 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
801 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
802 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
803 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
804 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
805 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
806 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
807 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
808 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
809 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
810 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
811 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
812 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
813 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
814 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
815 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
816 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
817 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
Ahmed Bougachafab58922015-03-10 20:45:38 +0000818 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
819 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
820 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
821 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
822 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
823 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
Tim Northover3b0846e2014-05-24 12:50:23 +0000824 case AArch64ISD::NOT: return "AArch64ISD::NOT";
825 case AArch64ISD::BIT: return "AArch64ISD::BIT";
826 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
827 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
828 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
829 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
830 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
831 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
832 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000833 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000834 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
835 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
836 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
837 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
838 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
839 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
840 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
841 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
842 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
843 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
844 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
845 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
846 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
847 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
848 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
849 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
850 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
851 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
852 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
853 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
854 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
855 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
856 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
857 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
858 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
859 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
860 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
861 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
862 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
Chad Rosierd9d0f862014-10-08 02:31:24 +0000863 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
864 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
Tim Northover3b0846e2014-05-24 12:50:23 +0000865 }
866}
867
868MachineBasicBlock *
869AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
870 MachineBasicBlock *MBB) const {
871 // We materialise the F128CSEL pseudo-instruction as some control flow and a
872 // phi node:
873
874 // OrigBB:
875 // [... previous instrs leading to comparison ...]
876 // b.ne TrueBB
877 // b EndBB
878 // TrueBB:
879 // ; Fallthrough
880 // EndBB:
881 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
882
Tim Northover3b0846e2014-05-24 12:50:23 +0000883 MachineFunction *MF = MBB->getParent();
Eric Christopher905f12d2015-01-29 00:19:42 +0000884 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000885 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
886 DebugLoc DL = MI->getDebugLoc();
887 MachineFunction::iterator It = MBB;
888 ++It;
889
890 unsigned DestReg = MI->getOperand(0).getReg();
891 unsigned IfTrueReg = MI->getOperand(1).getReg();
892 unsigned IfFalseReg = MI->getOperand(2).getReg();
893 unsigned CondCode = MI->getOperand(3).getImm();
894 bool NZCVKilled = MI->getOperand(4).isKill();
895
896 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
897 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
898 MF->insert(It, TrueBB);
899 MF->insert(It, EndBB);
900
901 // Transfer rest of current basic-block to EndBB
902 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
903 MBB->end());
904 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
905
906 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
907 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
908 MBB->addSuccessor(TrueBB);
909 MBB->addSuccessor(EndBB);
910
911 // TrueBB falls through to the end.
912 TrueBB->addSuccessor(EndBB);
913
914 if (!NZCVKilled) {
915 TrueBB->addLiveIn(AArch64::NZCV);
916 EndBB->addLiveIn(AArch64::NZCV);
917 }
918
919 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
920 .addReg(IfTrueReg)
921 .addMBB(TrueBB)
922 .addReg(IfFalseReg)
923 .addMBB(MBB);
924
925 MI->eraseFromParent();
926 return EndBB;
927}
928
929MachineBasicBlock *
930AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
931 MachineBasicBlock *BB) const {
932 switch (MI->getOpcode()) {
933 default:
934#ifndef NDEBUG
935 MI->dump();
936#endif
Craig Topper35b2f752014-06-19 06:10:58 +0000937 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +0000938
939 case AArch64::F128CSEL:
940 return EmitF128CSEL(MI, BB);
941
942 case TargetOpcode::STACKMAP:
943 case TargetOpcode::PATCHPOINT:
944 return emitPatchPoint(MI, BB);
945 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000946}
947
948//===----------------------------------------------------------------------===//
949// AArch64 Lowering private implementation.
950//===----------------------------------------------------------------------===//
951
952//===----------------------------------------------------------------------===//
953// Lowering Code
954//===----------------------------------------------------------------------===//
955
956/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
957/// CC
958static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
959 switch (CC) {
960 default:
961 llvm_unreachable("Unknown condition code!");
962 case ISD::SETNE:
963 return AArch64CC::NE;
964 case ISD::SETEQ:
965 return AArch64CC::EQ;
966 case ISD::SETGT:
967 return AArch64CC::GT;
968 case ISD::SETGE:
969 return AArch64CC::GE;
970 case ISD::SETLT:
971 return AArch64CC::LT;
972 case ISD::SETLE:
973 return AArch64CC::LE;
974 case ISD::SETUGT:
975 return AArch64CC::HI;
976 case ISD::SETUGE:
977 return AArch64CC::HS;
978 case ISD::SETULT:
979 return AArch64CC::LO;
980 case ISD::SETULE:
981 return AArch64CC::LS;
982 }
983}
984
985/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
986static void changeFPCCToAArch64CC(ISD::CondCode CC,
987 AArch64CC::CondCode &CondCode,
988 AArch64CC::CondCode &CondCode2) {
989 CondCode2 = AArch64CC::AL;
990 switch (CC) {
991 default:
992 llvm_unreachable("Unknown FP condition!");
993 case ISD::SETEQ:
994 case ISD::SETOEQ:
995 CondCode = AArch64CC::EQ;
996 break;
997 case ISD::SETGT:
998 case ISD::SETOGT:
999 CondCode = AArch64CC::GT;
1000 break;
1001 case ISD::SETGE:
1002 case ISD::SETOGE:
1003 CondCode = AArch64CC::GE;
1004 break;
1005 case ISD::SETOLT:
1006 CondCode = AArch64CC::MI;
1007 break;
1008 case ISD::SETOLE:
1009 CondCode = AArch64CC::LS;
1010 break;
1011 case ISD::SETONE:
1012 CondCode = AArch64CC::MI;
1013 CondCode2 = AArch64CC::GT;
1014 break;
1015 case ISD::SETO:
1016 CondCode = AArch64CC::VC;
1017 break;
1018 case ISD::SETUO:
1019 CondCode = AArch64CC::VS;
1020 break;
1021 case ISD::SETUEQ:
1022 CondCode = AArch64CC::EQ;
1023 CondCode2 = AArch64CC::VS;
1024 break;
1025 case ISD::SETUGT:
1026 CondCode = AArch64CC::HI;
1027 break;
1028 case ISD::SETUGE:
1029 CondCode = AArch64CC::PL;
1030 break;
1031 case ISD::SETLT:
1032 case ISD::SETULT:
1033 CondCode = AArch64CC::LT;
1034 break;
1035 case ISD::SETLE:
1036 case ISD::SETULE:
1037 CondCode = AArch64CC::LE;
1038 break;
1039 case ISD::SETNE:
1040 case ISD::SETUNE:
1041 CondCode = AArch64CC::NE;
1042 break;
1043 }
1044}
1045
1046/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1047/// CC usable with the vector instructions. Fewer operations are available
1048/// without a real NZCV register, so we have to use less efficient combinations
1049/// to get the same effect.
1050static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1051 AArch64CC::CondCode &CondCode,
1052 AArch64CC::CondCode &CondCode2,
1053 bool &Invert) {
1054 Invert = false;
1055 switch (CC) {
1056 default:
1057 // Mostly the scalar mappings work fine.
1058 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1059 break;
1060 case ISD::SETUO:
1061 Invert = true; // Fallthrough
1062 case ISD::SETO:
1063 CondCode = AArch64CC::MI;
1064 CondCode2 = AArch64CC::GE;
1065 break;
1066 case ISD::SETUEQ:
1067 case ISD::SETULT:
1068 case ISD::SETULE:
1069 case ISD::SETUGT:
1070 case ISD::SETUGE:
1071 // All of the compare-mask comparisons are ordered, but we can switch
1072 // between the two by a double inversion. E.g. ULE == !OGT.
1073 Invert = true;
1074 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1075 break;
1076 }
1077}
1078
1079static bool isLegalArithImmed(uint64_t C) {
1080 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1081 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1082}
1083
1084static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1085 SDLoc dl, SelectionDAG &DAG) {
1086 EVT VT = LHS.getValueType();
1087
1088 if (VT.isFloatingPoint())
1089 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1090
1091 // The CMP instruction is just an alias for SUBS, and representing it as
1092 // SUBS means that it's possible to get CSE with subtract operations.
1093 // A later phase can perform the optimization of setting the destination
1094 // register to WZR/XZR if it ends up being unused.
1095 unsigned Opcode = AArch64ISD::SUBS;
1096
1097 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
1098 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
1099 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1100 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1101 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1102 // can be set differently by this operation. It comes down to whether
1103 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1104 // everything is fine. If not then the optimization is wrong. Thus general
1105 // comparisons are only valid if op2 != 0.
1106
1107 // So, finally, the only LLVM-native comparisons that don't mention C and V
1108 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1109 // the absence of information about op2.
1110 Opcode = AArch64ISD::ADDS;
1111 RHS = RHS.getOperand(1);
1112 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1113 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1114 !isUnsignedIntSetCC(CC)) {
1115 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1116 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1117 // of the signed comparisons.
1118 Opcode = AArch64ISD::ANDS;
1119 RHS = LHS.getOperand(1);
1120 LHS = LHS.getOperand(0);
1121 }
1122
1123 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1124 .getValue(1);
1125}
1126
1127static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1128 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
David Xuee978202014-08-28 04:59:53 +00001129 SDValue Cmp;
1130 AArch64CC::CondCode AArch64CC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001131 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1132 EVT VT = RHS.getValueType();
1133 uint64_t C = RHSC->getZExtValue();
1134 if (!isLegalArithImmed(C)) {
1135 // Constant does not fit, try adjusting it by one?
1136 switch (CC) {
1137 default:
1138 break;
1139 case ISD::SETLT:
1140 case ISD::SETGE:
1141 if ((VT == MVT::i32 && C != 0x80000000 &&
1142 isLegalArithImmed((uint32_t)(C - 1))) ||
1143 (VT == MVT::i64 && C != 0x80000000ULL &&
1144 isLegalArithImmed(C - 1ULL))) {
1145 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1146 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1147 RHS = DAG.getConstant(C, VT);
1148 }
1149 break;
1150 case ISD::SETULT:
1151 case ISD::SETUGE:
1152 if ((VT == MVT::i32 && C != 0 &&
1153 isLegalArithImmed((uint32_t)(C - 1))) ||
1154 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1155 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1156 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1157 RHS = DAG.getConstant(C, VT);
1158 }
1159 break;
1160 case ISD::SETLE:
1161 case ISD::SETGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001162 if ((VT == MVT::i32 && C != INT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001163 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001164 (VT == MVT::i64 && C != INT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001165 isLegalArithImmed(C + 1ULL))) {
1166 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1167 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1168 RHS = DAG.getConstant(C, VT);
1169 }
1170 break;
1171 case ISD::SETULE:
1172 case ISD::SETUGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001173 if ((VT == MVT::i32 && C != UINT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001174 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001175 (VT == MVT::i64 && C != UINT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001176 isLegalArithImmed(C + 1ULL))) {
1177 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1178 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1179 RHS = DAG.getConstant(C, VT);
1180 }
1181 break;
1182 }
1183 }
1184 }
David Xuee978202014-08-28 04:59:53 +00001185 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1186 // For the i8 operand, the largest immediate is 255, so this can be easily
1187 // encoded in the compare instruction. For the i16 operand, however, the
1188 // largest immediate cannot be encoded in the compare.
1189 // Therefore, use a sign extending load and cmn to avoid materializing the -1
1190 // constant. For example,
1191 // movz w1, #65535
1192 // ldrh w0, [x0, #0]
1193 // cmp w0, w1
1194 // >
1195 // ldrsh w0, [x0, #0]
1196 // cmn w0, #1
1197 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1198 // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
1199 // both the LHS and RHS are truely zero extended and to make sure the
1200 // transformation is profitable.
1201 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1202 if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
1203 isa<LoadSDNode>(LHS)) {
1204 if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1205 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1206 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1207 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1208 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1209 SDValue SExt =
1210 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1211 DAG.getValueType(MVT::i16));
1212 Cmp = emitComparison(SExt,
1213 DAG.getConstant(ValueofRHS, RHS.getValueType()),
1214 CC, dl, DAG);
1215 AArch64CC = changeIntCCToAArch64CC(CC);
1216 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1217 return Cmp;
1218 }
1219 }
1220 }
1221 }
1222 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1223 AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover3b0846e2014-05-24 12:50:23 +00001224 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1225 return Cmp;
1226}
1227
1228static std::pair<SDValue, SDValue>
1229getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1230 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1231 "Unsupported value type");
1232 SDValue Value, Overflow;
1233 SDLoc DL(Op);
1234 SDValue LHS = Op.getOperand(0);
1235 SDValue RHS = Op.getOperand(1);
1236 unsigned Opc = 0;
1237 switch (Op.getOpcode()) {
1238 default:
1239 llvm_unreachable("Unknown overflow instruction!");
1240 case ISD::SADDO:
1241 Opc = AArch64ISD::ADDS;
1242 CC = AArch64CC::VS;
1243 break;
1244 case ISD::UADDO:
1245 Opc = AArch64ISD::ADDS;
1246 CC = AArch64CC::HS;
1247 break;
1248 case ISD::SSUBO:
1249 Opc = AArch64ISD::SUBS;
1250 CC = AArch64CC::VS;
1251 break;
1252 case ISD::USUBO:
1253 Opc = AArch64ISD::SUBS;
1254 CC = AArch64CC::LO;
1255 break;
1256 // Multiply needs a little bit extra work.
1257 case ISD::SMULO:
1258 case ISD::UMULO: {
1259 CC = AArch64CC::NE;
1260 bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
1261 if (Op.getValueType() == MVT::i32) {
1262 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1263 // For a 32 bit multiply with overflow check we want the instruction
1264 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1265 // need to generate the following pattern:
1266 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1267 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1268 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1269 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1270 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1271 DAG.getConstant(0, MVT::i64));
1272 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1273 // operation. We need to clear out the upper 32 bits, because we used a
1274 // widening multiply that wrote all 64 bits. In the end this should be a
1275 // noop.
1276 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1277 if (IsSigned) {
1278 // The signed overflow check requires more than just a simple check for
1279 // any bit set in the upper 32 bits of the result. These bits could be
1280 // just the sign bits of a negative number. To perform the overflow
1281 // check we have to arithmetic shift right the 32nd bit of the result by
1282 // 31 bits. Then we compare the result to the upper 32 bits.
1283 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1284 DAG.getConstant(32, MVT::i64));
1285 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1286 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1287 DAG.getConstant(31, MVT::i64));
1288 // It is important that LowerBits is last, otherwise the arithmetic
1289 // shift will not be folded into the compare (SUBS).
1290 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1291 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1292 .getValue(1);
1293 } else {
1294 // The overflow check for unsigned multiply is easy. We only need to
1295 // check if any of the upper 32 bits are set. This can be done with a
1296 // CMP (shifted register). For that we need to generate the following
1297 // pattern:
1298 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1299 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1300 DAG.getConstant(32, MVT::i64));
1301 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1302 Overflow =
1303 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1304 UpperBits).getValue(1);
1305 }
1306 break;
1307 }
1308 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1309 // For the 64 bit multiply
1310 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1311 if (IsSigned) {
1312 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1313 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1314 DAG.getConstant(63, MVT::i64));
1315 // It is important that LowerBits is last, otherwise the arithmetic
1316 // shift will not be folded into the compare (SUBS).
1317 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1318 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1319 .getValue(1);
1320 } else {
1321 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1322 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1323 Overflow =
1324 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1325 UpperBits).getValue(1);
1326 }
1327 break;
1328 }
1329 } // switch (...)
1330
1331 if (Opc) {
1332 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1333
1334 // Emit the AArch64 operation with overflow check.
1335 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1336 Overflow = Value.getValue(1);
1337 }
1338 return std::make_pair(Value, Overflow);
1339}
1340
1341SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1342 RTLIB::Libcall Call) const {
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001343 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Tim Northover3b0846e2014-05-24 12:50:23 +00001344 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1345 SDLoc(Op)).first;
1346}
1347
1348static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1349 SDValue Sel = Op.getOperand(0);
1350 SDValue Other = Op.getOperand(1);
1351
1352 // If neither operand is a SELECT_CC, give up.
1353 if (Sel.getOpcode() != ISD::SELECT_CC)
1354 std::swap(Sel, Other);
1355 if (Sel.getOpcode() != ISD::SELECT_CC)
1356 return Op;
1357
1358 // The folding we want to perform is:
1359 // (xor x, (select_cc a, b, cc, 0, -1) )
1360 // -->
1361 // (csel x, (xor x, -1), cc ...)
1362 //
1363 // The latter will get matched to a CSINV instruction.
1364
1365 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1366 SDValue LHS = Sel.getOperand(0);
1367 SDValue RHS = Sel.getOperand(1);
1368 SDValue TVal = Sel.getOperand(2);
1369 SDValue FVal = Sel.getOperand(3);
1370 SDLoc dl(Sel);
1371
1372 // FIXME: This could be generalized to non-integer comparisons.
1373 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1374 return Op;
1375
1376 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1377 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1378
1379 // The the values aren't constants, this isn't the pattern we're looking for.
1380 if (!CFVal || !CTVal)
1381 return Op;
1382
1383 // We can commute the SELECT_CC by inverting the condition. This
1384 // might be needed to make this fit into a CSINV pattern.
1385 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1386 std::swap(TVal, FVal);
1387 std::swap(CTVal, CFVal);
1388 CC = ISD::getSetCCInverse(CC, true);
1389 }
1390
1391 // If the constants line up, perform the transform!
1392 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1393 SDValue CCVal;
1394 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1395
1396 FVal = Other;
1397 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1398 DAG.getConstant(-1ULL, Other.getValueType()));
1399
1400 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1401 CCVal, Cmp);
1402 }
1403
1404 return Op;
1405}
1406
1407static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1408 EVT VT = Op.getValueType();
1409
1410 // Let legalize expand this if it isn't a legal type yet.
1411 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1412 return SDValue();
1413
1414 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1415
1416 unsigned Opc;
1417 bool ExtraOp = false;
1418 switch (Op.getOpcode()) {
1419 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001420 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001421 case ISD::ADDC:
1422 Opc = AArch64ISD::ADDS;
1423 break;
1424 case ISD::SUBC:
1425 Opc = AArch64ISD::SUBS;
1426 break;
1427 case ISD::ADDE:
1428 Opc = AArch64ISD::ADCS;
1429 ExtraOp = true;
1430 break;
1431 case ISD::SUBE:
1432 Opc = AArch64ISD::SBCS;
1433 ExtraOp = true;
1434 break;
1435 }
1436
1437 if (!ExtraOp)
1438 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1439 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1440 Op.getOperand(2));
1441}
1442
1443static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1444 // Let legalize expand this if it isn't a legal type yet.
1445 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1446 return SDValue();
1447
1448 AArch64CC::CondCode CC;
1449 // The actual operation that sets the overflow or carry flag.
1450 SDValue Value, Overflow;
1451 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1452
1453 // We use 0 and 1 as false and true values.
1454 SDValue TVal = DAG.getConstant(1, MVT::i32);
1455 SDValue FVal = DAG.getConstant(0, MVT::i32);
1456
1457 // We use an inverted condition, because the conditional select is inverted
1458 // too. This will allow it to be selected to a single instruction:
1459 // CSINC Wd, WZR, WZR, invert(cond).
1460 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
1461 Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
1462 CCVal, Overflow);
1463
1464 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1465 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
1466}
1467
1468// Prefetch operands are:
1469// 1: Address to prefetch
1470// 2: bool isWrite
1471// 3: int locality (0 = no locality ... 3 = extreme locality)
1472// 4: bool isDataCache
1473static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1474 SDLoc DL(Op);
1475 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1476 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001477 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001478
1479 bool IsStream = !Locality;
1480 // When the locality number is set
1481 if (Locality) {
1482 // The front-end should have filtered out the out-of-range values
1483 assert(Locality <= 3 && "Prefetch locality out-of-range");
1484 // The locality degree is the opposite of the cache speed.
1485 // Put the number the other way around.
1486 // The encoding starts at 0 for level 1
1487 Locality = 3 - Locality;
1488 }
1489
1490 // built the mask value encoding the expected behavior.
1491 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001492 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001493 (Locality << 1) | // Cache level bits
1494 (unsigned)IsStream; // Stream bit
1495 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1496 DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
1497}
1498
1499SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1500 SelectionDAG &DAG) const {
1501 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1502
1503 RTLIB::Libcall LC;
1504 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1505
1506 return LowerF128Call(Op, DAG, LC);
1507}
1508
1509SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1510 SelectionDAG &DAG) const {
1511 if (Op.getOperand(0).getValueType() != MVT::f128) {
1512 // It's legal except when f128 is involved
1513 return Op;
1514 }
1515
1516 RTLIB::Libcall LC;
1517 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1518
1519 // FP_ROUND node has a second operand indicating whether it is known to be
1520 // precise. That doesn't take part in the LibCall so we can't directly use
1521 // LowerF128Call.
1522 SDValue SrcVal = Op.getOperand(0);
1523 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1524 /*isSigned*/ false, SDLoc(Op)).first;
1525}
1526
1527static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1528 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1529 // Any additional optimization in this function should be recorded
1530 // in the cost tables.
1531 EVT InVT = Op.getOperand(0).getValueType();
1532 EVT VT = Op.getValueType();
1533
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001534 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001535 SDLoc dl(Op);
1536 SDValue Cv =
1537 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1538 Op.getOperand(0));
1539 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001540 }
1541
1542 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001543 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001544 MVT ExtVT =
1545 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1546 VT.getVectorNumElements());
1547 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001548 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1549 }
1550
1551 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001552 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001553}
1554
1555SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1556 SelectionDAG &DAG) const {
1557 if (Op.getOperand(0).getValueType().isVector())
1558 return LowerVectorFP_TO_INT(Op, DAG);
1559
1560 if (Op.getOperand(0).getValueType() != MVT::f128) {
1561 // It's legal except when f128 is involved
1562 return Op;
1563 }
1564
1565 RTLIB::Libcall LC;
1566 if (Op.getOpcode() == ISD::FP_TO_SINT)
1567 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1568 else
1569 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1570
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001571 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Tim Northover3b0846e2014-05-24 12:50:23 +00001572 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1573 SDLoc(Op)).first;
1574}
1575
1576static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1577 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1578 // Any additional optimization in this function should be recorded
1579 // in the cost tables.
1580 EVT VT = Op.getValueType();
1581 SDLoc dl(Op);
1582 SDValue In = Op.getOperand(0);
1583 EVT InVT = In.getValueType();
1584
Tim Northoveref0d7602014-06-15 09:27:06 +00001585 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1586 MVT CastVT =
1587 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1588 InVT.getVectorNumElements());
1589 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1590 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001591 }
1592
Tim Northoveref0d7602014-06-15 09:27:06 +00001593 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1594 unsigned CastOpc =
1595 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1596 EVT CastVT = VT.changeVectorElementTypeToInteger();
1597 In = DAG.getNode(CastOpc, dl, CastVT, In);
1598 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001599 }
1600
Tim Northoveref0d7602014-06-15 09:27:06 +00001601 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001602}
1603
1604SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1605 SelectionDAG &DAG) const {
1606 if (Op.getValueType().isVector())
1607 return LowerVectorINT_TO_FP(Op, DAG);
1608
1609 // i128 conversions are libcalls.
1610 if (Op.getOperand(0).getValueType() == MVT::i128)
1611 return SDValue();
1612
1613 // Other conversions are legal, unless it's to the completely software-based
1614 // fp128.
1615 if (Op.getValueType() != MVT::f128)
1616 return Op;
1617
1618 RTLIB::Libcall LC;
1619 if (Op.getOpcode() == ISD::SINT_TO_FP)
1620 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1621 else
1622 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1623
1624 return LowerF128Call(Op, DAG, LC);
1625}
1626
1627SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1628 SelectionDAG &DAG) const {
1629 // For iOS, we want to call an alternative entry point: __sincos_stret,
1630 // which returns the values in two S / D registers.
1631 SDLoc dl(Op);
1632 SDValue Arg = Op.getOperand(0);
1633 EVT ArgVT = Arg.getValueType();
1634 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1635
1636 ArgListTy Args;
1637 ArgListEntry Entry;
1638
1639 Entry.Node = Arg;
1640 Entry.Ty = ArgTy;
1641 Entry.isSExt = false;
1642 Entry.isZExt = false;
1643 Args.push_back(Entry);
1644
1645 const char *LibcallName =
1646 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1647 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1648
Reid Kleckner343c3952014-11-20 23:51:47 +00001649 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
Tim Northover3b0846e2014-05-24 12:50:23 +00001650 TargetLowering::CallLoweringInfo CLI(DAG);
1651 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00001652 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00001653
1654 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1655 return CallResult.first;
1656}
1657
Tim Northoverf8bfe212014-07-18 13:07:05 +00001658static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1659 if (Op.getValueType() != MVT::f16)
1660 return SDValue();
1661
1662 assert(Op.getOperand(0).getValueType() == MVT::i16);
1663 SDLoc DL(Op);
1664
1665 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1666 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
1667 return SDValue(
1668 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
1669 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
1670 0);
1671}
1672
Chad Rosierd9d0f862014-10-08 02:31:24 +00001673static EVT getExtensionTo64Bits(const EVT &OrigVT) {
1674 if (OrigVT.getSizeInBits() >= 64)
1675 return OrigVT;
1676
1677 assert(OrigVT.isSimple() && "Expecting a simple value type");
1678
1679 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
1680 switch (OrigSimpleTy) {
1681 default: llvm_unreachable("Unexpected Vector Type");
1682 case MVT::v2i8:
1683 case MVT::v2i16:
1684 return MVT::v2i32;
1685 case MVT::v4i8:
1686 return MVT::v4i16;
1687 }
1688}
1689
1690static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
1691 const EVT &OrigTy,
1692 const EVT &ExtTy,
1693 unsigned ExtOpcode) {
1694 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
1695 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
1696 // 64-bits we need to insert a new extension so that it will be 64-bits.
1697 assert(ExtTy.is128BitVector() && "Unexpected extension size");
1698 if (OrigTy.getSizeInBits() >= 64)
1699 return N;
1700
1701 // Must extend size to at least 64 bits to be used as an operand for VMULL.
1702 EVT NewVT = getExtensionTo64Bits(OrigTy);
1703
1704 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
1705}
1706
1707static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
1708 bool isSigned) {
1709 EVT VT = N->getValueType(0);
1710
1711 if (N->getOpcode() != ISD::BUILD_VECTOR)
1712 return false;
1713
1714 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1715 SDNode *Elt = N->getOperand(i).getNode();
1716 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
1717 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1718 unsigned HalfSize = EltSize / 2;
1719 if (isSigned) {
1720 if (!isIntN(HalfSize, C->getSExtValue()))
1721 return false;
1722 } else {
1723 if (!isUIntN(HalfSize, C->getZExtValue()))
1724 return false;
1725 }
1726 continue;
1727 }
1728 return false;
1729 }
1730
1731 return true;
1732}
1733
1734static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
1735 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
1736 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
1737 N->getOperand(0)->getValueType(0),
1738 N->getValueType(0),
1739 N->getOpcode());
1740
1741 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
1742 EVT VT = N->getValueType(0);
1743 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
1744 unsigned NumElts = VT.getVectorNumElements();
1745 MVT TruncVT = MVT::getIntegerVT(EltSize);
1746 SmallVector<SDValue, 8> Ops;
1747 for (unsigned i = 0; i != NumElts; ++i) {
1748 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
1749 const APInt &CInt = C->getAPIntValue();
1750 // Element types smaller than 32 bits are not legal, so use i32 elements.
1751 // The values are implicitly truncated so sext vs. zext doesn't matter.
1752 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
1753 }
1754 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
1755 MVT::getVectorVT(TruncVT, NumElts), Ops);
1756}
1757
1758static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
1759 if (N->getOpcode() == ISD::SIGN_EXTEND)
1760 return true;
1761 if (isExtendedBUILD_VECTOR(N, DAG, true))
1762 return true;
1763 return false;
1764}
1765
1766static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
1767 if (N->getOpcode() == ISD::ZERO_EXTEND)
1768 return true;
1769 if (isExtendedBUILD_VECTOR(N, DAG, false))
1770 return true;
1771 return false;
1772}
1773
1774static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
1775 unsigned Opcode = N->getOpcode();
1776 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1777 SDNode *N0 = N->getOperand(0).getNode();
1778 SDNode *N1 = N->getOperand(1).getNode();
1779 return N0->hasOneUse() && N1->hasOneUse() &&
1780 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
1781 }
1782 return false;
1783}
1784
1785static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
1786 unsigned Opcode = N->getOpcode();
1787 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1788 SDNode *N0 = N->getOperand(0).getNode();
1789 SDNode *N1 = N->getOperand(1).getNode();
1790 return N0->hasOneUse() && N1->hasOneUse() &&
1791 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
1792 }
1793 return false;
1794}
1795
1796static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
1797 // Multiplications are only custom-lowered for 128-bit vectors so that
1798 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
1799 EVT VT = Op.getValueType();
1800 assert(VT.is128BitVector() && VT.isInteger() &&
1801 "unexpected type for custom-lowering ISD::MUL");
1802 SDNode *N0 = Op.getOperand(0).getNode();
1803 SDNode *N1 = Op.getOperand(1).getNode();
1804 unsigned NewOpc = 0;
1805 bool isMLA = false;
1806 bool isN0SExt = isSignExtended(N0, DAG);
1807 bool isN1SExt = isSignExtended(N1, DAG);
1808 if (isN0SExt && isN1SExt)
1809 NewOpc = AArch64ISD::SMULL;
1810 else {
1811 bool isN0ZExt = isZeroExtended(N0, DAG);
1812 bool isN1ZExt = isZeroExtended(N1, DAG);
1813 if (isN0ZExt && isN1ZExt)
1814 NewOpc = AArch64ISD::UMULL;
1815 else if (isN1SExt || isN1ZExt) {
1816 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
1817 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
1818 if (isN1SExt && isAddSubSExt(N0, DAG)) {
1819 NewOpc = AArch64ISD::SMULL;
1820 isMLA = true;
1821 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
1822 NewOpc = AArch64ISD::UMULL;
1823 isMLA = true;
1824 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
1825 std::swap(N0, N1);
1826 NewOpc = AArch64ISD::UMULL;
1827 isMLA = true;
1828 }
1829 }
1830
1831 if (!NewOpc) {
1832 if (VT == MVT::v2i64)
1833 // Fall through to expand this. It is not legal.
1834 return SDValue();
1835 else
1836 // Other vector multiplications are legal.
1837 return Op;
1838 }
1839 }
1840
1841 // Legalize to a S/UMULL instruction
1842 SDLoc DL(Op);
1843 SDValue Op0;
1844 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
1845 if (!isMLA) {
1846 Op0 = skipExtensionForVectorMULL(N0, DAG);
1847 assert(Op0.getValueType().is64BitVector() &&
1848 Op1.getValueType().is64BitVector() &&
1849 "unexpected types for extended operands to VMULL");
1850 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
1851 }
1852 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
1853 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
1854 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
1855 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
1856 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
1857 EVT Op1VT = Op1.getValueType();
1858 return DAG.getNode(N0->getOpcode(), DL, VT,
1859 DAG.getNode(NewOpc, DL, VT,
1860 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
1861 DAG.getNode(NewOpc, DL, VT,
1862 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
1863}
Tim Northoverf8bfe212014-07-18 13:07:05 +00001864
Tim Northover3b0846e2014-05-24 12:50:23 +00001865SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1866 SelectionDAG &DAG) const {
1867 switch (Op.getOpcode()) {
1868 default:
1869 llvm_unreachable("unimplemented operand");
1870 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00001871 case ISD::BITCAST:
1872 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001873 case ISD::GlobalAddress:
1874 return LowerGlobalAddress(Op, DAG);
1875 case ISD::GlobalTLSAddress:
1876 return LowerGlobalTLSAddress(Op, DAG);
1877 case ISD::SETCC:
1878 return LowerSETCC(Op, DAG);
1879 case ISD::BR_CC:
1880 return LowerBR_CC(Op, DAG);
1881 case ISD::SELECT:
1882 return LowerSELECT(Op, DAG);
1883 case ISD::SELECT_CC:
1884 return LowerSELECT_CC(Op, DAG);
1885 case ISD::JumpTable:
1886 return LowerJumpTable(Op, DAG);
1887 case ISD::ConstantPool:
1888 return LowerConstantPool(Op, DAG);
1889 case ISD::BlockAddress:
1890 return LowerBlockAddress(Op, DAG);
1891 case ISD::VASTART:
1892 return LowerVASTART(Op, DAG);
1893 case ISD::VACOPY:
1894 return LowerVACOPY(Op, DAG);
1895 case ISD::VAARG:
1896 return LowerVAARG(Op, DAG);
1897 case ISD::ADDC:
1898 case ISD::ADDE:
1899 case ISD::SUBC:
1900 case ISD::SUBE:
1901 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1902 case ISD::SADDO:
1903 case ISD::UADDO:
1904 case ISD::SSUBO:
1905 case ISD::USUBO:
1906 case ISD::SMULO:
1907 case ISD::UMULO:
1908 return LowerXALUO(Op, DAG);
1909 case ISD::FADD:
1910 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1911 case ISD::FSUB:
1912 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1913 case ISD::FMUL:
1914 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1915 case ISD::FDIV:
1916 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1917 case ISD::FP_ROUND:
1918 return LowerFP_ROUND(Op, DAG);
1919 case ISD::FP_EXTEND:
1920 return LowerFP_EXTEND(Op, DAG);
1921 case ISD::FRAMEADDR:
1922 return LowerFRAMEADDR(Op, DAG);
1923 case ISD::RETURNADDR:
1924 return LowerRETURNADDR(Op, DAG);
1925 case ISD::INSERT_VECTOR_ELT:
1926 return LowerINSERT_VECTOR_ELT(Op, DAG);
1927 case ISD::EXTRACT_VECTOR_ELT:
1928 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1929 case ISD::BUILD_VECTOR:
1930 return LowerBUILD_VECTOR(Op, DAG);
1931 case ISD::VECTOR_SHUFFLE:
1932 return LowerVECTOR_SHUFFLE(Op, DAG);
1933 case ISD::EXTRACT_SUBVECTOR:
1934 return LowerEXTRACT_SUBVECTOR(Op, DAG);
1935 case ISD::SRA:
1936 case ISD::SRL:
1937 case ISD::SHL:
1938 return LowerVectorSRA_SRL_SHL(Op, DAG);
1939 case ISD::SHL_PARTS:
1940 return LowerShiftLeftParts(Op, DAG);
1941 case ISD::SRL_PARTS:
1942 case ISD::SRA_PARTS:
1943 return LowerShiftRightParts(Op, DAG);
1944 case ISD::CTPOP:
1945 return LowerCTPOP(Op, DAG);
1946 case ISD::FCOPYSIGN:
1947 return LowerFCOPYSIGN(Op, DAG);
1948 case ISD::AND:
1949 return LowerVectorAND(Op, DAG);
1950 case ISD::OR:
1951 return LowerVectorOR(Op, DAG);
1952 case ISD::XOR:
1953 return LowerXOR(Op, DAG);
1954 case ISD::PREFETCH:
1955 return LowerPREFETCH(Op, DAG);
1956 case ISD::SINT_TO_FP:
1957 case ISD::UINT_TO_FP:
1958 return LowerINT_TO_FP(Op, DAG);
1959 case ISD::FP_TO_SINT:
1960 case ISD::FP_TO_UINT:
1961 return LowerFP_TO_INT(Op, DAG);
1962 case ISD::FSINCOS:
1963 return LowerFSINCOS(Op, DAG);
Chad Rosierd9d0f862014-10-08 02:31:24 +00001964 case ISD::MUL:
1965 return LowerMUL(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001966 }
1967}
1968
1969/// getFunctionAlignment - Return the Log2 alignment of this function.
1970unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
1971 return 2;
1972}
1973
1974//===----------------------------------------------------------------------===//
1975// Calling Convention Implementation
1976//===----------------------------------------------------------------------===//
1977
1978#include "AArch64GenCallingConv.inc"
1979
Robin Morisset039781e2014-08-29 21:53:01 +00001980/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00001981CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1982 bool IsVarArg) const {
1983 switch (CC) {
1984 default:
1985 llvm_unreachable("Unsupported calling convention.");
1986 case CallingConv::WebKit_JS:
1987 return CC_AArch64_WebKit_JS;
Greg Fitzgeraldfa78d082015-01-19 17:40:05 +00001988 case CallingConv::GHC:
1989 return CC_AArch64_GHC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001990 case CallingConv::C:
1991 case CallingConv::Fast:
1992 if (!Subtarget->isTargetDarwin())
1993 return CC_AArch64_AAPCS;
1994 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
1995 }
1996}
1997
1998SDValue AArch64TargetLowering::LowerFormalArguments(
1999 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2000 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2001 SmallVectorImpl<SDValue> &InVals) const {
2002 MachineFunction &MF = DAG.getMachineFunction();
2003 MachineFrameInfo *MFI = MF.getFrameInfo();
2004
2005 // Assign locations to all of the incoming arguments.
2006 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002007 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2008 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002009
2010 // At this point, Ins[].VT may already be promoted to i32. To correctly
2011 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2012 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2013 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2014 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2015 // LocVT.
2016 unsigned NumArgs = Ins.size();
2017 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2018 unsigned CurArgIdx = 0;
2019 for (unsigned i = 0; i != NumArgs; ++i) {
2020 MVT ValVT = Ins[i].VT;
Andrew Trick05938a52015-02-16 18:10:47 +00002021 if (Ins[i].isOrigArg()) {
2022 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2023 CurArgIdx = Ins[i].getOrigArgIndex();
Tim Northover3b0846e2014-05-24 12:50:23 +00002024
Andrew Trick05938a52015-02-16 18:10:47 +00002025 // Get type of the original argument.
2026 EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
2027 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2028 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2029 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2030 ValVT = MVT::i8;
2031 else if (ActualMVT == MVT::i16)
2032 ValVT = MVT::i16;
2033 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002034 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2035 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00002036 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002037 assert(!Res && "Call operand has unhandled type");
2038 (void)Res;
2039 }
2040 assert(ArgLocs.size() == Ins.size());
2041 SmallVector<SDValue, 16> ArgValues;
2042 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2043 CCValAssign &VA = ArgLocs[i];
2044
2045 if (Ins[i].Flags.isByVal()) {
2046 // Byval is used for HFAs in the PCS, but the system should work in a
2047 // non-compliant manner for larger structs.
2048 EVT PtrTy = getPointerTy();
2049 int Size = Ins[i].Flags.getByValSize();
2050 unsigned NumRegs = (Size + 7) / 8;
2051
2052 // FIXME: This works on big-endian for composite byvals, which are the common
2053 // case. It should also work for fundamental types too.
2054 unsigned FrameIdx =
2055 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2056 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
2057 InVals.push_back(FrameIdxN);
2058
2059 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002060 }
2061
2062 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002063 // Arguments stored in registers.
2064 EVT RegVT = VA.getLocVT();
2065
2066 SDValue ArgValue;
2067 const TargetRegisterClass *RC;
2068
2069 if (RegVT == MVT::i32)
2070 RC = &AArch64::GPR32RegClass;
2071 else if (RegVT == MVT::i64)
2072 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00002073 else if (RegVT == MVT::f16)
2074 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00002075 else if (RegVT == MVT::f32)
2076 RC = &AArch64::FPR32RegClass;
2077 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2078 RC = &AArch64::FPR64RegClass;
2079 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2080 RC = &AArch64::FPR128RegClass;
2081 else
2082 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2083
2084 // Transform the arguments in physical registers into virtual ones.
2085 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2086 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2087
2088 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2089 // to 64 bits. Insert an assert[sz]ext to capture this, then
2090 // truncate to the right size.
2091 switch (VA.getLocInfo()) {
2092 default:
2093 llvm_unreachable("Unknown loc info!");
2094 case CCValAssign::Full:
2095 break;
2096 case CCValAssign::BCvt:
2097 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2098 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002099 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002100 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002101 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00002102 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2103 // nodes after our lowering.
2104 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00002105 break;
2106 }
2107
2108 InVals.push_back(ArgValue);
2109
2110 } else { // VA.isRegLoc()
2111 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2112 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00002113 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002114
2115 uint32_t BEAlign = 0;
Tim Northover293d4142014-12-03 17:49:26 +00002116 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2117 !Ins[i].Flags.isInConsecutiveRegs())
Tim Northover3b0846e2014-05-24 12:50:23 +00002118 BEAlign = 8 - ArgSize;
2119
2120 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2121
2122 // Create load nodes to retrieve arguments from the stack.
2123 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2124 SDValue ArgValue;
2125
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002126 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00002127 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002128 MVT MemVT = VA.getValVT();
2129
Tim Northover47e003c2014-05-26 17:21:53 +00002130 switch (VA.getLocInfo()) {
2131 default:
2132 break;
Tim Northover6890add2014-06-03 13:54:53 +00002133 case CCValAssign::BCvt:
2134 MemVT = VA.getLocVT();
2135 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002136 case CCValAssign::SExt:
2137 ExtType = ISD::SEXTLOAD;
2138 break;
2139 case CCValAssign::ZExt:
2140 ExtType = ISD::ZEXTLOAD;
2141 break;
2142 case CCValAssign::AExt:
2143 ExtType = ISD::EXTLOAD;
2144 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00002145 }
2146
Tim Northover6890add2014-06-03 13:54:53 +00002147 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
Tim Northover47e003c2014-05-26 17:21:53 +00002148 MachinePointerInfo::getFixedStack(FI),
Benjamin Kramer2e52f022014-10-04 22:44:29 +00002149 MemVT, false, false, false, 0);
Tim Northover47e003c2014-05-26 17:21:53 +00002150
Tim Northover3b0846e2014-05-24 12:50:23 +00002151 InVals.push_back(ArgValue);
2152 }
2153 }
2154
2155 // varargs
2156 if (isVarArg) {
2157 if (!Subtarget->isTargetDarwin()) {
2158 // The AAPCS variadic function ABI is identical to the non-variadic
2159 // one. As a result there may be more arguments in registers and we should
2160 // save them for future reference.
2161 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2162 }
2163
2164 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2165 // This will point to the next argument passed via stack.
2166 unsigned StackOffset = CCInfo.getNextStackOffset();
2167 // We currently pass all varargs at 8-byte alignment.
2168 StackOffset = ((StackOffset + 7) & ~7);
2169 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2170 }
2171
2172 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2173 unsigned StackArgSize = CCInfo.getNextStackOffset();
2174 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2175 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2176 // This is a non-standard ABI so by fiat I say we're allowed to make full
2177 // use of the stack area to be popped, which must be aligned to 16 bytes in
2178 // any case:
2179 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2180
2181 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2182 // a multiple of 16.
2183 FuncInfo->setArgumentStackToRestore(StackArgSize);
2184
2185 // This realignment carries over to the available bytes below. Our own
2186 // callers will guarantee the space is free by giving an aligned value to
2187 // CALLSEQ_START.
2188 }
2189 // Even if we're not expected to free up the space, it's useful to know how
2190 // much is there while considering tail calls (because we can reuse it).
2191 FuncInfo->setBytesInStackArgArea(StackArgSize);
2192
2193 return Chain;
2194}
2195
2196void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2197 SelectionDAG &DAG, SDLoc DL,
2198 SDValue &Chain) const {
2199 MachineFunction &MF = DAG.getMachineFunction();
2200 MachineFrameInfo *MFI = MF.getFrameInfo();
2201 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2202
2203 SmallVector<SDValue, 8> MemOps;
2204
2205 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2206 AArch64::X3, AArch64::X4, AArch64::X5,
2207 AArch64::X6, AArch64::X7 };
2208 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002209 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002210
2211 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2212 int GPRIdx = 0;
2213 if (GPRSaveSize != 0) {
2214 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2215
2216 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
2217
2218 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2219 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2220 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2221 SDValue Store =
2222 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2223 MachinePointerInfo::getStack(i * 8), false, false, 0);
2224 MemOps.push_back(Store);
2225 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2226 DAG.getConstant(8, getPointerTy()));
2227 }
2228 }
2229 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2230 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2231
2232 if (Subtarget->hasFPARMv8()) {
2233 static const MCPhysReg FPRArgRegs[] = {
2234 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2235 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2236 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002237 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002238
2239 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2240 int FPRIdx = 0;
2241 if (FPRSaveSize != 0) {
2242 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2243
2244 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
2245
2246 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2247 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2248 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2249
2250 SDValue Store =
2251 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2252 MachinePointerInfo::getStack(i * 16), false, false, 0);
2253 MemOps.push_back(Store);
2254 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2255 DAG.getConstant(16, getPointerTy()));
2256 }
2257 }
2258 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2259 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2260 }
2261
2262 if (!MemOps.empty()) {
2263 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2264 }
2265}
2266
2267/// LowerCallResult - Lower the result values of a call into the
2268/// appropriate copies out of appropriate physical registers.
2269SDValue AArch64TargetLowering::LowerCallResult(
2270 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2271 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2272 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2273 SDValue ThisVal) const {
2274 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2275 ? RetCC_AArch64_WebKit_JS
2276 : RetCC_AArch64_AAPCS;
2277 // Assign locations to each value returned by this call.
2278 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002279 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2280 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002281 CCInfo.AnalyzeCallResult(Ins, RetCC);
2282
2283 // Copy all of the result registers out of their specified physreg.
2284 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2285 CCValAssign VA = RVLocs[i];
2286
2287 // Pass 'this' value directly from the argument to return value, to avoid
2288 // reg unit interference
2289 if (i == 0 && isThisReturn) {
2290 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2291 "unexpected return calling convention register assignment");
2292 InVals.push_back(ThisVal);
2293 continue;
2294 }
2295
2296 SDValue Val =
2297 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2298 Chain = Val.getValue(1);
2299 InFlag = Val.getValue(2);
2300
2301 switch (VA.getLocInfo()) {
2302 default:
2303 llvm_unreachable("Unknown loc info!");
2304 case CCValAssign::Full:
2305 break;
2306 case CCValAssign::BCvt:
2307 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2308 break;
2309 }
2310
2311 InVals.push_back(Val);
2312 }
2313
2314 return Chain;
2315}
2316
2317bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2318 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2319 bool isCalleeStructRet, bool isCallerStructRet,
2320 const SmallVectorImpl<ISD::OutputArg> &Outs,
2321 const SmallVectorImpl<SDValue> &OutVals,
2322 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2323 // For CallingConv::C this function knows whether the ABI needs
2324 // changing. That's not true for other conventions so they will have to opt in
2325 // manually.
2326 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2327 return false;
2328
2329 const MachineFunction &MF = DAG.getMachineFunction();
2330 const Function *CallerF = MF.getFunction();
2331 CallingConv::ID CallerCC = CallerF->getCallingConv();
2332 bool CCMatch = CallerCC == CalleeCC;
2333
2334 // Byval parameters hand the function a pointer directly into the stack area
2335 // we want to reuse during a tail call. Working around this *is* possible (see
2336 // X86) but less efficient and uglier in LowerCall.
2337 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2338 e = CallerF->arg_end();
2339 i != e; ++i)
2340 if (i->hasByValAttr())
2341 return false;
2342
2343 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2344 if (IsTailCallConvention(CalleeCC) && CCMatch)
2345 return true;
2346 return false;
2347 }
2348
Oliver Stannard12993dd2014-08-18 12:42:15 +00002349 // Externally-defined functions with weak linkage should not be
2350 // tail-called on AArch64 when the OS does not support dynamic
2351 // pre-emption of symbols, as the AAELF spec requires normal calls
2352 // to undefined weak functions to be replaced with a NOP or jump to the
2353 // next instruction. The behaviour of branch instructions in this
2354 // situation (as used for tail calls) is implementation-defined, so we
2355 // cannot rely on the linker replacing the tail call with a return.
2356 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2357 const GlobalValue *GV = G->getGlobal();
Saleem Abdulrasool67f72992015-01-03 21:35:00 +00002358 const Triple TT(getTargetMachine().getTargetTriple());
2359 if (GV->hasExternalWeakLinkage() &&
2360 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
Oliver Stannard12993dd2014-08-18 12:42:15 +00002361 return false;
2362 }
2363
Tim Northover3b0846e2014-05-24 12:50:23 +00002364 // Now we search for cases where we can use a tail call without changing the
2365 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2366 // concept.
2367
2368 // I want anyone implementing a new calling convention to think long and hard
2369 // about this assert.
2370 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2371 "Unexpected variadic calling convention");
2372
2373 if (isVarArg && !Outs.empty()) {
2374 // At least two cases here: if caller is fastcc then we can't have any
2375 // memory arguments (we'd be expected to clean up the stack afterwards). If
2376 // caller is C then we could potentially use its argument area.
2377
2378 // FIXME: for now we take the most conservative of these in both cases:
2379 // disallow all variadic memory operands.
2380 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002381 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2382 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002383
2384 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2385 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2386 if (!ArgLocs[i].isRegLoc())
2387 return false;
2388 }
2389
2390 // If the calling conventions do not match, then we'd better make sure the
2391 // results are returned in the same way as what the caller expects.
2392 if (!CCMatch) {
2393 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002394 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2395 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002396 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2397
2398 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002399 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2400 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002401 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2402
2403 if (RVLocs1.size() != RVLocs2.size())
2404 return false;
2405 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2406 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2407 return false;
2408 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2409 return false;
2410 if (RVLocs1[i].isRegLoc()) {
2411 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2412 return false;
2413 } else {
2414 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2415 return false;
2416 }
2417 }
2418 }
2419
2420 // Nothing more to check if the callee is taking no arguments
2421 if (Outs.empty())
2422 return true;
2423
2424 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002425 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2426 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002427
2428 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2429
2430 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2431
2432 // If the stack arguments for this call would fit into our own save area then
2433 // the call can be made tail.
2434 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2435}
2436
2437SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2438 SelectionDAG &DAG,
2439 MachineFrameInfo *MFI,
2440 int ClobberedFI) const {
2441 SmallVector<SDValue, 8> ArgChains;
2442 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2443 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2444
2445 // Include the original chain at the beginning of the list. When this is
2446 // used by target LowerCall hooks, this helps legalize find the
2447 // CALLSEQ_BEGIN node.
2448 ArgChains.push_back(Chain);
2449
2450 // Add a chain value for each stack argument corresponding
2451 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2452 UE = DAG.getEntryNode().getNode()->use_end();
2453 U != UE; ++U)
2454 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2455 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2456 if (FI->getIndex() < 0) {
2457 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2458 int64_t InLastByte = InFirstByte;
2459 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2460
2461 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2462 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2463 ArgChains.push_back(SDValue(L, 1));
2464 }
2465
2466 // Build a tokenfactor for all the chains.
2467 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2468}
2469
2470bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2471 bool TailCallOpt) const {
2472 return CallCC == CallingConv::Fast && TailCallOpt;
2473}
2474
2475bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2476 return CallCC == CallingConv::Fast;
2477}
2478
2479/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2480/// and add input and output parameter nodes.
2481SDValue
2482AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2483 SmallVectorImpl<SDValue> &InVals) const {
2484 SelectionDAG &DAG = CLI.DAG;
2485 SDLoc &DL = CLI.DL;
2486 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2487 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2488 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2489 SDValue Chain = CLI.Chain;
2490 SDValue Callee = CLI.Callee;
2491 bool &IsTailCall = CLI.IsTailCall;
2492 CallingConv::ID CallConv = CLI.CallConv;
2493 bool IsVarArg = CLI.IsVarArg;
2494
2495 MachineFunction &MF = DAG.getMachineFunction();
2496 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2497 bool IsThisReturn = false;
2498
2499 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2500 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2501 bool IsSibCall = false;
2502
2503 if (IsTailCall) {
2504 // Check if it's really possible to do a tail call.
2505 IsTailCall = isEligibleForTailCallOptimization(
2506 Callee, CallConv, IsVarArg, IsStructRet,
2507 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2508 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2509 report_fatal_error("failed to perform tail call elimination on a call "
2510 "site marked musttail");
2511
2512 // A sibling call is one where we're under the usual C ABI and not planning
2513 // to change that but can still do a tail call:
2514 if (!TailCallOpt && IsTailCall)
2515 IsSibCall = true;
2516
2517 if (IsTailCall)
2518 ++NumTailCalls;
2519 }
2520
2521 // Analyze operands of the call, assigning locations to each operand.
2522 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002523 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2524 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002525
2526 if (IsVarArg) {
2527 // Handle fixed and variable vector arguments differently.
2528 // Variable vector arguments always go into memory.
2529 unsigned NumArgs = Outs.size();
2530
2531 for (unsigned i = 0; i != NumArgs; ++i) {
2532 MVT ArgVT = Outs[i].VT;
2533 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2534 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2535 /*IsVarArg=*/ !Outs[i].IsFixed);
2536 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2537 assert(!Res && "Call operand has unhandled type");
2538 (void)Res;
2539 }
2540 } else {
2541 // At this point, Outs[].VT may already be promoted to i32. To correctly
2542 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2543 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2544 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2545 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2546 // LocVT.
2547 unsigned NumArgs = Outs.size();
2548 for (unsigned i = 0; i != NumArgs; ++i) {
2549 MVT ValVT = Outs[i].VT;
2550 // Get type of the original argument.
2551 EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2552 /*AllowUnknown*/ true);
2553 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2554 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2555 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002556 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002557 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002558 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002559 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002560
2561 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002562 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002563 assert(!Res && "Call operand has unhandled type");
2564 (void)Res;
2565 }
2566 }
2567
2568 // Get a count of how many bytes are to be pushed on the stack.
2569 unsigned NumBytes = CCInfo.getNextStackOffset();
2570
2571 if (IsSibCall) {
2572 // Since we're not changing the ABI to make this a tail call, the memory
2573 // operands are already available in the caller's incoming argument space.
2574 NumBytes = 0;
2575 }
2576
2577 // FPDiff is the byte offset of the call's argument area from the callee's.
2578 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2579 // by this amount for a tail call. In a sibling call it must be 0 because the
2580 // caller will deallocate the entire stack and the callee still expects its
2581 // arguments to begin at SP+0. Completely unused for non-tail calls.
2582 int FPDiff = 0;
2583
2584 if (IsTailCall && !IsSibCall) {
2585 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2586
2587 // Since callee will pop argument stack as a tail call, we must keep the
2588 // popped size 16-byte aligned.
2589 NumBytes = RoundUpToAlignment(NumBytes, 16);
2590
2591 // FPDiff will be negative if this tail call requires more space than we
2592 // would automatically have in our incoming argument space. Positive if we
2593 // can actually shrink the stack.
2594 FPDiff = NumReusableBytes - NumBytes;
2595
2596 // The stack pointer must be 16-byte aligned at all times it's used for a
2597 // memory operation, which in practice means at *all* times and in
2598 // particular across call boundaries. Therefore our own arguments started at
2599 // a 16-byte aligned SP and the delta applied for the tail call should
2600 // satisfy the same constraint.
2601 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2602 }
2603
2604 // Adjust the stack pointer for the new arguments...
2605 // These operations are automatically eliminated by the prolog/epilog pass
2606 if (!IsSibCall)
2607 Chain =
2608 DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
2609
2610 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2611
2612 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2613 SmallVector<SDValue, 8> MemOpChains;
2614
2615 // Walk the register/memloc assignments, inserting copies/loads.
2616 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2617 ++i, ++realArgIdx) {
2618 CCValAssign &VA = ArgLocs[i];
2619 SDValue Arg = OutVals[realArgIdx];
2620 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2621
2622 // Promote the value if needed.
2623 switch (VA.getLocInfo()) {
2624 default:
2625 llvm_unreachable("Unknown loc info!");
2626 case CCValAssign::Full:
2627 break;
2628 case CCValAssign::SExt:
2629 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2630 break;
2631 case CCValAssign::ZExt:
2632 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2633 break;
2634 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00002635 if (Outs[realArgIdx].ArgVT == MVT::i1) {
2636 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2637 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2638 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2639 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002640 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2641 break;
2642 case CCValAssign::BCvt:
2643 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2644 break;
2645 case CCValAssign::FPExt:
2646 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2647 break;
2648 }
2649
2650 if (VA.isRegLoc()) {
2651 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2652 assert(VA.getLocVT() == MVT::i64 &&
2653 "unexpected calling convention register assignment");
2654 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2655 "unexpected use of 'returned'");
2656 IsThisReturn = true;
2657 }
2658 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2659 } else {
2660 assert(VA.isMemLoc());
2661
2662 SDValue DstAddr;
2663 MachinePointerInfo DstInfo;
2664
2665 // FIXME: This works on big-endian for composite byvals, which are the
2666 // common case. It should also work for fundamental types too.
2667 uint32_t BEAlign = 0;
2668 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00002669 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00002670 OpSize = (OpSize + 7) / 8;
Tim Northover293d4142014-12-03 17:49:26 +00002671 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
2672 !Flags.isInConsecutiveRegs()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002673 if (OpSize < 8)
2674 BEAlign = 8 - OpSize;
2675 }
2676 unsigned LocMemOffset = VA.getLocMemOffset();
2677 int32_t Offset = LocMemOffset + BEAlign;
2678 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2679 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2680
2681 if (IsTailCall) {
2682 Offset = Offset + FPDiff;
2683 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2684
2685 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2686 DstInfo = MachinePointerInfo::getFixedStack(FI);
2687
2688 // Make sure any stack arguments overlapping with where we're storing
2689 // are loaded before this eventual operation. Otherwise they'll be
2690 // clobbered.
2691 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2692 } else {
2693 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2694
2695 DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2696 DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2697 }
2698
2699 if (Outs[i].Flags.isByVal()) {
2700 SDValue SizeNode =
2701 DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
2702 SDValue Cpy = DAG.getMemcpy(
2703 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Jim Grosbach8e810ba2014-08-11 22:42:28 +00002704 /*isVol = */ false,
2705 /*AlwaysInline = */ false, DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00002706
2707 MemOpChains.push_back(Cpy);
2708 } else {
2709 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2710 // promoted to a legal register type i32, we should truncate Arg back to
2711 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00002712 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
2713 VA.getValVT() == MVT::i16)
2714 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00002715
2716 SDValue Store =
2717 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2718 MemOpChains.push_back(Store);
2719 }
2720 }
2721 }
2722
2723 if (!MemOpChains.empty())
2724 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2725
2726 // Build a sequence of copy-to-reg nodes chained together with token chain
2727 // and flag operands which copy the outgoing args into the appropriate regs.
2728 SDValue InFlag;
2729 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2730 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2731 RegsToPass[i].second, InFlag);
2732 InFlag = Chain.getValue(1);
2733 }
2734
2735 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2736 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2737 // node so that legalize doesn't hack it.
2738 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2739 Subtarget->isTargetMachO()) {
2740 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2741 const GlobalValue *GV = G->getGlobal();
2742 bool InternalLinkage = GV->hasInternalLinkage();
2743 if (InternalLinkage)
2744 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2745 else {
2746 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2747 AArch64II::MO_GOT);
2748 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2749 }
2750 } else if (ExternalSymbolSDNode *S =
2751 dyn_cast<ExternalSymbolSDNode>(Callee)) {
2752 const char *Sym = S->getSymbol();
2753 Callee =
2754 DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2755 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2756 }
2757 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2758 const GlobalValue *GV = G->getGlobal();
2759 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2760 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2761 const char *Sym = S->getSymbol();
2762 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2763 }
2764
2765 // We don't usually want to end the call-sequence here because we would tidy
2766 // the frame up *after* the call, however in the ABI-changing tail-call case
2767 // we've carefully laid out the parameters so that when sp is reset they'll be
2768 // in the correct location.
2769 if (IsTailCall && !IsSibCall) {
2770 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2771 DAG.getIntPtrConstant(0, true), InFlag, DL);
2772 InFlag = Chain.getValue(1);
2773 }
2774
2775 std::vector<SDValue> Ops;
2776 Ops.push_back(Chain);
2777 Ops.push_back(Callee);
2778
2779 if (IsTailCall) {
2780 // Each tail call may have to adjust the stack by a different amount, so
2781 // this information must travel along with the operation for eventual
2782 // consumption by emitEpilogue.
2783 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
2784 }
2785
2786 // Add argument registers to the end of the list so that they are known live
2787 // into the call.
2788 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2789 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2790 RegsToPass[i].second.getValueType()));
2791
2792 // Add a register mask operand representing the call-preserved registers.
2793 const uint32_t *Mask;
Eric Christopher905f12d2015-01-29 00:19:42 +00002794 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002795 if (IsThisReturn) {
2796 // For 'this' returns, use the X0-preserving mask if applicable
Eric Christopher9deb75d2015-03-11 22:42:13 +00002797 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002798 if (!Mask) {
2799 IsThisReturn = false;
Eric Christopher9deb75d2015-03-11 22:42:13 +00002800 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002801 }
2802 } else
Eric Christopher9deb75d2015-03-11 22:42:13 +00002803 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002804
2805 assert(Mask && "Missing call preserved mask for calling convention");
2806 Ops.push_back(DAG.getRegisterMask(Mask));
2807
2808 if (InFlag.getNode())
2809 Ops.push_back(InFlag);
2810
2811 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2812
2813 // If we're doing a tall call, use a TC_RETURN here rather than an
2814 // actual call instruction.
2815 if (IsTailCall)
2816 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
2817
2818 // Returns a chain and a flag for retval copy to use.
2819 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2820 InFlag = Chain.getValue(1);
2821
2822 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2823 ? RoundUpToAlignment(NumBytes, 16)
2824 : 0;
2825
2826 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2827 DAG.getIntPtrConstant(CalleePopBytes, true),
2828 InFlag, DL);
2829 if (!Ins.empty())
2830 InFlag = Chain.getValue(1);
2831
2832 // Handle result values, copying them out of physregs into vregs that we
2833 // return.
2834 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2835 InVals, IsThisReturn,
2836 IsThisReturn ? OutVals[0] : SDValue());
2837}
2838
2839bool AArch64TargetLowering::CanLowerReturn(
2840 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2841 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2842 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2843 ? RetCC_AArch64_WebKit_JS
2844 : RetCC_AArch64_AAPCS;
2845 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002846 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00002847 return CCInfo.CheckReturn(Outs, RetCC);
2848}
2849
2850SDValue
2851AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2852 bool isVarArg,
2853 const SmallVectorImpl<ISD::OutputArg> &Outs,
2854 const SmallVectorImpl<SDValue> &OutVals,
2855 SDLoc DL, SelectionDAG &DAG) const {
2856 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2857 ? RetCC_AArch64_WebKit_JS
2858 : RetCC_AArch64_AAPCS;
2859 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002860 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2861 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002862 CCInfo.AnalyzeReturn(Outs, RetCC);
2863
2864 // Copy the result values into the output registers.
2865 SDValue Flag;
2866 SmallVector<SDValue, 4> RetOps(1, Chain);
2867 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2868 ++i, ++realRVLocIdx) {
2869 CCValAssign &VA = RVLocs[i];
2870 assert(VA.isRegLoc() && "Can only return in registers!");
2871 SDValue Arg = OutVals[realRVLocIdx];
2872
2873 switch (VA.getLocInfo()) {
2874 default:
2875 llvm_unreachable("Unknown loc info!");
2876 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00002877 if (Outs[i].ArgVT == MVT::i1) {
2878 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2879 // value. This is strictly redundant on Darwin (which uses "zeroext
2880 // i1"), but will be optimised out before ISel.
2881 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2882 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2883 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002884 break;
2885 case CCValAssign::BCvt:
2886 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2887 break;
2888 }
2889
2890 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2891 Flag = Chain.getValue(1);
2892 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2893 }
2894
2895 RetOps[0] = Chain; // Update chain.
2896
2897 // Add the flag if we have it.
2898 if (Flag.getNode())
2899 RetOps.push_back(Flag);
2900
2901 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2902}
2903
2904//===----------------------------------------------------------------------===//
2905// Other Lowering Code
2906//===----------------------------------------------------------------------===//
2907
2908SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2909 SelectionDAG &DAG) const {
2910 EVT PtrVT = getPointerTy();
2911 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002912 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2913 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00002914 unsigned char OpFlags =
2915 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2916
2917 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2918 "unexpected offset in global node");
2919
2920 // This also catched the large code model case for Darwin.
2921 if ((OpFlags & AArch64II::MO_GOT) != 0) {
2922 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2923 // FIXME: Once remat is capable of dealing with instructions with register
2924 // operands, expand this into two nodes instead of using a wrapper node.
2925 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2926 }
2927
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002928 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
2929 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2930 "use of MO_CONSTPOOL only supported on small model");
2931 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
2932 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2933 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2934 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
2935 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2936 SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
2937 MachinePointerInfo::getConstantPool(),
2938 /*isVolatile=*/ false,
2939 /*isNonTemporal=*/ true,
2940 /*isInvariant=*/ true, 8);
2941 if (GN->getOffset() != 0)
2942 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
2943 DAG.getConstant(GN->getOffset(), PtrVT));
2944 return GlobalAddr;
2945 }
2946
Tim Northover3b0846e2014-05-24 12:50:23 +00002947 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2948 const unsigned char MO_NC = AArch64II::MO_NC;
2949 return DAG.getNode(
2950 AArch64ISD::WrapperLarge, DL, PtrVT,
2951 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
2952 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
2953 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
2954 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
2955 } else {
2956 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
2957 // the only correct model on Darwin.
2958 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2959 OpFlags | AArch64II::MO_PAGE);
2960 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2961 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
2962
2963 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2964 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2965 }
2966}
2967
2968/// \brief Convert a TLS address reference into the correct sequence of loads
2969/// and calls to compute the variable's address (for Darwin, currently) and
2970/// return an SDValue containing the final node.
2971
2972/// Darwin only has one TLS scheme which must be capable of dealing with the
2973/// fully general situation, in the worst case. This means:
2974/// + "extern __thread" declaration.
2975/// + Defined in a possibly unknown dynamic library.
2976///
2977/// The general system is that each __thread variable has a [3 x i64] descriptor
2978/// which contains information used by the runtime to calculate the address. The
2979/// only part of this the compiler needs to know about is the first xword, which
2980/// contains a function pointer that must be called with the address of the
2981/// entire descriptor in "x0".
2982///
2983/// Since this descriptor may be in a different unit, in general even the
2984/// descriptor must be accessed via an indirect load. The "ideal" code sequence
2985/// is:
2986/// adrp x0, _var@TLVPPAGE
2987/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
2988/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
2989/// ; the function pointer
2990/// blr x1 ; Uses descriptor address in x0
2991/// ; Address of _var is now in x0.
2992///
2993/// If the address of _var's descriptor *is* known to the linker, then it can
2994/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
2995/// a slight efficiency gain.
2996SDValue
2997AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
2998 SelectionDAG &DAG) const {
2999 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3000
3001 SDLoc DL(Op);
3002 MVT PtrVT = getPointerTy();
3003 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3004
3005 SDValue TLVPAddr =
3006 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3007 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3008
3009 // The first entry in the descriptor is a function pointer that we must call
3010 // to obtain the address of the variable.
3011 SDValue Chain = DAG.getEntryNode();
3012 SDValue FuncTLVGet =
3013 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
3014 false, true, true, 8);
3015 Chain = FuncTLVGet.getValue(1);
3016
3017 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3018 MFI->setAdjustsStack(true);
3019
3020 // TLS calls preserve all registers except those that absolutely must be
3021 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3022 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003023 const uint32_t *Mask =
Eric Christopher905f12d2015-01-29 00:19:42 +00003024 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003025
3026 // Finally, we can make the call. This is just a degenerate version of a
3027 // normal AArch64 call node: x0 takes the address of the descriptor, and
3028 // returns the address of the variable in this thread.
3029 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3030 Chain =
3031 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3032 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3033 DAG.getRegisterMask(Mask), Chain.getValue(1));
3034 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3035}
3036
3037/// When accessing thread-local variables under either the general-dynamic or
3038/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3039/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
Kristof Beylsaea84612015-03-04 09:12:08 +00003040/// is a function pointer to carry out the resolution.
Tim Northover3b0846e2014-05-24 12:50:23 +00003041///
Kristof Beylsaea84612015-03-04 09:12:08 +00003042/// The sequence is:
3043/// adrp x0, :tlsdesc:var
3044/// ldr x1, [x0, #:tlsdesc_lo12:var]
3045/// add x0, x0, #:tlsdesc_lo12:var
3046/// .tlsdesccall var
3047/// blr x1
3048/// (TPIDR_EL0 offset now in x0)
Tim Northover3b0846e2014-05-24 12:50:23 +00003049///
Kristof Beylsaea84612015-03-04 09:12:08 +00003050/// The above sequence must be produced unscheduled, to enable the linker to
3051/// optimize/relax this sequence.
3052/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3053/// above sequence, and expanded really late in the compilation flow, to ensure
3054/// the sequence is produced as per above.
3055SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, SDLoc DL,
3056 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00003057 EVT PtrVT = getPointerTy();
3058
Kristof Beylsaea84612015-03-04 09:12:08 +00003059 SDValue Chain = DAG.getEntryNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00003060 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Kristof Beylsaea84612015-03-04 09:12:08 +00003061
3062 SmallVector<SDValue, 2> Ops;
3063 Ops.push_back(Chain);
3064 Ops.push_back(SymAddr);
3065
3066 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, Ops);
3067 SDValue Glue = Chain.getValue(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003068
3069 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3070}
3071
3072SDValue
3073AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3074 SelectionDAG &DAG) const {
3075 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3076 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3077 "ELF TLS only supported in small memory model");
Kristof Beylsaea84612015-03-04 09:12:08 +00003078 // Different choices can be made for the maximum size of the TLS area for a
3079 // module. For the small address model, the default TLS size is 16MiB and the
3080 // maximum TLS size is 4GiB.
3081 // FIXME: add -mtls-size command line option and make it control the 16MiB
3082 // vs. 4GiB code sequence generation.
Tim Northover3b0846e2014-05-24 12:50:23 +00003083 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3084
3085 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
Kristof Beylsaea84612015-03-04 09:12:08 +00003086 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3087 if (Model == TLSModel::LocalDynamic)
3088 Model = TLSModel::GeneralDynamic;
3089 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003090
3091 SDValue TPOff;
3092 EVT PtrVT = getPointerTy();
3093 SDLoc DL(Op);
3094 const GlobalValue *GV = GA->getGlobal();
3095
3096 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3097
3098 if (Model == TLSModel::LocalExec) {
3099 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003100 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003101 SDValue LoVar = DAG.getTargetGlobalAddress(
3102 GV, DL, PtrVT, 0,
Kristof Beylsaea84612015-03-04 09:12:08 +00003103 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
Tim Northover3b0846e2014-05-24 12:50:23 +00003104
Kristof Beylsaea84612015-03-04 09:12:08 +00003105 SDValue TPWithOff_lo =
3106 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
3107 HiVar, DAG.getTargetConstant(0, MVT::i32)),
3108 0);
3109 SDValue TPWithOff =
3110 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
3111 LoVar, DAG.getTargetConstant(0, MVT::i32)),
3112 0);
3113 return TPWithOff;
Tim Northover3b0846e2014-05-24 12:50:23 +00003114 } else if (Model == TLSModel::InitialExec) {
3115 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3116 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3117 } else if (Model == TLSModel::LocalDynamic) {
3118 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3119 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3120 // the beginning of the module's TLS region, followed by a DTPREL offset
3121 // calculation.
3122
3123 // These accesses will need deduplicating if there's more than one.
3124 AArch64FunctionInfo *MFI =
3125 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3126 MFI->incNumLocalDynamicTLSAccesses();
3127
Tim Northover3b0846e2014-05-24 12:50:23 +00003128 // The call needs a relocation too for linker relaxation. It doesn't make
3129 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3130 // the address.
3131 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3132 AArch64II::MO_TLS);
3133
3134 // Now we can calculate the offset from TPIDR_EL0 to this module's
3135 // thread-local area.
Kristof Beylsaea84612015-03-04 09:12:08 +00003136 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003137
3138 // Now use :dtprel_whatever: operations to calculate this variable's offset
3139 // in its thread-storage area.
3140 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003141 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003142 SDValue LoVar = DAG.getTargetGlobalAddress(
3143 GV, DL, MVT::i64, 0,
Tim Northover3b0846e2014-05-24 12:50:23 +00003144 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3145
Kristof Beylsaea84612015-03-04 09:12:08 +00003146 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
3147 DAG.getTargetConstant(0, MVT::i32)),
3148 0);
3149 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
3150 DAG.getTargetConstant(0, MVT::i32)),
3151 0);
3152 } else if (Model == TLSModel::GeneralDynamic) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003153 // The call needs a relocation too for linker relaxation. It doesn't make
3154 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3155 // the address.
3156 SDValue SymAddr =
3157 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3158
3159 // Finally we can make a call to calculate the offset from tpidr_el0.
Kristof Beylsaea84612015-03-04 09:12:08 +00003160 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003161 } else
3162 llvm_unreachable("Unsupported ELF TLS access model");
3163
3164 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3165}
3166
3167SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3168 SelectionDAG &DAG) const {
3169 if (Subtarget->isTargetDarwin())
3170 return LowerDarwinGlobalTLSAddress(Op, DAG);
3171 else if (Subtarget->isTargetELF())
3172 return LowerELFGlobalTLSAddress(Op, DAG);
3173
3174 llvm_unreachable("Unexpected platform trying to use TLS");
3175}
3176SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3177 SDValue Chain = Op.getOperand(0);
3178 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3179 SDValue LHS = Op.getOperand(2);
3180 SDValue RHS = Op.getOperand(3);
3181 SDValue Dest = Op.getOperand(4);
3182 SDLoc dl(Op);
3183
3184 // Handle f128 first, since lowering it will result in comparing the return
3185 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3186 // is expecting to deal with.
3187 if (LHS.getValueType() == MVT::f128) {
3188 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3189
3190 // If softenSetCCOperands returned a scalar, we need to compare the result
3191 // against zero to select between true and false values.
3192 if (!RHS.getNode()) {
3193 RHS = DAG.getConstant(0, LHS.getValueType());
3194 CC = ISD::SETNE;
3195 }
3196 }
3197
3198 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3199 // instruction.
3200 unsigned Opc = LHS.getOpcode();
3201 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
3202 cast<ConstantSDNode>(RHS)->isOne() &&
3203 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3204 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3205 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3206 "Unexpected condition code.");
3207 // Only lower legal XALUO ops.
3208 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3209 return SDValue();
3210
3211 // The actual operation with overflow check.
3212 AArch64CC::CondCode OFCC;
3213 SDValue Value, Overflow;
3214 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3215
3216 if (CC == ISD::SETNE)
3217 OFCC = getInvertedCondCode(OFCC);
3218 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3219
Ahmed Bougachadf956a22015-02-06 23:15:39 +00003220 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3221 Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00003222 }
3223
3224 if (LHS.getValueType().isInteger()) {
3225 assert((LHS.getValueType() == RHS.getValueType()) &&
3226 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3227
3228 // If the RHS of the comparison is zero, we can potentially fold this
3229 // to a specialized branch.
3230 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3231 if (RHSC && RHSC->getZExtValue() == 0) {
3232 if (CC == ISD::SETEQ) {
3233 // See if we can use a TBZ to fold in an AND as well.
3234 // TBZ has a smaller branch displacement than CBZ. If the offset is
3235 // out of bounds, a late MI-layer pass rewrites branches.
3236 // 403.gcc is an example that hits this case.
3237 if (LHS.getOpcode() == ISD::AND &&
3238 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3239 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3240 SDValue Test = LHS.getOperand(0);
3241 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003242 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3243 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3244 }
3245
3246 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3247 } else if (CC == ISD::SETNE) {
3248 // See if we can use a TBZ to fold in an AND as well.
3249 // TBZ has a smaller branch displacement than CBZ. If the offset is
3250 // out of bounds, a late MI-layer pass rewrites branches.
3251 // 403.gcc is an example that hits this case.
3252 if (LHS.getOpcode() == ISD::AND &&
3253 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3254 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3255 SDValue Test = LHS.getOperand(0);
3256 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003257 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3258 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3259 }
3260
3261 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003262 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3263 // Don't combine AND since emitComparison converts the AND to an ANDS
3264 // (a.k.a. TST) and the test in the test bit and branch instruction
3265 // becomes redundant. This would also increase register pressure.
3266 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3267 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3268 DAG.getConstant(Mask, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003269 }
3270 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003271 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3272 LHS.getOpcode() != ISD::AND) {
3273 // Don't combine AND since emitComparison converts the AND to an ANDS
3274 // (a.k.a. TST) and the test in the test bit and branch instruction
3275 // becomes redundant. This would also increase register pressure.
3276 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3277 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3278 DAG.getConstant(Mask, MVT::i64), Dest);
3279 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003280
3281 SDValue CCVal;
3282 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3283 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3284 Cmp);
3285 }
3286
3287 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3288
3289 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3290 // clean. Some of them require two branches to implement.
3291 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3292 AArch64CC::CondCode CC1, CC2;
3293 changeFPCCToAArch64CC(CC, CC1, CC2);
3294 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3295 SDValue BR1 =
3296 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3297 if (CC2 != AArch64CC::AL) {
3298 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3299 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3300 Cmp);
3301 }
3302
3303 return BR1;
3304}
3305
3306SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3307 SelectionDAG &DAG) const {
3308 EVT VT = Op.getValueType();
3309 SDLoc DL(Op);
3310
3311 SDValue In1 = Op.getOperand(0);
3312 SDValue In2 = Op.getOperand(1);
3313 EVT SrcVT = In2.getValueType();
3314 if (SrcVT != VT) {
3315 if (SrcVT == MVT::f32 && VT == MVT::f64)
3316 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3317 else if (SrcVT == MVT::f64 && VT == MVT::f32)
3318 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
3319 else
3320 // FIXME: Src type is different, bail out for now. Can VT really be a
3321 // vector type?
3322 return SDValue();
3323 }
3324
3325 EVT VecVT;
3326 EVT EltVT;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003327 uint64_t EltMask;
3328 SDValue VecVal1, VecVal2;
Tim Northover3b0846e2014-05-24 12:50:23 +00003329 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3330 EltVT = MVT::i32;
3331 VecVT = MVT::v4i32;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003332 EltMask = 0x80000000ULL;
Tim Northover3b0846e2014-05-24 12:50:23 +00003333
3334 if (!VT.isVector()) {
3335 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3336 DAG.getUNDEF(VecVT), In1);
3337 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3338 DAG.getUNDEF(VecVT), In2);
3339 } else {
3340 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3341 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3342 }
3343 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3344 EltVT = MVT::i64;
3345 VecVT = MVT::v2i64;
3346
3347 // We want to materialize a mask with the the high bit set, but the AdvSIMD
3348 // immediate moves cannot materialize that in a single instruction for
3349 // 64-bit elements. Instead, materialize zero and then negate it.
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003350 EltMask = 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00003351
3352 if (!VT.isVector()) {
3353 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3354 DAG.getUNDEF(VecVT), In1);
3355 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3356 DAG.getUNDEF(VecVT), In2);
3357 } else {
3358 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3359 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3360 }
3361 } else {
3362 llvm_unreachable("Invalid type for copysign!");
3363 }
3364
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003365 SDValue BuildVec = DAG.getConstant(EltMask, VecVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003366
3367 // If we couldn't materialize the mask above, then the mask vector will be
3368 // the zero vector, and we need to negate it here.
3369 if (VT == MVT::f64 || VT == MVT::v2f64) {
3370 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3371 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3372 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3373 }
3374
3375 SDValue Sel =
3376 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3377
3378 if (VT == MVT::f32)
3379 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3380 else if (VT == MVT::f64)
3381 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3382 else
3383 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3384}
3385
3386SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00003387 if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3388 Attribute::NoImplicitFloat))
Tim Northover3b0846e2014-05-24 12:50:23 +00003389 return SDValue();
3390
Weiming Zhao7a2d1562014-11-19 00:29:14 +00003391 if (!Subtarget->hasNEON())
3392 return SDValue();
3393
Tim Northover3b0846e2014-05-24 12:50:23 +00003394 // While there is no integer popcount instruction, it can
3395 // be more efficiently lowered to the following sequence that uses
3396 // AdvSIMD registers/instructions as long as the copies to/from
3397 // the AdvSIMD registers are cheap.
3398 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3399 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3400 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3401 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3402 SDValue Val = Op.getOperand(0);
3403 SDLoc DL(Op);
3404 EVT VT = Op.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003405
Hao Liue0335d72015-01-30 02:13:53 +00003406 if (VT == MVT::i32)
3407 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3408 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003409
Hao Liue0335d72015-01-30 02:13:53 +00003410 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003411 SDValue UaddLV = DAG.getNode(
3412 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3413 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
3414
3415 if (VT == MVT::i64)
3416 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3417 return UaddLV;
3418}
3419
3420SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3421
3422 if (Op.getValueType().isVector())
3423 return LowerVSETCC(Op, DAG);
3424
3425 SDValue LHS = Op.getOperand(0);
3426 SDValue RHS = Op.getOperand(1);
3427 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3428 SDLoc dl(Op);
3429
3430 // We chose ZeroOrOneBooleanContents, so use zero and one.
3431 EVT VT = Op.getValueType();
3432 SDValue TVal = DAG.getConstant(1, VT);
3433 SDValue FVal = DAG.getConstant(0, VT);
3434
3435 // Handle f128 first, since one possible outcome is a normal integer
3436 // comparison which gets picked up by the next if statement.
3437 if (LHS.getValueType() == MVT::f128) {
3438 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3439
3440 // If softenSetCCOperands returned a scalar, use it.
3441 if (!RHS.getNode()) {
3442 assert(LHS.getValueType() == Op.getValueType() &&
3443 "Unexpected setcc expansion!");
3444 return LHS;
3445 }
3446 }
3447
3448 if (LHS.getValueType().isInteger()) {
3449 SDValue CCVal;
3450 SDValue Cmp =
3451 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3452
3453 // Note that we inverted the condition above, so we reverse the order of
3454 // the true and false operands here. This will allow the setcc to be
3455 // matched to a single CSINC instruction.
3456 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3457 }
3458
3459 // Now we know we're dealing with FP values.
3460 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3461
3462 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3463 // and do the comparison.
3464 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3465
3466 AArch64CC::CondCode CC1, CC2;
3467 changeFPCCToAArch64CC(CC, CC1, CC2);
3468 if (CC2 == AArch64CC::AL) {
3469 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3470 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3471
3472 // Note that we inverted the condition above, so we reverse the order of
3473 // the true and false operands here. This will allow the setcc to be
3474 // matched to a single CSINC instruction.
3475 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3476 } else {
3477 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3478 // totally clean. Some of them require two CSELs to implement. As is in
3479 // this case, we emit the first CSEL and then emit a second using the output
3480 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3481
3482 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3483 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3484 SDValue CS1 =
3485 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3486
3487 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3488 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3489 }
3490}
3491
3492/// A SELECT_CC operation is really some kind of max or min if both values being
3493/// compared are, in some sense, equal to the results in either case. However,
3494/// it is permissible to compare f32 values and produce directly extended f64
3495/// values.
3496///
3497/// Extending the comparison operands would also be allowed, but is less likely
3498/// to happen in practice since their use is right here. Note that truncate
3499/// operations would *not* be semantically equivalent.
3500static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3501 if (Cmp == Result)
3502 return true;
3503
3504 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3505 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3506 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3507 Result.getValueType() == MVT::f64) {
3508 bool Lossy;
3509 APFloat CmpVal = CCmp->getValueAPF();
3510 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3511 return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3512 }
3513
3514 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3515}
3516
3517SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3518 SelectionDAG &DAG) const {
3519 SDValue CC = Op->getOperand(0);
3520 SDValue TVal = Op->getOperand(1);
3521 SDValue FVal = Op->getOperand(2);
3522 SDLoc DL(Op);
3523
3524 unsigned Opc = CC.getOpcode();
3525 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3526 // instruction.
3527 if (CC.getResNo() == 1 &&
3528 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3529 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3530 // Only lower legal XALUO ops.
3531 if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
3532 return SDValue();
3533
3534 AArch64CC::CondCode OFCC;
3535 SDValue Value, Overflow;
3536 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
3537 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3538
3539 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3540 CCVal, Overflow);
3541 }
3542
3543 if (CC.getOpcode() == ISD::SETCC)
3544 return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
3545 cast<CondCodeSDNode>(CC.getOperand(2))->get());
3546 else
3547 return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
3548 FVal, ISD::SETNE);
3549}
3550
3551SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3552 SelectionDAG &DAG) const {
3553 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3554 SDValue LHS = Op.getOperand(0);
3555 SDValue RHS = Op.getOperand(1);
3556 SDValue TVal = Op.getOperand(2);
3557 SDValue FVal = Op.getOperand(3);
3558 SDLoc dl(Op);
3559
3560 // Handle f128 first, because it will result in a comparison of some RTLIB
3561 // call result against zero.
3562 if (LHS.getValueType() == MVT::f128) {
3563 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3564
3565 // If softenSetCCOperands returned a scalar, we need to compare the result
3566 // against zero to select between true and false values.
3567 if (!RHS.getNode()) {
3568 RHS = DAG.getConstant(0, LHS.getValueType());
3569 CC = ISD::SETNE;
3570 }
3571 }
3572
3573 // Handle integers first.
3574 if (LHS.getValueType().isInteger()) {
3575 assert((LHS.getValueType() == RHS.getValueType()) &&
3576 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3577
3578 unsigned Opcode = AArch64ISD::CSEL;
3579
3580 // If both the TVal and the FVal are constants, see if we can swap them in
3581 // order to for a CSINV or CSINC out of them.
3582 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3583 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3584
3585 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3586 std::swap(TVal, FVal);
3587 std::swap(CTVal, CFVal);
3588 CC = ISD::getSetCCInverse(CC, true);
3589 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3590 std::swap(TVal, FVal);
3591 std::swap(CTVal, CFVal);
3592 CC = ISD::getSetCCInverse(CC, true);
3593 } else if (TVal.getOpcode() == ISD::XOR) {
3594 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3595 // with a CSINV rather than a CSEL.
3596 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3597
3598 if (CVal && CVal->isAllOnesValue()) {
3599 std::swap(TVal, FVal);
3600 std::swap(CTVal, CFVal);
3601 CC = ISD::getSetCCInverse(CC, true);
3602 }
3603 } else if (TVal.getOpcode() == ISD::SUB) {
3604 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3605 // that we can match with a CSNEG rather than a CSEL.
3606 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3607
3608 if (CVal && CVal->isNullValue()) {
3609 std::swap(TVal, FVal);
3610 std::swap(CTVal, CFVal);
3611 CC = ISD::getSetCCInverse(CC, true);
3612 }
3613 } else if (CTVal && CFVal) {
3614 const int64_t TrueVal = CTVal->getSExtValue();
3615 const int64_t FalseVal = CFVal->getSExtValue();
3616 bool Swap = false;
3617
3618 // If both TVal and FVal are constants, see if FVal is the
3619 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3620 // instead of a CSEL in that case.
3621 if (TrueVal == ~FalseVal) {
3622 Opcode = AArch64ISD::CSINV;
3623 } else if (TrueVal == -FalseVal) {
3624 Opcode = AArch64ISD::CSNEG;
3625 } else if (TVal.getValueType() == MVT::i32) {
3626 // If our operands are only 32-bit wide, make sure we use 32-bit
3627 // arithmetic for the check whether we can use CSINC. This ensures that
3628 // the addition in the check will wrap around properly in case there is
3629 // an overflow (which would not be the case if we do the check with
3630 // 64-bit arithmetic).
3631 const uint32_t TrueVal32 = CTVal->getZExtValue();
3632 const uint32_t FalseVal32 = CFVal->getZExtValue();
3633
3634 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3635 Opcode = AArch64ISD::CSINC;
3636
3637 if (TrueVal32 > FalseVal32) {
3638 Swap = true;
3639 }
3640 }
3641 // 64-bit check whether we can use CSINC.
3642 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3643 Opcode = AArch64ISD::CSINC;
3644
3645 if (TrueVal > FalseVal) {
3646 Swap = true;
3647 }
3648 }
3649
3650 // Swap TVal and FVal if necessary.
3651 if (Swap) {
3652 std::swap(TVal, FVal);
3653 std::swap(CTVal, CFVal);
3654 CC = ISD::getSetCCInverse(CC, true);
3655 }
3656
3657 if (Opcode != AArch64ISD::CSEL) {
3658 // Drop FVal since we can get its value by simply inverting/negating
3659 // TVal.
3660 FVal = TVal;
3661 }
3662 }
3663
3664 SDValue CCVal;
3665 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3666
3667 EVT VT = Op.getValueType();
3668 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3669 }
3670
3671 // Now we know we're dealing with FP values.
3672 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3673 assert(LHS.getValueType() == RHS.getValueType());
3674 EVT VT = Op.getValueType();
3675
3676 // Try to match this select into a max/min operation, which have dedicated
3677 // opcode in the instruction set.
3678 // FIXME: This is not correct in the presence of NaNs, so we only enable this
3679 // in no-NaNs mode.
3680 if (getTargetMachine().Options.NoNaNsFPMath) {
3681 SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
3682 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
3683 selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
3684 CC = ISD::getSetCCSwappedOperands(CC);
3685 std::swap(MinMaxLHS, MinMaxRHS);
3686 }
3687
3688 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
3689 selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
3690 switch (CC) {
3691 default:
3692 break;
3693 case ISD::SETGT:
3694 case ISD::SETGE:
3695 case ISD::SETUGT:
3696 case ISD::SETUGE:
3697 case ISD::SETOGT:
3698 case ISD::SETOGE:
3699 return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
3700 break;
3701 case ISD::SETLT:
3702 case ISD::SETLE:
3703 case ISD::SETULT:
3704 case ISD::SETULE:
3705 case ISD::SETOLT:
3706 case ISD::SETOLE:
3707 return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
3708 break;
3709 }
3710 }
3711 }
3712
3713 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3714 // and do the comparison.
3715 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3716
3717 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3718 // clean. Some of them require two CSELs to implement.
3719 AArch64CC::CondCode CC1, CC2;
3720 changeFPCCToAArch64CC(CC, CC1, CC2);
3721 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3722 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3723
3724 // If we need a second CSEL, emit it, using the output of the first as the
3725 // RHS. We're effectively OR'ing the two CC's together.
3726 if (CC2 != AArch64CC::AL) {
3727 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3728 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3729 }
3730
3731 // Otherwise, return the output of the first CSEL.
3732 return CS1;
3733}
3734
3735SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3736 SelectionDAG &DAG) const {
3737 // Jump table entries as PC relative offsets. No additional tweaking
3738 // is necessary here. Just get the address of the jump table.
3739 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3740 EVT PtrVT = getPointerTy();
3741 SDLoc DL(Op);
3742
3743 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3744 !Subtarget->isTargetMachO()) {
3745 const unsigned char MO_NC = AArch64II::MO_NC;
3746 return DAG.getNode(
3747 AArch64ISD::WrapperLarge, DL, PtrVT,
3748 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3749 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3750 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3751 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3752 AArch64II::MO_G0 | MO_NC));
3753 }
3754
3755 SDValue Hi =
3756 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3757 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3758 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3759 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3760 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3761}
3762
3763SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3764 SelectionDAG &DAG) const {
3765 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3766 EVT PtrVT = getPointerTy();
3767 SDLoc DL(Op);
3768
3769 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3770 // Use the GOT for the large code model on iOS.
3771 if (Subtarget->isTargetMachO()) {
3772 SDValue GotAddr = DAG.getTargetConstantPool(
3773 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3774 AArch64II::MO_GOT);
3775 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3776 }
3777
3778 const unsigned char MO_NC = AArch64II::MO_NC;
3779 return DAG.getNode(
3780 AArch64ISD::WrapperLarge, DL, PtrVT,
3781 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3782 CP->getOffset(), AArch64II::MO_G3),
3783 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3784 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3785 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3786 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3787 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3788 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3789 } else {
3790 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3791 // ELF, the only valid one on Darwin.
3792 SDValue Hi =
3793 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3794 CP->getOffset(), AArch64II::MO_PAGE);
3795 SDValue Lo = DAG.getTargetConstantPool(
3796 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3797 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3798
3799 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3800 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3801 }
3802}
3803
3804SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3805 SelectionDAG &DAG) const {
3806 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3807 EVT PtrVT = getPointerTy();
3808 SDLoc DL(Op);
3809 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3810 !Subtarget->isTargetMachO()) {
3811 const unsigned char MO_NC = AArch64II::MO_NC;
3812 return DAG.getNode(
3813 AArch64ISD::WrapperLarge, DL, PtrVT,
3814 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3815 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3816 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3817 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3818 } else {
3819 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3820 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3821 AArch64II::MO_NC);
3822 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3823 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3824 }
3825}
3826
3827SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3828 SelectionDAG &DAG) const {
3829 AArch64FunctionInfo *FuncInfo =
3830 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3831
3832 SDLoc DL(Op);
3833 SDValue FR =
3834 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3835 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3836 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3837 MachinePointerInfo(SV), false, false, 0);
3838}
3839
3840SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3841 SelectionDAG &DAG) const {
3842 // The layout of the va_list struct is specified in the AArch64 Procedure Call
3843 // Standard, section B.3.
3844 MachineFunction &MF = DAG.getMachineFunction();
3845 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3846 SDLoc DL(Op);
3847
3848 SDValue Chain = Op.getOperand(0);
3849 SDValue VAList = Op.getOperand(1);
3850 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3851 SmallVector<SDValue, 4> MemOps;
3852
3853 // void *__stack at offset 0
3854 SDValue Stack =
3855 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3856 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3857 MachinePointerInfo(SV), false, false, 8));
3858
3859 // void *__gr_top at offset 8
3860 int GPRSize = FuncInfo->getVarArgsGPRSize();
3861 if (GPRSize > 0) {
3862 SDValue GRTop, GRTopAddr;
3863
3864 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3865 DAG.getConstant(8, getPointerTy()));
3866
3867 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3868 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
3869 DAG.getConstant(GPRSize, getPointerTy()));
3870
3871 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3872 MachinePointerInfo(SV, 8), false, false, 8));
3873 }
3874
3875 // void *__vr_top at offset 16
3876 int FPRSize = FuncInfo->getVarArgsFPRSize();
3877 if (FPRSize > 0) {
3878 SDValue VRTop, VRTopAddr;
3879 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3880 DAG.getConstant(16, getPointerTy()));
3881
3882 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3883 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
3884 DAG.getConstant(FPRSize, getPointerTy()));
3885
3886 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3887 MachinePointerInfo(SV, 16), false, false, 8));
3888 }
3889
3890 // int __gr_offs at offset 24
3891 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3892 DAG.getConstant(24, getPointerTy()));
3893 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
3894 GROffsAddr, MachinePointerInfo(SV, 24), false,
3895 false, 4));
3896
3897 // int __vr_offs at offset 28
3898 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3899 DAG.getConstant(28, getPointerTy()));
3900 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
3901 VROffsAddr, MachinePointerInfo(SV, 28), false,
3902 false, 4));
3903
3904 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3905}
3906
3907SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3908 SelectionDAG &DAG) const {
3909 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3910 : LowerAAPCS_VASTART(Op, DAG);
3911}
3912
3913SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3914 SelectionDAG &DAG) const {
3915 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3916 // pointer.
3917 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3918 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3919 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3920
3921 return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
3922 Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
3923 8, false, false, MachinePointerInfo(DestSV),
3924 MachinePointerInfo(SrcSV));
3925}
3926
3927SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3928 assert(Subtarget->isTargetDarwin() &&
3929 "automatic va_arg instruction only works on Darwin");
3930
3931 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3932 EVT VT = Op.getValueType();
3933 SDLoc DL(Op);
3934 SDValue Chain = Op.getOperand(0);
3935 SDValue Addr = Op.getOperand(1);
3936 unsigned Align = Op.getConstantOperandVal(3);
3937
3938 SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
3939 MachinePointerInfo(V), false, false, false, 0);
3940 Chain = VAList.getValue(1);
3941
3942 if (Align > 8) {
3943 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
3944 VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3945 DAG.getConstant(Align - 1, getPointerTy()));
3946 VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
3947 DAG.getConstant(-(int64_t)Align, getPointerTy()));
3948 }
3949
3950 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
3951 uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
3952
3953 // Scalar integer and FP values smaller than 64 bits are implicitly extended
3954 // up to 64 bits. At the very least, we have to increase the striding of the
3955 // vaargs list to match this, and for FP values we need to introduce
3956 // FP_ROUND nodes as well.
3957 if (VT.isInteger() && !VT.isVector())
3958 ArgSize = 8;
3959 bool NeedFPTrunc = false;
3960 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
3961 ArgSize = 8;
3962 NeedFPTrunc = true;
3963 }
3964
3965 // Increment the pointer, VAList, to the next vaarg
3966 SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3967 DAG.getConstant(ArgSize, getPointerTy()));
3968 // Store the incremented VAList to the legalized pointer
3969 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
3970 false, false, 0);
3971
3972 // Load the actual argument out of the pointer VAList
3973 if (NeedFPTrunc) {
3974 // Load the value as an f64.
3975 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
3976 MachinePointerInfo(), false, false, false, 0);
3977 // Round the value down to an f32.
3978 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
3979 DAG.getIntPtrConstant(1));
3980 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
3981 // Merge the rounded value with the chain output of the load.
3982 return DAG.getMergeValues(Ops, DL);
3983 }
3984
3985 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
3986 false, false, 0);
3987}
3988
3989SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
3990 SelectionDAG &DAG) const {
3991 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3992 MFI->setFrameAddressIsTaken(true);
3993
3994 EVT VT = Op.getValueType();
3995 SDLoc DL(Op);
3996 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3997 SDValue FrameAddr =
3998 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
3999 while (Depth--)
4000 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4001 MachinePointerInfo(), false, false, false, 0);
4002 return FrameAddr;
4003}
4004
4005// FIXME? Maybe this could be a TableGen attribute on some registers and
4006// this table could be generated automatically from RegInfo.
4007unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
4008 EVT VT) const {
4009 unsigned Reg = StringSwitch<unsigned>(RegName)
4010 .Case("sp", AArch64::SP)
4011 .Default(0);
4012 if (Reg)
4013 return Reg;
4014 report_fatal_error("Invalid register name global variable");
4015}
4016
4017SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4018 SelectionDAG &DAG) const {
4019 MachineFunction &MF = DAG.getMachineFunction();
4020 MachineFrameInfo *MFI = MF.getFrameInfo();
4021 MFI->setReturnAddressIsTaken(true);
4022
4023 EVT VT = Op.getValueType();
4024 SDLoc DL(Op);
4025 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4026 if (Depth) {
4027 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4028 SDValue Offset = DAG.getConstant(8, getPointerTy());
4029 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4030 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4031 MachinePointerInfo(), false, false, false, 0);
4032 }
4033
4034 // Return LR, which contains the return address. Mark it an implicit live-in.
4035 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4036 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4037}
4038
4039/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4040/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4041SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4042 SelectionDAG &DAG) const {
4043 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4044 EVT VT = Op.getValueType();
4045 unsigned VTBits = VT.getSizeInBits();
4046 SDLoc dl(Op);
4047 SDValue ShOpLo = Op.getOperand(0);
4048 SDValue ShOpHi = Op.getOperand(1);
4049 SDValue ShAmt = Op.getOperand(2);
4050 SDValue ARMcc;
4051 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4052
4053 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4054
4055 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4056 DAG.getConstant(VTBits, MVT::i64), ShAmt);
4057 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4058 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4059 DAG.getConstant(VTBits, MVT::i64));
4060 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4061
4062 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4063 ISD::SETGE, dl, DAG);
4064 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4065
4066 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4067 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4068 SDValue Lo =
4069 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4070
4071 // AArch64 shifts larger than the register width are wrapped rather than
4072 // clamped, so we can't just emit "hi >> x".
4073 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4074 SDValue TrueValHi = Opc == ISD::SRA
4075 ? DAG.getNode(Opc, dl, VT, ShOpHi,
4076 DAG.getConstant(VTBits - 1, MVT::i64))
4077 : DAG.getConstant(0, VT);
4078 SDValue Hi =
4079 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
4080
4081 SDValue Ops[2] = { Lo, Hi };
4082 return DAG.getMergeValues(Ops, dl);
4083}
4084
4085/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4086/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4087SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4088 SelectionDAG &DAG) const {
4089 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4090 EVT VT = Op.getValueType();
4091 unsigned VTBits = VT.getSizeInBits();
4092 SDLoc dl(Op);
4093 SDValue ShOpLo = Op.getOperand(0);
4094 SDValue ShOpHi = Op.getOperand(1);
4095 SDValue ShAmt = Op.getOperand(2);
4096 SDValue ARMcc;
4097
4098 assert(Op.getOpcode() == ISD::SHL_PARTS);
4099 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4100 DAG.getConstant(VTBits, MVT::i64), ShAmt);
4101 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4102 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4103 DAG.getConstant(VTBits, MVT::i64));
4104 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4105 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4106
4107 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4108
4109 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4110 ISD::SETGE, dl, DAG);
4111 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4112 SDValue Hi =
4113 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
4114
4115 // AArch64 shifts of larger than register sizes are wrapped rather than
4116 // clamped, so we can't just emit "lo << a" if a is too big.
4117 SDValue TrueValLo = DAG.getConstant(0, VT);
4118 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4119 SDValue Lo =
4120 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4121
4122 SDValue Ops[2] = { Lo, Hi };
4123 return DAG.getMergeValues(Ops, dl);
4124}
4125
4126bool AArch64TargetLowering::isOffsetFoldingLegal(
4127 const GlobalAddressSDNode *GA) const {
4128 // The AArch64 target doesn't support folding offsets into global addresses.
4129 return false;
4130}
4131
4132bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4133 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4134 // FIXME: We should be able to handle f128 as well with a clever lowering.
4135 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4136 return true;
4137
4138 if (VT == MVT::f64)
4139 return AArch64_AM::getFP64Imm(Imm) != -1;
4140 else if (VT == MVT::f32)
4141 return AArch64_AM::getFP32Imm(Imm) != -1;
4142 return false;
4143}
4144
4145//===----------------------------------------------------------------------===//
4146// AArch64 Optimization Hooks
4147//===----------------------------------------------------------------------===//
4148
4149//===----------------------------------------------------------------------===//
4150// AArch64 Inline Assembly Support
4151//===----------------------------------------------------------------------===//
4152
4153// Table of Constraints
4154// TODO: This is the current set of constraints supported by ARM for the
4155// compiler, not all of them may make sense, e.g. S may be difficult to support.
4156//
4157// r - A general register
4158// w - An FP/SIMD register of some size in the range v0-v31
4159// x - An FP/SIMD register of some size in the range v0-v15
4160// I - Constant that can be used with an ADD instruction
4161// J - Constant that can be used with a SUB instruction
4162// K - Constant that can be used with a 32-bit logical instruction
4163// L - Constant that can be used with a 64-bit logical instruction
4164// M - Constant that can be used as a 32-bit MOV immediate
4165// N - Constant that can be used as a 64-bit MOV immediate
4166// Q - A memory reference with base register and no offset
4167// S - A symbolic address
4168// Y - Floating point constant zero
4169// Z - Integer constant zero
4170//
4171// Note that general register operands will be output using their 64-bit x
4172// register name, whatever the size of the variable, unless the asm operand
4173// is prefixed by the %w modifier. Floating-point and SIMD register operands
4174// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4175// %q modifier.
4176
4177/// getConstraintType - Given a constraint letter, return the type of
4178/// constraint it is for this target.
4179AArch64TargetLowering::ConstraintType
4180AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4181 if (Constraint.size() == 1) {
4182 switch (Constraint[0]) {
4183 default:
4184 break;
4185 case 'z':
4186 return C_Other;
4187 case 'x':
4188 case 'w':
4189 return C_RegisterClass;
4190 // An address with a single base register. Due to the way we
4191 // currently handle addresses it is the same as 'r'.
4192 case 'Q':
4193 return C_Memory;
4194 }
4195 }
4196 return TargetLowering::getConstraintType(Constraint);
4197}
4198
4199/// Examine constraint type and operand type and determine a weight value.
4200/// This object must already have been set up with the operand type
4201/// and the current alternative constraint selected.
4202TargetLowering::ConstraintWeight
4203AArch64TargetLowering::getSingleConstraintMatchWeight(
4204 AsmOperandInfo &info, const char *constraint) const {
4205 ConstraintWeight weight = CW_Invalid;
4206 Value *CallOperandVal = info.CallOperandVal;
4207 // If we don't have a value, we can't do a match,
4208 // but allow it at the lowest weight.
4209 if (!CallOperandVal)
4210 return CW_Default;
4211 Type *type = CallOperandVal->getType();
4212 // Look at the constraint type.
4213 switch (*constraint) {
4214 default:
4215 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4216 break;
4217 case 'x':
4218 case 'w':
4219 if (type->isFloatingPointTy() || type->isVectorTy())
4220 weight = CW_Register;
4221 break;
4222 case 'z':
4223 weight = CW_Constant;
4224 break;
4225 }
4226 return weight;
4227}
4228
4229std::pair<unsigned, const TargetRegisterClass *>
4230AArch64TargetLowering::getRegForInlineAsmConstraint(
Eric Christopher11e4df72015-02-26 22:38:43 +00004231 const TargetRegisterInfo *TRI, const std::string &Constraint,
4232 MVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004233 if (Constraint.size() == 1) {
4234 switch (Constraint[0]) {
4235 case 'r':
4236 if (VT.getSizeInBits() == 64)
4237 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4238 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4239 case 'w':
4240 if (VT == MVT::f32)
4241 return std::make_pair(0U, &AArch64::FPR32RegClass);
4242 if (VT.getSizeInBits() == 64)
4243 return std::make_pair(0U, &AArch64::FPR64RegClass);
4244 if (VT.getSizeInBits() == 128)
4245 return std::make_pair(0U, &AArch64::FPR128RegClass);
4246 break;
4247 // The instructions that this constraint is designed for can
4248 // only take 128-bit registers so just use that regclass.
4249 case 'x':
4250 if (VT.getSizeInBits() == 128)
4251 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4252 break;
4253 }
4254 }
4255 if (StringRef("{cc}").equals_lower(Constraint))
4256 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4257
4258 // Use the default implementation in TargetLowering to convert the register
4259 // constraint into a member of a register class.
4260 std::pair<unsigned, const TargetRegisterClass *> Res;
Eric Christopher11e4df72015-02-26 22:38:43 +00004261 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004262
4263 // Not found as a standard register?
4264 if (!Res.second) {
4265 unsigned Size = Constraint.size();
4266 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4267 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4268 const std::string Reg =
4269 std::string(&Constraint[2], &Constraint[Size - 1]);
4270 int RegNo = atoi(Reg.c_str());
4271 if (RegNo >= 0 && RegNo <= 31) {
4272 // v0 - v31 are aliases of q0 - q31.
4273 // By default we'll emit v0-v31 for this unless there's a modifier where
4274 // we'll emit the correct register as well.
4275 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4276 Res.second = &AArch64::FPR128RegClass;
4277 }
4278 }
4279 }
4280
4281 return Res;
4282}
4283
4284/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4285/// vector. If it is invalid, don't add anything to Ops.
4286void AArch64TargetLowering::LowerAsmOperandForConstraint(
4287 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4288 SelectionDAG &DAG) const {
4289 SDValue Result;
4290
4291 // Currently only support length 1 constraints.
4292 if (Constraint.length() != 1)
4293 return;
4294
4295 char ConstraintLetter = Constraint[0];
4296 switch (ConstraintLetter) {
4297 default:
4298 break;
4299
4300 // This set of constraints deal with valid constants for various instructions.
4301 // Validate and return a target constant for them if we can.
4302 case 'z': {
4303 // 'z' maps to xzr or wzr so it needs an input of 0.
4304 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4305 if (!C || C->getZExtValue() != 0)
4306 return;
4307
4308 if (Op.getValueType() == MVT::i64)
4309 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4310 else
4311 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4312 break;
4313 }
4314
4315 case 'I':
4316 case 'J':
4317 case 'K':
4318 case 'L':
4319 case 'M':
4320 case 'N':
4321 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4322 if (!C)
4323 return;
4324
4325 // Grab the value and do some validation.
4326 uint64_t CVal = C->getZExtValue();
4327 switch (ConstraintLetter) {
4328 // The I constraint applies only to simple ADD or SUB immediate operands:
4329 // i.e. 0 to 4095 with optional shift by 12
4330 // The J constraint applies only to ADD or SUB immediates that would be
4331 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4332 // instruction [or vice versa], in other words -1 to -4095 with optional
4333 // left shift by 12.
4334 case 'I':
4335 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4336 break;
4337 return;
4338 case 'J': {
4339 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004340 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4341 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004342 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004343 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004344 return;
4345 }
4346 // The K and L constraints apply *only* to logical immediates, including
4347 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4348 // been removed and MOV should be used). So these constraints have to
4349 // distinguish between bit patterns that are valid 32-bit or 64-bit
4350 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4351 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4352 // versa.
4353 case 'K':
4354 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4355 break;
4356 return;
4357 case 'L':
4358 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4359 break;
4360 return;
4361 // The M and N constraints are a superset of K and L respectively, for use
4362 // with the MOV (immediate) alias. As well as the logical immediates they
4363 // also match 32 or 64-bit immediates that can be loaded either using a
4364 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4365 // (M) or 64-bit 0x1234000000000000 (N) etc.
4366 // As a note some of this code is liberally stolen from the asm parser.
4367 case 'M': {
4368 if (!isUInt<32>(CVal))
4369 return;
4370 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4371 break;
4372 if ((CVal & 0xFFFF) == CVal)
4373 break;
4374 if ((CVal & 0xFFFF0000ULL) == CVal)
4375 break;
4376 uint64_t NCVal = ~(uint32_t)CVal;
4377 if ((NCVal & 0xFFFFULL) == NCVal)
4378 break;
4379 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4380 break;
4381 return;
4382 }
4383 case 'N': {
4384 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4385 break;
4386 if ((CVal & 0xFFFFULL) == CVal)
4387 break;
4388 if ((CVal & 0xFFFF0000ULL) == CVal)
4389 break;
4390 if ((CVal & 0xFFFF00000000ULL) == CVal)
4391 break;
4392 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4393 break;
4394 uint64_t NCVal = ~CVal;
4395 if ((NCVal & 0xFFFFULL) == NCVal)
4396 break;
4397 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4398 break;
4399 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4400 break;
4401 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4402 break;
4403 return;
4404 }
4405 default:
4406 return;
4407 }
4408
4409 // All assembler immediates are 64-bit integers.
4410 Result = DAG.getTargetConstant(CVal, MVT::i64);
4411 break;
4412 }
4413
4414 if (Result.getNode()) {
4415 Ops.push_back(Result);
4416 return;
4417 }
4418
4419 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4420}
4421
4422//===----------------------------------------------------------------------===//
4423// AArch64 Advanced SIMD Support
4424//===----------------------------------------------------------------------===//
4425
4426/// WidenVector - Given a value in the V64 register class, produce the
4427/// equivalent value in the V128 register class.
4428static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4429 EVT VT = V64Reg.getValueType();
4430 unsigned NarrowSize = VT.getVectorNumElements();
4431 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4432 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4433 SDLoc DL(V64Reg);
4434
4435 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4436 V64Reg, DAG.getConstant(0, MVT::i32));
4437}
4438
4439/// getExtFactor - Determine the adjustment factor for the position when
4440/// generating an "extract from vector registers" instruction.
4441static unsigned getExtFactor(SDValue &V) {
4442 EVT EltType = V.getValueType().getVectorElementType();
4443 return EltType.getSizeInBits() / 8;
4444}
4445
4446/// NarrowVector - Given a value in the V128 register class, produce the
4447/// equivalent value in the V64 register class.
4448static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4449 EVT VT = V128Reg.getValueType();
4450 unsigned WideSize = VT.getVectorNumElements();
4451 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4452 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4453 SDLoc DL(V128Reg);
4454
4455 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4456}
4457
4458// Gather data to see if the operation can be modelled as a
4459// shuffle in combination with VEXTs.
4460SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4461 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004462 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004463 SDLoc dl(Op);
4464 EVT VT = Op.getValueType();
4465 unsigned NumElts = VT.getVectorNumElements();
4466
Tim Northover7324e842014-07-24 15:39:55 +00004467 struct ShuffleSourceInfo {
4468 SDValue Vec;
4469 unsigned MinElt;
4470 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004471
Tim Northover7324e842014-07-24 15:39:55 +00004472 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4473 // be compatible with the shuffle we intend to construct. As a result
4474 // ShuffleVec will be some sliding window into the original Vec.
4475 SDValue ShuffleVec;
4476
4477 // Code should guarantee that element i in Vec starts at element "WindowBase
4478 // + i * WindowScale in ShuffleVec".
4479 int WindowBase;
4480 int WindowScale;
4481
4482 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4483 ShuffleSourceInfo(SDValue Vec)
4484 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4485 WindowScale(1) {}
4486 };
4487
4488 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4489 // node.
4490 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004491 for (unsigned i = 0; i < NumElts; ++i) {
4492 SDValue V = Op.getOperand(i);
4493 if (V.getOpcode() == ISD::UNDEF)
4494 continue;
4495 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4496 // A shuffle can only come from building a vector from various
4497 // elements of other vectors.
4498 return SDValue();
4499 }
4500
Tim Northover7324e842014-07-24 15:39:55 +00004501 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004502 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004503 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4504 if (Source == Sources.end())
James Molloyf497d552014-10-17 17:06:31 +00004505 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004506
Tim Northover7324e842014-07-24 15:39:55 +00004507 // Update the minimum and maximum lane number seen.
4508 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4509 Source->MinElt = std::min(Source->MinElt, EltNo);
4510 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004511 }
4512
4513 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004514 // are involved.
4515 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004516 return SDValue();
4517
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004518 // Find out the smallest element size among result and two sources, and use
4519 // it as element size to build the shuffle_vector.
4520 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004521 for (auto &Source : Sources) {
4522 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004523 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4524 SmallestEltTy = SrcEltTy;
4525 }
4526 }
4527 unsigned ResMultiplier =
4528 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004529 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4530 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004531
Tim Northover7324e842014-07-24 15:39:55 +00004532 // If the source vector is too wide or too narrow, we may nevertheless be able
4533 // to construct a compatible shuffle either by concatenating it with UNDEF or
4534 // extracting a suitable range of elements.
4535 for (auto &Src : Sources) {
4536 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004537
Tim Northover7324e842014-07-24 15:39:55 +00004538 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004539 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004540
4541 // This stage of the search produces a source with the same element type as
4542 // the original, but with a total width matching the BUILD_VECTOR output.
4543 EVT EltVT = SrcVT.getVectorElementType();
James Molloyf497d552014-10-17 17:06:31 +00004544 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4545 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
Tim Northover7324e842014-07-24 15:39:55 +00004546
4547 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4548 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004549 // We can pad out the smaller vector for free, so if it's part of a
4550 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004551 Src.ShuffleVec =
4552 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4553 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004554 continue;
4555 }
4556
Tim Northover7324e842014-07-24 15:39:55 +00004557 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004558
James Molloyf497d552014-10-17 17:06:31 +00004559 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004560 // Span too large for a VEXT to cope
4561 return SDValue();
4562 }
4563
James Molloyf497d552014-10-17 17:06:31 +00004564 if (Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004565 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004566 Src.ShuffleVec =
4567 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Tim Northover5e84fe32014-12-06 00:33:37 +00004568 DAG.getConstant(NumSrcElts, MVT::i64));
James Molloyf497d552014-10-17 17:06:31 +00004569 Src.WindowBase = -NumSrcElts;
4570 } else if (Src.MaxElt < NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004571 // The extraction can just take the first half
Tim Northover5e84fe32014-12-06 00:33:37 +00004572 Src.ShuffleVec =
4573 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4574 DAG.getConstant(0, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004575 } else {
4576 // An actual VEXT is needed
Tim Northover5e84fe32014-12-06 00:33:37 +00004577 SDValue VEXTSrc1 =
4578 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4579 DAG.getConstant(0, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004580 SDValue VEXTSrc2 =
4581 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Tim Northover5e84fe32014-12-06 00:33:37 +00004582 DAG.getConstant(NumSrcElts, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004583 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4584
4585 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004586 VEXTSrc2, DAG.getConstant(Imm, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00004587 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004588 }
4589 }
4590
Tim Northover7324e842014-07-24 15:39:55 +00004591 // Another possible incompatibility occurs from the vector element types. We
4592 // can fix this by bitcasting the source vectors to the same type we intend
4593 // for the shuffle.
4594 for (auto &Src : Sources) {
4595 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4596 if (SrcEltTy == SmallestEltTy)
4597 continue;
4598 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4599 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4600 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4601 Src.WindowBase *= Src.WindowScale;
4602 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004603
Tim Northover7324e842014-07-24 15:39:55 +00004604 // Final sanity check before we try to actually produce a shuffle.
4605 DEBUG(
4606 for (auto Src : Sources)
4607 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4608 );
4609
4610 // The stars all align, our next step is to produce the mask for the shuffle.
4611 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4612 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004613 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004614 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00004615 if (Entry.getOpcode() == ISD::UNDEF)
4616 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00004617
Tim Northover7324e842014-07-24 15:39:55 +00004618 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4619 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4620
4621 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4622 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4623 // segment.
4624 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4625 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4626 VT.getVectorElementType().getSizeInBits());
4627 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4628
4629 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4630 // starting at the appropriate offset.
4631 int *LaneMask = &Mask[i * ResMultiplier];
4632
4633 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4634 ExtractBase += NumElts * (Src - Sources.begin());
4635 for (int j = 0; j < LanesDefined; ++j)
4636 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00004637 }
4638
4639 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00004640 if (!isShuffleMaskLegal(Mask, ShuffleVT))
4641 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004642
Tim Northover7324e842014-07-24 15:39:55 +00004643 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4644 for (unsigned i = 0; i < Sources.size(); ++i)
4645 ShuffleOps[i] = Sources[i].ShuffleVec;
4646
4647 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4648 ShuffleOps[1], &Mask[0]);
4649 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00004650}
4651
4652// check if an EXT instruction can handle the shuffle mask when the
4653// vector sources of the shuffle are the same.
4654static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4655 unsigned NumElts = VT.getVectorNumElements();
4656
4657 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4658 if (M[0] < 0)
4659 return false;
4660
4661 Imm = M[0];
4662
4663 // If this is a VEXT shuffle, the immediate value is the index of the first
4664 // element. The other shuffle indices must be the successive elements after
4665 // the first one.
4666 unsigned ExpectedElt = Imm;
4667 for (unsigned i = 1; i < NumElts; ++i) {
4668 // Increment the expected index. If it wraps around, just follow it
4669 // back to index zero and keep going.
4670 ++ExpectedElt;
4671 if (ExpectedElt == NumElts)
4672 ExpectedElt = 0;
4673
4674 if (M[i] < 0)
4675 continue; // ignore UNDEF indices
4676 if (ExpectedElt != static_cast<unsigned>(M[i]))
4677 return false;
4678 }
4679
4680 return true;
4681}
4682
4683// check if an EXT instruction can handle the shuffle mask when the
4684// vector sources of the shuffle are different.
4685static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4686 unsigned &Imm) {
4687 // Look for the first non-undef element.
4688 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4689 [](int Elt) {return Elt >= 0;});
4690
4691 // Benefit form APInt to handle overflow when calculating expected element.
4692 unsigned NumElts = VT.getVectorNumElements();
4693 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4694 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4695 // The following shuffle indices must be the successive elements after the
4696 // first real element.
4697 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4698 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4699 if (FirstWrongElt != M.end())
4700 return false;
4701
4702 // The index of an EXT is the first element if it is not UNDEF.
4703 // Watch out for the beginning UNDEFs. The EXT index should be the expected
4704 // value of the first element. E.g.
4705 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4706 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4707 // ExpectedElt is the last mask index plus 1.
4708 Imm = ExpectedElt.getZExtValue();
4709
4710 // There are two difference cases requiring to reverse input vectors.
4711 // For example, for vector <4 x i32> we have the following cases,
4712 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4713 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4714 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4715 // to reverse two input vectors.
4716 if (Imm < NumElts)
4717 ReverseEXT = true;
4718 else
4719 Imm -= NumElts;
4720
4721 return true;
4722}
4723
4724/// isREVMask - Check if a vector shuffle corresponds to a REV
4725/// instruction with the specified blocksize. (The order of the elements
4726/// within each block of the vector is reversed.)
4727static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4728 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4729 "Only possible block sizes for REV are: 16, 32, 64");
4730
4731 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4732 if (EltSz == 64)
4733 return false;
4734
4735 unsigned NumElts = VT.getVectorNumElements();
4736 unsigned BlockElts = M[0] + 1;
4737 // If the first shuffle index is UNDEF, be optimistic.
4738 if (M[0] < 0)
4739 BlockElts = BlockSize / EltSz;
4740
4741 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4742 return false;
4743
4744 for (unsigned i = 0; i < NumElts; ++i) {
4745 if (M[i] < 0)
4746 continue; // ignore UNDEF indices
4747 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4748 return false;
4749 }
4750
4751 return true;
4752}
4753
4754static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4755 unsigned NumElts = VT.getVectorNumElements();
4756 WhichResult = (M[0] == 0 ? 0 : 1);
4757 unsigned Idx = WhichResult * NumElts / 2;
4758 for (unsigned i = 0; i != NumElts; i += 2) {
4759 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4760 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4761 return false;
4762 Idx += 1;
4763 }
4764
4765 return true;
4766}
4767
4768static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4769 unsigned NumElts = VT.getVectorNumElements();
4770 WhichResult = (M[0] == 0 ? 0 : 1);
4771 for (unsigned i = 0; i != NumElts; ++i) {
4772 if (M[i] < 0)
4773 continue; // ignore UNDEF indices
4774 if ((unsigned)M[i] != 2 * i + WhichResult)
4775 return false;
4776 }
4777
4778 return true;
4779}
4780
4781static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4782 unsigned NumElts = VT.getVectorNumElements();
4783 WhichResult = (M[0] == 0 ? 0 : 1);
4784 for (unsigned i = 0; i < NumElts; i += 2) {
4785 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4786 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4787 return false;
4788 }
4789 return true;
4790}
4791
4792/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4793/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4794/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4795static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4796 unsigned NumElts = VT.getVectorNumElements();
4797 WhichResult = (M[0] == 0 ? 0 : 1);
4798 unsigned Idx = WhichResult * NumElts / 2;
4799 for (unsigned i = 0; i != NumElts; i += 2) {
4800 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4801 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4802 return false;
4803 Idx += 1;
4804 }
4805
4806 return true;
4807}
4808
4809/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4810/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4811/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4812static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4813 unsigned Half = VT.getVectorNumElements() / 2;
4814 WhichResult = (M[0] == 0 ? 0 : 1);
4815 for (unsigned j = 0; j != 2; ++j) {
4816 unsigned Idx = WhichResult;
4817 for (unsigned i = 0; i != Half; ++i) {
4818 int MIdx = M[i + j * Half];
4819 if (MIdx >= 0 && (unsigned)MIdx != Idx)
4820 return false;
4821 Idx += 2;
4822 }
4823 }
4824
4825 return true;
4826}
4827
4828/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4829/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4830/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4831static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4832 unsigned NumElts = VT.getVectorNumElements();
4833 WhichResult = (M[0] == 0 ? 0 : 1);
4834 for (unsigned i = 0; i < NumElts; i += 2) {
4835 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4836 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4837 return false;
4838 }
4839 return true;
4840}
4841
4842static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4843 bool &DstIsLeft, int &Anomaly) {
4844 if (M.size() != static_cast<size_t>(NumInputElements))
4845 return false;
4846
4847 int NumLHSMatch = 0, NumRHSMatch = 0;
4848 int LastLHSMismatch = -1, LastRHSMismatch = -1;
4849
4850 for (int i = 0; i < NumInputElements; ++i) {
4851 if (M[i] == -1) {
4852 ++NumLHSMatch;
4853 ++NumRHSMatch;
4854 continue;
4855 }
4856
4857 if (M[i] == i)
4858 ++NumLHSMatch;
4859 else
4860 LastLHSMismatch = i;
4861
4862 if (M[i] == i + NumInputElements)
4863 ++NumRHSMatch;
4864 else
4865 LastRHSMismatch = i;
4866 }
4867
4868 if (NumLHSMatch == NumInputElements - 1) {
4869 DstIsLeft = true;
4870 Anomaly = LastLHSMismatch;
4871 return true;
4872 } else if (NumRHSMatch == NumInputElements - 1) {
4873 DstIsLeft = false;
4874 Anomaly = LastRHSMismatch;
4875 return true;
4876 }
4877
4878 return false;
4879}
4880
4881static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4882 if (VT.getSizeInBits() != 128)
4883 return false;
4884
4885 unsigned NumElts = VT.getVectorNumElements();
4886
4887 for (int I = 0, E = NumElts / 2; I != E; I++) {
4888 if (Mask[I] != I)
4889 return false;
4890 }
4891
4892 int Offset = NumElts / 2;
4893 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4894 if (Mask[I] != I + SplitLHS * Offset)
4895 return false;
4896 }
4897
4898 return true;
4899}
4900
4901static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4902 SDLoc DL(Op);
4903 EVT VT = Op.getValueType();
4904 SDValue V0 = Op.getOperand(0);
4905 SDValue V1 = Op.getOperand(1);
4906 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4907
4908 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4909 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4910 return SDValue();
4911
4912 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4913
4914 if (!isConcatMask(Mask, VT, SplitV0))
4915 return SDValue();
4916
4917 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4918 VT.getVectorNumElements() / 2);
4919 if (SplitV0) {
4920 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
4921 DAG.getConstant(0, MVT::i64));
4922 }
4923 if (V1.getValueType().getSizeInBits() == 128) {
4924 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
4925 DAG.getConstant(0, MVT::i64));
4926 }
4927 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4928}
4929
4930/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4931/// the specified operations to build the shuffle.
4932static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4933 SDValue RHS, SelectionDAG &DAG,
4934 SDLoc dl) {
4935 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4936 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
4937 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
4938
4939 enum {
4940 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4941 OP_VREV,
4942 OP_VDUP0,
4943 OP_VDUP1,
4944 OP_VDUP2,
4945 OP_VDUP3,
4946 OP_VEXT1,
4947 OP_VEXT2,
4948 OP_VEXT3,
4949 OP_VUZPL, // VUZP, left result
4950 OP_VUZPR, // VUZP, right result
4951 OP_VZIPL, // VZIP, left result
4952 OP_VZIPR, // VZIP, right result
4953 OP_VTRNL, // VTRN, left result
4954 OP_VTRNR // VTRN, right result
4955 };
4956
4957 if (OpNum == OP_COPY) {
4958 if (LHSID == (1 * 9 + 2) * 9 + 3)
4959 return LHS;
4960 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
4961 return RHS;
4962 }
4963
4964 SDValue OpLHS, OpRHS;
4965 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4966 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4967 EVT VT = OpLHS.getValueType();
4968
4969 switch (OpNum) {
4970 default:
4971 llvm_unreachable("Unknown shuffle opcode!");
4972 case OP_VREV:
4973 // VREV divides the vector in half and swaps within the half.
4974 if (VT.getVectorElementType() == MVT::i32 ||
4975 VT.getVectorElementType() == MVT::f32)
4976 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
4977 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00004978 if (VT.getVectorElementType() == MVT::i16 ||
4979 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00004980 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
4981 // vrev <4 x i8> -> REV16
4982 assert(VT.getVectorElementType() == MVT::i8);
4983 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
4984 case OP_VDUP0:
4985 case OP_VDUP1:
4986 case OP_VDUP2:
4987 case OP_VDUP3: {
4988 EVT EltTy = VT.getVectorElementType();
4989 unsigned Opcode;
4990 if (EltTy == MVT::i8)
4991 Opcode = AArch64ISD::DUPLANE8;
4992 else if (EltTy == MVT::i16)
4993 Opcode = AArch64ISD::DUPLANE16;
4994 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
4995 Opcode = AArch64ISD::DUPLANE32;
4996 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
4997 Opcode = AArch64ISD::DUPLANE64;
4998 else
4999 llvm_unreachable("Invalid vector element type?");
5000
5001 if (VT.getSizeInBits() == 64)
5002 OpLHS = WidenVector(OpLHS, DAG);
5003 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
5004 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5005 }
5006 case OP_VEXT1:
5007 case OP_VEXT2:
5008 case OP_VEXT3: {
5009 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5010 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
5011 DAG.getConstant(Imm, MVT::i32));
5012 }
5013 case OP_VUZPL:
5014 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5015 OpRHS);
5016 case OP_VUZPR:
5017 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5018 OpRHS);
5019 case OP_VZIPL:
5020 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5021 OpRHS);
5022 case OP_VZIPR:
5023 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5024 OpRHS);
5025 case OP_VTRNL:
5026 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5027 OpRHS);
5028 case OP_VTRNR:
5029 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5030 OpRHS);
5031 }
5032}
5033
5034static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5035 SelectionDAG &DAG) {
5036 // Check to see if we can use the TBL instruction.
5037 SDValue V1 = Op.getOperand(0);
5038 SDValue V2 = Op.getOperand(1);
5039 SDLoc DL(Op);
5040
5041 EVT EltVT = Op.getValueType().getVectorElementType();
5042 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5043
5044 SmallVector<SDValue, 8> TBLMask;
5045 for (int Val : ShuffleMask) {
5046 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5047 unsigned Offset = Byte + Val * BytesPerElt;
5048 TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
5049 }
5050 }
5051
5052 MVT IndexVT = MVT::v8i8;
5053 unsigned IndexLen = 8;
5054 if (Op.getValueType().getSizeInBits() == 128) {
5055 IndexVT = MVT::v16i8;
5056 IndexLen = 16;
5057 }
5058
5059 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5060 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5061
5062 SDValue Shuffle;
5063 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5064 if (IndexLen == 8)
5065 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5066 Shuffle = DAG.getNode(
5067 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5068 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5069 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5070 makeArrayRef(TBLMask.data(), IndexLen)));
5071 } else {
5072 if (IndexLen == 8) {
5073 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5074 Shuffle = DAG.getNode(
5075 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5076 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5077 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5078 makeArrayRef(TBLMask.data(), IndexLen)));
5079 } else {
5080 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5081 // cannot currently represent the register constraints on the input
5082 // table registers.
5083 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5084 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5085 // &TBLMask[0], IndexLen));
5086 Shuffle = DAG.getNode(
5087 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5088 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
5089 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5090 makeArrayRef(TBLMask.data(), IndexLen)));
5091 }
5092 }
5093 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5094}
5095
5096static unsigned getDUPLANEOp(EVT EltType) {
5097 if (EltType == MVT::i8)
5098 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00005099 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005100 return AArch64ISD::DUPLANE16;
5101 if (EltType == MVT::i32 || EltType == MVT::f32)
5102 return AArch64ISD::DUPLANE32;
5103 if (EltType == MVT::i64 || EltType == MVT::f64)
5104 return AArch64ISD::DUPLANE64;
5105
5106 llvm_unreachable("Invalid vector element type?");
5107}
5108
5109SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5110 SelectionDAG &DAG) const {
5111 SDLoc dl(Op);
5112 EVT VT = Op.getValueType();
5113
5114 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5115
5116 // Convert shuffles that are directly supported on NEON to target-specific
5117 // DAG nodes, instead of keeping them as shuffles and matching them again
5118 // during code selection. This is more efficient and avoids the possibility
5119 // of inconsistencies between legalization and selection.
5120 ArrayRef<int> ShuffleMask = SVN->getMask();
5121
5122 SDValue V1 = Op.getOperand(0);
5123 SDValue V2 = Op.getOperand(1);
5124
5125 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5126 V1.getValueType().getSimpleVT())) {
5127 int Lane = SVN->getSplatIndex();
5128 // If this is undef splat, generate it via "just" vdup, if possible.
5129 if (Lane == -1)
5130 Lane = 0;
5131
5132 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5133 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5134 V1.getOperand(0));
5135 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5136 // constant. If so, we can just reference the lane's definition directly.
5137 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5138 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5139 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5140
5141 // Otherwise, duplicate from the lane of the input vector.
5142 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5143
5144 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5145 // to make a vector of the same size as this SHUFFLE. We can ignore the
5146 // extract entirely, and canonicalise the concat using WidenVector.
5147 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5148 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5149 V1 = V1.getOperand(0);
5150 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5151 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5152 Lane -= Idx * VT.getVectorNumElements() / 2;
5153 V1 = WidenVector(V1.getOperand(Idx), DAG);
5154 } else if (VT.getSizeInBits() == 64)
5155 V1 = WidenVector(V1, DAG);
5156
5157 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
5158 }
5159
5160 if (isREVMask(ShuffleMask, VT, 64))
5161 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5162 if (isREVMask(ShuffleMask, VT, 32))
5163 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5164 if (isREVMask(ShuffleMask, VT, 16))
5165 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5166
5167 bool ReverseEXT = false;
5168 unsigned Imm;
5169 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5170 if (ReverseEXT)
5171 std::swap(V1, V2);
5172 Imm *= getExtFactor(V1);
5173 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5174 DAG.getConstant(Imm, MVT::i32));
5175 } else if (V2->getOpcode() == ISD::UNDEF &&
5176 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5177 Imm *= getExtFactor(V1);
5178 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5179 DAG.getConstant(Imm, MVT::i32));
5180 }
5181
5182 unsigned WhichResult;
5183 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5184 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5185 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5186 }
5187 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5188 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5189 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5190 }
5191 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5192 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5193 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5194 }
5195
5196 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5197 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5198 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5199 }
5200 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5201 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5202 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5203 }
5204 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5205 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5206 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5207 }
5208
5209 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5210 if (Concat.getNode())
5211 return Concat;
5212
5213 bool DstIsLeft;
5214 int Anomaly;
5215 int NumInputElements = V1.getValueType().getVectorNumElements();
5216 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5217 SDValue DstVec = DstIsLeft ? V1 : V2;
5218 SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
5219
5220 SDValue SrcVec = V1;
5221 int SrcLane = ShuffleMask[Anomaly];
5222 if (SrcLane >= NumInputElements) {
5223 SrcVec = V2;
5224 SrcLane -= VT.getVectorNumElements();
5225 }
5226 SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
5227
5228 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005229
5230 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005231 ScalarVT = MVT::i32;
5232
5233 return DAG.getNode(
5234 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5235 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5236 DstLaneV);
5237 }
5238
5239 // If the shuffle is not directly supported and it has 4 elements, use
5240 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5241 unsigned NumElts = VT.getVectorNumElements();
5242 if (NumElts == 4) {
5243 unsigned PFIndexes[4];
5244 for (unsigned i = 0; i != 4; ++i) {
5245 if (ShuffleMask[i] < 0)
5246 PFIndexes[i] = 8;
5247 else
5248 PFIndexes[i] = ShuffleMask[i];
5249 }
5250
5251 // Compute the index in the perfect shuffle table.
5252 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5253 PFIndexes[2] * 9 + PFIndexes[3];
5254 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5255 unsigned Cost = (PFEntry >> 30);
5256
5257 if (Cost <= 4)
5258 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5259 }
5260
5261 return GenerateTBL(Op, ShuffleMask, DAG);
5262}
5263
5264static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5265 APInt &UndefBits) {
5266 EVT VT = BVN->getValueType(0);
5267 APInt SplatBits, SplatUndef;
5268 unsigned SplatBitSize;
5269 bool HasAnyUndefs;
5270 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5271 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5272
5273 for (unsigned i = 0; i < NumSplats; ++i) {
5274 CnstBits <<= SplatBitSize;
5275 UndefBits <<= SplatBitSize;
5276 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5277 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5278 }
5279
5280 return true;
5281 }
5282
5283 return false;
5284}
5285
5286SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5287 SelectionDAG &DAG) const {
5288 BuildVectorSDNode *BVN =
5289 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5290 SDValue LHS = Op.getOperand(0);
5291 SDLoc dl(Op);
5292 EVT VT = Op.getValueType();
5293
5294 if (!BVN)
5295 return Op;
5296
5297 APInt CnstBits(VT.getSizeInBits(), 0);
5298 APInt UndefBits(VT.getSizeInBits(), 0);
5299 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5300 // We only have BIC vector immediate instruction, which is and-not.
5301 CnstBits = ~CnstBits;
5302
5303 // We make use of a little bit of goto ickiness in order to avoid having to
5304 // duplicate the immediate matching logic for the undef toggled case.
5305 bool SecondTry = false;
5306 AttemptModImm:
5307
5308 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5309 CnstBits = CnstBits.zextOrTrunc(64);
5310 uint64_t CnstVal = CnstBits.getZExtValue();
5311
5312 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5313 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5314 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5315 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5316 DAG.getConstant(CnstVal, MVT::i32),
5317 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005318 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005319 }
5320
5321 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5322 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5323 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5324 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5325 DAG.getConstant(CnstVal, MVT::i32),
5326 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005327 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005328 }
5329
5330 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5331 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5332 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5333 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5334 DAG.getConstant(CnstVal, MVT::i32),
5335 DAG.getConstant(16, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005336 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005337 }
5338
5339 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5340 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5341 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5342 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5343 DAG.getConstant(CnstVal, MVT::i32),
5344 DAG.getConstant(24, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005345 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005346 }
5347
5348 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5349 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5350 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5351 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5352 DAG.getConstant(CnstVal, MVT::i32),
5353 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005354 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005355 }
5356
5357 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5358 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5359 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5360 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5361 DAG.getConstant(CnstVal, MVT::i32),
5362 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005363 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005364 }
5365 }
5366
5367 if (SecondTry)
5368 goto FailedModImm;
5369 SecondTry = true;
5370 CnstBits = ~UndefBits;
5371 goto AttemptModImm;
5372 }
5373
5374// We can always fall back to a non-immediate AND.
5375FailedModImm:
5376 return Op;
5377}
5378
5379// Specialized code to quickly find if PotentialBVec is a BuildVector that
5380// consists of only the same constant int value, returned in reference arg
5381// ConstVal
5382static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5383 uint64_t &ConstVal) {
5384 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5385 if (!Bvec)
5386 return false;
5387 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5388 if (!FirstElt)
5389 return false;
5390 EVT VT = Bvec->getValueType(0);
5391 unsigned NumElts = VT.getVectorNumElements();
5392 for (unsigned i = 1; i < NumElts; ++i)
5393 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5394 return false;
5395 ConstVal = FirstElt->getZExtValue();
5396 return true;
5397}
5398
5399static unsigned getIntrinsicID(const SDNode *N) {
5400 unsigned Opcode = N->getOpcode();
5401 switch (Opcode) {
5402 default:
5403 return Intrinsic::not_intrinsic;
5404 case ISD::INTRINSIC_WO_CHAIN: {
5405 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5406 if (IID < Intrinsic::num_intrinsics)
5407 return IID;
5408 return Intrinsic::not_intrinsic;
5409 }
5410 }
5411}
5412
5413// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5414// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5415// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5416// Also, logical shift right -> sri, with the same structure.
5417static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5418 EVT VT = N->getValueType(0);
5419
5420 if (!VT.isVector())
5421 return SDValue();
5422
5423 SDLoc DL(N);
5424
5425 // Is the first op an AND?
5426 const SDValue And = N->getOperand(0);
5427 if (And.getOpcode() != ISD::AND)
5428 return SDValue();
5429
5430 // Is the second op an shl or lshr?
5431 SDValue Shift = N->getOperand(1);
5432 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5433 // or AArch64ISD::VLSHR vector, #shift
5434 unsigned ShiftOpc = Shift.getOpcode();
5435 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5436 return SDValue();
5437 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5438
5439 // Is the shift amount constant?
5440 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5441 if (!C2node)
5442 return SDValue();
5443
5444 // Is the and mask vector all constant?
5445 uint64_t C1;
5446 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5447 return SDValue();
5448
5449 // Is C1 == ~C2, taking into account how much one can shift elements of a
5450 // particular size?
5451 uint64_t C2 = C2node->getZExtValue();
5452 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5453 if (C2 > ElemSizeInBits)
5454 return SDValue();
5455 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5456 if ((C1 & ElemMask) != (~C2 & ElemMask))
5457 return SDValue();
5458
5459 SDValue X = And.getOperand(0);
5460 SDValue Y = Shift.getOperand(0);
5461
5462 unsigned Intrin =
5463 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5464 SDValue ResultSLI =
5465 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5466 DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
5467
5468 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5469 DEBUG(N->dump(&DAG));
5470 DEBUG(dbgs() << "into: \n");
5471 DEBUG(ResultSLI->dump(&DAG));
5472
5473 ++NumShiftInserts;
5474 return ResultSLI;
5475}
5476
5477SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5478 SelectionDAG &DAG) const {
5479 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5480 if (EnableAArch64SlrGeneration) {
5481 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5482 if (Res.getNode())
5483 return Res;
5484 }
5485
5486 BuildVectorSDNode *BVN =
5487 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5488 SDValue LHS = Op.getOperand(1);
5489 SDLoc dl(Op);
5490 EVT VT = Op.getValueType();
5491
5492 // OR commutes, so try swapping the operands.
5493 if (!BVN) {
5494 LHS = Op.getOperand(0);
5495 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5496 }
5497 if (!BVN)
5498 return Op;
5499
5500 APInt CnstBits(VT.getSizeInBits(), 0);
5501 APInt UndefBits(VT.getSizeInBits(), 0);
5502 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5503 // We make use of a little bit of goto ickiness in order to avoid having to
5504 // duplicate the immediate matching logic for the undef toggled case.
5505 bool SecondTry = false;
5506 AttemptModImm:
5507
5508 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5509 CnstBits = CnstBits.zextOrTrunc(64);
5510 uint64_t CnstVal = CnstBits.getZExtValue();
5511
5512 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5513 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5514 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5515 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5516 DAG.getConstant(CnstVal, MVT::i32),
5517 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005518 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005519 }
5520
5521 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5522 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5523 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5524 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5525 DAG.getConstant(CnstVal, MVT::i32),
5526 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005527 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005528 }
5529
5530 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5531 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5532 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5533 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5534 DAG.getConstant(CnstVal, MVT::i32),
5535 DAG.getConstant(16, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005536 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005537 }
5538
5539 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5540 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5541 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5542 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5543 DAG.getConstant(CnstVal, MVT::i32),
5544 DAG.getConstant(24, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005545 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005546 }
5547
5548 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5549 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5550 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5551 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5552 DAG.getConstant(CnstVal, MVT::i32),
5553 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005554 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005555 }
5556
5557 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5558 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5559 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5560 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5561 DAG.getConstant(CnstVal, MVT::i32),
5562 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005563 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005564 }
5565 }
5566
5567 if (SecondTry)
5568 goto FailedModImm;
5569 SecondTry = true;
5570 CnstBits = UndefBits;
5571 goto AttemptModImm;
5572 }
5573
5574// We can always fall back to a non-immediate OR.
5575FailedModImm:
5576 return Op;
5577}
5578
Kevin Qin4473c192014-07-07 02:45:40 +00005579// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5580// be truncated to fit element width.
5581static SDValue NormalizeBuildVector(SDValue Op,
5582 SelectionDAG &DAG) {
5583 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005584 SDLoc dl(Op);
5585 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00005586 EVT EltTy= VT.getVectorElementType();
5587
5588 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5589 return Op;
5590
5591 SmallVector<SDValue, 16> Ops;
5592 for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5593 SDValue Lane = Op.getOperand(I);
5594 if (Lane.getOpcode() == ISD::Constant) {
5595 APInt LowBits(EltTy.getSizeInBits(),
5596 cast<ConstantSDNode>(Lane)->getZExtValue());
5597 Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32);
5598 }
5599 Ops.push_back(Lane);
5600 }
5601 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5602}
5603
5604SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5605 SelectionDAG &DAG) const {
5606 SDLoc dl(Op);
5607 EVT VT = Op.getValueType();
5608 Op = NormalizeBuildVector(Op, DAG);
5609 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00005610
5611 APInt CnstBits(VT.getSizeInBits(), 0);
5612 APInt UndefBits(VT.getSizeInBits(), 0);
5613 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5614 // We make use of a little bit of goto ickiness in order to avoid having to
5615 // duplicate the immediate matching logic for the undef toggled case.
5616 bool SecondTry = false;
5617 AttemptModImm:
5618
5619 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5620 CnstBits = CnstBits.zextOrTrunc(64);
5621 uint64_t CnstVal = CnstBits.getZExtValue();
5622
5623 // Certain magic vector constants (used to express things like NOT
5624 // and NEG) are passed through unmodified. This allows codegen patterns
5625 // for these operations to match. Special-purpose patterns will lower
5626 // these immediates to MOVIs if it proves necessary.
5627 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5628 return Op;
5629
5630 // The many faces of MOVI...
5631 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5632 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5633 if (VT.getSizeInBits() == 128) {
5634 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
5635 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005636 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005637 }
5638
5639 // Support the V64 version via subregister insertion.
5640 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
5641 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005642 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005643 }
5644
5645 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5646 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5647 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5648 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5649 DAG.getConstant(CnstVal, MVT::i32),
5650 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005651 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005652 }
5653
5654 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5655 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5656 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5657 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5658 DAG.getConstant(CnstVal, MVT::i32),
5659 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005660 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005661 }
5662
5663 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5664 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5665 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5666 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5667 DAG.getConstant(CnstVal, MVT::i32),
5668 DAG.getConstant(16, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005669 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005670 }
5671
5672 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5673 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5674 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5675 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5676 DAG.getConstant(CnstVal, MVT::i32),
5677 DAG.getConstant(24, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005678 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005679 }
5680
5681 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5682 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5683 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5684 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5685 DAG.getConstant(CnstVal, MVT::i32),
5686 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005687 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005688 }
5689
5690 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5691 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5692 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5693 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5694 DAG.getConstant(CnstVal, MVT::i32),
5695 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005696 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005697 }
5698
5699 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5700 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5701 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5702 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5703 DAG.getConstant(CnstVal, MVT::i32),
5704 DAG.getConstant(264, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005705 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005706 }
5707
5708 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5709 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5710 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5711 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5712 DAG.getConstant(CnstVal, MVT::i32),
5713 DAG.getConstant(272, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005714 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005715 }
5716
5717 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5718 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5719 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5720 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
5721 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005722 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005723 }
5724
5725 // The few faces of FMOV...
5726 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5727 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5728 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5729 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
5730 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005731 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005732 }
5733
5734 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5735 VT.getSizeInBits() == 128) {
5736 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5737 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
5738 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005739 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005740 }
5741
5742 // The many faces of MVNI...
5743 CnstVal = ~CnstVal;
5744 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5745 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5746 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5747 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5748 DAG.getConstant(CnstVal, MVT::i32),
5749 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005750 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005751 }
5752
5753 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5754 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5755 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5756 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5757 DAG.getConstant(CnstVal, MVT::i32),
5758 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005759 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005760 }
5761
5762 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5763 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5764 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5765 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5766 DAG.getConstant(CnstVal, MVT::i32),
5767 DAG.getConstant(16, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005768 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005769 }
5770
5771 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5772 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5773 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5774 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5775 DAG.getConstant(CnstVal, MVT::i32),
5776 DAG.getConstant(24, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005777 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005778 }
5779
5780 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5781 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5782 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5783 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5784 DAG.getConstant(CnstVal, MVT::i32),
5785 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005786 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005787 }
5788
5789 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5790 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5791 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5792 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5793 DAG.getConstant(CnstVal, MVT::i32),
5794 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005795 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005796 }
5797
5798 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5799 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5800 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5801 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5802 DAG.getConstant(CnstVal, MVT::i32),
5803 DAG.getConstant(264, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005804 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005805 }
5806
5807 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5808 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5809 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5810 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5811 DAG.getConstant(CnstVal, MVT::i32),
5812 DAG.getConstant(272, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005813 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005814 }
5815 }
5816
5817 if (SecondTry)
5818 goto FailedModImm;
5819 SecondTry = true;
5820 CnstBits = UndefBits;
5821 goto AttemptModImm;
5822 }
5823FailedModImm:
5824
5825 // Scan through the operands to find some interesting properties we can
5826 // exploit:
5827 // 1) If only one value is used, we can use a DUP, or
5828 // 2) if only the low element is not undef, we can just insert that, or
5829 // 3) if only one constant value is used (w/ some non-constant lanes),
5830 // we can splat the constant value into the whole vector then fill
5831 // in the non-constant lanes.
5832 // 4) FIXME: If different constant values are used, but we can intelligently
5833 // select the values we'll be overwriting for the non-constant
5834 // lanes such that we can directly materialize the vector
5835 // some other way (MOVI, e.g.), we can be sneaky.
5836 unsigned NumElts = VT.getVectorNumElements();
5837 bool isOnlyLowElement = true;
5838 bool usesOnlyOneValue = true;
5839 bool usesOnlyOneConstantValue = true;
5840 bool isConstant = true;
5841 unsigned NumConstantLanes = 0;
5842 SDValue Value;
5843 SDValue ConstantValue;
5844 for (unsigned i = 0; i < NumElts; ++i) {
5845 SDValue V = Op.getOperand(i);
5846 if (V.getOpcode() == ISD::UNDEF)
5847 continue;
5848 if (i > 0)
5849 isOnlyLowElement = false;
5850 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5851 isConstant = false;
5852
5853 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5854 ++NumConstantLanes;
5855 if (!ConstantValue.getNode())
5856 ConstantValue = V;
5857 else if (ConstantValue != V)
5858 usesOnlyOneConstantValue = false;
5859 }
5860
5861 if (!Value.getNode())
5862 Value = V;
5863 else if (V != Value)
5864 usesOnlyOneValue = false;
5865 }
5866
5867 if (!Value.getNode())
5868 return DAG.getUNDEF(VT);
5869
5870 if (isOnlyLowElement)
5871 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5872
5873 // Use DUP for non-constant splats. For f32 constant splats, reduce to
5874 // i32 and try again.
5875 if (usesOnlyOneValue) {
5876 if (!isConstant) {
5877 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5878 Value.getValueType() != VT)
5879 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5880
5881 // This is actually a DUPLANExx operation, which keeps everything vectory.
5882
5883 // DUPLANE works on 128-bit vectors, widen it if necessary.
5884 SDValue Lane = Value.getOperand(1);
5885 Value = Value.getOperand(0);
5886 if (Value.getValueType().getSizeInBits() == 64)
5887 Value = WidenVector(Value, DAG);
5888
5889 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5890 return DAG.getNode(Opcode, dl, VT, Value, Lane);
5891 }
5892
5893 if (VT.getVectorElementType().isFloatingPoint()) {
5894 SmallVector<SDValue, 8> Ops;
Pirama Arumuga Nainar12aeefc2015-03-17 23:10:29 +00005895 EVT EltTy = VT.getVectorElementType();
5896 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
5897 "Unsupported floating-point vector type");
5898 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00005899 for (unsigned i = 0; i < NumElts; ++i)
5900 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5901 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5902 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5903 Val = LowerBUILD_VECTOR(Val, DAG);
5904 if (Val.getNode())
5905 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5906 }
5907 }
5908
5909 // If there was only one constant value used and for more than one lane,
5910 // start by splatting that value, then replace the non-constant lanes. This
5911 // is better than the default, which will perform a separate initialization
5912 // for each lane.
5913 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5914 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5915 // Now insert the non-constant lanes.
5916 for (unsigned i = 0; i < NumElts; ++i) {
5917 SDValue V = Op.getOperand(i);
5918 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5919 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5920 // Note that type legalization likely mucked about with the VT of the
5921 // source operand, so we may have to convert it here before inserting.
5922 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5923 }
5924 }
5925 return Val;
5926 }
5927
5928 // If all elements are constants and the case above didn't get hit, fall back
5929 // to the default expansion, which will generate a load from the constant
5930 // pool.
5931 if (isConstant)
5932 return SDValue();
5933
5934 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5935 if (NumElts >= 4) {
5936 SDValue shuffle = ReconstructShuffle(Op, DAG);
5937 if (shuffle != SDValue())
5938 return shuffle;
5939 }
5940
5941 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5942 // know the default expansion would otherwise fall back on something even
5943 // worse. For a vector with one or two non-undef values, that's
5944 // scalar_to_vector for the elements followed by a shuffle (provided the
5945 // shuffle is valid for the target) and materialization element by element
5946 // on the stack followed by a load for everything else.
5947 if (!isConstant && !usesOnlyOneValue) {
5948 SDValue Vec = DAG.getUNDEF(VT);
5949 SDValue Op0 = Op.getOperand(0);
5950 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
5951 unsigned i = 0;
5952 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
5953 // a) Avoid a RMW dependency on the full vector register, and
5954 // b) Allow the register coalescer to fold away the copy if the
5955 // value is already in an S or D register.
5956 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
5957 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
5958 MachineSDNode *N =
5959 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
5960 DAG.getTargetConstant(SubIdx, MVT::i32));
5961 Vec = SDValue(N, 0);
5962 ++i;
5963 }
5964 for (; i < NumElts; ++i) {
5965 SDValue V = Op.getOperand(i);
5966 if (V.getOpcode() == ISD::UNDEF)
5967 continue;
5968 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5969 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5970 }
5971 return Vec;
5972 }
5973
5974 // Just use the default expansion. We failed to find a better alternative.
5975 return SDValue();
5976}
5977
5978SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
5979 SelectionDAG &DAG) const {
5980 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
5981
Tim Northovere4b8e132014-07-15 10:00:26 +00005982 // Check for non-constant or out of range lane.
5983 EVT VT = Op.getOperand(0).getValueType();
5984 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
5985 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00005986 return SDValue();
5987
Tim Northover3b0846e2014-05-24 12:50:23 +00005988
5989 // Insertion/extraction are legal for V128 types.
5990 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00005991 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
5992 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005993 return Op;
5994
5995 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00005996 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005997 return SDValue();
5998
5999 // For V64 types, we perform insertion by expanding the value
6000 // to a V128 type and perform the insertion on that.
6001 SDLoc DL(Op);
6002 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6003 EVT WideTy = WideVec.getValueType();
6004
6005 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6006 Op.getOperand(1), Op.getOperand(2));
6007 // Re-narrow the resultant vector.
6008 return NarrowVector(Node, DAG);
6009}
6010
6011SDValue
6012AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6013 SelectionDAG &DAG) const {
6014 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6015
Tim Northovere4b8e132014-07-15 10:00:26 +00006016 // Check for non-constant or out of range lane.
6017 EVT VT = Op.getOperand(0).getValueType();
6018 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6019 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006020 return SDValue();
6021
Tim Northover3b0846e2014-05-24 12:50:23 +00006022
6023 // Insertion/extraction are legal for V128 types.
6024 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006025 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6026 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006027 return Op;
6028
6029 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006030 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006031 return SDValue();
6032
6033 // For V64 types, we perform extraction by expanding the value
6034 // to a V128 type and perform the extraction on that.
6035 SDLoc DL(Op);
6036 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6037 EVT WideTy = WideVec.getValueType();
6038
6039 EVT ExtrTy = WideTy.getVectorElementType();
6040 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6041 ExtrTy = MVT::i32;
6042
6043 // For extractions, we just return the result directly.
6044 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6045 Op.getOperand(1));
6046}
6047
6048SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6049 SelectionDAG &DAG) const {
6050 EVT VT = Op.getOperand(0).getValueType();
6051 SDLoc dl(Op);
6052 // Just in case...
6053 if (!VT.isVector())
6054 return SDValue();
6055
6056 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6057 if (!Cst)
6058 return SDValue();
6059 unsigned Val = Cst->getZExtValue();
6060
6061 unsigned Size = Op.getValueType().getSizeInBits();
6062 if (Val == 0) {
6063 switch (Size) {
6064 case 8:
6065 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
6066 Op.getOperand(0));
6067 case 16:
6068 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
6069 Op.getOperand(0));
6070 case 32:
6071 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
6072 Op.getOperand(0));
6073 case 64:
6074 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
6075 Op.getOperand(0));
6076 default:
6077 llvm_unreachable("Unexpected vector type in extract_subvector!");
6078 }
6079 }
6080 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6081 // that directly.
6082 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6083 return Op;
6084
6085 return SDValue();
6086}
6087
6088bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6089 EVT VT) const {
6090 if (VT.getVectorNumElements() == 4 &&
6091 (VT.is128BitVector() || VT.is64BitVector())) {
6092 unsigned PFIndexes[4];
6093 for (unsigned i = 0; i != 4; ++i) {
6094 if (M[i] < 0)
6095 PFIndexes[i] = 8;
6096 else
6097 PFIndexes[i] = M[i];
6098 }
6099
6100 // Compute the index in the perfect shuffle table.
6101 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6102 PFIndexes[2] * 9 + PFIndexes[3];
6103 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6104 unsigned Cost = (PFEntry >> 30);
6105
6106 if (Cost <= 4)
6107 return true;
6108 }
6109
6110 bool DummyBool;
6111 int DummyInt;
6112 unsigned DummyUnsigned;
6113
6114 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6115 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6116 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6117 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6118 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6119 isZIPMask(M, VT, DummyUnsigned) ||
6120 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6121 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6122 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6123 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6124 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6125}
6126
6127/// getVShiftImm - Check if this is a valid build_vector for the immediate
6128/// operand of a vector shift operation, where all the elements of the
6129/// build_vector must have the same constant integer value.
6130static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6131 // Ignore bit_converts.
6132 while (Op.getOpcode() == ISD::BITCAST)
6133 Op = Op.getOperand(0);
6134 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6135 APInt SplatBits, SplatUndef;
6136 unsigned SplatBitSize;
6137 bool HasAnyUndefs;
6138 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6139 HasAnyUndefs, ElementBits) ||
6140 SplatBitSize > ElementBits)
6141 return false;
6142 Cnt = SplatBits.getSExtValue();
6143 return true;
6144}
6145
6146/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6147/// operand of a vector shift left operation. That value must be in the range:
6148/// 0 <= Value < ElementBits for a left shift; or
6149/// 0 <= Value <= ElementBits for a long left shift.
6150static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6151 assert(VT.isVector() && "vector shift count is not a vector type");
6152 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6153 if (!getVShiftImm(Op, ElementBits, Cnt))
6154 return false;
6155 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6156}
6157
6158/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6159/// operand of a vector shift right operation. For a shift opcode, the value
6160/// is positive, but for an intrinsic the value count must be negative. The
6161/// absolute value must be in the range:
6162/// 1 <= |Value| <= ElementBits for a right shift; or
6163/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6164static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6165 int64_t &Cnt) {
6166 assert(VT.isVector() && "vector shift count is not a vector type");
6167 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6168 if (!getVShiftImm(Op, ElementBits, Cnt))
6169 return false;
6170 if (isIntrinsic)
6171 Cnt = -Cnt;
6172 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6173}
6174
6175SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6176 SelectionDAG &DAG) const {
6177 EVT VT = Op.getValueType();
6178 SDLoc DL(Op);
6179 int64_t Cnt;
6180
6181 if (!Op.getOperand(1).getValueType().isVector())
6182 return Op;
6183 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6184
6185 switch (Op.getOpcode()) {
6186 default:
6187 llvm_unreachable("unexpected shift opcode");
6188
6189 case ISD::SHL:
6190 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6191 return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
6192 DAG.getConstant(Cnt, MVT::i32));
6193 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6194 DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
6195 Op.getOperand(0), Op.getOperand(1));
6196 case ISD::SRA:
6197 case ISD::SRL:
6198 // Right shift immediate
6199 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
6200 Cnt < EltSize) {
6201 unsigned Opc =
6202 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6203 return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
6204 DAG.getConstant(Cnt, MVT::i32));
6205 }
6206
6207 // Right shift register. Note, there is not a shift right register
6208 // instruction, but the shift left register instruction takes a signed
6209 // value, where negative numbers specify a right shift.
6210 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6211 : Intrinsic::aarch64_neon_ushl;
6212 // negate the shift amount
6213 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6214 SDValue NegShiftLeft =
6215 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6216 DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
6217 return NegShiftLeft;
6218 }
6219
6220 return SDValue();
6221}
6222
6223static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6224 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6225 SDLoc dl, SelectionDAG &DAG) {
6226 EVT SrcVT = LHS.getValueType();
Tim Northover45aa89c2015-02-08 00:50:47 +00006227 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6228 "function only supposed to emit natural comparisons");
Tim Northover3b0846e2014-05-24 12:50:23 +00006229
6230 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6231 APInt CnstBits(VT.getSizeInBits(), 0);
6232 APInt UndefBits(VT.getSizeInBits(), 0);
6233 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6234 bool IsZero = IsCnst && (CnstBits == 0);
6235
6236 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6237 switch (CC) {
6238 default:
6239 return SDValue();
6240 case AArch64CC::NE: {
6241 SDValue Fcmeq;
6242 if (IsZero)
6243 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6244 else
6245 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6246 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6247 }
6248 case AArch64CC::EQ:
6249 if (IsZero)
6250 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6251 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6252 case AArch64CC::GE:
6253 if (IsZero)
6254 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6255 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6256 case AArch64CC::GT:
6257 if (IsZero)
6258 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6259 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6260 case AArch64CC::LS:
6261 if (IsZero)
6262 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6263 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6264 case AArch64CC::LT:
6265 if (!NoNans)
6266 return SDValue();
6267 // If we ignore NaNs then we can use to the MI implementation.
6268 // Fallthrough.
6269 case AArch64CC::MI:
6270 if (IsZero)
6271 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6272 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6273 }
6274 }
6275
6276 switch (CC) {
6277 default:
6278 return SDValue();
6279 case AArch64CC::NE: {
6280 SDValue Cmeq;
6281 if (IsZero)
6282 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6283 else
6284 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6285 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6286 }
6287 case AArch64CC::EQ:
6288 if (IsZero)
6289 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6290 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6291 case AArch64CC::GE:
6292 if (IsZero)
6293 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6294 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6295 case AArch64CC::GT:
6296 if (IsZero)
6297 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6298 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6299 case AArch64CC::LE:
6300 if (IsZero)
6301 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6302 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6303 case AArch64CC::LS:
6304 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6305 case AArch64CC::LO:
6306 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6307 case AArch64CC::LT:
6308 if (IsZero)
6309 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6310 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6311 case AArch64CC::HI:
6312 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6313 case AArch64CC::HS:
6314 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6315 }
6316}
6317
6318SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6319 SelectionDAG &DAG) const {
6320 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6321 SDValue LHS = Op.getOperand(0);
6322 SDValue RHS = Op.getOperand(1);
Tim Northover45aa89c2015-02-08 00:50:47 +00006323 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
Tim Northover3b0846e2014-05-24 12:50:23 +00006324 SDLoc dl(Op);
6325
6326 if (LHS.getValueType().getVectorElementType().isInteger()) {
6327 assert(LHS.getValueType() == RHS.getValueType());
6328 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover45aa89c2015-02-08 00:50:47 +00006329 SDValue Cmp =
6330 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6331 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006332 }
6333
6334 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6335 LHS.getValueType().getVectorElementType() == MVT::f64);
6336
6337 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6338 // clean. Some of them require two branches to implement.
6339 AArch64CC::CondCode CC1, CC2;
6340 bool ShouldInvert;
6341 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6342
6343 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6344 SDValue Cmp =
Tim Northover45aa89c2015-02-08 00:50:47 +00006345 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006346 if (!Cmp.getNode())
6347 return SDValue();
6348
6349 if (CC2 != AArch64CC::AL) {
6350 SDValue Cmp2 =
Tim Northover45aa89c2015-02-08 00:50:47 +00006351 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006352 if (!Cmp2.getNode())
6353 return SDValue();
6354
Tim Northover45aa89c2015-02-08 00:50:47 +00006355 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
Tim Northover3b0846e2014-05-24 12:50:23 +00006356 }
6357
Tim Northover45aa89c2015-02-08 00:50:47 +00006358 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6359
Tim Northover3b0846e2014-05-24 12:50:23 +00006360 if (ShouldInvert)
6361 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6362
6363 return Cmp;
6364}
6365
6366/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6367/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6368/// specified in the intrinsic calls.
6369bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6370 const CallInst &I,
6371 unsigned Intrinsic) const {
6372 switch (Intrinsic) {
6373 case Intrinsic::aarch64_neon_ld2:
6374 case Intrinsic::aarch64_neon_ld3:
6375 case Intrinsic::aarch64_neon_ld4:
6376 case Intrinsic::aarch64_neon_ld1x2:
6377 case Intrinsic::aarch64_neon_ld1x3:
6378 case Intrinsic::aarch64_neon_ld1x4:
6379 case Intrinsic::aarch64_neon_ld2lane:
6380 case Intrinsic::aarch64_neon_ld3lane:
6381 case Intrinsic::aarch64_neon_ld4lane:
6382 case Intrinsic::aarch64_neon_ld2r:
6383 case Intrinsic::aarch64_neon_ld3r:
6384 case Intrinsic::aarch64_neon_ld4r: {
6385 Info.opc = ISD::INTRINSIC_W_CHAIN;
6386 // Conservatively set memVT to the entire set of vectors loaded.
6387 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
6388 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6389 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6390 Info.offset = 0;
6391 Info.align = 0;
6392 Info.vol = false; // volatile loads with NEON intrinsics not supported
6393 Info.readMem = true;
6394 Info.writeMem = false;
6395 return true;
6396 }
6397 case Intrinsic::aarch64_neon_st2:
6398 case Intrinsic::aarch64_neon_st3:
6399 case Intrinsic::aarch64_neon_st4:
6400 case Intrinsic::aarch64_neon_st1x2:
6401 case Intrinsic::aarch64_neon_st1x3:
6402 case Intrinsic::aarch64_neon_st1x4:
6403 case Intrinsic::aarch64_neon_st2lane:
6404 case Intrinsic::aarch64_neon_st3lane:
6405 case Intrinsic::aarch64_neon_st4lane: {
6406 Info.opc = ISD::INTRINSIC_VOID;
6407 // Conservatively set memVT to the entire set of vectors stored.
6408 unsigned NumElts = 0;
6409 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6410 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6411 if (!ArgTy->isVectorTy())
6412 break;
6413 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
6414 }
6415 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6416 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6417 Info.offset = 0;
6418 Info.align = 0;
6419 Info.vol = false; // volatile stores with NEON intrinsics not supported
6420 Info.readMem = false;
6421 Info.writeMem = true;
6422 return true;
6423 }
6424 case Intrinsic::aarch64_ldaxr:
6425 case Intrinsic::aarch64_ldxr: {
6426 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6427 Info.opc = ISD::INTRINSIC_W_CHAIN;
6428 Info.memVT = MVT::getVT(PtrTy->getElementType());
6429 Info.ptrVal = I.getArgOperand(0);
6430 Info.offset = 0;
6431 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6432 Info.vol = true;
6433 Info.readMem = true;
6434 Info.writeMem = false;
6435 return true;
6436 }
6437 case Intrinsic::aarch64_stlxr:
6438 case Intrinsic::aarch64_stxr: {
6439 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6440 Info.opc = ISD::INTRINSIC_W_CHAIN;
6441 Info.memVT = MVT::getVT(PtrTy->getElementType());
6442 Info.ptrVal = I.getArgOperand(1);
6443 Info.offset = 0;
6444 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6445 Info.vol = true;
6446 Info.readMem = false;
6447 Info.writeMem = true;
6448 return true;
6449 }
6450 case Intrinsic::aarch64_ldaxp:
6451 case Intrinsic::aarch64_ldxp: {
6452 Info.opc = ISD::INTRINSIC_W_CHAIN;
6453 Info.memVT = MVT::i128;
6454 Info.ptrVal = I.getArgOperand(0);
6455 Info.offset = 0;
6456 Info.align = 16;
6457 Info.vol = true;
6458 Info.readMem = true;
6459 Info.writeMem = false;
6460 return true;
6461 }
6462 case Intrinsic::aarch64_stlxp:
6463 case Intrinsic::aarch64_stxp: {
6464 Info.opc = ISD::INTRINSIC_W_CHAIN;
6465 Info.memVT = MVT::i128;
6466 Info.ptrVal = I.getArgOperand(2);
6467 Info.offset = 0;
6468 Info.align = 16;
6469 Info.vol = true;
6470 Info.readMem = false;
6471 Info.writeMem = true;
6472 return true;
6473 }
6474 default:
6475 break;
6476 }
6477
6478 return false;
6479}
6480
6481// Truncations from 64-bit GPR to 32-bit GPR is free.
6482bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6483 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6484 return false;
6485 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6486 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006487 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006488}
6489bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006490 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006491 return false;
6492 unsigned NumBits1 = VT1.getSizeInBits();
6493 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006494 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006495}
6496
Chad Rosier54390052015-02-23 19:15:16 +00006497/// Check if it is profitable to hoist instruction in then/else to if.
6498/// Not profitable if I and it's user can form a FMA instruction
6499/// because we prefer FMSUB/FMADD.
6500bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6501 if (I->getOpcode() != Instruction::FMul)
6502 return true;
6503
6504 if (I->getNumUses() != 1)
6505 return true;
6506
6507 Instruction *User = I->user_back();
6508
6509 if (User &&
6510 !(User->getOpcode() == Instruction::FSub ||
6511 User->getOpcode() == Instruction::FAdd))
6512 return true;
6513
6514 const TargetOptions &Options = getTargetMachine().Options;
6515 EVT VT = getValueType(User->getOperand(0)->getType());
6516
6517 if (isFMAFasterThanFMulAndFAdd(VT) &&
6518 isOperationLegalOrCustom(ISD::FMA, VT) &&
6519 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath))
6520 return false;
6521
6522 return true;
6523}
6524
Tim Northover3b0846e2014-05-24 12:50:23 +00006525// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6526// 64-bit GPR.
6527bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6528 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6529 return false;
6530 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6531 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006532 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006533}
6534bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006535 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006536 return false;
6537 unsigned NumBits1 = VT1.getSizeInBits();
6538 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006539 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006540}
6541
6542bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6543 EVT VT1 = Val.getValueType();
6544 if (isZExtFree(VT1, VT2)) {
6545 return true;
6546 }
6547
6548 if (Val.getOpcode() != ISD::LOAD)
6549 return false;
6550
6551 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006552 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6553 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6554 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006555}
6556
6557bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6558 unsigned &RequiredAligment) const {
6559 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6560 return false;
6561 // Cyclone supports unaligned accesses.
6562 RequiredAligment = 0;
6563 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6564 return NumBits == 32 || NumBits == 64;
6565}
6566
6567bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6568 unsigned &RequiredAligment) const {
6569 if (!LoadedType.isSimple() ||
6570 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6571 return false;
6572 // Cyclone supports unaligned accesses.
6573 RequiredAligment = 0;
6574 unsigned NumBits = LoadedType.getSizeInBits();
6575 return NumBits == 32 || NumBits == 64;
6576}
6577
6578static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6579 unsigned AlignCheck) {
6580 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6581 (DstAlign == 0 || DstAlign % AlignCheck == 0));
6582}
6583
6584EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6585 unsigned SrcAlign, bool IsMemset,
6586 bool ZeroMemset,
6587 bool MemcpyStrSrc,
6588 MachineFunction &MF) const {
6589 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6590 // instruction to materialize the v2i64 zero and one store (with restrictive
6591 // addressing mode). Just do two i64 store of zero-registers.
6592 bool Fast;
6593 const Function *F = MF.getFunction();
6594 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00006595 !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00006596 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00006597 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00006598 return MVT::f128;
6599
6600 return Size >= 8 ? MVT::i64 : MVT::i32;
6601}
6602
6603// 12-bit optionally shifted immediates are legal for adds.
6604bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6605 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6606 return true;
6607 return false;
6608}
6609
6610// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6611// immediates is the same as for an add or a sub.
6612bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6613 if (Immed < 0)
6614 Immed *= -1;
6615 return isLegalAddImmediate(Immed);
6616}
6617
6618/// isLegalAddressingMode - Return true if the addressing mode represented
6619/// by AM is legal for this target, for a load/store of the specified type.
6620bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6621 Type *Ty) const {
6622 // AArch64 has five basic addressing modes:
6623 // reg
6624 // reg + 9-bit signed offset
6625 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
6626 // reg1 + reg2
6627 // reg + SIZE_IN_BYTES * reg
6628
6629 // No global is ever allowed as a base.
6630 if (AM.BaseGV)
6631 return false;
6632
6633 // No reg+reg+imm addressing.
6634 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6635 return false;
6636
6637 // check reg + imm case:
6638 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6639 uint64_t NumBytes = 0;
6640 if (Ty->isSized()) {
6641 uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6642 NumBytes = NumBits / 8;
6643 if (!isPowerOf2_64(NumBits))
6644 NumBytes = 0;
6645 }
6646
6647 if (!AM.Scale) {
6648 int64_t Offset = AM.BaseOffs;
6649
6650 // 9-bit signed offset
6651 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6652 return true;
6653
6654 // 12-bit unsigned offset
6655 unsigned shift = Log2_64(NumBytes);
6656 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6657 // Must be a multiple of NumBytes (NumBytes is a power of 2)
6658 (Offset >> shift) << shift == Offset)
6659 return true;
6660 return false;
6661 }
6662
6663 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6664
6665 if (!AM.Scale || AM.Scale == 1 ||
6666 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6667 return true;
6668 return false;
6669}
6670
6671int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6672 Type *Ty) const {
6673 // Scaling factors are not free at all.
6674 // Operands | Rt Latency
6675 // -------------------------------------------
6676 // Rt, [Xn, Xm] | 4
6677 // -------------------------------------------
6678 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
6679 // Rt, [Xn, Wm, <extend> #imm] |
6680 if (isLegalAddressingMode(AM, Ty))
6681 // Scale represents reg2 * scale, thus account for 1 if
6682 // it is not equal to 0 or 1.
6683 return AM.Scale != 0 && AM.Scale != 1;
6684 return -1;
6685}
6686
6687bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6688 VT = VT.getScalarType();
6689
6690 if (!VT.isSimple())
6691 return false;
6692
6693 switch (VT.getSimpleVT().SimpleTy) {
6694 case MVT::f32:
6695 case MVT::f64:
6696 return true;
6697 default:
6698 break;
6699 }
6700
6701 return false;
6702}
6703
6704const MCPhysReg *
6705AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6706 // LR is a callee-save register, but we must treat it as clobbered by any call
6707 // site. Hence we include LR in the scratch registers, which are in turn added
6708 // as implicit-defs for stackmaps and patchpoints.
6709 static const MCPhysReg ScratchRegs[] = {
6710 AArch64::X16, AArch64::X17, AArch64::LR, 0
6711 };
6712 return ScratchRegs;
6713}
6714
6715bool
6716AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6717 EVT VT = N->getValueType(0);
6718 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6719 // it with shift to let it be lowered to UBFX.
6720 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6721 isa<ConstantSDNode>(N->getOperand(1))) {
6722 uint64_t TruncMask = N->getConstantOperandVal(1);
6723 if (isMask_64(TruncMask) &&
6724 N->getOperand(0).getOpcode() == ISD::SRL &&
6725 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6726 return false;
6727 }
6728 return true;
6729}
6730
6731bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6732 Type *Ty) const {
6733 assert(Ty->isIntegerTy());
6734
6735 unsigned BitSize = Ty->getPrimitiveSizeInBits();
6736 if (BitSize == 0)
6737 return false;
6738
6739 int64_t Val = Imm.getSExtValue();
6740 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6741 return true;
6742
6743 if ((int64_t)Val < 0)
6744 Val = ~Val;
6745 if (BitSize == 32)
6746 Val &= (1LL << 32) - 1;
6747
6748 unsigned LZ = countLeadingZeros((uint64_t)Val);
6749 unsigned Shift = (63 - LZ) / 16;
6750 // MOVZ is free so return true for one or fewer MOVK.
6751 return (Shift < 3) ? true : false;
6752}
6753
6754// Generate SUBS and CSEL for integer abs.
6755static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6756 EVT VT = N->getValueType(0);
6757
6758 SDValue N0 = N->getOperand(0);
6759 SDValue N1 = N->getOperand(1);
6760 SDLoc DL(N);
6761
6762 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6763 // and change it to SUB and CSEL.
6764 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6765 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6766 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6767 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6768 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
6769 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
6770 N0.getOperand(0));
6771 // Generate SUBS & CSEL.
6772 SDValue Cmp =
6773 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
6774 N0.getOperand(0), DAG.getConstant(0, VT));
6775 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
6776 DAG.getConstant(AArch64CC::PL, MVT::i32),
6777 SDValue(Cmp.getNode(), 1));
6778 }
6779 return SDValue();
6780}
6781
6782// performXorCombine - Attempts to handle integer ABS.
6783static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6784 TargetLowering::DAGCombinerInfo &DCI,
6785 const AArch64Subtarget *Subtarget) {
6786 if (DCI.isBeforeLegalizeOps())
6787 return SDValue();
6788
6789 return performIntegerAbsCombine(N, DAG);
6790}
6791
Chad Rosier17020f92014-07-23 14:57:52 +00006792SDValue
6793AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6794 SelectionDAG &DAG,
6795 std::vector<SDNode *> *Created) const {
6796 // fold (sdiv X, pow2)
6797 EVT VT = N->getValueType(0);
6798 if ((VT != MVT::i32 && VT != MVT::i64) ||
6799 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
6800 return SDValue();
6801
6802 SDLoc DL(N);
6803 SDValue N0 = N->getOperand(0);
6804 unsigned Lg2 = Divisor.countTrailingZeros();
6805 SDValue Zero = DAG.getConstant(0, VT);
Juergen Ributzka03a06112014-10-16 16:41:15 +00006806 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, VT);
Chad Rosier17020f92014-07-23 14:57:52 +00006807
6808 // Add (N0 < 0) ? Pow2 - 1 : 0;
6809 SDValue CCVal;
6810 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
6811 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6812 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
6813
6814 if (Created) {
6815 Created->push_back(Cmp.getNode());
6816 Created->push_back(Add.getNode());
6817 Created->push_back(CSel.getNode());
6818 }
6819
6820 // Divide by pow2.
6821 SDValue SRA =
6822 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, MVT::i64));
6823
6824 // If we're dividing by a positive value, we're done. Otherwise, we must
6825 // negate the result.
6826 if (Divisor.isNonNegative())
6827 return SRA;
6828
6829 if (Created)
6830 Created->push_back(SRA.getNode());
6831 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), SRA);
6832}
6833
Tim Northover3b0846e2014-05-24 12:50:23 +00006834static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6835 TargetLowering::DAGCombinerInfo &DCI,
6836 const AArch64Subtarget *Subtarget) {
6837 if (DCI.isBeforeLegalizeOps())
6838 return SDValue();
6839
6840 // Multiplication of a power of two plus/minus one can be done more
6841 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6842 // future CPUs have a cheaper MADD instruction, this may need to be
6843 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6844 // 64-bit is 5 cycles, so this is always a win.
6845 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6846 APInt Value = C->getAPIntValue();
6847 EVT VT = N->getValueType(0);
Chad Rosiere6b87612014-06-30 14:51:14 +00006848 if (Value.isNonNegative()) {
6849 // (mul x, 2^N + 1) => (add (shl x, N), x)
6850 APInt VM1 = Value - 1;
6851 if (VM1.isPowerOf2()) {
6852 SDValue ShiftedVal =
6853 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6854 DAG.getConstant(VM1.logBase2(), MVT::i64));
6855 return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal,
6856 N->getOperand(0));
6857 }
6858 // (mul x, 2^N - 1) => (sub (shl x, N), x)
6859 APInt VP1 = Value + 1;
6860 if (VP1.isPowerOf2()) {
6861 SDValue ShiftedVal =
6862 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6863 DAG.getConstant(VP1.logBase2(), MVT::i64));
6864 return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal,
6865 N->getOperand(0));
6866 }
6867 } else {
Chad Rosier8e38f302015-03-03 17:31:01 +00006868 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6869 APInt VNP1 = -Value + 1;
6870 if (VNP1.isPowerOf2()) {
6871 SDValue ShiftedVal =
6872 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6873 DAG.getConstant(VNP1.logBase2(), MVT::i64));
6874 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0),
6875 ShiftedVal);
6876 }
Chad Rosiere6b87612014-06-30 14:51:14 +00006877 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6878 APInt VNM1 = -Value - 1;
6879 if (VNM1.isPowerOf2()) {
6880 SDValue ShiftedVal =
6881 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6882 DAG.getConstant(VNM1.logBase2(), MVT::i64));
6883 SDValue Add =
6884 DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6885 return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add);
6886 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00006887 }
Tim Northover3b0846e2014-05-24 12:50:23 +00006888 }
6889 return SDValue();
6890}
6891
Jim Grosbachf7502c42014-07-18 00:40:52 +00006892static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
6893 SelectionDAG &DAG) {
6894 // Take advantage of vector comparisons producing 0 or -1 in each lane to
6895 // optimize away operation when it's from a constant.
6896 //
6897 // The general transformation is:
6898 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
6899 // AND(VECTOR_CMP(x,y), constant2)
6900 // constant2 = UNARYOP(constant)
6901
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006902 // Early exit if this isn't a vector operation, the operand of the
6903 // unary operation isn't a bitwise AND, or if the sizes of the operations
6904 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00006905 EVT VT = N->getValueType(0);
6906 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006907 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
6908 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006909 return SDValue();
6910
Jim Grosbach724e4382014-07-23 20:41:43 +00006911 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00006912 // make the transformation for non-constant splats as well, but it's unclear
6913 // that would be a benefit as it would not eliminate any operations, just
6914 // perform one more step in scalar code before moving to the vector unit.
6915 if (BuildVectorSDNode *BV =
6916 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00006917 // Bail out if the vector isn't a constant.
6918 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006919 return SDValue();
6920
6921 // Everything checks out. Build up the new and improved node.
6922 SDLoc DL(N);
6923 EVT IntVT = BV->getValueType(0);
6924 // Create a new constant of the appropriate type for the transformed
6925 // DAG.
6926 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
6927 // The AND node needs bitcasts to/from an integer vector type around it.
6928 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
6929 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
6930 N->getOperand(0)->getOperand(0), MaskConst);
6931 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
6932 return Res;
6933 }
6934
6935 return SDValue();
6936}
6937
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00006938static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
6939 const AArch64Subtarget *Subtarget) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00006940 // First try to optimize away the conversion when it's conditionally from
6941 // a constant. Vectors only.
6942 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
6943 if (Res != SDValue())
6944 return Res;
6945
Tim Northover3b0846e2014-05-24 12:50:23 +00006946 EVT VT = N->getValueType(0);
6947 if (VT != MVT::f32 && VT != MVT::f64)
6948 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00006949
Tim Northover3b0846e2014-05-24 12:50:23 +00006950 // Only optimize when the source and destination types have the same width.
6951 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
6952 return SDValue();
6953
6954 // If the result of an integer load is only used by an integer-to-float
6955 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
6956 // This eliminates an "integer-to-vector-move UOP and improve throughput.
6957 SDValue N0 = N->getOperand(0);
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00006958 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Tim Northover3b0846e2014-05-24 12:50:23 +00006959 // Do not change the width of a volatile load.
6960 !cast<LoadSDNode>(N0)->isVolatile()) {
6961 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6962 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
6963 LN0->getPointerInfo(), LN0->isVolatile(),
6964 LN0->isNonTemporal(), LN0->isInvariant(),
6965 LN0->getAlignment());
6966
6967 // Make sure successors of the original load stay after it by updating them
6968 // to use the new Chain.
6969 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
6970
6971 unsigned Opcode =
6972 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
6973 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
6974 }
6975
6976 return SDValue();
6977}
6978
6979/// An EXTR instruction is made up of two shifts, ORed together. This helper
6980/// searches for and classifies those shifts.
6981static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
6982 bool &FromHi) {
6983 if (N.getOpcode() == ISD::SHL)
6984 FromHi = false;
6985 else if (N.getOpcode() == ISD::SRL)
6986 FromHi = true;
6987 else
6988 return false;
6989
6990 if (!isa<ConstantSDNode>(N.getOperand(1)))
6991 return false;
6992
6993 ShiftAmount = N->getConstantOperandVal(1);
6994 Src = N->getOperand(0);
6995 return true;
6996}
6997
6998/// EXTR instruction extracts a contiguous chunk of bits from two existing
6999/// registers viewed as a high/low pair. This function looks for the pattern:
7000/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7001/// EXTR. Can't quite be done in TableGen because the two immediates aren't
7002/// independent.
7003static SDValue tryCombineToEXTR(SDNode *N,
7004 TargetLowering::DAGCombinerInfo &DCI) {
7005 SelectionDAG &DAG = DCI.DAG;
7006 SDLoc DL(N);
7007 EVT VT = N->getValueType(0);
7008
7009 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7010
7011 if (VT != MVT::i32 && VT != MVT::i64)
7012 return SDValue();
7013
7014 SDValue LHS;
7015 uint32_t ShiftLHS = 0;
7016 bool LHSFromHi = 0;
7017 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7018 return SDValue();
7019
7020 SDValue RHS;
7021 uint32_t ShiftRHS = 0;
7022 bool RHSFromHi = 0;
7023 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7024 return SDValue();
7025
7026 // If they're both trying to come from the high part of the register, they're
7027 // not really an EXTR.
7028 if (LHSFromHi == RHSFromHi)
7029 return SDValue();
7030
7031 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7032 return SDValue();
7033
7034 if (LHSFromHi) {
7035 std::swap(LHS, RHS);
7036 std::swap(ShiftLHS, ShiftRHS);
7037 }
7038
7039 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
7040 DAG.getConstant(ShiftRHS, MVT::i64));
7041}
7042
7043static SDValue tryCombineToBSL(SDNode *N,
7044 TargetLowering::DAGCombinerInfo &DCI) {
7045 EVT VT = N->getValueType(0);
7046 SelectionDAG &DAG = DCI.DAG;
7047 SDLoc DL(N);
7048
7049 if (!VT.isVector())
7050 return SDValue();
7051
7052 SDValue N0 = N->getOperand(0);
7053 if (N0.getOpcode() != ISD::AND)
7054 return SDValue();
7055
7056 SDValue N1 = N->getOperand(1);
7057 if (N1.getOpcode() != ISD::AND)
7058 return SDValue();
7059
7060 // We only have to look for constant vectors here since the general, variable
7061 // case can be handled in TableGen.
7062 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7063 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7064 for (int i = 1; i >= 0; --i)
7065 for (int j = 1; j >= 0; --j) {
7066 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7067 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7068 if (!BVN0 || !BVN1)
7069 continue;
7070
7071 bool FoundMatch = true;
7072 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7073 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7074 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7075 if (!CN0 || !CN1 ||
7076 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7077 FoundMatch = false;
7078 break;
7079 }
7080 }
7081
7082 if (FoundMatch)
7083 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7084 N0->getOperand(1 - i), N1->getOperand(1 - j));
7085 }
7086
7087 return SDValue();
7088}
7089
7090static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7091 const AArch64Subtarget *Subtarget) {
7092 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7093 if (!EnableAArch64ExtrGeneration)
7094 return SDValue();
7095 SelectionDAG &DAG = DCI.DAG;
7096 EVT VT = N->getValueType(0);
7097
7098 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7099 return SDValue();
7100
7101 SDValue Res = tryCombineToEXTR(N, DCI);
7102 if (Res.getNode())
7103 return Res;
7104
7105 Res = tryCombineToBSL(N, DCI);
7106 if (Res.getNode())
7107 return Res;
7108
7109 return SDValue();
7110}
7111
7112static SDValue performBitcastCombine(SDNode *N,
7113 TargetLowering::DAGCombinerInfo &DCI,
7114 SelectionDAG &DAG) {
7115 // Wait 'til after everything is legalized to try this. That way we have
7116 // legal vector types and such.
7117 if (DCI.isBeforeLegalizeOps())
7118 return SDValue();
7119
7120 // Remove extraneous bitcasts around an extract_subvector.
7121 // For example,
7122 // (v4i16 (bitconvert
7123 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7124 // becomes
7125 // (extract_subvector ((v8i16 ...), (i64 4)))
7126
7127 // Only interested in 64-bit vectors as the ultimate result.
7128 EVT VT = N->getValueType(0);
7129 if (!VT.isVector())
7130 return SDValue();
7131 if (VT.getSimpleVT().getSizeInBits() != 64)
7132 return SDValue();
7133 // Is the operand an extract_subvector starting at the beginning or halfway
7134 // point of the vector? A low half may also come through as an
7135 // EXTRACT_SUBREG, so look for that, too.
7136 SDValue Op0 = N->getOperand(0);
7137 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7138 !(Op0->isMachineOpcode() &&
7139 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7140 return SDValue();
7141 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7142 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7143 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7144 return SDValue();
7145 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7146 if (idx != AArch64::dsub)
7147 return SDValue();
7148 // The dsub reference is equivalent to a lane zero subvector reference.
7149 idx = 0;
7150 }
7151 // Look through the bitcast of the input to the extract.
7152 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7153 return SDValue();
7154 SDValue Source = Op0->getOperand(0)->getOperand(0);
7155 // If the source type has twice the number of elements as our destination
7156 // type, we know this is an extract of the high or low half of the vector.
7157 EVT SVT = Source->getValueType(0);
7158 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7159 return SDValue();
7160
7161 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7162
7163 // Create the simplified form to just extract the low or high half of the
7164 // vector directly rather than bothering with the bitcasts.
7165 SDLoc dl(N);
7166 unsigned NumElements = VT.getVectorNumElements();
7167 if (idx) {
7168 SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
7169 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7170 } else {
7171 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
7172 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7173 Source, SubReg),
7174 0);
7175 }
7176}
7177
7178static SDValue performConcatVectorsCombine(SDNode *N,
7179 TargetLowering::DAGCombinerInfo &DCI,
7180 SelectionDAG &DAG) {
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007181 SDLoc dl(N);
7182 EVT VT = N->getValueType(0);
7183 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
7184
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007185 // Optimize concat_vectors of truncated vectors, where the intermediate
7186 // type is illegal, to avoid said illegality, e.g.,
7187 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
7188 // (v2i16 (truncate (v2i64)))))
7189 // ->
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007190 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
7191 // (v4i32 (bitcast (v2i64))),
7192 // <0, 2, 4, 6>)))
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007193 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
7194 // on both input and result type, so we might generate worse code.
7195 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
7196 if (N->getNumOperands() == 2 &&
7197 N0->getOpcode() == ISD::TRUNCATE &&
7198 N1->getOpcode() == ISD::TRUNCATE) {
7199 SDValue N00 = N0->getOperand(0);
7200 SDValue N10 = N1->getOperand(0);
7201 EVT N00VT = N00.getValueType();
7202
7203 if (N00VT == N10.getValueType() &&
7204 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
7205 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007206 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
7207 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
7208 for (size_t i = 0; i < Mask.size(); ++i)
7209 Mask[i] = i * 2;
7210 return DAG.getNode(ISD::TRUNCATE, dl, VT,
7211 DAG.getVectorShuffle(
7212 MidVT, dl,
7213 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
7214 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007215 }
7216 }
7217
Tim Northover3b0846e2014-05-24 12:50:23 +00007218 // Wait 'til after everything is legalized to try this. That way we have
7219 // legal vector types and such.
7220 if (DCI.isBeforeLegalizeOps())
7221 return SDValue();
7222
Tim Northover3b0846e2014-05-24 12:50:23 +00007223 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7224 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7225 // canonicalise to that.
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007226 if (N0 == N1 && VT.getVectorNumElements() == 2) {
Tim Northover3b0846e2014-05-24 12:50:23 +00007227 assert(VT.getVectorElementType().getSizeInBits() == 64);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007228 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
Tim Northover3b0846e2014-05-24 12:50:23 +00007229 DAG.getConstant(0, MVT::i64));
7230 }
7231
7232 // Canonicalise concat_vectors so that the right-hand vector has as few
7233 // bit-casts as possible before its real operation. The primary matching
7234 // destination for these operations will be the narrowing "2" instructions,
7235 // which depend on the operation being performed on this right-hand vector.
7236 // For example,
7237 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7238 // becomes
7239 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7240
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007241 if (N1->getOpcode() != ISD::BITCAST)
Tim Northover3b0846e2014-05-24 12:50:23 +00007242 return SDValue();
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007243 SDValue RHS = N1->getOperand(0);
Tim Northover3b0846e2014-05-24 12:50:23 +00007244 MVT RHSTy = RHS.getValueType().getSimpleVT();
7245 // If the RHS is not a vector, this is not the pattern we're looking for.
7246 if (!RHSTy.isVector())
7247 return SDValue();
7248
7249 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7250
7251 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7252 RHSTy.getVectorNumElements() * 2);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007253 return DAG.getNode(ISD::BITCAST, dl, VT,
7254 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7255 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
7256 RHS));
Tim Northover3b0846e2014-05-24 12:50:23 +00007257}
7258
7259static SDValue tryCombineFixedPointConvert(SDNode *N,
7260 TargetLowering::DAGCombinerInfo &DCI,
7261 SelectionDAG &DAG) {
7262 // Wait 'til after everything is legalized to try this. That way we have
7263 // legal vector types and such.
7264 if (DCI.isBeforeLegalizeOps())
7265 return SDValue();
7266 // Transform a scalar conversion of a value from a lane extract into a
7267 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7268 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7269 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7270 //
7271 // The second form interacts better with instruction selection and the
7272 // register allocator to avoid cross-class register copies that aren't
7273 // coalescable due to a lane reference.
7274
7275 // Check the operand and see if it originates from a lane extract.
7276 SDValue Op1 = N->getOperand(1);
7277 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7278 // Yep, no additional predication needed. Perform the transform.
7279 SDValue IID = N->getOperand(0);
7280 SDValue Shift = N->getOperand(2);
7281 SDValue Vec = Op1.getOperand(0);
7282 SDValue Lane = Op1.getOperand(1);
7283 EVT ResTy = N->getValueType(0);
7284 EVT VecResTy;
7285 SDLoc DL(N);
7286
7287 // The vector width should be 128 bits by the time we get here, even
7288 // if it started as 64 bits (the extract_vector handling will have
7289 // done so).
7290 assert(Vec.getValueType().getSizeInBits() == 128 &&
7291 "unexpected vector size on extract_vector_elt!");
7292 if (Vec.getValueType() == MVT::v4i32)
7293 VecResTy = MVT::v4f32;
7294 else if (Vec.getValueType() == MVT::v2i64)
7295 VecResTy = MVT::v2f64;
7296 else
Craig Topper2a30d782014-06-18 05:05:13 +00007297 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00007298
7299 SDValue Convert =
7300 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7301 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7302 }
7303 return SDValue();
7304}
7305
7306// AArch64 high-vector "long" operations are formed by performing the non-high
7307// version on an extract_subvector of each operand which gets the high half:
7308//
7309// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7310//
7311// However, there are cases which don't have an extract_high explicitly, but
7312// have another operation that can be made compatible with one for free. For
7313// example:
7314//
7315// (dupv64 scalar) --> (extract_high (dup128 scalar))
7316//
7317// This routine does the actual conversion of such DUPs, once outer routines
7318// have determined that everything else is in order.
7319static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
7320 // We can handle most types of duplicate, but the lane ones have an extra
7321 // operand saying *which* lane, so we need to know.
7322 bool IsDUPLANE;
7323 switch (N.getOpcode()) {
7324 case AArch64ISD::DUP:
7325 IsDUPLANE = false;
7326 break;
7327 case AArch64ISD::DUPLANE8:
7328 case AArch64ISD::DUPLANE16:
7329 case AArch64ISD::DUPLANE32:
7330 case AArch64ISD::DUPLANE64:
7331 IsDUPLANE = true;
7332 break;
7333 default:
7334 return SDValue();
7335 }
7336
7337 MVT NarrowTy = N.getSimpleValueType();
7338 if (!NarrowTy.is64BitVector())
7339 return SDValue();
7340
7341 MVT ElementTy = NarrowTy.getVectorElementType();
7342 unsigned NumElems = NarrowTy.getVectorNumElements();
7343 MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
7344
7345 SDValue NewDUP;
7346 if (IsDUPLANE)
7347 NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
7348 N.getOperand(1));
7349 else
7350 NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
7351
7352 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
7353 NewDUP, DAG.getConstant(NumElems, MVT::i64));
7354}
7355
7356static bool isEssentiallyExtractSubvector(SDValue N) {
7357 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
7358 return true;
7359
7360 return N.getOpcode() == ISD::BITCAST &&
7361 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
7362}
7363
7364/// \brief Helper structure to keep track of ISD::SET_CC operands.
7365struct GenericSetCCInfo {
7366 const SDValue *Opnd0;
7367 const SDValue *Opnd1;
7368 ISD::CondCode CC;
7369};
7370
7371/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
7372struct AArch64SetCCInfo {
7373 const SDValue *Cmp;
7374 AArch64CC::CondCode CC;
7375};
7376
7377/// \brief Helper structure to keep track of SetCC information.
7378union SetCCInfo {
7379 GenericSetCCInfo Generic;
7380 AArch64SetCCInfo AArch64;
7381};
7382
7383/// \brief Helper structure to be able to read SetCC information. If set to
7384/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
7385/// GenericSetCCInfo.
7386struct SetCCInfoAndKind {
7387 SetCCInfo Info;
7388 bool IsAArch64;
7389};
7390
7391/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
7392/// an
7393/// AArch64 lowered one.
7394/// \p SetCCInfo is filled accordingly.
7395/// \post SetCCInfo is meanginfull only when this function returns true.
7396/// \return True when Op is a kind of SET_CC operation.
7397static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
7398 // If this is a setcc, this is straight forward.
7399 if (Op.getOpcode() == ISD::SETCC) {
7400 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
7401 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
7402 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7403 SetCCInfo.IsAArch64 = false;
7404 return true;
7405 }
7406 // Otherwise, check if this is a matching csel instruction.
7407 // In other words:
7408 // - csel 1, 0, cc
7409 // - csel 0, 1, !cc
7410 if (Op.getOpcode() != AArch64ISD::CSEL)
7411 return false;
7412 // Set the information about the operands.
7413 // TODO: we want the operands of the Cmp not the csel
7414 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
7415 SetCCInfo.IsAArch64 = true;
7416 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
7417 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
7418
7419 // Check that the operands matches the constraints:
7420 // (1) Both operands must be constants.
7421 // (2) One must be 1 and the other must be 0.
7422 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
7423 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7424
7425 // Check (1).
7426 if (!TValue || !FValue)
7427 return false;
7428
7429 // Check (2).
7430 if (!TValue->isOne()) {
7431 // Update the comparison when we are interested in !cc.
7432 std::swap(TValue, FValue);
7433 SetCCInfo.Info.AArch64.CC =
7434 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
7435 }
7436 return TValue->isOne() && FValue->isNullValue();
7437}
7438
7439// Returns true if Op is setcc or zext of setcc.
7440static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
7441 if (isSetCC(Op, Info))
7442 return true;
7443 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
7444 isSetCC(Op->getOperand(0), Info));
7445}
7446
7447// The folding we want to perform is:
7448// (add x, [zext] (setcc cc ...) )
7449// -->
7450// (csel x, (add x, 1), !cc ...)
7451//
7452// The latter will get matched to a CSINC instruction.
7453static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
7454 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
7455 SDValue LHS = Op->getOperand(0);
7456 SDValue RHS = Op->getOperand(1);
7457 SetCCInfoAndKind InfoAndKind;
7458
7459 // If neither operand is a SET_CC, give up.
7460 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
7461 std::swap(LHS, RHS);
7462 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
7463 return SDValue();
7464 }
7465
7466 // FIXME: This could be generatized to work for FP comparisons.
7467 EVT CmpVT = InfoAndKind.IsAArch64
7468 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
7469 : InfoAndKind.Info.Generic.Opnd0->getValueType();
7470 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
7471 return SDValue();
7472
7473 SDValue CCVal;
7474 SDValue Cmp;
7475 SDLoc dl(Op);
7476 if (InfoAndKind.IsAArch64) {
7477 CCVal = DAG.getConstant(
7478 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
7479 Cmp = *InfoAndKind.Info.AArch64.Cmp;
7480 } else
7481 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
7482 *InfoAndKind.Info.Generic.Opnd1,
7483 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
7484 CCVal, DAG, dl);
7485
7486 EVT VT = Op->getValueType(0);
7487 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
7488 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
7489}
7490
7491// The basic add/sub long vector instructions have variants with "2" on the end
7492// which act on the high-half of their inputs. They are normally matched by
7493// patterns like:
7494//
7495// (add (zeroext (extract_high LHS)),
7496// (zeroext (extract_high RHS)))
7497// -> uaddl2 vD, vN, vM
7498//
7499// However, if one of the extracts is something like a duplicate, this
7500// instruction can still be used profitably. This function puts the DAG into a
7501// more appropriate form for those patterns to trigger.
7502static SDValue performAddSubLongCombine(SDNode *N,
7503 TargetLowering::DAGCombinerInfo &DCI,
7504 SelectionDAG &DAG) {
7505 if (DCI.isBeforeLegalizeOps())
7506 return SDValue();
7507
7508 MVT VT = N->getSimpleValueType(0);
7509 if (!VT.is128BitVector()) {
7510 if (N->getOpcode() == ISD::ADD)
7511 return performSetccAddFolding(N, DAG);
7512 return SDValue();
7513 }
7514
7515 // Make sure both branches are extended in the same way.
7516 SDValue LHS = N->getOperand(0);
7517 SDValue RHS = N->getOperand(1);
7518 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
7519 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
7520 LHS.getOpcode() != RHS.getOpcode())
7521 return SDValue();
7522
7523 unsigned ExtType = LHS.getOpcode();
7524
7525 // It's not worth doing if at least one of the inputs isn't already an
7526 // extract, but we don't know which it'll be so we have to try both.
7527 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
7528 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
7529 if (!RHS.getNode())
7530 return SDValue();
7531
7532 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
7533 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
7534 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
7535 if (!LHS.getNode())
7536 return SDValue();
7537
7538 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
7539 }
7540
7541 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
7542}
7543
7544// Massage DAGs which we can use the high-half "long" operations on into
7545// something isel will recognize better. E.g.
7546//
7547// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
7548// (aarch64_neon_umull (extract_high (v2i64 vec)))
7549// (extract_high (v2i64 (dup128 scalar)))))
7550//
7551static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
7552 TargetLowering::DAGCombinerInfo &DCI,
7553 SelectionDAG &DAG) {
7554 if (DCI.isBeforeLegalizeOps())
7555 return SDValue();
7556
7557 SDValue LHS = N->getOperand(1);
7558 SDValue RHS = N->getOperand(2);
7559 assert(LHS.getValueType().is64BitVector() &&
7560 RHS.getValueType().is64BitVector() &&
7561 "unexpected shape for long operation");
7562
7563 // Either node could be a DUP, but it's not worth doing both of them (you'd
7564 // just as well use the non-high version) so look for a corresponding extract
7565 // operation on the other "wing".
7566 if (isEssentiallyExtractSubvector(LHS)) {
7567 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
7568 if (!RHS.getNode())
7569 return SDValue();
7570 } else if (isEssentiallyExtractSubvector(RHS)) {
7571 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
7572 if (!LHS.getNode())
7573 return SDValue();
7574 }
7575
7576 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
7577 N->getOperand(0), LHS, RHS);
7578}
7579
7580static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
7581 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
7582 unsigned ElemBits = ElemTy.getSizeInBits();
7583
7584 int64_t ShiftAmount;
7585 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
7586 APInt SplatValue, SplatUndef;
7587 unsigned SplatBitSize;
7588 bool HasAnyUndefs;
7589 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7590 HasAnyUndefs, ElemBits) ||
7591 SplatBitSize != ElemBits)
7592 return SDValue();
7593
7594 ShiftAmount = SplatValue.getSExtValue();
7595 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
7596 ShiftAmount = CVN->getSExtValue();
7597 } else
7598 return SDValue();
7599
7600 unsigned Opcode;
7601 bool IsRightShift;
7602 switch (IID) {
7603 default:
7604 llvm_unreachable("Unknown shift intrinsic");
7605 case Intrinsic::aarch64_neon_sqshl:
7606 Opcode = AArch64ISD::SQSHL_I;
7607 IsRightShift = false;
7608 break;
7609 case Intrinsic::aarch64_neon_uqshl:
7610 Opcode = AArch64ISD::UQSHL_I;
7611 IsRightShift = false;
7612 break;
7613 case Intrinsic::aarch64_neon_srshl:
7614 Opcode = AArch64ISD::SRSHR_I;
7615 IsRightShift = true;
7616 break;
7617 case Intrinsic::aarch64_neon_urshl:
7618 Opcode = AArch64ISD::URSHR_I;
7619 IsRightShift = true;
7620 break;
7621 case Intrinsic::aarch64_neon_sqshlu:
7622 Opcode = AArch64ISD::SQSHLU_I;
7623 IsRightShift = false;
7624 break;
7625 }
7626
7627 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
7628 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7629 DAG.getConstant(-ShiftAmount, MVT::i32));
James Molloy1e3b5a42014-06-16 10:39:21 +00007630 else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits)
Tim Northover3b0846e2014-05-24 12:50:23 +00007631 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7632 DAG.getConstant(ShiftAmount, MVT::i32));
7633
7634 return SDValue();
7635}
7636
7637// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7638// the intrinsics must be legal and take an i32, this means there's almost
7639// certainly going to be a zext in the DAG which we can eliminate.
7640static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7641 SDValue AndN = N->getOperand(2);
7642 if (AndN.getOpcode() != ISD::AND)
7643 return SDValue();
7644
7645 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7646 if (!CMask || CMask->getZExtValue() != Mask)
7647 return SDValue();
7648
7649 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7650 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7651}
7652
Ahmed Bougachafab58922015-03-10 20:45:38 +00007653static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
7654 SelectionDAG &DAG) {
7655 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), N->getValueType(0),
7656 DAG.getNode(Opc, SDLoc(N),
7657 N->getOperand(1).getSimpleValueType(),
7658 N->getOperand(1)),
7659 DAG.getConstant(0, MVT::i64));
7660}
7661
Tim Northover3b0846e2014-05-24 12:50:23 +00007662static SDValue performIntrinsicCombine(SDNode *N,
7663 TargetLowering::DAGCombinerInfo &DCI,
7664 const AArch64Subtarget *Subtarget) {
7665 SelectionDAG &DAG = DCI.DAG;
7666 unsigned IID = getIntrinsicID(N);
7667 switch (IID) {
7668 default:
7669 break;
7670 case Intrinsic::aarch64_neon_vcvtfxs2fp:
7671 case Intrinsic::aarch64_neon_vcvtfxu2fp:
7672 return tryCombineFixedPointConvert(N, DCI, DAG);
7673 break;
Ahmed Bougachafab58922015-03-10 20:45:38 +00007674 case Intrinsic::aarch64_neon_saddv:
7675 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
7676 case Intrinsic::aarch64_neon_uaddv:
7677 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
7678 case Intrinsic::aarch64_neon_sminv:
7679 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
7680 case Intrinsic::aarch64_neon_uminv:
7681 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
7682 case Intrinsic::aarch64_neon_smaxv:
7683 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
7684 case Intrinsic::aarch64_neon_umaxv:
7685 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00007686 case Intrinsic::aarch64_neon_fmax:
7687 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7688 N->getOperand(1), N->getOperand(2));
7689 case Intrinsic::aarch64_neon_fmin:
7690 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7691 N->getOperand(1), N->getOperand(2));
7692 case Intrinsic::aarch64_neon_smull:
7693 case Intrinsic::aarch64_neon_umull:
7694 case Intrinsic::aarch64_neon_pmull:
7695 case Intrinsic::aarch64_neon_sqdmull:
7696 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7697 case Intrinsic::aarch64_neon_sqshl:
7698 case Intrinsic::aarch64_neon_uqshl:
7699 case Intrinsic::aarch64_neon_sqshlu:
7700 case Intrinsic::aarch64_neon_srshl:
7701 case Intrinsic::aarch64_neon_urshl:
7702 return tryCombineShiftImm(IID, N, DAG);
7703 case Intrinsic::aarch64_crc32b:
7704 case Intrinsic::aarch64_crc32cb:
7705 return tryCombineCRC32(0xff, N, DAG);
7706 case Intrinsic::aarch64_crc32h:
7707 case Intrinsic::aarch64_crc32ch:
7708 return tryCombineCRC32(0xffff, N, DAG);
7709 }
7710 return SDValue();
7711}
7712
7713static SDValue performExtendCombine(SDNode *N,
7714 TargetLowering::DAGCombinerInfo &DCI,
7715 SelectionDAG &DAG) {
7716 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7717 // we can convert that DUP into another extract_high (of a bigger DUP), which
7718 // helps the backend to decide that an sabdl2 would be useful, saving a real
7719 // extract_high operation.
7720 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7721 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7722 SDNode *ABDNode = N->getOperand(0).getNode();
7723 unsigned IID = getIntrinsicID(ABDNode);
7724 if (IID == Intrinsic::aarch64_neon_sabd ||
7725 IID == Intrinsic::aarch64_neon_uabd) {
7726 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7727 if (!NewABD.getNode())
7728 return SDValue();
7729
7730 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7731 NewABD);
7732 }
7733 }
7734
7735 // This is effectively a custom type legalization for AArch64.
7736 //
7737 // Type legalization will split an extend of a small, legal, type to a larger
7738 // illegal type by first splitting the destination type, often creating
7739 // illegal source types, which then get legalized in isel-confusing ways,
7740 // leading to really terrible codegen. E.g.,
7741 // %result = v8i32 sext v8i8 %value
7742 // becomes
7743 // %losrc = extract_subreg %value, ...
7744 // %hisrc = extract_subreg %value, ...
7745 // %lo = v4i32 sext v4i8 %losrc
7746 // %hi = v4i32 sext v4i8 %hisrc
7747 // Things go rapidly downhill from there.
7748 //
7749 // For AArch64, the [sz]ext vector instructions can only go up one element
7750 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7751 // take two instructions.
7752 //
7753 // This implies that the most efficient way to do the extend from v8i8
7754 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7755 // the normal splitting to happen for the v8i16->v8i32.
7756
7757 // This is pre-legalization to catch some cases where the default
7758 // type legalization will create ill-tempered code.
7759 if (!DCI.isBeforeLegalizeOps())
7760 return SDValue();
7761
7762 // We're only interested in cleaning things up for non-legal vector types
7763 // here. If both the source and destination are legal, things will just
7764 // work naturally without any fiddling.
7765 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7766 EVT ResVT = N->getValueType(0);
7767 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7768 return SDValue();
7769 // If the vector type isn't a simple VT, it's beyond the scope of what
7770 // we're worried about here. Let legalization do its thing and hope for
7771 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00007772 SDValue Src = N->getOperand(0);
7773 EVT SrcVT = Src->getValueType(0);
7774 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00007775 return SDValue();
7776
Tim Northover3b0846e2014-05-24 12:50:23 +00007777 // If the source VT is a 64-bit vector, we can play games and get the
7778 // better results we want.
7779 if (SrcVT.getSizeInBits() != 64)
7780 return SDValue();
7781
7782 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7783 unsigned ElementCount = SrcVT.getVectorNumElements();
7784 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7785 SDLoc DL(N);
7786 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7787
7788 // Now split the rest of the operation into two halves, each with a 64
7789 // bit source.
7790 EVT LoVT, HiVT;
7791 SDValue Lo, Hi;
7792 unsigned NumElements = ResVT.getVectorNumElements();
7793 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7794 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7795 ResVT.getVectorElementType(), NumElements / 2);
7796
7797 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7798 LoVT.getVectorNumElements());
7799 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Tim Northover5e84fe32014-12-06 00:33:37 +00007800 DAG.getConstant(0, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007801 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Tim Northover5e84fe32014-12-06 00:33:37 +00007802 DAG.getConstant(InNVT.getVectorNumElements(), MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007803 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7804 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7805
7806 // Now combine the parts back together so we still have a single result
7807 // like the combiner expects.
7808 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7809}
7810
7811/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7812/// value. The load store optimizer pass will merge them to store pair stores.
7813/// This has better performance than a splat of the scalar followed by a split
7814/// vector store. Even if the stores are not merged it is four stores vs a dup,
7815/// followed by an ext.b and two stores.
7816static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7817 SDValue StVal = St->getValue();
7818 EVT VT = StVal.getValueType();
7819
7820 // Don't replace floating point stores, they possibly won't be transformed to
7821 // stp because of the store pair suppress pass.
7822 if (VT.isFloatingPoint())
7823 return SDValue();
7824
7825 // Check for insert vector elements.
7826 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7827 return SDValue();
7828
7829 // We can express a splat as store pair(s) for 2 or 4 elements.
7830 unsigned NumVecElts = VT.getVectorNumElements();
7831 if (NumVecElts != 4 && NumVecElts != 2)
7832 return SDValue();
7833 SDValue SplatVal = StVal.getOperand(1);
7834 unsigned RemainInsertElts = NumVecElts - 1;
7835
7836 // Check that this is a splat.
7837 while (--RemainInsertElts) {
7838 SDValue NextInsertElt = StVal.getOperand(0);
7839 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7840 return SDValue();
7841 if (NextInsertElt.getOperand(1) != SplatVal)
7842 return SDValue();
7843 StVal = NextInsertElt;
7844 }
7845 unsigned OrigAlignment = St->getAlignment();
7846 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7847 unsigned Alignment = std::min(OrigAlignment, EltOffset);
7848
7849 // Create scalar stores. This is at least as good as the code sequence for a
7850 // split unaligned store wich is a dup.s, ext.b, and two stores.
7851 // Most of the time the three stores should be replaced by store pair
7852 // instructions (stp).
7853 SDLoc DL(St);
7854 SDValue BasePtr = St->getBasePtr();
7855 SDValue NewST1 =
7856 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7857 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7858
7859 unsigned Offset = EltOffset;
7860 while (--NumVecElts) {
7861 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7862 DAG.getConstant(Offset, MVT::i64));
7863 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7864 St->getPointerInfo(), St->isVolatile(),
7865 St->isNonTemporal(), Alignment);
7866 Offset += EltOffset;
7867 }
7868 return NewST1;
7869}
7870
7871static SDValue performSTORECombine(SDNode *N,
7872 TargetLowering::DAGCombinerInfo &DCI,
7873 SelectionDAG &DAG,
7874 const AArch64Subtarget *Subtarget) {
7875 if (!DCI.isBeforeLegalize())
7876 return SDValue();
7877
7878 StoreSDNode *S = cast<StoreSDNode>(N);
7879 if (S->isVolatile())
7880 return SDValue();
7881
7882 // Cyclone has bad performance on unaligned 16B stores when crossing line and
Sanjay Patel08efcd92015-01-28 22:37:32 +00007883 // page boundaries. We want to split such stores.
Tim Northover3b0846e2014-05-24 12:50:23 +00007884 if (!Subtarget->isCyclone())
7885 return SDValue();
7886
7887 // Don't split at Oz.
7888 MachineFunction &MF = DAG.getMachineFunction();
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00007889 bool IsMinSize = MF.getFunction()->hasFnAttribute(Attribute::MinSize);
Tim Northover3b0846e2014-05-24 12:50:23 +00007890 if (IsMinSize)
7891 return SDValue();
7892
7893 SDValue StVal = S->getValue();
7894 EVT VT = StVal.getValueType();
7895
7896 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
7897 // those up regresses performance on micro-benchmarks and olden/bh.
7898 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
7899 return SDValue();
7900
7901 // Split unaligned 16B stores. They are terrible for performance.
7902 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
7903 // extensions can use this to mark that it does not want splitting to happen
7904 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
7905 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
7906 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
7907 S->getAlignment() <= 2)
7908 return SDValue();
7909
7910 // If we get a splat of a scalar convert this vector store to a store of
7911 // scalars. They will be merged into store pairs thereby removing two
7912 // instructions.
7913 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
7914 if (ReplacedSplat != SDValue())
7915 return ReplacedSplat;
7916
7917 SDLoc DL(S);
7918 unsigned NumElts = VT.getVectorNumElements() / 2;
7919 // Split VT into two.
7920 EVT HalfVT =
7921 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
7922 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Tim Northover5e84fe32014-12-06 00:33:37 +00007923 DAG.getConstant(0, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007924 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Tim Northover5e84fe32014-12-06 00:33:37 +00007925 DAG.getConstant(NumElts, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007926 SDValue BasePtr = S->getBasePtr();
7927 SDValue NewST1 =
7928 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
7929 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
7930 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7931 DAG.getConstant(8, MVT::i64));
7932 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
7933 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
7934 S->getAlignment());
7935}
7936
7937/// Target-specific DAG combine function for post-increment LD1 (lane) and
7938/// post-increment LD1R.
7939static SDValue performPostLD1Combine(SDNode *N,
7940 TargetLowering::DAGCombinerInfo &DCI,
7941 bool IsLaneOp) {
7942 if (DCI.isBeforeLegalizeOps())
7943 return SDValue();
7944
7945 SelectionDAG &DAG = DCI.DAG;
7946 EVT VT = N->getValueType(0);
7947
7948 unsigned LoadIdx = IsLaneOp ? 1 : 0;
7949 SDNode *LD = N->getOperand(LoadIdx).getNode();
7950 // If it is not LOAD, can not do such combine.
7951 if (LD->getOpcode() != ISD::LOAD)
7952 return SDValue();
7953
7954 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
7955 EVT MemVT = LoadSDN->getMemoryVT();
7956 // Check if memory operand is the same type as the vector element.
7957 if (MemVT != VT.getVectorElementType())
7958 return SDValue();
7959
7960 // Check if there are other uses. If so, do not combine as it will introduce
7961 // an extra load.
7962 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
7963 ++UI) {
7964 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
7965 continue;
7966 if (*UI != N)
7967 return SDValue();
7968 }
7969
7970 SDValue Addr = LD->getOperand(1);
7971 SDValue Vector = N->getOperand(0);
7972 // Search for a use of the address operand that is an increment.
7973 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
7974 Addr.getNode()->use_end(); UI != UE; ++UI) {
7975 SDNode *User = *UI;
7976 if (User->getOpcode() != ISD::ADD
7977 || UI.getUse().getResNo() != Addr.getResNo())
7978 continue;
7979
7980 // Check that the add is independent of the load. Otherwise, folding it
7981 // would create a cycle.
7982 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
7983 continue;
7984 // Also check that add is not used in the vector operand. This would also
7985 // create a cycle.
7986 if (User->isPredecessorOf(Vector.getNode()))
7987 continue;
7988
7989 // If the increment is a constant, it must match the memory ref size.
7990 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7991 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7992 uint32_t IncVal = CInc->getZExtValue();
7993 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
7994 if (IncVal != NumBytes)
7995 continue;
7996 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7997 }
7998
7999 SmallVector<SDValue, 8> Ops;
8000 Ops.push_back(LD->getOperand(0)); // Chain
8001 if (IsLaneOp) {
8002 Ops.push_back(Vector); // The vector to be inserted
8003 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
8004 }
8005 Ops.push_back(Addr);
8006 Ops.push_back(Inc);
8007
8008 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00008009 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00008010 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
8011 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
8012 MemVT,
8013 LoadSDN->getMemOperand());
8014
8015 // Update the uses.
Ahmed Bougacha4c2b0782015-02-19 23:13:10 +00008016 SmallVector<SDValue, 2> NewResults;
Tim Northover3b0846e2014-05-24 12:50:23 +00008017 NewResults.push_back(SDValue(LD, 0)); // The result of load
8018 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
8019 DCI.CombineTo(LD, NewResults);
8020 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
8021 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
8022
8023 break;
8024 }
8025 return SDValue();
8026}
8027
8028/// Target-specific DAG combine function for NEON load/store intrinsics
8029/// to merge base address updates.
8030static SDValue performNEONPostLDSTCombine(SDNode *N,
8031 TargetLowering::DAGCombinerInfo &DCI,
8032 SelectionDAG &DAG) {
8033 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8034 return SDValue();
8035
8036 unsigned AddrOpIdx = N->getNumOperands() - 1;
8037 SDValue Addr = N->getOperand(AddrOpIdx);
8038
8039 // Search for a use of the address operand that is an increment.
8040 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8041 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8042 SDNode *User = *UI;
8043 if (User->getOpcode() != ISD::ADD ||
8044 UI.getUse().getResNo() != Addr.getResNo())
8045 continue;
8046
8047 // Check that the add is independent of the load/store. Otherwise, folding
8048 // it would create a cycle.
8049 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8050 continue;
8051
8052 // Find the new opcode for the updating load/store.
8053 bool IsStore = false;
8054 bool IsLaneOp = false;
8055 bool IsDupOp = false;
8056 unsigned NewOpc = 0;
8057 unsigned NumVecs = 0;
8058 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8059 switch (IntNo) {
8060 default: llvm_unreachable("unexpected intrinsic for Neon base update");
8061 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
8062 NumVecs = 2; break;
8063 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
8064 NumVecs = 3; break;
8065 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
8066 NumVecs = 4; break;
8067 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
8068 NumVecs = 2; IsStore = true; break;
8069 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
8070 NumVecs = 3; IsStore = true; break;
8071 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
8072 NumVecs = 4; IsStore = true; break;
8073 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
8074 NumVecs = 2; break;
8075 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
8076 NumVecs = 3; break;
8077 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
8078 NumVecs = 4; break;
8079 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
8080 NumVecs = 2; IsStore = true; break;
8081 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
8082 NumVecs = 3; IsStore = true; break;
8083 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
8084 NumVecs = 4; IsStore = true; break;
8085 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
8086 NumVecs = 2; IsDupOp = true; break;
8087 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
8088 NumVecs = 3; IsDupOp = true; break;
8089 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
8090 NumVecs = 4; IsDupOp = true; break;
8091 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
8092 NumVecs = 2; IsLaneOp = true; break;
8093 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
8094 NumVecs = 3; IsLaneOp = true; break;
8095 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
8096 NumVecs = 4; IsLaneOp = true; break;
8097 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
8098 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
8099 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
8100 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
8101 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
8102 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
8103 }
8104
8105 EVT VecTy;
8106 if (IsStore)
8107 VecTy = N->getOperand(2).getValueType();
8108 else
8109 VecTy = N->getValueType(0);
8110
8111 // If the increment is a constant, it must match the memory ref size.
8112 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8113 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8114 uint32_t IncVal = CInc->getZExtValue();
8115 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8116 if (IsLaneOp || IsDupOp)
8117 NumBytes /= VecTy.getVectorNumElements();
8118 if (IncVal != NumBytes)
8119 continue;
8120 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8121 }
8122 SmallVector<SDValue, 8> Ops;
8123 Ops.push_back(N->getOperand(0)); // Incoming chain
8124 // Load lane and store have vector list as input.
8125 if (IsLaneOp || IsStore)
8126 for (unsigned i = 2; i < AddrOpIdx; ++i)
8127 Ops.push_back(N->getOperand(i));
8128 Ops.push_back(Addr); // Base register
8129 Ops.push_back(Inc);
8130
8131 // Return Types.
8132 EVT Tys[6];
8133 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
8134 unsigned n;
8135 for (n = 0; n < NumResultVecs; ++n)
8136 Tys[n] = VecTy;
8137 Tys[n++] = MVT::i64; // Type of write back register
8138 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00008139 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008140
8141 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8142 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
8143 MemInt->getMemoryVT(),
8144 MemInt->getMemOperand());
8145
8146 // Update the uses.
8147 std::vector<SDValue> NewResults;
8148 for (unsigned i = 0; i < NumResultVecs; ++i) {
8149 NewResults.push_back(SDValue(UpdN.getNode(), i));
8150 }
8151 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
8152 DCI.CombineTo(N, NewResults);
8153 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8154
8155 break;
8156 }
8157 return SDValue();
8158}
8159
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008160// Checks to see if the value is the prescribed width and returns information
8161// about its extension mode.
8162static
8163bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
8164 ExtType = ISD::NON_EXTLOAD;
8165 switch(V.getNode()->getOpcode()) {
8166 default:
8167 return false;
8168 case ISD::LOAD: {
8169 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
8170 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
8171 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
8172 ExtType = LoadNode->getExtensionType();
8173 return true;
8174 }
8175 return false;
8176 }
8177 case ISD::AssertSext: {
8178 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8179 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8180 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8181 ExtType = ISD::SEXTLOAD;
8182 return true;
8183 }
8184 return false;
8185 }
8186 case ISD::AssertZext: {
8187 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8188 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8189 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8190 ExtType = ISD::ZEXTLOAD;
8191 return true;
8192 }
8193 return false;
8194 }
8195 case ISD::Constant:
8196 case ISD::TargetConstant: {
Reid Kleckner39ad7c92014-08-29 22:14:26 +00008197 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
Aaron Ballman8ca53882014-09-02 12:19:02 +00008198 1LL << (width - 1))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008199 return true;
8200 return false;
8201 }
8202 }
8203
8204 return true;
8205}
8206
8207// This function does a whole lot of voodoo to determine if the tests are
8208// equivalent without and with a mask. Essentially what happens is that given a
8209// DAG resembling:
8210//
8211// +-------------+ +-------------+ +-------------+ +-------------+
8212// | Input | | AddConstant | | CompConstant| | CC |
8213// +-------------+ +-------------+ +-------------+ +-------------+
8214// | | | |
8215// V V | +----------+
8216// +-------------+ +----+ | |
8217// | ADD | |0xff| | |
8218// +-------------+ +----+ | |
8219// | | | |
8220// V V | |
8221// +-------------+ | |
8222// | AND | | |
8223// +-------------+ | |
8224// | | |
8225// +-----+ | |
8226// | | |
8227// V V V
8228// +-------------+
8229// | CMP |
8230// +-------------+
8231//
8232// The AND node may be safely removed for some combinations of inputs. In
8233// particular we need to take into account the extension type of the Input,
8234// the exact values of AddConstant, CompConstant, and CC, along with the nominal
8235// width of the input (this can work for any width inputs, the above graph is
8236// specific to 8 bits.
8237//
8238// The specific equations were worked out by generating output tables for each
8239// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
8240// problem was simplified by working with 4 bit inputs, which means we only
8241// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
8242// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
8243// patterns present in both extensions (0,7). For every distinct set of
8244// AddConstant and CompConstants bit patterns we can consider the masked and
8245// unmasked versions to be equivalent if the result of this function is true for
8246// all 16 distinct bit patterns of for the current extension type of Input (w0).
8247//
8248// sub w8, w0, w1
8249// and w10, w8, #0x0f
8250// cmp w8, w2
8251// cset w9, AArch64CC
8252// cmp w10, w2
8253// cset w11, AArch64CC
8254// cmp w9, w11
8255// cset w0, eq
8256// ret
8257//
8258// Since the above function shows when the outputs are equivalent it defines
8259// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
8260// would be expensive to run during compiles. The equations below were written
8261// in a test harness that confirmed they gave equivalent outputs to the above
8262// for all inputs function, so they can be used determine if the removal is
8263// legal instead.
8264//
8265// isEquivalentMaskless() is the code for testing if the AND can be removed
8266// factored out of the DAG recognition as the DAG can take several forms.
8267
8268static
8269bool isEquivalentMaskless(unsigned CC, unsigned width,
8270 ISD::LoadExtType ExtType, signed AddConstant,
8271 signed CompConstant) {
8272 // By being careful about our equations and only writing the in term
8273 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
8274 // make them generally applicable to all bit widths.
8275 signed MaxUInt = (1 << width);
8276
8277 // For the purposes of these comparisons sign extending the type is
8278 // equivalent to zero extending the add and displacing it by half the integer
8279 // width. Provided we are careful and make sure our equations are valid over
8280 // the whole range we can just adjust the input and avoid writing equations
8281 // for sign extended inputs.
8282 if (ExtType == ISD::SEXTLOAD)
8283 AddConstant -= (1 << (width-1));
8284
8285 switch(CC) {
8286 case AArch64CC::LE:
8287 case AArch64CC::GT: {
8288 if ((AddConstant == 0) ||
8289 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
8290 (AddConstant >= 0 && CompConstant < 0) ||
8291 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
8292 return true;
8293 } break;
8294 case AArch64CC::LT:
8295 case AArch64CC::GE: {
8296 if ((AddConstant == 0) ||
8297 (AddConstant >= 0 && CompConstant <= 0) ||
8298 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
8299 return true;
8300 } break;
8301 case AArch64CC::HI:
8302 case AArch64CC::LS: {
8303 if ((AddConstant >= 0 && CompConstant < 0) ||
8304 (AddConstant <= 0 && CompConstant >= -1 &&
8305 CompConstant < AddConstant + MaxUInt))
8306 return true;
8307 } break;
8308 case AArch64CC::PL:
8309 case AArch64CC::MI: {
8310 if ((AddConstant == 0) ||
8311 (AddConstant > 0 && CompConstant <= 0) ||
8312 (AddConstant < 0 && CompConstant <= AddConstant))
8313 return true;
8314 } break;
8315 case AArch64CC::LO:
8316 case AArch64CC::HS: {
8317 if ((AddConstant >= 0 && CompConstant <= 0) ||
8318 (AddConstant <= 0 && CompConstant >= 0 &&
8319 CompConstant <= AddConstant + MaxUInt))
8320 return true;
8321 } break;
8322 case AArch64CC::EQ:
8323 case AArch64CC::NE: {
8324 if ((AddConstant > 0 && CompConstant < 0) ||
8325 (AddConstant < 0 && CompConstant >= 0 &&
8326 CompConstant < AddConstant + MaxUInt) ||
8327 (AddConstant >= 0 && CompConstant >= 0 &&
8328 CompConstant >= AddConstant) ||
8329 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
8330
8331 return true;
8332 } break;
8333 case AArch64CC::VS:
8334 case AArch64CC::VC:
8335 case AArch64CC::AL:
8336 case AArch64CC::NV:
8337 return true;
8338 case AArch64CC::Invalid:
8339 break;
8340 }
8341
8342 return false;
8343}
8344
8345static
8346SDValue performCONDCombine(SDNode *N,
8347 TargetLowering::DAGCombinerInfo &DCI,
8348 SelectionDAG &DAG, unsigned CCIndex,
8349 unsigned CmpIndex) {
8350 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
8351 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
8352 unsigned CondOpcode = SubsNode->getOpcode();
8353
8354 if (CondOpcode != AArch64ISD::SUBS)
8355 return SDValue();
8356
8357 // There is a SUBS feeding this condition. Is it fed by a mask we can
8358 // use?
8359
8360 SDNode *AndNode = SubsNode->getOperand(0).getNode();
8361 unsigned MaskBits = 0;
8362
8363 if (AndNode->getOpcode() != ISD::AND)
8364 return SDValue();
8365
8366 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
8367 uint32_t CNV = CN->getZExtValue();
8368 if (CNV == 255)
8369 MaskBits = 8;
8370 else if (CNV == 65535)
8371 MaskBits = 16;
8372 }
8373
8374 if (!MaskBits)
8375 return SDValue();
8376
8377 SDValue AddValue = AndNode->getOperand(0);
8378
8379 if (AddValue.getOpcode() != ISD::ADD)
8380 return SDValue();
8381
8382 // The basic dag structure is correct, grab the inputs and validate them.
8383
8384 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
8385 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
8386 SDValue SubsInputValue = SubsNode->getOperand(1);
8387
8388 // The mask is present and the provenance of all the values is a smaller type,
8389 // lets see if the mask is superfluous.
8390
8391 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
8392 !isa<ConstantSDNode>(SubsInputValue.getNode()))
8393 return SDValue();
8394
8395 ISD::LoadExtType ExtType;
8396
8397 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
8398 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
8399 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
8400 return SDValue();
8401
8402 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
8403 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
8404 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
8405 return SDValue();
8406
8407 // The AND is not necessary, remove it.
8408
8409 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
8410 SubsNode->getValueType(1));
8411 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
8412
8413 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
8414 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
8415
8416 return SDValue(N, 0);
8417}
8418
Tim Northover3b0846e2014-05-24 12:50:23 +00008419// Optimize compare with zero and branch.
8420static SDValue performBRCONDCombine(SDNode *N,
8421 TargetLowering::DAGCombinerInfo &DCI,
8422 SelectionDAG &DAG) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008423 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
8424 if (NV.getNode())
8425 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00008426 SDValue Chain = N->getOperand(0);
8427 SDValue Dest = N->getOperand(1);
8428 SDValue CCVal = N->getOperand(2);
8429 SDValue Cmp = N->getOperand(3);
8430
8431 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
8432 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
8433 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
8434 return SDValue();
8435
8436 unsigned CmpOpc = Cmp.getOpcode();
8437 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
8438 return SDValue();
8439
8440 // Only attempt folding if there is only one use of the flag and no use of the
8441 // value.
8442 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
8443 return SDValue();
8444
8445 SDValue LHS = Cmp.getOperand(0);
8446 SDValue RHS = Cmp.getOperand(1);
8447
8448 assert(LHS.getValueType() == RHS.getValueType() &&
8449 "Expected the value type to be the same for both operands!");
8450 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
8451 return SDValue();
8452
8453 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
8454 std::swap(LHS, RHS);
8455
8456 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
8457 return SDValue();
8458
8459 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
8460 LHS.getOpcode() == ISD::SRL)
8461 return SDValue();
8462
8463 // Fold the compare into the branch instruction.
8464 SDValue BR;
8465 if (CC == AArch64CC::EQ)
8466 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8467 else
8468 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8469
8470 // Do not add new nodes to DAG combiner worklist.
8471 DCI.CombineTo(N, BR, false);
8472
8473 return SDValue();
8474}
8475
8476// vselect (v1i1 setcc) ->
8477// vselect (v1iXX setcc) (XX is the size of the compared operand type)
8478// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
8479// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
8480// such VSELECT.
8481static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
8482 SDValue N0 = N->getOperand(0);
8483 EVT CCVT = N0.getValueType();
8484
8485 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
8486 CCVT.getVectorElementType() != MVT::i1)
8487 return SDValue();
8488
8489 EVT ResVT = N->getValueType(0);
8490 EVT CmpVT = N0.getOperand(0).getValueType();
8491 // Only combine when the result type is of the same size as the compared
8492 // operands.
8493 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
8494 return SDValue();
8495
8496 SDValue IfTrue = N->getOperand(1);
8497 SDValue IfFalse = N->getOperand(2);
8498 SDValue SetCC =
8499 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
8500 N0.getOperand(0), N0.getOperand(1),
8501 cast<CondCodeSDNode>(N0.getOperand(2))->get());
8502 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
8503 IfTrue, IfFalse);
8504}
8505
8506/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
8507/// the compare-mask instructions rather than going via NZCV, even if LHS and
8508/// RHS are really scalar. This replaces any scalar setcc in the above pattern
8509/// with a vector one followed by a DUP shuffle on the result.
8510static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
8511 SDValue N0 = N->getOperand(0);
8512 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +00008513
8514 if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
8515 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008516
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008517 // If NumMaskElts == 0, the comparison is larger than select result. The
8518 // largest real NEON comparison is 64-bits per lane, which means the result is
8519 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +00008520 EVT SrcVT = N0.getOperand(0).getValueType();
Ahmed Bougachad0ce0582014-12-01 20:59:00 +00008521
8522 // Don't try to do this optimization when the setcc itself has i1 operands.
8523 // There are no legal vectors of i1, so this would be pointless.
8524 if (SrcVT == MVT::i1)
8525 return SDValue();
8526
Tim Northover3c0915e2014-08-29 15:34:58 +00008527 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008528 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +00008529 return SDValue();
8530
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008531 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00008532 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
8533
8534 // First perform a vector comparison, where lane 0 is the one we're interested
8535 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008536 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +00008537 SDValue LHS =
8538 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
8539 SDValue RHS =
8540 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
8541 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
8542
8543 // Now duplicate the comparison mask we want across all other lanes.
8544 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
8545 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008546 Mask = DAG.getNode(ISD::BITCAST, DL,
8547 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +00008548
8549 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
8550}
8551
8552SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
8553 DAGCombinerInfo &DCI) const {
8554 SelectionDAG &DAG = DCI.DAG;
8555 switch (N->getOpcode()) {
8556 default:
8557 break;
8558 case ISD::ADD:
8559 case ISD::SUB:
8560 return performAddSubLongCombine(N, DCI, DAG);
8561 case ISD::XOR:
8562 return performXorCombine(N, DAG, DCI, Subtarget);
8563 case ISD::MUL:
8564 return performMulCombine(N, DAG, DCI, Subtarget);
8565 case ISD::SINT_TO_FP:
8566 case ISD::UINT_TO_FP:
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00008567 return performIntToFpCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00008568 case ISD::OR:
8569 return performORCombine(N, DCI, Subtarget);
8570 case ISD::INTRINSIC_WO_CHAIN:
8571 return performIntrinsicCombine(N, DCI, Subtarget);
8572 case ISD::ANY_EXTEND:
8573 case ISD::ZERO_EXTEND:
8574 case ISD::SIGN_EXTEND:
8575 return performExtendCombine(N, DCI, DAG);
8576 case ISD::BITCAST:
8577 return performBitcastCombine(N, DCI, DAG);
8578 case ISD::CONCAT_VECTORS:
8579 return performConcatVectorsCombine(N, DCI, DAG);
8580 case ISD::SELECT:
8581 return performSelectCombine(N, DAG);
8582 case ISD::VSELECT:
8583 return performVSelectCombine(N, DCI.DAG);
8584 case ISD::STORE:
8585 return performSTORECombine(N, DCI, DAG, Subtarget);
8586 case AArch64ISD::BRCOND:
8587 return performBRCONDCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008588 case AArch64ISD::CSEL:
8589 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +00008590 case AArch64ISD::DUP:
8591 return performPostLD1Combine(N, DCI, false);
8592 case ISD::INSERT_VECTOR_ELT:
8593 return performPostLD1Combine(N, DCI, true);
8594 case ISD::INTRINSIC_VOID:
8595 case ISD::INTRINSIC_W_CHAIN:
8596 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8597 case Intrinsic::aarch64_neon_ld2:
8598 case Intrinsic::aarch64_neon_ld3:
8599 case Intrinsic::aarch64_neon_ld4:
8600 case Intrinsic::aarch64_neon_ld1x2:
8601 case Intrinsic::aarch64_neon_ld1x3:
8602 case Intrinsic::aarch64_neon_ld1x4:
8603 case Intrinsic::aarch64_neon_ld2lane:
8604 case Intrinsic::aarch64_neon_ld3lane:
8605 case Intrinsic::aarch64_neon_ld4lane:
8606 case Intrinsic::aarch64_neon_ld2r:
8607 case Intrinsic::aarch64_neon_ld3r:
8608 case Intrinsic::aarch64_neon_ld4r:
8609 case Intrinsic::aarch64_neon_st2:
8610 case Intrinsic::aarch64_neon_st3:
8611 case Intrinsic::aarch64_neon_st4:
8612 case Intrinsic::aarch64_neon_st1x2:
8613 case Intrinsic::aarch64_neon_st1x3:
8614 case Intrinsic::aarch64_neon_st1x4:
8615 case Intrinsic::aarch64_neon_st2lane:
8616 case Intrinsic::aarch64_neon_st3lane:
8617 case Intrinsic::aarch64_neon_st4lane:
8618 return performNEONPostLDSTCombine(N, DCI, DAG);
8619 default:
8620 break;
8621 }
8622 }
8623 return SDValue();
8624}
8625
8626// Check if the return value is used as only a return value, as otherwise
8627// we can't perform a tail-call. In particular, we need to check for
8628// target ISD nodes that are returns and any other "odd" constructs
8629// that the generic analysis code won't necessarily catch.
8630bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
8631 SDValue &Chain) const {
8632 if (N->getNumValues() != 1)
8633 return false;
8634 if (!N->hasNUsesOfValue(1, 0))
8635 return false;
8636
8637 SDValue TCChain = Chain;
8638 SDNode *Copy = *N->use_begin();
8639 if (Copy->getOpcode() == ISD::CopyToReg) {
8640 // If the copy has a glue operand, we conservatively assume it isn't safe to
8641 // perform a tail call.
8642 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
8643 MVT::Glue)
8644 return false;
8645 TCChain = Copy->getOperand(0);
8646 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
8647 return false;
8648
8649 bool HasRet = false;
8650 for (SDNode *Node : Copy->uses()) {
8651 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
8652 return false;
8653 HasRet = true;
8654 }
8655
8656 if (!HasRet)
8657 return false;
8658
8659 Chain = TCChain;
8660 return true;
8661}
8662
8663// Return whether the an instruction can potentially be optimized to a tail
8664// call. This will cause the optimizers to attempt to move, or duplicate,
8665// return instructions to help enable tail call optimizations for this
8666// instruction.
8667bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
8668 if (!CI->isTailCall())
8669 return false;
8670
8671 return true;
8672}
8673
8674bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
8675 SDValue &Offset,
8676 ISD::MemIndexedMode &AM,
8677 bool &IsInc,
8678 SelectionDAG &DAG) const {
8679 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
8680 return false;
8681
8682 Base = Op->getOperand(0);
8683 // All of the indexed addressing mode instructions take a signed
8684 // 9 bit immediate offset.
8685 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
8686 int64_t RHSC = (int64_t)RHS->getZExtValue();
8687 if (RHSC >= 256 || RHSC <= -256)
8688 return false;
8689 IsInc = (Op->getOpcode() == ISD::ADD);
8690 Offset = Op->getOperand(1);
8691 return true;
8692 }
8693 return false;
8694}
8695
8696bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8697 SDValue &Offset,
8698 ISD::MemIndexedMode &AM,
8699 SelectionDAG &DAG) const {
8700 EVT VT;
8701 SDValue Ptr;
8702 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8703 VT = LD->getMemoryVT();
8704 Ptr = LD->getBasePtr();
8705 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8706 VT = ST->getMemoryVT();
8707 Ptr = ST->getBasePtr();
8708 } else
8709 return false;
8710
8711 bool IsInc;
8712 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
8713 return false;
8714 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
8715 return true;
8716}
8717
8718bool AArch64TargetLowering::getPostIndexedAddressParts(
8719 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
8720 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
8721 EVT VT;
8722 SDValue Ptr;
8723 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8724 VT = LD->getMemoryVT();
8725 Ptr = LD->getBasePtr();
8726 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8727 VT = ST->getMemoryVT();
8728 Ptr = ST->getBasePtr();
8729 } else
8730 return false;
8731
8732 bool IsInc;
8733 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
8734 return false;
8735 // Post-indexing updates the base, so it's not a valid transform
8736 // if that's not the same as the load's pointer.
8737 if (Ptr != Base)
8738 return false;
8739 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
8740 return true;
8741}
8742
Tim Northoverf8bfe212014-07-18 13:07:05 +00008743static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
8744 SelectionDAG &DAG) {
Tim Northoverf8bfe212014-07-18 13:07:05 +00008745 SDLoc DL(N);
8746 SDValue Op = N->getOperand(0);
Ahmed Bougacha87946322014-12-01 20:52:32 +00008747
8748 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
8749 return;
8750
Tim Northoverf8bfe212014-07-18 13:07:05 +00008751 Op = SDValue(
8752 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
8753 DAG.getUNDEF(MVT::i32), Op,
8754 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
8755 0);
8756 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
8757 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
8758}
8759
Tim Northover3b0846e2014-05-24 12:50:23 +00008760void AArch64TargetLowering::ReplaceNodeResults(
8761 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
8762 switch (N->getOpcode()) {
8763 default:
8764 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00008765 case ISD::BITCAST:
8766 ReplaceBITCASTResults(N, Results, DAG);
8767 return;
Tim Northover3b0846e2014-05-24 12:50:23 +00008768 case ISD::FP_TO_UINT:
8769 case ISD::FP_TO_SINT:
8770 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
8771 // Let normal code take care of it by not adding anything to Results.
8772 return;
8773 }
8774}
8775
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00008776bool AArch64TargetLowering::useLoadStackGuardNode() const {
8777 return true;
8778}
8779
Hao Liu44e5d7a2014-11-21 06:39:58 +00008780bool AArch64TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
8781 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
8782 // reciprocal if there are three or more FDIVs.
8783 return NumUsers > 2;
8784}
8785
Chandler Carruth9d010ff2014-07-03 00:23:43 +00008786TargetLoweringBase::LegalizeTypeAction
8787AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
8788 MVT SVT = VT.getSimpleVT();
8789 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
8790 // v4i16, v2i32 instead of to promote.
8791 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
8792 || SVT == MVT::v1f32)
8793 return TypeWidenVector;
8794
8795 return TargetLoweringBase::getPreferredVectorAction(VT);
8796}
8797
Robin Morisseted3d48f2014-09-03 21:29:59 +00008798// Loads and stores less than 128-bits are already atomic; ones above that
8799// are doomed anyway, so defer to the default libcall and blame the OS when
8800// things go wrong.
8801bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
8802 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
8803 return Size == 128;
8804}
8805
8806// Loads and stores less than 128-bits are already atomic; ones above that
8807// are doomed anyway, so defer to the default libcall and blame the OS when
8808// things go wrong.
8809bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
8810 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
8811 return Size == 128;
8812}
8813
8814// For the real atomic operations, we have ldxr/stxr up to 128 bits,
JF Bastienf14889e2015-03-04 15:47:57 +00008815TargetLoweringBase::AtomicRMWExpansionKind
8816AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +00008817 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
JF Bastienf14889e2015-03-04 15:47:57 +00008818 return Size <= 128 ? AtomicRMWExpansionKind::LLSC
8819 : AtomicRMWExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +00008820}
8821
Robin Morisset25c8e312014-09-17 00:06:58 +00008822bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
8823 return true;
8824}
8825
Tim Northover3b0846e2014-05-24 12:50:23 +00008826Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
8827 AtomicOrdering Ord) const {
8828 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8829 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +00008830 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008831
8832 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
8833 // intrinsic must return {i64, i64} and we have to recombine them into a
8834 // single i128 here.
8835 if (ValTy->getPrimitiveSizeInBits() == 128) {
8836 Intrinsic::ID Int =
8837 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
8838 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
8839
8840 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8841 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
8842
8843 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
8844 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
8845 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
8846 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
8847 return Builder.CreateOr(
8848 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
8849 }
8850
8851 Type *Tys[] = { Addr->getType() };
8852 Intrinsic::ID Int =
8853 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
8854 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
8855
8856 return Builder.CreateTruncOrBitCast(
8857 Builder.CreateCall(Ldxr, Addr),
8858 cast<PointerType>(Addr->getType())->getElementType());
8859}
8860
8861Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
8862 Value *Val, Value *Addr,
8863 AtomicOrdering Ord) const {
8864 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +00008865 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008866
8867 // Since the intrinsics must have legal type, the i128 intrinsics take two
8868 // parameters: "i64, i64". We must marshal Val into the appropriate form
8869 // before the call.
8870 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
8871 Intrinsic::ID Int =
8872 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
8873 Function *Stxr = Intrinsic::getDeclaration(M, Int);
8874 Type *Int64Ty = Type::getInt64Ty(M->getContext());
8875
8876 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
8877 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
8878 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8879 return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
8880 }
8881
8882 Intrinsic::ID Int =
8883 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
8884 Type *Tys[] = { Addr->getType() };
8885 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
8886
8887 return Builder.CreateCall2(
8888 Stxr, Builder.CreateZExtOrBitCast(
8889 Val, Stxr->getFunctionType()->getParamType(0)),
8890 Addr);
8891}
Tim Northover3c55cca2014-11-27 21:02:42 +00008892
8893bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
8894 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
8895 return Ty->isArrayTy();
8896}