blob: f3a8bf7a3ad06c110de330bcc1fc11c6d10672f9 [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// Status: early prototype.
14///
15/// The algorithm of the tool is similar to Memcheck
16/// (http://goo.gl/QKbem). We associate a few shadow bits with every
17/// byte of the application memory, poison the shadow of the malloc-ed
18/// or alloca-ed memory, load the shadow bits on every memory read,
19/// propagate the shadow bits through some of the arithmetic
20/// instruction (including MOV), store the shadow bits on every memory
21/// write, report a bug on some other instructions (e.g. JMP) if the
22/// associated shadow is poisoned.
23///
24/// But there are differences too. The first and the major one:
25/// compiler instrumentation instead of binary instrumentation. This
26/// gives us much better register allocation, possible compiler
27/// optimizations and a fast start-up. But this brings the major issue
28/// as well: msan needs to see all program events, including system
29/// calls and reads/writes in system libraries, so we either need to
30/// compile *everything* with msan or use a binary translation
31/// component (e.g. DynamoRIO) to instrument pre-built libraries.
32/// Another difference from Memcheck is that we use 8 shadow bits per
33/// byte of application memory and use a direct shadow mapping. This
34/// greatly simplifies the instrumentation code and avoids races on
35/// shadow updates (Memcheck is single-threaded so races are not a
36/// concern there. Memcheck uses 2 shadow bits per byte with a slow
37/// path storage that uses 8 bits per byte).
38///
39/// The default value of shadow is 0, which means "clean" (not poisoned).
40///
41/// Every module initializer should call __msan_init to ensure that the
42/// shadow memory is ready. On error, __msan_warning is called. Since
43/// parameters and return values may be passed via registers, we have a
44/// specialized thread-local shadow for return values
45/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000046///
47/// Origin tracking.
48///
49/// MemorySanitizer can track origins (allocation points) of all uninitialized
50/// values. This behavior is controlled with a flag (msan-track-origins) and is
51/// disabled by default.
52///
53/// Origins are 4-byte values created and interpreted by the runtime library.
54/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
55/// of application memory. Propagation of origins is basically a bunch of
56/// "select" instructions that pick the origin of a dirty argument, if an
57/// instruction has one.
58///
59/// Every 4 aligned, consecutive bytes of application memory have one origin
60/// value associated with them. If these bytes contain uninitialized data
61/// coming from 2 different allocations, the last store wins. Because of this,
62/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
Alexey Samsonov3efc87e2012-12-28 09:30:44 +000063/// practice.
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000064///
65/// Origins are meaningless for fully initialized values, so MemorySanitizer
66/// avoids storing origin to memory when a fully initialized value is stored.
67/// This way it avoids needless overwritting origin of the 4-byte region on
68/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanov5522a702013-09-24 11:20:27 +000069///
70/// Atomic handling.
71///
72/// Ideally, every atomic store of application value should update the
73/// corresponding shadow location in an atomic way. Unfortunately, atomic store
74/// of two disjoint locations can not be done without severe slowdown.
75///
76/// Therefore, we implement an approximation that may err on the safe side.
77/// In this implementation, every atomically accessed location in the program
78/// may only change from (partially) uninitialized to fully initialized, but
79/// not the other way around. We load the shadow _after_ the application load,
80/// and we store the shadow _before_ the app store. Also, we always store clean
81/// shadow (if the application store is atomic). This way, if the store-load
82/// pair constitutes a happens-before arc, shadow store and load are correctly
83/// ordered such that the load will get either the value that was stored, or
84/// some later value (which is always clean).
85///
86/// This does not work very well with Compare-And-Swap (CAS) and
87/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
88/// must store the new shadow before the app operation, and load the shadow
89/// after the app operation. Computers don't work this way. Current
90/// implementation ignores the load aspect of CAS/RMW, always returning a clean
91/// value. It implements the store part as a simple atomic store by storing a
92/// clean shadow.
93
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000094//===----------------------------------------------------------------------===//
95
Chandler Carruthed0881b2012-12-03 16:50:05 +000096#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000097#include "llvm/ADT/DepthFirstIterator.h"
98#include "llvm/ADT/SmallString.h"
99#include "llvm/ADT/SmallVector.h"
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000100#include "llvm/ADT/StringExtras.h"
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +0000101#include "llvm/ADT/Triple.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000102#include "llvm/IR/DataLayout.h"
103#include "llvm/IR/Function.h"
104#include "llvm/IR/IRBuilder.h"
105#include "llvm/IR/InlineAsm.h"
Chandler Carruth7da14f12014-03-06 03:23:41 +0000106#include "llvm/IR/InstVisitor.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000107#include "llvm/IR/IntrinsicInst.h"
108#include "llvm/IR/LLVMContext.h"
109#include "llvm/IR/MDBuilder.h"
110#include "llvm/IR/Module.h"
111#include "llvm/IR/Type.h"
Chandler Carrutha4ea2692014-03-04 11:26:31 +0000112#include "llvm/IR/ValueMap.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000113#include "llvm/Support/CommandLine.h"
114#include "llvm/Support/Compiler.h"
115#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000116#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000117#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000118#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000119#include "llvm/Transforms/Utils/ModuleUtils.h"
Peter Collingbourne015370e2013-07-09 22:02:49 +0000120#include "llvm/Transforms/Utils/SpecialCaseList.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000121
122using namespace llvm;
123
Chandler Carruth964daaa2014-04-22 02:55:47 +0000124#define DEBUG_TYPE "msan"
125
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000126static const uint64_t kShadowMask32 = 1ULL << 31;
127static const uint64_t kShadowMask64 = 1ULL << 46;
128static const uint64_t kOriginOffset32 = 1ULL << 30;
129static const uint64_t kOriginOffset64 = 1ULL << 45;
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000130static const unsigned kMinOriginAlignment = 4;
131static const unsigned kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000132
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000133// Accesses sizes are powers of two: 1, 2, 4, 8.
134static const size_t kNumberOfAccessSizes = 4;
135
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000136/// \brief Track origins of uninitialized values.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000137///
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000138/// Adds a section to MemorySanitizer report that points to the allocation
139/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000140static cl::opt<int> ClTrackOrigins("msan-track-origins",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000141 cl::desc("Track origins (allocation sites) of poisoned memory"),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000142 cl::Hidden, cl::init(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000143static cl::opt<bool> ClKeepGoing("msan-keep-going",
144 cl::desc("keep going after reporting a UMR"),
145 cl::Hidden, cl::init(false));
146static cl::opt<bool> ClPoisonStack("msan-poison-stack",
147 cl::desc("poison uninitialized stack variables"),
148 cl::Hidden, cl::init(true));
149static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
150 cl::desc("poison uninitialized stack variables with a call"),
151 cl::Hidden, cl::init(false));
152static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
153 cl::desc("poison uninitialized stack variables with the given patter"),
154 cl::Hidden, cl::init(0xff));
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000155static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
156 cl::desc("poison undef temps"),
157 cl::Hidden, cl::init(true));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000158
159static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
160 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
161 cl::Hidden, cl::init(true));
162
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000163static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
164 cl::desc("exact handling of relational integer ICmp"),
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +0000165 cl::Hidden, cl::init(false));
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000166
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000167// This flag controls whether we check the shadow of the address
168// operand of load or store. Such bugs are very rare, since load from
169// a garbage address typically results in SEGV, but still happen
170// (e.g. only lower bits of address are garbage, or the access happens
171// early at program startup where malloc-ed memory is more likely to
172// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
173static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
174 cl::desc("report accesses through a pointer which has poisoned shadow"),
175 cl::Hidden, cl::init(true));
176
177static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
178 cl::desc("print out instructions with default strict semantics"),
179 cl::Hidden, cl::init(false));
180
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000181static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000182 cl::desc("File containing the list of functions where MemorySanitizer "
183 "should not report bugs"), cl::Hidden);
184
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000185static cl::opt<int> ClInstrumentationWithCallThreshold(
186 "msan-instrumentation-with-call-threshold",
187 cl::desc(
188 "If the function being instrumented requires more than "
189 "this number of checks and origin stores, use callbacks instead of "
190 "inline checks (-1 means never use callbacks)."),
Evgeniy Stepanov3939f542014-04-21 15:04:05 +0000191 cl::Hidden, cl::init(3500));
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000192
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000193// Experimental. Wraps all indirect calls in the instrumented code with
194// a call to the given function. This is needed to assist the dynamic
195// helper tool (MSanDR) to regain control on transition between instrumented and
196// non-instrumented code.
197static cl::opt<std::string> ClWrapIndirectCalls("msan-wrap-indirect-calls",
198 cl::desc("Wrap indirect calls with a given function"),
199 cl::Hidden);
200
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000201static cl::opt<bool> ClWrapIndirectCallsFast("msan-wrap-indirect-calls-fast",
202 cl::desc("Do not wrap indirect calls with target in the same module"),
203 cl::Hidden, cl::init(true));
204
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000205namespace {
206
207/// \brief An instrumentation pass implementing detection of uninitialized
208/// reads.
209///
210/// MemorySanitizer: instrument the code in module to find
211/// uninitialized reads.
212class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000213 public:
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000214 MemorySanitizer(int TrackOrigins = 0,
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000215 StringRef BlacklistFile = StringRef())
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000216 : FunctionPass(ID),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000217 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000218 DL(0),
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000219 WarningFn(0),
220 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile : BlacklistFile),
221 WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
Craig Topper3e4c6972014-03-05 09:10:37 +0000222 const char *getPassName() const override { return "MemorySanitizer"; }
223 bool runOnFunction(Function &F) override;
224 bool doInitialization(Module &M) override;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000225 static char ID; // Pass identification, replacement for typeid.
226
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000227 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000228 void initializeCallbacks(Module &M);
229
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000230 /// \brief Track origins (allocation points) of uninitialized values.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000231 int TrackOrigins;
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000232
Rafael Espindolaaeff8a92014-02-24 23:12:18 +0000233 const DataLayout *DL;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000234 LLVMContext *C;
235 Type *IntptrTy;
236 Type *OriginTy;
237 /// \brief Thread-local shadow storage for function parameters.
238 GlobalVariable *ParamTLS;
239 /// \brief Thread-local origin storage for function parameters.
240 GlobalVariable *ParamOriginTLS;
241 /// \brief Thread-local shadow storage for function return value.
242 GlobalVariable *RetvalTLS;
243 /// \brief Thread-local origin storage for function return value.
244 GlobalVariable *RetvalOriginTLS;
245 /// \brief Thread-local shadow storage for in-register va_arg function
246 /// parameters (x86_64-specific).
247 GlobalVariable *VAArgTLS;
248 /// \brief Thread-local shadow storage for va_arg overflow area
249 /// (x86_64-specific).
250 GlobalVariable *VAArgOverflowSizeTLS;
251 /// \brief Thread-local space used to pass origin value to the UMR reporting
252 /// function.
253 GlobalVariable *OriginTLS;
254
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000255 GlobalVariable *MsandrModuleStart;
256 GlobalVariable *MsandrModuleEnd;
257
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000258 /// \brief The run-time callback to print a warning.
259 Value *WarningFn;
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000260 // These arrays are indexed by log2(AccessSize).
261 Value *MaybeWarningFn[kNumberOfAccessSizes];
262 Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
263
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000264 /// \brief Run-time helper that generates a new origin value for a stack
265 /// allocation.
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000266 Value *MsanSetAllocaOrigin4Fn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000267 /// \brief Run-time helper that poisons stack on function entry.
268 Value *MsanPoisonStackFn;
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000269 /// \brief Run-time helper that records a store (or any event) of an
270 /// uninitialized value and returns an updated origin id encoding this info.
271 Value *MsanChainOriginFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000272 /// \brief MSan runtime replacements for memmove, memcpy and memset.
273 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000274
275 /// \brief Address mask used in application-to-shadow address calculation.
276 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
277 uint64_t ShadowMask;
278 /// \brief Offset of the origin shadow from the "normal" shadow.
279 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
280 uint64_t OriginOffset;
281 /// \brief Branch weights for error reporting.
282 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000283 /// \brief Branch weights for origin store.
284 MDNode *OriginStoreWeights;
Dmitri Gribenko9bf66a52013-05-09 21:16:18 +0000285 /// \brief Path to blacklist file.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000286 SmallString<64> BlacklistFile;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000287 /// \brief The blacklist.
Ahmed Charles56440fd2014-03-06 05:51:42 +0000288 std::unique_ptr<SpecialCaseList> BL;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000289 /// \brief An empty volatile inline asm that prevents callback merge.
290 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000291
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000292 bool WrapIndirectCalls;
293 /// \brief Run-time wrapper for indirect calls.
294 Value *IndirectCallWrapperFn;
295 // Argument and return type of IndirectCallWrapperFn: void (*f)(void).
296 Type *AnyFunctionPtrTy;
297
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000298 friend struct MemorySanitizerVisitor;
299 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000300};
301} // namespace
302
303char MemorySanitizer::ID = 0;
304INITIALIZE_PASS(MemorySanitizer, "msan",
305 "MemorySanitizer: detects uninitialized reads.",
306 false, false)
307
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000308FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins,
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000309 StringRef BlacklistFile) {
310 return new MemorySanitizer(TrackOrigins, BlacklistFile);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000311}
312
313/// \brief Create a non-const global initialized with the given string.
314///
315/// Creates a writable global for Str so that we can pass it to the
316/// run-time lib. Runtime uses first 4 bytes of the string to store the
317/// frame ID, so the string needs to be mutable.
318static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
319 StringRef Str) {
320 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
321 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
322 GlobalValue::PrivateLinkage, StrConst, "");
323}
324
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000325
326/// \brief Insert extern declaration of runtime-provided functions and globals.
327void MemorySanitizer::initializeCallbacks(Module &M) {
328 // Only do this once.
329 if (WarningFn)
330 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000331
332 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000333 // Create the callback.
334 // FIXME: this function should have "Cold" calling conv,
335 // which is not yet implemented.
336 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
337 : "__msan_warning_noreturn";
338 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
339
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000340 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
341 AccessSizeIndex++) {
342 unsigned AccessSize = 1 << AccessSizeIndex;
343 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
344 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
345 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
346 IRB.getInt32Ty(), NULL);
347
348 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
349 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
350 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
351 IRB.getInt8PtrTy(), IRB.getInt32Ty(), NULL);
352 }
353
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000354 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
355 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
356 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000357 MsanPoisonStackFn = M.getOrInsertFunction(
358 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000359 MsanChainOriginFn = M.getOrInsertFunction(
360 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000361 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000362 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
363 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000364 MemcpyFn = M.getOrInsertFunction(
365 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
366 IntptrTy, NULL);
367 MemsetFn = M.getOrInsertFunction(
368 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000369 IntptrTy, NULL);
370
371 // Create globals.
372 RetvalTLS = new GlobalVariable(
373 M, ArrayType::get(IRB.getInt64Ty(), 8), false,
374 GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000375 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000376 RetvalOriginTLS = new GlobalVariable(
377 M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000378 "__msan_retval_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000379
380 ParamTLS = new GlobalVariable(
381 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
382 GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000383 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000384 ParamOriginTLS = new GlobalVariable(
385 M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000386 0, "__msan_param_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000387
388 VAArgTLS = new GlobalVariable(
389 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
390 GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000391 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000392 VAArgOverflowSizeTLS = new GlobalVariable(
393 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
394 "__msan_va_arg_overflow_size_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000395 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000396 OriginTLS = new GlobalVariable(
397 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000398 "__msan_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000399
400 // We insert an empty inline asm after __msan_report* to avoid callback merge.
401 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
402 StringRef(""), StringRef(""),
403 /*hasSideEffects=*/true);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000404
405 if (WrapIndirectCalls) {
406 AnyFunctionPtrTy =
407 PointerType::getUnqual(FunctionType::get(IRB.getVoidTy(), false));
408 IndirectCallWrapperFn = M.getOrInsertFunction(
409 ClWrapIndirectCalls, AnyFunctionPtrTy, AnyFunctionPtrTy, NULL);
410 }
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000411
412 if (ClWrapIndirectCallsFast) {
413 MsandrModuleStart = new GlobalVariable(
414 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
415 0, "__executable_start");
416 MsandrModuleStart->setVisibility(GlobalVariable::HiddenVisibility);
417 MsandrModuleEnd = new GlobalVariable(
418 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
419 0, "_end");
420 MsandrModuleEnd->setVisibility(GlobalVariable::HiddenVisibility);
421 }
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000422}
423
424/// \brief Module-level initialization.
425///
426/// inserts a call to __msan_init to the module's constructor list.
427bool MemorySanitizer::doInitialization(Module &M) {
Rafael Espindola93512512014-02-25 17:30:31 +0000428 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
429 if (!DLP)
Evgeniy Stepanov119cb2e2014-04-23 12:51:32 +0000430 report_fatal_error("data layout missing");
Rafael Espindola93512512014-02-25 17:30:31 +0000431 DL = &DLP->getDataLayout();
432
Alexey Samsonove4b5fb82013-08-12 11:46:09 +0000433 BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000434 C = &(M.getContext());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000435 unsigned PtrSize = DL->getPointerSizeInBits(/* AddressSpace */0);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000436 switch (PtrSize) {
437 case 64:
438 ShadowMask = kShadowMask64;
439 OriginOffset = kOriginOffset64;
440 break;
441 case 32:
442 ShadowMask = kShadowMask32;
443 OriginOffset = kOriginOffset32;
444 break;
445 default:
446 report_fatal_error("unsupported pointer size");
447 break;
448 }
449
450 IRBuilder<> IRB(*C);
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000451 IntptrTy = IRB.getIntPtrTy(DL);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000452 OriginTy = IRB.getInt32Ty();
453
454 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000455 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000456
457 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
458 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
459 "__msan_init", IRB.getVoidTy(), NULL)), 0);
460
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000461 if (TrackOrigins)
462 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
463 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000464
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000465 if (ClKeepGoing)
466 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
467 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
Evgeniy Stepanovdcf6bcb2013-01-22 13:26:53 +0000468
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000469 return true;
470}
471
472namespace {
473
474/// \brief A helper class that handles instrumentation of VarArg
475/// functions on a particular platform.
476///
477/// Implementations are expected to insert the instrumentation
478/// necessary to propagate argument shadow through VarArg function
479/// calls. Visit* methods are called during an InstVisitor pass over
480/// the function, and should avoid creating new basic blocks. A new
481/// instance of this class is created for each instrumented function.
482struct VarArgHelper {
483 /// \brief Visit a CallSite.
484 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
485
486 /// \brief Visit a va_start call.
487 virtual void visitVAStartInst(VAStartInst &I) = 0;
488
489 /// \brief Visit a va_copy call.
490 virtual void visitVACopyInst(VACopyInst &I) = 0;
491
492 /// \brief Finalize function instrumentation.
493 ///
494 /// This method is called after visiting all interesting (see above)
495 /// instructions in a function.
496 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000497
498 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000499};
500
501struct MemorySanitizerVisitor;
502
503VarArgHelper*
504CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
505 MemorySanitizerVisitor &Visitor);
506
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000507unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
508 if (TypeSize <= 8) return 0;
509 return Log2_32_Ceil(TypeSize / 8);
510}
511
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000512/// This class does all the work for a given function. Store and Load
513/// instructions store and load corresponding shadow and origin
514/// values. Most instructions propagate shadow from arguments to their
515/// return values. Certain instructions (most importantly, BranchInst)
516/// test their argument shadow and print reports (with a runtime call) if it's
517/// non-zero.
518struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
519 Function &F;
520 MemorySanitizer &MS;
521 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
522 ValueMap<Value*, Value*> ShadowMap, OriginMap;
Ahmed Charles56440fd2014-03-06 05:51:42 +0000523 std::unique_ptr<VarArgHelper> VAHelper;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000524
525 // The following flags disable parts of MSan instrumentation based on
526 // blacklist contents and command-line options.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000527 bool InsertChecks;
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000528 bool LoadShadow;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000529 bool PoisonStack;
530 bool PoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000531 bool CheckReturnValue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000532
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000533 struct ShadowOriginAndInsertPoint {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000534 Value *Shadow;
535 Value *Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000536 Instruction *OrigIns;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000537 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000538 : Shadow(S), Origin(O), OrigIns(I) { }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000539 };
540 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000541 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000542 SmallVector<CallSite, 16> IndirectCallList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000543
544 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000545 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000546 bool SanitizeFunction = !MS.BL->isIn(F) && F.getAttributes().hasAttribute(
547 AttributeSet::FunctionIndex,
548 Attribute::SanitizeMemory);
549 InsertChecks = SanitizeFunction;
550 LoadShadow = SanitizeFunction;
551 PoisonStack = SanitizeFunction && ClPoisonStack;
552 PoisonUndef = SanitizeFunction && ClPoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000553 // FIXME: Consider using SpecialCaseList to specify a list of functions that
554 // must always return fully initialized values. For now, we hardcode "main".
555 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000556
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000557 DEBUG(if (!InsertChecks)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000558 dbgs() << "MemorySanitizer is not inserting checks into '"
559 << F.getName() << "'\n");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000560 }
561
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000562 Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
563 if (MS.TrackOrigins <= 1) return V;
564 return IRB.CreateCall(MS.MsanChainOriginFn, V);
565 }
566
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000567 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
568 unsigned Alignment, bool AsCall) {
569 if (isa<StructType>(Shadow->getType())) {
570 IRB.CreateAlignedStore(updateOrigin(Origin, IRB), getOriginPtr(Addr, IRB),
571 Alignment);
572 } else {
573 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
574 // TODO(eugenis): handle non-zero constant shadow by inserting an
575 // unconditional check (can not simply fail compilation as this could
576 // be in the dead code).
577 if (isa<Constant>(ConvertedShadow)) return;
578 unsigned TypeSizeInBits =
579 MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
580 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
581 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
582 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
583 Value *ConvertedShadow2 = IRB.CreateZExt(
584 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
585 IRB.CreateCall3(Fn, ConvertedShadow2,
586 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
587 updateOrigin(Origin, IRB));
588 } else {
589 Value *Cmp = IRB.CreateICmpNE(
590 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
591 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
592 Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
593 IRBuilder<> IRBNew(CheckTerm);
594 IRBNew.CreateAlignedStore(updateOrigin(Origin, IRBNew),
595 getOriginPtr(Addr, IRBNew), Alignment);
596 }
597 }
598 }
599
600 void materializeStores(bool InstrumentWithCalls) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000601 for (size_t i = 0, n = StoreList.size(); i < n; i++) {
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000602 StoreInst &I = *dyn_cast<StoreInst>(StoreList[i]);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000603
604 IRBuilder<> IRB(&I);
605 Value *Val = I.getValueOperand();
606 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000607 Value *Shadow = I.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000608 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
609
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000610 StoreInst *NewSI =
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000611 IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000612 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000613 (void)NewSI;
Evgeniy Stepanovc4415592013-01-22 12:30:52 +0000614
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000615 if (ClCheckAccessAddress) insertShadowCheck(Addr, &I);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000616
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000617 if (I.isAtomic()) I.setOrdering(addReleaseOrdering(I.getOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000618
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000619 if (MS.TrackOrigins) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000620 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000621 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), Alignment,
622 InstrumentWithCalls);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000623 }
624 }
625 }
626
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000627 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
628 bool AsCall) {
629 IRBuilder<> IRB(OrigIns);
630 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
631 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
632 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
633 // See the comment in materializeStores().
634 if (isa<Constant>(ConvertedShadow)) return;
635 unsigned TypeSizeInBits =
636 MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
637 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
638 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
639 Value *Fn = MS.MaybeWarningFn[SizeIndex];
640 Value *ConvertedShadow2 =
641 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
642 IRB.CreateCall2(Fn, ConvertedShadow2, MS.TrackOrigins && Origin
643 ? Origin
644 : (Value *)IRB.getInt32(0));
645 } else {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000646 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
647 getCleanShadow(ConvertedShadow), "_mscmp");
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000648 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
649 Cmp, OrigIns,
650 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000651
652 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000653 if (MS.TrackOrigins) {
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000654 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000655 MS.OriginTLS);
656 }
Evgeniy Stepanov2275a012014-03-19 12:56:38 +0000657 IRB.CreateCall(MS.WarningFn);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000658 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000659 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
660 }
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000661 }
662
663 void materializeChecks(bool InstrumentWithCalls) {
664 for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
665 Instruction *OrigIns = InstrumentationList[i].OrigIns;
666 Value *Shadow = InstrumentationList[i].Shadow;
667 Value *Origin = InstrumentationList[i].Origin;
668 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
669 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000670 DEBUG(dbgs() << "DONE:\n" << F);
671 }
672
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000673 void materializeIndirectCalls() {
674 for (size_t i = 0, n = IndirectCallList.size(); i < n; i++) {
675 CallSite CS = IndirectCallList[i];
676 Instruction *I = CS.getInstruction();
677 BasicBlock *B = I->getParent();
678 IRBuilder<> IRB(I);
679 Value *Fn0 = CS.getCalledValue();
680 Value *Fn = IRB.CreateBitCast(Fn0, MS.AnyFunctionPtrTy);
681
682 if (ClWrapIndirectCallsFast) {
683 // Check that call target is inside this module limits.
684 Value *Start =
685 IRB.CreateBitCast(MS.MsandrModuleStart, MS.AnyFunctionPtrTy);
686 Value *End = IRB.CreateBitCast(MS.MsandrModuleEnd, MS.AnyFunctionPtrTy);
687
688 Value *NotInThisModule = IRB.CreateOr(IRB.CreateICmpULT(Fn, Start),
689 IRB.CreateICmpUGE(Fn, End));
690
691 PHINode *NewFnPhi =
692 IRB.CreatePHI(Fn0->getType(), 2, "msandr.indirect_target");
693
694 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000695 NotInThisModule, NewFnPhi,
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000696 /* Unreachable */ false, MS.ColdCallWeights);
697
698 IRB.SetInsertPoint(CheckTerm);
699 // Slow path: call wrapper function to possibly transform the call
700 // target.
701 Value *NewFn = IRB.CreateBitCast(
702 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
703
704 NewFnPhi->addIncoming(Fn0, B);
705 NewFnPhi->addIncoming(NewFn, dyn_cast<Instruction>(NewFn)->getParent());
706 CS.setCalledFunction(NewFnPhi);
707 } else {
708 Value *NewFn = IRB.CreateBitCast(
709 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
710 CS.setCalledFunction(NewFn);
711 }
712 }
713 }
714
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000715 /// \brief Add MemorySanitizer instrumentation to a function.
716 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000717 MS.initializeCallbacks(*F.getParent());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000718 if (!MS.DL) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000719
720 // In the presence of unreachable blocks, we may see Phi nodes with
721 // incoming nodes from such blocks. Since InstVisitor skips unreachable
722 // blocks, such nodes will not have any shadow value associated with them.
723 // It's easier to remove unreachable blocks than deal with missing shadow.
724 removeUnreachableBlocks(F);
725
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000726 // Iterate all BBs in depth-first order and create shadow instructions
727 // for all instructions (where applicable).
728 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
David Blaikieceec2bd2014-04-11 01:50:01 +0000729 for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000730 visit(*BB);
David Blaikieceec2bd2014-04-11 01:50:01 +0000731
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000732
733 // Finalize PHI nodes.
734 for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
735 PHINode *PN = ShadowPHINodes[i];
736 PHINode *PNS = cast<PHINode>(getShadow(PN));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000737 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000738 size_t NumValues = PN->getNumIncomingValues();
739 for (size_t v = 0; v < NumValues; v++) {
740 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
741 if (PNO)
742 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
743 }
744 }
745
746 VAHelper->finalizeInstrumentation();
747
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000748 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
749 InstrumentationList.size() + StoreList.size() >
750 (unsigned)ClInstrumentationWithCallThreshold;
751
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000752 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000753 // This may add new checks to be inserted later.
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000754 materializeStores(InstrumentWithCalls);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000755
756 // Insert shadow value checks.
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000757 materializeChecks(InstrumentWithCalls);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000758
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000759 // Wrap indirect calls.
760 materializeIndirectCalls();
761
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000762 return true;
763 }
764
765 /// \brief Compute the shadow type that corresponds to a given Value.
766 Type *getShadowTy(Value *V) {
767 return getShadowTy(V->getType());
768 }
769
770 /// \brief Compute the shadow type that corresponds to a given Type.
771 Type *getShadowTy(Type *OrigTy) {
772 if (!OrigTy->isSized()) {
773 return 0;
774 }
775 // For integer type, shadow is the same as the original type.
776 // This may return weird-sized types like i1.
777 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
778 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000779 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000780 uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000781 return VectorType::get(IntegerType::get(*MS.C, EltSize),
782 VT->getNumElements());
783 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000784 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
785 SmallVector<Type*, 4> Elements;
786 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
787 Elements.push_back(getShadowTy(ST->getElementType(i)));
788 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
789 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
790 return Res;
791 }
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000792 uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000793 return IntegerType::get(*MS.C, TypeSize);
794 }
795
796 /// \brief Flatten a vector type.
797 Type *getShadowTyNoVec(Type *ty) {
798 if (VectorType *vt = dyn_cast<VectorType>(ty))
799 return IntegerType::get(*MS.C, vt->getBitWidth());
800 return ty;
801 }
802
803 /// \brief Convert a shadow value to it's flattened variant.
804 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
805 Type *Ty = V->getType();
806 Type *NoVecTy = getShadowTyNoVec(Ty);
807 if (Ty == NoVecTy) return V;
808 return IRB.CreateBitCast(V, NoVecTy);
809 }
810
811 /// \brief Compute the shadow address that corresponds to a given application
812 /// address.
813 ///
814 /// Shadow = Addr & ~ShadowMask.
815 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
816 IRBuilder<> &IRB) {
817 Value *ShadowLong =
818 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
819 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
820 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
821 }
822
823 /// \brief Compute the origin address that corresponds to a given application
824 /// address.
825 ///
826 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000827 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
828 Value *ShadowLong =
829 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000830 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000831 Value *Add =
832 IRB.CreateAdd(ShadowLong,
833 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000834 Value *SecondAnd =
835 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
836 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000837 }
838
839 /// \brief Compute the shadow address for a given function argument.
840 ///
841 /// Shadow = ParamTLS+ArgOffset.
842 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
843 int ArgOffset) {
844 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
845 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
846 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
847 "_msarg");
848 }
849
850 /// \brief Compute the origin address for a given function argument.
851 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
852 int ArgOffset) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000853 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000854 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
855 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
856 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
857 "_msarg_o");
858 }
859
860 /// \brief Compute the shadow address for a retval.
861 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
862 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
863 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
864 "_msret");
865 }
866
867 /// \brief Compute the origin address for a retval.
868 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
869 // We keep a single origin for the entire retval. Might be too optimistic.
870 return MS.RetvalOriginTLS;
871 }
872
873 /// \brief Set SV to be the shadow value for V.
874 void setShadow(Value *V, Value *SV) {
875 assert(!ShadowMap.count(V) && "Values may only have one shadow");
876 ShadowMap[V] = SV;
877 }
878
879 /// \brief Set Origin to be the origin value for V.
880 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000881 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000882 assert(!OriginMap.count(V) && "Values may only have one origin");
883 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
884 OriginMap[V] = Origin;
885 }
886
887 /// \brief Create a clean shadow value for a given value.
888 ///
889 /// Clean shadow (all zeroes) means all bits of the value are defined
890 /// (initialized).
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000891 Constant *getCleanShadow(Value *V) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000892 Type *ShadowTy = getShadowTy(V);
893 if (!ShadowTy)
894 return 0;
895 return Constant::getNullValue(ShadowTy);
896 }
897
898 /// \brief Create a dirty shadow of a given shadow type.
899 Constant *getPoisonedShadow(Type *ShadowTy) {
900 assert(ShadowTy);
901 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
902 return Constant::getAllOnesValue(ShadowTy);
903 StructType *ST = cast<StructType>(ShadowTy);
904 SmallVector<Constant *, 4> Vals;
905 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
906 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
907 return ConstantStruct::get(ST, Vals);
908 }
909
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000910 /// \brief Create a dirty shadow for a given value.
911 Constant *getPoisonedShadow(Value *V) {
912 Type *ShadowTy = getShadowTy(V);
913 if (!ShadowTy)
914 return 0;
915 return getPoisonedShadow(ShadowTy);
916 }
917
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000918 /// \brief Create a clean (zero) origin.
919 Value *getCleanOrigin() {
920 return Constant::getNullValue(MS.OriginTy);
921 }
922
923 /// \brief Get the shadow value for a given Value.
924 ///
925 /// This function either returns the value set earlier with setShadow,
926 /// or extracts if from ParamTLS (for function arguments).
927 Value *getShadow(Value *V) {
928 if (Instruction *I = dyn_cast<Instruction>(V)) {
929 // For instructions the shadow is already stored in the map.
930 Value *Shadow = ShadowMap[V];
931 if (!Shadow) {
932 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000933 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000934 assert(Shadow && "No shadow for a value");
935 }
936 return Shadow;
937 }
938 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000939 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000940 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000941 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000942 return AllOnes;
943 }
944 if (Argument *A = dyn_cast<Argument>(V)) {
945 // For arguments we compute the shadow on demand and store it in the map.
946 Value **ShadowPtr = &ShadowMap[V];
947 if (*ShadowPtr)
948 return *ShadowPtr;
949 Function *F = A->getParent();
950 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
951 unsigned ArgOffset = 0;
952 for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
953 AI != AE; ++AI) {
954 if (!AI->getType()->isSized()) {
955 DEBUG(dbgs() << "Arg is not sized\n");
956 continue;
957 }
958 unsigned Size = AI->hasByValAttr()
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000959 ? MS.DL->getTypeAllocSize(AI->getType()->getPointerElementType())
960 : MS.DL->getTypeAllocSize(AI->getType());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000961 if (A == AI) {
962 Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
963 if (AI->hasByValAttr()) {
964 // ByVal pointer itself has clean shadow. We copy the actual
965 // argument shadow to the underlying memory.
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000966 // Figure out maximal valid memcpy alignment.
967 unsigned ArgAlign = AI->getParamAlignment();
968 if (ArgAlign == 0) {
969 Type *EltType = A->getType()->getPointerElementType();
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000970 ArgAlign = MS.DL->getABITypeAlignment(EltType);
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000971 }
972 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000973 Value *Cpy = EntryIRB.CreateMemCpy(
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000974 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
975 CopyAlign);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000976 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000977 (void)Cpy;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000978 *ShadowPtr = getCleanShadow(V);
979 } else {
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000980 *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000981 }
982 DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
983 **ShadowPtr << "\n");
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000984 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000985 Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
986 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
987 }
988 }
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000989 ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000990 }
991 assert(*ShadowPtr && "Could not find shadow for an argument");
992 return *ShadowPtr;
993 }
994 // For everything else the shadow is zero.
995 return getCleanShadow(V);
996 }
997
998 /// \brief Get the shadow for i-th argument of the instruction I.
999 Value *getShadow(Instruction *I, int i) {
1000 return getShadow(I->getOperand(i));
1001 }
1002
1003 /// \brief Get the origin for a value.
1004 Value *getOrigin(Value *V) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001005 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001006 if (isa<Instruction>(V) || isa<Argument>(V)) {
1007 Value *Origin = OriginMap[V];
1008 if (!Origin) {
1009 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
1010 Origin = getCleanOrigin();
1011 }
1012 return Origin;
1013 }
1014 return getCleanOrigin();
1015 }
1016
1017 /// \brief Get the origin for i-th argument of the instruction I.
1018 Value *getOrigin(Instruction *I, int i) {
1019 return getOrigin(I->getOperand(i));
1020 }
1021
1022 /// \brief Remember the place where a shadow check should be inserted.
1023 ///
1024 /// This location will be later instrumented with a check that will print a
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001025 /// UMR warning in runtime if the shadow value is not 0.
1026 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1027 assert(Shadow);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001028 if (!InsertChecks) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001029#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001030 Type *ShadowTy = Shadow->getType();
1031 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1032 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001033#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001034 InstrumentationList.push_back(
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001035 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1036 }
1037
1038 /// \brief Remember the place where a shadow check should be inserted.
1039 ///
1040 /// This location will be later instrumented with a check that will print a
1041 /// UMR warning in runtime if the value is not fully defined.
1042 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1043 assert(Val);
1044 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1045 if (!Shadow) return;
1046 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1047 insertShadowCheck(Shadow, Origin, OrigIns);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001048 }
1049
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001050 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1051 switch (a) {
1052 case NotAtomic:
1053 return NotAtomic;
1054 case Unordered:
1055 case Monotonic:
1056 case Release:
1057 return Release;
1058 case Acquire:
1059 case AcquireRelease:
1060 return AcquireRelease;
1061 case SequentiallyConsistent:
1062 return SequentiallyConsistent;
1063 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001064 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001065 }
1066
1067 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1068 switch (a) {
1069 case NotAtomic:
1070 return NotAtomic;
1071 case Unordered:
1072 case Monotonic:
1073 case Acquire:
1074 return Acquire;
1075 case Release:
1076 case AcquireRelease:
1077 return AcquireRelease;
1078 case SequentiallyConsistent:
1079 return SequentiallyConsistent;
1080 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001081 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001082 }
1083
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001084 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001085
1086 /// \brief Instrument LoadInst
1087 ///
1088 /// Loads the corresponding shadow and (optionally) origin.
1089 /// Optionally, checks that the load address is fully defined.
1090 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001091 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001092 IRBuilder<> IRB(I.getNextNode());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001093 Type *ShadowTy = getShadowTy(&I);
1094 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001095 if (LoadShadow) {
1096 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1097 setShadow(&I,
1098 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1099 } else {
1100 setShadow(&I, getCleanShadow(&I));
1101 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001102
1103 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001104 insertShadowCheck(I.getPointerOperand(), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001105
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001106 if (I.isAtomic())
1107 I.setOrdering(addAcquireOrdering(I.getOrdering()));
1108
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001109 if (MS.TrackOrigins) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001110 if (LoadShadow) {
1111 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
1112 setOrigin(&I,
1113 IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
1114 } else {
1115 setOrigin(&I, getCleanOrigin());
1116 }
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001117 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001118 }
1119
1120 /// \brief Instrument StoreInst
1121 ///
1122 /// Stores the corresponding shadow and (optionally) origin.
1123 /// Optionally, checks that the store address is fully defined.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001124 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +00001125 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001126 }
1127
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001128 void handleCASOrRMW(Instruction &I) {
1129 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1130
1131 IRBuilder<> IRB(&I);
1132 Value *Addr = I.getOperand(0);
1133 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1134
1135 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001136 insertShadowCheck(Addr, &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001137
1138 // Only test the conditional argument of cmpxchg instruction.
1139 // The other argument can potentially be uninitialized, but we can not
1140 // detect this situation reliably without possible false positives.
1141 if (isa<AtomicCmpXchgInst>(I))
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001142 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001143
1144 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1145
1146 setShadow(&I, getCleanShadow(&I));
1147 }
1148
1149 void visitAtomicRMWInst(AtomicRMWInst &I) {
1150 handleCASOrRMW(I);
1151 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1152 }
1153
1154 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1155 handleCASOrRMW(I);
Tim Northovere94a5182014-03-11 10:48:52 +00001156 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001157 }
1158
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001159 // Vector manipulation.
1160 void visitExtractElementInst(ExtractElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001161 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001162 IRBuilder<> IRB(&I);
1163 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1164 "_msprop"));
1165 setOrigin(&I, getOrigin(&I, 0));
1166 }
1167
1168 void visitInsertElementInst(InsertElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001169 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001170 IRBuilder<> IRB(&I);
1171 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1172 I.getOperand(2), "_msprop"));
1173 setOriginForNaryOp(I);
1174 }
1175
1176 void visitShuffleVectorInst(ShuffleVectorInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001177 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001178 IRBuilder<> IRB(&I);
1179 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1180 I.getOperand(2), "_msprop"));
1181 setOriginForNaryOp(I);
1182 }
1183
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001184 // Casts.
1185 void visitSExtInst(SExtInst &I) {
1186 IRBuilder<> IRB(&I);
1187 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1188 setOrigin(&I, getOrigin(&I, 0));
1189 }
1190
1191 void visitZExtInst(ZExtInst &I) {
1192 IRBuilder<> IRB(&I);
1193 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1194 setOrigin(&I, getOrigin(&I, 0));
1195 }
1196
1197 void visitTruncInst(TruncInst &I) {
1198 IRBuilder<> IRB(&I);
1199 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1200 setOrigin(&I, getOrigin(&I, 0));
1201 }
1202
1203 void visitBitCastInst(BitCastInst &I) {
1204 IRBuilder<> IRB(&I);
1205 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1206 setOrigin(&I, getOrigin(&I, 0));
1207 }
1208
1209 void visitPtrToIntInst(PtrToIntInst &I) {
1210 IRBuilder<> IRB(&I);
1211 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1212 "_msprop_ptrtoint"));
1213 setOrigin(&I, getOrigin(&I, 0));
1214 }
1215
1216 void visitIntToPtrInst(IntToPtrInst &I) {
1217 IRBuilder<> IRB(&I);
1218 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1219 "_msprop_inttoptr"));
1220 setOrigin(&I, getOrigin(&I, 0));
1221 }
1222
1223 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1224 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1225 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1226 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1227 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1228 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1229
1230 /// \brief Propagate shadow for bitwise AND.
1231 ///
1232 /// This code is exact, i.e. if, for example, a bit in the left argument
1233 /// is defined and 0, then neither the value not definedness of the
1234 /// corresponding bit in B don't affect the resulting shadow.
1235 void visitAnd(BinaryOperator &I) {
1236 IRBuilder<> IRB(&I);
1237 // "And" of 0 and a poisoned value results in unpoisoned value.
1238 // 1&1 => 1; 0&1 => 0; p&1 => p;
1239 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1240 // 1&p => p; 0&p => 0; p&p => p;
1241 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1242 Value *S1 = getShadow(&I, 0);
1243 Value *S2 = getShadow(&I, 1);
1244 Value *V1 = I.getOperand(0);
1245 Value *V2 = I.getOperand(1);
1246 if (V1->getType() != S1->getType()) {
1247 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1248 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1249 }
1250 Value *S1S2 = IRB.CreateAnd(S1, S2);
1251 Value *V1S2 = IRB.CreateAnd(V1, S2);
1252 Value *S1V2 = IRB.CreateAnd(S1, V2);
1253 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1254 setOriginForNaryOp(I);
1255 }
1256
1257 void visitOr(BinaryOperator &I) {
1258 IRBuilder<> IRB(&I);
1259 // "Or" of 1 and a poisoned value results in unpoisoned value.
1260 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1261 // 1|0 => 1; 0|0 => 0; p|0 => p;
1262 // 1|p => 1; 0|p => p; p|p => p;
1263 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1264 Value *S1 = getShadow(&I, 0);
1265 Value *S2 = getShadow(&I, 1);
1266 Value *V1 = IRB.CreateNot(I.getOperand(0));
1267 Value *V2 = IRB.CreateNot(I.getOperand(1));
1268 if (V1->getType() != S1->getType()) {
1269 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1270 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1271 }
1272 Value *S1S2 = IRB.CreateAnd(S1, S2);
1273 Value *V1S2 = IRB.CreateAnd(V1, S2);
1274 Value *S1V2 = IRB.CreateAnd(S1, V2);
1275 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1276 setOriginForNaryOp(I);
1277 }
1278
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001279 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001280 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001281 /// This class implements the general case of shadow propagation, used in all
1282 /// cases where we don't know and/or don't care about what the operation
1283 /// actually does. It converts all input shadow values to a common type
1284 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001285 ///
1286 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1287 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001288 ///
1289 /// This class also implements the general case of origin propagation. For a
1290 /// Nary operation, result origin is set to the origin of an argument that is
1291 /// not entirely initialized. If there is more than one such arguments, the
1292 /// rightmost of them is picked. It does not matter which one is picked if all
1293 /// arguments are initialized.
1294 template <bool CombineShadow>
1295 class Combiner {
1296 Value *Shadow;
1297 Value *Origin;
1298 IRBuilder<> &IRB;
1299 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001300
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001301 public:
1302 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1303 Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
1304
1305 /// \brief Add a pair of shadow and origin values to the mix.
1306 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1307 if (CombineShadow) {
1308 assert(OpShadow);
1309 if (!Shadow)
1310 Shadow = OpShadow;
1311 else {
1312 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1313 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1314 }
1315 }
1316
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001317 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001318 assert(OpOrigin);
1319 if (!Origin) {
1320 Origin = OpOrigin;
1321 } else {
1322 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1323 Value *Cond = IRB.CreateICmpNE(FlatShadow,
1324 MSV->getCleanShadow(FlatShadow));
1325 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1326 }
1327 }
1328 return *this;
1329 }
1330
1331 /// \brief Add an application value to the mix.
1332 Combiner &Add(Value *V) {
1333 Value *OpShadow = MSV->getShadow(V);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001334 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001335 return Add(OpShadow, OpOrigin);
1336 }
1337
1338 /// \brief Set the current combined values as the given instruction's shadow
1339 /// and origin.
1340 void Done(Instruction *I) {
1341 if (CombineShadow) {
1342 assert(Shadow);
1343 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1344 MSV->setShadow(I, Shadow);
1345 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001346 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001347 assert(Origin);
1348 MSV->setOrigin(I, Origin);
1349 }
1350 }
1351 };
1352
1353 typedef Combiner<true> ShadowAndOriginCombiner;
1354 typedef Combiner<false> OriginCombiner;
1355
1356 /// \brief Propagate origin for arbitrary operation.
1357 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001358 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001359 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001360 OriginCombiner OC(this, IRB);
1361 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1362 OC.Add(OI->get());
1363 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001364 }
1365
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001366 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001367 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1368 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001369 return Ty->isVectorTy() ?
1370 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1371 Ty->getPrimitiveSizeInBits();
1372 }
1373
1374 /// \brief Cast between two shadow types, extending or truncating as
1375 /// necessary.
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001376 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1377 bool Signed = false) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001378 Type *srcTy = V->getType();
1379 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001380 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001381 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1382 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001383 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001384 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1385 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1386 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1387 Value *V2 =
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001388 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001389 return IRB.CreateBitCast(V2, dstTy);
1390 // TODO: handle struct types.
1391 }
1392
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00001393 /// \brief Cast an application value to the type of its own shadow.
1394 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1395 Type *ShadowTy = getShadowTy(V);
1396 if (V->getType() == ShadowTy)
1397 return V;
1398 if (V->getType()->isPtrOrPtrVectorTy())
1399 return IRB.CreatePtrToInt(V, ShadowTy);
1400 else
1401 return IRB.CreateBitCast(V, ShadowTy);
1402 }
1403
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001404 /// \brief Propagate shadow for arbitrary operation.
1405 void handleShadowOr(Instruction &I) {
1406 IRBuilder<> IRB(&I);
1407 ShadowAndOriginCombiner SC(this, IRB);
1408 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1409 SC.Add(OI->get());
1410 SC.Done(&I);
1411 }
1412
1413 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1414 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1415 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1416 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1417 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1418 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1419 void visitMul(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001420
1421 void handleDiv(Instruction &I) {
1422 IRBuilder<> IRB(&I);
1423 // Strict on the second argument.
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001424 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001425 setShadow(&I, getShadow(&I, 0));
1426 setOrigin(&I, getOrigin(&I, 0));
1427 }
1428
1429 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1430 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1431 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1432 void visitURem(BinaryOperator &I) { handleDiv(I); }
1433 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1434 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1435
1436 /// \brief Instrument == and != comparisons.
1437 ///
1438 /// Sometimes the comparison result is known even if some of the bits of the
1439 /// arguments are not.
1440 void handleEqualityComparison(ICmpInst &I) {
1441 IRBuilder<> IRB(&I);
1442 Value *A = I.getOperand(0);
1443 Value *B = I.getOperand(1);
1444 Value *Sa = getShadow(A);
1445 Value *Sb = getShadow(B);
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +00001446
1447 // Get rid of pointers and vectors of pointers.
1448 // For ints (and vectors of ints), types of A and Sa match,
1449 // and this is a no-op.
1450 A = IRB.CreatePointerCast(A, Sa->getType());
1451 B = IRB.CreatePointerCast(B, Sb->getType());
1452
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001453 // A == B <==> (C = A^B) == 0
1454 // A != B <==> (C = A^B) != 0
1455 // Sc = Sa | Sb
1456 Value *C = IRB.CreateXor(A, B);
1457 Value *Sc = IRB.CreateOr(Sa, Sb);
1458 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1459 // Result is defined if one of the following is true
1460 // * there is a defined 1 bit in C
1461 // * C is fully defined
1462 // Si = !(C & ~Sc) && Sc
1463 Value *Zero = Constant::getNullValue(Sc->getType());
1464 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1465 Value *Si =
1466 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1467 IRB.CreateICmpEQ(
1468 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1469 Si->setName("_msprop_icmp");
1470 setShadow(&I, Si);
1471 setOriginForNaryOp(I);
1472 }
1473
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001474 /// \brief Build the lowest possible value of V, taking into account V's
1475 /// uninitialized bits.
1476 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1477 bool isSigned) {
1478 if (isSigned) {
1479 // Split shadow into sign bit and other bits.
1480 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1481 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1482 // Maximise the undefined shadow bit, minimize other undefined bits.
1483 return
1484 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1485 } else {
1486 // Minimize undefined bits.
1487 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1488 }
1489 }
1490
1491 /// \brief Build the highest possible value of V, taking into account V's
1492 /// uninitialized bits.
1493 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1494 bool isSigned) {
1495 if (isSigned) {
1496 // Split shadow into sign bit and other bits.
1497 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1498 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1499 // Minimise the undefined shadow bit, maximise other undefined bits.
1500 return
1501 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1502 } else {
1503 // Maximize undefined bits.
1504 return IRB.CreateOr(A, Sa);
1505 }
1506 }
1507
1508 /// \brief Instrument relational comparisons.
1509 ///
1510 /// This function does exact shadow propagation for all relational
1511 /// comparisons of integers, pointers and vectors of those.
1512 /// FIXME: output seems suboptimal when one of the operands is a constant
1513 void handleRelationalComparisonExact(ICmpInst &I) {
1514 IRBuilder<> IRB(&I);
1515 Value *A = I.getOperand(0);
1516 Value *B = I.getOperand(1);
1517 Value *Sa = getShadow(A);
1518 Value *Sb = getShadow(B);
1519
1520 // Get rid of pointers and vectors of pointers.
1521 // For ints (and vectors of ints), types of A and Sa match,
1522 // and this is a no-op.
1523 A = IRB.CreatePointerCast(A, Sa->getType());
1524 B = IRB.CreatePointerCast(B, Sb->getType());
1525
Evgeniy Stepanov2cb0fa12013-01-25 15:35:29 +00001526 // Let [a0, a1] be the interval of possible values of A, taking into account
1527 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1528 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001529 bool IsSigned = I.isSigned();
1530 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1531 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1532 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1533 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1534 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1535 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1536 Value *Si = IRB.CreateXor(S1, S2);
1537 setShadow(&I, Si);
1538 setOriginForNaryOp(I);
1539 }
1540
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001541 /// \brief Instrument signed relational comparisons.
1542 ///
1543 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1544 /// propagating the highest bit of the shadow. Everything else is delegated
1545 /// to handleShadowOr().
1546 void handleSignedRelationalComparison(ICmpInst &I) {
1547 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1548 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1549 Value* op = NULL;
1550 CmpInst::Predicate pre = I.getPredicate();
1551 if (constOp0 && constOp0->isNullValue() &&
1552 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1553 op = I.getOperand(1);
1554 } else if (constOp1 && constOp1->isNullValue() &&
1555 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1556 op = I.getOperand(0);
1557 }
1558 if (op) {
1559 IRBuilder<> IRB(&I);
1560 Value* Shadow =
1561 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1562 setShadow(&I, Shadow);
1563 setOrigin(&I, getOrigin(op));
1564 } else {
1565 handleShadowOr(I);
1566 }
1567 }
1568
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001569 void visitICmpInst(ICmpInst &I) {
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001570 if (!ClHandleICmp) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001571 handleShadowOr(I);
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001572 return;
1573 }
1574 if (I.isEquality()) {
1575 handleEqualityComparison(I);
1576 return;
1577 }
1578
1579 assert(I.isRelational());
1580 if (ClHandleICmpExact) {
1581 handleRelationalComparisonExact(I);
1582 return;
1583 }
1584 if (I.isSigned()) {
1585 handleSignedRelationalComparison(I);
1586 return;
1587 }
1588
1589 assert(I.isUnsigned());
1590 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1591 handleRelationalComparisonExact(I);
1592 return;
1593 }
1594
1595 handleShadowOr(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001596 }
1597
1598 void visitFCmpInst(FCmpInst &I) {
1599 handleShadowOr(I);
1600 }
1601
1602 void handleShift(BinaryOperator &I) {
1603 IRBuilder<> IRB(&I);
1604 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1605 // Otherwise perform the same shift on S1.
1606 Value *S1 = getShadow(&I, 0);
1607 Value *S2 = getShadow(&I, 1);
1608 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1609 S2->getType());
1610 Value *V2 = I.getOperand(1);
1611 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1612 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1613 setOriginForNaryOp(I);
1614 }
1615
1616 void visitShl(BinaryOperator &I) { handleShift(I); }
1617 void visitAShr(BinaryOperator &I) { handleShift(I); }
1618 void visitLShr(BinaryOperator &I) { handleShift(I); }
1619
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001620 /// \brief Instrument llvm.memmove
1621 ///
1622 /// At this point we don't know if llvm.memmove will be inlined or not.
1623 /// If we don't instrument it and it gets inlined,
1624 /// our interceptor will not kick in and we will lose the memmove.
1625 /// If we instrument the call here, but it does not get inlined,
1626 /// we will memove the shadow twice: which is bad in case
1627 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1628 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001629 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001630 void visitMemMoveInst(MemMoveInst &I) {
1631 IRBuilder<> IRB(&I);
1632 IRB.CreateCall3(
1633 MS.MemmoveFn,
1634 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1635 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1636 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1637 I.eraseFromParent();
1638 }
1639
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001640 // Similar to memmove: avoid copying shadow twice.
1641 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1642 // FIXME: consider doing manual inline for small constant sizes and proper
1643 // alignment.
1644 void visitMemCpyInst(MemCpyInst &I) {
1645 IRBuilder<> IRB(&I);
1646 IRB.CreateCall3(
1647 MS.MemcpyFn,
1648 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1649 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1650 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1651 I.eraseFromParent();
1652 }
1653
1654 // Same as memcpy.
1655 void visitMemSetInst(MemSetInst &I) {
1656 IRBuilder<> IRB(&I);
1657 IRB.CreateCall3(
1658 MS.MemsetFn,
1659 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1660 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1661 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1662 I.eraseFromParent();
1663 }
1664
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001665 void visitVAStartInst(VAStartInst &I) {
1666 VAHelper->visitVAStartInst(I);
1667 }
1668
1669 void visitVACopyInst(VACopyInst &I) {
1670 VAHelper->visitVACopyInst(I);
1671 }
1672
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001673 enum IntrinsicKind {
1674 IK_DoesNotAccessMemory,
1675 IK_OnlyReadsMemory,
1676 IK_WritesMemory
1677 };
1678
1679 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1680 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1681 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1682 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1683 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1684 const int UnknownModRefBehavior = IK_WritesMemory;
1685#define GET_INTRINSIC_MODREF_BEHAVIOR
1686#define ModRefBehavior IntrinsicKind
Chandler Carruthdb25c6c2013-01-02 12:09:16 +00001687#include "llvm/IR/Intrinsics.gen"
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001688#undef ModRefBehavior
1689#undef GET_INTRINSIC_MODREF_BEHAVIOR
1690 }
1691
1692 /// \brief Handle vector store-like intrinsics.
1693 ///
1694 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1695 /// has 1 pointer argument and 1 vector argument, returns void.
1696 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1697 IRBuilder<> IRB(&I);
1698 Value* Addr = I.getArgOperand(0);
1699 Value *Shadow = getShadow(&I, 1);
1700 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1701
1702 // We don't know the pointer alignment (could be unaligned SSE store!).
1703 // Have to assume to worst case.
1704 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1705
1706 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001707 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001708
1709 // FIXME: use ClStoreCleanOrigin
1710 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001711 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001712 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1713 return true;
1714 }
1715
1716 /// \brief Handle vector load-like intrinsics.
1717 ///
1718 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1719 /// has 1 pointer argument, returns a vector.
1720 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1721 IRBuilder<> IRB(&I);
1722 Value *Addr = I.getArgOperand(0);
1723
1724 Type *ShadowTy = getShadowTy(&I);
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001725 if (LoadShadow) {
1726 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1727 // We don't know the pointer alignment (could be unaligned SSE load!).
1728 // Have to assume to worst case.
1729 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1730 } else {
1731 setShadow(&I, getCleanShadow(&I));
1732 }
1733
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001734 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001735 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001736
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001737 if (MS.TrackOrigins) {
1738 if (LoadShadow)
1739 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1740 else
1741 setOrigin(&I, getCleanOrigin());
1742 }
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001743 return true;
1744 }
1745
1746 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1747 ///
1748 /// Instrument intrinsics with any number of arguments of the same type,
1749 /// equal to the return type. The type should be simple (no aggregates or
1750 /// pointers; vectors are fine).
1751 /// Caller guarantees that this intrinsic does not access memory.
1752 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1753 Type *RetTy = I.getType();
1754 if (!(RetTy->isIntOrIntVectorTy() ||
1755 RetTy->isFPOrFPVectorTy() ||
1756 RetTy->isX86_MMXTy()))
1757 return false;
1758
1759 unsigned NumArgOperands = I.getNumArgOperands();
1760
1761 for (unsigned i = 0; i < NumArgOperands; ++i) {
1762 Type *Ty = I.getArgOperand(i)->getType();
1763 if (Ty != RetTy)
1764 return false;
1765 }
1766
1767 IRBuilder<> IRB(&I);
1768 ShadowAndOriginCombiner SC(this, IRB);
1769 for (unsigned i = 0; i < NumArgOperands; ++i)
1770 SC.Add(I.getArgOperand(i));
1771 SC.Done(&I);
1772
1773 return true;
1774 }
1775
1776 /// \brief Heuristically instrument unknown intrinsics.
1777 ///
1778 /// The main purpose of this code is to do something reasonable with all
1779 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1780 /// We recognize several classes of intrinsics by their argument types and
1781 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1782 /// sure that we know what the intrinsic does.
1783 ///
1784 /// We special-case intrinsics where this approach fails. See llvm.bswap
1785 /// handling as an example of that.
1786 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1787 unsigned NumArgOperands = I.getNumArgOperands();
1788 if (NumArgOperands == 0)
1789 return false;
1790
1791 Intrinsic::ID iid = I.getIntrinsicID();
1792 IntrinsicKind IK = getIntrinsicKind(iid);
1793 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1794 bool WritesMemory = IK == IK_WritesMemory;
1795 assert(!(OnlyReadsMemory && WritesMemory));
1796
1797 if (NumArgOperands == 2 &&
1798 I.getArgOperand(0)->getType()->isPointerTy() &&
1799 I.getArgOperand(1)->getType()->isVectorTy() &&
1800 I.getType()->isVoidTy() &&
1801 WritesMemory) {
1802 // This looks like a vector store.
1803 return handleVectorStoreIntrinsic(I);
1804 }
1805
1806 if (NumArgOperands == 1 &&
1807 I.getArgOperand(0)->getType()->isPointerTy() &&
1808 I.getType()->isVectorTy() &&
1809 OnlyReadsMemory) {
1810 // This looks like a vector load.
1811 return handleVectorLoadIntrinsic(I);
1812 }
1813
1814 if (!OnlyReadsMemory && !WritesMemory)
1815 if (maybeHandleSimpleNomemIntrinsic(I))
1816 return true;
1817
1818 // FIXME: detect and handle SSE maskstore/maskload
1819 return false;
1820 }
1821
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001822 void handleBswap(IntrinsicInst &I) {
1823 IRBuilder<> IRB(&I);
1824 Value *Op = I.getArgOperand(0);
1825 Type *OpType = Op->getType();
1826 Function *BswapFunc = Intrinsic::getDeclaration(
1827 F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1828 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1829 setOrigin(&I, getOrigin(Op));
1830 }
1831
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001832 // \brief Instrument vector convert instrinsic.
1833 //
1834 // This function instruments intrinsics like cvtsi2ss:
1835 // %Out = int_xxx_cvtyyy(%ConvertOp)
1836 // or
1837 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1838 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1839 // number \p Out elements, and (if has 2 arguments) copies the rest of the
1840 // elements from \p CopyOp.
1841 // In most cases conversion involves floating-point value which may trigger a
1842 // hardware exception when not fully initialized. For this reason we require
1843 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1844 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1845 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1846 // return a fully initialized value.
1847 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1848 IRBuilder<> IRB(&I);
1849 Value *CopyOp, *ConvertOp;
1850
1851 switch (I.getNumArgOperands()) {
1852 case 2:
1853 CopyOp = I.getArgOperand(0);
1854 ConvertOp = I.getArgOperand(1);
1855 break;
1856 case 1:
1857 ConvertOp = I.getArgOperand(0);
1858 CopyOp = NULL;
1859 break;
1860 default:
1861 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1862 }
1863
1864 // The first *NumUsedElements* elements of ConvertOp are converted to the
1865 // same number of output elements. The rest of the output is copied from
1866 // CopyOp, or (if not available) filled with zeroes.
1867 // Combine shadow for elements of ConvertOp that are used in this operation,
1868 // and insert a check.
1869 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1870 // int->any conversion.
1871 Value *ConvertShadow = getShadow(ConvertOp);
1872 Value *AggShadow = 0;
1873 if (ConvertOp->getType()->isVectorTy()) {
1874 AggShadow = IRB.CreateExtractElement(
1875 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
1876 for (int i = 1; i < NumUsedElements; ++i) {
1877 Value *MoreShadow = IRB.CreateExtractElement(
1878 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
1879 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
1880 }
1881 } else {
1882 AggShadow = ConvertShadow;
1883 }
1884 assert(AggShadow->getType()->isIntegerTy());
1885 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
1886
1887 // Build result shadow by zero-filling parts of CopyOp shadow that come from
1888 // ConvertOp.
1889 if (CopyOp) {
1890 assert(CopyOp->getType() == I.getType());
1891 assert(CopyOp->getType()->isVectorTy());
1892 Value *ResultShadow = getShadow(CopyOp);
1893 Type *EltTy = ResultShadow->getType()->getVectorElementType();
1894 for (int i = 0; i < NumUsedElements; ++i) {
1895 ResultShadow = IRB.CreateInsertElement(
1896 ResultShadow, ConstantInt::getNullValue(EltTy),
1897 ConstantInt::get(IRB.getInt32Ty(), i));
1898 }
1899 setShadow(&I, ResultShadow);
1900 setOrigin(&I, getOrigin(CopyOp));
1901 } else {
1902 setShadow(&I, getCleanShadow(&I));
1903 }
1904 }
1905
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001906 // Given a scalar or vector, extract lower 64 bits (or less), and return all
1907 // zeroes if it is zero, and all ones otherwise.
1908 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
1909 if (S->getType()->isVectorTy())
1910 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
1911 assert(S->getType()->getPrimitiveSizeInBits() <= 64);
1912 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1913 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
1914 }
1915
1916 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
1917 Type *T = S->getType();
1918 assert(T->isVectorTy());
1919 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1920 return IRB.CreateSExt(S2, T);
1921 }
1922
1923 // \brief Instrument vector shift instrinsic.
1924 //
1925 // This function instruments intrinsics like int_x86_avx2_psll_w.
1926 // Intrinsic shifts %In by %ShiftSize bits.
1927 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
1928 // size, and the rest is ignored. Behavior is defined even if shift size is
1929 // greater than register (or field) width.
1930 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
1931 assert(I.getNumArgOperands() == 2);
1932 IRBuilder<> IRB(&I);
1933 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1934 // Otherwise perform the same shift on S1.
1935 Value *S1 = getShadow(&I, 0);
1936 Value *S2 = getShadow(&I, 1);
1937 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
1938 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
1939 Value *V1 = I.getOperand(0);
1940 Value *V2 = I.getOperand(1);
1941 Value *Shift = IRB.CreateCall2(I.getCalledValue(),
1942 IRB.CreateBitCast(S1, V1->getType()), V2);
1943 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
1944 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1945 setOriginForNaryOp(I);
1946 }
1947
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001948 void visitIntrinsicInst(IntrinsicInst &I) {
1949 switch (I.getIntrinsicID()) {
1950 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001951 handleBswap(I);
1952 break;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001953 case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
1954 case llvm::Intrinsic::x86_avx512_cvtsd2usi:
1955 case llvm::Intrinsic::x86_avx512_cvtss2usi64:
1956 case llvm::Intrinsic::x86_avx512_cvtss2usi:
1957 case llvm::Intrinsic::x86_avx512_cvttss2usi64:
1958 case llvm::Intrinsic::x86_avx512_cvttss2usi:
1959 case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
1960 case llvm::Intrinsic::x86_avx512_cvttsd2usi:
1961 case llvm::Intrinsic::x86_avx512_cvtusi2sd:
1962 case llvm::Intrinsic::x86_avx512_cvtusi2ss:
1963 case llvm::Intrinsic::x86_avx512_cvtusi642sd:
1964 case llvm::Intrinsic::x86_avx512_cvtusi642ss:
1965 case llvm::Intrinsic::x86_sse2_cvtsd2si64:
1966 case llvm::Intrinsic::x86_sse2_cvtsd2si:
1967 case llvm::Intrinsic::x86_sse2_cvtsd2ss:
1968 case llvm::Intrinsic::x86_sse2_cvtsi2sd:
1969 case llvm::Intrinsic::x86_sse2_cvtsi642sd:
1970 case llvm::Intrinsic::x86_sse2_cvtss2sd:
1971 case llvm::Intrinsic::x86_sse2_cvttsd2si64:
1972 case llvm::Intrinsic::x86_sse2_cvttsd2si:
1973 case llvm::Intrinsic::x86_sse_cvtsi2ss:
1974 case llvm::Intrinsic::x86_sse_cvtsi642ss:
1975 case llvm::Intrinsic::x86_sse_cvtss2si64:
1976 case llvm::Intrinsic::x86_sse_cvtss2si:
1977 case llvm::Intrinsic::x86_sse_cvttss2si64:
1978 case llvm::Intrinsic::x86_sse_cvttss2si:
1979 handleVectorConvertIntrinsic(I, 1);
1980 break;
1981 case llvm::Intrinsic::x86_sse2_cvtdq2pd:
1982 case llvm::Intrinsic::x86_sse2_cvtps2pd:
1983 case llvm::Intrinsic::x86_sse_cvtps2pi:
1984 case llvm::Intrinsic::x86_sse_cvttps2pi:
1985 handleVectorConvertIntrinsic(I, 2);
1986 break;
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001987 case llvm::Intrinsic::x86_avx512_psll_dq:
1988 case llvm::Intrinsic::x86_avx512_psrl_dq:
1989 case llvm::Intrinsic::x86_avx2_psll_w:
1990 case llvm::Intrinsic::x86_avx2_psll_d:
1991 case llvm::Intrinsic::x86_avx2_psll_q:
1992 case llvm::Intrinsic::x86_avx2_pslli_w:
1993 case llvm::Intrinsic::x86_avx2_pslli_d:
1994 case llvm::Intrinsic::x86_avx2_pslli_q:
1995 case llvm::Intrinsic::x86_avx2_psll_dq:
1996 case llvm::Intrinsic::x86_avx2_psrl_w:
1997 case llvm::Intrinsic::x86_avx2_psrl_d:
1998 case llvm::Intrinsic::x86_avx2_psrl_q:
1999 case llvm::Intrinsic::x86_avx2_psra_w:
2000 case llvm::Intrinsic::x86_avx2_psra_d:
2001 case llvm::Intrinsic::x86_avx2_psrli_w:
2002 case llvm::Intrinsic::x86_avx2_psrli_d:
2003 case llvm::Intrinsic::x86_avx2_psrli_q:
2004 case llvm::Intrinsic::x86_avx2_psrai_w:
2005 case llvm::Intrinsic::x86_avx2_psrai_d:
2006 case llvm::Intrinsic::x86_avx2_psrl_dq:
2007 case llvm::Intrinsic::x86_sse2_psll_w:
2008 case llvm::Intrinsic::x86_sse2_psll_d:
2009 case llvm::Intrinsic::x86_sse2_psll_q:
2010 case llvm::Intrinsic::x86_sse2_pslli_w:
2011 case llvm::Intrinsic::x86_sse2_pslli_d:
2012 case llvm::Intrinsic::x86_sse2_pslli_q:
2013 case llvm::Intrinsic::x86_sse2_psll_dq:
2014 case llvm::Intrinsic::x86_sse2_psrl_w:
2015 case llvm::Intrinsic::x86_sse2_psrl_d:
2016 case llvm::Intrinsic::x86_sse2_psrl_q:
2017 case llvm::Intrinsic::x86_sse2_psra_w:
2018 case llvm::Intrinsic::x86_sse2_psra_d:
2019 case llvm::Intrinsic::x86_sse2_psrli_w:
2020 case llvm::Intrinsic::x86_sse2_psrli_d:
2021 case llvm::Intrinsic::x86_sse2_psrli_q:
2022 case llvm::Intrinsic::x86_sse2_psrai_w:
2023 case llvm::Intrinsic::x86_sse2_psrai_d:
2024 case llvm::Intrinsic::x86_sse2_psrl_dq:
2025 case llvm::Intrinsic::x86_mmx_psll_w:
2026 case llvm::Intrinsic::x86_mmx_psll_d:
2027 case llvm::Intrinsic::x86_mmx_psll_q:
2028 case llvm::Intrinsic::x86_mmx_pslli_w:
2029 case llvm::Intrinsic::x86_mmx_pslli_d:
2030 case llvm::Intrinsic::x86_mmx_pslli_q:
2031 case llvm::Intrinsic::x86_mmx_psrl_w:
2032 case llvm::Intrinsic::x86_mmx_psrl_d:
2033 case llvm::Intrinsic::x86_mmx_psrl_q:
2034 case llvm::Intrinsic::x86_mmx_psra_w:
2035 case llvm::Intrinsic::x86_mmx_psra_d:
2036 case llvm::Intrinsic::x86_mmx_psrli_w:
2037 case llvm::Intrinsic::x86_mmx_psrli_d:
2038 case llvm::Intrinsic::x86_mmx_psrli_q:
2039 case llvm::Intrinsic::x86_mmx_psrai_w:
2040 case llvm::Intrinsic::x86_mmx_psrai_d:
2041 handleVectorShiftIntrinsic(I, /* Variable */ false);
2042 break;
2043 case llvm::Intrinsic::x86_avx2_psllv_d:
2044 case llvm::Intrinsic::x86_avx2_psllv_d_256:
2045 case llvm::Intrinsic::x86_avx2_psllv_q:
2046 case llvm::Intrinsic::x86_avx2_psllv_q_256:
2047 case llvm::Intrinsic::x86_avx2_psrlv_d:
2048 case llvm::Intrinsic::x86_avx2_psrlv_d_256:
2049 case llvm::Intrinsic::x86_avx2_psrlv_q:
2050 case llvm::Intrinsic::x86_avx2_psrlv_q_256:
2051 case llvm::Intrinsic::x86_avx2_psrav_d:
2052 case llvm::Intrinsic::x86_avx2_psrav_d_256:
2053 handleVectorShiftIntrinsic(I, /* Variable */ true);
2054 break;
2055
2056 // Byte shifts are not implemented.
2057 // case llvm::Intrinsic::x86_avx512_psll_dq_bs:
2058 // case llvm::Intrinsic::x86_avx512_psrl_dq_bs:
2059 // case llvm::Intrinsic::x86_avx2_psll_dq_bs:
2060 // case llvm::Intrinsic::x86_avx2_psrl_dq_bs:
2061 // case llvm::Intrinsic::x86_sse2_psll_dq_bs:
2062 // case llvm::Intrinsic::x86_sse2_psrl_dq_bs:
2063
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002064 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00002065 if (!handleUnknownIntrinsic(I))
2066 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00002067 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002068 }
2069 }
2070
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002071 void visitCallSite(CallSite CS) {
2072 Instruction &I = *CS.getInstruction();
2073 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2074 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00002075 CallInst *Call = cast<CallInst>(&I);
2076
2077 // For inline asm, do the usual thing: check argument shadow and mark all
2078 // outputs as clean. Note that any side effects of the inline asm that are
2079 // not immediately visible in its constraints are not handled.
2080 if (Call->isInlineAsm()) {
2081 visitInstruction(I);
2082 return;
2083 }
2084
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002085 // Allow only tail calls with the same types, otherwise
2086 // we may have a false positive: shadow for a non-void RetVal
2087 // will get propagated to a void RetVal.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002088 if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
2089 Call->setTailCall(false);
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002090
2091 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002092
2093 // We are going to insert code that relies on the fact that the callee
2094 // will become a non-readonly function after it is instrumented by us. To
2095 // prevent this code from being optimized out, mark that function
2096 // non-readonly in advance.
2097 if (Function *Func = Call->getCalledFunction()) {
2098 // Clear out readonly/readnone attributes.
2099 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002100 B.addAttribute(Attribute::ReadOnly)
2101 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002102 Func->removeAttributes(AttributeSet::FunctionIndex,
2103 AttributeSet::get(Func->getContext(),
2104 AttributeSet::FunctionIndex,
2105 B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002106 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002107 }
2108 IRBuilder<> IRB(&I);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002109
2110 if (MS.WrapIndirectCalls && !CS.getCalledFunction())
Evgeniy Stepanov585813e2013-11-14 12:29:04 +00002111 IndirectCallList.push_back(CS);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002112
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002113 unsigned ArgOffset = 0;
2114 DEBUG(dbgs() << " CallSite: " << I << "\n");
2115 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2116 ArgIt != End; ++ArgIt) {
2117 Value *A = *ArgIt;
2118 unsigned i = ArgIt - CS.arg_begin();
2119 if (!A->getType()->isSized()) {
2120 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2121 continue;
2122 }
2123 unsigned Size = 0;
2124 Value *Store = 0;
2125 // Compute the Shadow for arg even if it is ByVal, because
2126 // in that case getShadow() will copy the actual arg shadow to
2127 // __msan_param_tls.
2128 Value *ArgShadow = getShadow(A);
2129 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2130 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
2131 " Shadow: " << *ArgShadow << "\n");
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002132 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002133 assert(A->getType()->isPointerTy() &&
2134 "ByVal argument is not a pointer!");
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002135 Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002136 unsigned Alignment = CS.getParamAlignment(i + 1);
2137 Store = IRB.CreateMemCpy(ArgShadowBase,
2138 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2139 Size, Alignment);
2140 } else {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002141 Size = MS.DL->getTypeAllocSize(A->getType());
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002142 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2143 kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002144 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002145 if (MS.TrackOrigins)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00002146 IRB.CreateStore(getOrigin(A),
2147 getOriginPtrForArgument(A, IRB, ArgOffset));
Edwin Vane82f80d42013-01-29 17:42:24 +00002148 (void)Store;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002149 assert(Size != 0 && Store != 0);
2150 DEBUG(dbgs() << " Param:" << *Store << "\n");
2151 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
2152 }
2153 DEBUG(dbgs() << " done with call args\n");
2154
2155 FunctionType *FT =
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002156 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002157 if (FT->isVarArg()) {
2158 VAHelper->visitCallSite(CS, IRB);
2159 }
2160
2161 // Now, get the shadow for the RetVal.
2162 if (!I.getType()->isSized()) return;
2163 IRBuilder<> IRBBefore(&I);
Alp Tokercb402912014-01-24 17:20:08 +00002164 // Until we have full dynamic coverage, make sure the retval shadow is 0.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002165 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002166 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002167 Instruction *NextInsn = 0;
2168 if (CS.isCall()) {
2169 NextInsn = I.getNextNode();
2170 } else {
2171 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2172 if (!NormalDest->getSinglePredecessor()) {
2173 // FIXME: this case is tricky, so we are just conservative here.
2174 // Perhaps we need to split the edge between this BB and NormalDest,
2175 // but a naive attempt to use SplitEdge leads to a crash.
2176 setShadow(&I, getCleanShadow(&I));
2177 setOrigin(&I, getCleanOrigin());
2178 return;
2179 }
2180 NextInsn = NormalDest->getFirstInsertionPt();
2181 assert(NextInsn &&
2182 "Could not find insertion point for retval shadow load");
2183 }
2184 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002185 Value *RetvalShadow =
2186 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2187 kShadowTLSAlignment, "_msret");
2188 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002189 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002190 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2191 }
2192
2193 void visitReturnInst(ReturnInst &I) {
2194 IRBuilder<> IRB(&I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002195 Value *RetVal = I.getReturnValue();
2196 if (!RetVal) return;
2197 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2198 if (CheckReturnValue) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002199 insertShadowCheck(RetVal, &I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002200 Value *Shadow = getCleanShadow(RetVal);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002201 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002202 } else {
2203 Value *Shadow = getShadow(RetVal);
2204 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2205 // FIXME: make it conditional if ClStoreCleanOrigin==0
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002206 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002207 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2208 }
2209 }
2210
2211 void visitPHINode(PHINode &I) {
2212 IRBuilder<> IRB(&I);
2213 ShadowPHINodes.push_back(&I);
2214 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2215 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002216 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002217 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2218 "_msphi_o"));
2219 }
2220
2221 void visitAllocaInst(AllocaInst &I) {
2222 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002223 IRBuilder<> IRB(I.getNextNode());
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002224 uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002225 if (PoisonStack && ClPoisonStackWithCall) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002226 IRB.CreateCall2(MS.MsanPoisonStackFn,
2227 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2228 ConstantInt::get(MS.IntptrTy, Size));
2229 } else {
2230 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002231 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2232 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002233 }
2234
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002235 if (PoisonStack && MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002236 setOrigin(&I, getCleanOrigin());
2237 SmallString<2048> StackDescriptionStorage;
2238 raw_svector_ostream StackDescription(StackDescriptionStorage);
2239 // We create a string with a description of the stack allocation and
2240 // pass it into __msan_set_alloca_origin.
2241 // It will be printed by the run-time if stack-originated UMR is found.
2242 // The first 4 bytes of the string are set to '----' and will be replaced
2243 // by __msan_va_arg_overflow_size_tls at the first call.
2244 StackDescription << "----" << I.getName() << "@" << F.getName();
2245 Value *Descr =
2246 createPrivateNonConstGlobalForString(*F.getParent(),
2247 StackDescription.str());
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002248
2249 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002250 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2251 ConstantInt::get(MS.IntptrTy, Size),
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002252 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2253 IRB.CreatePointerCast(&F, MS.IntptrTy));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002254 }
2255 }
2256
2257 void visitSelectInst(SelectInst& I) {
2258 IRBuilder<> IRB(&I);
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002259 // a = select b, c, d
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002260 Value *B = I.getCondition();
2261 Value *C = I.getTrueValue();
2262 Value *D = I.getFalseValue();
2263 Value *Sb = getShadow(B);
2264 Value *Sc = getShadow(C);
2265 Value *Sd = getShadow(D);
2266
2267 // Result shadow if condition shadow is 0.
2268 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
2269 Value *Sa1;
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002270 if (I.getType()->isAggregateType()) {
2271 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2272 // an extra "select". This results in much more compact IR.
2273 // Sa = select Sb, poisoned, (select b, Sc, Sd)
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002274 Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002275 } else {
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002276 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
2277 // If Sb (condition is poisoned), look for bits in c and d that are equal
2278 // and both unpoisoned.
2279 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
2280
2281 // Cast arguments to shadow-compatible type.
2282 C = CreateAppToShadowCast(IRB, C);
2283 D = CreateAppToShadowCast(IRB, D);
2284
2285 // Result shadow if condition shadow is 1.
2286 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002287 }
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002288 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
2289 setShadow(&I, Sa);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002290 if (MS.TrackOrigins) {
2291 // Origins are always i32, so any vector conditions must be flattened.
2292 // FIXME: consider tracking vector origins for app vectors?
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002293 if (B->getType()->isVectorTy()) {
2294 Type *FlatTy = getShadowTyNoVec(B->getType());
2295 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002296 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002297 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002298 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002299 }
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002300 // a = select b, c, d
2301 // Oa = Sb ? Ob : (b ? Oc : Od)
2302 setOrigin(&I, IRB.CreateSelect(
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002303 Sb, getOrigin(I.getCondition()),
2304 IRB.CreateSelect(B, getOrigin(C), getOrigin(D))));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002305 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002306 }
2307
2308 void visitLandingPadInst(LandingPadInst &I) {
2309 // Do nothing.
2310 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2311 setShadow(&I, getCleanShadow(&I));
2312 setOrigin(&I, getCleanOrigin());
2313 }
2314
2315 void visitGetElementPtrInst(GetElementPtrInst &I) {
2316 handleShadowOr(I);
2317 }
2318
2319 void visitExtractValueInst(ExtractValueInst &I) {
2320 IRBuilder<> IRB(&I);
2321 Value *Agg = I.getAggregateOperand();
2322 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
2323 Value *AggShadow = getShadow(Agg);
2324 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2325 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2326 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
2327 setShadow(&I, ResShadow);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002328 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002329 }
2330
2331 void visitInsertValueInst(InsertValueInst &I) {
2332 IRBuilder<> IRB(&I);
2333 DEBUG(dbgs() << "InsertValue: " << I << "\n");
2334 Value *AggShadow = getShadow(I.getAggregateOperand());
2335 Value *InsShadow = getShadow(I.getInsertedValueOperand());
2336 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2337 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
2338 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2339 DEBUG(dbgs() << " Res: " << *Res << "\n");
2340 setShadow(&I, Res);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002341 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002342 }
2343
2344 void dumpInst(Instruction &I) {
2345 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2346 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2347 } else {
2348 errs() << "ZZZ " << I.getOpcodeName() << "\n";
2349 }
2350 errs() << "QQQ " << I << "\n";
2351 }
2352
2353 void visitResumeInst(ResumeInst &I) {
2354 DEBUG(dbgs() << "Resume: " << I << "\n");
2355 // Nothing to do here.
2356 }
2357
2358 void visitInstruction(Instruction &I) {
2359 // Everything else: stop propagating and check for poisoned shadow.
2360 if (ClDumpStrictInstructions)
2361 dumpInst(I);
2362 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2363 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002364 insertShadowCheck(I.getOperand(i), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002365 setShadow(&I, getCleanShadow(&I));
2366 setOrigin(&I, getCleanOrigin());
2367 }
2368};
2369
2370/// \brief AMD64-specific implementation of VarArgHelper.
2371struct VarArgAMD64Helper : public VarArgHelper {
2372 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2373 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002374 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002375 static const unsigned AMD64FpEndOffset = 176;
2376
2377 Function &F;
2378 MemorySanitizer &MS;
2379 MemorySanitizerVisitor &MSV;
2380 Value *VAArgTLSCopy;
2381 Value *VAArgOverflowSize;
2382
2383 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2384
2385 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2386 MemorySanitizerVisitor &MSV)
2387 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
2388
2389 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2390
2391 ArgKind classifyArgument(Value* arg) {
2392 // A very rough approximation of X86_64 argument classification rules.
2393 Type *T = arg->getType();
2394 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2395 return AK_FloatingPoint;
2396 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2397 return AK_GeneralPurpose;
2398 if (T->isPointerTy())
2399 return AK_GeneralPurpose;
2400 return AK_Memory;
2401 }
2402
2403 // For VarArg functions, store the argument shadow in an ABI-specific format
2404 // that corresponds to va_list layout.
2405 // We do this because Clang lowers va_arg in the frontend, and this pass
2406 // only sees the low level code that deals with va_list internals.
2407 // A much easier alternative (provided that Clang emits va_arg instructions)
2408 // would have been to associate each live instance of va_list with a copy of
2409 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2410 // order.
Craig Topper3e4c6972014-03-05 09:10:37 +00002411 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002412 unsigned GpOffset = 0;
2413 unsigned FpOffset = AMD64GpEndOffset;
2414 unsigned OverflowOffset = AMD64FpEndOffset;
2415 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2416 ArgIt != End; ++ArgIt) {
2417 Value *A = *ArgIt;
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002418 unsigned ArgNo = CS.getArgumentNo(ArgIt);
2419 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2420 if (IsByVal) {
2421 // ByVal arguments always go to the overflow area.
2422 assert(A->getType()->isPointerTy());
2423 Type *RealTy = A->getType()->getPointerElementType();
2424 uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
2425 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002426 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002427 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2428 ArgSize, kShadowTLSAlignment);
2429 } else {
2430 ArgKind AK = classifyArgument(A);
2431 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2432 AK = AK_Memory;
2433 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2434 AK = AK_Memory;
2435 Value *Base;
2436 switch (AK) {
2437 case AK_GeneralPurpose:
2438 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2439 GpOffset += 8;
2440 break;
2441 case AK_FloatingPoint:
2442 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2443 FpOffset += 16;
2444 break;
2445 case AK_Memory:
2446 uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
2447 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
2448 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
2449 }
2450 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002451 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002452 }
2453 Constant *OverflowSize =
2454 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2455 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2456 }
2457
2458 /// \brief Compute the shadow address for a given va_arg.
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002459 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002460 int ArgOffset) {
2461 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2462 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002463 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002464 "_msarg");
2465 }
2466
Craig Topper3e4c6972014-03-05 09:10:37 +00002467 void visitVAStartInst(VAStartInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002468 IRBuilder<> IRB(&I);
2469 VAStartInstrumentationList.push_back(&I);
2470 Value *VAListTag = I.getArgOperand(0);
2471 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2472
2473 // Unpoison the whole __va_list_tag.
2474 // FIXME: magic ABI constants.
2475 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002476 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002477 }
2478
Craig Topper3e4c6972014-03-05 09:10:37 +00002479 void visitVACopyInst(VACopyInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002480 IRBuilder<> IRB(&I);
2481 Value *VAListTag = I.getArgOperand(0);
2482 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2483
2484 // Unpoison the whole __va_list_tag.
2485 // FIXME: magic ABI constants.
2486 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002487 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002488 }
2489
Craig Topper3e4c6972014-03-05 09:10:37 +00002490 void finalizeInstrumentation() override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002491 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2492 "finalizeInstrumentation called twice");
2493 if (!VAStartInstrumentationList.empty()) {
2494 // If there is a va_start in this function, make a backup copy of
2495 // va_arg_tls somewhere in the function entry block.
2496 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2497 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2498 Value *CopySize =
2499 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2500 VAArgOverflowSize);
2501 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2502 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2503 }
2504
2505 // Instrument va_start.
2506 // Copy va_list shadow from the backup copy of the TLS contents.
2507 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2508 CallInst *OrigInst = VAStartInstrumentationList[i];
2509 IRBuilder<> IRB(OrigInst->getNextNode());
2510 Value *VAListTag = OrigInst->getArgOperand(0);
2511
2512 Value *RegSaveAreaPtrPtr =
2513 IRB.CreateIntToPtr(
2514 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2515 ConstantInt::get(MS.IntptrTy, 16)),
2516 Type::getInt64PtrTy(*MS.C));
2517 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2518 Value *RegSaveAreaShadowPtr =
2519 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2520 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2521 AMD64FpEndOffset, 16);
2522
2523 Value *OverflowArgAreaPtrPtr =
2524 IRB.CreateIntToPtr(
2525 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2526 ConstantInt::get(MS.IntptrTy, 8)),
2527 Type::getInt64PtrTy(*MS.C));
2528 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2529 Value *OverflowArgAreaShadowPtr =
2530 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
Evgeniy Stepanovd42863c2013-08-23 12:11:00 +00002531 Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002532 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2533 }
2534 }
2535};
2536
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002537/// \brief A no-op implementation of VarArgHelper.
2538struct VarArgNoOpHelper : public VarArgHelper {
2539 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2540 MemorySanitizerVisitor &MSV) {}
2541
Craig Topper3e4c6972014-03-05 09:10:37 +00002542 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002543
Craig Topper3e4c6972014-03-05 09:10:37 +00002544 void visitVAStartInst(VAStartInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002545
Craig Topper3e4c6972014-03-05 09:10:37 +00002546 void visitVACopyInst(VACopyInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002547
Craig Topper3e4c6972014-03-05 09:10:37 +00002548 void finalizeInstrumentation() override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002549};
2550
2551VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002552 MemorySanitizerVisitor &Visitor) {
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002553 // VarArg handling is only implemented on AMD64. False positives are possible
2554 // on other platforms.
2555 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2556 if (TargetTriple.getArch() == llvm::Triple::x86_64)
2557 return new VarArgAMD64Helper(Func, Msan, Visitor);
2558 else
2559 return new VarArgNoOpHelper(Func, Msan, Visitor);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002560}
2561
2562} // namespace
2563
2564bool MemorySanitizer::runOnFunction(Function &F) {
2565 MemorySanitizerVisitor Visitor(F, *this);
2566
2567 // Clear out readonly/readnone attributes.
2568 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002569 B.addAttribute(Attribute::ReadOnly)
2570 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002571 F.removeAttributes(AttributeSet::FunctionIndex,
2572 AttributeSet::get(F.getContext(),
2573 AttributeSet::FunctionIndex, B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002574
2575 return Visitor.runOnFunction();
2576}