blob: ec1a195c95084d89615d72c49356df547d5f9945 [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// Status: early prototype.
14///
15/// The algorithm of the tool is similar to Memcheck
16/// (http://goo.gl/QKbem). We associate a few shadow bits with every
17/// byte of the application memory, poison the shadow of the malloc-ed
18/// or alloca-ed memory, load the shadow bits on every memory read,
19/// propagate the shadow bits through some of the arithmetic
20/// instruction (including MOV), store the shadow bits on every memory
21/// write, report a bug on some other instructions (e.g. JMP) if the
22/// associated shadow is poisoned.
23///
24/// But there are differences too. The first and the major one:
25/// compiler instrumentation instead of binary instrumentation. This
26/// gives us much better register allocation, possible compiler
27/// optimizations and a fast start-up. But this brings the major issue
28/// as well: msan needs to see all program events, including system
29/// calls and reads/writes in system libraries, so we either need to
30/// compile *everything* with msan or use a binary translation
31/// component (e.g. DynamoRIO) to instrument pre-built libraries.
32/// Another difference from Memcheck is that we use 8 shadow bits per
33/// byte of application memory and use a direct shadow mapping. This
34/// greatly simplifies the instrumentation code and avoids races on
35/// shadow updates (Memcheck is single-threaded so races are not a
36/// concern there. Memcheck uses 2 shadow bits per byte with a slow
37/// path storage that uses 8 bits per byte).
38///
39/// The default value of shadow is 0, which means "clean" (not poisoned).
40///
41/// Every module initializer should call __msan_init to ensure that the
42/// shadow memory is ready. On error, __msan_warning is called. Since
43/// parameters and return values may be passed via registers, we have a
44/// specialized thread-local shadow for return values
45/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000046///
47/// Origin tracking.
48///
49/// MemorySanitizer can track origins (allocation points) of all uninitialized
50/// values. This behavior is controlled with a flag (msan-track-origins) and is
51/// disabled by default.
52///
53/// Origins are 4-byte values created and interpreted by the runtime library.
54/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
55/// of application memory. Propagation of origins is basically a bunch of
56/// "select" instructions that pick the origin of a dirty argument, if an
57/// instruction has one.
58///
59/// Every 4 aligned, consecutive bytes of application memory have one origin
60/// value associated with them. If these bytes contain uninitialized data
61/// coming from 2 different allocations, the last store wins. Because of this,
62/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
Alexey Samsonov3efc87e2012-12-28 09:30:44 +000063/// practice.
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000064///
65/// Origins are meaningless for fully initialized values, so MemorySanitizer
66/// avoids storing origin to memory when a fully initialized value is stored.
67/// This way it avoids needless overwritting origin of the 4-byte region on
68/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanov5522a702013-09-24 11:20:27 +000069///
70/// Atomic handling.
71///
72/// Ideally, every atomic store of application value should update the
73/// corresponding shadow location in an atomic way. Unfortunately, atomic store
74/// of two disjoint locations can not be done without severe slowdown.
75///
76/// Therefore, we implement an approximation that may err on the safe side.
77/// In this implementation, every atomically accessed location in the program
78/// may only change from (partially) uninitialized to fully initialized, but
79/// not the other way around. We load the shadow _after_ the application load,
80/// and we store the shadow _before_ the app store. Also, we always store clean
81/// shadow (if the application store is atomic). This way, if the store-load
82/// pair constitutes a happens-before arc, shadow store and load are correctly
83/// ordered such that the load will get either the value that was stored, or
84/// some later value (which is always clean).
85///
86/// This does not work very well with Compare-And-Swap (CAS) and
87/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
88/// must store the new shadow before the app operation, and load the shadow
89/// after the app operation. Computers don't work this way. Current
90/// implementation ignores the load aspect of CAS/RMW, always returning a clean
91/// value. It implements the store part as a simple atomic store by storing a
92/// clean shadow.
93
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000094//===----------------------------------------------------------------------===//
95
96#define DEBUG_TYPE "msan"
97
Chandler Carruthed0881b2012-12-03 16:50:05 +000098#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000099#include "llvm/ADT/DepthFirstIterator.h"
100#include "llvm/ADT/SmallString.h"
101#include "llvm/ADT/SmallVector.h"
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +0000102#include "llvm/ADT/Triple.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000103#include "llvm/IR/DataLayout.h"
104#include "llvm/IR/Function.h"
105#include "llvm/IR/IRBuilder.h"
106#include "llvm/IR/InlineAsm.h"
Chandler Carruth7da14f12014-03-06 03:23:41 +0000107#include "llvm/IR/InstVisitor.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000108#include "llvm/IR/IntrinsicInst.h"
109#include "llvm/IR/LLVMContext.h"
110#include "llvm/IR/MDBuilder.h"
111#include "llvm/IR/Module.h"
112#include "llvm/IR/Type.h"
Chandler Carrutha4ea2692014-03-04 11:26:31 +0000113#include "llvm/IR/ValueMap.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000114#include "llvm/Support/CommandLine.h"
115#include "llvm/Support/Compiler.h"
116#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000117#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000118#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000119#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000120#include "llvm/Transforms/Utils/ModuleUtils.h"
Peter Collingbourne015370e2013-07-09 22:02:49 +0000121#include "llvm/Transforms/Utils/SpecialCaseList.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000122
123using namespace llvm;
124
125static const uint64_t kShadowMask32 = 1ULL << 31;
126static const uint64_t kShadowMask64 = 1ULL << 46;
127static const uint64_t kOriginOffset32 = 1ULL << 30;
128static const uint64_t kOriginOffset64 = 1ULL << 45;
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000129static const unsigned kMinOriginAlignment = 4;
130static const unsigned kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000131
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000132/// \brief Track origins of uninitialized values.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000133///
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000134/// Adds a section to MemorySanitizer report that points to the allocation
135/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000136static cl::opt<int> ClTrackOrigins("msan-track-origins",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000137 cl::desc("Track origins (allocation sites) of poisoned memory"),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000138 cl::Hidden, cl::init(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000139static cl::opt<bool> ClKeepGoing("msan-keep-going",
140 cl::desc("keep going after reporting a UMR"),
141 cl::Hidden, cl::init(false));
142static cl::opt<bool> ClPoisonStack("msan-poison-stack",
143 cl::desc("poison uninitialized stack variables"),
144 cl::Hidden, cl::init(true));
145static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
146 cl::desc("poison uninitialized stack variables with a call"),
147 cl::Hidden, cl::init(false));
148static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
149 cl::desc("poison uninitialized stack variables with the given patter"),
150 cl::Hidden, cl::init(0xff));
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000151static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
152 cl::desc("poison undef temps"),
153 cl::Hidden, cl::init(true));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000154
155static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
156 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
157 cl::Hidden, cl::init(true));
158
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000159static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
160 cl::desc("exact handling of relational integer ICmp"),
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +0000161 cl::Hidden, cl::init(false));
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000162
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000163// This flag controls whether we check the shadow of the address
164// operand of load or store. Such bugs are very rare, since load from
165// a garbage address typically results in SEGV, but still happen
166// (e.g. only lower bits of address are garbage, or the access happens
167// early at program startup where malloc-ed memory is more likely to
168// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
169static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
170 cl::desc("report accesses through a pointer which has poisoned shadow"),
171 cl::Hidden, cl::init(true));
172
173static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
174 cl::desc("print out instructions with default strict semantics"),
175 cl::Hidden, cl::init(false));
176
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000177static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000178 cl::desc("File containing the list of functions where MemorySanitizer "
179 "should not report bugs"), cl::Hidden);
180
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000181// Experimental. Wraps all indirect calls in the instrumented code with
182// a call to the given function. This is needed to assist the dynamic
183// helper tool (MSanDR) to regain control on transition between instrumented and
184// non-instrumented code.
185static cl::opt<std::string> ClWrapIndirectCalls("msan-wrap-indirect-calls",
186 cl::desc("Wrap indirect calls with a given function"),
187 cl::Hidden);
188
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000189static cl::opt<bool> ClWrapIndirectCallsFast("msan-wrap-indirect-calls-fast",
190 cl::desc("Do not wrap indirect calls with target in the same module"),
191 cl::Hidden, cl::init(true));
192
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000193namespace {
194
195/// \brief An instrumentation pass implementing detection of uninitialized
196/// reads.
197///
198/// MemorySanitizer: instrument the code in module to find
199/// uninitialized reads.
200class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000201 public:
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000202 MemorySanitizer(int TrackOrigins = 0,
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000203 StringRef BlacklistFile = StringRef())
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000204 : FunctionPass(ID),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000205 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000206 DL(0),
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000207 WarningFn(0),
208 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile : BlacklistFile),
209 WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
Craig Topper3e4c6972014-03-05 09:10:37 +0000210 const char *getPassName() const override { return "MemorySanitizer"; }
211 bool runOnFunction(Function &F) override;
212 bool doInitialization(Module &M) override;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000213 static char ID; // Pass identification, replacement for typeid.
214
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000215 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000216 void initializeCallbacks(Module &M);
217
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000218 /// \brief Track origins (allocation points) of uninitialized values.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000219 int TrackOrigins;
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000220
Rafael Espindolaaeff8a92014-02-24 23:12:18 +0000221 const DataLayout *DL;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000222 LLVMContext *C;
223 Type *IntptrTy;
224 Type *OriginTy;
225 /// \brief Thread-local shadow storage for function parameters.
226 GlobalVariable *ParamTLS;
227 /// \brief Thread-local origin storage for function parameters.
228 GlobalVariable *ParamOriginTLS;
229 /// \brief Thread-local shadow storage for function return value.
230 GlobalVariable *RetvalTLS;
231 /// \brief Thread-local origin storage for function return value.
232 GlobalVariable *RetvalOriginTLS;
233 /// \brief Thread-local shadow storage for in-register va_arg function
234 /// parameters (x86_64-specific).
235 GlobalVariable *VAArgTLS;
236 /// \brief Thread-local shadow storage for va_arg overflow area
237 /// (x86_64-specific).
238 GlobalVariable *VAArgOverflowSizeTLS;
239 /// \brief Thread-local space used to pass origin value to the UMR reporting
240 /// function.
241 GlobalVariable *OriginTLS;
242
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000243 GlobalVariable *MsandrModuleStart;
244 GlobalVariable *MsandrModuleEnd;
245
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000246 /// \brief The run-time callback to print a warning.
247 Value *WarningFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000248 /// \brief Run-time helper that generates a new origin value for a stack
249 /// allocation.
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000250 Value *MsanSetAllocaOrigin4Fn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000251 /// \brief Run-time helper that poisons stack on function entry.
252 Value *MsanPoisonStackFn;
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000253 /// \brief Run-time helper that records a store (or any event) of an
254 /// uninitialized value and returns an updated origin id encoding this info.
255 Value *MsanChainOriginFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000256 /// \brief MSan runtime replacements for memmove, memcpy and memset.
257 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000258
259 /// \brief Address mask used in application-to-shadow address calculation.
260 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
261 uint64_t ShadowMask;
262 /// \brief Offset of the origin shadow from the "normal" shadow.
263 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
264 uint64_t OriginOffset;
265 /// \brief Branch weights for error reporting.
266 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000267 /// \brief Branch weights for origin store.
268 MDNode *OriginStoreWeights;
Dmitri Gribenko9bf66a52013-05-09 21:16:18 +0000269 /// \brief Path to blacklist file.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000270 SmallString<64> BlacklistFile;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000271 /// \brief The blacklist.
Ahmed Charles56440fd2014-03-06 05:51:42 +0000272 std::unique_ptr<SpecialCaseList> BL;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000273 /// \brief An empty volatile inline asm that prevents callback merge.
274 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000275
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000276 bool WrapIndirectCalls;
277 /// \brief Run-time wrapper for indirect calls.
278 Value *IndirectCallWrapperFn;
279 // Argument and return type of IndirectCallWrapperFn: void (*f)(void).
280 Type *AnyFunctionPtrTy;
281
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000282 friend struct MemorySanitizerVisitor;
283 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000284};
285} // namespace
286
287char MemorySanitizer::ID = 0;
288INITIALIZE_PASS(MemorySanitizer, "msan",
289 "MemorySanitizer: detects uninitialized reads.",
290 false, false)
291
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000292FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins,
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000293 StringRef BlacklistFile) {
294 return new MemorySanitizer(TrackOrigins, BlacklistFile);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000295}
296
297/// \brief Create a non-const global initialized with the given string.
298///
299/// Creates a writable global for Str so that we can pass it to the
300/// run-time lib. Runtime uses first 4 bytes of the string to store the
301/// frame ID, so the string needs to be mutable.
302static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
303 StringRef Str) {
304 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
305 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
306 GlobalValue::PrivateLinkage, StrConst, "");
307}
308
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000309
310/// \brief Insert extern declaration of runtime-provided functions and globals.
311void MemorySanitizer::initializeCallbacks(Module &M) {
312 // Only do this once.
313 if (WarningFn)
314 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000315
316 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000317 // Create the callback.
318 // FIXME: this function should have "Cold" calling conv,
319 // which is not yet implemented.
320 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
321 : "__msan_warning_noreturn";
322 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
323
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000324 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
325 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
326 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000327 MsanPoisonStackFn = M.getOrInsertFunction(
328 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000329 MsanChainOriginFn = M.getOrInsertFunction(
330 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000331 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000332 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
333 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000334 MemcpyFn = M.getOrInsertFunction(
335 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
336 IntptrTy, NULL);
337 MemsetFn = M.getOrInsertFunction(
338 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000339 IntptrTy, NULL);
340
341 // Create globals.
342 RetvalTLS = new GlobalVariable(
343 M, ArrayType::get(IRB.getInt64Ty(), 8), false,
344 GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000345 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000346 RetvalOriginTLS = new GlobalVariable(
347 M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000348 "__msan_retval_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000349
350 ParamTLS = new GlobalVariable(
351 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
352 GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000353 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000354 ParamOriginTLS = new GlobalVariable(
355 M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000356 0, "__msan_param_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000357
358 VAArgTLS = new GlobalVariable(
359 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
360 GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000361 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000362 VAArgOverflowSizeTLS = new GlobalVariable(
363 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
364 "__msan_va_arg_overflow_size_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000365 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000366 OriginTLS = new GlobalVariable(
367 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000368 "__msan_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000369
370 // We insert an empty inline asm after __msan_report* to avoid callback merge.
371 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
372 StringRef(""), StringRef(""),
373 /*hasSideEffects=*/true);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000374
375 if (WrapIndirectCalls) {
376 AnyFunctionPtrTy =
377 PointerType::getUnqual(FunctionType::get(IRB.getVoidTy(), false));
378 IndirectCallWrapperFn = M.getOrInsertFunction(
379 ClWrapIndirectCalls, AnyFunctionPtrTy, AnyFunctionPtrTy, NULL);
380 }
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000381
382 if (ClWrapIndirectCallsFast) {
383 MsandrModuleStart = new GlobalVariable(
384 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
385 0, "__executable_start");
386 MsandrModuleStart->setVisibility(GlobalVariable::HiddenVisibility);
387 MsandrModuleEnd = new GlobalVariable(
388 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
389 0, "_end");
390 MsandrModuleEnd->setVisibility(GlobalVariable::HiddenVisibility);
391 }
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000392}
393
394/// \brief Module-level initialization.
395///
396/// inserts a call to __msan_init to the module's constructor list.
397bool MemorySanitizer::doInitialization(Module &M) {
Rafael Espindola93512512014-02-25 17:30:31 +0000398 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
399 if (!DLP)
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000400 return false;
Rafael Espindola93512512014-02-25 17:30:31 +0000401 DL = &DLP->getDataLayout();
402
Alexey Samsonove4b5fb82013-08-12 11:46:09 +0000403 BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000404 C = &(M.getContext());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000405 unsigned PtrSize = DL->getPointerSizeInBits(/* AddressSpace */0);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000406 switch (PtrSize) {
407 case 64:
408 ShadowMask = kShadowMask64;
409 OriginOffset = kOriginOffset64;
410 break;
411 case 32:
412 ShadowMask = kShadowMask32;
413 OriginOffset = kOriginOffset32;
414 break;
415 default:
416 report_fatal_error("unsupported pointer size");
417 break;
418 }
419
420 IRBuilder<> IRB(*C);
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000421 IntptrTy = IRB.getIntPtrTy(DL);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000422 OriginTy = IRB.getInt32Ty();
423
424 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000425 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000426
427 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
428 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
429 "__msan_init", IRB.getVoidTy(), NULL)), 0);
430
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000431 if (TrackOrigins)
432 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
433 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000434
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000435 if (ClKeepGoing)
436 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
437 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
Evgeniy Stepanovdcf6bcb2013-01-22 13:26:53 +0000438
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000439 return true;
440}
441
442namespace {
443
444/// \brief A helper class that handles instrumentation of VarArg
445/// functions on a particular platform.
446///
447/// Implementations are expected to insert the instrumentation
448/// necessary to propagate argument shadow through VarArg function
449/// calls. Visit* methods are called during an InstVisitor pass over
450/// the function, and should avoid creating new basic blocks. A new
451/// instance of this class is created for each instrumented function.
452struct VarArgHelper {
453 /// \brief Visit a CallSite.
454 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
455
456 /// \brief Visit a va_start call.
457 virtual void visitVAStartInst(VAStartInst &I) = 0;
458
459 /// \brief Visit a va_copy call.
460 virtual void visitVACopyInst(VACopyInst &I) = 0;
461
462 /// \brief Finalize function instrumentation.
463 ///
464 /// This method is called after visiting all interesting (see above)
465 /// instructions in a function.
466 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000467
468 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000469};
470
471struct MemorySanitizerVisitor;
472
473VarArgHelper*
474CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
475 MemorySanitizerVisitor &Visitor);
476
477/// This class does all the work for a given function. Store and Load
478/// instructions store and load corresponding shadow and origin
479/// values. Most instructions propagate shadow from arguments to their
480/// return values. Certain instructions (most importantly, BranchInst)
481/// test their argument shadow and print reports (with a runtime call) if it's
482/// non-zero.
483struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
484 Function &F;
485 MemorySanitizer &MS;
486 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
487 ValueMap<Value*, Value*> ShadowMap, OriginMap;
Ahmed Charles56440fd2014-03-06 05:51:42 +0000488 std::unique_ptr<VarArgHelper> VAHelper;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000489
490 // The following flags disable parts of MSan instrumentation based on
491 // blacklist contents and command-line options.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000492 bool InsertChecks;
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000493 bool LoadShadow;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000494 bool PoisonStack;
495 bool PoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000496 bool CheckReturnValue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000497
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000498 struct ShadowOriginAndInsertPoint {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000499 Value *Shadow;
500 Value *Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000501 Instruction *OrigIns;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000502 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000503 : Shadow(S), Origin(O), OrigIns(I) { }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000504 };
505 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000506 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000507 SmallVector<CallSite, 16> IndirectCallList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000508
509 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000510 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000511 bool SanitizeFunction = !MS.BL->isIn(F) && F.getAttributes().hasAttribute(
512 AttributeSet::FunctionIndex,
513 Attribute::SanitizeMemory);
514 InsertChecks = SanitizeFunction;
515 LoadShadow = SanitizeFunction;
516 PoisonStack = SanitizeFunction && ClPoisonStack;
517 PoisonUndef = SanitizeFunction && ClPoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000518 // FIXME: Consider using SpecialCaseList to specify a list of functions that
519 // must always return fully initialized values. For now, we hardcode "main".
520 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000521
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000522 DEBUG(if (!InsertChecks)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000523 dbgs() << "MemorySanitizer is not inserting checks into '"
524 << F.getName() << "'\n");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000525 }
526
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000527 Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
528 if (MS.TrackOrigins <= 1) return V;
529 return IRB.CreateCall(MS.MsanChainOriginFn, V);
530 }
531
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000532 void materializeStores() {
533 for (size_t i = 0, n = StoreList.size(); i < n; i++) {
534 StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
535
536 IRBuilder<> IRB(&I);
537 Value *Val = I.getValueOperand();
538 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000539 Value *Shadow = I.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000540 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
541
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000542 StoreInst *NewSI =
543 IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000544 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000545 (void)NewSI;
Evgeniy Stepanovc4415592013-01-22 12:30:52 +0000546
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000547 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000548 insertShadowCheck(Addr, &I);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000549
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000550 if (I.isAtomic())
551 I.setOrdering(addReleaseOrdering(I.getOrdering()));
552
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000553 if (MS.TrackOrigins) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000554 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
Evgeniy Stepanov2aac0732014-03-18 09:47:06 +0000555 if (isa<StructType>(Shadow->getType())) {
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000556 IRB.CreateAlignedStore(updateOrigin(getOrigin(Val), IRB),
557 getOriginPtr(Addr, IRB), Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000558 } else {
559 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
560
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000561 // TODO(eugenis): handle non-zero constant shadow by inserting an
562 // unconditional check (can not simply fail compilation as this could
563 // be in the dead code).
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000564 if (isa<Constant>(ConvertedShadow))
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000565 continue;
566
567 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
568 getCleanShadow(ConvertedShadow), "_mscmp");
569 Instruction *CheckTerm =
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000570 SplitBlockAndInsertIfThen(Cmp, &I, false, MS.OriginStoreWeights);
Evgeniy Stepanov49175b22012-12-14 13:43:11 +0000571 IRBuilder<> IRBNew(CheckTerm);
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000572 IRBNew.CreateAlignedStore(updateOrigin(getOrigin(Val), IRBNew),
573 getOriginPtr(Addr, IRBNew), Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000574 }
575 }
576 }
577 }
578
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000579 void materializeChecks() {
580 for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000581 Value *Shadow = InstrumentationList[i].Shadow;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000582 Instruction *OrigIns = InstrumentationList[i].OrigIns;
583 IRBuilder<> IRB(OrigIns);
584 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
585 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
586 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000587 // See the comment in materializeStores().
588 if (isa<Constant>(ConvertedShadow))
589 continue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000590 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
591 getCleanShadow(ConvertedShadow), "_mscmp");
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000592 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
593 Cmp, OrigIns,
594 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000595
596 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000597 if (MS.TrackOrigins) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000598 Value *Origin = InstrumentationList[i].Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000599 IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
600 MS.OriginTLS);
601 }
Evgeniy Stepanov2275a012014-03-19 12:56:38 +0000602 IRB.CreateCall(MS.WarningFn);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000603 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000604 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
605 }
606 DEBUG(dbgs() << "DONE:\n" << F);
607 }
608
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000609 void materializeIndirectCalls() {
610 for (size_t i = 0, n = IndirectCallList.size(); i < n; i++) {
611 CallSite CS = IndirectCallList[i];
612 Instruction *I = CS.getInstruction();
613 BasicBlock *B = I->getParent();
614 IRBuilder<> IRB(I);
615 Value *Fn0 = CS.getCalledValue();
616 Value *Fn = IRB.CreateBitCast(Fn0, MS.AnyFunctionPtrTy);
617
618 if (ClWrapIndirectCallsFast) {
619 // Check that call target is inside this module limits.
620 Value *Start =
621 IRB.CreateBitCast(MS.MsandrModuleStart, MS.AnyFunctionPtrTy);
622 Value *End = IRB.CreateBitCast(MS.MsandrModuleEnd, MS.AnyFunctionPtrTy);
623
624 Value *NotInThisModule = IRB.CreateOr(IRB.CreateICmpULT(Fn, Start),
625 IRB.CreateICmpUGE(Fn, End));
626
627 PHINode *NewFnPhi =
628 IRB.CreatePHI(Fn0->getType(), 2, "msandr.indirect_target");
629
630 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000631 NotInThisModule, NewFnPhi,
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000632 /* Unreachable */ false, MS.ColdCallWeights);
633
634 IRB.SetInsertPoint(CheckTerm);
635 // Slow path: call wrapper function to possibly transform the call
636 // target.
637 Value *NewFn = IRB.CreateBitCast(
638 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
639
640 NewFnPhi->addIncoming(Fn0, B);
641 NewFnPhi->addIncoming(NewFn, dyn_cast<Instruction>(NewFn)->getParent());
642 CS.setCalledFunction(NewFnPhi);
643 } else {
644 Value *NewFn = IRB.CreateBitCast(
645 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
646 CS.setCalledFunction(NewFn);
647 }
648 }
649 }
650
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000651 /// \brief Add MemorySanitizer instrumentation to a function.
652 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000653 MS.initializeCallbacks(*F.getParent());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000654 if (!MS.DL) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000655
656 // In the presence of unreachable blocks, we may see Phi nodes with
657 // incoming nodes from such blocks. Since InstVisitor skips unreachable
658 // blocks, such nodes will not have any shadow value associated with them.
659 // It's easier to remove unreachable blocks than deal with missing shadow.
660 removeUnreachableBlocks(F);
661
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000662 // Iterate all BBs in depth-first order and create shadow instructions
663 // for all instructions (where applicable).
664 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
665 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
666 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
667 BasicBlock *BB = *DI;
668 visit(*BB);
669 }
670
671 // Finalize PHI nodes.
672 for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
673 PHINode *PN = ShadowPHINodes[i];
674 PHINode *PNS = cast<PHINode>(getShadow(PN));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000675 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000676 size_t NumValues = PN->getNumIncomingValues();
677 for (size_t v = 0; v < NumValues; v++) {
678 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
679 if (PNO)
680 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
681 }
682 }
683
684 VAHelper->finalizeInstrumentation();
685
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000686 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000687 // This may add new checks to be inserted later.
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000688 materializeStores();
689
690 // Insert shadow value checks.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000691 materializeChecks();
692
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000693 // Wrap indirect calls.
694 materializeIndirectCalls();
695
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000696 return true;
697 }
698
699 /// \brief Compute the shadow type that corresponds to a given Value.
700 Type *getShadowTy(Value *V) {
701 return getShadowTy(V->getType());
702 }
703
704 /// \brief Compute the shadow type that corresponds to a given Type.
705 Type *getShadowTy(Type *OrigTy) {
706 if (!OrigTy->isSized()) {
707 return 0;
708 }
709 // For integer type, shadow is the same as the original type.
710 // This may return weird-sized types like i1.
711 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
712 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000713 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000714 uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000715 return VectorType::get(IntegerType::get(*MS.C, EltSize),
716 VT->getNumElements());
717 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000718 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
719 SmallVector<Type*, 4> Elements;
720 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
721 Elements.push_back(getShadowTy(ST->getElementType(i)));
722 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
723 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
724 return Res;
725 }
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000726 uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000727 return IntegerType::get(*MS.C, TypeSize);
728 }
729
730 /// \brief Flatten a vector type.
731 Type *getShadowTyNoVec(Type *ty) {
732 if (VectorType *vt = dyn_cast<VectorType>(ty))
733 return IntegerType::get(*MS.C, vt->getBitWidth());
734 return ty;
735 }
736
737 /// \brief Convert a shadow value to it's flattened variant.
738 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
739 Type *Ty = V->getType();
740 Type *NoVecTy = getShadowTyNoVec(Ty);
741 if (Ty == NoVecTy) return V;
742 return IRB.CreateBitCast(V, NoVecTy);
743 }
744
745 /// \brief Compute the shadow address that corresponds to a given application
746 /// address.
747 ///
748 /// Shadow = Addr & ~ShadowMask.
749 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
750 IRBuilder<> &IRB) {
751 Value *ShadowLong =
752 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
753 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
754 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
755 }
756
757 /// \brief Compute the origin address that corresponds to a given application
758 /// address.
759 ///
760 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000761 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
762 Value *ShadowLong =
763 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000764 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000765 Value *Add =
766 IRB.CreateAdd(ShadowLong,
767 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000768 Value *SecondAnd =
769 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
770 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000771 }
772
773 /// \brief Compute the shadow address for a given function argument.
774 ///
775 /// Shadow = ParamTLS+ArgOffset.
776 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
777 int ArgOffset) {
778 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
779 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
780 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
781 "_msarg");
782 }
783
784 /// \brief Compute the origin address for a given function argument.
785 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
786 int ArgOffset) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000787 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000788 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
789 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
790 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
791 "_msarg_o");
792 }
793
794 /// \brief Compute the shadow address for a retval.
795 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
796 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
797 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
798 "_msret");
799 }
800
801 /// \brief Compute the origin address for a retval.
802 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
803 // We keep a single origin for the entire retval. Might be too optimistic.
804 return MS.RetvalOriginTLS;
805 }
806
807 /// \brief Set SV to be the shadow value for V.
808 void setShadow(Value *V, Value *SV) {
809 assert(!ShadowMap.count(V) && "Values may only have one shadow");
810 ShadowMap[V] = SV;
811 }
812
813 /// \brief Set Origin to be the origin value for V.
814 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000815 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000816 assert(!OriginMap.count(V) && "Values may only have one origin");
817 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
818 OriginMap[V] = Origin;
819 }
820
821 /// \brief Create a clean shadow value for a given value.
822 ///
823 /// Clean shadow (all zeroes) means all bits of the value are defined
824 /// (initialized).
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000825 Constant *getCleanShadow(Value *V) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000826 Type *ShadowTy = getShadowTy(V);
827 if (!ShadowTy)
828 return 0;
829 return Constant::getNullValue(ShadowTy);
830 }
831
832 /// \brief Create a dirty shadow of a given shadow type.
833 Constant *getPoisonedShadow(Type *ShadowTy) {
834 assert(ShadowTy);
835 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
836 return Constant::getAllOnesValue(ShadowTy);
837 StructType *ST = cast<StructType>(ShadowTy);
838 SmallVector<Constant *, 4> Vals;
839 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
840 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
841 return ConstantStruct::get(ST, Vals);
842 }
843
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000844 /// \brief Create a dirty shadow for a given value.
845 Constant *getPoisonedShadow(Value *V) {
846 Type *ShadowTy = getShadowTy(V);
847 if (!ShadowTy)
848 return 0;
849 return getPoisonedShadow(ShadowTy);
850 }
851
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000852 /// \brief Create a clean (zero) origin.
853 Value *getCleanOrigin() {
854 return Constant::getNullValue(MS.OriginTy);
855 }
856
857 /// \brief Get the shadow value for a given Value.
858 ///
859 /// This function either returns the value set earlier with setShadow,
860 /// or extracts if from ParamTLS (for function arguments).
861 Value *getShadow(Value *V) {
862 if (Instruction *I = dyn_cast<Instruction>(V)) {
863 // For instructions the shadow is already stored in the map.
864 Value *Shadow = ShadowMap[V];
865 if (!Shadow) {
866 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000867 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000868 assert(Shadow && "No shadow for a value");
869 }
870 return Shadow;
871 }
872 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000873 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000874 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000875 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000876 return AllOnes;
877 }
878 if (Argument *A = dyn_cast<Argument>(V)) {
879 // For arguments we compute the shadow on demand and store it in the map.
880 Value **ShadowPtr = &ShadowMap[V];
881 if (*ShadowPtr)
882 return *ShadowPtr;
883 Function *F = A->getParent();
884 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
885 unsigned ArgOffset = 0;
886 for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
887 AI != AE; ++AI) {
888 if (!AI->getType()->isSized()) {
889 DEBUG(dbgs() << "Arg is not sized\n");
890 continue;
891 }
892 unsigned Size = AI->hasByValAttr()
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000893 ? MS.DL->getTypeAllocSize(AI->getType()->getPointerElementType())
894 : MS.DL->getTypeAllocSize(AI->getType());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000895 if (A == AI) {
896 Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
897 if (AI->hasByValAttr()) {
898 // ByVal pointer itself has clean shadow. We copy the actual
899 // argument shadow to the underlying memory.
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000900 // Figure out maximal valid memcpy alignment.
901 unsigned ArgAlign = AI->getParamAlignment();
902 if (ArgAlign == 0) {
903 Type *EltType = A->getType()->getPointerElementType();
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000904 ArgAlign = MS.DL->getABITypeAlignment(EltType);
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000905 }
906 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000907 Value *Cpy = EntryIRB.CreateMemCpy(
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000908 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
909 CopyAlign);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000910 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000911 (void)Cpy;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000912 *ShadowPtr = getCleanShadow(V);
913 } else {
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000914 *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000915 }
916 DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
917 **ShadowPtr << "\n");
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000918 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000919 Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
920 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
921 }
922 }
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000923 ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000924 }
925 assert(*ShadowPtr && "Could not find shadow for an argument");
926 return *ShadowPtr;
927 }
928 // For everything else the shadow is zero.
929 return getCleanShadow(V);
930 }
931
932 /// \brief Get the shadow for i-th argument of the instruction I.
933 Value *getShadow(Instruction *I, int i) {
934 return getShadow(I->getOperand(i));
935 }
936
937 /// \brief Get the origin for a value.
938 Value *getOrigin(Value *V) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000939 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000940 if (isa<Instruction>(V) || isa<Argument>(V)) {
941 Value *Origin = OriginMap[V];
942 if (!Origin) {
943 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
944 Origin = getCleanOrigin();
945 }
946 return Origin;
947 }
948 return getCleanOrigin();
949 }
950
951 /// \brief Get the origin for i-th argument of the instruction I.
952 Value *getOrigin(Instruction *I, int i) {
953 return getOrigin(I->getOperand(i));
954 }
955
956 /// \brief Remember the place where a shadow check should be inserted.
957 ///
958 /// This location will be later instrumented with a check that will print a
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000959 /// UMR warning in runtime if the shadow value is not 0.
960 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
961 assert(Shadow);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000962 if (!InsertChecks) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000963#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000964 Type *ShadowTy = Shadow->getType();
965 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
966 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000967#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000968 InstrumentationList.push_back(
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000969 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
970 }
971
972 /// \brief Remember the place where a shadow check should be inserted.
973 ///
974 /// This location will be later instrumented with a check that will print a
975 /// UMR warning in runtime if the value is not fully defined.
976 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
977 assert(Val);
978 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
979 if (!Shadow) return;
980 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
981 insertShadowCheck(Shadow, Origin, OrigIns);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000982 }
983
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000984 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
985 switch (a) {
986 case NotAtomic:
987 return NotAtomic;
988 case Unordered:
989 case Monotonic:
990 case Release:
991 return Release;
992 case Acquire:
993 case AcquireRelease:
994 return AcquireRelease;
995 case SequentiallyConsistent:
996 return SequentiallyConsistent;
997 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +0000998 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000999 }
1000
1001 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1002 switch (a) {
1003 case NotAtomic:
1004 return NotAtomic;
1005 case Unordered:
1006 case Monotonic:
1007 case Acquire:
1008 return Acquire;
1009 case Release:
1010 case AcquireRelease:
1011 return AcquireRelease;
1012 case SequentiallyConsistent:
1013 return SequentiallyConsistent;
1014 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001015 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001016 }
1017
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001018 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001019
1020 /// \brief Instrument LoadInst
1021 ///
1022 /// Loads the corresponding shadow and (optionally) origin.
1023 /// Optionally, checks that the load address is fully defined.
1024 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001025 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001026 IRBuilder<> IRB(I.getNextNode());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001027 Type *ShadowTy = getShadowTy(&I);
1028 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001029 if (LoadShadow) {
1030 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1031 setShadow(&I,
1032 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1033 } else {
1034 setShadow(&I, getCleanShadow(&I));
1035 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001036
1037 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001038 insertShadowCheck(I.getPointerOperand(), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001039
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001040 if (I.isAtomic())
1041 I.setOrdering(addAcquireOrdering(I.getOrdering()));
1042
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001043 if (MS.TrackOrigins) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001044 if (LoadShadow) {
1045 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
1046 setOrigin(&I,
1047 IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
1048 } else {
1049 setOrigin(&I, getCleanOrigin());
1050 }
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001051 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001052 }
1053
1054 /// \brief Instrument StoreInst
1055 ///
1056 /// Stores the corresponding shadow and (optionally) origin.
1057 /// Optionally, checks that the store address is fully defined.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001058 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +00001059 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001060 }
1061
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001062 void handleCASOrRMW(Instruction &I) {
1063 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1064
1065 IRBuilder<> IRB(&I);
1066 Value *Addr = I.getOperand(0);
1067 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1068
1069 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001070 insertShadowCheck(Addr, &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001071
1072 // Only test the conditional argument of cmpxchg instruction.
1073 // The other argument can potentially be uninitialized, but we can not
1074 // detect this situation reliably without possible false positives.
1075 if (isa<AtomicCmpXchgInst>(I))
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001076 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001077
1078 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1079
1080 setShadow(&I, getCleanShadow(&I));
1081 }
1082
1083 void visitAtomicRMWInst(AtomicRMWInst &I) {
1084 handleCASOrRMW(I);
1085 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1086 }
1087
1088 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1089 handleCASOrRMW(I);
Tim Northovere94a5182014-03-11 10:48:52 +00001090 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001091 }
1092
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001093 // Vector manipulation.
1094 void visitExtractElementInst(ExtractElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001095 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001096 IRBuilder<> IRB(&I);
1097 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1098 "_msprop"));
1099 setOrigin(&I, getOrigin(&I, 0));
1100 }
1101
1102 void visitInsertElementInst(InsertElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001103 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001104 IRBuilder<> IRB(&I);
1105 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1106 I.getOperand(2), "_msprop"));
1107 setOriginForNaryOp(I);
1108 }
1109
1110 void visitShuffleVectorInst(ShuffleVectorInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001111 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001112 IRBuilder<> IRB(&I);
1113 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1114 I.getOperand(2), "_msprop"));
1115 setOriginForNaryOp(I);
1116 }
1117
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001118 // Casts.
1119 void visitSExtInst(SExtInst &I) {
1120 IRBuilder<> IRB(&I);
1121 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1122 setOrigin(&I, getOrigin(&I, 0));
1123 }
1124
1125 void visitZExtInst(ZExtInst &I) {
1126 IRBuilder<> IRB(&I);
1127 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1128 setOrigin(&I, getOrigin(&I, 0));
1129 }
1130
1131 void visitTruncInst(TruncInst &I) {
1132 IRBuilder<> IRB(&I);
1133 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1134 setOrigin(&I, getOrigin(&I, 0));
1135 }
1136
1137 void visitBitCastInst(BitCastInst &I) {
1138 IRBuilder<> IRB(&I);
1139 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1140 setOrigin(&I, getOrigin(&I, 0));
1141 }
1142
1143 void visitPtrToIntInst(PtrToIntInst &I) {
1144 IRBuilder<> IRB(&I);
1145 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1146 "_msprop_ptrtoint"));
1147 setOrigin(&I, getOrigin(&I, 0));
1148 }
1149
1150 void visitIntToPtrInst(IntToPtrInst &I) {
1151 IRBuilder<> IRB(&I);
1152 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1153 "_msprop_inttoptr"));
1154 setOrigin(&I, getOrigin(&I, 0));
1155 }
1156
1157 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1158 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1159 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1160 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1161 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1162 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1163
1164 /// \brief Propagate shadow for bitwise AND.
1165 ///
1166 /// This code is exact, i.e. if, for example, a bit in the left argument
1167 /// is defined and 0, then neither the value not definedness of the
1168 /// corresponding bit in B don't affect the resulting shadow.
1169 void visitAnd(BinaryOperator &I) {
1170 IRBuilder<> IRB(&I);
1171 // "And" of 0 and a poisoned value results in unpoisoned value.
1172 // 1&1 => 1; 0&1 => 0; p&1 => p;
1173 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1174 // 1&p => p; 0&p => 0; p&p => p;
1175 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1176 Value *S1 = getShadow(&I, 0);
1177 Value *S2 = getShadow(&I, 1);
1178 Value *V1 = I.getOperand(0);
1179 Value *V2 = I.getOperand(1);
1180 if (V1->getType() != S1->getType()) {
1181 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1182 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1183 }
1184 Value *S1S2 = IRB.CreateAnd(S1, S2);
1185 Value *V1S2 = IRB.CreateAnd(V1, S2);
1186 Value *S1V2 = IRB.CreateAnd(S1, V2);
1187 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1188 setOriginForNaryOp(I);
1189 }
1190
1191 void visitOr(BinaryOperator &I) {
1192 IRBuilder<> IRB(&I);
1193 // "Or" of 1 and a poisoned value results in unpoisoned value.
1194 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1195 // 1|0 => 1; 0|0 => 0; p|0 => p;
1196 // 1|p => 1; 0|p => p; p|p => p;
1197 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1198 Value *S1 = getShadow(&I, 0);
1199 Value *S2 = getShadow(&I, 1);
1200 Value *V1 = IRB.CreateNot(I.getOperand(0));
1201 Value *V2 = IRB.CreateNot(I.getOperand(1));
1202 if (V1->getType() != S1->getType()) {
1203 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1204 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1205 }
1206 Value *S1S2 = IRB.CreateAnd(S1, S2);
1207 Value *V1S2 = IRB.CreateAnd(V1, S2);
1208 Value *S1V2 = IRB.CreateAnd(S1, V2);
1209 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1210 setOriginForNaryOp(I);
1211 }
1212
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001213 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001214 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001215 /// This class implements the general case of shadow propagation, used in all
1216 /// cases where we don't know and/or don't care about what the operation
1217 /// actually does. It converts all input shadow values to a common type
1218 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001219 ///
1220 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1221 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001222 ///
1223 /// This class also implements the general case of origin propagation. For a
1224 /// Nary operation, result origin is set to the origin of an argument that is
1225 /// not entirely initialized. If there is more than one such arguments, the
1226 /// rightmost of them is picked. It does not matter which one is picked if all
1227 /// arguments are initialized.
1228 template <bool CombineShadow>
1229 class Combiner {
1230 Value *Shadow;
1231 Value *Origin;
1232 IRBuilder<> &IRB;
1233 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001234
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001235 public:
1236 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1237 Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
1238
1239 /// \brief Add a pair of shadow and origin values to the mix.
1240 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1241 if (CombineShadow) {
1242 assert(OpShadow);
1243 if (!Shadow)
1244 Shadow = OpShadow;
1245 else {
1246 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1247 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1248 }
1249 }
1250
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001251 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001252 assert(OpOrigin);
1253 if (!Origin) {
1254 Origin = OpOrigin;
1255 } else {
1256 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1257 Value *Cond = IRB.CreateICmpNE(FlatShadow,
1258 MSV->getCleanShadow(FlatShadow));
1259 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1260 }
1261 }
1262 return *this;
1263 }
1264
1265 /// \brief Add an application value to the mix.
1266 Combiner &Add(Value *V) {
1267 Value *OpShadow = MSV->getShadow(V);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001268 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001269 return Add(OpShadow, OpOrigin);
1270 }
1271
1272 /// \brief Set the current combined values as the given instruction's shadow
1273 /// and origin.
1274 void Done(Instruction *I) {
1275 if (CombineShadow) {
1276 assert(Shadow);
1277 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1278 MSV->setShadow(I, Shadow);
1279 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001280 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001281 assert(Origin);
1282 MSV->setOrigin(I, Origin);
1283 }
1284 }
1285 };
1286
1287 typedef Combiner<true> ShadowAndOriginCombiner;
1288 typedef Combiner<false> OriginCombiner;
1289
1290 /// \brief Propagate origin for arbitrary operation.
1291 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001292 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001293 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001294 OriginCombiner OC(this, IRB);
1295 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1296 OC.Add(OI->get());
1297 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001298 }
1299
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001300 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001301 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1302 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001303 return Ty->isVectorTy() ?
1304 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1305 Ty->getPrimitiveSizeInBits();
1306 }
1307
1308 /// \brief Cast between two shadow types, extending or truncating as
1309 /// necessary.
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001310 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1311 bool Signed = false) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001312 Type *srcTy = V->getType();
1313 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001314 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001315 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1316 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001317 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001318 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1319 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1320 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1321 Value *V2 =
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001322 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001323 return IRB.CreateBitCast(V2, dstTy);
1324 // TODO: handle struct types.
1325 }
1326
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00001327 /// \brief Cast an application value to the type of its own shadow.
1328 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1329 Type *ShadowTy = getShadowTy(V);
1330 if (V->getType() == ShadowTy)
1331 return V;
1332 if (V->getType()->isPtrOrPtrVectorTy())
1333 return IRB.CreatePtrToInt(V, ShadowTy);
1334 else
1335 return IRB.CreateBitCast(V, ShadowTy);
1336 }
1337
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001338 /// \brief Propagate shadow for arbitrary operation.
1339 void handleShadowOr(Instruction &I) {
1340 IRBuilder<> IRB(&I);
1341 ShadowAndOriginCombiner SC(this, IRB);
1342 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1343 SC.Add(OI->get());
1344 SC.Done(&I);
1345 }
1346
1347 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1348 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1349 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1350 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1351 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1352 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1353 void visitMul(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001354
1355 void handleDiv(Instruction &I) {
1356 IRBuilder<> IRB(&I);
1357 // Strict on the second argument.
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001358 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001359 setShadow(&I, getShadow(&I, 0));
1360 setOrigin(&I, getOrigin(&I, 0));
1361 }
1362
1363 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1364 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1365 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1366 void visitURem(BinaryOperator &I) { handleDiv(I); }
1367 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1368 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1369
1370 /// \brief Instrument == and != comparisons.
1371 ///
1372 /// Sometimes the comparison result is known even if some of the bits of the
1373 /// arguments are not.
1374 void handleEqualityComparison(ICmpInst &I) {
1375 IRBuilder<> IRB(&I);
1376 Value *A = I.getOperand(0);
1377 Value *B = I.getOperand(1);
1378 Value *Sa = getShadow(A);
1379 Value *Sb = getShadow(B);
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +00001380
1381 // Get rid of pointers and vectors of pointers.
1382 // For ints (and vectors of ints), types of A and Sa match,
1383 // and this is a no-op.
1384 A = IRB.CreatePointerCast(A, Sa->getType());
1385 B = IRB.CreatePointerCast(B, Sb->getType());
1386
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001387 // A == B <==> (C = A^B) == 0
1388 // A != B <==> (C = A^B) != 0
1389 // Sc = Sa | Sb
1390 Value *C = IRB.CreateXor(A, B);
1391 Value *Sc = IRB.CreateOr(Sa, Sb);
1392 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1393 // Result is defined if one of the following is true
1394 // * there is a defined 1 bit in C
1395 // * C is fully defined
1396 // Si = !(C & ~Sc) && Sc
1397 Value *Zero = Constant::getNullValue(Sc->getType());
1398 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1399 Value *Si =
1400 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1401 IRB.CreateICmpEQ(
1402 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1403 Si->setName("_msprop_icmp");
1404 setShadow(&I, Si);
1405 setOriginForNaryOp(I);
1406 }
1407
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001408 /// \brief Build the lowest possible value of V, taking into account V's
1409 /// uninitialized bits.
1410 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1411 bool isSigned) {
1412 if (isSigned) {
1413 // Split shadow into sign bit and other bits.
1414 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1415 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1416 // Maximise the undefined shadow bit, minimize other undefined bits.
1417 return
1418 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1419 } else {
1420 // Minimize undefined bits.
1421 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1422 }
1423 }
1424
1425 /// \brief Build the highest possible value of V, taking into account V's
1426 /// uninitialized bits.
1427 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1428 bool isSigned) {
1429 if (isSigned) {
1430 // Split shadow into sign bit and other bits.
1431 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1432 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1433 // Minimise the undefined shadow bit, maximise other undefined bits.
1434 return
1435 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1436 } else {
1437 // Maximize undefined bits.
1438 return IRB.CreateOr(A, Sa);
1439 }
1440 }
1441
1442 /// \brief Instrument relational comparisons.
1443 ///
1444 /// This function does exact shadow propagation for all relational
1445 /// comparisons of integers, pointers and vectors of those.
1446 /// FIXME: output seems suboptimal when one of the operands is a constant
1447 void handleRelationalComparisonExact(ICmpInst &I) {
1448 IRBuilder<> IRB(&I);
1449 Value *A = I.getOperand(0);
1450 Value *B = I.getOperand(1);
1451 Value *Sa = getShadow(A);
1452 Value *Sb = getShadow(B);
1453
1454 // Get rid of pointers and vectors of pointers.
1455 // For ints (and vectors of ints), types of A and Sa match,
1456 // and this is a no-op.
1457 A = IRB.CreatePointerCast(A, Sa->getType());
1458 B = IRB.CreatePointerCast(B, Sb->getType());
1459
Evgeniy Stepanov2cb0fa12013-01-25 15:35:29 +00001460 // Let [a0, a1] be the interval of possible values of A, taking into account
1461 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1462 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001463 bool IsSigned = I.isSigned();
1464 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1465 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1466 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1467 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1468 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1469 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1470 Value *Si = IRB.CreateXor(S1, S2);
1471 setShadow(&I, Si);
1472 setOriginForNaryOp(I);
1473 }
1474
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001475 /// \brief Instrument signed relational comparisons.
1476 ///
1477 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1478 /// propagating the highest bit of the shadow. Everything else is delegated
1479 /// to handleShadowOr().
1480 void handleSignedRelationalComparison(ICmpInst &I) {
1481 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1482 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1483 Value* op = NULL;
1484 CmpInst::Predicate pre = I.getPredicate();
1485 if (constOp0 && constOp0->isNullValue() &&
1486 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1487 op = I.getOperand(1);
1488 } else if (constOp1 && constOp1->isNullValue() &&
1489 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1490 op = I.getOperand(0);
1491 }
1492 if (op) {
1493 IRBuilder<> IRB(&I);
1494 Value* Shadow =
1495 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1496 setShadow(&I, Shadow);
1497 setOrigin(&I, getOrigin(op));
1498 } else {
1499 handleShadowOr(I);
1500 }
1501 }
1502
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001503 void visitICmpInst(ICmpInst &I) {
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001504 if (!ClHandleICmp) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001505 handleShadowOr(I);
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001506 return;
1507 }
1508 if (I.isEquality()) {
1509 handleEqualityComparison(I);
1510 return;
1511 }
1512
1513 assert(I.isRelational());
1514 if (ClHandleICmpExact) {
1515 handleRelationalComparisonExact(I);
1516 return;
1517 }
1518 if (I.isSigned()) {
1519 handleSignedRelationalComparison(I);
1520 return;
1521 }
1522
1523 assert(I.isUnsigned());
1524 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1525 handleRelationalComparisonExact(I);
1526 return;
1527 }
1528
1529 handleShadowOr(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001530 }
1531
1532 void visitFCmpInst(FCmpInst &I) {
1533 handleShadowOr(I);
1534 }
1535
1536 void handleShift(BinaryOperator &I) {
1537 IRBuilder<> IRB(&I);
1538 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1539 // Otherwise perform the same shift on S1.
1540 Value *S1 = getShadow(&I, 0);
1541 Value *S2 = getShadow(&I, 1);
1542 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1543 S2->getType());
1544 Value *V2 = I.getOperand(1);
1545 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1546 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1547 setOriginForNaryOp(I);
1548 }
1549
1550 void visitShl(BinaryOperator &I) { handleShift(I); }
1551 void visitAShr(BinaryOperator &I) { handleShift(I); }
1552 void visitLShr(BinaryOperator &I) { handleShift(I); }
1553
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001554 /// \brief Instrument llvm.memmove
1555 ///
1556 /// At this point we don't know if llvm.memmove will be inlined or not.
1557 /// If we don't instrument it and it gets inlined,
1558 /// our interceptor will not kick in and we will lose the memmove.
1559 /// If we instrument the call here, but it does not get inlined,
1560 /// we will memove the shadow twice: which is bad in case
1561 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1562 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001563 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001564 void visitMemMoveInst(MemMoveInst &I) {
1565 IRBuilder<> IRB(&I);
1566 IRB.CreateCall3(
1567 MS.MemmoveFn,
1568 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1569 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1570 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1571 I.eraseFromParent();
1572 }
1573
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001574 // Similar to memmove: avoid copying shadow twice.
1575 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1576 // FIXME: consider doing manual inline for small constant sizes and proper
1577 // alignment.
1578 void visitMemCpyInst(MemCpyInst &I) {
1579 IRBuilder<> IRB(&I);
1580 IRB.CreateCall3(
1581 MS.MemcpyFn,
1582 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1583 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1584 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1585 I.eraseFromParent();
1586 }
1587
1588 // Same as memcpy.
1589 void visitMemSetInst(MemSetInst &I) {
1590 IRBuilder<> IRB(&I);
1591 IRB.CreateCall3(
1592 MS.MemsetFn,
1593 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1594 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1595 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1596 I.eraseFromParent();
1597 }
1598
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001599 void visitVAStartInst(VAStartInst &I) {
1600 VAHelper->visitVAStartInst(I);
1601 }
1602
1603 void visitVACopyInst(VACopyInst &I) {
1604 VAHelper->visitVACopyInst(I);
1605 }
1606
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001607 enum IntrinsicKind {
1608 IK_DoesNotAccessMemory,
1609 IK_OnlyReadsMemory,
1610 IK_WritesMemory
1611 };
1612
1613 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1614 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1615 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1616 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1617 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1618 const int UnknownModRefBehavior = IK_WritesMemory;
1619#define GET_INTRINSIC_MODREF_BEHAVIOR
1620#define ModRefBehavior IntrinsicKind
Chandler Carruthdb25c6c2013-01-02 12:09:16 +00001621#include "llvm/IR/Intrinsics.gen"
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001622#undef ModRefBehavior
1623#undef GET_INTRINSIC_MODREF_BEHAVIOR
1624 }
1625
1626 /// \brief Handle vector store-like intrinsics.
1627 ///
1628 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1629 /// has 1 pointer argument and 1 vector argument, returns void.
1630 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1631 IRBuilder<> IRB(&I);
1632 Value* Addr = I.getArgOperand(0);
1633 Value *Shadow = getShadow(&I, 1);
1634 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1635
1636 // We don't know the pointer alignment (could be unaligned SSE store!).
1637 // Have to assume to worst case.
1638 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1639
1640 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001641 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001642
1643 // FIXME: use ClStoreCleanOrigin
1644 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001645 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001646 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1647 return true;
1648 }
1649
1650 /// \brief Handle vector load-like intrinsics.
1651 ///
1652 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1653 /// has 1 pointer argument, returns a vector.
1654 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1655 IRBuilder<> IRB(&I);
1656 Value *Addr = I.getArgOperand(0);
1657
1658 Type *ShadowTy = getShadowTy(&I);
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001659 if (LoadShadow) {
1660 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1661 // We don't know the pointer alignment (could be unaligned SSE load!).
1662 // Have to assume to worst case.
1663 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1664 } else {
1665 setShadow(&I, getCleanShadow(&I));
1666 }
1667
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001668 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001669 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001670
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001671 if (MS.TrackOrigins) {
1672 if (LoadShadow)
1673 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1674 else
1675 setOrigin(&I, getCleanOrigin());
1676 }
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001677 return true;
1678 }
1679
1680 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1681 ///
1682 /// Instrument intrinsics with any number of arguments of the same type,
1683 /// equal to the return type. The type should be simple (no aggregates or
1684 /// pointers; vectors are fine).
1685 /// Caller guarantees that this intrinsic does not access memory.
1686 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1687 Type *RetTy = I.getType();
1688 if (!(RetTy->isIntOrIntVectorTy() ||
1689 RetTy->isFPOrFPVectorTy() ||
1690 RetTy->isX86_MMXTy()))
1691 return false;
1692
1693 unsigned NumArgOperands = I.getNumArgOperands();
1694
1695 for (unsigned i = 0; i < NumArgOperands; ++i) {
1696 Type *Ty = I.getArgOperand(i)->getType();
1697 if (Ty != RetTy)
1698 return false;
1699 }
1700
1701 IRBuilder<> IRB(&I);
1702 ShadowAndOriginCombiner SC(this, IRB);
1703 for (unsigned i = 0; i < NumArgOperands; ++i)
1704 SC.Add(I.getArgOperand(i));
1705 SC.Done(&I);
1706
1707 return true;
1708 }
1709
1710 /// \brief Heuristically instrument unknown intrinsics.
1711 ///
1712 /// The main purpose of this code is to do something reasonable with all
1713 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1714 /// We recognize several classes of intrinsics by their argument types and
1715 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1716 /// sure that we know what the intrinsic does.
1717 ///
1718 /// We special-case intrinsics where this approach fails. See llvm.bswap
1719 /// handling as an example of that.
1720 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1721 unsigned NumArgOperands = I.getNumArgOperands();
1722 if (NumArgOperands == 0)
1723 return false;
1724
1725 Intrinsic::ID iid = I.getIntrinsicID();
1726 IntrinsicKind IK = getIntrinsicKind(iid);
1727 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1728 bool WritesMemory = IK == IK_WritesMemory;
1729 assert(!(OnlyReadsMemory && WritesMemory));
1730
1731 if (NumArgOperands == 2 &&
1732 I.getArgOperand(0)->getType()->isPointerTy() &&
1733 I.getArgOperand(1)->getType()->isVectorTy() &&
1734 I.getType()->isVoidTy() &&
1735 WritesMemory) {
1736 // This looks like a vector store.
1737 return handleVectorStoreIntrinsic(I);
1738 }
1739
1740 if (NumArgOperands == 1 &&
1741 I.getArgOperand(0)->getType()->isPointerTy() &&
1742 I.getType()->isVectorTy() &&
1743 OnlyReadsMemory) {
1744 // This looks like a vector load.
1745 return handleVectorLoadIntrinsic(I);
1746 }
1747
1748 if (!OnlyReadsMemory && !WritesMemory)
1749 if (maybeHandleSimpleNomemIntrinsic(I))
1750 return true;
1751
1752 // FIXME: detect and handle SSE maskstore/maskload
1753 return false;
1754 }
1755
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001756 void handleBswap(IntrinsicInst &I) {
1757 IRBuilder<> IRB(&I);
1758 Value *Op = I.getArgOperand(0);
1759 Type *OpType = Op->getType();
1760 Function *BswapFunc = Intrinsic::getDeclaration(
1761 F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1762 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1763 setOrigin(&I, getOrigin(Op));
1764 }
1765
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001766 // \brief Instrument vector convert instrinsic.
1767 //
1768 // This function instruments intrinsics like cvtsi2ss:
1769 // %Out = int_xxx_cvtyyy(%ConvertOp)
1770 // or
1771 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1772 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1773 // number \p Out elements, and (if has 2 arguments) copies the rest of the
1774 // elements from \p CopyOp.
1775 // In most cases conversion involves floating-point value which may trigger a
1776 // hardware exception when not fully initialized. For this reason we require
1777 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1778 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1779 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1780 // return a fully initialized value.
1781 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1782 IRBuilder<> IRB(&I);
1783 Value *CopyOp, *ConvertOp;
1784
1785 switch (I.getNumArgOperands()) {
1786 case 2:
1787 CopyOp = I.getArgOperand(0);
1788 ConvertOp = I.getArgOperand(1);
1789 break;
1790 case 1:
1791 ConvertOp = I.getArgOperand(0);
1792 CopyOp = NULL;
1793 break;
1794 default:
1795 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1796 }
1797
1798 // The first *NumUsedElements* elements of ConvertOp are converted to the
1799 // same number of output elements. The rest of the output is copied from
1800 // CopyOp, or (if not available) filled with zeroes.
1801 // Combine shadow for elements of ConvertOp that are used in this operation,
1802 // and insert a check.
1803 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1804 // int->any conversion.
1805 Value *ConvertShadow = getShadow(ConvertOp);
1806 Value *AggShadow = 0;
1807 if (ConvertOp->getType()->isVectorTy()) {
1808 AggShadow = IRB.CreateExtractElement(
1809 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
1810 for (int i = 1; i < NumUsedElements; ++i) {
1811 Value *MoreShadow = IRB.CreateExtractElement(
1812 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
1813 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
1814 }
1815 } else {
1816 AggShadow = ConvertShadow;
1817 }
1818 assert(AggShadow->getType()->isIntegerTy());
1819 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
1820
1821 // Build result shadow by zero-filling parts of CopyOp shadow that come from
1822 // ConvertOp.
1823 if (CopyOp) {
1824 assert(CopyOp->getType() == I.getType());
1825 assert(CopyOp->getType()->isVectorTy());
1826 Value *ResultShadow = getShadow(CopyOp);
1827 Type *EltTy = ResultShadow->getType()->getVectorElementType();
1828 for (int i = 0; i < NumUsedElements; ++i) {
1829 ResultShadow = IRB.CreateInsertElement(
1830 ResultShadow, ConstantInt::getNullValue(EltTy),
1831 ConstantInt::get(IRB.getInt32Ty(), i));
1832 }
1833 setShadow(&I, ResultShadow);
1834 setOrigin(&I, getOrigin(CopyOp));
1835 } else {
1836 setShadow(&I, getCleanShadow(&I));
1837 }
1838 }
1839
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001840 // Given a scalar or vector, extract lower 64 bits (or less), and return all
1841 // zeroes if it is zero, and all ones otherwise.
1842 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
1843 if (S->getType()->isVectorTy())
1844 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
1845 assert(S->getType()->getPrimitiveSizeInBits() <= 64);
1846 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1847 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
1848 }
1849
1850 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
1851 Type *T = S->getType();
1852 assert(T->isVectorTy());
1853 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1854 return IRB.CreateSExt(S2, T);
1855 }
1856
1857 // \brief Instrument vector shift instrinsic.
1858 //
1859 // This function instruments intrinsics like int_x86_avx2_psll_w.
1860 // Intrinsic shifts %In by %ShiftSize bits.
1861 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
1862 // size, and the rest is ignored. Behavior is defined even if shift size is
1863 // greater than register (or field) width.
1864 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
1865 assert(I.getNumArgOperands() == 2);
1866 IRBuilder<> IRB(&I);
1867 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1868 // Otherwise perform the same shift on S1.
1869 Value *S1 = getShadow(&I, 0);
1870 Value *S2 = getShadow(&I, 1);
1871 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
1872 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
1873 Value *V1 = I.getOperand(0);
1874 Value *V2 = I.getOperand(1);
1875 Value *Shift = IRB.CreateCall2(I.getCalledValue(),
1876 IRB.CreateBitCast(S1, V1->getType()), V2);
1877 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
1878 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1879 setOriginForNaryOp(I);
1880 }
1881
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001882 void visitIntrinsicInst(IntrinsicInst &I) {
1883 switch (I.getIntrinsicID()) {
1884 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001885 handleBswap(I);
1886 break;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001887 case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
1888 case llvm::Intrinsic::x86_avx512_cvtsd2usi:
1889 case llvm::Intrinsic::x86_avx512_cvtss2usi64:
1890 case llvm::Intrinsic::x86_avx512_cvtss2usi:
1891 case llvm::Intrinsic::x86_avx512_cvttss2usi64:
1892 case llvm::Intrinsic::x86_avx512_cvttss2usi:
1893 case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
1894 case llvm::Intrinsic::x86_avx512_cvttsd2usi:
1895 case llvm::Intrinsic::x86_avx512_cvtusi2sd:
1896 case llvm::Intrinsic::x86_avx512_cvtusi2ss:
1897 case llvm::Intrinsic::x86_avx512_cvtusi642sd:
1898 case llvm::Intrinsic::x86_avx512_cvtusi642ss:
1899 case llvm::Intrinsic::x86_sse2_cvtsd2si64:
1900 case llvm::Intrinsic::x86_sse2_cvtsd2si:
1901 case llvm::Intrinsic::x86_sse2_cvtsd2ss:
1902 case llvm::Intrinsic::x86_sse2_cvtsi2sd:
1903 case llvm::Intrinsic::x86_sse2_cvtsi642sd:
1904 case llvm::Intrinsic::x86_sse2_cvtss2sd:
1905 case llvm::Intrinsic::x86_sse2_cvttsd2si64:
1906 case llvm::Intrinsic::x86_sse2_cvttsd2si:
1907 case llvm::Intrinsic::x86_sse_cvtsi2ss:
1908 case llvm::Intrinsic::x86_sse_cvtsi642ss:
1909 case llvm::Intrinsic::x86_sse_cvtss2si64:
1910 case llvm::Intrinsic::x86_sse_cvtss2si:
1911 case llvm::Intrinsic::x86_sse_cvttss2si64:
1912 case llvm::Intrinsic::x86_sse_cvttss2si:
1913 handleVectorConvertIntrinsic(I, 1);
1914 break;
1915 case llvm::Intrinsic::x86_sse2_cvtdq2pd:
1916 case llvm::Intrinsic::x86_sse2_cvtps2pd:
1917 case llvm::Intrinsic::x86_sse_cvtps2pi:
1918 case llvm::Intrinsic::x86_sse_cvttps2pi:
1919 handleVectorConvertIntrinsic(I, 2);
1920 break;
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001921 case llvm::Intrinsic::x86_avx512_psll_dq:
1922 case llvm::Intrinsic::x86_avx512_psrl_dq:
1923 case llvm::Intrinsic::x86_avx2_psll_w:
1924 case llvm::Intrinsic::x86_avx2_psll_d:
1925 case llvm::Intrinsic::x86_avx2_psll_q:
1926 case llvm::Intrinsic::x86_avx2_pslli_w:
1927 case llvm::Intrinsic::x86_avx2_pslli_d:
1928 case llvm::Intrinsic::x86_avx2_pslli_q:
1929 case llvm::Intrinsic::x86_avx2_psll_dq:
1930 case llvm::Intrinsic::x86_avx2_psrl_w:
1931 case llvm::Intrinsic::x86_avx2_psrl_d:
1932 case llvm::Intrinsic::x86_avx2_psrl_q:
1933 case llvm::Intrinsic::x86_avx2_psra_w:
1934 case llvm::Intrinsic::x86_avx2_psra_d:
1935 case llvm::Intrinsic::x86_avx2_psrli_w:
1936 case llvm::Intrinsic::x86_avx2_psrli_d:
1937 case llvm::Intrinsic::x86_avx2_psrli_q:
1938 case llvm::Intrinsic::x86_avx2_psrai_w:
1939 case llvm::Intrinsic::x86_avx2_psrai_d:
1940 case llvm::Intrinsic::x86_avx2_psrl_dq:
1941 case llvm::Intrinsic::x86_sse2_psll_w:
1942 case llvm::Intrinsic::x86_sse2_psll_d:
1943 case llvm::Intrinsic::x86_sse2_psll_q:
1944 case llvm::Intrinsic::x86_sse2_pslli_w:
1945 case llvm::Intrinsic::x86_sse2_pslli_d:
1946 case llvm::Intrinsic::x86_sse2_pslli_q:
1947 case llvm::Intrinsic::x86_sse2_psll_dq:
1948 case llvm::Intrinsic::x86_sse2_psrl_w:
1949 case llvm::Intrinsic::x86_sse2_psrl_d:
1950 case llvm::Intrinsic::x86_sse2_psrl_q:
1951 case llvm::Intrinsic::x86_sse2_psra_w:
1952 case llvm::Intrinsic::x86_sse2_psra_d:
1953 case llvm::Intrinsic::x86_sse2_psrli_w:
1954 case llvm::Intrinsic::x86_sse2_psrli_d:
1955 case llvm::Intrinsic::x86_sse2_psrli_q:
1956 case llvm::Intrinsic::x86_sse2_psrai_w:
1957 case llvm::Intrinsic::x86_sse2_psrai_d:
1958 case llvm::Intrinsic::x86_sse2_psrl_dq:
1959 case llvm::Intrinsic::x86_mmx_psll_w:
1960 case llvm::Intrinsic::x86_mmx_psll_d:
1961 case llvm::Intrinsic::x86_mmx_psll_q:
1962 case llvm::Intrinsic::x86_mmx_pslli_w:
1963 case llvm::Intrinsic::x86_mmx_pslli_d:
1964 case llvm::Intrinsic::x86_mmx_pslli_q:
1965 case llvm::Intrinsic::x86_mmx_psrl_w:
1966 case llvm::Intrinsic::x86_mmx_psrl_d:
1967 case llvm::Intrinsic::x86_mmx_psrl_q:
1968 case llvm::Intrinsic::x86_mmx_psra_w:
1969 case llvm::Intrinsic::x86_mmx_psra_d:
1970 case llvm::Intrinsic::x86_mmx_psrli_w:
1971 case llvm::Intrinsic::x86_mmx_psrli_d:
1972 case llvm::Intrinsic::x86_mmx_psrli_q:
1973 case llvm::Intrinsic::x86_mmx_psrai_w:
1974 case llvm::Intrinsic::x86_mmx_psrai_d:
1975 handleVectorShiftIntrinsic(I, /* Variable */ false);
1976 break;
1977 case llvm::Intrinsic::x86_avx2_psllv_d:
1978 case llvm::Intrinsic::x86_avx2_psllv_d_256:
1979 case llvm::Intrinsic::x86_avx2_psllv_q:
1980 case llvm::Intrinsic::x86_avx2_psllv_q_256:
1981 case llvm::Intrinsic::x86_avx2_psrlv_d:
1982 case llvm::Intrinsic::x86_avx2_psrlv_d_256:
1983 case llvm::Intrinsic::x86_avx2_psrlv_q:
1984 case llvm::Intrinsic::x86_avx2_psrlv_q_256:
1985 case llvm::Intrinsic::x86_avx2_psrav_d:
1986 case llvm::Intrinsic::x86_avx2_psrav_d_256:
1987 handleVectorShiftIntrinsic(I, /* Variable */ true);
1988 break;
1989
1990 // Byte shifts are not implemented.
1991 // case llvm::Intrinsic::x86_avx512_psll_dq_bs:
1992 // case llvm::Intrinsic::x86_avx512_psrl_dq_bs:
1993 // case llvm::Intrinsic::x86_avx2_psll_dq_bs:
1994 // case llvm::Intrinsic::x86_avx2_psrl_dq_bs:
1995 // case llvm::Intrinsic::x86_sse2_psll_dq_bs:
1996 // case llvm::Intrinsic::x86_sse2_psrl_dq_bs:
1997
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001998 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001999 if (!handleUnknownIntrinsic(I))
2000 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00002001 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002002 }
2003 }
2004
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002005 void visitCallSite(CallSite CS) {
2006 Instruction &I = *CS.getInstruction();
2007 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2008 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00002009 CallInst *Call = cast<CallInst>(&I);
2010
2011 // For inline asm, do the usual thing: check argument shadow and mark all
2012 // outputs as clean. Note that any side effects of the inline asm that are
2013 // not immediately visible in its constraints are not handled.
2014 if (Call->isInlineAsm()) {
2015 visitInstruction(I);
2016 return;
2017 }
2018
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002019 // Allow only tail calls with the same types, otherwise
2020 // we may have a false positive: shadow for a non-void RetVal
2021 // will get propagated to a void RetVal.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002022 if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
2023 Call->setTailCall(false);
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002024
2025 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002026
2027 // We are going to insert code that relies on the fact that the callee
2028 // will become a non-readonly function after it is instrumented by us. To
2029 // prevent this code from being optimized out, mark that function
2030 // non-readonly in advance.
2031 if (Function *Func = Call->getCalledFunction()) {
2032 // Clear out readonly/readnone attributes.
2033 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002034 B.addAttribute(Attribute::ReadOnly)
2035 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002036 Func->removeAttributes(AttributeSet::FunctionIndex,
2037 AttributeSet::get(Func->getContext(),
2038 AttributeSet::FunctionIndex,
2039 B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002040 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002041 }
2042 IRBuilder<> IRB(&I);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002043
2044 if (MS.WrapIndirectCalls && !CS.getCalledFunction())
Evgeniy Stepanov585813e2013-11-14 12:29:04 +00002045 IndirectCallList.push_back(CS);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002046
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002047 unsigned ArgOffset = 0;
2048 DEBUG(dbgs() << " CallSite: " << I << "\n");
2049 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2050 ArgIt != End; ++ArgIt) {
2051 Value *A = *ArgIt;
2052 unsigned i = ArgIt - CS.arg_begin();
2053 if (!A->getType()->isSized()) {
2054 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2055 continue;
2056 }
2057 unsigned Size = 0;
2058 Value *Store = 0;
2059 // Compute the Shadow for arg even if it is ByVal, because
2060 // in that case getShadow() will copy the actual arg shadow to
2061 // __msan_param_tls.
2062 Value *ArgShadow = getShadow(A);
2063 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2064 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
2065 " Shadow: " << *ArgShadow << "\n");
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002066 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002067 assert(A->getType()->isPointerTy() &&
2068 "ByVal argument is not a pointer!");
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002069 Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002070 unsigned Alignment = CS.getParamAlignment(i + 1);
2071 Store = IRB.CreateMemCpy(ArgShadowBase,
2072 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2073 Size, Alignment);
2074 } else {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002075 Size = MS.DL->getTypeAllocSize(A->getType());
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002076 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2077 kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002078 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002079 if (MS.TrackOrigins)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00002080 IRB.CreateStore(getOrigin(A),
2081 getOriginPtrForArgument(A, IRB, ArgOffset));
Edwin Vane82f80d42013-01-29 17:42:24 +00002082 (void)Store;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002083 assert(Size != 0 && Store != 0);
2084 DEBUG(dbgs() << " Param:" << *Store << "\n");
2085 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
2086 }
2087 DEBUG(dbgs() << " done with call args\n");
2088
2089 FunctionType *FT =
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002090 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002091 if (FT->isVarArg()) {
2092 VAHelper->visitCallSite(CS, IRB);
2093 }
2094
2095 // Now, get the shadow for the RetVal.
2096 if (!I.getType()->isSized()) return;
2097 IRBuilder<> IRBBefore(&I);
Alp Tokercb402912014-01-24 17:20:08 +00002098 // Until we have full dynamic coverage, make sure the retval shadow is 0.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002099 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002100 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002101 Instruction *NextInsn = 0;
2102 if (CS.isCall()) {
2103 NextInsn = I.getNextNode();
2104 } else {
2105 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2106 if (!NormalDest->getSinglePredecessor()) {
2107 // FIXME: this case is tricky, so we are just conservative here.
2108 // Perhaps we need to split the edge between this BB and NormalDest,
2109 // but a naive attempt to use SplitEdge leads to a crash.
2110 setShadow(&I, getCleanShadow(&I));
2111 setOrigin(&I, getCleanOrigin());
2112 return;
2113 }
2114 NextInsn = NormalDest->getFirstInsertionPt();
2115 assert(NextInsn &&
2116 "Could not find insertion point for retval shadow load");
2117 }
2118 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002119 Value *RetvalShadow =
2120 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2121 kShadowTLSAlignment, "_msret");
2122 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002123 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002124 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2125 }
2126
2127 void visitReturnInst(ReturnInst &I) {
2128 IRBuilder<> IRB(&I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002129 Value *RetVal = I.getReturnValue();
2130 if (!RetVal) return;
2131 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2132 if (CheckReturnValue) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002133 insertShadowCheck(RetVal, &I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002134 Value *Shadow = getCleanShadow(RetVal);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002135 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002136 } else {
2137 Value *Shadow = getShadow(RetVal);
2138 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2139 // FIXME: make it conditional if ClStoreCleanOrigin==0
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002140 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002141 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2142 }
2143 }
2144
2145 void visitPHINode(PHINode &I) {
2146 IRBuilder<> IRB(&I);
2147 ShadowPHINodes.push_back(&I);
2148 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2149 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002150 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002151 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2152 "_msphi_o"));
2153 }
2154
2155 void visitAllocaInst(AllocaInst &I) {
2156 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002157 IRBuilder<> IRB(I.getNextNode());
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002158 uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002159 if (PoisonStack && ClPoisonStackWithCall) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002160 IRB.CreateCall2(MS.MsanPoisonStackFn,
2161 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2162 ConstantInt::get(MS.IntptrTy, Size));
2163 } else {
2164 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002165 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2166 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002167 }
2168
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002169 if (PoisonStack && MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002170 setOrigin(&I, getCleanOrigin());
2171 SmallString<2048> StackDescriptionStorage;
2172 raw_svector_ostream StackDescription(StackDescriptionStorage);
2173 // We create a string with a description of the stack allocation and
2174 // pass it into __msan_set_alloca_origin.
2175 // It will be printed by the run-time if stack-originated UMR is found.
2176 // The first 4 bytes of the string are set to '----' and will be replaced
2177 // by __msan_va_arg_overflow_size_tls at the first call.
2178 StackDescription << "----" << I.getName() << "@" << F.getName();
2179 Value *Descr =
2180 createPrivateNonConstGlobalForString(*F.getParent(),
2181 StackDescription.str());
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002182
2183 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002184 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2185 ConstantInt::get(MS.IntptrTy, Size),
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002186 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2187 IRB.CreatePointerCast(&F, MS.IntptrTy));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002188 }
2189 }
2190
2191 void visitSelectInst(SelectInst& I) {
2192 IRBuilder<> IRB(&I);
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002193 // a = select b, c, d
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002194 Value *B = I.getCondition();
2195 Value *C = I.getTrueValue();
2196 Value *D = I.getFalseValue();
2197 Value *Sb = getShadow(B);
2198 Value *Sc = getShadow(C);
2199 Value *Sd = getShadow(D);
2200
2201 // Result shadow if condition shadow is 0.
2202 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
2203 Value *Sa1;
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002204 if (I.getType()->isAggregateType()) {
2205 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2206 // an extra "select". This results in much more compact IR.
2207 // Sa = select Sb, poisoned, (select b, Sc, Sd)
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002208 Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002209 } else {
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002210 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
2211 // If Sb (condition is poisoned), look for bits in c and d that are equal
2212 // and both unpoisoned.
2213 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
2214
2215 // Cast arguments to shadow-compatible type.
2216 C = CreateAppToShadowCast(IRB, C);
2217 D = CreateAppToShadowCast(IRB, D);
2218
2219 // Result shadow if condition shadow is 1.
2220 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002221 }
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002222 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
2223 setShadow(&I, Sa);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002224 if (MS.TrackOrigins) {
2225 // Origins are always i32, so any vector conditions must be flattened.
2226 // FIXME: consider tracking vector origins for app vectors?
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002227 if (B->getType()->isVectorTy()) {
2228 Type *FlatTy = getShadowTyNoVec(B->getType());
2229 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002230 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002231 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002232 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002233 }
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002234 // a = select b, c, d
2235 // Oa = Sb ? Ob : (b ? Oc : Od)
2236 setOrigin(&I, IRB.CreateSelect(
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002237 Sb, getOrigin(I.getCondition()),
2238 IRB.CreateSelect(B, getOrigin(C), getOrigin(D))));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002239 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002240 }
2241
2242 void visitLandingPadInst(LandingPadInst &I) {
2243 // Do nothing.
2244 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2245 setShadow(&I, getCleanShadow(&I));
2246 setOrigin(&I, getCleanOrigin());
2247 }
2248
2249 void visitGetElementPtrInst(GetElementPtrInst &I) {
2250 handleShadowOr(I);
2251 }
2252
2253 void visitExtractValueInst(ExtractValueInst &I) {
2254 IRBuilder<> IRB(&I);
2255 Value *Agg = I.getAggregateOperand();
2256 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
2257 Value *AggShadow = getShadow(Agg);
2258 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2259 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2260 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
2261 setShadow(&I, ResShadow);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002262 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002263 }
2264
2265 void visitInsertValueInst(InsertValueInst &I) {
2266 IRBuilder<> IRB(&I);
2267 DEBUG(dbgs() << "InsertValue: " << I << "\n");
2268 Value *AggShadow = getShadow(I.getAggregateOperand());
2269 Value *InsShadow = getShadow(I.getInsertedValueOperand());
2270 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2271 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
2272 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2273 DEBUG(dbgs() << " Res: " << *Res << "\n");
2274 setShadow(&I, Res);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002275 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002276 }
2277
2278 void dumpInst(Instruction &I) {
2279 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2280 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2281 } else {
2282 errs() << "ZZZ " << I.getOpcodeName() << "\n";
2283 }
2284 errs() << "QQQ " << I << "\n";
2285 }
2286
2287 void visitResumeInst(ResumeInst &I) {
2288 DEBUG(dbgs() << "Resume: " << I << "\n");
2289 // Nothing to do here.
2290 }
2291
2292 void visitInstruction(Instruction &I) {
2293 // Everything else: stop propagating and check for poisoned shadow.
2294 if (ClDumpStrictInstructions)
2295 dumpInst(I);
2296 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2297 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002298 insertShadowCheck(I.getOperand(i), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002299 setShadow(&I, getCleanShadow(&I));
2300 setOrigin(&I, getCleanOrigin());
2301 }
2302};
2303
2304/// \brief AMD64-specific implementation of VarArgHelper.
2305struct VarArgAMD64Helper : public VarArgHelper {
2306 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2307 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002308 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002309 static const unsigned AMD64FpEndOffset = 176;
2310
2311 Function &F;
2312 MemorySanitizer &MS;
2313 MemorySanitizerVisitor &MSV;
2314 Value *VAArgTLSCopy;
2315 Value *VAArgOverflowSize;
2316
2317 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2318
2319 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2320 MemorySanitizerVisitor &MSV)
2321 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
2322
2323 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2324
2325 ArgKind classifyArgument(Value* arg) {
2326 // A very rough approximation of X86_64 argument classification rules.
2327 Type *T = arg->getType();
2328 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2329 return AK_FloatingPoint;
2330 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2331 return AK_GeneralPurpose;
2332 if (T->isPointerTy())
2333 return AK_GeneralPurpose;
2334 return AK_Memory;
2335 }
2336
2337 // For VarArg functions, store the argument shadow in an ABI-specific format
2338 // that corresponds to va_list layout.
2339 // We do this because Clang lowers va_arg in the frontend, and this pass
2340 // only sees the low level code that deals with va_list internals.
2341 // A much easier alternative (provided that Clang emits va_arg instructions)
2342 // would have been to associate each live instance of va_list with a copy of
2343 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2344 // order.
Craig Topper3e4c6972014-03-05 09:10:37 +00002345 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002346 unsigned GpOffset = 0;
2347 unsigned FpOffset = AMD64GpEndOffset;
2348 unsigned OverflowOffset = AMD64FpEndOffset;
2349 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2350 ArgIt != End; ++ArgIt) {
2351 Value *A = *ArgIt;
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002352 unsigned ArgNo = CS.getArgumentNo(ArgIt);
2353 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2354 if (IsByVal) {
2355 // ByVal arguments always go to the overflow area.
2356 assert(A->getType()->isPointerTy());
2357 Type *RealTy = A->getType()->getPointerElementType();
2358 uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
2359 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002360 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002361 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2362 ArgSize, kShadowTLSAlignment);
2363 } else {
2364 ArgKind AK = classifyArgument(A);
2365 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2366 AK = AK_Memory;
2367 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2368 AK = AK_Memory;
2369 Value *Base;
2370 switch (AK) {
2371 case AK_GeneralPurpose:
2372 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2373 GpOffset += 8;
2374 break;
2375 case AK_FloatingPoint:
2376 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2377 FpOffset += 16;
2378 break;
2379 case AK_Memory:
2380 uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
2381 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
2382 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
2383 }
2384 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002385 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002386 }
2387 Constant *OverflowSize =
2388 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2389 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2390 }
2391
2392 /// \brief Compute the shadow address for a given va_arg.
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002393 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002394 int ArgOffset) {
2395 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2396 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002397 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002398 "_msarg");
2399 }
2400
Craig Topper3e4c6972014-03-05 09:10:37 +00002401 void visitVAStartInst(VAStartInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002402 IRBuilder<> IRB(&I);
2403 VAStartInstrumentationList.push_back(&I);
2404 Value *VAListTag = I.getArgOperand(0);
2405 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2406
2407 // Unpoison the whole __va_list_tag.
2408 // FIXME: magic ABI constants.
2409 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002410 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002411 }
2412
Craig Topper3e4c6972014-03-05 09:10:37 +00002413 void visitVACopyInst(VACopyInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002414 IRBuilder<> IRB(&I);
2415 Value *VAListTag = I.getArgOperand(0);
2416 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2417
2418 // Unpoison the whole __va_list_tag.
2419 // FIXME: magic ABI constants.
2420 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002421 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002422 }
2423
Craig Topper3e4c6972014-03-05 09:10:37 +00002424 void finalizeInstrumentation() override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002425 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2426 "finalizeInstrumentation called twice");
2427 if (!VAStartInstrumentationList.empty()) {
2428 // If there is a va_start in this function, make a backup copy of
2429 // va_arg_tls somewhere in the function entry block.
2430 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2431 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2432 Value *CopySize =
2433 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2434 VAArgOverflowSize);
2435 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2436 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2437 }
2438
2439 // Instrument va_start.
2440 // Copy va_list shadow from the backup copy of the TLS contents.
2441 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2442 CallInst *OrigInst = VAStartInstrumentationList[i];
2443 IRBuilder<> IRB(OrigInst->getNextNode());
2444 Value *VAListTag = OrigInst->getArgOperand(0);
2445
2446 Value *RegSaveAreaPtrPtr =
2447 IRB.CreateIntToPtr(
2448 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2449 ConstantInt::get(MS.IntptrTy, 16)),
2450 Type::getInt64PtrTy(*MS.C));
2451 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2452 Value *RegSaveAreaShadowPtr =
2453 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2454 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2455 AMD64FpEndOffset, 16);
2456
2457 Value *OverflowArgAreaPtrPtr =
2458 IRB.CreateIntToPtr(
2459 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2460 ConstantInt::get(MS.IntptrTy, 8)),
2461 Type::getInt64PtrTy(*MS.C));
2462 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2463 Value *OverflowArgAreaShadowPtr =
2464 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
Evgeniy Stepanovd42863c2013-08-23 12:11:00 +00002465 Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002466 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2467 }
2468 }
2469};
2470
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002471/// \brief A no-op implementation of VarArgHelper.
2472struct VarArgNoOpHelper : public VarArgHelper {
2473 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2474 MemorySanitizerVisitor &MSV) {}
2475
Craig Topper3e4c6972014-03-05 09:10:37 +00002476 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002477
Craig Topper3e4c6972014-03-05 09:10:37 +00002478 void visitVAStartInst(VAStartInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002479
Craig Topper3e4c6972014-03-05 09:10:37 +00002480 void visitVACopyInst(VACopyInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002481
Craig Topper3e4c6972014-03-05 09:10:37 +00002482 void finalizeInstrumentation() override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002483};
2484
2485VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002486 MemorySanitizerVisitor &Visitor) {
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002487 // VarArg handling is only implemented on AMD64. False positives are possible
2488 // on other platforms.
2489 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2490 if (TargetTriple.getArch() == llvm::Triple::x86_64)
2491 return new VarArgAMD64Helper(Func, Msan, Visitor);
2492 else
2493 return new VarArgNoOpHelper(Func, Msan, Visitor);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002494}
2495
2496} // namespace
2497
2498bool MemorySanitizer::runOnFunction(Function &F) {
2499 MemorySanitizerVisitor Visitor(F, *this);
2500
2501 // Clear out readonly/readnone attributes.
2502 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002503 B.addAttribute(Attribute::ReadOnly)
2504 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002505 F.removeAttributes(AttributeSet::FunctionIndex,
2506 AttributeSet::get(F.getContext(),
2507 AttributeSet::FunctionIndex, B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002508
2509 return Visitor.runOnFunction();
2510}