blob: 53174b68a132ffffe717e67f9ca7117082017bab [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor3fc749d2008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000042 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000045 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000050 ICC_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000051 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000052 ICC_Conversion
53 };
54 return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000069 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000072 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000077 ICR_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000078 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000079 ICR_Conversion
80 };
81 return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000095 "Complex promotion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000096 "Integral conversion",
97 "Floating conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000098 "Complex conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000099 "Floating-integral conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000100 "Complex-real conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000101 "Pointer conversion",
102 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000103 "Boolean conversion",
Douglas Gregorf9201e02009-02-11 23:02:49 +0000104 "Compatible-types conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000105 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000106 };
107 return Name[Kind];
108}
109
Douglas Gregor60d62c22008-10-31 16:23:19 +0000110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000119 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000120}
121
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000122/// getRank - Retrieve the rank of this standard conversion sequence
123/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
124/// implicit conversions.
125ImplicitConversionRank StandardConversionSequence::getRank() const {
126 ImplicitConversionRank Rank = ICR_Exact_Match;
127 if (GetConversionRank(First) > Rank)
128 Rank = GetConversionRank(First);
129 if (GetConversionRank(Second) > Rank)
130 Rank = GetConversionRank(Second);
131 if (GetConversionRank(Third) > Rank)
132 Rank = GetConversionRank(Third);
133 return Rank;
134}
135
136/// isPointerConversionToBool - Determines whether this conversion is
137/// a conversion of a pointer or pointer-to-member to bool. This is
138/// used as part of the ranking of standard conversion sequences
139/// (C++ 13.3.3.2p4).
140bool StandardConversionSequence::isPointerConversionToBool() const
141{
142 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
143 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
144
145 // Note that FromType has not necessarily been transformed by the
146 // array-to-pointer or function-to-pointer implicit conversions, so
147 // check for their presence as well as checking whether FromType is
148 // a pointer.
149 if (ToType->isBooleanType() &&
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000150 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000151 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
152 return true;
153
154 return false;
155}
156
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000157/// isPointerConversionToVoidPointer - Determines whether this
158/// conversion is a conversion of a pointer to a void pointer. This is
159/// used as part of the ranking of standard conversion sequences (C++
160/// 13.3.3.2p4).
161bool
162StandardConversionSequence::
163isPointerConversionToVoidPointer(ASTContext& Context) const
164{
165 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
166 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
167
168 // Note that FromType has not necessarily been transformed by the
169 // array-to-pointer implicit conversion, so check for its presence
170 // and redo the conversion to get a pointer.
171 if (First == ICK_Array_To_Pointer)
172 FromType = Context.getArrayDecayedType(FromType);
173
174 if (Second == ICK_Pointer_Conversion)
175 if (const PointerType* ToPtrType = ToType->getAsPointerType())
176 return ToPtrType->getPointeeType()->isVoidType();
177
178 return false;
179}
180
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000181/// DebugPrint - Print this standard conversion sequence to standard
182/// error. Useful for debugging overloading issues.
183void StandardConversionSequence::DebugPrint() const {
184 bool PrintedSomething = false;
185 if (First != ICK_Identity) {
186 fprintf(stderr, "%s", GetImplicitConversionName(First));
187 PrintedSomething = true;
188 }
189
190 if (Second != ICK_Identity) {
191 if (PrintedSomething) {
192 fprintf(stderr, " -> ");
193 }
194 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000195
196 if (CopyConstructor) {
197 fprintf(stderr, " (by copy constructor)");
198 } else if (DirectBinding) {
199 fprintf(stderr, " (direct reference binding)");
200 } else if (ReferenceBinding) {
201 fprintf(stderr, " (reference binding)");
202 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000203 PrintedSomething = true;
204 }
205
206 if (Third != ICK_Identity) {
207 if (PrintedSomething) {
208 fprintf(stderr, " -> ");
209 }
210 fprintf(stderr, "%s", GetImplicitConversionName(Third));
211 PrintedSomething = true;
212 }
213
214 if (!PrintedSomething) {
215 fprintf(stderr, "No conversions required");
216 }
217}
218
219/// DebugPrint - Print this user-defined conversion sequence to standard
220/// error. Useful for debugging overloading issues.
221void UserDefinedConversionSequence::DebugPrint() const {
222 if (Before.First || Before.Second || Before.Third) {
223 Before.DebugPrint();
224 fprintf(stderr, " -> ");
225 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000226 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000227 if (After.First || After.Second || After.Third) {
228 fprintf(stderr, " -> ");
229 After.DebugPrint();
230 }
231}
232
233/// DebugPrint - Print this implicit conversion sequence to standard
234/// error. Useful for debugging overloading issues.
235void ImplicitConversionSequence::DebugPrint() const {
236 switch (ConversionKind) {
237 case StandardConversion:
238 fprintf(stderr, "Standard conversion: ");
239 Standard.DebugPrint();
240 break;
241 case UserDefinedConversion:
242 fprintf(stderr, "User-defined conversion: ");
243 UserDefined.DebugPrint();
244 break;
245 case EllipsisConversion:
246 fprintf(stderr, "Ellipsis conversion");
247 break;
248 case BadConversion:
249 fprintf(stderr, "Bad conversion");
250 break;
251 }
252
253 fprintf(stderr, "\n");
254}
255
256// IsOverload - Determine whether the given New declaration is an
257// overload of the Old declaration. This routine returns false if New
258// and Old cannot be overloaded, e.g., if they are functions with the
259// same signature (C++ 1.3.10) or if the Old declaration isn't a
260// function (or overload set). When it does return false and Old is an
261// OverloadedFunctionDecl, MatchedDecl will be set to point to the
262// FunctionDecl that New cannot be overloaded with.
263//
264// Example: Given the following input:
265//
266// void f(int, float); // #1
267// void f(int, int); // #2
268// int f(int, int); // #3
269//
270// When we process #1, there is no previous declaration of "f",
271// so IsOverload will not be used.
272//
273// When we process #2, Old is a FunctionDecl for #1. By comparing the
274// parameter types, we see that #1 and #2 are overloaded (since they
275// have different signatures), so this routine returns false;
276// MatchedDecl is unchanged.
277//
278// When we process #3, Old is an OverloadedFunctionDecl containing #1
279// and #2. We compare the signatures of #3 to #1 (they're overloaded,
280// so we do nothing) and then #3 to #2. Since the signatures of #3 and
281// #2 are identical (return types of functions are not part of the
282// signature), IsOverload returns false and MatchedDecl will be set to
283// point to the FunctionDecl for #2.
284bool
285Sema::IsOverload(FunctionDecl *New, Decl* OldD,
286 OverloadedFunctionDecl::function_iterator& MatchedDecl)
287{
288 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
289 // Is this new function an overload of every function in the
290 // overload set?
291 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
292 FuncEnd = Ovl->function_end();
293 for (; Func != FuncEnd; ++Func) {
294 if (!IsOverload(New, *Func, MatchedDecl)) {
295 MatchedDecl = Func;
296 return false;
297 }
298 }
299
300 // This function overloads every function in the overload set.
301 return true;
302 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
303 // Is the function New an overload of the function Old?
304 QualType OldQType = Context.getCanonicalType(Old->getType());
305 QualType NewQType = Context.getCanonicalType(New->getType());
306
307 // Compare the signatures (C++ 1.3.10) of the two functions to
308 // determine whether they are overloads. If we find any mismatch
309 // in the signature, they are overloads.
310
311 // If either of these functions is a K&R-style function (no
312 // prototype), then we consider them to have matching signatures.
Douglas Gregor72564e72009-02-26 23:50:07 +0000313 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
314 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000315 return false;
316
Douglas Gregor72564e72009-02-26 23:50:07 +0000317 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType.getTypePtr());
318 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType.getTypePtr());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000319
320 // The signature of a function includes the types of its
321 // parameters (C++ 1.3.10), which includes the presence or absence
322 // of the ellipsis; see C++ DR 357).
323 if (OldQType != NewQType &&
324 (OldType->getNumArgs() != NewType->getNumArgs() ||
325 OldType->isVariadic() != NewType->isVariadic() ||
326 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
327 NewType->arg_type_begin())))
328 return true;
329
330 // If the function is a class member, its signature includes the
331 // cv-qualifiers (if any) on the function itself.
332 //
333 // As part of this, also check whether one of the member functions
334 // is static, in which case they are not overloads (C++
335 // 13.1p2). While not part of the definition of the signature,
336 // this check is important to determine whether these functions
337 // can be overloaded.
338 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
339 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
340 if (OldMethod && NewMethod &&
341 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000342 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000343 return true;
344
345 // The signatures match; this is not an overload.
346 return false;
347 } else {
348 // (C++ 13p1):
349 // Only function declarations can be overloaded; object and type
350 // declarations cannot be overloaded.
351 return false;
352 }
353}
354
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000355/// TryImplicitConversion - Attempt to perform an implicit conversion
356/// from the given expression (Expr) to the given type (ToType). This
357/// function returns an implicit conversion sequence that can be used
358/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000359///
360/// void f(float f);
361/// void g(int i) { f(i); }
362///
363/// this routine would produce an implicit conversion sequence to
364/// describe the initialization of f from i, which will be a standard
365/// conversion sequence containing an lvalue-to-rvalue conversion (C++
366/// 4.1) followed by a floating-integral conversion (C++ 4.9).
367//
368/// Note that this routine only determines how the conversion can be
369/// performed; it does not actually perform the conversion. As such,
370/// it will not produce any diagnostics if no conversion is available,
371/// but will instead return an implicit conversion sequence of kind
372/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000373///
374/// If @p SuppressUserConversions, then user-defined conversions are
375/// not permitted.
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000376/// If @p AllowExplicit, then explicit user-defined conversions are
377/// permitted.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000378ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000379Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000380 bool SuppressUserConversions,
Douglas Gregor734d9862009-01-30 23:27:23 +0000381 bool AllowExplicit)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000382{
383 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000384 if (IsStandardConversion(From, ToType, ICS.Standard))
385 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000386 else if (getLangOptions().CPlusPlus &&
387 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
Douglas Gregor734d9862009-01-30 23:27:23 +0000388 !SuppressUserConversions, AllowExplicit)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000389 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000390 // C++ [over.ics.user]p4:
391 // A conversion of an expression of class type to the same class
392 // type is given Exact Match rank, and a conversion of an
393 // expression of class type to a base class of that type is
394 // given Conversion rank, in spite of the fact that a copy
395 // constructor (i.e., a user-defined conversion function) is
396 // called for those cases.
397 if (CXXConstructorDecl *Constructor
398 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000399 QualType FromCanon
400 = Context.getCanonicalType(From->getType().getUnqualifiedType());
401 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
402 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000403 // Turn this into a "standard" conversion sequence, so that it
404 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000405 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
406 ICS.Standard.setAsIdentityConversion();
407 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
408 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000409 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000410 if (ToCanon != FromCanon)
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000411 ICS.Standard.Second = ICK_Derived_To_Base;
412 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000413 }
Douglas Gregor734d9862009-01-30 23:27:23 +0000414
415 // C++ [over.best.ics]p4:
416 // However, when considering the argument of a user-defined
417 // conversion function that is a candidate by 13.3.1.3 when
418 // invoked for the copying of the temporary in the second step
419 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
420 // 13.3.1.6 in all cases, only standard conversion sequences and
421 // ellipsis conversion sequences are allowed.
422 if (SuppressUserConversions &&
423 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
424 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000425 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000426 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000427
428 return ICS;
429}
430
431/// IsStandardConversion - Determines whether there is a standard
432/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
433/// expression From to the type ToType. Standard conversion sequences
434/// only consider non-class types; for conversions that involve class
435/// types, use TryImplicitConversion. If a conversion exists, SCS will
436/// contain the standard conversion sequence required to perform this
437/// conversion and this routine will return true. Otherwise, this
438/// routine will return false and the value of SCS is unspecified.
439bool
440Sema::IsStandardConversion(Expr* From, QualType ToType,
441 StandardConversionSequence &SCS)
442{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000443 QualType FromType = From->getType();
444
Douglas Gregor60d62c22008-10-31 16:23:19 +0000445 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000446 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000447 SCS.Deprecated = false;
Douglas Gregor45920e82008-12-19 17:40:08 +0000448 SCS.IncompatibleObjC = false;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000449 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000450 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000451
Douglas Gregorf9201e02009-02-11 23:02:49 +0000452 // There are no standard conversions for class types in C++, so
453 // abort early. When overloading in C, however, we do permit
454 if (FromType->isRecordType() || ToType->isRecordType()) {
455 if (getLangOptions().CPlusPlus)
456 return false;
457
458 // When we're overloading in C, we allow, as standard conversions,
459 }
460
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000461 // The first conversion can be an lvalue-to-rvalue conversion,
462 // array-to-pointer conversion, or function-to-pointer conversion
463 // (C++ 4p1).
464
465 // Lvalue-to-rvalue conversion (C++ 4.1):
466 // An lvalue (3.10) of a non-function, non-array type T can be
467 // converted to an rvalue.
468 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
469 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000470 !FromType->isFunctionType() && !FromType->isArrayType() &&
471 !FromType->isOverloadType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000472 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000473
474 // If T is a non-class type, the type of the rvalue is the
475 // cv-unqualified version of T. Otherwise, the type of the rvalue
Douglas Gregorf9201e02009-02-11 23:02:49 +0000476 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
477 // just strip the qualifiers because they don't matter.
478
479 // FIXME: Doesn't see through to qualifiers behind a typedef!
Douglas Gregor60d62c22008-10-31 16:23:19 +0000480 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000481 }
482 // Array-to-pointer conversion (C++ 4.2)
483 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000484 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000485
486 // An lvalue or rvalue of type "array of N T" or "array of unknown
487 // bound of T" can be converted to an rvalue of type "pointer to
488 // T" (C++ 4.2p1).
489 FromType = Context.getArrayDecayedType(FromType);
490
491 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
492 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000493 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000494
495 // For the purpose of ranking in overload resolution
496 // (13.3.3.1.1), this conversion is considered an
497 // array-to-pointer conversion followed by a qualification
498 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000499 SCS.Second = ICK_Identity;
500 SCS.Third = ICK_Qualification;
501 SCS.ToTypePtr = ToType.getAsOpaquePtr();
502 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000503 }
504 }
505 // Function-to-pointer conversion (C++ 4.3).
506 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000507 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000508
509 // An lvalue of function type T can be converted to an rvalue of
510 // type "pointer to T." The result is a pointer to the
511 // function. (C++ 4.3p1).
512 FromType = Context.getPointerType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000513 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000514 // Address of overloaded function (C++ [over.over]).
515 else if (FunctionDecl *Fn
516 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
517 SCS.First = ICK_Function_To_Pointer;
518
519 // We were able to resolve the address of the overloaded function,
520 // so we can convert to the type of that function.
521 FromType = Fn->getType();
522 if (ToType->isReferenceType())
523 FromType = Context.getReferenceType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000524 else if (ToType->isMemberPointerType()) {
525 // Resolve address only succeeds if both sides are member pointers,
526 // but it doesn't have to be the same class. See DR 247.
527 // Note that this means that the type of &Derived::fn can be
528 // Ret (Base::*)(Args) if the fn overload actually found is from the
529 // base class, even if it was brought into the derived class via a
530 // using declaration. The standard isn't clear on this issue at all.
531 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
532 FromType = Context.getMemberPointerType(FromType,
533 Context.getTypeDeclType(M->getParent()).getTypePtr());
534 } else
Douglas Gregor904eed32008-11-10 20:40:00 +0000535 FromType = Context.getPointerType(FromType);
536 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000537 // We don't require any conversions for the first step.
538 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000539 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000540 }
541
542 // The second conversion can be an integral promotion, floating
543 // point promotion, integral conversion, floating point conversion,
544 // floating-integral conversion, pointer conversion,
545 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregorf9201e02009-02-11 23:02:49 +0000546 // For overloading in C, this can also be a "compatible-type"
547 // conversion.
Douglas Gregor45920e82008-12-19 17:40:08 +0000548 bool IncompatibleObjC = false;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000549 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000550 // The unqualified versions of the types are the same: there's no
551 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000552 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000553 }
554 // Integral promotion (C++ 4.5).
555 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000556 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000557 FromType = ToType.getUnqualifiedType();
558 }
559 // Floating point promotion (C++ 4.6).
560 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000561 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000562 FromType = ToType.getUnqualifiedType();
563 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000564 // Complex promotion (Clang extension)
565 else if (IsComplexPromotion(FromType, ToType)) {
566 SCS.Second = ICK_Complex_Promotion;
567 FromType = ToType.getUnqualifiedType();
568 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000569 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000570 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000571 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000572 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000573 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000574 FromType = ToType.getUnqualifiedType();
575 }
576 // Floating point conversions (C++ 4.8).
577 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000578 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000579 FromType = ToType.getUnqualifiedType();
580 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000581 // Complex conversions (C99 6.3.1.6)
582 else if (FromType->isComplexType() && ToType->isComplexType()) {
583 SCS.Second = ICK_Complex_Conversion;
584 FromType = ToType.getUnqualifiedType();
585 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000586 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000587 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000588 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000589 ToType->isIntegralType() && !ToType->isBooleanType() &&
590 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000591 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
592 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000593 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000594 FromType = ToType.getUnqualifiedType();
595 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000596 // Complex-real conversions (C99 6.3.1.7)
597 else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
598 (ToType->isComplexType() && FromType->isArithmeticType())) {
599 SCS.Second = ICK_Complex_Real;
600 FromType = ToType.getUnqualifiedType();
601 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000602 // Pointer conversions (C++ 4.10).
Douglas Gregor45920e82008-12-19 17:40:08 +0000603 else if (IsPointerConversion(From, FromType, ToType, FromType,
604 IncompatibleObjC)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000605 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor45920e82008-12-19 17:40:08 +0000606 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl07779722008-10-31 14:43:28 +0000607 }
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000608 // Pointer to member conversions (4.11).
609 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
610 SCS.Second = ICK_Pointer_Member;
611 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000612 // Boolean conversions (C++ 4.12).
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000613 else if (ToType->isBooleanType() &&
614 (FromType->isArithmeticType() ||
615 FromType->isEnumeralType() ||
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000616 FromType->isPointerType() ||
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000617 FromType->isBlockPointerType() ||
618 FromType->isMemberPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000619 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000620 FromType = Context.BoolTy;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000621 }
622 // Compatible conversions (Clang extension for C function overloading)
623 else if (!getLangOptions().CPlusPlus &&
624 Context.typesAreCompatible(ToType, FromType)) {
625 SCS.Second = ICK_Compatible_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000626 } else {
627 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000628 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000629 }
630
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000631 QualType CanonFrom;
632 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000633 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000634 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000635 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000636 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000637 CanonFrom = Context.getCanonicalType(FromType);
638 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000639 } else {
640 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000641 SCS.Third = ICK_Identity;
642
643 // C++ [over.best.ics]p6:
644 // [...] Any difference in top-level cv-qualification is
645 // subsumed by the initialization itself and does not constitute
646 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000647 CanonFrom = Context.getCanonicalType(FromType);
648 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000649 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000650 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
651 FromType = ToType;
652 CanonFrom = CanonTo;
653 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000654 }
655
656 // If we have not converted the argument type to the parameter type,
657 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000658 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000659 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000660
Douglas Gregor60d62c22008-10-31 16:23:19 +0000661 SCS.ToTypePtr = FromType.getAsOpaquePtr();
662 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000663}
664
665/// IsIntegralPromotion - Determines whether the conversion from the
666/// expression From (whose potentially-adjusted type is FromType) to
667/// ToType is an integral promotion (C++ 4.5). If so, returns true and
668/// sets PromotedType to the promoted type.
669bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
670{
671 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000672 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000673 if (!To) {
674 return false;
675 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000676
677 // An rvalue of type char, signed char, unsigned char, short int, or
678 // unsigned short int can be converted to an rvalue of type int if
679 // int can represent all the values of the source type; otherwise,
680 // the source rvalue can be converted to an rvalue of type unsigned
681 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000682 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000683 if (// We can promote any signed, promotable integer type to an int
684 (FromType->isSignedIntegerType() ||
685 // We can promote any unsigned integer type whose size is
686 // less than int to an int.
687 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000688 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000689 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000690 }
691
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000692 return To->getKind() == BuiltinType::UInt;
693 }
694
695 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
696 // can be converted to an rvalue of the first of the following types
697 // that can represent all the values of its underlying type: int,
698 // unsigned int, long, or unsigned long (C++ 4.5p2).
699 if ((FromType->isEnumeralType() || FromType->isWideCharType())
700 && ToType->isIntegerType()) {
701 // Determine whether the type we're converting from is signed or
702 // unsigned.
703 bool FromIsSigned;
704 uint64_t FromSize = Context.getTypeSize(FromType);
705 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
706 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
707 FromIsSigned = UnderlyingType->isSignedIntegerType();
708 } else {
709 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
710 FromIsSigned = true;
711 }
712
713 // The types we'll try to promote to, in the appropriate
714 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000715 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000716 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000717 Context.LongTy, Context.UnsignedLongTy ,
718 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000719 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000720 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000721 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
722 if (FromSize < ToSize ||
723 (FromSize == ToSize &&
724 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
725 // We found the type that we can promote to. If this is the
726 // type we wanted, we have a promotion. Otherwise, no
727 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000728 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000729 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
730 }
731 }
732 }
733
734 // An rvalue for an integral bit-field (9.6) can be converted to an
735 // rvalue of type int if int can represent all the values of the
736 // bit-field; otherwise, it can be converted to unsigned int if
737 // unsigned int can represent all the values of the bit-field. If
738 // the bit-field is larger yet, no integral promotion applies to
739 // it. If the bit-field has an enumerated type, it is treated as any
740 // other value of that type for promotion purposes (C++ 4.5p3).
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000741 // FIXME: We should delay checking of bit-fields until we actually
742 // perform the conversion.
743 if (MemberExpr *MemRef = dyn_cast_or_null<MemberExpr>(From)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000744 using llvm::APSInt;
Douglas Gregor86f19402008-12-20 23:49:58 +0000745 if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) {
746 APSInt BitWidth;
747 if (MemberDecl->isBitField() &&
748 FromType->isIntegralType() && !FromType->isEnumeralType() &&
749 From->isIntegerConstantExpr(BitWidth, Context)) {
750 APSInt ToSize(Context.getTypeSize(ToType));
751
752 // Are we promoting to an int from a bitfield that fits in an int?
753 if (BitWidth < ToSize ||
754 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
755 return To->getKind() == BuiltinType::Int;
756 }
757
758 // Are we promoting to an unsigned int from an unsigned bitfield
759 // that fits into an unsigned int?
760 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
761 return To->getKind() == BuiltinType::UInt;
762 }
763
764 return false;
Sebastian Redl07779722008-10-31 14:43:28 +0000765 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000766 }
767 }
768
769 // An rvalue of type bool can be converted to an rvalue of type int,
770 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000771 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000772 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000773 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000774
775 return false;
776}
777
778/// IsFloatingPointPromotion - Determines whether the conversion from
779/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
780/// returns true and sets PromotedType to the promoted type.
781bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
782{
783 /// An rvalue of type float can be converted to an rvalue of type
784 /// double. (C++ 4.6p1).
785 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000786 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000787 if (FromBuiltin->getKind() == BuiltinType::Float &&
788 ToBuiltin->getKind() == BuiltinType::Double)
789 return true;
790
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000791 // C99 6.3.1.5p1:
792 // When a float is promoted to double or long double, or a
793 // double is promoted to long double [...].
794 if (!getLangOptions().CPlusPlus &&
795 (FromBuiltin->getKind() == BuiltinType::Float ||
796 FromBuiltin->getKind() == BuiltinType::Double) &&
797 (ToBuiltin->getKind() == BuiltinType::LongDouble))
798 return true;
799 }
800
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000801 return false;
802}
803
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000804/// \brief Determine if a conversion is a complex promotion.
805///
806/// A complex promotion is defined as a complex -> complex conversion
807/// where the conversion between the underlying real types is a
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000808/// floating-point or integral promotion.
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000809bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
810 const ComplexType *FromComplex = FromType->getAsComplexType();
811 if (!FromComplex)
812 return false;
813
814 const ComplexType *ToComplex = ToType->getAsComplexType();
815 if (!ToComplex)
816 return false;
817
818 return IsFloatingPointPromotion(FromComplex->getElementType(),
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000819 ToComplex->getElementType()) ||
820 IsIntegralPromotion(0, FromComplex->getElementType(),
821 ToComplex->getElementType());
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000822}
823
Douglas Gregorcb7de522008-11-26 23:31:11 +0000824/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
825/// the pointer type FromPtr to a pointer to type ToPointee, with the
826/// same type qualifiers as FromPtr has on its pointee type. ToType,
827/// if non-empty, will be a pointer to ToType that may or may not have
828/// the right set of qualifiers on its pointee.
829static QualType
830BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
831 QualType ToPointee, QualType ToType,
832 ASTContext &Context) {
833 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
834 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
835 unsigned Quals = CanonFromPointee.getCVRQualifiers();
836
837 // Exact qualifier match -> return the pointer type we're converting to.
838 if (CanonToPointee.getCVRQualifiers() == Quals) {
839 // ToType is exactly what we need. Return it.
840 if (ToType.getTypePtr())
841 return ToType;
842
843 // Build a pointer to ToPointee. It has the right qualifiers
844 // already.
845 return Context.getPointerType(ToPointee);
846 }
847
848 // Just build a canonical type that has the right qualifiers.
849 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
850}
851
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000852/// IsPointerConversion - Determines whether the conversion of the
853/// expression From, which has the (possibly adjusted) type FromType,
854/// can be converted to the type ToType via a pointer conversion (C++
855/// 4.10). If so, returns true and places the converted type (that
856/// might differ from ToType in its cv-qualifiers at some level) into
857/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000858///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000859/// This routine also supports conversions to and from block pointers
860/// and conversions with Objective-C's 'id', 'id<protocols...>', and
861/// pointers to interfaces. FIXME: Once we've determined the
862/// appropriate overloading rules for Objective-C, we may want to
863/// split the Objective-C checks into a different routine; however,
864/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor45920e82008-12-19 17:40:08 +0000865/// conversions, so for now they live here. IncompatibleObjC will be
866/// set if the conversion is an allowed Objective-C conversion that
867/// should result in a warning.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000868bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor45920e82008-12-19 17:40:08 +0000869 QualType& ConvertedType,
870 bool &IncompatibleObjC)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000871{
Douglas Gregor45920e82008-12-19 17:40:08 +0000872 IncompatibleObjC = false;
Douglas Gregorc7887512008-12-19 19:13:09 +0000873 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
874 return true;
Douglas Gregor45920e82008-12-19 17:40:08 +0000875
Douglas Gregor27b09ac2008-12-22 20:51:52 +0000876 // Conversion from a null pointer constant to any Objective-C pointer type.
877 if (Context.isObjCObjectPointerType(ToType) &&
878 From->isNullPointerConstant(Context)) {
879 ConvertedType = ToType;
880 return true;
881 }
882
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000883 // Blocks: Block pointers can be converted to void*.
884 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
885 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
886 ConvertedType = ToType;
887 return true;
888 }
889 // Blocks: A null pointer constant can be converted to a block
890 // pointer type.
891 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
892 ConvertedType = ToType;
893 return true;
894 }
895
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000896 const PointerType* ToTypePtr = ToType->getAsPointerType();
897 if (!ToTypePtr)
898 return false;
899
900 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
901 if (From->isNullPointerConstant(Context)) {
902 ConvertedType = ToType;
903 return true;
904 }
Sebastian Redl07779722008-10-31 14:43:28 +0000905
Douglas Gregorcb7de522008-11-26 23:31:11 +0000906 // Beyond this point, both types need to be pointers.
907 const PointerType *FromTypePtr = FromType->getAsPointerType();
908 if (!FromTypePtr)
909 return false;
910
911 QualType FromPointeeType = FromTypePtr->getPointeeType();
912 QualType ToPointeeType = ToTypePtr->getPointeeType();
913
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000914 // An rvalue of type "pointer to cv T," where T is an object type,
915 // can be converted to an rvalue of type "pointer to cv void" (C++
916 // 4.10p2).
Douglas Gregorc7887512008-12-19 19:13:09 +0000917 if (FromPointeeType->isIncompleteOrObjectType() &&
918 ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000919 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
920 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000921 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000922 return true;
923 }
924
Douglas Gregorf9201e02009-02-11 23:02:49 +0000925 // When we're overloading in C, we allow a special kind of pointer
926 // conversion for compatible-but-not-identical pointee types.
927 if (!getLangOptions().CPlusPlus &&
928 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
929 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
930 ToPointeeType,
931 ToType, Context);
932 return true;
933 }
934
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000935 // C++ [conv.ptr]p3:
936 //
937 // An rvalue of type "pointer to cv D," where D is a class type,
938 // can be converted to an rvalue of type "pointer to cv B," where
939 // B is a base class (clause 10) of D. If B is an inaccessible
940 // (clause 11) or ambiguous (10.2) base class of D, a program that
941 // necessitates this conversion is ill-formed. The result of the
942 // conversion is a pointer to the base class sub-object of the
943 // derived class object. The null pointer value is converted to
944 // the null pointer value of the destination type.
945 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000946 // Note that we do not check for ambiguity or inaccessibility
947 // here. That is handled by CheckPointerConversion.
Douglas Gregorf9201e02009-02-11 23:02:49 +0000948 if (getLangOptions().CPlusPlus &&
949 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
Douglas Gregorcb7de522008-11-26 23:31:11 +0000950 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000951 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
952 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000953 ToType, Context);
954 return true;
955 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000956
Douglas Gregorc7887512008-12-19 19:13:09 +0000957 return false;
958}
959
960/// isObjCPointerConversion - Determines whether this is an
961/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
962/// with the same arguments and return values.
963bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
964 QualType& ConvertedType,
965 bool &IncompatibleObjC) {
966 if (!getLangOptions().ObjC1)
967 return false;
968
969 // Conversions with Objective-C's id<...>.
970 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
971 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
972 ConvertedType = ToType;
973 return true;
974 }
975
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000976 // Beyond this point, both types need to be pointers or block pointers.
977 QualType ToPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000978 const PointerType* ToTypePtr = ToType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000979 if (ToTypePtr)
980 ToPointeeType = ToTypePtr->getPointeeType();
981 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
982 ToPointeeType = ToBlockPtr->getPointeeType();
983 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000984 return false;
985
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000986 QualType FromPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000987 const PointerType *FromTypePtr = FromType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000988 if (FromTypePtr)
989 FromPointeeType = FromTypePtr->getPointeeType();
990 else if (const BlockPointerType *FromBlockPtr
991 = FromType->getAsBlockPointerType())
992 FromPointeeType = FromBlockPtr->getPointeeType();
993 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000994 return false;
995
Douglas Gregorcb7de522008-11-26 23:31:11 +0000996 // Objective C++: We're able to convert from a pointer to an
997 // interface to a pointer to a different interface.
998 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
999 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1000 if (FromIface && ToIface &&
1001 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001002 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregorbf408182008-11-27 00:52:49 +00001003 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001004 ToType, Context);
1005 return true;
1006 }
1007
Douglas Gregor45920e82008-12-19 17:40:08 +00001008 if (FromIface && ToIface &&
1009 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1010 // Okay: this is some kind of implicit downcast of Objective-C
1011 // interfaces, which is permitted. However, we're going to
1012 // complain about it.
1013 IncompatibleObjC = true;
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001014 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor45920e82008-12-19 17:40:08 +00001015 ToPointeeType,
1016 ToType, Context);
1017 return true;
1018 }
1019
Douglas Gregorcb7de522008-11-26 23:31:11 +00001020 // Objective C++: We're able to convert between "id" and a pointer
1021 // to any interface (in both directions).
Steve Naroff389bf462009-02-12 17:52:19 +00001022 if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1023 || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +00001024 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1025 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001026 ToType, Context);
1027 return true;
1028 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001029
Douglas Gregordda78892008-12-18 23:43:31 +00001030 // Objective C++: Allow conversions between the Objective-C "id" and
1031 // "Class", in either direction.
Steve Naroff389bf462009-02-12 17:52:19 +00001032 if ((Context.isObjCIdStructType(FromPointeeType) &&
1033 Context.isObjCClassStructType(ToPointeeType)) ||
1034 (Context.isObjCClassStructType(FromPointeeType) &&
1035 Context.isObjCIdStructType(ToPointeeType))) {
Douglas Gregordda78892008-12-18 23:43:31 +00001036 ConvertedType = ToType;
1037 return true;
1038 }
1039
Douglas Gregorc7887512008-12-19 19:13:09 +00001040 // If we have pointers to pointers, recursively check whether this
1041 // is an Objective-C conversion.
1042 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1043 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1044 IncompatibleObjC)) {
1045 // We always complain about this conversion.
1046 IncompatibleObjC = true;
1047 ConvertedType = ToType;
1048 return true;
1049 }
1050
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001051 // If we have pointers to functions or blocks, check whether the only
Douglas Gregorc7887512008-12-19 19:13:09 +00001052 // differences in the argument and result types are in Objective-C
1053 // pointer conversions. If so, we permit the conversion (but
1054 // complain about it).
Douglas Gregor72564e72009-02-26 23:50:07 +00001055 const FunctionProtoType *FromFunctionType
1056 = FromPointeeType->getAsFunctionProtoType();
1057 const FunctionProtoType *ToFunctionType
1058 = ToPointeeType->getAsFunctionProtoType();
Douglas Gregorc7887512008-12-19 19:13:09 +00001059 if (FromFunctionType && ToFunctionType) {
1060 // If the function types are exactly the same, this isn't an
1061 // Objective-C pointer conversion.
1062 if (Context.getCanonicalType(FromPointeeType)
1063 == Context.getCanonicalType(ToPointeeType))
1064 return false;
1065
1066 // Perform the quick checks that will tell us whether these
1067 // function types are obviously different.
1068 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1069 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1070 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1071 return false;
1072
1073 bool HasObjCConversion = false;
1074 if (Context.getCanonicalType(FromFunctionType->getResultType())
1075 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1076 // Okay, the types match exactly. Nothing to do.
1077 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1078 ToFunctionType->getResultType(),
1079 ConvertedType, IncompatibleObjC)) {
1080 // Okay, we have an Objective-C pointer conversion.
1081 HasObjCConversion = true;
1082 } else {
1083 // Function types are too different. Abort.
1084 return false;
1085 }
1086
1087 // Check argument types.
1088 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1089 ArgIdx != NumArgs; ++ArgIdx) {
1090 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1091 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1092 if (Context.getCanonicalType(FromArgType)
1093 == Context.getCanonicalType(ToArgType)) {
1094 // Okay, the types match exactly. Nothing to do.
1095 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1096 ConvertedType, IncompatibleObjC)) {
1097 // Okay, we have an Objective-C pointer conversion.
1098 HasObjCConversion = true;
1099 } else {
1100 // Argument types are too different. Abort.
1101 return false;
1102 }
1103 }
1104
1105 if (HasObjCConversion) {
1106 // We had an Objective-C conversion. Allow this pointer
1107 // conversion, but complain about it.
1108 ConvertedType = ToType;
1109 IncompatibleObjC = true;
1110 return true;
1111 }
1112 }
1113
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001114 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001115}
1116
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001117/// CheckPointerConversion - Check the pointer conversion from the
1118/// expression From to the type ToType. This routine checks for
1119/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1120/// conversions for which IsPointerConversion has already returned
1121/// true. It returns true and produces a diagnostic if there was an
1122/// error, or returns false otherwise.
1123bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1124 QualType FromType = From->getType();
1125
1126 if (const PointerType *FromPtrType = FromType->getAsPointerType())
1127 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001128 QualType FromPointeeType = FromPtrType->getPointeeType(),
1129 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregordda78892008-12-18 23:43:31 +00001130
1131 // Objective-C++ conversions are always okay.
1132 // FIXME: We should have a different class of conversions for
1133 // the Objective-C++ implicit conversions.
Steve Naroff389bf462009-02-12 17:52:19 +00001134 if (Context.isObjCIdStructType(FromPointeeType) ||
1135 Context.isObjCIdStructType(ToPointeeType) ||
1136 Context.isObjCClassStructType(FromPointeeType) ||
1137 Context.isObjCClassStructType(ToPointeeType))
Douglas Gregordda78892008-12-18 23:43:31 +00001138 return false;
1139
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001140 if (FromPointeeType->isRecordType() &&
1141 ToPointeeType->isRecordType()) {
1142 // We must have a derived-to-base conversion. Check an
1143 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +00001144 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1145 From->getExprLoc(),
1146 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001147 }
1148 }
1149
1150 return false;
1151}
1152
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001153/// IsMemberPointerConversion - Determines whether the conversion of the
1154/// expression From, which has the (possibly adjusted) type FromType, can be
1155/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1156/// If so, returns true and places the converted type (that might differ from
1157/// ToType in its cv-qualifiers at some level) into ConvertedType.
1158bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1159 QualType ToType, QualType &ConvertedType)
1160{
1161 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1162 if (!ToTypePtr)
1163 return false;
1164
1165 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1166 if (From->isNullPointerConstant(Context)) {
1167 ConvertedType = ToType;
1168 return true;
1169 }
1170
1171 // Otherwise, both types have to be member pointers.
1172 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1173 if (!FromTypePtr)
1174 return false;
1175
1176 // A pointer to member of B can be converted to a pointer to member of D,
1177 // where D is derived from B (C++ 4.11p2).
1178 QualType FromClass(FromTypePtr->getClass(), 0);
1179 QualType ToClass(ToTypePtr->getClass(), 0);
1180 // FIXME: What happens when these are dependent? Is this function even called?
1181
1182 if (IsDerivedFrom(ToClass, FromClass)) {
1183 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1184 ToClass.getTypePtr());
1185 return true;
1186 }
1187
1188 return false;
1189}
1190
1191/// CheckMemberPointerConversion - Check the member pointer conversion from the
1192/// expression From to the type ToType. This routine checks for ambiguous or
1193/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1194/// for which IsMemberPointerConversion has already returned true. It returns
1195/// true and produces a diagnostic if there was an error, or returns false
1196/// otherwise.
1197bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1198 QualType FromType = From->getType();
Sebastian Redl21593ac2009-01-28 18:33:18 +00001199 const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1200 if (!FromPtrType)
1201 return false;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001202
Sebastian Redl21593ac2009-01-28 18:33:18 +00001203 const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1204 assert(ToPtrType && "No member pointer cast has a target type "
1205 "that is not a member pointer.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001206
Sebastian Redl21593ac2009-01-28 18:33:18 +00001207 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1208 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001209
Sebastian Redl21593ac2009-01-28 18:33:18 +00001210 // FIXME: What about dependent types?
1211 assert(FromClass->isRecordType() && "Pointer into non-class.");
1212 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001213
Sebastian Redl21593ac2009-01-28 18:33:18 +00001214 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1215 /*DetectVirtual=*/true);
1216 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1217 assert(DerivationOkay &&
1218 "Should not have been called if derivation isn't OK.");
1219 (void)DerivationOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001220
Sebastian Redl21593ac2009-01-28 18:33:18 +00001221 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1222 getUnqualifiedType())) {
1223 // Derivation is ambiguous. Redo the check to find the exact paths.
1224 Paths.clear();
1225 Paths.setRecordingPaths(true);
1226 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1227 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1228 (void)StillOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001229
Sebastian Redl21593ac2009-01-28 18:33:18 +00001230 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1231 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1232 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1233 return true;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001234 }
Sebastian Redl21593ac2009-01-28 18:33:18 +00001235
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001236 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
Sebastian Redl21593ac2009-01-28 18:33:18 +00001237 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1238 << FromClass << ToClass << QualType(VBase, 0)
1239 << From->getSourceRange();
1240 return true;
1241 }
1242
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001243 return false;
1244}
1245
Douglas Gregor98cd5992008-10-21 23:43:52 +00001246/// IsQualificationConversion - Determines whether the conversion from
1247/// an rvalue of type FromType to ToType is a qualification conversion
1248/// (C++ 4.4).
1249bool
1250Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1251{
1252 FromType = Context.getCanonicalType(FromType);
1253 ToType = Context.getCanonicalType(ToType);
1254
1255 // If FromType and ToType are the same type, this is not a
1256 // qualification conversion.
1257 if (FromType == ToType)
1258 return false;
Sebastian Redl21593ac2009-01-28 18:33:18 +00001259
Douglas Gregor98cd5992008-10-21 23:43:52 +00001260 // (C++ 4.4p4):
1261 // A conversion can add cv-qualifiers at levels other than the first
1262 // in multi-level pointers, subject to the following rules: [...]
1263 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001264 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +00001265 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +00001266 // Within each iteration of the loop, we check the qualifiers to
1267 // determine if this still looks like a qualification
1268 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001269 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +00001270 // until there are no more pointers or pointers-to-members left to
1271 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +00001272 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001273
1274 // -- for every j > 0, if const is in cv 1,j then const is in cv
1275 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +00001276 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +00001277 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001278
Douglas Gregor98cd5992008-10-21 23:43:52 +00001279 // -- if the cv 1,j and cv 2,j are different, then const is in
1280 // every cv for 0 < k < j.
1281 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +00001282 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +00001283 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001284
Douglas Gregor98cd5992008-10-21 23:43:52 +00001285 // Keep track of whether all prior cv-qualifiers in the "to" type
1286 // include const.
1287 PreviousToQualsIncludeConst
1288 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +00001289 }
Douglas Gregor98cd5992008-10-21 23:43:52 +00001290
1291 // We are left with FromType and ToType being the pointee types
1292 // after unwrapping the original FromType and ToType the same number
1293 // of types. If we unwrapped any pointers, and if FromType and
1294 // ToType have the same unqualified type (since we checked
1295 // qualifiers above), then this is a qualification conversion.
1296 return UnwrappedAnyPointer &&
1297 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1298}
1299
Douglas Gregor734d9862009-01-30 23:27:23 +00001300/// Determines whether there is a user-defined conversion sequence
1301/// (C++ [over.ics.user]) that converts expression From to the type
1302/// ToType. If such a conversion exists, User will contain the
1303/// user-defined conversion sequence that performs such a conversion
1304/// and this routine will return true. Otherwise, this routine returns
1305/// false and User is unspecified.
1306///
1307/// \param AllowConversionFunctions true if the conversion should
1308/// consider conversion functions at all. If false, only constructors
1309/// will be considered.
1310///
1311/// \param AllowExplicit true if the conversion should consider C++0x
1312/// "explicit" conversion functions as well as non-explicit conversion
1313/// functions (C++0x [class.conv.fct]p2).
Douglas Gregor60d62c22008-10-31 16:23:19 +00001314bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001315 UserDefinedConversionSequence& User,
Douglas Gregor734d9862009-01-30 23:27:23 +00001316 bool AllowConversionFunctions,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001317 bool AllowExplicit)
Douglas Gregor60d62c22008-10-31 16:23:19 +00001318{
1319 OverloadCandidateSet CandidateSet;
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001320 if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1321 if (CXXRecordDecl *ToRecordDecl
1322 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1323 // C++ [over.match.ctor]p1:
1324 // When objects of class type are direct-initialized (8.5), or
1325 // copy-initialized from an expression of the same or a
1326 // derived class type (8.5), overload resolution selects the
1327 // constructor. [...] For copy-initialization, the candidate
1328 // functions are all the converting constructors (12.3.1) of
1329 // that class. The argument list is the expression-list within
1330 // the parentheses of the initializer.
1331 DeclarationName ConstructorName
1332 = Context.DeclarationNames.getCXXConstructorName(
1333 Context.getCanonicalType(ToType).getUnqualifiedType());
1334 DeclContext::lookup_iterator Con, ConEnd;
1335 for (llvm::tie(Con, ConEnd) = ToRecordDecl->lookup(ConstructorName);
1336 Con != ConEnd; ++Con) {
1337 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1338 if (Constructor->isConvertingConstructor())
1339 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1340 /*SuppressUserConversions=*/true);
1341 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001342 }
1343 }
1344
Douglas Gregor734d9862009-01-30 23:27:23 +00001345 if (!AllowConversionFunctions) {
1346 // Don't allow any conversion functions to enter the overload set.
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001347 } else if (const RecordType *FromRecordType
1348 = From->getType()->getAsRecordType()) {
1349 if (CXXRecordDecl *FromRecordDecl
1350 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1351 // Add all of the conversion functions as candidates.
1352 // FIXME: Look for conversions in base classes!
1353 OverloadedFunctionDecl *Conversions
1354 = FromRecordDecl->getConversionFunctions();
1355 for (OverloadedFunctionDecl::function_iterator Func
1356 = Conversions->function_begin();
1357 Func != Conversions->function_end(); ++Func) {
1358 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1359 if (AllowExplicit || !Conv->isExplicit())
1360 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1361 }
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001362 }
1363 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001364
1365 OverloadCandidateSet::iterator Best;
1366 switch (BestViableFunction(CandidateSet, Best)) {
1367 case OR_Success:
1368 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001369 if (CXXConstructorDecl *Constructor
1370 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1371 // C++ [over.ics.user]p1:
1372 // If the user-defined conversion is specified by a
1373 // constructor (12.3.1), the initial standard conversion
1374 // sequence converts the source type to the type required by
1375 // the argument of the constructor.
1376 //
1377 // FIXME: What about ellipsis conversions?
1378 QualType ThisType = Constructor->getThisType(Context);
1379 User.Before = Best->Conversions[0].Standard;
1380 User.ConversionFunction = Constructor;
1381 User.After.setAsIdentityConversion();
1382 User.After.FromTypePtr
1383 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1384 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1385 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001386 } else if (CXXConversionDecl *Conversion
1387 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1388 // C++ [over.ics.user]p1:
1389 //
1390 // [...] If the user-defined conversion is specified by a
1391 // conversion function (12.3.2), the initial standard
1392 // conversion sequence converts the source type to the
1393 // implicit object parameter of the conversion function.
1394 User.Before = Best->Conversions[0].Standard;
1395 User.ConversionFunction = Conversion;
1396
1397 // C++ [over.ics.user]p2:
1398 // The second standard conversion sequence converts the
1399 // result of the user-defined conversion to the target type
1400 // for the sequence. Since an implicit conversion sequence
1401 // is an initialization, the special rules for
1402 // initialization by user-defined conversion apply when
1403 // selecting the best user-defined conversion for a
1404 // user-defined conversion sequence (see 13.3.3 and
1405 // 13.3.3.1).
1406 User.After = Best->FinalConversion;
1407 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001408 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001409 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001410 return false;
1411 }
1412
1413 case OR_No_Viable_Function:
Douglas Gregor48f3bb92009-02-18 21:56:37 +00001414 case OR_Deleted:
Douglas Gregor60d62c22008-10-31 16:23:19 +00001415 // No conversion here! We're done.
1416 return false;
1417
1418 case OR_Ambiguous:
1419 // FIXME: See C++ [over.best.ics]p10 for the handling of
1420 // ambiguous conversion sequences.
1421 return false;
1422 }
1423
1424 return false;
1425}
1426
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001427/// CompareImplicitConversionSequences - Compare two implicit
1428/// conversion sequences to determine whether one is better than the
1429/// other or if they are indistinguishable (C++ 13.3.3.2).
1430ImplicitConversionSequence::CompareKind
1431Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1432 const ImplicitConversionSequence& ICS2)
1433{
1434 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1435 // conversion sequences (as defined in 13.3.3.1)
1436 // -- a standard conversion sequence (13.3.3.1.1) is a better
1437 // conversion sequence than a user-defined conversion sequence or
1438 // an ellipsis conversion sequence, and
1439 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1440 // conversion sequence than an ellipsis conversion sequence
1441 // (13.3.3.1.3).
1442 //
1443 if (ICS1.ConversionKind < ICS2.ConversionKind)
1444 return ImplicitConversionSequence::Better;
1445 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1446 return ImplicitConversionSequence::Worse;
1447
1448 // Two implicit conversion sequences of the same form are
1449 // indistinguishable conversion sequences unless one of the
1450 // following rules apply: (C++ 13.3.3.2p3):
1451 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1452 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1453 else if (ICS1.ConversionKind ==
1454 ImplicitConversionSequence::UserDefinedConversion) {
1455 // User-defined conversion sequence U1 is a better conversion
1456 // sequence than another user-defined conversion sequence U2 if
1457 // they contain the same user-defined conversion function or
1458 // constructor and if the second standard conversion sequence of
1459 // U1 is better than the second standard conversion sequence of
1460 // U2 (C++ 13.3.3.2p3).
1461 if (ICS1.UserDefined.ConversionFunction ==
1462 ICS2.UserDefined.ConversionFunction)
1463 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1464 ICS2.UserDefined.After);
1465 }
1466
1467 return ImplicitConversionSequence::Indistinguishable;
1468}
1469
1470/// CompareStandardConversionSequences - Compare two standard
1471/// conversion sequences to determine whether one is better than the
1472/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1473ImplicitConversionSequence::CompareKind
1474Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1475 const StandardConversionSequence& SCS2)
1476{
1477 // Standard conversion sequence S1 is a better conversion sequence
1478 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1479
1480 // -- S1 is a proper subsequence of S2 (comparing the conversion
1481 // sequences in the canonical form defined by 13.3.3.1.1,
1482 // excluding any Lvalue Transformation; the identity conversion
1483 // sequence is considered to be a subsequence of any
1484 // non-identity conversion sequence) or, if not that,
1485 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1486 // Neither is a proper subsequence of the other. Do nothing.
1487 ;
1488 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1489 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1490 (SCS1.Second == ICK_Identity &&
1491 SCS1.Third == ICK_Identity))
1492 // SCS1 is a proper subsequence of SCS2.
1493 return ImplicitConversionSequence::Better;
1494 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1495 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1496 (SCS2.Second == ICK_Identity &&
1497 SCS2.Third == ICK_Identity))
1498 // SCS2 is a proper subsequence of SCS1.
1499 return ImplicitConversionSequence::Worse;
1500
1501 // -- the rank of S1 is better than the rank of S2 (by the rules
1502 // defined below), or, if not that,
1503 ImplicitConversionRank Rank1 = SCS1.getRank();
1504 ImplicitConversionRank Rank2 = SCS2.getRank();
1505 if (Rank1 < Rank2)
1506 return ImplicitConversionSequence::Better;
1507 else if (Rank2 < Rank1)
1508 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001509
Douglas Gregor57373262008-10-22 14:17:15 +00001510 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1511 // are indistinguishable unless one of the following rules
1512 // applies:
1513
1514 // A conversion that is not a conversion of a pointer, or
1515 // pointer to member, to bool is better than another conversion
1516 // that is such a conversion.
1517 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1518 return SCS2.isPointerConversionToBool()
1519 ? ImplicitConversionSequence::Better
1520 : ImplicitConversionSequence::Worse;
1521
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001522 // C++ [over.ics.rank]p4b2:
1523 //
1524 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001525 // conversion of B* to A* is better than conversion of B* to
1526 // void*, and conversion of A* to void* is better than conversion
1527 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001528 bool SCS1ConvertsToVoid
1529 = SCS1.isPointerConversionToVoidPointer(Context);
1530 bool SCS2ConvertsToVoid
1531 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001532 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1533 // Exactly one of the conversion sequences is a conversion to
1534 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001535 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1536 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001537 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1538 // Neither conversion sequence converts to a void pointer; compare
1539 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001540 if (ImplicitConversionSequence::CompareKind DerivedCK
1541 = CompareDerivedToBaseConversions(SCS1, SCS2))
1542 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001543 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1544 // Both conversion sequences are conversions to void
1545 // pointers. Compare the source types to determine if there's an
1546 // inheritance relationship in their sources.
1547 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1548 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1549
1550 // Adjust the types we're converting from via the array-to-pointer
1551 // conversion, if we need to.
1552 if (SCS1.First == ICK_Array_To_Pointer)
1553 FromType1 = Context.getArrayDecayedType(FromType1);
1554 if (SCS2.First == ICK_Array_To_Pointer)
1555 FromType2 = Context.getArrayDecayedType(FromType2);
1556
1557 QualType FromPointee1
1558 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1559 QualType FromPointee2
1560 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1561
1562 if (IsDerivedFrom(FromPointee2, FromPointee1))
1563 return ImplicitConversionSequence::Better;
1564 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1565 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001566
1567 // Objective-C++: If one interface is more specific than the
1568 // other, it is the better one.
1569 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1570 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1571 if (FromIface1 && FromIface1) {
1572 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1573 return ImplicitConversionSequence::Better;
1574 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1575 return ImplicitConversionSequence::Worse;
1576 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001577 }
Douglas Gregor57373262008-10-22 14:17:15 +00001578
1579 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1580 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001581 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001582 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001583 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001584
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001585 // C++ [over.ics.rank]p3b4:
1586 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1587 // which the references refer are the same type except for
1588 // top-level cv-qualifiers, and the type to which the reference
1589 // initialized by S2 refers is more cv-qualified than the type
1590 // to which the reference initialized by S1 refers.
1591 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1592 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1593 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1594 T1 = Context.getCanonicalType(T1);
1595 T2 = Context.getCanonicalType(T2);
1596 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1597 if (T2.isMoreQualifiedThan(T1))
1598 return ImplicitConversionSequence::Better;
1599 else if (T1.isMoreQualifiedThan(T2))
1600 return ImplicitConversionSequence::Worse;
1601 }
1602 }
Douglas Gregor57373262008-10-22 14:17:15 +00001603
1604 return ImplicitConversionSequence::Indistinguishable;
1605}
1606
1607/// CompareQualificationConversions - Compares two standard conversion
1608/// sequences to determine whether they can be ranked based on their
1609/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1610ImplicitConversionSequence::CompareKind
1611Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1612 const StandardConversionSequence& SCS2)
1613{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001614 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001615 // -- S1 and S2 differ only in their qualification conversion and
1616 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1617 // cv-qualification signature of type T1 is a proper subset of
1618 // the cv-qualification signature of type T2, and S1 is not the
1619 // deprecated string literal array-to-pointer conversion (4.2).
1620 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1621 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1622 return ImplicitConversionSequence::Indistinguishable;
1623
1624 // FIXME: the example in the standard doesn't use a qualification
1625 // conversion (!)
1626 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1627 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1628 T1 = Context.getCanonicalType(T1);
1629 T2 = Context.getCanonicalType(T2);
1630
1631 // If the types are the same, we won't learn anything by unwrapped
1632 // them.
1633 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1634 return ImplicitConversionSequence::Indistinguishable;
1635
1636 ImplicitConversionSequence::CompareKind Result
1637 = ImplicitConversionSequence::Indistinguishable;
1638 while (UnwrapSimilarPointerTypes(T1, T2)) {
1639 // Within each iteration of the loop, we check the qualifiers to
1640 // determine if this still looks like a qualification
1641 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001642 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001643 // until there are no more pointers or pointers-to-members left
1644 // to unwrap. This essentially mimics what
1645 // IsQualificationConversion does, but here we're checking for a
1646 // strict subset of qualifiers.
1647 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1648 // The qualifiers are the same, so this doesn't tell us anything
1649 // about how the sequences rank.
1650 ;
1651 else if (T2.isMoreQualifiedThan(T1)) {
1652 // T1 has fewer qualifiers, so it could be the better sequence.
1653 if (Result == ImplicitConversionSequence::Worse)
1654 // Neither has qualifiers that are a subset of the other's
1655 // qualifiers.
1656 return ImplicitConversionSequence::Indistinguishable;
1657
1658 Result = ImplicitConversionSequence::Better;
1659 } else if (T1.isMoreQualifiedThan(T2)) {
1660 // T2 has fewer qualifiers, so it could be the better sequence.
1661 if (Result == ImplicitConversionSequence::Better)
1662 // Neither has qualifiers that are a subset of the other's
1663 // qualifiers.
1664 return ImplicitConversionSequence::Indistinguishable;
1665
1666 Result = ImplicitConversionSequence::Worse;
1667 } else {
1668 // Qualifiers are disjoint.
1669 return ImplicitConversionSequence::Indistinguishable;
1670 }
1671
1672 // If the types after this point are equivalent, we're done.
1673 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1674 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001675 }
1676
Douglas Gregor57373262008-10-22 14:17:15 +00001677 // Check that the winning standard conversion sequence isn't using
1678 // the deprecated string literal array to pointer conversion.
1679 switch (Result) {
1680 case ImplicitConversionSequence::Better:
1681 if (SCS1.Deprecated)
1682 Result = ImplicitConversionSequence::Indistinguishable;
1683 break;
1684
1685 case ImplicitConversionSequence::Indistinguishable:
1686 break;
1687
1688 case ImplicitConversionSequence::Worse:
1689 if (SCS2.Deprecated)
1690 Result = ImplicitConversionSequence::Indistinguishable;
1691 break;
1692 }
1693
1694 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001695}
1696
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001697/// CompareDerivedToBaseConversions - Compares two standard conversion
1698/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001699/// various kinds of derived-to-base conversions (C++
1700/// [over.ics.rank]p4b3). As part of these checks, we also look at
1701/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001702ImplicitConversionSequence::CompareKind
1703Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1704 const StandardConversionSequence& SCS2) {
1705 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1706 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1707 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1708 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1709
1710 // Adjust the types we're converting from via the array-to-pointer
1711 // conversion, if we need to.
1712 if (SCS1.First == ICK_Array_To_Pointer)
1713 FromType1 = Context.getArrayDecayedType(FromType1);
1714 if (SCS2.First == ICK_Array_To_Pointer)
1715 FromType2 = Context.getArrayDecayedType(FromType2);
1716
1717 // Canonicalize all of the types.
1718 FromType1 = Context.getCanonicalType(FromType1);
1719 ToType1 = Context.getCanonicalType(ToType1);
1720 FromType2 = Context.getCanonicalType(FromType2);
1721 ToType2 = Context.getCanonicalType(ToType2);
1722
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001723 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001724 //
1725 // If class B is derived directly or indirectly from class A and
1726 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001727 //
1728 // For Objective-C, we let A, B, and C also be Objective-C
1729 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001730
1731 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001732 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001733 SCS2.Second == ICK_Pointer_Conversion &&
1734 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1735 FromType1->isPointerType() && FromType2->isPointerType() &&
1736 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001737 QualType FromPointee1
1738 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1739 QualType ToPointee1
1740 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1741 QualType FromPointee2
1742 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1743 QualType ToPointee2
1744 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001745
1746 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1747 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1748 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1749 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1750
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001751 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001752 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1753 if (IsDerivedFrom(ToPointee1, ToPointee2))
1754 return ImplicitConversionSequence::Better;
1755 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1756 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001757
1758 if (ToIface1 && ToIface2) {
1759 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1760 return ImplicitConversionSequence::Better;
1761 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1762 return ImplicitConversionSequence::Worse;
1763 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001764 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001765
1766 // -- conversion of B* to A* is better than conversion of C* to A*,
1767 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1768 if (IsDerivedFrom(FromPointee2, FromPointee1))
1769 return ImplicitConversionSequence::Better;
1770 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1771 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001772
1773 if (FromIface1 && FromIface2) {
1774 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1775 return ImplicitConversionSequence::Better;
1776 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1777 return ImplicitConversionSequence::Worse;
1778 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001779 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001780 }
1781
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001782 // Compare based on reference bindings.
1783 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1784 SCS1.Second == ICK_Derived_To_Base) {
1785 // -- binding of an expression of type C to a reference of type
1786 // B& is better than binding an expression of type C to a
1787 // reference of type A&,
1788 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1789 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1790 if (IsDerivedFrom(ToType1, ToType2))
1791 return ImplicitConversionSequence::Better;
1792 else if (IsDerivedFrom(ToType2, ToType1))
1793 return ImplicitConversionSequence::Worse;
1794 }
1795
Douglas Gregor225c41e2008-11-03 19:09:14 +00001796 // -- binding of an expression of type B to a reference of type
1797 // A& is better than binding an expression of type C to a
1798 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001799 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1800 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1801 if (IsDerivedFrom(FromType2, FromType1))
1802 return ImplicitConversionSequence::Better;
1803 else if (IsDerivedFrom(FromType1, FromType2))
1804 return ImplicitConversionSequence::Worse;
1805 }
1806 }
1807
1808
1809 // FIXME: conversion of A::* to B::* is better than conversion of
1810 // A::* to C::*,
1811
1812 // FIXME: conversion of B::* to C::* is better than conversion of
1813 // A::* to C::*, and
1814
Douglas Gregor225c41e2008-11-03 19:09:14 +00001815 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1816 SCS1.Second == ICK_Derived_To_Base) {
1817 // -- conversion of C to B is better than conversion of C to A,
1818 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1819 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1820 if (IsDerivedFrom(ToType1, ToType2))
1821 return ImplicitConversionSequence::Better;
1822 else if (IsDerivedFrom(ToType2, ToType1))
1823 return ImplicitConversionSequence::Worse;
1824 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001825
Douglas Gregor225c41e2008-11-03 19:09:14 +00001826 // -- conversion of B to A is better than conversion of C to A.
1827 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1828 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1829 if (IsDerivedFrom(FromType2, FromType1))
1830 return ImplicitConversionSequence::Better;
1831 else if (IsDerivedFrom(FromType1, FromType2))
1832 return ImplicitConversionSequence::Worse;
1833 }
1834 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001835
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001836 return ImplicitConversionSequence::Indistinguishable;
1837}
1838
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001839/// TryCopyInitialization - Try to copy-initialize a value of type
1840/// ToType from the expression From. Return the implicit conversion
1841/// sequence required to pass this argument, which may be a bad
1842/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001843/// a parameter of this type). If @p SuppressUserConversions, then we
1844/// do not permit any user-defined conversion sequences.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001845ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001846Sema::TryCopyInitialization(Expr *From, QualType ToType,
1847 bool SuppressUserConversions) {
Douglas Gregorf9201e02009-02-11 23:02:49 +00001848 if (ToType->isReferenceType()) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001849 ImplicitConversionSequence ICS;
Douglas Gregor225c41e2008-11-03 19:09:14 +00001850 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001851 return ICS;
1852 } else {
Douglas Gregor225c41e2008-11-03 19:09:14 +00001853 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001854 }
1855}
1856
1857/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1858/// type ToType. Returns true (and emits a diagnostic) if there was
1859/// an error, returns false if the initialization succeeded.
1860bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1861 const char* Flavor) {
1862 if (!getLangOptions().CPlusPlus) {
1863 // In C, argument passing is the same as performing an assignment.
1864 QualType FromType = From->getType();
1865 AssignConvertType ConvTy =
1866 CheckSingleAssignmentConstraints(ToType, From);
1867
1868 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1869 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001870 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001871
1872 if (ToType->isReferenceType())
1873 return CheckReferenceInit(From, ToType);
1874
Douglas Gregor45920e82008-12-19 17:40:08 +00001875 if (!PerformImplicitConversion(From, ToType, Flavor))
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001876 return false;
1877
1878 return Diag(From->getSourceRange().getBegin(),
1879 diag::err_typecheck_convert_incompatible)
1880 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001881}
1882
Douglas Gregor96176b32008-11-18 23:14:02 +00001883/// TryObjectArgumentInitialization - Try to initialize the object
1884/// parameter of the given member function (@c Method) from the
1885/// expression @p From.
1886ImplicitConversionSequence
1887Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1888 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1889 unsigned MethodQuals = Method->getTypeQualifiers();
1890 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1891
1892 // Set up the conversion sequence as a "bad" conversion, to allow us
1893 // to exit early.
1894 ImplicitConversionSequence ICS;
1895 ICS.Standard.setAsIdentityConversion();
1896 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1897
1898 // We need to have an object of class type.
1899 QualType FromType = From->getType();
1900 if (!FromType->isRecordType())
1901 return ICS;
1902
1903 // The implicit object parmeter is has the type "reference to cv X",
1904 // where X is the class of which the function is a member
1905 // (C++ [over.match.funcs]p4). However, when finding an implicit
1906 // conversion sequence for the argument, we are not allowed to
1907 // create temporaries or perform user-defined conversions
1908 // (C++ [over.match.funcs]p5). We perform a simplified version of
1909 // reference binding here, that allows class rvalues to bind to
1910 // non-constant references.
1911
1912 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1913 // with the implicit object parameter (C++ [over.match.funcs]p5).
1914 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1915 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1916 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1917 return ICS;
1918
1919 // Check that we have either the same type or a derived type. It
1920 // affects the conversion rank.
1921 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1922 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1923 ICS.Standard.Second = ICK_Identity;
1924 else if (IsDerivedFrom(FromType, ClassType))
1925 ICS.Standard.Second = ICK_Derived_To_Base;
1926 else
1927 return ICS;
1928
1929 // Success. Mark this as a reference binding.
1930 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1931 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1932 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1933 ICS.Standard.ReferenceBinding = true;
1934 ICS.Standard.DirectBinding = true;
1935 return ICS;
1936}
1937
1938/// PerformObjectArgumentInitialization - Perform initialization of
1939/// the implicit object parameter for the given Method with the given
1940/// expression.
1941bool
1942Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1943 QualType ImplicitParamType
1944 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1945 ImplicitConversionSequence ICS
1946 = TryObjectArgumentInitialization(From, Method);
1947 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1948 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001949 diag::err_implicit_object_parameter_init)
Chris Lattnerd1625842008-11-24 06:25:27 +00001950 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001951
1952 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1953 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1954 From->getSourceRange().getBegin(),
1955 From->getSourceRange()))
1956 return true;
1957
1958 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1959 return false;
1960}
1961
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001962/// TryContextuallyConvertToBool - Attempt to contextually convert the
1963/// expression From to bool (C++0x [conv]p3).
1964ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
1965 return TryImplicitConversion(From, Context.BoolTy, false, true);
1966}
1967
1968/// PerformContextuallyConvertToBool - Perform a contextual conversion
1969/// of the expression From to bool (C++0x [conv]p3).
1970bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
1971 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
1972 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
1973 return false;
1974
1975 return Diag(From->getSourceRange().getBegin(),
1976 diag::err_typecheck_bool_condition)
1977 << From->getType() << From->getSourceRange();
1978}
1979
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001980/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00001981/// candidate functions, using the given function call arguments. If
1982/// @p SuppressUserConversions, then don't allow user-defined
1983/// conversions via constructors or conversion operators.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001984void
1985Sema::AddOverloadCandidate(FunctionDecl *Function,
1986 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00001987 OverloadCandidateSet& CandidateSet,
1988 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001989{
Douglas Gregor72564e72009-02-26 23:50:07 +00001990 const FunctionProtoType* Proto
1991 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001992 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001993 assert(!isa<CXXConversionDecl>(Function) &&
1994 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001995
Douglas Gregor88a35142008-12-22 05:46:06 +00001996 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
1997 // If we get here, it's because we're calling a member function
1998 // that is named without a member access expression (e.g.,
1999 // "this->f") that was either written explicitly or created
2000 // implicitly. This can happen with a qualified call to a member
2001 // function, e.g., X::f(). We use a NULL object as the implied
2002 // object argument (C++ [over.call.func]p3).
2003 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2004 SuppressUserConversions);
2005 return;
2006 }
2007
2008
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002009 // Add this candidate
2010 CandidateSet.push_back(OverloadCandidate());
2011 OverloadCandidate& Candidate = CandidateSet.back();
2012 Candidate.Function = Function;
Douglas Gregor88a35142008-12-22 05:46:06 +00002013 Candidate.Viable = true;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002014 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002015 Candidate.IgnoreObjectArgument = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002016
2017 unsigned NumArgsInProto = Proto->getNumArgs();
2018
2019 // (C++ 13.3.2p2): A candidate function having fewer than m
2020 // parameters is viable only if it has an ellipsis in its parameter
2021 // list (8.3.5).
2022 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2023 Candidate.Viable = false;
2024 return;
2025 }
2026
2027 // (C++ 13.3.2p2): A candidate function having more than m parameters
2028 // is viable only if the (m+1)st parameter has a default argument
2029 // (8.3.6). For the purposes of overload resolution, the
2030 // parameter list is truncated on the right, so that there are
2031 // exactly m parameters.
2032 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2033 if (NumArgs < MinRequiredArgs) {
2034 // Not enough arguments.
2035 Candidate.Viable = false;
2036 return;
2037 }
2038
2039 // Determine the implicit conversion sequences for each of the
2040 // arguments.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002041 Candidate.Conversions.resize(NumArgs);
2042 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2043 if (ArgIdx < NumArgsInProto) {
2044 // (C++ 13.3.2p3): for F to be a viable function, there shall
2045 // exist for each argument an implicit conversion sequence
2046 // (13.3.3.1) that converts that argument to the corresponding
2047 // parameter of F.
2048 QualType ParamType = Proto->getArgType(ArgIdx);
2049 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00002050 = TryCopyInitialization(Args[ArgIdx], ParamType,
2051 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002052 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002053 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002054 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002055 break;
2056 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002057 } else {
2058 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2059 // argument for which there is no corresponding parameter is
2060 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2061 Candidate.Conversions[ArgIdx].ConversionKind
2062 = ImplicitConversionSequence::EllipsisConversion;
2063 }
2064 }
2065}
2066
Douglas Gregor96176b32008-11-18 23:14:02 +00002067/// AddMethodCandidate - Adds the given C++ member function to the set
2068/// of candidate functions, using the given function call arguments
2069/// and the object argument (@c Object). For example, in a call
2070/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2071/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2072/// allow user-defined conversions via constructors or conversion
2073/// operators.
2074void
2075Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2076 Expr **Args, unsigned NumArgs,
2077 OverloadCandidateSet& CandidateSet,
2078 bool SuppressUserConversions)
2079{
Douglas Gregor72564e72009-02-26 23:50:07 +00002080 const FunctionProtoType* Proto
2081 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
Douglas Gregor96176b32008-11-18 23:14:02 +00002082 assert(Proto && "Methods without a prototype cannot be overloaded");
2083 assert(!isa<CXXConversionDecl>(Method) &&
2084 "Use AddConversionCandidate for conversion functions");
2085
2086 // Add this candidate
2087 CandidateSet.push_back(OverloadCandidate());
2088 OverloadCandidate& Candidate = CandidateSet.back();
2089 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002090 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002091 Candidate.IgnoreObjectArgument = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002092
2093 unsigned NumArgsInProto = Proto->getNumArgs();
2094
2095 // (C++ 13.3.2p2): A candidate function having fewer than m
2096 // parameters is viable only if it has an ellipsis in its parameter
2097 // list (8.3.5).
2098 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2099 Candidate.Viable = false;
2100 return;
2101 }
2102
2103 // (C++ 13.3.2p2): A candidate function having more than m parameters
2104 // is viable only if the (m+1)st parameter has a default argument
2105 // (8.3.6). For the purposes of overload resolution, the
2106 // parameter list is truncated on the right, so that there are
2107 // exactly m parameters.
2108 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2109 if (NumArgs < MinRequiredArgs) {
2110 // Not enough arguments.
2111 Candidate.Viable = false;
2112 return;
2113 }
2114
2115 Candidate.Viable = true;
2116 Candidate.Conversions.resize(NumArgs + 1);
2117
Douglas Gregor88a35142008-12-22 05:46:06 +00002118 if (Method->isStatic() || !Object)
2119 // The implicit object argument is ignored.
2120 Candidate.IgnoreObjectArgument = true;
2121 else {
2122 // Determine the implicit conversion sequence for the object
2123 // parameter.
2124 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2125 if (Candidate.Conversions[0].ConversionKind
2126 == ImplicitConversionSequence::BadConversion) {
2127 Candidate.Viable = false;
2128 return;
2129 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002130 }
2131
2132 // Determine the implicit conversion sequences for each of the
2133 // arguments.
2134 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2135 if (ArgIdx < NumArgsInProto) {
2136 // (C++ 13.3.2p3): for F to be a viable function, there shall
2137 // exist for each argument an implicit conversion sequence
2138 // (13.3.3.1) that converts that argument to the corresponding
2139 // parameter of F.
2140 QualType ParamType = Proto->getArgType(ArgIdx);
2141 Candidate.Conversions[ArgIdx + 1]
2142 = TryCopyInitialization(Args[ArgIdx], ParamType,
2143 SuppressUserConversions);
2144 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2145 == ImplicitConversionSequence::BadConversion) {
2146 Candidate.Viable = false;
2147 break;
2148 }
2149 } else {
2150 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2151 // argument for which there is no corresponding parameter is
2152 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2153 Candidate.Conversions[ArgIdx + 1].ConversionKind
2154 = ImplicitConversionSequence::EllipsisConversion;
2155 }
2156 }
2157}
2158
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002159/// AddConversionCandidate - Add a C++ conversion function as a
2160/// candidate in the candidate set (C++ [over.match.conv],
2161/// C++ [over.match.copy]). From is the expression we're converting from,
2162/// and ToType is the type that we're eventually trying to convert to
2163/// (which may or may not be the same type as the type that the
2164/// conversion function produces).
2165void
2166Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2167 Expr *From, QualType ToType,
2168 OverloadCandidateSet& CandidateSet) {
2169 // Add this candidate
2170 CandidateSet.push_back(OverloadCandidate());
2171 OverloadCandidate& Candidate = CandidateSet.back();
2172 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002173 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002174 Candidate.IgnoreObjectArgument = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002175 Candidate.FinalConversion.setAsIdentityConversion();
2176 Candidate.FinalConversion.FromTypePtr
2177 = Conversion->getConversionType().getAsOpaquePtr();
2178 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2179
Douglas Gregor96176b32008-11-18 23:14:02 +00002180 // Determine the implicit conversion sequence for the implicit
2181 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002182 Candidate.Viable = true;
2183 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00002184 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002185
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002186 if (Candidate.Conversions[0].ConversionKind
2187 == ImplicitConversionSequence::BadConversion) {
2188 Candidate.Viable = false;
2189 return;
2190 }
2191
2192 // To determine what the conversion from the result of calling the
2193 // conversion function to the type we're eventually trying to
2194 // convert to (ToType), we need to synthesize a call to the
2195 // conversion function and attempt copy initialization from it. This
2196 // makes sure that we get the right semantics with respect to
2197 // lvalues/rvalues and the type. Fortunately, we can allocate this
2198 // call on the stack and we don't need its arguments to be
2199 // well-formed.
2200 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2201 SourceLocation());
2202 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002203 &ConversionRef, false);
Ted Kremenek668bf912009-02-09 20:51:47 +00002204
2205 // Note that it is safe to allocate CallExpr on the stack here because
2206 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2207 // allocator).
2208 CallExpr Call(Context, &ConversionFn, 0, 0,
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002209 Conversion->getConversionType().getNonReferenceType(),
2210 SourceLocation());
2211 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2212 switch (ICS.ConversionKind) {
2213 case ImplicitConversionSequence::StandardConversion:
2214 Candidate.FinalConversion = ICS.Standard;
2215 break;
2216
2217 case ImplicitConversionSequence::BadConversion:
2218 Candidate.Viable = false;
2219 break;
2220
2221 default:
2222 assert(false &&
2223 "Can only end up with a standard conversion sequence or failure");
2224 }
2225}
2226
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002227/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2228/// converts the given @c Object to a function pointer via the
2229/// conversion function @c Conversion, and then attempts to call it
2230/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2231/// the type of function that we'll eventually be calling.
2232void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
Douglas Gregor72564e72009-02-26 23:50:07 +00002233 const FunctionProtoType *Proto,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002234 Expr *Object, Expr **Args, unsigned NumArgs,
2235 OverloadCandidateSet& CandidateSet) {
2236 CandidateSet.push_back(OverloadCandidate());
2237 OverloadCandidate& Candidate = CandidateSet.back();
2238 Candidate.Function = 0;
2239 Candidate.Surrogate = Conversion;
2240 Candidate.Viable = true;
2241 Candidate.IsSurrogate = true;
Douglas Gregor88a35142008-12-22 05:46:06 +00002242 Candidate.IgnoreObjectArgument = false;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002243 Candidate.Conversions.resize(NumArgs + 1);
2244
2245 // Determine the implicit conversion sequence for the implicit
2246 // object parameter.
2247 ImplicitConversionSequence ObjectInit
2248 = TryObjectArgumentInitialization(Object, Conversion);
2249 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2250 Candidate.Viable = false;
2251 return;
2252 }
2253
2254 // The first conversion is actually a user-defined conversion whose
2255 // first conversion is ObjectInit's standard conversion (which is
2256 // effectively a reference binding). Record it as such.
2257 Candidate.Conversions[0].ConversionKind
2258 = ImplicitConversionSequence::UserDefinedConversion;
2259 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2260 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2261 Candidate.Conversions[0].UserDefined.After
2262 = Candidate.Conversions[0].UserDefined.Before;
2263 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2264
2265 // Find the
2266 unsigned NumArgsInProto = Proto->getNumArgs();
2267
2268 // (C++ 13.3.2p2): A candidate function having fewer than m
2269 // parameters is viable only if it has an ellipsis in its parameter
2270 // list (8.3.5).
2271 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2272 Candidate.Viable = false;
2273 return;
2274 }
2275
2276 // Function types don't have any default arguments, so just check if
2277 // we have enough arguments.
2278 if (NumArgs < NumArgsInProto) {
2279 // Not enough arguments.
2280 Candidate.Viable = false;
2281 return;
2282 }
2283
2284 // Determine the implicit conversion sequences for each of the
2285 // arguments.
2286 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2287 if (ArgIdx < NumArgsInProto) {
2288 // (C++ 13.3.2p3): for F to be a viable function, there shall
2289 // exist for each argument an implicit conversion sequence
2290 // (13.3.3.1) that converts that argument to the corresponding
2291 // parameter of F.
2292 QualType ParamType = Proto->getArgType(ArgIdx);
2293 Candidate.Conversions[ArgIdx + 1]
2294 = TryCopyInitialization(Args[ArgIdx], ParamType,
2295 /*SuppressUserConversions=*/false);
2296 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2297 == ImplicitConversionSequence::BadConversion) {
2298 Candidate.Viable = false;
2299 break;
2300 }
2301 } else {
2302 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2303 // argument for which there is no corresponding parameter is
2304 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2305 Candidate.Conversions[ArgIdx + 1].ConversionKind
2306 = ImplicitConversionSequence::EllipsisConversion;
2307 }
2308 }
2309}
2310
Douglas Gregor96176b32008-11-18 23:14:02 +00002311/// AddOperatorCandidates - Add the overloaded operator candidates for
2312/// the operator Op that was used in an operator expression such as "x
2313/// Op y". S is the scope in which the expression occurred (used for
2314/// name lookup of the operator), Args/NumArgs provides the operator
2315/// arguments, and CandidateSet will store the added overload
2316/// candidates. (C++ [over.match.oper]).
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002317bool Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2318 SourceLocation OpLoc,
Douglas Gregor96176b32008-11-18 23:14:02 +00002319 Expr **Args, unsigned NumArgs,
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002320 OverloadCandidateSet& CandidateSet,
2321 SourceRange OpRange) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002322 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2323
2324 // C++ [over.match.oper]p3:
2325 // For a unary operator @ with an operand of a type whose
2326 // cv-unqualified version is T1, and for a binary operator @ with
2327 // a left operand of a type whose cv-unqualified version is T1 and
2328 // a right operand of a type whose cv-unqualified version is T2,
2329 // three sets of candidate functions, designated member
2330 // candidates, non-member candidates and built-in candidates, are
2331 // constructed as follows:
2332 QualType T1 = Args[0]->getType();
2333 QualType T2;
2334 if (NumArgs > 1)
2335 T2 = Args[1]->getType();
2336
2337 // -- If T1 is a class type, the set of member candidates is the
2338 // result of the qualified lookup of T1::operator@
2339 // (13.3.1.1.1); otherwise, the set of member candidates is
2340 // empty.
2341 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002342 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00002343 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002344 Oper != OperEnd; ++Oper)
2345 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2346 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor96176b32008-11-18 23:14:02 +00002347 /*SuppressUserConversions=*/false);
Douglas Gregor96176b32008-11-18 23:14:02 +00002348 }
2349
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00002350 FunctionSet Functions;
2351
Douglas Gregor96176b32008-11-18 23:14:02 +00002352 // -- The set of non-member candidates is the result of the
2353 // unqualified lookup of operator@ in the context of the
2354 // expression according to the usual rules for name lookup in
2355 // unqualified function calls (3.4.2) except that all member
2356 // functions are ignored. However, if no operand has a class
2357 // type, only those non-member functions in the lookup set
2358 // that have a first parameter of type T1 or “reference to
2359 // (possibly cv-qualified) T1”, when T1 is an enumeration
2360 // type, or (if there is a right operand) a second parameter
2361 // of type T2 or “reference to (possibly cv-qualified) T2”,
2362 // when T2 is an enumeration type, are candidate functions.
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00002363 LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
Douglas Gregor96176b32008-11-18 23:14:02 +00002364
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002365 // Since the set of non-member candidates corresponds to
2366 // *unqualified* lookup of the operator name, we also perform
2367 // argument-dependent lookup (C++ [basic.lookup.argdep]).
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00002368 ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2369
2370 // Add all of the functions found via operator name lookup and
2371 // argument-dependent lookup to the candidate set.
2372 for (FunctionSet::iterator Func = Functions.begin(),
2373 FuncEnd = Functions.end();
2374 Func != FuncEnd; ++Func)
2375 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002376
Douglas Gregor96176b32008-11-18 23:14:02 +00002377 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor74253732008-11-19 15:42:04 +00002378 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002379
2380 return false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002381}
2382
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002383/// AddBuiltinCandidate - Add a candidate for a built-in
2384/// operator. ResultTy and ParamTys are the result and parameter types
2385/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002386/// arguments being passed to the candidate. IsAssignmentOperator
2387/// should be true when this built-in candidate is an assignment
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002388/// operator. NumContextualBoolArguments is the number of arguments
2389/// (at the beginning of the argument list) that will be contextually
2390/// converted to bool.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002391void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2392 Expr **Args, unsigned NumArgs,
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002393 OverloadCandidateSet& CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002394 bool IsAssignmentOperator,
2395 unsigned NumContextualBoolArguments) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002396 // Add this candidate
2397 CandidateSet.push_back(OverloadCandidate());
2398 OverloadCandidate& Candidate = CandidateSet.back();
2399 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002400 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002401 Candidate.IgnoreObjectArgument = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002402 Candidate.BuiltinTypes.ResultTy = ResultTy;
2403 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2404 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2405
2406 // Determine the implicit conversion sequences for each of the
2407 // arguments.
2408 Candidate.Viable = true;
2409 Candidate.Conversions.resize(NumArgs);
2410 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002411 // C++ [over.match.oper]p4:
2412 // For the built-in assignment operators, conversions of the
2413 // left operand are restricted as follows:
2414 // -- no temporaries are introduced to hold the left operand, and
2415 // -- no user-defined conversions are applied to the left
2416 // operand to achieve a type match with the left-most
2417 // parameter of a built-in candidate.
2418 //
2419 // We block these conversions by turning off user-defined
2420 // conversions, since that is the only way that initialization of
2421 // a reference to a non-class type can occur from something that
2422 // is not of the same type.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002423 if (ArgIdx < NumContextualBoolArguments) {
2424 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2425 "Contextual conversion to bool requires bool type");
2426 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2427 } else {
2428 Candidate.Conversions[ArgIdx]
2429 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2430 ArgIdx == 0 && IsAssignmentOperator);
2431 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002432 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002433 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002434 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002435 break;
2436 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002437 }
2438}
2439
2440/// BuiltinCandidateTypeSet - A set of types that will be used for the
2441/// candidate operator functions for built-in operators (C++
2442/// [over.built]). The types are separated into pointer types and
2443/// enumeration types.
2444class BuiltinCandidateTypeSet {
2445 /// TypeSet - A set of types.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002446 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002447
2448 /// PointerTypes - The set of pointer types that will be used in the
2449 /// built-in candidates.
2450 TypeSet PointerTypes;
2451
2452 /// EnumerationTypes - The set of enumeration types that will be
2453 /// used in the built-in candidates.
2454 TypeSet EnumerationTypes;
2455
2456 /// Context - The AST context in which we will build the type sets.
2457 ASTContext &Context;
2458
2459 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2460
2461public:
2462 /// iterator - Iterates through the types that are part of the set.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002463 class iterator {
2464 TypeSet::iterator Base;
2465
2466 public:
2467 typedef QualType value_type;
2468 typedef QualType reference;
2469 typedef QualType pointer;
2470 typedef std::ptrdiff_t difference_type;
2471 typedef std::input_iterator_tag iterator_category;
2472
2473 iterator(TypeSet::iterator B) : Base(B) { }
2474
2475 iterator& operator++() {
2476 ++Base;
2477 return *this;
2478 }
2479
2480 iterator operator++(int) {
2481 iterator tmp(*this);
2482 ++(*this);
2483 return tmp;
2484 }
2485
2486 reference operator*() const {
2487 return QualType::getFromOpaquePtr(*Base);
2488 }
2489
2490 pointer operator->() const {
2491 return **this;
2492 }
2493
2494 friend bool operator==(iterator LHS, iterator RHS) {
2495 return LHS.Base == RHS.Base;
2496 }
2497
2498 friend bool operator!=(iterator LHS, iterator RHS) {
2499 return LHS.Base != RHS.Base;
2500 }
2501 };
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002502
2503 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2504
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002505 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2506 bool AllowExplicitConversions);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002507
2508 /// pointer_begin - First pointer type found;
2509 iterator pointer_begin() { return PointerTypes.begin(); }
2510
2511 /// pointer_end - Last pointer type found;
2512 iterator pointer_end() { return PointerTypes.end(); }
2513
2514 /// enumeration_begin - First enumeration type found;
2515 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2516
2517 /// enumeration_end - Last enumeration type found;
2518 iterator enumeration_end() { return EnumerationTypes.end(); }
2519};
2520
2521/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2522/// the set of pointer types along with any more-qualified variants of
2523/// that type. For example, if @p Ty is "int const *", this routine
2524/// will add "int const *", "int const volatile *", "int const
2525/// restrict *", and "int const volatile restrict *" to the set of
2526/// pointer types. Returns true if the add of @p Ty itself succeeded,
2527/// false otherwise.
2528bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2529 // Insert this type.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002530 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002531 return false;
2532
2533 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2534 QualType PointeeTy = PointerTy->getPointeeType();
2535 // FIXME: Optimize this so that we don't keep trying to add the same types.
2536
2537 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2538 // with all pointer conversions that don't cast away constness?
2539 if (!PointeeTy.isConstQualified())
2540 AddWithMoreQualifiedTypeVariants
2541 (Context.getPointerType(PointeeTy.withConst()));
2542 if (!PointeeTy.isVolatileQualified())
2543 AddWithMoreQualifiedTypeVariants
2544 (Context.getPointerType(PointeeTy.withVolatile()));
2545 if (!PointeeTy.isRestrictQualified())
2546 AddWithMoreQualifiedTypeVariants
2547 (Context.getPointerType(PointeeTy.withRestrict()));
2548 }
2549
2550 return true;
2551}
2552
2553/// AddTypesConvertedFrom - Add each of the types to which the type @p
2554/// Ty can be implicit converted to the given set of @p Types. We're
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002555/// primarily interested in pointer types and enumeration types.
2556/// AllowUserConversions is true if we should look at the conversion
2557/// functions of a class type, and AllowExplicitConversions if we
2558/// should also include the explicit conversion functions of a class
2559/// type.
2560void
2561BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2562 bool AllowUserConversions,
2563 bool AllowExplicitConversions) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002564 // Only deal with canonical types.
2565 Ty = Context.getCanonicalType(Ty);
2566
2567 // Look through reference types; they aren't part of the type of an
2568 // expression for the purposes of conversions.
2569 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2570 Ty = RefTy->getPointeeType();
2571
2572 // We don't care about qualifiers on the type.
2573 Ty = Ty.getUnqualifiedType();
2574
2575 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2576 QualType PointeeTy = PointerTy->getPointeeType();
2577
2578 // Insert our type, and its more-qualified variants, into the set
2579 // of types.
2580 if (!AddWithMoreQualifiedTypeVariants(Ty))
2581 return;
2582
2583 // Add 'cv void*' to our set of types.
2584 if (!Ty->isVoidType()) {
2585 QualType QualVoid
2586 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2587 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2588 }
2589
2590 // If this is a pointer to a class type, add pointers to its bases
2591 // (with the same level of cv-qualification as the original
2592 // derived class, of course).
2593 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2594 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2595 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2596 Base != ClassDecl->bases_end(); ++Base) {
2597 QualType BaseTy = Context.getCanonicalType(Base->getType());
2598 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2599
2600 // Add the pointer type, recursively, so that we get all of
2601 // the indirect base classes, too.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002602 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002603 }
2604 }
2605 } else if (Ty->isEnumeralType()) {
Douglas Gregorbf3af052008-11-13 20:12:29 +00002606 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002607 } else if (AllowUserConversions) {
2608 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2609 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2610 // FIXME: Visit conversion functions in the base classes, too.
2611 OverloadedFunctionDecl *Conversions
2612 = ClassDecl->getConversionFunctions();
2613 for (OverloadedFunctionDecl::function_iterator Func
2614 = Conversions->function_begin();
2615 Func != Conversions->function_end(); ++Func) {
2616 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002617 if (AllowExplicitConversions || !Conv->isExplicit())
2618 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002619 }
2620 }
2621 }
2622}
2623
Douglas Gregor74253732008-11-19 15:42:04 +00002624/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2625/// operator overloads to the candidate set (C++ [over.built]), based
2626/// on the operator @p Op and the arguments given. For example, if the
2627/// operator is a binary '+', this routine might add "int
2628/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002629void
Douglas Gregor74253732008-11-19 15:42:04 +00002630Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2631 Expr **Args, unsigned NumArgs,
2632 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002633 // The set of "promoted arithmetic types", which are the arithmetic
2634 // types are that preserved by promotion (C++ [over.built]p2). Note
2635 // that the first few of these types are the promoted integral
2636 // types; these types need to be first.
2637 // FIXME: What about complex?
2638 const unsigned FirstIntegralType = 0;
2639 const unsigned LastIntegralType = 13;
2640 const unsigned FirstPromotedIntegralType = 7,
2641 LastPromotedIntegralType = 13;
2642 const unsigned FirstPromotedArithmeticType = 7,
2643 LastPromotedArithmeticType = 16;
2644 const unsigned NumArithmeticTypes = 16;
2645 QualType ArithmeticTypes[NumArithmeticTypes] = {
2646 Context.BoolTy, Context.CharTy, Context.WCharTy,
2647 Context.SignedCharTy, Context.ShortTy,
2648 Context.UnsignedCharTy, Context.UnsignedShortTy,
2649 Context.IntTy, Context.LongTy, Context.LongLongTy,
2650 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2651 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2652 };
2653
2654 // Find all of the types that the arguments can convert to, but only
2655 // if the operator we're looking at has built-in operator candidates
2656 // that make use of these types.
2657 BuiltinCandidateTypeSet CandidateTypes(Context);
2658 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2659 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002660 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002661 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002662 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2663 (Op == OO_Star && NumArgs == 1)) {
2664 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002665 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2666 true,
2667 (Op == OO_Exclaim ||
2668 Op == OO_AmpAmp ||
2669 Op == OO_PipePipe));
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002670 }
2671
2672 bool isComparison = false;
2673 switch (Op) {
2674 case OO_None:
2675 case NUM_OVERLOADED_OPERATORS:
2676 assert(false && "Expected an overloaded operator");
2677 break;
2678
Douglas Gregor74253732008-11-19 15:42:04 +00002679 case OO_Star: // '*' is either unary or binary
2680 if (NumArgs == 1)
2681 goto UnaryStar;
2682 else
2683 goto BinaryStar;
2684 break;
2685
2686 case OO_Plus: // '+' is either unary or binary
2687 if (NumArgs == 1)
2688 goto UnaryPlus;
2689 else
2690 goto BinaryPlus;
2691 break;
2692
2693 case OO_Minus: // '-' is either unary or binary
2694 if (NumArgs == 1)
2695 goto UnaryMinus;
2696 else
2697 goto BinaryMinus;
2698 break;
2699
2700 case OO_Amp: // '&' is either unary or binary
2701 if (NumArgs == 1)
2702 goto UnaryAmp;
2703 else
2704 goto BinaryAmp;
2705
2706 case OO_PlusPlus:
2707 case OO_MinusMinus:
2708 // C++ [over.built]p3:
2709 //
2710 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2711 // is either volatile or empty, there exist candidate operator
2712 // functions of the form
2713 //
2714 // VQ T& operator++(VQ T&);
2715 // T operator++(VQ T&, int);
2716 //
2717 // C++ [over.built]p4:
2718 //
2719 // For every pair (T, VQ), where T is an arithmetic type other
2720 // than bool, and VQ is either volatile or empty, there exist
2721 // candidate operator functions of the form
2722 //
2723 // VQ T& operator--(VQ T&);
2724 // T operator--(VQ T&, int);
2725 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2726 Arith < NumArithmeticTypes; ++Arith) {
2727 QualType ArithTy = ArithmeticTypes[Arith];
2728 QualType ParamTypes[2]
2729 = { Context.getReferenceType(ArithTy), Context.IntTy };
2730
2731 // Non-volatile version.
2732 if (NumArgs == 1)
2733 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2734 else
2735 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2736
2737 // Volatile version
2738 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2739 if (NumArgs == 1)
2740 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2741 else
2742 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2743 }
2744
2745 // C++ [over.built]p5:
2746 //
2747 // For every pair (T, VQ), where T is a cv-qualified or
2748 // cv-unqualified object type, and VQ is either volatile or
2749 // empty, there exist candidate operator functions of the form
2750 //
2751 // T*VQ& operator++(T*VQ&);
2752 // T*VQ& operator--(T*VQ&);
2753 // T* operator++(T*VQ&, int);
2754 // T* operator--(T*VQ&, int);
2755 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2756 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2757 // Skip pointer types that aren't pointers to object types.
Douglas Gregorcb7de522008-11-26 23:31:11 +00002758 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002759 continue;
2760
2761 QualType ParamTypes[2] = {
2762 Context.getReferenceType(*Ptr), Context.IntTy
2763 };
2764
2765 // Without volatile
2766 if (NumArgs == 1)
2767 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2768 else
2769 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2770
2771 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2772 // With volatile
2773 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2774 if (NumArgs == 1)
2775 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2776 else
2777 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2778 }
2779 }
2780 break;
2781
2782 UnaryStar:
2783 // C++ [over.built]p6:
2784 // For every cv-qualified or cv-unqualified object type T, there
2785 // exist candidate operator functions of the form
2786 //
2787 // T& operator*(T*);
2788 //
2789 // C++ [over.built]p7:
2790 // For every function type T, there exist candidate operator
2791 // functions of the form
2792 // T& operator*(T*);
2793 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2794 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2795 QualType ParamTy = *Ptr;
2796 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2797 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2798 &ParamTy, Args, 1, CandidateSet);
2799 }
2800 break;
2801
2802 UnaryPlus:
2803 // C++ [over.built]p8:
2804 // For every type T, there exist candidate operator functions of
2805 // the form
2806 //
2807 // T* operator+(T*);
2808 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2809 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2810 QualType ParamTy = *Ptr;
2811 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2812 }
2813
2814 // Fall through
2815
2816 UnaryMinus:
2817 // C++ [over.built]p9:
2818 // For every promoted arithmetic type T, there exist candidate
2819 // operator functions of the form
2820 //
2821 // T operator+(T);
2822 // T operator-(T);
2823 for (unsigned Arith = FirstPromotedArithmeticType;
2824 Arith < LastPromotedArithmeticType; ++Arith) {
2825 QualType ArithTy = ArithmeticTypes[Arith];
2826 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2827 }
2828 break;
2829
2830 case OO_Tilde:
2831 // C++ [over.built]p10:
2832 // For every promoted integral type T, there exist candidate
2833 // operator functions of the form
2834 //
2835 // T operator~(T);
2836 for (unsigned Int = FirstPromotedIntegralType;
2837 Int < LastPromotedIntegralType; ++Int) {
2838 QualType IntTy = ArithmeticTypes[Int];
2839 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2840 }
2841 break;
2842
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002843 case OO_New:
2844 case OO_Delete:
2845 case OO_Array_New:
2846 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002847 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002848 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002849 break;
2850
2851 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002852 UnaryAmp:
2853 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002854 // C++ [over.match.oper]p3:
2855 // -- For the operator ',', the unary operator '&', or the
2856 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002857 break;
2858
2859 case OO_Less:
2860 case OO_Greater:
2861 case OO_LessEqual:
2862 case OO_GreaterEqual:
2863 case OO_EqualEqual:
2864 case OO_ExclaimEqual:
2865 // C++ [over.built]p15:
2866 //
2867 // For every pointer or enumeration type T, there exist
2868 // candidate operator functions of the form
2869 //
2870 // bool operator<(T, T);
2871 // bool operator>(T, T);
2872 // bool operator<=(T, T);
2873 // bool operator>=(T, T);
2874 // bool operator==(T, T);
2875 // bool operator!=(T, T);
2876 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2877 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2878 QualType ParamTypes[2] = { *Ptr, *Ptr };
2879 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2880 }
2881 for (BuiltinCandidateTypeSet::iterator Enum
2882 = CandidateTypes.enumeration_begin();
2883 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2884 QualType ParamTypes[2] = { *Enum, *Enum };
2885 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2886 }
2887
2888 // Fall through.
2889 isComparison = true;
2890
Douglas Gregor74253732008-11-19 15:42:04 +00002891 BinaryPlus:
2892 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002893 if (!isComparison) {
2894 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2895
2896 // C++ [over.built]p13:
2897 //
2898 // For every cv-qualified or cv-unqualified object type T
2899 // there exist candidate operator functions of the form
2900 //
2901 // T* operator+(T*, ptrdiff_t);
2902 // T& operator[](T*, ptrdiff_t); [BELOW]
2903 // T* operator-(T*, ptrdiff_t);
2904 // T* operator+(ptrdiff_t, T*);
2905 // T& operator[](ptrdiff_t, T*); [BELOW]
2906 //
2907 // C++ [over.built]p14:
2908 //
2909 // For every T, where T is a pointer to object type, there
2910 // exist candidate operator functions of the form
2911 //
2912 // ptrdiff_t operator-(T, T);
2913 for (BuiltinCandidateTypeSet::iterator Ptr
2914 = CandidateTypes.pointer_begin();
2915 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2916 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2917
2918 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2919 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2920
2921 if (Op == OO_Plus) {
2922 // T* operator+(ptrdiff_t, T*);
2923 ParamTypes[0] = ParamTypes[1];
2924 ParamTypes[1] = *Ptr;
2925 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2926 } else {
2927 // ptrdiff_t operator-(T, T);
2928 ParamTypes[1] = *Ptr;
2929 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2930 Args, 2, CandidateSet);
2931 }
2932 }
2933 }
2934 // Fall through
2935
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002936 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002937 BinaryStar:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002938 // C++ [over.built]p12:
2939 //
2940 // For every pair of promoted arithmetic types L and R, there
2941 // exist candidate operator functions of the form
2942 //
2943 // LR operator*(L, R);
2944 // LR operator/(L, R);
2945 // LR operator+(L, R);
2946 // LR operator-(L, R);
2947 // bool operator<(L, R);
2948 // bool operator>(L, R);
2949 // bool operator<=(L, R);
2950 // bool operator>=(L, R);
2951 // bool operator==(L, R);
2952 // bool operator!=(L, R);
2953 //
2954 // where LR is the result of the usual arithmetic conversions
2955 // between types L and R.
2956 for (unsigned Left = FirstPromotedArithmeticType;
2957 Left < LastPromotedArithmeticType; ++Left) {
2958 for (unsigned Right = FirstPromotedArithmeticType;
2959 Right < LastPromotedArithmeticType; ++Right) {
2960 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2961 QualType Result
2962 = isComparison? Context.BoolTy
2963 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2964 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2965 }
2966 }
2967 break;
2968
2969 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00002970 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002971 case OO_Caret:
2972 case OO_Pipe:
2973 case OO_LessLess:
2974 case OO_GreaterGreater:
2975 // C++ [over.built]p17:
2976 //
2977 // For every pair of promoted integral types L and R, there
2978 // exist candidate operator functions of the form
2979 //
2980 // LR operator%(L, R);
2981 // LR operator&(L, R);
2982 // LR operator^(L, R);
2983 // LR operator|(L, R);
2984 // L operator<<(L, R);
2985 // L operator>>(L, R);
2986 //
2987 // where LR is the result of the usual arithmetic conversions
2988 // between types L and R.
2989 for (unsigned Left = FirstPromotedIntegralType;
2990 Left < LastPromotedIntegralType; ++Left) {
2991 for (unsigned Right = FirstPromotedIntegralType;
2992 Right < LastPromotedIntegralType; ++Right) {
2993 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2994 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2995 ? LandR[0]
2996 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2997 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2998 }
2999 }
3000 break;
3001
3002 case OO_Equal:
3003 // C++ [over.built]p20:
3004 //
3005 // For every pair (T, VQ), where T is an enumeration or
3006 // (FIXME:) pointer to member type and VQ is either volatile or
3007 // empty, there exist candidate operator functions of the form
3008 //
3009 // VQ T& operator=(VQ T&, T);
3010 for (BuiltinCandidateTypeSet::iterator Enum
3011 = CandidateTypes.enumeration_begin();
3012 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3013 QualType ParamTypes[2];
3014
3015 // T& operator=(T&, T)
3016 ParamTypes[0] = Context.getReferenceType(*Enum);
3017 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003018 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003019 /*IsAssignmentOperator=*/false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003020
Douglas Gregor74253732008-11-19 15:42:04 +00003021 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3022 // volatile T& operator=(volatile T&, T)
3023 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
3024 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003025 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003026 /*IsAssignmentOperator=*/false);
Douglas Gregor74253732008-11-19 15:42:04 +00003027 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003028 }
3029 // Fall through.
3030
3031 case OO_PlusEqual:
3032 case OO_MinusEqual:
3033 // C++ [over.built]p19:
3034 //
3035 // For every pair (T, VQ), where T is any type and VQ is either
3036 // volatile or empty, there exist candidate operator functions
3037 // of the form
3038 //
3039 // T*VQ& operator=(T*VQ&, T*);
3040 //
3041 // C++ [over.built]p21:
3042 //
3043 // For every pair (T, VQ), where T is a cv-qualified or
3044 // cv-unqualified object type and VQ is either volatile or
3045 // empty, there exist candidate operator functions of the form
3046 //
3047 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3048 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3049 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3050 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3051 QualType ParamTypes[2];
3052 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3053
3054 // non-volatile version
3055 ParamTypes[0] = Context.getReferenceType(*Ptr);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003056 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3057 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003058
Douglas Gregor74253732008-11-19 15:42:04 +00003059 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3060 // volatile version
3061 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003062 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3063 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor74253732008-11-19 15:42:04 +00003064 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003065 }
3066 // Fall through.
3067
3068 case OO_StarEqual:
3069 case OO_SlashEqual:
3070 // C++ [over.built]p18:
3071 //
3072 // For every triple (L, VQ, R), where L is an arithmetic type,
3073 // VQ is either volatile or empty, and R is a promoted
3074 // arithmetic type, there exist candidate operator functions of
3075 // the form
3076 //
3077 // VQ L& operator=(VQ L&, R);
3078 // VQ L& operator*=(VQ L&, R);
3079 // VQ L& operator/=(VQ L&, R);
3080 // VQ L& operator+=(VQ L&, R);
3081 // VQ L& operator-=(VQ L&, R);
3082 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3083 for (unsigned Right = FirstPromotedArithmeticType;
3084 Right < LastPromotedArithmeticType; ++Right) {
3085 QualType ParamTypes[2];
3086 ParamTypes[1] = ArithmeticTypes[Right];
3087
3088 // Add this built-in operator as a candidate (VQ is empty).
3089 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003090 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3091 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003092
3093 // Add this built-in operator as a candidate (VQ is 'volatile').
3094 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3095 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003096 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3097 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003098 }
3099 }
3100 break;
3101
3102 case OO_PercentEqual:
3103 case OO_LessLessEqual:
3104 case OO_GreaterGreaterEqual:
3105 case OO_AmpEqual:
3106 case OO_CaretEqual:
3107 case OO_PipeEqual:
3108 // C++ [over.built]p22:
3109 //
3110 // For every triple (L, VQ, R), where L is an integral type, VQ
3111 // is either volatile or empty, and R is a promoted integral
3112 // type, there exist candidate operator functions of the form
3113 //
3114 // VQ L& operator%=(VQ L&, R);
3115 // VQ L& operator<<=(VQ L&, R);
3116 // VQ L& operator>>=(VQ L&, R);
3117 // VQ L& operator&=(VQ L&, R);
3118 // VQ L& operator^=(VQ L&, R);
3119 // VQ L& operator|=(VQ L&, R);
3120 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3121 for (unsigned Right = FirstPromotedIntegralType;
3122 Right < LastPromotedIntegralType; ++Right) {
3123 QualType ParamTypes[2];
3124 ParamTypes[1] = ArithmeticTypes[Right];
3125
3126 // Add this built-in operator as a candidate (VQ is empty).
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003127 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
3128 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3129
3130 // Add this built-in operator as a candidate (VQ is 'volatile').
3131 ParamTypes[0] = ArithmeticTypes[Left];
3132 ParamTypes[0].addVolatile();
3133 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
3134 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3135 }
3136 }
3137 break;
3138
Douglas Gregor74253732008-11-19 15:42:04 +00003139 case OO_Exclaim: {
3140 // C++ [over.operator]p23:
3141 //
3142 // There also exist candidate operator functions of the form
3143 //
3144 // bool operator!(bool);
3145 // bool operator&&(bool, bool); [BELOW]
3146 // bool operator||(bool, bool); [BELOW]
3147 QualType ParamTy = Context.BoolTy;
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003148 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3149 /*IsAssignmentOperator=*/false,
3150 /*NumContextualBoolArguments=*/1);
Douglas Gregor74253732008-11-19 15:42:04 +00003151 break;
3152 }
3153
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003154 case OO_AmpAmp:
3155 case OO_PipePipe: {
3156 // C++ [over.operator]p23:
3157 //
3158 // There also exist candidate operator functions of the form
3159 //
Douglas Gregor74253732008-11-19 15:42:04 +00003160 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003161 // bool operator&&(bool, bool);
3162 // bool operator||(bool, bool);
3163 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003164 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3165 /*IsAssignmentOperator=*/false,
3166 /*NumContextualBoolArguments=*/2);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003167 break;
3168 }
3169
3170 case OO_Subscript:
3171 // C++ [over.built]p13:
3172 //
3173 // For every cv-qualified or cv-unqualified object type T there
3174 // exist candidate operator functions of the form
3175 //
3176 // T* operator+(T*, ptrdiff_t); [ABOVE]
3177 // T& operator[](T*, ptrdiff_t);
3178 // T* operator-(T*, ptrdiff_t); [ABOVE]
3179 // T* operator+(ptrdiff_t, T*); [ABOVE]
3180 // T& operator[](ptrdiff_t, T*);
3181 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3182 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3183 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3184 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3185 QualType ResultTy = Context.getReferenceType(PointeeType);
3186
3187 // T& operator[](T*, ptrdiff_t)
3188 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3189
3190 // T& operator[](ptrdiff_t, T*);
3191 ParamTypes[0] = ParamTypes[1];
3192 ParamTypes[1] = *Ptr;
3193 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3194 }
3195 break;
3196
3197 case OO_ArrowStar:
3198 // FIXME: No support for pointer-to-members yet.
3199 break;
3200 }
3201}
3202
Douglas Gregorfa047642009-02-04 00:32:51 +00003203/// \brief Add function candidates found via argument-dependent lookup
3204/// to the set of overloading candidates.
3205///
3206/// This routine performs argument-dependent name lookup based on the
3207/// given function name (which may also be an operator name) and adds
3208/// all of the overload candidates found by ADL to the overload
3209/// candidate set (C++ [basic.lookup.argdep]).
3210void
3211Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3212 Expr **Args, unsigned NumArgs,
3213 OverloadCandidateSet& CandidateSet) {
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003214 FunctionSet Functions;
Douglas Gregorfa047642009-02-04 00:32:51 +00003215
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003216 // Record all of the function candidates that we've already
3217 // added to the overload set, so that we don't add those same
3218 // candidates a second time.
3219 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3220 CandEnd = CandidateSet.end();
3221 Cand != CandEnd; ++Cand)
3222 if (Cand->Function)
3223 Functions.insert(Cand->Function);
Douglas Gregorfa047642009-02-04 00:32:51 +00003224
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003225 ArgumentDependentLookup(Name, Args, NumArgs, Functions);
Douglas Gregorfa047642009-02-04 00:32:51 +00003226
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003227 // Erase all of the candidates we already knew about.
3228 // FIXME: This is suboptimal. Is there a better way?
3229 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3230 CandEnd = CandidateSet.end();
3231 Cand != CandEnd; ++Cand)
3232 if (Cand->Function)
3233 Functions.erase(Cand->Function);
3234
3235 // For each of the ADL candidates we found, add it to the overload
3236 // set.
3237 for (FunctionSet::iterator Func = Functions.begin(),
3238 FuncEnd = Functions.end();
3239 Func != FuncEnd; ++Func)
3240 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
Douglas Gregorfa047642009-02-04 00:32:51 +00003241}
3242
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003243/// isBetterOverloadCandidate - Determines whether the first overload
3244/// candidate is a better candidate than the second (C++ 13.3.3p1).
3245bool
3246Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3247 const OverloadCandidate& Cand2)
3248{
3249 // Define viable functions to be better candidates than non-viable
3250 // functions.
3251 if (!Cand2.Viable)
3252 return Cand1.Viable;
3253 else if (!Cand1.Viable)
3254 return false;
3255
Douglas Gregor88a35142008-12-22 05:46:06 +00003256 // C++ [over.match.best]p1:
3257 //
3258 // -- if F is a static member function, ICS1(F) is defined such
3259 // that ICS1(F) is neither better nor worse than ICS1(G) for
3260 // any function G, and, symmetrically, ICS1(G) is neither
3261 // better nor worse than ICS1(F).
3262 unsigned StartArg = 0;
3263 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3264 StartArg = 1;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003265
3266 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3267 // function than another viable function F2 if for all arguments i,
3268 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3269 // then...
3270 unsigned NumArgs = Cand1.Conversions.size();
3271 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3272 bool HasBetterConversion = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00003273 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003274 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3275 Cand2.Conversions[ArgIdx])) {
3276 case ImplicitConversionSequence::Better:
3277 // Cand1 has a better conversion sequence.
3278 HasBetterConversion = true;
3279 break;
3280
3281 case ImplicitConversionSequence::Worse:
3282 // Cand1 can't be better than Cand2.
3283 return false;
3284
3285 case ImplicitConversionSequence::Indistinguishable:
3286 // Do nothing.
3287 break;
3288 }
3289 }
3290
3291 if (HasBetterConversion)
3292 return true;
3293
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003294 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3295 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003296
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003297 // C++ [over.match.best]p1b4:
3298 //
3299 // -- the context is an initialization by user-defined conversion
3300 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3301 // from the return type of F1 to the destination type (i.e.,
3302 // the type of the entity being initialized) is a better
3303 // conversion sequence than the standard conversion sequence
3304 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00003305 if (Cand1.Function && Cand2.Function &&
3306 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003307 isa<CXXConversionDecl>(Cand2.Function)) {
3308 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3309 Cand2.FinalConversion)) {
3310 case ImplicitConversionSequence::Better:
3311 // Cand1 has a better conversion sequence.
3312 return true;
3313
3314 case ImplicitConversionSequence::Worse:
3315 // Cand1 can't be better than Cand2.
3316 return false;
3317
3318 case ImplicitConversionSequence::Indistinguishable:
3319 // Do nothing
3320 break;
3321 }
3322 }
3323
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003324 return false;
3325}
3326
3327/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3328/// within an overload candidate set. If overloading is successful,
3329/// the result will be OR_Success and Best will be set to point to the
3330/// best viable function within the candidate set. Otherwise, one of
3331/// several kinds of errors will be returned; see
3332/// Sema::OverloadingResult.
3333Sema::OverloadingResult
3334Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3335 OverloadCandidateSet::iterator& Best)
3336{
3337 // Find the best viable function.
3338 Best = CandidateSet.end();
3339 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3340 Cand != CandidateSet.end(); ++Cand) {
3341 if (Cand->Viable) {
3342 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3343 Best = Cand;
3344 }
3345 }
3346
3347 // If we didn't find any viable functions, abort.
3348 if (Best == CandidateSet.end())
3349 return OR_No_Viable_Function;
3350
3351 // Make sure that this function is better than every other viable
3352 // function. If not, we have an ambiguity.
3353 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3354 Cand != CandidateSet.end(); ++Cand) {
3355 if (Cand->Viable &&
3356 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003357 !isBetterOverloadCandidate(*Best, *Cand)) {
3358 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003359 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003360 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003361 }
3362
3363 // Best is the best viable function.
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003364 if (Best->Function &&
3365 (Best->Function->isDeleted() ||
3366 Best->Function->getAttr<UnavailableAttr>()))
3367 return OR_Deleted;
3368
3369 // If Best refers to a function that is either deleted (C++0x) or
3370 // unavailable (Clang extension) report an error.
3371
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003372 return OR_Success;
3373}
3374
3375/// PrintOverloadCandidates - When overload resolution fails, prints
3376/// diagnostic messages containing the candidates in the candidate
3377/// set. If OnlyViable is true, only viable candidates will be printed.
3378void
3379Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3380 bool OnlyViable)
3381{
3382 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3383 LastCand = CandidateSet.end();
3384 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003385 if (Cand->Viable || !OnlyViable) {
3386 if (Cand->Function) {
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003387 if (Cand->Function->isDeleted() ||
3388 Cand->Function->getAttr<UnavailableAttr>()) {
3389 // Deleted or "unavailable" function.
3390 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3391 << Cand->Function->isDeleted();
3392 } else {
3393 // Normal function
3394 // FIXME: Give a better reason!
3395 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3396 }
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003397 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003398 // Desugar the type of the surrogate down to a function type,
3399 // retaining as many typedefs as possible while still showing
3400 // the function type (and, therefore, its parameter types).
3401 QualType FnType = Cand->Surrogate->getConversionType();
3402 bool isReference = false;
3403 bool isPointer = false;
3404 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
3405 FnType = FnTypeRef->getPointeeType();
3406 isReference = true;
3407 }
3408 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3409 FnType = FnTypePtr->getPointeeType();
3410 isPointer = true;
3411 }
3412 // Desugar down to a function type.
3413 FnType = QualType(FnType->getAsFunctionType(), 0);
3414 // Reconstruct the pointer/reference as appropriate.
3415 if (isPointer) FnType = Context.getPointerType(FnType);
3416 if (isReference) FnType = Context.getReferenceType(FnType);
3417
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003418 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00003419 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003420 } else {
3421 // FIXME: We need to get the identifier in here
3422 // FIXME: Do we want the error message to point at the
3423 // operator? (built-ins won't have a location)
3424 QualType FnType
3425 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3426 Cand->BuiltinTypes.ParamTypes,
3427 Cand->Conversions.size(),
3428 false, 0);
3429
Chris Lattnerd1625842008-11-24 06:25:27 +00003430 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003431 }
3432 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003433 }
3434}
3435
Douglas Gregor904eed32008-11-10 20:40:00 +00003436/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3437/// an overloaded function (C++ [over.over]), where @p From is an
3438/// expression with overloaded function type and @p ToType is the type
3439/// we're trying to resolve to. For example:
3440///
3441/// @code
3442/// int f(double);
3443/// int f(int);
3444///
3445/// int (*pfd)(double) = f; // selects f(double)
3446/// @endcode
3447///
3448/// This routine returns the resulting FunctionDecl if it could be
3449/// resolved, and NULL otherwise. When @p Complain is true, this
3450/// routine will emit diagnostics if there is an error.
3451FunctionDecl *
Sebastian Redl33b399a2009-02-04 21:23:32 +00003452Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor904eed32008-11-10 20:40:00 +00003453 bool Complain) {
3454 QualType FunctionType = ToType;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003455 bool IsMember = false;
Daniel Dunbarbb710012009-02-26 19:13:44 +00003456 if (const PointerType *ToTypePtr = ToType->getAsPointerType())
Douglas Gregor904eed32008-11-10 20:40:00 +00003457 FunctionType = ToTypePtr->getPointeeType();
Daniel Dunbarbb710012009-02-26 19:13:44 +00003458 else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3459 FunctionType = ToTypeRef->getPointeeType();
Sebastian Redl33b399a2009-02-04 21:23:32 +00003460 else if (const MemberPointerType *MemTypePtr =
3461 ToType->getAsMemberPointerType()) {
3462 FunctionType = MemTypePtr->getPointeeType();
3463 IsMember = true;
3464 }
Douglas Gregor904eed32008-11-10 20:40:00 +00003465
3466 // We only look at pointers or references to functions.
3467 if (!FunctionType->isFunctionType())
3468 return 0;
3469
3470 // Find the actual overloaded function declaration.
3471 OverloadedFunctionDecl *Ovl = 0;
3472
3473 // C++ [over.over]p1:
3474 // [...] [Note: any redundant set of parentheses surrounding the
3475 // overloaded function name is ignored (5.1). ]
3476 Expr *OvlExpr = From->IgnoreParens();
3477
3478 // C++ [over.over]p1:
3479 // [...] The overloaded function name can be preceded by the &
3480 // operator.
3481 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3482 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3483 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3484 }
3485
3486 // Try to dig out the overloaded function.
3487 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3488 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3489
3490 // If there's no overloaded function declaration, we're done.
3491 if (!Ovl)
3492 return 0;
3493
3494 // Look through all of the overloaded functions, searching for one
3495 // whose type matches exactly.
3496 // FIXME: When templates or using declarations come along, we'll actually
3497 // have to deal with duplicates, partial ordering, etc. For now, we
3498 // can just do a simple search.
3499 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3500 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3501 Fun != Ovl->function_end(); ++Fun) {
3502 // C++ [over.over]p3:
3503 // Non-member functions and static member functions match
Sebastian Redl0defd762009-02-05 12:33:33 +00003504 // targets of type "pointer-to-function" or "reference-to-function."
3505 // Nonstatic member functions match targets of
Sebastian Redl33b399a2009-02-04 21:23:32 +00003506 // type "pointer-to-member-function."
3507 // Note that according to DR 247, the containing class does not matter.
3508 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3509 // Skip non-static functions when converting to pointer, and static
3510 // when converting to member pointer.
3511 if (Method->isStatic() == IsMember)
Douglas Gregor904eed32008-11-10 20:40:00 +00003512 continue;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003513 } else if (IsMember)
3514 continue;
Douglas Gregor904eed32008-11-10 20:40:00 +00003515
3516 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3517 return *Fun;
3518 }
3519
3520 return 0;
3521}
3522
Douglas Gregorf6b89692008-11-26 05:54:23 +00003523/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregorfa047642009-02-04 00:32:51 +00003524/// (which eventually refers to the declaration Func) and the call
3525/// arguments Args/NumArgs, attempt to resolve the function call down
3526/// to a specific function. If overload resolution succeeds, returns
3527/// the function declaration produced by overload
Douglas Gregor0a396682008-11-26 06:01:48 +00003528/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003529/// arguments and Fn, and returns NULL.
Douglas Gregorfa047642009-02-04 00:32:51 +00003530FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor17330012009-02-04 15:01:18 +00003531 DeclarationName UnqualifiedName,
Douglas Gregor0a396682008-11-26 06:01:48 +00003532 SourceLocation LParenLoc,
3533 Expr **Args, unsigned NumArgs,
3534 SourceLocation *CommaLocs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003535 SourceLocation RParenLoc,
Douglas Gregor17330012009-02-04 15:01:18 +00003536 bool &ArgumentDependentLookup) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003537 OverloadCandidateSet CandidateSet;
Douglas Gregor17330012009-02-04 15:01:18 +00003538
3539 // Add the functions denoted by Callee to the set of candidate
3540 // functions. While we're doing so, track whether argument-dependent
3541 // lookup still applies, per:
3542 //
3543 // C++0x [basic.lookup.argdep]p3:
3544 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3545 // and let Y be the lookup set produced by argument dependent
3546 // lookup (defined as follows). If X contains
3547 //
3548 // -- a declaration of a class member, or
3549 //
3550 // -- a block-scope function declaration that is not a
3551 // using-declaration, or
3552 //
3553 // -- a declaration that is neither a function or a function
3554 // template
3555 //
3556 // then Y is empty.
Douglas Gregorfa047642009-02-04 00:32:51 +00003557 if (OverloadedFunctionDecl *Ovl
Douglas Gregor17330012009-02-04 15:01:18 +00003558 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3559 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3560 FuncEnd = Ovl->function_end();
3561 Func != FuncEnd; ++Func) {
3562 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3563
3564 if ((*Func)->getDeclContext()->isRecord() ||
3565 (*Func)->getDeclContext()->isFunctionOrMethod())
3566 ArgumentDependentLookup = false;
3567 }
3568 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3569 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3570
3571 if (Func->getDeclContext()->isRecord() ||
3572 Func->getDeclContext()->isFunctionOrMethod())
3573 ArgumentDependentLookup = false;
3574 }
3575
3576 if (Callee)
3577 UnqualifiedName = Callee->getDeclName();
3578
Douglas Gregorfa047642009-02-04 00:32:51 +00003579 if (ArgumentDependentLookup)
Douglas Gregor17330012009-02-04 15:01:18 +00003580 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003581 CandidateSet);
3582
Douglas Gregorf6b89692008-11-26 05:54:23 +00003583 OverloadCandidateSet::iterator Best;
3584 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003585 case OR_Success:
3586 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003587
3588 case OR_No_Viable_Function:
Chris Lattner4330d652009-02-17 07:29:20 +00003589 Diag(Fn->getSourceRange().getBegin(),
Douglas Gregorf6b89692008-11-26 05:54:23 +00003590 diag::err_ovl_no_viable_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003591 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003592 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3593 break;
3594
3595 case OR_Ambiguous:
3596 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor17330012009-02-04 15:01:18 +00003597 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003598 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3599 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003600
3601 case OR_Deleted:
3602 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3603 << Best->Function->isDeleted()
3604 << UnqualifiedName
3605 << Fn->getSourceRange();
3606 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3607 break;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003608 }
3609
3610 // Overload resolution failed. Destroy all of the subexpressions and
3611 // return NULL.
3612 Fn->Destroy(Context);
3613 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3614 Args[Arg]->Destroy(Context);
3615 return 0;
3616}
3617
Douglas Gregor88a35142008-12-22 05:46:06 +00003618/// BuildCallToMemberFunction - Build a call to a member
3619/// function. MemExpr is the expression that refers to the member
3620/// function (and includes the object parameter), Args/NumArgs are the
3621/// arguments to the function call (not including the object
3622/// parameter). The caller needs to validate that the member
3623/// expression refers to a member function or an overloaded member
3624/// function.
3625Sema::ExprResult
3626Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
3627 SourceLocation LParenLoc, Expr **Args,
3628 unsigned NumArgs, SourceLocation *CommaLocs,
3629 SourceLocation RParenLoc) {
3630 // Dig out the member expression. This holds both the object
3631 // argument and the member function we're referring to.
3632 MemberExpr *MemExpr = 0;
3633 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
3634 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
3635 else
3636 MemExpr = dyn_cast<MemberExpr>(MemExprE);
3637 assert(MemExpr && "Building member call without member expression");
3638
3639 // Extract the object argument.
3640 Expr *ObjectArg = MemExpr->getBase();
3641 if (MemExpr->isArrow())
Ted Kremenek8189cde2009-02-07 01:47:29 +00003642 ObjectArg = new (Context) UnaryOperator(ObjectArg, UnaryOperator::Deref,
3643 ObjectArg->getType()->getAsPointerType()->getPointeeType(),
Douglas Gregor611a8c42009-02-19 00:52:42 +00003644 ObjectArg->getLocStart());
Douglas Gregor88a35142008-12-22 05:46:06 +00003645 CXXMethodDecl *Method = 0;
3646 if (OverloadedFunctionDecl *Ovl
3647 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
3648 // Add overload candidates
3649 OverloadCandidateSet CandidateSet;
3650 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3651 FuncEnd = Ovl->function_end();
3652 Func != FuncEnd; ++Func) {
3653 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
3654 Method = cast<CXXMethodDecl>(*Func);
3655 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
3656 /*SuppressUserConversions=*/false);
3657 }
3658
3659 OverloadCandidateSet::iterator Best;
3660 switch (BestViableFunction(CandidateSet, Best)) {
3661 case OR_Success:
3662 Method = cast<CXXMethodDecl>(Best->Function);
3663 break;
3664
3665 case OR_No_Viable_Function:
3666 Diag(MemExpr->getSourceRange().getBegin(),
3667 diag::err_ovl_no_viable_member_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003668 << Ovl->getDeclName() << MemExprE->getSourceRange();
Douglas Gregor88a35142008-12-22 05:46:06 +00003669 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3670 // FIXME: Leaking incoming expressions!
3671 return true;
3672
3673 case OR_Ambiguous:
3674 Diag(MemExpr->getSourceRange().getBegin(),
3675 diag::err_ovl_ambiguous_member_call)
3676 << Ovl->getDeclName() << MemExprE->getSourceRange();
3677 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3678 // FIXME: Leaking incoming expressions!
3679 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003680
3681 case OR_Deleted:
3682 Diag(MemExpr->getSourceRange().getBegin(),
3683 diag::err_ovl_deleted_member_call)
3684 << Best->Function->isDeleted()
3685 << Ovl->getDeclName() << MemExprE->getSourceRange();
3686 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3687 // FIXME: Leaking incoming expressions!
3688 return true;
Douglas Gregor88a35142008-12-22 05:46:06 +00003689 }
3690
3691 FixOverloadedFunctionReference(MemExpr, Method);
3692 } else {
3693 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
3694 }
3695
3696 assert(Method && "Member call to something that isn't a method?");
Ted Kremenek8189cde2009-02-07 01:47:29 +00003697 ExprOwningPtr<CXXMemberCallExpr>
Ted Kremenek668bf912009-02-09 20:51:47 +00003698 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
3699 NumArgs,
Douglas Gregor88a35142008-12-22 05:46:06 +00003700 Method->getResultType().getNonReferenceType(),
3701 RParenLoc));
3702
3703 // Convert the object argument (for a non-static member function call).
3704 if (!Method->isStatic() &&
3705 PerformObjectArgumentInitialization(ObjectArg, Method))
3706 return true;
3707 MemExpr->setBase(ObjectArg);
3708
3709 // Convert the rest of the arguments
Douglas Gregor72564e72009-02-26 23:50:07 +00003710 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00003711 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
3712 RParenLoc))
3713 return true;
3714
Sebastian Redl0eb23302009-01-19 00:08:26 +00003715 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor88a35142008-12-22 05:46:06 +00003716}
3717
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003718/// BuildCallToObjectOfClassType - Build a call to an object of class
3719/// type (C++ [over.call.object]), which can end up invoking an
3720/// overloaded function call operator (@c operator()) or performing a
3721/// user-defined conversion on the object argument.
Douglas Gregor88a35142008-12-22 05:46:06 +00003722Sema::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00003723Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3724 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003725 Expr **Args, unsigned NumArgs,
3726 SourceLocation *CommaLocs,
3727 SourceLocation RParenLoc) {
3728 assert(Object->getType()->isRecordType() && "Requires object type argument");
3729 const RecordType *Record = Object->getType()->getAsRecordType();
3730
3731 // C++ [over.call.object]p1:
3732 // If the primary-expression E in the function call syntax
3733 // evaluates to a class object of type “cv T”, then the set of
3734 // candidate functions includes at least the function call
3735 // operators of T. The function call operators of T are obtained by
3736 // ordinary lookup of the name operator() in the context of
3737 // (E).operator().
3738 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00003739 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003740 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00003741 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003742 Oper != OperEnd; ++Oper)
3743 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
3744 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003745
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003746 // C++ [over.call.object]p2:
3747 // In addition, for each conversion function declared in T of the
3748 // form
3749 //
3750 // operator conversion-type-id () cv-qualifier;
3751 //
3752 // where cv-qualifier is the same cv-qualification as, or a
3753 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00003754 // denotes the type "pointer to function of (P1,...,Pn) returning
3755 // R", or the type "reference to pointer to function of
3756 // (P1,...,Pn) returning R", or the type "reference to function
3757 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003758 // is also considered as a candidate function. Similarly,
3759 // surrogate call functions are added to the set of candidate
3760 // functions for each conversion function declared in an
3761 // accessible base class provided the function is not hidden
3762 // within T by another intervening declaration.
3763 //
3764 // FIXME: Look in base classes for more conversion operators!
3765 OverloadedFunctionDecl *Conversions
3766 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00003767 for (OverloadedFunctionDecl::function_iterator
3768 Func = Conversions->function_begin(),
3769 FuncEnd = Conversions->function_end();
3770 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003771 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3772
3773 // Strip the reference type (if any) and then the pointer type (if
3774 // any) to get down to what might be a function type.
3775 QualType ConvType = Conv->getConversionType().getNonReferenceType();
3776 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3777 ConvType = ConvPtrType->getPointeeType();
3778
Douglas Gregor72564e72009-02-26 23:50:07 +00003779 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003780 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3781 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003782
3783 // Perform overload resolution.
3784 OverloadCandidateSet::iterator Best;
3785 switch (BestViableFunction(CandidateSet, Best)) {
3786 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003787 // Overload resolution succeeded; we'll build the appropriate call
3788 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003789 break;
3790
3791 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00003792 Diag(Object->getSourceRange().getBegin(),
3793 diag::err_ovl_no_viable_object_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003794 << Object->getType() << Object->getSourceRange();
Sebastian Redle4c452c2008-11-22 13:44:36 +00003795 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003796 break;
3797
3798 case OR_Ambiguous:
3799 Diag(Object->getSourceRange().getBegin(),
3800 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003801 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003802 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3803 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003804
3805 case OR_Deleted:
3806 Diag(Object->getSourceRange().getBegin(),
3807 diag::err_ovl_deleted_object_call)
3808 << Best->Function->isDeleted()
3809 << Object->getType() << Object->getSourceRange();
3810 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3811 break;
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003812 }
3813
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003814 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003815 // We had an error; delete all of the subexpressions and return
3816 // the error.
Ted Kremenek8189cde2009-02-07 01:47:29 +00003817 Object->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003818 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Ted Kremenek8189cde2009-02-07 01:47:29 +00003819 Args[ArgIdx]->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003820 return true;
3821 }
3822
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003823 if (Best->Function == 0) {
3824 // Since there is no function declaration, this is one of the
3825 // surrogate candidates. Dig out the conversion function.
3826 CXXConversionDecl *Conv
3827 = cast<CXXConversionDecl>(
3828 Best->Conversions[0].UserDefined.ConversionFunction);
3829
3830 // We selected one of the surrogate functions that converts the
3831 // object parameter to a function pointer. Perform the conversion
3832 // on the object argument, then let ActOnCallExpr finish the job.
3833 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl0eb23302009-01-19 00:08:26 +00003834 ImpCastExprToType(Object,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003835 Conv->getConversionType().getNonReferenceType(),
3836 Conv->getConversionType()->isReferenceType());
Sebastian Redl0eb23302009-01-19 00:08:26 +00003837 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
3838 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
3839 CommaLocs, RParenLoc).release();
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003840 }
3841
3842 // We found an overloaded operator(). Build a CXXOperatorCallExpr
3843 // that calls this method, using Object for the implicit object
3844 // parameter and passing along the remaining arguments.
3845 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor72564e72009-02-26 23:50:07 +00003846 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003847
3848 unsigned NumArgsInProto = Proto->getNumArgs();
3849 unsigned NumArgsToCheck = NumArgs;
3850
3851 // Build the full argument list for the method call (the
3852 // implicit object parameter is placed at the beginning of the
3853 // list).
3854 Expr **MethodArgs;
3855 if (NumArgs < NumArgsInProto) {
3856 NumArgsToCheck = NumArgsInProto;
3857 MethodArgs = new Expr*[NumArgsInProto + 1];
3858 } else {
3859 MethodArgs = new Expr*[NumArgs + 1];
3860 }
3861 MethodArgs[0] = Object;
3862 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3863 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3864
Ted Kremenek8189cde2009-02-07 01:47:29 +00003865 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
3866 SourceLocation());
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003867 UsualUnaryConversions(NewFn);
3868
3869 // Once we've built TheCall, all of the expressions are properly
3870 // owned.
3871 QualType ResultTy = Method->getResultType().getNonReferenceType();
Ted Kremenek8189cde2009-02-07 01:47:29 +00003872 ExprOwningPtr<CXXOperatorCallExpr>
Ted Kremenek668bf912009-02-09 20:51:47 +00003873 TheCall(this, new (Context) CXXOperatorCallExpr(Context, NewFn, MethodArgs,
Ted Kremenek8189cde2009-02-07 01:47:29 +00003874 NumArgs + 1,
3875 ResultTy, RParenLoc));
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003876 delete [] MethodArgs;
3877
Douglas Gregor518fda12009-01-13 05:10:00 +00003878 // We may have default arguments. If so, we need to allocate more
3879 // slots in the call for them.
3880 if (NumArgs < NumArgsInProto)
Ted Kremenek8189cde2009-02-07 01:47:29 +00003881 TheCall->setNumArgs(Context, NumArgsInProto + 1);
Douglas Gregor518fda12009-01-13 05:10:00 +00003882 else if (NumArgs > NumArgsInProto)
3883 NumArgsToCheck = NumArgsInProto;
3884
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003885 // Initialize the implicit object parameter.
Douglas Gregor518fda12009-01-13 05:10:00 +00003886 if (PerformObjectArgumentInitialization(Object, Method))
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003887 return true;
3888 TheCall->setArg(0, Object);
3889
3890 // Check the argument types.
3891 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003892 Expr *Arg;
Douglas Gregor518fda12009-01-13 05:10:00 +00003893 if (i < NumArgs) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003894 Arg = Args[i];
Douglas Gregor518fda12009-01-13 05:10:00 +00003895
3896 // Pass the argument.
3897 QualType ProtoArgType = Proto->getArgType(i);
3898 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3899 return true;
3900 } else {
Ted Kremenek8189cde2009-02-07 01:47:29 +00003901 Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
Douglas Gregor518fda12009-01-13 05:10:00 +00003902 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003903
3904 TheCall->setArg(i + 1, Arg);
3905 }
3906
3907 // If this is a variadic call, handle args passed through "...".
3908 if (Proto->isVariadic()) {
3909 // Promote the arguments (C99 6.5.2.2p7).
3910 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3911 Expr *Arg = Args[i];
Anders Carlsson906fed02009-01-13 05:48:52 +00003912
Anders Carlssondce5e2c2009-01-16 16:48:51 +00003913 DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003914 TheCall->setArg(i + 1, Arg);
3915 }
3916 }
3917
Sebastian Redl0eb23302009-01-19 00:08:26 +00003918 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003919}
3920
Douglas Gregor8ba10742008-11-20 16:27:02 +00003921/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3922/// (if one exists), where @c Base is an expression of class type and
3923/// @c Member is the name of the member we're trying to find.
3924Action::ExprResult
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003925Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Douglas Gregor8ba10742008-11-20 16:27:02 +00003926 SourceLocation MemberLoc,
3927 IdentifierInfo &Member) {
3928 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3929
3930 // C++ [over.ref]p1:
3931 //
3932 // [...] An expression x->m is interpreted as (x.operator->())->m
3933 // for a class object x of type T if T::operator->() exists and if
3934 // the operator is selected as the best match function by the
3935 // overload resolution mechanism (13.3).
3936 // FIXME: look in base classes.
3937 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3938 OverloadCandidateSet CandidateSet;
3939 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003940
3941 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00003942 for (llvm::tie(Oper, OperEnd) = BaseRecord->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003943 Oper != OperEnd; ++Oper)
3944 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor8ba10742008-11-20 16:27:02 +00003945 /*SuppressUserConversions=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003946
Ted Kremenek8189cde2009-02-07 01:47:29 +00003947 ExprOwningPtr<Expr> BasePtr(this, Base);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003948
Douglas Gregor8ba10742008-11-20 16:27:02 +00003949 // Perform overload resolution.
3950 OverloadCandidateSet::iterator Best;
3951 switch (BestViableFunction(CandidateSet, Best)) {
3952 case OR_Success:
3953 // Overload resolution succeeded; we'll build the call below.
3954 break;
3955
3956 case OR_No_Viable_Function:
3957 if (CandidateSet.empty())
3958 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00003959 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003960 else
3961 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Chris Lattner4330d652009-02-17 07:29:20 +00003962 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003963 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003964 return true;
3965
3966 case OR_Ambiguous:
3967 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00003968 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003969 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003970 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003971
3972 case OR_Deleted:
3973 Diag(OpLoc, diag::err_ovl_deleted_oper)
3974 << Best->Function->isDeleted()
3975 << "operator->" << BasePtr->getSourceRange();
3976 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3977 return true;
Douglas Gregor8ba10742008-11-20 16:27:02 +00003978 }
3979
3980 // Convert the object parameter.
3981 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003982 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00003983 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003984
3985 // No concerns about early exits now.
3986 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003987
3988 // Build the operator call.
Ted Kremenek8189cde2009-02-07 01:47:29 +00003989 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
3990 SourceLocation());
Douglas Gregor8ba10742008-11-20 16:27:02 +00003991 UsualUnaryConversions(FnExpr);
Ted Kremenek668bf912009-02-09 20:51:47 +00003992 Base = new (Context) CXXOperatorCallExpr(Context, FnExpr, &Base, 1,
Douglas Gregor8ba10742008-11-20 16:27:02 +00003993 Method->getResultType().getNonReferenceType(),
3994 OpLoc);
Sebastian Redl0eb23302009-01-19 00:08:26 +00003995 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
3996 MemberLoc, Member).release();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003997}
3998
Douglas Gregor904eed32008-11-10 20:40:00 +00003999/// FixOverloadedFunctionReference - E is an expression that refers to
4000/// a C++ overloaded function (possibly with some parentheses and
4001/// perhaps a '&' around it). We have resolved the overloaded function
4002/// to the function declaration Fn, so patch up the expression E to
4003/// refer (possibly indirectly) to Fn.
4004void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4005 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4006 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4007 E->setType(PE->getSubExpr()->getType());
4008 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4009 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4010 "Can only take the address of an overloaded function");
Douglas Gregorb86b0572009-02-11 01:18:59 +00004011 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4012 if (Method->isStatic()) {
4013 // Do nothing: static member functions aren't any different
4014 // from non-member functions.
4015 }
4016 else if (QualifiedDeclRefExpr *DRE
4017 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4018 // We have taken the address of a pointer to member
4019 // function. Perform the computation here so that we get the
4020 // appropriate pointer to member type.
4021 DRE->setDecl(Fn);
4022 DRE->setType(Fn->getType());
4023 QualType ClassType
4024 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4025 E->setType(Context.getMemberPointerType(Fn->getType(),
4026 ClassType.getTypePtr()));
4027 return;
4028 }
4029 }
Douglas Gregor904eed32008-11-10 20:40:00 +00004030 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
Douglas Gregora35284b2009-02-11 00:19:33 +00004031 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
Douglas Gregor904eed32008-11-10 20:40:00 +00004032 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4033 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
4034 "Expected overloaded function");
4035 DR->setDecl(Fn);
4036 E->setType(Fn->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00004037 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4038 MemExpr->setMemberDecl(Fn);
4039 E->setType(Fn->getType());
Douglas Gregor904eed32008-11-10 20:40:00 +00004040 } else {
4041 assert(false && "Invalid reference to overloaded function");
4042 }
4043}
4044
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00004045} // end namespace clang