blob: fe12eb74b9fdae98980689727994a726c76a3f2a [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor3fc749d2008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000042 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000045 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000050 ICC_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000051 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000052 ICC_Conversion
53 };
54 return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000069 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000072 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000077 ICR_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000078 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000079 ICR_Conversion
80 };
81 return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000095 "Complex promotion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000096 "Integral conversion",
97 "Floating conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000098 "Complex conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000099 "Floating-integral conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000100 "Complex-real conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000101 "Pointer conversion",
102 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000103 "Boolean conversion",
Douglas Gregorf9201e02009-02-11 23:02:49 +0000104 "Compatible-types conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000105 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000106 };
107 return Name[Kind];
108}
109
Douglas Gregor60d62c22008-10-31 16:23:19 +0000110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000119 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000120}
121
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000122/// getRank - Retrieve the rank of this standard conversion sequence
123/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
124/// implicit conversions.
125ImplicitConversionRank StandardConversionSequence::getRank() const {
126 ImplicitConversionRank Rank = ICR_Exact_Match;
127 if (GetConversionRank(First) > Rank)
128 Rank = GetConversionRank(First);
129 if (GetConversionRank(Second) > Rank)
130 Rank = GetConversionRank(Second);
131 if (GetConversionRank(Third) > Rank)
132 Rank = GetConversionRank(Third);
133 return Rank;
134}
135
136/// isPointerConversionToBool - Determines whether this conversion is
137/// a conversion of a pointer or pointer-to-member to bool. This is
138/// used as part of the ranking of standard conversion sequences
139/// (C++ 13.3.3.2p4).
140bool StandardConversionSequence::isPointerConversionToBool() const
141{
142 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
143 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
144
145 // Note that FromType has not necessarily been transformed by the
146 // array-to-pointer or function-to-pointer implicit conversions, so
147 // check for their presence as well as checking whether FromType is
148 // a pointer.
149 if (ToType->isBooleanType() &&
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000150 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000151 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
152 return true;
153
154 return false;
155}
156
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000157/// isPointerConversionToVoidPointer - Determines whether this
158/// conversion is a conversion of a pointer to a void pointer. This is
159/// used as part of the ranking of standard conversion sequences (C++
160/// 13.3.3.2p4).
161bool
162StandardConversionSequence::
163isPointerConversionToVoidPointer(ASTContext& Context) const
164{
165 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
166 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
167
168 // Note that FromType has not necessarily been transformed by the
169 // array-to-pointer implicit conversion, so check for its presence
170 // and redo the conversion to get a pointer.
171 if (First == ICK_Array_To_Pointer)
172 FromType = Context.getArrayDecayedType(FromType);
173
174 if (Second == ICK_Pointer_Conversion)
175 if (const PointerType* ToPtrType = ToType->getAsPointerType())
176 return ToPtrType->getPointeeType()->isVoidType();
177
178 return false;
179}
180
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000181/// DebugPrint - Print this standard conversion sequence to standard
182/// error. Useful for debugging overloading issues.
183void StandardConversionSequence::DebugPrint() const {
184 bool PrintedSomething = false;
185 if (First != ICK_Identity) {
186 fprintf(stderr, "%s", GetImplicitConversionName(First));
187 PrintedSomething = true;
188 }
189
190 if (Second != ICK_Identity) {
191 if (PrintedSomething) {
192 fprintf(stderr, " -> ");
193 }
194 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000195
196 if (CopyConstructor) {
197 fprintf(stderr, " (by copy constructor)");
198 } else if (DirectBinding) {
199 fprintf(stderr, " (direct reference binding)");
200 } else if (ReferenceBinding) {
201 fprintf(stderr, " (reference binding)");
202 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000203 PrintedSomething = true;
204 }
205
206 if (Third != ICK_Identity) {
207 if (PrintedSomething) {
208 fprintf(stderr, " -> ");
209 }
210 fprintf(stderr, "%s", GetImplicitConversionName(Third));
211 PrintedSomething = true;
212 }
213
214 if (!PrintedSomething) {
215 fprintf(stderr, "No conversions required");
216 }
217}
218
219/// DebugPrint - Print this user-defined conversion sequence to standard
220/// error. Useful for debugging overloading issues.
221void UserDefinedConversionSequence::DebugPrint() const {
222 if (Before.First || Before.Second || Before.Third) {
223 Before.DebugPrint();
224 fprintf(stderr, " -> ");
225 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000226 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000227 if (After.First || After.Second || After.Third) {
228 fprintf(stderr, " -> ");
229 After.DebugPrint();
230 }
231}
232
233/// DebugPrint - Print this implicit conversion sequence to standard
234/// error. Useful for debugging overloading issues.
235void ImplicitConversionSequence::DebugPrint() const {
236 switch (ConversionKind) {
237 case StandardConversion:
238 fprintf(stderr, "Standard conversion: ");
239 Standard.DebugPrint();
240 break;
241 case UserDefinedConversion:
242 fprintf(stderr, "User-defined conversion: ");
243 UserDefined.DebugPrint();
244 break;
245 case EllipsisConversion:
246 fprintf(stderr, "Ellipsis conversion");
247 break;
248 case BadConversion:
249 fprintf(stderr, "Bad conversion");
250 break;
251 }
252
253 fprintf(stderr, "\n");
254}
255
256// IsOverload - Determine whether the given New declaration is an
257// overload of the Old declaration. This routine returns false if New
258// and Old cannot be overloaded, e.g., if they are functions with the
259// same signature (C++ 1.3.10) or if the Old declaration isn't a
260// function (or overload set). When it does return false and Old is an
261// OverloadedFunctionDecl, MatchedDecl will be set to point to the
262// FunctionDecl that New cannot be overloaded with.
263//
264// Example: Given the following input:
265//
266// void f(int, float); // #1
267// void f(int, int); // #2
268// int f(int, int); // #3
269//
270// When we process #1, there is no previous declaration of "f",
271// so IsOverload will not be used.
272//
273// When we process #2, Old is a FunctionDecl for #1. By comparing the
274// parameter types, we see that #1 and #2 are overloaded (since they
275// have different signatures), so this routine returns false;
276// MatchedDecl is unchanged.
277//
278// When we process #3, Old is an OverloadedFunctionDecl containing #1
279// and #2. We compare the signatures of #3 to #1 (they're overloaded,
280// so we do nothing) and then #3 to #2. Since the signatures of #3 and
281// #2 are identical (return types of functions are not part of the
282// signature), IsOverload returns false and MatchedDecl will be set to
283// point to the FunctionDecl for #2.
284bool
285Sema::IsOverload(FunctionDecl *New, Decl* OldD,
286 OverloadedFunctionDecl::function_iterator& MatchedDecl)
287{
288 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
289 // Is this new function an overload of every function in the
290 // overload set?
291 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
292 FuncEnd = Ovl->function_end();
293 for (; Func != FuncEnd; ++Func) {
294 if (!IsOverload(New, *Func, MatchedDecl)) {
295 MatchedDecl = Func;
296 return false;
297 }
298 }
299
300 // This function overloads every function in the overload set.
301 return true;
302 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
303 // Is the function New an overload of the function Old?
304 QualType OldQType = Context.getCanonicalType(Old->getType());
305 QualType NewQType = Context.getCanonicalType(New->getType());
306
307 // Compare the signatures (C++ 1.3.10) of the two functions to
308 // determine whether they are overloads. If we find any mismatch
309 // in the signature, they are overloads.
310
311 // If either of these functions is a K&R-style function (no
312 // prototype), then we consider them to have matching signatures.
Douglas Gregor72564e72009-02-26 23:50:07 +0000313 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
314 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000315 return false;
316
Douglas Gregor72564e72009-02-26 23:50:07 +0000317 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType.getTypePtr());
318 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType.getTypePtr());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000319
320 // The signature of a function includes the types of its
321 // parameters (C++ 1.3.10), which includes the presence or absence
322 // of the ellipsis; see C++ DR 357).
323 if (OldQType != NewQType &&
324 (OldType->getNumArgs() != NewType->getNumArgs() ||
325 OldType->isVariadic() != NewType->isVariadic() ||
326 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
327 NewType->arg_type_begin())))
328 return true;
329
330 // If the function is a class member, its signature includes the
331 // cv-qualifiers (if any) on the function itself.
332 //
333 // As part of this, also check whether one of the member functions
334 // is static, in which case they are not overloads (C++
335 // 13.1p2). While not part of the definition of the signature,
336 // this check is important to determine whether these functions
337 // can be overloaded.
338 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
339 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
340 if (OldMethod && NewMethod &&
341 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000342 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000343 return true;
344
345 // The signatures match; this is not an overload.
346 return false;
347 } else {
348 // (C++ 13p1):
349 // Only function declarations can be overloaded; object and type
350 // declarations cannot be overloaded.
351 return false;
352 }
353}
354
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000355/// TryImplicitConversion - Attempt to perform an implicit conversion
356/// from the given expression (Expr) to the given type (ToType). This
357/// function returns an implicit conversion sequence that can be used
358/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000359///
360/// void f(float f);
361/// void g(int i) { f(i); }
362///
363/// this routine would produce an implicit conversion sequence to
364/// describe the initialization of f from i, which will be a standard
365/// conversion sequence containing an lvalue-to-rvalue conversion (C++
366/// 4.1) followed by a floating-integral conversion (C++ 4.9).
367//
368/// Note that this routine only determines how the conversion can be
369/// performed; it does not actually perform the conversion. As such,
370/// it will not produce any diagnostics if no conversion is available,
371/// but will instead return an implicit conversion sequence of kind
372/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000373///
374/// If @p SuppressUserConversions, then user-defined conversions are
375/// not permitted.
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000376/// If @p AllowExplicit, then explicit user-defined conversions are
377/// permitted.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000378ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000379Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000380 bool SuppressUserConversions,
Douglas Gregor734d9862009-01-30 23:27:23 +0000381 bool AllowExplicit)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000382{
383 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000384 if (IsStandardConversion(From, ToType, ICS.Standard))
385 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000386 else if (getLangOptions().CPlusPlus &&
387 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
Douglas Gregor734d9862009-01-30 23:27:23 +0000388 !SuppressUserConversions, AllowExplicit)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000389 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000390 // C++ [over.ics.user]p4:
391 // A conversion of an expression of class type to the same class
392 // type is given Exact Match rank, and a conversion of an
393 // expression of class type to a base class of that type is
394 // given Conversion rank, in spite of the fact that a copy
395 // constructor (i.e., a user-defined conversion function) is
396 // called for those cases.
397 if (CXXConstructorDecl *Constructor
398 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000399 QualType FromCanon
400 = Context.getCanonicalType(From->getType().getUnqualifiedType());
401 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
402 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000403 // Turn this into a "standard" conversion sequence, so that it
404 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000405 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
406 ICS.Standard.setAsIdentityConversion();
407 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
408 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000409 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000410 if (ToCanon != FromCanon)
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000411 ICS.Standard.Second = ICK_Derived_To_Base;
412 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000413 }
Douglas Gregor734d9862009-01-30 23:27:23 +0000414
415 // C++ [over.best.ics]p4:
416 // However, when considering the argument of a user-defined
417 // conversion function that is a candidate by 13.3.1.3 when
418 // invoked for the copying of the temporary in the second step
419 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
420 // 13.3.1.6 in all cases, only standard conversion sequences and
421 // ellipsis conversion sequences are allowed.
422 if (SuppressUserConversions &&
423 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
424 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000425 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000426 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000427
428 return ICS;
429}
430
431/// IsStandardConversion - Determines whether there is a standard
432/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
433/// expression From to the type ToType. Standard conversion sequences
434/// only consider non-class types; for conversions that involve class
435/// types, use TryImplicitConversion. If a conversion exists, SCS will
436/// contain the standard conversion sequence required to perform this
437/// conversion and this routine will return true. Otherwise, this
438/// routine will return false and the value of SCS is unspecified.
439bool
440Sema::IsStandardConversion(Expr* From, QualType ToType,
441 StandardConversionSequence &SCS)
442{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000443 QualType FromType = From->getType();
444
Douglas Gregor60d62c22008-10-31 16:23:19 +0000445 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000446 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000447 SCS.Deprecated = false;
Douglas Gregor45920e82008-12-19 17:40:08 +0000448 SCS.IncompatibleObjC = false;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000449 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000450 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000451
Douglas Gregorf9201e02009-02-11 23:02:49 +0000452 // There are no standard conversions for class types in C++, so
453 // abort early. When overloading in C, however, we do permit
454 if (FromType->isRecordType() || ToType->isRecordType()) {
455 if (getLangOptions().CPlusPlus)
456 return false;
457
458 // When we're overloading in C, we allow, as standard conversions,
459 }
460
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000461 // The first conversion can be an lvalue-to-rvalue conversion,
462 // array-to-pointer conversion, or function-to-pointer conversion
463 // (C++ 4p1).
464
465 // Lvalue-to-rvalue conversion (C++ 4.1):
466 // An lvalue (3.10) of a non-function, non-array type T can be
467 // converted to an rvalue.
468 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
469 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000470 !FromType->isFunctionType() && !FromType->isArrayType() &&
471 !FromType->isOverloadType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000472 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000473
474 // If T is a non-class type, the type of the rvalue is the
475 // cv-unqualified version of T. Otherwise, the type of the rvalue
Douglas Gregorf9201e02009-02-11 23:02:49 +0000476 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
477 // just strip the qualifiers because they don't matter.
478
479 // FIXME: Doesn't see through to qualifiers behind a typedef!
Douglas Gregor60d62c22008-10-31 16:23:19 +0000480 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000481 }
482 // Array-to-pointer conversion (C++ 4.2)
483 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000484 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000485
486 // An lvalue or rvalue of type "array of N T" or "array of unknown
487 // bound of T" can be converted to an rvalue of type "pointer to
488 // T" (C++ 4.2p1).
489 FromType = Context.getArrayDecayedType(FromType);
490
491 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
492 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000493 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000494
495 // For the purpose of ranking in overload resolution
496 // (13.3.3.1.1), this conversion is considered an
497 // array-to-pointer conversion followed by a qualification
498 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000499 SCS.Second = ICK_Identity;
500 SCS.Third = ICK_Qualification;
501 SCS.ToTypePtr = ToType.getAsOpaquePtr();
502 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000503 }
504 }
505 // Function-to-pointer conversion (C++ 4.3).
506 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000507 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000508
509 // An lvalue of function type T can be converted to an rvalue of
510 // type "pointer to T." The result is a pointer to the
511 // function. (C++ 4.3p1).
512 FromType = Context.getPointerType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000513 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000514 // Address of overloaded function (C++ [over.over]).
515 else if (FunctionDecl *Fn
516 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
517 SCS.First = ICK_Function_To_Pointer;
518
519 // We were able to resolve the address of the overloaded function,
520 // so we can convert to the type of that function.
521 FromType = Fn->getType();
522 if (ToType->isReferenceType())
523 FromType = Context.getReferenceType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000524 else if (ToType->isMemberPointerType()) {
525 // Resolve address only succeeds if both sides are member pointers,
526 // but it doesn't have to be the same class. See DR 247.
527 // Note that this means that the type of &Derived::fn can be
528 // Ret (Base::*)(Args) if the fn overload actually found is from the
529 // base class, even if it was brought into the derived class via a
530 // using declaration. The standard isn't clear on this issue at all.
531 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
532 FromType = Context.getMemberPointerType(FromType,
533 Context.getTypeDeclType(M->getParent()).getTypePtr());
534 } else
Douglas Gregor904eed32008-11-10 20:40:00 +0000535 FromType = Context.getPointerType(FromType);
536 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000537 // We don't require any conversions for the first step.
538 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000539 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000540 }
541
542 // The second conversion can be an integral promotion, floating
543 // point promotion, integral conversion, floating point conversion,
544 // floating-integral conversion, pointer conversion,
545 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregorf9201e02009-02-11 23:02:49 +0000546 // For overloading in C, this can also be a "compatible-type"
547 // conversion.
Douglas Gregor45920e82008-12-19 17:40:08 +0000548 bool IncompatibleObjC = false;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000549 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000550 // The unqualified versions of the types are the same: there's no
551 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000552 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000553 }
554 // Integral promotion (C++ 4.5).
555 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000556 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000557 FromType = ToType.getUnqualifiedType();
558 }
559 // Floating point promotion (C++ 4.6).
560 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000561 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000562 FromType = ToType.getUnqualifiedType();
563 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000564 // Complex promotion (Clang extension)
565 else if (IsComplexPromotion(FromType, ToType)) {
566 SCS.Second = ICK_Complex_Promotion;
567 FromType = ToType.getUnqualifiedType();
568 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000569 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000570 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000571 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000572 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000573 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000574 FromType = ToType.getUnqualifiedType();
575 }
576 // Floating point conversions (C++ 4.8).
577 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000578 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000579 FromType = ToType.getUnqualifiedType();
580 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000581 // Complex conversions (C99 6.3.1.6)
582 else if (FromType->isComplexType() && ToType->isComplexType()) {
583 SCS.Second = ICK_Complex_Conversion;
584 FromType = ToType.getUnqualifiedType();
585 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000586 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000587 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000588 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000589 ToType->isIntegralType() && !ToType->isBooleanType() &&
590 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000591 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
592 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000593 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000594 FromType = ToType.getUnqualifiedType();
595 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000596 // Complex-real conversions (C99 6.3.1.7)
597 else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
598 (ToType->isComplexType() && FromType->isArithmeticType())) {
599 SCS.Second = ICK_Complex_Real;
600 FromType = ToType.getUnqualifiedType();
601 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000602 // Pointer conversions (C++ 4.10).
Douglas Gregor45920e82008-12-19 17:40:08 +0000603 else if (IsPointerConversion(From, FromType, ToType, FromType,
604 IncompatibleObjC)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000605 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor45920e82008-12-19 17:40:08 +0000606 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl07779722008-10-31 14:43:28 +0000607 }
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000608 // Pointer to member conversions (4.11).
609 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
610 SCS.Second = ICK_Pointer_Member;
611 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000612 // Boolean conversions (C++ 4.12).
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000613 else if (ToType->isBooleanType() &&
614 (FromType->isArithmeticType() ||
615 FromType->isEnumeralType() ||
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000616 FromType->isPointerType() ||
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000617 FromType->isBlockPointerType() ||
618 FromType->isMemberPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000619 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000620 FromType = Context.BoolTy;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000621 }
622 // Compatible conversions (Clang extension for C function overloading)
623 else if (!getLangOptions().CPlusPlus &&
624 Context.typesAreCompatible(ToType, FromType)) {
625 SCS.Second = ICK_Compatible_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000626 } else {
627 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000628 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000629 }
630
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000631 QualType CanonFrom;
632 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000633 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000634 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000635 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000636 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000637 CanonFrom = Context.getCanonicalType(FromType);
638 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000639 } else {
640 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000641 SCS.Third = ICK_Identity;
642
643 // C++ [over.best.ics]p6:
644 // [...] Any difference in top-level cv-qualification is
645 // subsumed by the initialization itself and does not constitute
646 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000647 CanonFrom = Context.getCanonicalType(FromType);
648 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000649 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000650 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
651 FromType = ToType;
652 CanonFrom = CanonTo;
653 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000654 }
655
656 // If we have not converted the argument type to the parameter type,
657 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000658 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000659 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000660
Douglas Gregor60d62c22008-10-31 16:23:19 +0000661 SCS.ToTypePtr = FromType.getAsOpaquePtr();
662 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000663}
664
665/// IsIntegralPromotion - Determines whether the conversion from the
666/// expression From (whose potentially-adjusted type is FromType) to
667/// ToType is an integral promotion (C++ 4.5). If so, returns true and
668/// sets PromotedType to the promoted type.
669bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
670{
671 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000672 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000673 if (!To) {
674 return false;
675 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000676
677 // An rvalue of type char, signed char, unsigned char, short int, or
678 // unsigned short int can be converted to an rvalue of type int if
679 // int can represent all the values of the source type; otherwise,
680 // the source rvalue can be converted to an rvalue of type unsigned
681 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000682 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000683 if (// We can promote any signed, promotable integer type to an int
684 (FromType->isSignedIntegerType() ||
685 // We can promote any unsigned integer type whose size is
686 // less than int to an int.
687 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000688 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000689 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000690 }
691
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000692 return To->getKind() == BuiltinType::UInt;
693 }
694
695 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
696 // can be converted to an rvalue of the first of the following types
697 // that can represent all the values of its underlying type: int,
698 // unsigned int, long, or unsigned long (C++ 4.5p2).
699 if ((FromType->isEnumeralType() || FromType->isWideCharType())
700 && ToType->isIntegerType()) {
701 // Determine whether the type we're converting from is signed or
702 // unsigned.
703 bool FromIsSigned;
704 uint64_t FromSize = Context.getTypeSize(FromType);
705 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
706 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
707 FromIsSigned = UnderlyingType->isSignedIntegerType();
708 } else {
709 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
710 FromIsSigned = true;
711 }
712
713 // The types we'll try to promote to, in the appropriate
714 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000715 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000716 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000717 Context.LongTy, Context.UnsignedLongTy ,
718 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000719 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000720 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000721 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
722 if (FromSize < ToSize ||
723 (FromSize == ToSize &&
724 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
725 // We found the type that we can promote to. If this is the
726 // type we wanted, we have a promotion. Otherwise, no
727 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000728 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000729 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
730 }
731 }
732 }
733
734 // An rvalue for an integral bit-field (9.6) can be converted to an
735 // rvalue of type int if int can represent all the values of the
736 // bit-field; otherwise, it can be converted to unsigned int if
737 // unsigned int can represent all the values of the bit-field. If
738 // the bit-field is larger yet, no integral promotion applies to
739 // it. If the bit-field has an enumerated type, it is treated as any
740 // other value of that type for promotion purposes (C++ 4.5p3).
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000741 // FIXME: We should delay checking of bit-fields until we actually
742 // perform the conversion.
743 if (MemberExpr *MemRef = dyn_cast_or_null<MemberExpr>(From)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000744 using llvm::APSInt;
Douglas Gregor86f19402008-12-20 23:49:58 +0000745 if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) {
746 APSInt BitWidth;
747 if (MemberDecl->isBitField() &&
748 FromType->isIntegralType() && !FromType->isEnumeralType() &&
749 From->isIntegerConstantExpr(BitWidth, Context)) {
750 APSInt ToSize(Context.getTypeSize(ToType));
751
752 // Are we promoting to an int from a bitfield that fits in an int?
753 if (BitWidth < ToSize ||
754 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
755 return To->getKind() == BuiltinType::Int;
756 }
757
758 // Are we promoting to an unsigned int from an unsigned bitfield
759 // that fits into an unsigned int?
760 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
761 return To->getKind() == BuiltinType::UInt;
762 }
763
764 return false;
Sebastian Redl07779722008-10-31 14:43:28 +0000765 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000766 }
767 }
768
769 // An rvalue of type bool can be converted to an rvalue of type int,
770 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000771 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000772 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000773 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000774
775 return false;
776}
777
778/// IsFloatingPointPromotion - Determines whether the conversion from
779/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
780/// returns true and sets PromotedType to the promoted type.
781bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
782{
783 /// An rvalue of type float can be converted to an rvalue of type
784 /// double. (C++ 4.6p1).
785 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000786 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000787 if (FromBuiltin->getKind() == BuiltinType::Float &&
788 ToBuiltin->getKind() == BuiltinType::Double)
789 return true;
790
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000791 // C99 6.3.1.5p1:
792 // When a float is promoted to double or long double, or a
793 // double is promoted to long double [...].
794 if (!getLangOptions().CPlusPlus &&
795 (FromBuiltin->getKind() == BuiltinType::Float ||
796 FromBuiltin->getKind() == BuiltinType::Double) &&
797 (ToBuiltin->getKind() == BuiltinType::LongDouble))
798 return true;
799 }
800
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000801 return false;
802}
803
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000804/// \brief Determine if a conversion is a complex promotion.
805///
806/// A complex promotion is defined as a complex -> complex conversion
807/// where the conversion between the underlying real types is a
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000808/// floating-point or integral promotion.
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000809bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
810 const ComplexType *FromComplex = FromType->getAsComplexType();
811 if (!FromComplex)
812 return false;
813
814 const ComplexType *ToComplex = ToType->getAsComplexType();
815 if (!ToComplex)
816 return false;
817
818 return IsFloatingPointPromotion(FromComplex->getElementType(),
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000819 ToComplex->getElementType()) ||
820 IsIntegralPromotion(0, FromComplex->getElementType(),
821 ToComplex->getElementType());
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000822}
823
Douglas Gregorcb7de522008-11-26 23:31:11 +0000824/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
825/// the pointer type FromPtr to a pointer to type ToPointee, with the
826/// same type qualifiers as FromPtr has on its pointee type. ToType,
827/// if non-empty, will be a pointer to ToType that may or may not have
828/// the right set of qualifiers on its pointee.
829static QualType
830BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
831 QualType ToPointee, QualType ToType,
832 ASTContext &Context) {
833 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
834 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
835 unsigned Quals = CanonFromPointee.getCVRQualifiers();
836
837 // Exact qualifier match -> return the pointer type we're converting to.
838 if (CanonToPointee.getCVRQualifiers() == Quals) {
839 // ToType is exactly what we need. Return it.
840 if (ToType.getTypePtr())
841 return ToType;
842
843 // Build a pointer to ToPointee. It has the right qualifiers
844 // already.
845 return Context.getPointerType(ToPointee);
846 }
847
848 // Just build a canonical type that has the right qualifiers.
849 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
850}
851
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000852/// IsPointerConversion - Determines whether the conversion of the
853/// expression From, which has the (possibly adjusted) type FromType,
854/// can be converted to the type ToType via a pointer conversion (C++
855/// 4.10). If so, returns true and places the converted type (that
856/// might differ from ToType in its cv-qualifiers at some level) into
857/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000858///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000859/// This routine also supports conversions to and from block pointers
860/// and conversions with Objective-C's 'id', 'id<protocols...>', and
861/// pointers to interfaces. FIXME: Once we've determined the
862/// appropriate overloading rules for Objective-C, we may want to
863/// split the Objective-C checks into a different routine; however,
864/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor45920e82008-12-19 17:40:08 +0000865/// conversions, so for now they live here. IncompatibleObjC will be
866/// set if the conversion is an allowed Objective-C conversion that
867/// should result in a warning.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000868bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor45920e82008-12-19 17:40:08 +0000869 QualType& ConvertedType,
870 bool &IncompatibleObjC)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000871{
Douglas Gregor45920e82008-12-19 17:40:08 +0000872 IncompatibleObjC = false;
Douglas Gregorc7887512008-12-19 19:13:09 +0000873 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
874 return true;
Douglas Gregor45920e82008-12-19 17:40:08 +0000875
Douglas Gregor27b09ac2008-12-22 20:51:52 +0000876 // Conversion from a null pointer constant to any Objective-C pointer type.
877 if (Context.isObjCObjectPointerType(ToType) &&
878 From->isNullPointerConstant(Context)) {
879 ConvertedType = ToType;
880 return true;
881 }
882
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000883 // Blocks: Block pointers can be converted to void*.
884 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
885 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
886 ConvertedType = ToType;
887 return true;
888 }
889 // Blocks: A null pointer constant can be converted to a block
890 // pointer type.
891 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
892 ConvertedType = ToType;
893 return true;
894 }
895
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000896 const PointerType* ToTypePtr = ToType->getAsPointerType();
897 if (!ToTypePtr)
898 return false;
899
900 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
901 if (From->isNullPointerConstant(Context)) {
902 ConvertedType = ToType;
903 return true;
904 }
Sebastian Redl07779722008-10-31 14:43:28 +0000905
Douglas Gregorcb7de522008-11-26 23:31:11 +0000906 // Beyond this point, both types need to be pointers.
907 const PointerType *FromTypePtr = FromType->getAsPointerType();
908 if (!FromTypePtr)
909 return false;
910
911 QualType FromPointeeType = FromTypePtr->getPointeeType();
912 QualType ToPointeeType = ToTypePtr->getPointeeType();
913
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000914 // An rvalue of type "pointer to cv T," where T is an object type,
915 // can be converted to an rvalue of type "pointer to cv void" (C++
916 // 4.10p2).
Douglas Gregorc7887512008-12-19 19:13:09 +0000917 if (FromPointeeType->isIncompleteOrObjectType() &&
918 ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000919 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
920 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000921 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000922 return true;
923 }
924
Douglas Gregorf9201e02009-02-11 23:02:49 +0000925 // When we're overloading in C, we allow a special kind of pointer
926 // conversion for compatible-but-not-identical pointee types.
927 if (!getLangOptions().CPlusPlus &&
928 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
929 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
930 ToPointeeType,
931 ToType, Context);
932 return true;
933 }
934
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000935 // C++ [conv.ptr]p3:
936 //
937 // An rvalue of type "pointer to cv D," where D is a class type,
938 // can be converted to an rvalue of type "pointer to cv B," where
939 // B is a base class (clause 10) of D. If B is an inaccessible
940 // (clause 11) or ambiguous (10.2) base class of D, a program that
941 // necessitates this conversion is ill-formed. The result of the
942 // conversion is a pointer to the base class sub-object of the
943 // derived class object. The null pointer value is converted to
944 // the null pointer value of the destination type.
945 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000946 // Note that we do not check for ambiguity or inaccessibility
947 // here. That is handled by CheckPointerConversion.
Douglas Gregorf9201e02009-02-11 23:02:49 +0000948 if (getLangOptions().CPlusPlus &&
949 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
Douglas Gregorcb7de522008-11-26 23:31:11 +0000950 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000951 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
952 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000953 ToType, Context);
954 return true;
955 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000956
Douglas Gregorc7887512008-12-19 19:13:09 +0000957 return false;
958}
959
960/// isObjCPointerConversion - Determines whether this is an
961/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
962/// with the same arguments and return values.
963bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
964 QualType& ConvertedType,
965 bool &IncompatibleObjC) {
966 if (!getLangOptions().ObjC1)
967 return false;
968
969 // Conversions with Objective-C's id<...>.
970 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
971 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
972 ConvertedType = ToType;
973 return true;
974 }
975
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000976 // Beyond this point, both types need to be pointers or block pointers.
977 QualType ToPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000978 const PointerType* ToTypePtr = ToType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000979 if (ToTypePtr)
980 ToPointeeType = ToTypePtr->getPointeeType();
981 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
982 ToPointeeType = ToBlockPtr->getPointeeType();
983 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000984 return false;
985
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000986 QualType FromPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000987 const PointerType *FromTypePtr = FromType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000988 if (FromTypePtr)
989 FromPointeeType = FromTypePtr->getPointeeType();
990 else if (const BlockPointerType *FromBlockPtr
991 = FromType->getAsBlockPointerType())
992 FromPointeeType = FromBlockPtr->getPointeeType();
993 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000994 return false;
995
Douglas Gregorcb7de522008-11-26 23:31:11 +0000996 // Objective C++: We're able to convert from a pointer to an
997 // interface to a pointer to a different interface.
998 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
999 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1000 if (FromIface && ToIface &&
1001 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001002 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregorbf408182008-11-27 00:52:49 +00001003 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001004 ToType, Context);
1005 return true;
1006 }
1007
Douglas Gregor45920e82008-12-19 17:40:08 +00001008 if (FromIface && ToIface &&
1009 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1010 // Okay: this is some kind of implicit downcast of Objective-C
1011 // interfaces, which is permitted. However, we're going to
1012 // complain about it.
1013 IncompatibleObjC = true;
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001014 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor45920e82008-12-19 17:40:08 +00001015 ToPointeeType,
1016 ToType, Context);
1017 return true;
1018 }
1019
Douglas Gregorcb7de522008-11-26 23:31:11 +00001020 // Objective C++: We're able to convert between "id" and a pointer
1021 // to any interface (in both directions).
Steve Naroff389bf462009-02-12 17:52:19 +00001022 if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1023 || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +00001024 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1025 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001026 ToType, Context);
1027 return true;
1028 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001029
Douglas Gregordda78892008-12-18 23:43:31 +00001030 // Objective C++: Allow conversions between the Objective-C "id" and
1031 // "Class", in either direction.
Steve Naroff389bf462009-02-12 17:52:19 +00001032 if ((Context.isObjCIdStructType(FromPointeeType) &&
1033 Context.isObjCClassStructType(ToPointeeType)) ||
1034 (Context.isObjCClassStructType(FromPointeeType) &&
1035 Context.isObjCIdStructType(ToPointeeType))) {
Douglas Gregordda78892008-12-18 23:43:31 +00001036 ConvertedType = ToType;
1037 return true;
1038 }
1039
Douglas Gregorc7887512008-12-19 19:13:09 +00001040 // If we have pointers to pointers, recursively check whether this
1041 // is an Objective-C conversion.
1042 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1043 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1044 IncompatibleObjC)) {
1045 // We always complain about this conversion.
1046 IncompatibleObjC = true;
1047 ConvertedType = ToType;
1048 return true;
1049 }
1050
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001051 // If we have pointers to functions or blocks, check whether the only
Douglas Gregorc7887512008-12-19 19:13:09 +00001052 // differences in the argument and result types are in Objective-C
1053 // pointer conversions. If so, we permit the conversion (but
1054 // complain about it).
Douglas Gregor72564e72009-02-26 23:50:07 +00001055 const FunctionProtoType *FromFunctionType
1056 = FromPointeeType->getAsFunctionProtoType();
1057 const FunctionProtoType *ToFunctionType
1058 = ToPointeeType->getAsFunctionProtoType();
Douglas Gregorc7887512008-12-19 19:13:09 +00001059 if (FromFunctionType && ToFunctionType) {
1060 // If the function types are exactly the same, this isn't an
1061 // Objective-C pointer conversion.
1062 if (Context.getCanonicalType(FromPointeeType)
1063 == Context.getCanonicalType(ToPointeeType))
1064 return false;
1065
1066 // Perform the quick checks that will tell us whether these
1067 // function types are obviously different.
1068 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1069 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1070 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1071 return false;
1072
1073 bool HasObjCConversion = false;
1074 if (Context.getCanonicalType(FromFunctionType->getResultType())
1075 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1076 // Okay, the types match exactly. Nothing to do.
1077 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1078 ToFunctionType->getResultType(),
1079 ConvertedType, IncompatibleObjC)) {
1080 // Okay, we have an Objective-C pointer conversion.
1081 HasObjCConversion = true;
1082 } else {
1083 // Function types are too different. Abort.
1084 return false;
1085 }
1086
1087 // Check argument types.
1088 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1089 ArgIdx != NumArgs; ++ArgIdx) {
1090 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1091 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1092 if (Context.getCanonicalType(FromArgType)
1093 == Context.getCanonicalType(ToArgType)) {
1094 // Okay, the types match exactly. Nothing to do.
1095 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1096 ConvertedType, IncompatibleObjC)) {
1097 // Okay, we have an Objective-C pointer conversion.
1098 HasObjCConversion = true;
1099 } else {
1100 // Argument types are too different. Abort.
1101 return false;
1102 }
1103 }
1104
1105 if (HasObjCConversion) {
1106 // We had an Objective-C conversion. Allow this pointer
1107 // conversion, but complain about it.
1108 ConvertedType = ToType;
1109 IncompatibleObjC = true;
1110 return true;
1111 }
1112 }
1113
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001114 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001115}
1116
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001117/// CheckPointerConversion - Check the pointer conversion from the
1118/// expression From to the type ToType. This routine checks for
1119/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1120/// conversions for which IsPointerConversion has already returned
1121/// true. It returns true and produces a diagnostic if there was an
1122/// error, or returns false otherwise.
1123bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1124 QualType FromType = From->getType();
1125
1126 if (const PointerType *FromPtrType = FromType->getAsPointerType())
1127 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001128 QualType FromPointeeType = FromPtrType->getPointeeType(),
1129 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregordda78892008-12-18 23:43:31 +00001130
1131 // Objective-C++ conversions are always okay.
1132 // FIXME: We should have a different class of conversions for
1133 // the Objective-C++ implicit conversions.
Steve Naroff389bf462009-02-12 17:52:19 +00001134 if (Context.isObjCIdStructType(FromPointeeType) ||
1135 Context.isObjCIdStructType(ToPointeeType) ||
1136 Context.isObjCClassStructType(FromPointeeType) ||
1137 Context.isObjCClassStructType(ToPointeeType))
Douglas Gregordda78892008-12-18 23:43:31 +00001138 return false;
1139
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001140 if (FromPointeeType->isRecordType() &&
1141 ToPointeeType->isRecordType()) {
1142 // We must have a derived-to-base conversion. Check an
1143 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +00001144 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1145 From->getExprLoc(),
1146 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001147 }
1148 }
1149
1150 return false;
1151}
1152
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001153/// IsMemberPointerConversion - Determines whether the conversion of the
1154/// expression From, which has the (possibly adjusted) type FromType, can be
1155/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1156/// If so, returns true and places the converted type (that might differ from
1157/// ToType in its cv-qualifiers at some level) into ConvertedType.
1158bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1159 QualType ToType, QualType &ConvertedType)
1160{
1161 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1162 if (!ToTypePtr)
1163 return false;
1164
1165 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1166 if (From->isNullPointerConstant(Context)) {
1167 ConvertedType = ToType;
1168 return true;
1169 }
1170
1171 // Otherwise, both types have to be member pointers.
1172 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1173 if (!FromTypePtr)
1174 return false;
1175
1176 // A pointer to member of B can be converted to a pointer to member of D,
1177 // where D is derived from B (C++ 4.11p2).
1178 QualType FromClass(FromTypePtr->getClass(), 0);
1179 QualType ToClass(ToTypePtr->getClass(), 0);
1180 // FIXME: What happens when these are dependent? Is this function even called?
1181
1182 if (IsDerivedFrom(ToClass, FromClass)) {
1183 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1184 ToClass.getTypePtr());
1185 return true;
1186 }
1187
1188 return false;
1189}
1190
1191/// CheckMemberPointerConversion - Check the member pointer conversion from the
1192/// expression From to the type ToType. This routine checks for ambiguous or
1193/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1194/// for which IsMemberPointerConversion has already returned true. It returns
1195/// true and produces a diagnostic if there was an error, or returns false
1196/// otherwise.
1197bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1198 QualType FromType = From->getType();
Sebastian Redl21593ac2009-01-28 18:33:18 +00001199 const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1200 if (!FromPtrType)
1201 return false;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001202
Sebastian Redl21593ac2009-01-28 18:33:18 +00001203 const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1204 assert(ToPtrType && "No member pointer cast has a target type "
1205 "that is not a member pointer.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001206
Sebastian Redl21593ac2009-01-28 18:33:18 +00001207 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1208 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001209
Sebastian Redl21593ac2009-01-28 18:33:18 +00001210 // FIXME: What about dependent types?
1211 assert(FromClass->isRecordType() && "Pointer into non-class.");
1212 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001213
Sebastian Redl21593ac2009-01-28 18:33:18 +00001214 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1215 /*DetectVirtual=*/true);
1216 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1217 assert(DerivationOkay &&
1218 "Should not have been called if derivation isn't OK.");
1219 (void)DerivationOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001220
Sebastian Redl21593ac2009-01-28 18:33:18 +00001221 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1222 getUnqualifiedType())) {
1223 // Derivation is ambiguous. Redo the check to find the exact paths.
1224 Paths.clear();
1225 Paths.setRecordingPaths(true);
1226 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1227 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1228 (void)StillOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001229
Sebastian Redl21593ac2009-01-28 18:33:18 +00001230 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1231 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1232 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1233 return true;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001234 }
Sebastian Redl21593ac2009-01-28 18:33:18 +00001235
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001236 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
Sebastian Redl21593ac2009-01-28 18:33:18 +00001237 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1238 << FromClass << ToClass << QualType(VBase, 0)
1239 << From->getSourceRange();
1240 return true;
1241 }
1242
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001243 return false;
1244}
1245
Douglas Gregor98cd5992008-10-21 23:43:52 +00001246/// IsQualificationConversion - Determines whether the conversion from
1247/// an rvalue of type FromType to ToType is a qualification conversion
1248/// (C++ 4.4).
1249bool
1250Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1251{
1252 FromType = Context.getCanonicalType(FromType);
1253 ToType = Context.getCanonicalType(ToType);
1254
1255 // If FromType and ToType are the same type, this is not a
1256 // qualification conversion.
1257 if (FromType == ToType)
1258 return false;
Sebastian Redl21593ac2009-01-28 18:33:18 +00001259
Douglas Gregor98cd5992008-10-21 23:43:52 +00001260 // (C++ 4.4p4):
1261 // A conversion can add cv-qualifiers at levels other than the first
1262 // in multi-level pointers, subject to the following rules: [...]
1263 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001264 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +00001265 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +00001266 // Within each iteration of the loop, we check the qualifiers to
1267 // determine if this still looks like a qualification
1268 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001269 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +00001270 // until there are no more pointers or pointers-to-members left to
1271 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +00001272 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001273
1274 // -- for every j > 0, if const is in cv 1,j then const is in cv
1275 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +00001276 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +00001277 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001278
Douglas Gregor98cd5992008-10-21 23:43:52 +00001279 // -- if the cv 1,j and cv 2,j are different, then const is in
1280 // every cv for 0 < k < j.
1281 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +00001282 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +00001283 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001284
Douglas Gregor98cd5992008-10-21 23:43:52 +00001285 // Keep track of whether all prior cv-qualifiers in the "to" type
1286 // include const.
1287 PreviousToQualsIncludeConst
1288 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +00001289 }
Douglas Gregor98cd5992008-10-21 23:43:52 +00001290
1291 // We are left with FromType and ToType being the pointee types
1292 // after unwrapping the original FromType and ToType the same number
1293 // of types. If we unwrapped any pointers, and if FromType and
1294 // ToType have the same unqualified type (since we checked
1295 // qualifiers above), then this is a qualification conversion.
1296 return UnwrappedAnyPointer &&
1297 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1298}
1299
Douglas Gregor734d9862009-01-30 23:27:23 +00001300/// Determines whether there is a user-defined conversion sequence
1301/// (C++ [over.ics.user]) that converts expression From to the type
1302/// ToType. If such a conversion exists, User will contain the
1303/// user-defined conversion sequence that performs such a conversion
1304/// and this routine will return true. Otherwise, this routine returns
1305/// false and User is unspecified.
1306///
1307/// \param AllowConversionFunctions true if the conversion should
1308/// consider conversion functions at all. If false, only constructors
1309/// will be considered.
1310///
1311/// \param AllowExplicit true if the conversion should consider C++0x
1312/// "explicit" conversion functions as well as non-explicit conversion
1313/// functions (C++0x [class.conv.fct]p2).
Douglas Gregor60d62c22008-10-31 16:23:19 +00001314bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001315 UserDefinedConversionSequence& User,
Douglas Gregor734d9862009-01-30 23:27:23 +00001316 bool AllowConversionFunctions,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001317 bool AllowExplicit)
Douglas Gregor60d62c22008-10-31 16:23:19 +00001318{
1319 OverloadCandidateSet CandidateSet;
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001320 if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1321 if (CXXRecordDecl *ToRecordDecl
1322 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1323 // C++ [over.match.ctor]p1:
1324 // When objects of class type are direct-initialized (8.5), or
1325 // copy-initialized from an expression of the same or a
1326 // derived class type (8.5), overload resolution selects the
1327 // constructor. [...] For copy-initialization, the candidate
1328 // functions are all the converting constructors (12.3.1) of
1329 // that class. The argument list is the expression-list within
1330 // the parentheses of the initializer.
1331 DeclarationName ConstructorName
1332 = Context.DeclarationNames.getCXXConstructorName(
1333 Context.getCanonicalType(ToType).getUnqualifiedType());
1334 DeclContext::lookup_iterator Con, ConEnd;
1335 for (llvm::tie(Con, ConEnd) = ToRecordDecl->lookup(ConstructorName);
1336 Con != ConEnd; ++Con) {
1337 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1338 if (Constructor->isConvertingConstructor())
1339 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1340 /*SuppressUserConversions=*/true);
1341 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001342 }
1343 }
1344
Douglas Gregor734d9862009-01-30 23:27:23 +00001345 if (!AllowConversionFunctions) {
1346 // Don't allow any conversion functions to enter the overload set.
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001347 } else if (const RecordType *FromRecordType
1348 = From->getType()->getAsRecordType()) {
1349 if (CXXRecordDecl *FromRecordDecl
1350 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1351 // Add all of the conversion functions as candidates.
1352 // FIXME: Look for conversions in base classes!
1353 OverloadedFunctionDecl *Conversions
1354 = FromRecordDecl->getConversionFunctions();
1355 for (OverloadedFunctionDecl::function_iterator Func
1356 = Conversions->function_begin();
1357 Func != Conversions->function_end(); ++Func) {
1358 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1359 if (AllowExplicit || !Conv->isExplicit())
1360 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1361 }
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001362 }
1363 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001364
1365 OverloadCandidateSet::iterator Best;
1366 switch (BestViableFunction(CandidateSet, Best)) {
1367 case OR_Success:
1368 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001369 if (CXXConstructorDecl *Constructor
1370 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1371 // C++ [over.ics.user]p1:
1372 // If the user-defined conversion is specified by a
1373 // constructor (12.3.1), the initial standard conversion
1374 // sequence converts the source type to the type required by
1375 // the argument of the constructor.
1376 //
1377 // FIXME: What about ellipsis conversions?
1378 QualType ThisType = Constructor->getThisType(Context);
1379 User.Before = Best->Conversions[0].Standard;
1380 User.ConversionFunction = Constructor;
1381 User.After.setAsIdentityConversion();
1382 User.After.FromTypePtr
1383 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1384 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1385 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001386 } else if (CXXConversionDecl *Conversion
1387 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1388 // C++ [over.ics.user]p1:
1389 //
1390 // [...] If the user-defined conversion is specified by a
1391 // conversion function (12.3.2), the initial standard
1392 // conversion sequence converts the source type to the
1393 // implicit object parameter of the conversion function.
1394 User.Before = Best->Conversions[0].Standard;
1395 User.ConversionFunction = Conversion;
1396
1397 // C++ [over.ics.user]p2:
1398 // The second standard conversion sequence converts the
1399 // result of the user-defined conversion to the target type
1400 // for the sequence. Since an implicit conversion sequence
1401 // is an initialization, the special rules for
1402 // initialization by user-defined conversion apply when
1403 // selecting the best user-defined conversion for a
1404 // user-defined conversion sequence (see 13.3.3 and
1405 // 13.3.3.1).
1406 User.After = Best->FinalConversion;
1407 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001408 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001409 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001410 return false;
1411 }
1412
1413 case OR_No_Viable_Function:
Douglas Gregor48f3bb92009-02-18 21:56:37 +00001414 case OR_Deleted:
Douglas Gregor60d62c22008-10-31 16:23:19 +00001415 // No conversion here! We're done.
1416 return false;
1417
1418 case OR_Ambiguous:
1419 // FIXME: See C++ [over.best.ics]p10 for the handling of
1420 // ambiguous conversion sequences.
1421 return false;
1422 }
1423
1424 return false;
1425}
1426
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001427/// CompareImplicitConversionSequences - Compare two implicit
1428/// conversion sequences to determine whether one is better than the
1429/// other or if they are indistinguishable (C++ 13.3.3.2).
1430ImplicitConversionSequence::CompareKind
1431Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1432 const ImplicitConversionSequence& ICS2)
1433{
1434 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1435 // conversion sequences (as defined in 13.3.3.1)
1436 // -- a standard conversion sequence (13.3.3.1.1) is a better
1437 // conversion sequence than a user-defined conversion sequence or
1438 // an ellipsis conversion sequence, and
1439 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1440 // conversion sequence than an ellipsis conversion sequence
1441 // (13.3.3.1.3).
1442 //
1443 if (ICS1.ConversionKind < ICS2.ConversionKind)
1444 return ImplicitConversionSequence::Better;
1445 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1446 return ImplicitConversionSequence::Worse;
1447
1448 // Two implicit conversion sequences of the same form are
1449 // indistinguishable conversion sequences unless one of the
1450 // following rules apply: (C++ 13.3.3.2p3):
1451 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1452 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1453 else if (ICS1.ConversionKind ==
1454 ImplicitConversionSequence::UserDefinedConversion) {
1455 // User-defined conversion sequence U1 is a better conversion
1456 // sequence than another user-defined conversion sequence U2 if
1457 // they contain the same user-defined conversion function or
1458 // constructor and if the second standard conversion sequence of
1459 // U1 is better than the second standard conversion sequence of
1460 // U2 (C++ 13.3.3.2p3).
1461 if (ICS1.UserDefined.ConversionFunction ==
1462 ICS2.UserDefined.ConversionFunction)
1463 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1464 ICS2.UserDefined.After);
1465 }
1466
1467 return ImplicitConversionSequence::Indistinguishable;
1468}
1469
1470/// CompareStandardConversionSequences - Compare two standard
1471/// conversion sequences to determine whether one is better than the
1472/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1473ImplicitConversionSequence::CompareKind
1474Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1475 const StandardConversionSequence& SCS2)
1476{
1477 // Standard conversion sequence S1 is a better conversion sequence
1478 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1479
1480 // -- S1 is a proper subsequence of S2 (comparing the conversion
1481 // sequences in the canonical form defined by 13.3.3.1.1,
1482 // excluding any Lvalue Transformation; the identity conversion
1483 // sequence is considered to be a subsequence of any
1484 // non-identity conversion sequence) or, if not that,
1485 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1486 // Neither is a proper subsequence of the other. Do nothing.
1487 ;
1488 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1489 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1490 (SCS1.Second == ICK_Identity &&
1491 SCS1.Third == ICK_Identity))
1492 // SCS1 is a proper subsequence of SCS2.
1493 return ImplicitConversionSequence::Better;
1494 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1495 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1496 (SCS2.Second == ICK_Identity &&
1497 SCS2.Third == ICK_Identity))
1498 // SCS2 is a proper subsequence of SCS1.
1499 return ImplicitConversionSequence::Worse;
1500
1501 // -- the rank of S1 is better than the rank of S2 (by the rules
1502 // defined below), or, if not that,
1503 ImplicitConversionRank Rank1 = SCS1.getRank();
1504 ImplicitConversionRank Rank2 = SCS2.getRank();
1505 if (Rank1 < Rank2)
1506 return ImplicitConversionSequence::Better;
1507 else if (Rank2 < Rank1)
1508 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001509
Douglas Gregor57373262008-10-22 14:17:15 +00001510 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1511 // are indistinguishable unless one of the following rules
1512 // applies:
1513
1514 // A conversion that is not a conversion of a pointer, or
1515 // pointer to member, to bool is better than another conversion
1516 // that is such a conversion.
1517 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1518 return SCS2.isPointerConversionToBool()
1519 ? ImplicitConversionSequence::Better
1520 : ImplicitConversionSequence::Worse;
1521
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001522 // C++ [over.ics.rank]p4b2:
1523 //
1524 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001525 // conversion of B* to A* is better than conversion of B* to
1526 // void*, and conversion of A* to void* is better than conversion
1527 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001528 bool SCS1ConvertsToVoid
1529 = SCS1.isPointerConversionToVoidPointer(Context);
1530 bool SCS2ConvertsToVoid
1531 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001532 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1533 // Exactly one of the conversion sequences is a conversion to
1534 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001535 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1536 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001537 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1538 // Neither conversion sequence converts to a void pointer; compare
1539 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001540 if (ImplicitConversionSequence::CompareKind DerivedCK
1541 = CompareDerivedToBaseConversions(SCS1, SCS2))
1542 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001543 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1544 // Both conversion sequences are conversions to void
1545 // pointers. Compare the source types to determine if there's an
1546 // inheritance relationship in their sources.
1547 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1548 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1549
1550 // Adjust the types we're converting from via the array-to-pointer
1551 // conversion, if we need to.
1552 if (SCS1.First == ICK_Array_To_Pointer)
1553 FromType1 = Context.getArrayDecayedType(FromType1);
1554 if (SCS2.First == ICK_Array_To_Pointer)
1555 FromType2 = Context.getArrayDecayedType(FromType2);
1556
1557 QualType FromPointee1
1558 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1559 QualType FromPointee2
1560 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1561
1562 if (IsDerivedFrom(FromPointee2, FromPointee1))
1563 return ImplicitConversionSequence::Better;
1564 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1565 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001566
1567 // Objective-C++: If one interface is more specific than the
1568 // other, it is the better one.
1569 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1570 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1571 if (FromIface1 && FromIface1) {
1572 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1573 return ImplicitConversionSequence::Better;
1574 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1575 return ImplicitConversionSequence::Worse;
1576 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001577 }
Douglas Gregor57373262008-10-22 14:17:15 +00001578
1579 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1580 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001581 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001582 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001583 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001584
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001585 // C++ [over.ics.rank]p3b4:
1586 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1587 // which the references refer are the same type except for
1588 // top-level cv-qualifiers, and the type to which the reference
1589 // initialized by S2 refers is more cv-qualified than the type
1590 // to which the reference initialized by S1 refers.
1591 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1592 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1593 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1594 T1 = Context.getCanonicalType(T1);
1595 T2 = Context.getCanonicalType(T2);
1596 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1597 if (T2.isMoreQualifiedThan(T1))
1598 return ImplicitConversionSequence::Better;
1599 else if (T1.isMoreQualifiedThan(T2))
1600 return ImplicitConversionSequence::Worse;
1601 }
1602 }
Douglas Gregor57373262008-10-22 14:17:15 +00001603
1604 return ImplicitConversionSequence::Indistinguishable;
1605}
1606
1607/// CompareQualificationConversions - Compares two standard conversion
1608/// sequences to determine whether they can be ranked based on their
1609/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1610ImplicitConversionSequence::CompareKind
1611Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1612 const StandardConversionSequence& SCS2)
1613{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001614 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001615 // -- S1 and S2 differ only in their qualification conversion and
1616 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1617 // cv-qualification signature of type T1 is a proper subset of
1618 // the cv-qualification signature of type T2, and S1 is not the
1619 // deprecated string literal array-to-pointer conversion (4.2).
1620 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1621 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1622 return ImplicitConversionSequence::Indistinguishable;
1623
1624 // FIXME: the example in the standard doesn't use a qualification
1625 // conversion (!)
1626 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1627 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1628 T1 = Context.getCanonicalType(T1);
1629 T2 = Context.getCanonicalType(T2);
1630
1631 // If the types are the same, we won't learn anything by unwrapped
1632 // them.
1633 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1634 return ImplicitConversionSequence::Indistinguishable;
1635
1636 ImplicitConversionSequence::CompareKind Result
1637 = ImplicitConversionSequence::Indistinguishable;
1638 while (UnwrapSimilarPointerTypes(T1, T2)) {
1639 // Within each iteration of the loop, we check the qualifiers to
1640 // determine if this still looks like a qualification
1641 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001642 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001643 // until there are no more pointers or pointers-to-members left
1644 // to unwrap. This essentially mimics what
1645 // IsQualificationConversion does, but here we're checking for a
1646 // strict subset of qualifiers.
1647 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1648 // The qualifiers are the same, so this doesn't tell us anything
1649 // about how the sequences rank.
1650 ;
1651 else if (T2.isMoreQualifiedThan(T1)) {
1652 // T1 has fewer qualifiers, so it could be the better sequence.
1653 if (Result == ImplicitConversionSequence::Worse)
1654 // Neither has qualifiers that are a subset of the other's
1655 // qualifiers.
1656 return ImplicitConversionSequence::Indistinguishable;
1657
1658 Result = ImplicitConversionSequence::Better;
1659 } else if (T1.isMoreQualifiedThan(T2)) {
1660 // T2 has fewer qualifiers, so it could be the better sequence.
1661 if (Result == ImplicitConversionSequence::Better)
1662 // Neither has qualifiers that are a subset of the other's
1663 // qualifiers.
1664 return ImplicitConversionSequence::Indistinguishable;
1665
1666 Result = ImplicitConversionSequence::Worse;
1667 } else {
1668 // Qualifiers are disjoint.
1669 return ImplicitConversionSequence::Indistinguishable;
1670 }
1671
1672 // If the types after this point are equivalent, we're done.
1673 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1674 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001675 }
1676
Douglas Gregor57373262008-10-22 14:17:15 +00001677 // Check that the winning standard conversion sequence isn't using
1678 // the deprecated string literal array to pointer conversion.
1679 switch (Result) {
1680 case ImplicitConversionSequence::Better:
1681 if (SCS1.Deprecated)
1682 Result = ImplicitConversionSequence::Indistinguishable;
1683 break;
1684
1685 case ImplicitConversionSequence::Indistinguishable:
1686 break;
1687
1688 case ImplicitConversionSequence::Worse:
1689 if (SCS2.Deprecated)
1690 Result = ImplicitConversionSequence::Indistinguishable;
1691 break;
1692 }
1693
1694 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001695}
1696
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001697/// CompareDerivedToBaseConversions - Compares two standard conversion
1698/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001699/// various kinds of derived-to-base conversions (C++
1700/// [over.ics.rank]p4b3). As part of these checks, we also look at
1701/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001702ImplicitConversionSequence::CompareKind
1703Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1704 const StandardConversionSequence& SCS2) {
1705 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1706 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1707 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1708 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1709
1710 // Adjust the types we're converting from via the array-to-pointer
1711 // conversion, if we need to.
1712 if (SCS1.First == ICK_Array_To_Pointer)
1713 FromType1 = Context.getArrayDecayedType(FromType1);
1714 if (SCS2.First == ICK_Array_To_Pointer)
1715 FromType2 = Context.getArrayDecayedType(FromType2);
1716
1717 // Canonicalize all of the types.
1718 FromType1 = Context.getCanonicalType(FromType1);
1719 ToType1 = Context.getCanonicalType(ToType1);
1720 FromType2 = Context.getCanonicalType(FromType2);
1721 ToType2 = Context.getCanonicalType(ToType2);
1722
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001723 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001724 //
1725 // If class B is derived directly or indirectly from class A and
1726 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001727 //
1728 // For Objective-C, we let A, B, and C also be Objective-C
1729 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001730
1731 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001732 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001733 SCS2.Second == ICK_Pointer_Conversion &&
1734 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1735 FromType1->isPointerType() && FromType2->isPointerType() &&
1736 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001737 QualType FromPointee1
1738 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1739 QualType ToPointee1
1740 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1741 QualType FromPointee2
1742 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1743 QualType ToPointee2
1744 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001745
1746 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1747 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1748 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1749 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1750
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001751 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001752 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1753 if (IsDerivedFrom(ToPointee1, ToPointee2))
1754 return ImplicitConversionSequence::Better;
1755 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1756 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001757
1758 if (ToIface1 && ToIface2) {
1759 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1760 return ImplicitConversionSequence::Better;
1761 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1762 return ImplicitConversionSequence::Worse;
1763 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001764 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001765
1766 // -- conversion of B* to A* is better than conversion of C* to A*,
1767 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1768 if (IsDerivedFrom(FromPointee2, FromPointee1))
1769 return ImplicitConversionSequence::Better;
1770 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1771 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001772
1773 if (FromIface1 && FromIface2) {
1774 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1775 return ImplicitConversionSequence::Better;
1776 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1777 return ImplicitConversionSequence::Worse;
1778 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001779 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001780 }
1781
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001782 // Compare based on reference bindings.
1783 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1784 SCS1.Second == ICK_Derived_To_Base) {
1785 // -- binding of an expression of type C to a reference of type
1786 // B& is better than binding an expression of type C to a
1787 // reference of type A&,
1788 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1789 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1790 if (IsDerivedFrom(ToType1, ToType2))
1791 return ImplicitConversionSequence::Better;
1792 else if (IsDerivedFrom(ToType2, ToType1))
1793 return ImplicitConversionSequence::Worse;
1794 }
1795
Douglas Gregor225c41e2008-11-03 19:09:14 +00001796 // -- binding of an expression of type B to a reference of type
1797 // A& is better than binding an expression of type C to a
1798 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001799 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1800 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1801 if (IsDerivedFrom(FromType2, FromType1))
1802 return ImplicitConversionSequence::Better;
1803 else if (IsDerivedFrom(FromType1, FromType2))
1804 return ImplicitConversionSequence::Worse;
1805 }
1806 }
1807
1808
1809 // FIXME: conversion of A::* to B::* is better than conversion of
1810 // A::* to C::*,
1811
1812 // FIXME: conversion of B::* to C::* is better than conversion of
1813 // A::* to C::*, and
1814
Douglas Gregor225c41e2008-11-03 19:09:14 +00001815 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1816 SCS1.Second == ICK_Derived_To_Base) {
1817 // -- conversion of C to B is better than conversion of C to A,
1818 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1819 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1820 if (IsDerivedFrom(ToType1, ToType2))
1821 return ImplicitConversionSequence::Better;
1822 else if (IsDerivedFrom(ToType2, ToType1))
1823 return ImplicitConversionSequence::Worse;
1824 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001825
Douglas Gregor225c41e2008-11-03 19:09:14 +00001826 // -- conversion of B to A is better than conversion of C to A.
1827 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1828 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1829 if (IsDerivedFrom(FromType2, FromType1))
1830 return ImplicitConversionSequence::Better;
1831 else if (IsDerivedFrom(FromType1, FromType2))
1832 return ImplicitConversionSequence::Worse;
1833 }
1834 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001835
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001836 return ImplicitConversionSequence::Indistinguishable;
1837}
1838
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001839/// TryCopyInitialization - Try to copy-initialize a value of type
1840/// ToType from the expression From. Return the implicit conversion
1841/// sequence required to pass this argument, which may be a bad
1842/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001843/// a parameter of this type). If @p SuppressUserConversions, then we
1844/// do not permit any user-defined conversion sequences.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001845ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001846Sema::TryCopyInitialization(Expr *From, QualType ToType,
1847 bool SuppressUserConversions) {
Douglas Gregorf9201e02009-02-11 23:02:49 +00001848 if (ToType->isReferenceType()) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001849 ImplicitConversionSequence ICS;
Douglas Gregor225c41e2008-11-03 19:09:14 +00001850 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001851 return ICS;
1852 } else {
Douglas Gregor225c41e2008-11-03 19:09:14 +00001853 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001854 }
1855}
1856
1857/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1858/// type ToType. Returns true (and emits a diagnostic) if there was
1859/// an error, returns false if the initialization succeeded.
1860bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1861 const char* Flavor) {
1862 if (!getLangOptions().CPlusPlus) {
1863 // In C, argument passing is the same as performing an assignment.
1864 QualType FromType = From->getType();
1865 AssignConvertType ConvTy =
1866 CheckSingleAssignmentConstraints(ToType, From);
1867
1868 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1869 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001870 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001871
1872 if (ToType->isReferenceType())
1873 return CheckReferenceInit(From, ToType);
1874
Douglas Gregor45920e82008-12-19 17:40:08 +00001875 if (!PerformImplicitConversion(From, ToType, Flavor))
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001876 return false;
1877
1878 return Diag(From->getSourceRange().getBegin(),
1879 diag::err_typecheck_convert_incompatible)
1880 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001881}
1882
Douglas Gregor96176b32008-11-18 23:14:02 +00001883/// TryObjectArgumentInitialization - Try to initialize the object
1884/// parameter of the given member function (@c Method) from the
1885/// expression @p From.
1886ImplicitConversionSequence
1887Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1888 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1889 unsigned MethodQuals = Method->getTypeQualifiers();
1890 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1891
1892 // Set up the conversion sequence as a "bad" conversion, to allow us
1893 // to exit early.
1894 ImplicitConversionSequence ICS;
1895 ICS.Standard.setAsIdentityConversion();
1896 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1897
1898 // We need to have an object of class type.
1899 QualType FromType = From->getType();
1900 if (!FromType->isRecordType())
1901 return ICS;
1902
1903 // The implicit object parmeter is has the type "reference to cv X",
1904 // where X is the class of which the function is a member
1905 // (C++ [over.match.funcs]p4). However, when finding an implicit
1906 // conversion sequence for the argument, we are not allowed to
1907 // create temporaries or perform user-defined conversions
1908 // (C++ [over.match.funcs]p5). We perform a simplified version of
1909 // reference binding here, that allows class rvalues to bind to
1910 // non-constant references.
1911
1912 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1913 // with the implicit object parameter (C++ [over.match.funcs]p5).
1914 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1915 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1916 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1917 return ICS;
1918
1919 // Check that we have either the same type or a derived type. It
1920 // affects the conversion rank.
1921 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1922 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1923 ICS.Standard.Second = ICK_Identity;
1924 else if (IsDerivedFrom(FromType, ClassType))
1925 ICS.Standard.Second = ICK_Derived_To_Base;
1926 else
1927 return ICS;
1928
1929 // Success. Mark this as a reference binding.
1930 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1931 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1932 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1933 ICS.Standard.ReferenceBinding = true;
1934 ICS.Standard.DirectBinding = true;
1935 return ICS;
1936}
1937
1938/// PerformObjectArgumentInitialization - Perform initialization of
1939/// the implicit object parameter for the given Method with the given
1940/// expression.
1941bool
1942Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1943 QualType ImplicitParamType
1944 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1945 ImplicitConversionSequence ICS
1946 = TryObjectArgumentInitialization(From, Method);
1947 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1948 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001949 diag::err_implicit_object_parameter_init)
Chris Lattnerd1625842008-11-24 06:25:27 +00001950 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001951
1952 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1953 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1954 From->getSourceRange().getBegin(),
1955 From->getSourceRange()))
1956 return true;
1957
1958 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1959 return false;
1960}
1961
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001962/// TryContextuallyConvertToBool - Attempt to contextually convert the
1963/// expression From to bool (C++0x [conv]p3).
1964ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
1965 return TryImplicitConversion(From, Context.BoolTy, false, true);
1966}
1967
1968/// PerformContextuallyConvertToBool - Perform a contextual conversion
1969/// of the expression From to bool (C++0x [conv]p3).
1970bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
1971 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
1972 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
1973 return false;
1974
1975 return Diag(From->getSourceRange().getBegin(),
1976 diag::err_typecheck_bool_condition)
1977 << From->getType() << From->getSourceRange();
1978}
1979
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001980/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00001981/// candidate functions, using the given function call arguments. If
1982/// @p SuppressUserConversions, then don't allow user-defined
1983/// conversions via constructors or conversion operators.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001984void
1985Sema::AddOverloadCandidate(FunctionDecl *Function,
1986 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00001987 OverloadCandidateSet& CandidateSet,
1988 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001989{
Douglas Gregor72564e72009-02-26 23:50:07 +00001990 const FunctionProtoType* Proto
1991 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001992 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001993 assert(!isa<CXXConversionDecl>(Function) &&
1994 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001995
Douglas Gregor88a35142008-12-22 05:46:06 +00001996 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
1997 // If we get here, it's because we're calling a member function
1998 // that is named without a member access expression (e.g.,
1999 // "this->f") that was either written explicitly or created
2000 // implicitly. This can happen with a qualified call to a member
2001 // function, e.g., X::f(). We use a NULL object as the implied
2002 // object argument (C++ [over.call.func]p3).
2003 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2004 SuppressUserConversions);
2005 return;
2006 }
2007
2008
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002009 // Add this candidate
2010 CandidateSet.push_back(OverloadCandidate());
2011 OverloadCandidate& Candidate = CandidateSet.back();
2012 Candidate.Function = Function;
Douglas Gregor88a35142008-12-22 05:46:06 +00002013 Candidate.Viable = true;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002014 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002015 Candidate.IgnoreObjectArgument = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002016
2017 unsigned NumArgsInProto = Proto->getNumArgs();
2018
2019 // (C++ 13.3.2p2): A candidate function having fewer than m
2020 // parameters is viable only if it has an ellipsis in its parameter
2021 // list (8.3.5).
2022 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2023 Candidate.Viable = false;
2024 return;
2025 }
2026
2027 // (C++ 13.3.2p2): A candidate function having more than m parameters
2028 // is viable only if the (m+1)st parameter has a default argument
2029 // (8.3.6). For the purposes of overload resolution, the
2030 // parameter list is truncated on the right, so that there are
2031 // exactly m parameters.
2032 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2033 if (NumArgs < MinRequiredArgs) {
2034 // Not enough arguments.
2035 Candidate.Viable = false;
2036 return;
2037 }
2038
2039 // Determine the implicit conversion sequences for each of the
2040 // arguments.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002041 Candidate.Conversions.resize(NumArgs);
2042 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2043 if (ArgIdx < NumArgsInProto) {
2044 // (C++ 13.3.2p3): for F to be a viable function, there shall
2045 // exist for each argument an implicit conversion sequence
2046 // (13.3.3.1) that converts that argument to the corresponding
2047 // parameter of F.
2048 QualType ParamType = Proto->getArgType(ArgIdx);
2049 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00002050 = TryCopyInitialization(Args[ArgIdx], ParamType,
2051 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002052 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002053 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002054 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002055 break;
2056 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002057 } else {
2058 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2059 // argument for which there is no corresponding parameter is
2060 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2061 Candidate.Conversions[ArgIdx].ConversionKind
2062 = ImplicitConversionSequence::EllipsisConversion;
2063 }
2064 }
2065}
2066
Douglas Gregor96176b32008-11-18 23:14:02 +00002067/// AddMethodCandidate - Adds the given C++ member function to the set
2068/// of candidate functions, using the given function call arguments
2069/// and the object argument (@c Object). For example, in a call
2070/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2071/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2072/// allow user-defined conversions via constructors or conversion
2073/// operators.
2074void
2075Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2076 Expr **Args, unsigned NumArgs,
2077 OverloadCandidateSet& CandidateSet,
2078 bool SuppressUserConversions)
2079{
Douglas Gregor72564e72009-02-26 23:50:07 +00002080 const FunctionProtoType* Proto
2081 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
Douglas Gregor96176b32008-11-18 23:14:02 +00002082 assert(Proto && "Methods without a prototype cannot be overloaded");
2083 assert(!isa<CXXConversionDecl>(Method) &&
2084 "Use AddConversionCandidate for conversion functions");
2085
2086 // Add this candidate
2087 CandidateSet.push_back(OverloadCandidate());
2088 OverloadCandidate& Candidate = CandidateSet.back();
2089 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002090 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002091 Candidate.IgnoreObjectArgument = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002092
2093 unsigned NumArgsInProto = Proto->getNumArgs();
2094
2095 // (C++ 13.3.2p2): A candidate function having fewer than m
2096 // parameters is viable only if it has an ellipsis in its parameter
2097 // list (8.3.5).
2098 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2099 Candidate.Viable = false;
2100 return;
2101 }
2102
2103 // (C++ 13.3.2p2): A candidate function having more than m parameters
2104 // is viable only if the (m+1)st parameter has a default argument
2105 // (8.3.6). For the purposes of overload resolution, the
2106 // parameter list is truncated on the right, so that there are
2107 // exactly m parameters.
2108 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2109 if (NumArgs < MinRequiredArgs) {
2110 // Not enough arguments.
2111 Candidate.Viable = false;
2112 return;
2113 }
2114
2115 Candidate.Viable = true;
2116 Candidate.Conversions.resize(NumArgs + 1);
2117
Douglas Gregor88a35142008-12-22 05:46:06 +00002118 if (Method->isStatic() || !Object)
2119 // The implicit object argument is ignored.
2120 Candidate.IgnoreObjectArgument = true;
2121 else {
2122 // Determine the implicit conversion sequence for the object
2123 // parameter.
2124 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2125 if (Candidate.Conversions[0].ConversionKind
2126 == ImplicitConversionSequence::BadConversion) {
2127 Candidate.Viable = false;
2128 return;
2129 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002130 }
2131
2132 // Determine the implicit conversion sequences for each of the
2133 // arguments.
2134 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2135 if (ArgIdx < NumArgsInProto) {
2136 // (C++ 13.3.2p3): for F to be a viable function, there shall
2137 // exist for each argument an implicit conversion sequence
2138 // (13.3.3.1) that converts that argument to the corresponding
2139 // parameter of F.
2140 QualType ParamType = Proto->getArgType(ArgIdx);
2141 Candidate.Conversions[ArgIdx + 1]
2142 = TryCopyInitialization(Args[ArgIdx], ParamType,
2143 SuppressUserConversions);
2144 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2145 == ImplicitConversionSequence::BadConversion) {
2146 Candidate.Viable = false;
2147 break;
2148 }
2149 } else {
2150 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2151 // argument for which there is no corresponding parameter is
2152 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2153 Candidate.Conversions[ArgIdx + 1].ConversionKind
2154 = ImplicitConversionSequence::EllipsisConversion;
2155 }
2156 }
2157}
2158
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002159/// AddConversionCandidate - Add a C++ conversion function as a
2160/// candidate in the candidate set (C++ [over.match.conv],
2161/// C++ [over.match.copy]). From is the expression we're converting from,
2162/// and ToType is the type that we're eventually trying to convert to
2163/// (which may or may not be the same type as the type that the
2164/// conversion function produces).
2165void
2166Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2167 Expr *From, QualType ToType,
2168 OverloadCandidateSet& CandidateSet) {
2169 // Add this candidate
2170 CandidateSet.push_back(OverloadCandidate());
2171 OverloadCandidate& Candidate = CandidateSet.back();
2172 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002173 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002174 Candidate.IgnoreObjectArgument = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002175 Candidate.FinalConversion.setAsIdentityConversion();
2176 Candidate.FinalConversion.FromTypePtr
2177 = Conversion->getConversionType().getAsOpaquePtr();
2178 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2179
Douglas Gregor96176b32008-11-18 23:14:02 +00002180 // Determine the implicit conversion sequence for the implicit
2181 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002182 Candidate.Viable = true;
2183 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00002184 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002185
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002186 if (Candidate.Conversions[0].ConversionKind
2187 == ImplicitConversionSequence::BadConversion) {
2188 Candidate.Viable = false;
2189 return;
2190 }
2191
2192 // To determine what the conversion from the result of calling the
2193 // conversion function to the type we're eventually trying to
2194 // convert to (ToType), we need to synthesize a call to the
2195 // conversion function and attempt copy initialization from it. This
2196 // makes sure that we get the right semantics with respect to
2197 // lvalues/rvalues and the type. Fortunately, we can allocate this
2198 // call on the stack and we don't need its arguments to be
2199 // well-formed.
2200 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2201 SourceLocation());
2202 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002203 &ConversionRef, false);
Ted Kremenek668bf912009-02-09 20:51:47 +00002204
2205 // Note that it is safe to allocate CallExpr on the stack here because
2206 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2207 // allocator).
2208 CallExpr Call(Context, &ConversionFn, 0, 0,
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002209 Conversion->getConversionType().getNonReferenceType(),
2210 SourceLocation());
2211 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2212 switch (ICS.ConversionKind) {
2213 case ImplicitConversionSequence::StandardConversion:
2214 Candidate.FinalConversion = ICS.Standard;
2215 break;
2216
2217 case ImplicitConversionSequence::BadConversion:
2218 Candidate.Viable = false;
2219 break;
2220
2221 default:
2222 assert(false &&
2223 "Can only end up with a standard conversion sequence or failure");
2224 }
2225}
2226
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002227/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2228/// converts the given @c Object to a function pointer via the
2229/// conversion function @c Conversion, and then attempts to call it
2230/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2231/// the type of function that we'll eventually be calling.
2232void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
Douglas Gregor72564e72009-02-26 23:50:07 +00002233 const FunctionProtoType *Proto,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002234 Expr *Object, Expr **Args, unsigned NumArgs,
2235 OverloadCandidateSet& CandidateSet) {
2236 CandidateSet.push_back(OverloadCandidate());
2237 OverloadCandidate& Candidate = CandidateSet.back();
2238 Candidate.Function = 0;
2239 Candidate.Surrogate = Conversion;
2240 Candidate.Viable = true;
2241 Candidate.IsSurrogate = true;
Douglas Gregor88a35142008-12-22 05:46:06 +00002242 Candidate.IgnoreObjectArgument = false;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002243 Candidate.Conversions.resize(NumArgs + 1);
2244
2245 // Determine the implicit conversion sequence for the implicit
2246 // object parameter.
2247 ImplicitConversionSequence ObjectInit
2248 = TryObjectArgumentInitialization(Object, Conversion);
2249 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2250 Candidate.Viable = false;
2251 return;
2252 }
2253
2254 // The first conversion is actually a user-defined conversion whose
2255 // first conversion is ObjectInit's standard conversion (which is
2256 // effectively a reference binding). Record it as such.
2257 Candidate.Conversions[0].ConversionKind
2258 = ImplicitConversionSequence::UserDefinedConversion;
2259 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2260 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2261 Candidate.Conversions[0].UserDefined.After
2262 = Candidate.Conversions[0].UserDefined.Before;
2263 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2264
2265 // Find the
2266 unsigned NumArgsInProto = Proto->getNumArgs();
2267
2268 // (C++ 13.3.2p2): A candidate function having fewer than m
2269 // parameters is viable only if it has an ellipsis in its parameter
2270 // list (8.3.5).
2271 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2272 Candidate.Viable = false;
2273 return;
2274 }
2275
2276 // Function types don't have any default arguments, so just check if
2277 // we have enough arguments.
2278 if (NumArgs < NumArgsInProto) {
2279 // Not enough arguments.
2280 Candidate.Viable = false;
2281 return;
2282 }
2283
2284 // Determine the implicit conversion sequences for each of the
2285 // arguments.
2286 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2287 if (ArgIdx < NumArgsInProto) {
2288 // (C++ 13.3.2p3): for F to be a viable function, there shall
2289 // exist for each argument an implicit conversion sequence
2290 // (13.3.3.1) that converts that argument to the corresponding
2291 // parameter of F.
2292 QualType ParamType = Proto->getArgType(ArgIdx);
2293 Candidate.Conversions[ArgIdx + 1]
2294 = TryCopyInitialization(Args[ArgIdx], ParamType,
2295 /*SuppressUserConversions=*/false);
2296 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2297 == ImplicitConversionSequence::BadConversion) {
2298 Candidate.Viable = false;
2299 break;
2300 }
2301 } else {
2302 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2303 // argument for which there is no corresponding parameter is
2304 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2305 Candidate.Conversions[ArgIdx + 1].ConversionKind
2306 = ImplicitConversionSequence::EllipsisConversion;
2307 }
2308 }
2309}
2310
Douglas Gregor447b69e2008-11-19 03:25:36 +00002311/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2312/// an acceptable non-member overloaded operator for a call whose
2313/// arguments have types T1 (and, if non-empty, T2). This routine
2314/// implements the check in C++ [over.match.oper]p3b2 concerning
2315/// enumeration types.
2316static bool
2317IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2318 QualType T1, QualType T2,
2319 ASTContext &Context) {
2320 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2321 return true;
2322
Douglas Gregor72564e72009-02-26 23:50:07 +00002323 const FunctionProtoType *Proto = Fn->getType()->getAsFunctionProtoType();
Douglas Gregor447b69e2008-11-19 03:25:36 +00002324 if (Proto->getNumArgs() < 1)
2325 return false;
2326
2327 if (T1->isEnumeralType()) {
2328 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2329 if (Context.getCanonicalType(T1).getUnqualifiedType()
2330 == Context.getCanonicalType(ArgType).getUnqualifiedType())
2331 return true;
2332 }
2333
2334 if (Proto->getNumArgs() < 2)
2335 return false;
2336
2337 if (!T2.isNull() && T2->isEnumeralType()) {
2338 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2339 if (Context.getCanonicalType(T2).getUnqualifiedType()
2340 == Context.getCanonicalType(ArgType).getUnqualifiedType())
2341 return true;
2342 }
2343
2344 return false;
2345}
2346
Douglas Gregor96176b32008-11-18 23:14:02 +00002347/// AddOperatorCandidates - Add the overloaded operator candidates for
2348/// the operator Op that was used in an operator expression such as "x
2349/// Op y". S is the scope in which the expression occurred (used for
2350/// name lookup of the operator), Args/NumArgs provides the operator
2351/// arguments, and CandidateSet will store the added overload
2352/// candidates. (C++ [over.match.oper]).
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002353bool Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2354 SourceLocation OpLoc,
Douglas Gregor96176b32008-11-18 23:14:02 +00002355 Expr **Args, unsigned NumArgs,
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002356 OverloadCandidateSet& CandidateSet,
2357 SourceRange OpRange) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002358 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2359
2360 // C++ [over.match.oper]p3:
2361 // For a unary operator @ with an operand of a type whose
2362 // cv-unqualified version is T1, and for a binary operator @ with
2363 // a left operand of a type whose cv-unqualified version is T1 and
2364 // a right operand of a type whose cv-unqualified version is T2,
2365 // three sets of candidate functions, designated member
2366 // candidates, non-member candidates and built-in candidates, are
2367 // constructed as follows:
2368 QualType T1 = Args[0]->getType();
2369 QualType T2;
2370 if (NumArgs > 1)
2371 T2 = Args[1]->getType();
2372
2373 // -- If T1 is a class type, the set of member candidates is the
2374 // result of the qualified lookup of T1::operator@
2375 // (13.3.1.1.1); otherwise, the set of member candidates is
2376 // empty.
2377 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002378 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00002379 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002380 Oper != OperEnd; ++Oper)
2381 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2382 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor96176b32008-11-18 23:14:02 +00002383 /*SuppressUserConversions=*/false);
Douglas Gregor96176b32008-11-18 23:14:02 +00002384 }
2385
2386 // -- The set of non-member candidates is the result of the
2387 // unqualified lookup of operator@ in the context of the
2388 // expression according to the usual rules for name lookup in
2389 // unqualified function calls (3.4.2) except that all member
2390 // functions are ignored. However, if no operand has a class
2391 // type, only those non-member functions in the lookup set
2392 // that have a first parameter of type T1 or “reference to
2393 // (possibly cv-qualified) T1”, when T1 is an enumeration
2394 // type, or (if there is a right operand) a second parameter
2395 // of type T2 or “reference to (possibly cv-qualified) T2”,
2396 // when T2 is an enumeration type, are candidate functions.
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002397 LookupResult Operators = LookupName(S, OpName, LookupOperatorName);
2398
2399 if (Operators.isAmbiguous())
2400 return DiagnoseAmbiguousLookup(Operators, OpName, OpLoc, OpRange);
2401 else if (Operators) {
2402 for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2403 Op != OpEnd; ++Op) {
2404 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op))
2405 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2406 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2407 /*SuppressUserConversions=*/false);
Douglas Gregor96176b32008-11-18 23:14:02 +00002408 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002409 }
2410
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002411 // Since the set of non-member candidates corresponds to
2412 // *unqualified* lookup of the operator name, we also perform
2413 // argument-dependent lookup (C++ [basic.lookup.argdep]).
2414 AddArgumentDependentLookupCandidates(OpName, Args, NumArgs, CandidateSet);
2415
Douglas Gregor96176b32008-11-18 23:14:02 +00002416 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor74253732008-11-19 15:42:04 +00002417 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002418
2419 return false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002420}
2421
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002422/// AddBuiltinCandidate - Add a candidate for a built-in
2423/// operator. ResultTy and ParamTys are the result and parameter types
2424/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002425/// arguments being passed to the candidate. IsAssignmentOperator
2426/// should be true when this built-in candidate is an assignment
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002427/// operator. NumContextualBoolArguments is the number of arguments
2428/// (at the beginning of the argument list) that will be contextually
2429/// converted to bool.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002430void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2431 Expr **Args, unsigned NumArgs,
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002432 OverloadCandidateSet& CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002433 bool IsAssignmentOperator,
2434 unsigned NumContextualBoolArguments) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002435 // Add this candidate
2436 CandidateSet.push_back(OverloadCandidate());
2437 OverloadCandidate& Candidate = CandidateSet.back();
2438 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002439 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002440 Candidate.IgnoreObjectArgument = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002441 Candidate.BuiltinTypes.ResultTy = ResultTy;
2442 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2443 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2444
2445 // Determine the implicit conversion sequences for each of the
2446 // arguments.
2447 Candidate.Viable = true;
2448 Candidate.Conversions.resize(NumArgs);
2449 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002450 // C++ [over.match.oper]p4:
2451 // For the built-in assignment operators, conversions of the
2452 // left operand are restricted as follows:
2453 // -- no temporaries are introduced to hold the left operand, and
2454 // -- no user-defined conversions are applied to the left
2455 // operand to achieve a type match with the left-most
2456 // parameter of a built-in candidate.
2457 //
2458 // We block these conversions by turning off user-defined
2459 // conversions, since that is the only way that initialization of
2460 // a reference to a non-class type can occur from something that
2461 // is not of the same type.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002462 if (ArgIdx < NumContextualBoolArguments) {
2463 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2464 "Contextual conversion to bool requires bool type");
2465 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2466 } else {
2467 Candidate.Conversions[ArgIdx]
2468 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2469 ArgIdx == 0 && IsAssignmentOperator);
2470 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002471 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002472 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002473 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002474 break;
2475 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002476 }
2477}
2478
2479/// BuiltinCandidateTypeSet - A set of types that will be used for the
2480/// candidate operator functions for built-in operators (C++
2481/// [over.built]). The types are separated into pointer types and
2482/// enumeration types.
2483class BuiltinCandidateTypeSet {
2484 /// TypeSet - A set of types.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002485 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002486
2487 /// PointerTypes - The set of pointer types that will be used in the
2488 /// built-in candidates.
2489 TypeSet PointerTypes;
2490
2491 /// EnumerationTypes - The set of enumeration types that will be
2492 /// used in the built-in candidates.
2493 TypeSet EnumerationTypes;
2494
2495 /// Context - The AST context in which we will build the type sets.
2496 ASTContext &Context;
2497
2498 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2499
2500public:
2501 /// iterator - Iterates through the types that are part of the set.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002502 class iterator {
2503 TypeSet::iterator Base;
2504
2505 public:
2506 typedef QualType value_type;
2507 typedef QualType reference;
2508 typedef QualType pointer;
2509 typedef std::ptrdiff_t difference_type;
2510 typedef std::input_iterator_tag iterator_category;
2511
2512 iterator(TypeSet::iterator B) : Base(B) { }
2513
2514 iterator& operator++() {
2515 ++Base;
2516 return *this;
2517 }
2518
2519 iterator operator++(int) {
2520 iterator tmp(*this);
2521 ++(*this);
2522 return tmp;
2523 }
2524
2525 reference operator*() const {
2526 return QualType::getFromOpaquePtr(*Base);
2527 }
2528
2529 pointer operator->() const {
2530 return **this;
2531 }
2532
2533 friend bool operator==(iterator LHS, iterator RHS) {
2534 return LHS.Base == RHS.Base;
2535 }
2536
2537 friend bool operator!=(iterator LHS, iterator RHS) {
2538 return LHS.Base != RHS.Base;
2539 }
2540 };
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002541
2542 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2543
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002544 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2545 bool AllowExplicitConversions);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002546
2547 /// pointer_begin - First pointer type found;
2548 iterator pointer_begin() { return PointerTypes.begin(); }
2549
2550 /// pointer_end - Last pointer type found;
2551 iterator pointer_end() { return PointerTypes.end(); }
2552
2553 /// enumeration_begin - First enumeration type found;
2554 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2555
2556 /// enumeration_end - Last enumeration type found;
2557 iterator enumeration_end() { return EnumerationTypes.end(); }
2558};
2559
2560/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2561/// the set of pointer types along with any more-qualified variants of
2562/// that type. For example, if @p Ty is "int const *", this routine
2563/// will add "int const *", "int const volatile *", "int const
2564/// restrict *", and "int const volatile restrict *" to the set of
2565/// pointer types. Returns true if the add of @p Ty itself succeeded,
2566/// false otherwise.
2567bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2568 // Insert this type.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002569 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002570 return false;
2571
2572 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2573 QualType PointeeTy = PointerTy->getPointeeType();
2574 // FIXME: Optimize this so that we don't keep trying to add the same types.
2575
2576 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2577 // with all pointer conversions that don't cast away constness?
2578 if (!PointeeTy.isConstQualified())
2579 AddWithMoreQualifiedTypeVariants
2580 (Context.getPointerType(PointeeTy.withConst()));
2581 if (!PointeeTy.isVolatileQualified())
2582 AddWithMoreQualifiedTypeVariants
2583 (Context.getPointerType(PointeeTy.withVolatile()));
2584 if (!PointeeTy.isRestrictQualified())
2585 AddWithMoreQualifiedTypeVariants
2586 (Context.getPointerType(PointeeTy.withRestrict()));
2587 }
2588
2589 return true;
2590}
2591
2592/// AddTypesConvertedFrom - Add each of the types to which the type @p
2593/// Ty can be implicit converted to the given set of @p Types. We're
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002594/// primarily interested in pointer types and enumeration types.
2595/// AllowUserConversions is true if we should look at the conversion
2596/// functions of a class type, and AllowExplicitConversions if we
2597/// should also include the explicit conversion functions of a class
2598/// type.
2599void
2600BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2601 bool AllowUserConversions,
2602 bool AllowExplicitConversions) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002603 // Only deal with canonical types.
2604 Ty = Context.getCanonicalType(Ty);
2605
2606 // Look through reference types; they aren't part of the type of an
2607 // expression for the purposes of conversions.
2608 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2609 Ty = RefTy->getPointeeType();
2610
2611 // We don't care about qualifiers on the type.
2612 Ty = Ty.getUnqualifiedType();
2613
2614 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2615 QualType PointeeTy = PointerTy->getPointeeType();
2616
2617 // Insert our type, and its more-qualified variants, into the set
2618 // of types.
2619 if (!AddWithMoreQualifiedTypeVariants(Ty))
2620 return;
2621
2622 // Add 'cv void*' to our set of types.
2623 if (!Ty->isVoidType()) {
2624 QualType QualVoid
2625 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2626 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2627 }
2628
2629 // If this is a pointer to a class type, add pointers to its bases
2630 // (with the same level of cv-qualification as the original
2631 // derived class, of course).
2632 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2633 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2634 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2635 Base != ClassDecl->bases_end(); ++Base) {
2636 QualType BaseTy = Context.getCanonicalType(Base->getType());
2637 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2638
2639 // Add the pointer type, recursively, so that we get all of
2640 // the indirect base classes, too.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002641 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002642 }
2643 }
2644 } else if (Ty->isEnumeralType()) {
Douglas Gregorbf3af052008-11-13 20:12:29 +00002645 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002646 } else if (AllowUserConversions) {
2647 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2648 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2649 // FIXME: Visit conversion functions in the base classes, too.
2650 OverloadedFunctionDecl *Conversions
2651 = ClassDecl->getConversionFunctions();
2652 for (OverloadedFunctionDecl::function_iterator Func
2653 = Conversions->function_begin();
2654 Func != Conversions->function_end(); ++Func) {
2655 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002656 if (AllowExplicitConversions || !Conv->isExplicit())
2657 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002658 }
2659 }
2660 }
2661}
2662
Douglas Gregor74253732008-11-19 15:42:04 +00002663/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2664/// operator overloads to the candidate set (C++ [over.built]), based
2665/// on the operator @p Op and the arguments given. For example, if the
2666/// operator is a binary '+', this routine might add "int
2667/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002668void
Douglas Gregor74253732008-11-19 15:42:04 +00002669Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2670 Expr **Args, unsigned NumArgs,
2671 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002672 // The set of "promoted arithmetic types", which are the arithmetic
2673 // types are that preserved by promotion (C++ [over.built]p2). Note
2674 // that the first few of these types are the promoted integral
2675 // types; these types need to be first.
2676 // FIXME: What about complex?
2677 const unsigned FirstIntegralType = 0;
2678 const unsigned LastIntegralType = 13;
2679 const unsigned FirstPromotedIntegralType = 7,
2680 LastPromotedIntegralType = 13;
2681 const unsigned FirstPromotedArithmeticType = 7,
2682 LastPromotedArithmeticType = 16;
2683 const unsigned NumArithmeticTypes = 16;
2684 QualType ArithmeticTypes[NumArithmeticTypes] = {
2685 Context.BoolTy, Context.CharTy, Context.WCharTy,
2686 Context.SignedCharTy, Context.ShortTy,
2687 Context.UnsignedCharTy, Context.UnsignedShortTy,
2688 Context.IntTy, Context.LongTy, Context.LongLongTy,
2689 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2690 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2691 };
2692
2693 // Find all of the types that the arguments can convert to, but only
2694 // if the operator we're looking at has built-in operator candidates
2695 // that make use of these types.
2696 BuiltinCandidateTypeSet CandidateTypes(Context);
2697 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2698 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002699 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002700 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002701 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2702 (Op == OO_Star && NumArgs == 1)) {
2703 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002704 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2705 true,
2706 (Op == OO_Exclaim ||
2707 Op == OO_AmpAmp ||
2708 Op == OO_PipePipe));
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002709 }
2710
2711 bool isComparison = false;
2712 switch (Op) {
2713 case OO_None:
2714 case NUM_OVERLOADED_OPERATORS:
2715 assert(false && "Expected an overloaded operator");
2716 break;
2717
Douglas Gregor74253732008-11-19 15:42:04 +00002718 case OO_Star: // '*' is either unary or binary
2719 if (NumArgs == 1)
2720 goto UnaryStar;
2721 else
2722 goto BinaryStar;
2723 break;
2724
2725 case OO_Plus: // '+' is either unary or binary
2726 if (NumArgs == 1)
2727 goto UnaryPlus;
2728 else
2729 goto BinaryPlus;
2730 break;
2731
2732 case OO_Minus: // '-' is either unary or binary
2733 if (NumArgs == 1)
2734 goto UnaryMinus;
2735 else
2736 goto BinaryMinus;
2737 break;
2738
2739 case OO_Amp: // '&' is either unary or binary
2740 if (NumArgs == 1)
2741 goto UnaryAmp;
2742 else
2743 goto BinaryAmp;
2744
2745 case OO_PlusPlus:
2746 case OO_MinusMinus:
2747 // C++ [over.built]p3:
2748 //
2749 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2750 // is either volatile or empty, there exist candidate operator
2751 // functions of the form
2752 //
2753 // VQ T& operator++(VQ T&);
2754 // T operator++(VQ T&, int);
2755 //
2756 // C++ [over.built]p4:
2757 //
2758 // For every pair (T, VQ), where T is an arithmetic type other
2759 // than bool, and VQ is either volatile or empty, there exist
2760 // candidate operator functions of the form
2761 //
2762 // VQ T& operator--(VQ T&);
2763 // T operator--(VQ T&, int);
2764 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2765 Arith < NumArithmeticTypes; ++Arith) {
2766 QualType ArithTy = ArithmeticTypes[Arith];
2767 QualType ParamTypes[2]
2768 = { Context.getReferenceType(ArithTy), Context.IntTy };
2769
2770 // Non-volatile version.
2771 if (NumArgs == 1)
2772 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2773 else
2774 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2775
2776 // Volatile version
2777 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2778 if (NumArgs == 1)
2779 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2780 else
2781 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2782 }
2783
2784 // C++ [over.built]p5:
2785 //
2786 // For every pair (T, VQ), where T is a cv-qualified or
2787 // cv-unqualified object type, and VQ is either volatile or
2788 // empty, there exist candidate operator functions of the form
2789 //
2790 // T*VQ& operator++(T*VQ&);
2791 // T*VQ& operator--(T*VQ&);
2792 // T* operator++(T*VQ&, int);
2793 // T* operator--(T*VQ&, int);
2794 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2795 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2796 // Skip pointer types that aren't pointers to object types.
Douglas Gregorcb7de522008-11-26 23:31:11 +00002797 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002798 continue;
2799
2800 QualType ParamTypes[2] = {
2801 Context.getReferenceType(*Ptr), Context.IntTy
2802 };
2803
2804 // Without volatile
2805 if (NumArgs == 1)
2806 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2807 else
2808 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2809
2810 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2811 // With volatile
2812 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2813 if (NumArgs == 1)
2814 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2815 else
2816 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2817 }
2818 }
2819 break;
2820
2821 UnaryStar:
2822 // C++ [over.built]p6:
2823 // For every cv-qualified or cv-unqualified object type T, there
2824 // exist candidate operator functions of the form
2825 //
2826 // T& operator*(T*);
2827 //
2828 // C++ [over.built]p7:
2829 // For every function type T, there exist candidate operator
2830 // functions of the form
2831 // T& operator*(T*);
2832 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2833 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2834 QualType ParamTy = *Ptr;
2835 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2836 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2837 &ParamTy, Args, 1, CandidateSet);
2838 }
2839 break;
2840
2841 UnaryPlus:
2842 // C++ [over.built]p8:
2843 // For every type T, there exist candidate operator functions of
2844 // the form
2845 //
2846 // T* operator+(T*);
2847 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2848 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2849 QualType ParamTy = *Ptr;
2850 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2851 }
2852
2853 // Fall through
2854
2855 UnaryMinus:
2856 // C++ [over.built]p9:
2857 // For every promoted arithmetic type T, there exist candidate
2858 // operator functions of the form
2859 //
2860 // T operator+(T);
2861 // T operator-(T);
2862 for (unsigned Arith = FirstPromotedArithmeticType;
2863 Arith < LastPromotedArithmeticType; ++Arith) {
2864 QualType ArithTy = ArithmeticTypes[Arith];
2865 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2866 }
2867 break;
2868
2869 case OO_Tilde:
2870 // C++ [over.built]p10:
2871 // For every promoted integral type T, there exist candidate
2872 // operator functions of the form
2873 //
2874 // T operator~(T);
2875 for (unsigned Int = FirstPromotedIntegralType;
2876 Int < LastPromotedIntegralType; ++Int) {
2877 QualType IntTy = ArithmeticTypes[Int];
2878 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2879 }
2880 break;
2881
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002882 case OO_New:
2883 case OO_Delete:
2884 case OO_Array_New:
2885 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002886 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002887 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002888 break;
2889
2890 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002891 UnaryAmp:
2892 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002893 // C++ [over.match.oper]p3:
2894 // -- For the operator ',', the unary operator '&', or the
2895 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002896 break;
2897
2898 case OO_Less:
2899 case OO_Greater:
2900 case OO_LessEqual:
2901 case OO_GreaterEqual:
2902 case OO_EqualEqual:
2903 case OO_ExclaimEqual:
2904 // C++ [over.built]p15:
2905 //
2906 // For every pointer or enumeration type T, there exist
2907 // candidate operator functions of the form
2908 //
2909 // bool operator<(T, T);
2910 // bool operator>(T, T);
2911 // bool operator<=(T, T);
2912 // bool operator>=(T, T);
2913 // bool operator==(T, T);
2914 // bool operator!=(T, T);
2915 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2916 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2917 QualType ParamTypes[2] = { *Ptr, *Ptr };
2918 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2919 }
2920 for (BuiltinCandidateTypeSet::iterator Enum
2921 = CandidateTypes.enumeration_begin();
2922 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2923 QualType ParamTypes[2] = { *Enum, *Enum };
2924 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2925 }
2926
2927 // Fall through.
2928 isComparison = true;
2929
Douglas Gregor74253732008-11-19 15:42:04 +00002930 BinaryPlus:
2931 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002932 if (!isComparison) {
2933 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2934
2935 // C++ [over.built]p13:
2936 //
2937 // For every cv-qualified or cv-unqualified object type T
2938 // there exist candidate operator functions of the form
2939 //
2940 // T* operator+(T*, ptrdiff_t);
2941 // T& operator[](T*, ptrdiff_t); [BELOW]
2942 // T* operator-(T*, ptrdiff_t);
2943 // T* operator+(ptrdiff_t, T*);
2944 // T& operator[](ptrdiff_t, T*); [BELOW]
2945 //
2946 // C++ [over.built]p14:
2947 //
2948 // For every T, where T is a pointer to object type, there
2949 // exist candidate operator functions of the form
2950 //
2951 // ptrdiff_t operator-(T, T);
2952 for (BuiltinCandidateTypeSet::iterator Ptr
2953 = CandidateTypes.pointer_begin();
2954 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2955 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2956
2957 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2958 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2959
2960 if (Op == OO_Plus) {
2961 // T* operator+(ptrdiff_t, T*);
2962 ParamTypes[0] = ParamTypes[1];
2963 ParamTypes[1] = *Ptr;
2964 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2965 } else {
2966 // ptrdiff_t operator-(T, T);
2967 ParamTypes[1] = *Ptr;
2968 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2969 Args, 2, CandidateSet);
2970 }
2971 }
2972 }
2973 // Fall through
2974
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002975 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002976 BinaryStar:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002977 // C++ [over.built]p12:
2978 //
2979 // For every pair of promoted arithmetic types L and R, there
2980 // exist candidate operator functions of the form
2981 //
2982 // LR operator*(L, R);
2983 // LR operator/(L, R);
2984 // LR operator+(L, R);
2985 // LR operator-(L, R);
2986 // bool operator<(L, R);
2987 // bool operator>(L, R);
2988 // bool operator<=(L, R);
2989 // bool operator>=(L, R);
2990 // bool operator==(L, R);
2991 // bool operator!=(L, R);
2992 //
2993 // where LR is the result of the usual arithmetic conversions
2994 // between types L and R.
2995 for (unsigned Left = FirstPromotedArithmeticType;
2996 Left < LastPromotedArithmeticType; ++Left) {
2997 for (unsigned Right = FirstPromotedArithmeticType;
2998 Right < LastPromotedArithmeticType; ++Right) {
2999 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3000 QualType Result
3001 = isComparison? Context.BoolTy
3002 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3003 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3004 }
3005 }
3006 break;
3007
3008 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00003009 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003010 case OO_Caret:
3011 case OO_Pipe:
3012 case OO_LessLess:
3013 case OO_GreaterGreater:
3014 // C++ [over.built]p17:
3015 //
3016 // For every pair of promoted integral types L and R, there
3017 // exist candidate operator functions of the form
3018 //
3019 // LR operator%(L, R);
3020 // LR operator&(L, R);
3021 // LR operator^(L, R);
3022 // LR operator|(L, R);
3023 // L operator<<(L, R);
3024 // L operator>>(L, R);
3025 //
3026 // where LR is the result of the usual arithmetic conversions
3027 // between types L and R.
3028 for (unsigned Left = FirstPromotedIntegralType;
3029 Left < LastPromotedIntegralType; ++Left) {
3030 for (unsigned Right = FirstPromotedIntegralType;
3031 Right < LastPromotedIntegralType; ++Right) {
3032 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3033 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3034 ? LandR[0]
3035 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3036 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3037 }
3038 }
3039 break;
3040
3041 case OO_Equal:
3042 // C++ [over.built]p20:
3043 //
3044 // For every pair (T, VQ), where T is an enumeration or
3045 // (FIXME:) pointer to member type and VQ is either volatile or
3046 // empty, there exist candidate operator functions of the form
3047 //
3048 // VQ T& operator=(VQ T&, T);
3049 for (BuiltinCandidateTypeSet::iterator Enum
3050 = CandidateTypes.enumeration_begin();
3051 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3052 QualType ParamTypes[2];
3053
3054 // T& operator=(T&, T)
3055 ParamTypes[0] = Context.getReferenceType(*Enum);
3056 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003057 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003058 /*IsAssignmentOperator=*/false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003059
Douglas Gregor74253732008-11-19 15:42:04 +00003060 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3061 // volatile T& operator=(volatile T&, T)
3062 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
3063 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003064 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003065 /*IsAssignmentOperator=*/false);
Douglas Gregor74253732008-11-19 15:42:04 +00003066 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003067 }
3068 // Fall through.
3069
3070 case OO_PlusEqual:
3071 case OO_MinusEqual:
3072 // C++ [over.built]p19:
3073 //
3074 // For every pair (T, VQ), where T is any type and VQ is either
3075 // volatile or empty, there exist candidate operator functions
3076 // of the form
3077 //
3078 // T*VQ& operator=(T*VQ&, T*);
3079 //
3080 // C++ [over.built]p21:
3081 //
3082 // For every pair (T, VQ), where T is a cv-qualified or
3083 // cv-unqualified object type and VQ is either volatile or
3084 // empty, there exist candidate operator functions of the form
3085 //
3086 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3087 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3088 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3089 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3090 QualType ParamTypes[2];
3091 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3092
3093 // non-volatile version
3094 ParamTypes[0] = Context.getReferenceType(*Ptr);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003095 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3096 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003097
Douglas Gregor74253732008-11-19 15:42:04 +00003098 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3099 // volatile version
3100 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003101 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3102 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor74253732008-11-19 15:42:04 +00003103 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003104 }
3105 // Fall through.
3106
3107 case OO_StarEqual:
3108 case OO_SlashEqual:
3109 // C++ [over.built]p18:
3110 //
3111 // For every triple (L, VQ, R), where L is an arithmetic type,
3112 // VQ is either volatile or empty, and R is a promoted
3113 // arithmetic type, there exist candidate operator functions of
3114 // the form
3115 //
3116 // VQ L& operator=(VQ L&, R);
3117 // VQ L& operator*=(VQ L&, R);
3118 // VQ L& operator/=(VQ L&, R);
3119 // VQ L& operator+=(VQ L&, R);
3120 // VQ L& operator-=(VQ L&, R);
3121 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3122 for (unsigned Right = FirstPromotedArithmeticType;
3123 Right < LastPromotedArithmeticType; ++Right) {
3124 QualType ParamTypes[2];
3125 ParamTypes[1] = ArithmeticTypes[Right];
3126
3127 // Add this built-in operator as a candidate (VQ is empty).
3128 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003129 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3130 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003131
3132 // Add this built-in operator as a candidate (VQ is 'volatile').
3133 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3134 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003135 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3136 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003137 }
3138 }
3139 break;
3140
3141 case OO_PercentEqual:
3142 case OO_LessLessEqual:
3143 case OO_GreaterGreaterEqual:
3144 case OO_AmpEqual:
3145 case OO_CaretEqual:
3146 case OO_PipeEqual:
3147 // C++ [over.built]p22:
3148 //
3149 // For every triple (L, VQ, R), where L is an integral type, VQ
3150 // is either volatile or empty, and R is a promoted integral
3151 // type, there exist candidate operator functions of the form
3152 //
3153 // VQ L& operator%=(VQ L&, R);
3154 // VQ L& operator<<=(VQ L&, R);
3155 // VQ L& operator>>=(VQ L&, R);
3156 // VQ L& operator&=(VQ L&, R);
3157 // VQ L& operator^=(VQ L&, R);
3158 // VQ L& operator|=(VQ L&, R);
3159 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3160 for (unsigned Right = FirstPromotedIntegralType;
3161 Right < LastPromotedIntegralType; ++Right) {
3162 QualType ParamTypes[2];
3163 ParamTypes[1] = ArithmeticTypes[Right];
3164
3165 // Add this built-in operator as a candidate (VQ is empty).
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003166 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
3167 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3168
3169 // Add this built-in operator as a candidate (VQ is 'volatile').
3170 ParamTypes[0] = ArithmeticTypes[Left];
3171 ParamTypes[0].addVolatile();
3172 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
3173 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3174 }
3175 }
3176 break;
3177
Douglas Gregor74253732008-11-19 15:42:04 +00003178 case OO_Exclaim: {
3179 // C++ [over.operator]p23:
3180 //
3181 // There also exist candidate operator functions of the form
3182 //
3183 // bool operator!(bool);
3184 // bool operator&&(bool, bool); [BELOW]
3185 // bool operator||(bool, bool); [BELOW]
3186 QualType ParamTy = Context.BoolTy;
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003187 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3188 /*IsAssignmentOperator=*/false,
3189 /*NumContextualBoolArguments=*/1);
Douglas Gregor74253732008-11-19 15:42:04 +00003190 break;
3191 }
3192
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003193 case OO_AmpAmp:
3194 case OO_PipePipe: {
3195 // C++ [over.operator]p23:
3196 //
3197 // There also exist candidate operator functions of the form
3198 //
Douglas Gregor74253732008-11-19 15:42:04 +00003199 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003200 // bool operator&&(bool, bool);
3201 // bool operator||(bool, bool);
3202 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003203 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3204 /*IsAssignmentOperator=*/false,
3205 /*NumContextualBoolArguments=*/2);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003206 break;
3207 }
3208
3209 case OO_Subscript:
3210 // C++ [over.built]p13:
3211 //
3212 // For every cv-qualified or cv-unqualified object type T there
3213 // exist candidate operator functions of the form
3214 //
3215 // T* operator+(T*, ptrdiff_t); [ABOVE]
3216 // T& operator[](T*, ptrdiff_t);
3217 // T* operator-(T*, ptrdiff_t); [ABOVE]
3218 // T* operator+(ptrdiff_t, T*); [ABOVE]
3219 // T& operator[](ptrdiff_t, T*);
3220 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3221 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3222 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3223 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3224 QualType ResultTy = Context.getReferenceType(PointeeType);
3225
3226 // T& operator[](T*, ptrdiff_t)
3227 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3228
3229 // T& operator[](ptrdiff_t, T*);
3230 ParamTypes[0] = ParamTypes[1];
3231 ParamTypes[1] = *Ptr;
3232 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3233 }
3234 break;
3235
3236 case OO_ArrowStar:
3237 // FIXME: No support for pointer-to-members yet.
3238 break;
3239 }
3240}
3241
Douglas Gregorfa047642009-02-04 00:32:51 +00003242/// \brief Add function candidates found via argument-dependent lookup
3243/// to the set of overloading candidates.
3244///
3245/// This routine performs argument-dependent name lookup based on the
3246/// given function name (which may also be an operator name) and adds
3247/// all of the overload candidates found by ADL to the overload
3248/// candidate set (C++ [basic.lookup.argdep]).
3249void
3250Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3251 Expr **Args, unsigned NumArgs,
3252 OverloadCandidateSet& CandidateSet) {
3253 // Find all of the associated namespaces and classes based on the
3254 // arguments we have.
3255 AssociatedNamespaceSet AssociatedNamespaces;
3256 AssociatedClassSet AssociatedClasses;
3257 FindAssociatedClassesAndNamespaces(Args, NumArgs,
3258 AssociatedNamespaces, AssociatedClasses);
3259
3260 // C++ [basic.lookup.argdep]p3:
3261 //
3262 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3263 // and let Y be the lookup set produced by argument dependent
3264 // lookup (defined as follows). If X contains [...] then Y is
3265 // empty. Otherwise Y is the set of declarations found in the
3266 // namespaces associated with the argument types as described
3267 // below. The set of declarations found by the lookup of the name
3268 // is the union of X and Y.
3269 //
3270 // Here, we compute Y and add its members to the overloaded
3271 // candidate set.
3272 llvm::SmallPtrSet<FunctionDecl *, 16> KnownCandidates;
3273 for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
3274 NSEnd = AssociatedNamespaces.end();
3275 NS != NSEnd; ++NS) {
3276 // When considering an associated namespace, the lookup is the
3277 // same as the lookup performed when the associated namespace is
3278 // used as a qualifier (3.4.3.2) except that:
3279 //
3280 // -- Any using-directives in the associated namespace are
3281 // ignored.
3282 //
3283 // -- FIXME: Any namespace-scope friend functions declared in
3284 // associated classes are visible within their respective
3285 // namespaces even if they are not visible during an ordinary
3286 // lookup (11.4).
3287 DeclContext::lookup_iterator I, E;
3288 for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
3289 FunctionDecl *Func = dyn_cast<FunctionDecl>(*I);
3290 if (!Func)
3291 break;
3292
3293 if (KnownCandidates.empty()) {
3294 // Record all of the function candidates that we've already
3295 // added to the overload set, so that we don't add those same
3296 // candidates a second time.
3297 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3298 CandEnd = CandidateSet.end();
3299 Cand != CandEnd; ++Cand)
3300 KnownCandidates.insert(Cand->Function);
3301 }
3302
3303 // If we haven't seen this function before, add it as a
3304 // candidate.
3305 if (KnownCandidates.insert(Func))
3306 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3307 }
3308 }
3309}
3310
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003311/// isBetterOverloadCandidate - Determines whether the first overload
3312/// candidate is a better candidate than the second (C++ 13.3.3p1).
3313bool
3314Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3315 const OverloadCandidate& Cand2)
3316{
3317 // Define viable functions to be better candidates than non-viable
3318 // functions.
3319 if (!Cand2.Viable)
3320 return Cand1.Viable;
3321 else if (!Cand1.Viable)
3322 return false;
3323
Douglas Gregor88a35142008-12-22 05:46:06 +00003324 // C++ [over.match.best]p1:
3325 //
3326 // -- if F is a static member function, ICS1(F) is defined such
3327 // that ICS1(F) is neither better nor worse than ICS1(G) for
3328 // any function G, and, symmetrically, ICS1(G) is neither
3329 // better nor worse than ICS1(F).
3330 unsigned StartArg = 0;
3331 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3332 StartArg = 1;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003333
3334 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3335 // function than another viable function F2 if for all arguments i,
3336 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3337 // then...
3338 unsigned NumArgs = Cand1.Conversions.size();
3339 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3340 bool HasBetterConversion = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00003341 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003342 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3343 Cand2.Conversions[ArgIdx])) {
3344 case ImplicitConversionSequence::Better:
3345 // Cand1 has a better conversion sequence.
3346 HasBetterConversion = true;
3347 break;
3348
3349 case ImplicitConversionSequence::Worse:
3350 // Cand1 can't be better than Cand2.
3351 return false;
3352
3353 case ImplicitConversionSequence::Indistinguishable:
3354 // Do nothing.
3355 break;
3356 }
3357 }
3358
3359 if (HasBetterConversion)
3360 return true;
3361
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003362 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3363 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003364
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003365 // C++ [over.match.best]p1b4:
3366 //
3367 // -- the context is an initialization by user-defined conversion
3368 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3369 // from the return type of F1 to the destination type (i.e.,
3370 // the type of the entity being initialized) is a better
3371 // conversion sequence than the standard conversion sequence
3372 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00003373 if (Cand1.Function && Cand2.Function &&
3374 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003375 isa<CXXConversionDecl>(Cand2.Function)) {
3376 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3377 Cand2.FinalConversion)) {
3378 case ImplicitConversionSequence::Better:
3379 // Cand1 has a better conversion sequence.
3380 return true;
3381
3382 case ImplicitConversionSequence::Worse:
3383 // Cand1 can't be better than Cand2.
3384 return false;
3385
3386 case ImplicitConversionSequence::Indistinguishable:
3387 // Do nothing
3388 break;
3389 }
3390 }
3391
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003392 return false;
3393}
3394
3395/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3396/// within an overload candidate set. If overloading is successful,
3397/// the result will be OR_Success and Best will be set to point to the
3398/// best viable function within the candidate set. Otherwise, one of
3399/// several kinds of errors will be returned; see
3400/// Sema::OverloadingResult.
3401Sema::OverloadingResult
3402Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3403 OverloadCandidateSet::iterator& Best)
3404{
3405 // Find the best viable function.
3406 Best = CandidateSet.end();
3407 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3408 Cand != CandidateSet.end(); ++Cand) {
3409 if (Cand->Viable) {
3410 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3411 Best = Cand;
3412 }
3413 }
3414
3415 // If we didn't find any viable functions, abort.
3416 if (Best == CandidateSet.end())
3417 return OR_No_Viable_Function;
3418
3419 // Make sure that this function is better than every other viable
3420 // function. If not, we have an ambiguity.
3421 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3422 Cand != CandidateSet.end(); ++Cand) {
3423 if (Cand->Viable &&
3424 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003425 !isBetterOverloadCandidate(*Best, *Cand)) {
3426 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003427 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003428 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003429 }
3430
3431 // Best is the best viable function.
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003432 if (Best->Function &&
3433 (Best->Function->isDeleted() ||
3434 Best->Function->getAttr<UnavailableAttr>()))
3435 return OR_Deleted;
3436
3437 // If Best refers to a function that is either deleted (C++0x) or
3438 // unavailable (Clang extension) report an error.
3439
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003440 return OR_Success;
3441}
3442
3443/// PrintOverloadCandidates - When overload resolution fails, prints
3444/// diagnostic messages containing the candidates in the candidate
3445/// set. If OnlyViable is true, only viable candidates will be printed.
3446void
3447Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3448 bool OnlyViable)
3449{
3450 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3451 LastCand = CandidateSet.end();
3452 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003453 if (Cand->Viable || !OnlyViable) {
3454 if (Cand->Function) {
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003455 if (Cand->Function->isDeleted() ||
3456 Cand->Function->getAttr<UnavailableAttr>()) {
3457 // Deleted or "unavailable" function.
3458 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3459 << Cand->Function->isDeleted();
3460 } else {
3461 // Normal function
3462 // FIXME: Give a better reason!
3463 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3464 }
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003465 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003466 // Desugar the type of the surrogate down to a function type,
3467 // retaining as many typedefs as possible while still showing
3468 // the function type (and, therefore, its parameter types).
3469 QualType FnType = Cand->Surrogate->getConversionType();
3470 bool isReference = false;
3471 bool isPointer = false;
3472 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
3473 FnType = FnTypeRef->getPointeeType();
3474 isReference = true;
3475 }
3476 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3477 FnType = FnTypePtr->getPointeeType();
3478 isPointer = true;
3479 }
3480 // Desugar down to a function type.
3481 FnType = QualType(FnType->getAsFunctionType(), 0);
3482 // Reconstruct the pointer/reference as appropriate.
3483 if (isPointer) FnType = Context.getPointerType(FnType);
3484 if (isReference) FnType = Context.getReferenceType(FnType);
3485
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003486 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00003487 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003488 } else {
3489 // FIXME: We need to get the identifier in here
3490 // FIXME: Do we want the error message to point at the
3491 // operator? (built-ins won't have a location)
3492 QualType FnType
3493 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3494 Cand->BuiltinTypes.ParamTypes,
3495 Cand->Conversions.size(),
3496 false, 0);
3497
Chris Lattnerd1625842008-11-24 06:25:27 +00003498 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003499 }
3500 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003501 }
3502}
3503
Douglas Gregor904eed32008-11-10 20:40:00 +00003504/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3505/// an overloaded function (C++ [over.over]), where @p From is an
3506/// expression with overloaded function type and @p ToType is the type
3507/// we're trying to resolve to. For example:
3508///
3509/// @code
3510/// int f(double);
3511/// int f(int);
3512///
3513/// int (*pfd)(double) = f; // selects f(double)
3514/// @endcode
3515///
3516/// This routine returns the resulting FunctionDecl if it could be
3517/// resolved, and NULL otherwise. When @p Complain is true, this
3518/// routine will emit diagnostics if there is an error.
3519FunctionDecl *
Sebastian Redl33b399a2009-02-04 21:23:32 +00003520Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor904eed32008-11-10 20:40:00 +00003521 bool Complain) {
3522 QualType FunctionType = ToType;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003523 bool IsMember = false;
Daniel Dunbarbb710012009-02-26 19:13:44 +00003524 if (const PointerType *ToTypePtr = ToType->getAsPointerType())
Douglas Gregor904eed32008-11-10 20:40:00 +00003525 FunctionType = ToTypePtr->getPointeeType();
Daniel Dunbarbb710012009-02-26 19:13:44 +00003526 else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3527 FunctionType = ToTypeRef->getPointeeType();
Sebastian Redl33b399a2009-02-04 21:23:32 +00003528 else if (const MemberPointerType *MemTypePtr =
3529 ToType->getAsMemberPointerType()) {
3530 FunctionType = MemTypePtr->getPointeeType();
3531 IsMember = true;
3532 }
Douglas Gregor904eed32008-11-10 20:40:00 +00003533
3534 // We only look at pointers or references to functions.
3535 if (!FunctionType->isFunctionType())
3536 return 0;
3537
3538 // Find the actual overloaded function declaration.
3539 OverloadedFunctionDecl *Ovl = 0;
3540
3541 // C++ [over.over]p1:
3542 // [...] [Note: any redundant set of parentheses surrounding the
3543 // overloaded function name is ignored (5.1). ]
3544 Expr *OvlExpr = From->IgnoreParens();
3545
3546 // C++ [over.over]p1:
3547 // [...] The overloaded function name can be preceded by the &
3548 // operator.
3549 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3550 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3551 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3552 }
3553
3554 // Try to dig out the overloaded function.
3555 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3556 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3557
3558 // If there's no overloaded function declaration, we're done.
3559 if (!Ovl)
3560 return 0;
3561
3562 // Look through all of the overloaded functions, searching for one
3563 // whose type matches exactly.
3564 // FIXME: When templates or using declarations come along, we'll actually
3565 // have to deal with duplicates, partial ordering, etc. For now, we
3566 // can just do a simple search.
3567 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3568 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3569 Fun != Ovl->function_end(); ++Fun) {
3570 // C++ [over.over]p3:
3571 // Non-member functions and static member functions match
Sebastian Redl0defd762009-02-05 12:33:33 +00003572 // targets of type "pointer-to-function" or "reference-to-function."
3573 // Nonstatic member functions match targets of
Sebastian Redl33b399a2009-02-04 21:23:32 +00003574 // type "pointer-to-member-function."
3575 // Note that according to DR 247, the containing class does not matter.
3576 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3577 // Skip non-static functions when converting to pointer, and static
3578 // when converting to member pointer.
3579 if (Method->isStatic() == IsMember)
Douglas Gregor904eed32008-11-10 20:40:00 +00003580 continue;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003581 } else if (IsMember)
3582 continue;
Douglas Gregor904eed32008-11-10 20:40:00 +00003583
3584 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3585 return *Fun;
3586 }
3587
3588 return 0;
3589}
3590
Douglas Gregorf6b89692008-11-26 05:54:23 +00003591/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregorfa047642009-02-04 00:32:51 +00003592/// (which eventually refers to the declaration Func) and the call
3593/// arguments Args/NumArgs, attempt to resolve the function call down
3594/// to a specific function. If overload resolution succeeds, returns
3595/// the function declaration produced by overload
Douglas Gregor0a396682008-11-26 06:01:48 +00003596/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003597/// arguments and Fn, and returns NULL.
Douglas Gregorfa047642009-02-04 00:32:51 +00003598FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor17330012009-02-04 15:01:18 +00003599 DeclarationName UnqualifiedName,
Douglas Gregor0a396682008-11-26 06:01:48 +00003600 SourceLocation LParenLoc,
3601 Expr **Args, unsigned NumArgs,
3602 SourceLocation *CommaLocs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003603 SourceLocation RParenLoc,
Douglas Gregor17330012009-02-04 15:01:18 +00003604 bool &ArgumentDependentLookup) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003605 OverloadCandidateSet CandidateSet;
Douglas Gregor17330012009-02-04 15:01:18 +00003606
3607 // Add the functions denoted by Callee to the set of candidate
3608 // functions. While we're doing so, track whether argument-dependent
3609 // lookup still applies, per:
3610 //
3611 // C++0x [basic.lookup.argdep]p3:
3612 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3613 // and let Y be the lookup set produced by argument dependent
3614 // lookup (defined as follows). If X contains
3615 //
3616 // -- a declaration of a class member, or
3617 //
3618 // -- a block-scope function declaration that is not a
3619 // using-declaration, or
3620 //
3621 // -- a declaration that is neither a function or a function
3622 // template
3623 //
3624 // then Y is empty.
Douglas Gregorfa047642009-02-04 00:32:51 +00003625 if (OverloadedFunctionDecl *Ovl
Douglas Gregor17330012009-02-04 15:01:18 +00003626 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3627 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3628 FuncEnd = Ovl->function_end();
3629 Func != FuncEnd; ++Func) {
3630 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3631
3632 if ((*Func)->getDeclContext()->isRecord() ||
3633 (*Func)->getDeclContext()->isFunctionOrMethod())
3634 ArgumentDependentLookup = false;
3635 }
3636 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3637 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3638
3639 if (Func->getDeclContext()->isRecord() ||
3640 Func->getDeclContext()->isFunctionOrMethod())
3641 ArgumentDependentLookup = false;
3642 }
3643
3644 if (Callee)
3645 UnqualifiedName = Callee->getDeclName();
3646
Douglas Gregorfa047642009-02-04 00:32:51 +00003647 if (ArgumentDependentLookup)
Douglas Gregor17330012009-02-04 15:01:18 +00003648 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003649 CandidateSet);
3650
Douglas Gregorf6b89692008-11-26 05:54:23 +00003651 OverloadCandidateSet::iterator Best;
3652 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003653 case OR_Success:
3654 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003655
3656 case OR_No_Viable_Function:
Chris Lattner4330d652009-02-17 07:29:20 +00003657 Diag(Fn->getSourceRange().getBegin(),
Douglas Gregorf6b89692008-11-26 05:54:23 +00003658 diag::err_ovl_no_viable_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003659 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003660 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3661 break;
3662
3663 case OR_Ambiguous:
3664 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor17330012009-02-04 15:01:18 +00003665 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003666 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3667 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003668
3669 case OR_Deleted:
3670 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3671 << Best->Function->isDeleted()
3672 << UnqualifiedName
3673 << Fn->getSourceRange();
3674 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3675 break;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003676 }
3677
3678 // Overload resolution failed. Destroy all of the subexpressions and
3679 // return NULL.
3680 Fn->Destroy(Context);
3681 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3682 Args[Arg]->Destroy(Context);
3683 return 0;
3684}
3685
Douglas Gregor88a35142008-12-22 05:46:06 +00003686/// BuildCallToMemberFunction - Build a call to a member
3687/// function. MemExpr is the expression that refers to the member
3688/// function (and includes the object parameter), Args/NumArgs are the
3689/// arguments to the function call (not including the object
3690/// parameter). The caller needs to validate that the member
3691/// expression refers to a member function or an overloaded member
3692/// function.
3693Sema::ExprResult
3694Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
3695 SourceLocation LParenLoc, Expr **Args,
3696 unsigned NumArgs, SourceLocation *CommaLocs,
3697 SourceLocation RParenLoc) {
3698 // Dig out the member expression. This holds both the object
3699 // argument and the member function we're referring to.
3700 MemberExpr *MemExpr = 0;
3701 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
3702 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
3703 else
3704 MemExpr = dyn_cast<MemberExpr>(MemExprE);
3705 assert(MemExpr && "Building member call without member expression");
3706
3707 // Extract the object argument.
3708 Expr *ObjectArg = MemExpr->getBase();
3709 if (MemExpr->isArrow())
Ted Kremenek8189cde2009-02-07 01:47:29 +00003710 ObjectArg = new (Context) UnaryOperator(ObjectArg, UnaryOperator::Deref,
3711 ObjectArg->getType()->getAsPointerType()->getPointeeType(),
Douglas Gregor611a8c42009-02-19 00:52:42 +00003712 ObjectArg->getLocStart());
Douglas Gregor88a35142008-12-22 05:46:06 +00003713 CXXMethodDecl *Method = 0;
3714 if (OverloadedFunctionDecl *Ovl
3715 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
3716 // Add overload candidates
3717 OverloadCandidateSet CandidateSet;
3718 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3719 FuncEnd = Ovl->function_end();
3720 Func != FuncEnd; ++Func) {
3721 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
3722 Method = cast<CXXMethodDecl>(*Func);
3723 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
3724 /*SuppressUserConversions=*/false);
3725 }
3726
3727 OverloadCandidateSet::iterator Best;
3728 switch (BestViableFunction(CandidateSet, Best)) {
3729 case OR_Success:
3730 Method = cast<CXXMethodDecl>(Best->Function);
3731 break;
3732
3733 case OR_No_Viable_Function:
3734 Diag(MemExpr->getSourceRange().getBegin(),
3735 diag::err_ovl_no_viable_member_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003736 << Ovl->getDeclName() << MemExprE->getSourceRange();
Douglas Gregor88a35142008-12-22 05:46:06 +00003737 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3738 // FIXME: Leaking incoming expressions!
3739 return true;
3740
3741 case OR_Ambiguous:
3742 Diag(MemExpr->getSourceRange().getBegin(),
3743 diag::err_ovl_ambiguous_member_call)
3744 << Ovl->getDeclName() << MemExprE->getSourceRange();
3745 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3746 // FIXME: Leaking incoming expressions!
3747 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003748
3749 case OR_Deleted:
3750 Diag(MemExpr->getSourceRange().getBegin(),
3751 diag::err_ovl_deleted_member_call)
3752 << Best->Function->isDeleted()
3753 << Ovl->getDeclName() << MemExprE->getSourceRange();
3754 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3755 // FIXME: Leaking incoming expressions!
3756 return true;
Douglas Gregor88a35142008-12-22 05:46:06 +00003757 }
3758
3759 FixOverloadedFunctionReference(MemExpr, Method);
3760 } else {
3761 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
3762 }
3763
3764 assert(Method && "Member call to something that isn't a method?");
Ted Kremenek8189cde2009-02-07 01:47:29 +00003765 ExprOwningPtr<CXXMemberCallExpr>
Ted Kremenek668bf912009-02-09 20:51:47 +00003766 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
3767 NumArgs,
Douglas Gregor88a35142008-12-22 05:46:06 +00003768 Method->getResultType().getNonReferenceType(),
3769 RParenLoc));
3770
3771 // Convert the object argument (for a non-static member function call).
3772 if (!Method->isStatic() &&
3773 PerformObjectArgumentInitialization(ObjectArg, Method))
3774 return true;
3775 MemExpr->setBase(ObjectArg);
3776
3777 // Convert the rest of the arguments
Douglas Gregor72564e72009-02-26 23:50:07 +00003778 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00003779 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
3780 RParenLoc))
3781 return true;
3782
Sebastian Redl0eb23302009-01-19 00:08:26 +00003783 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor88a35142008-12-22 05:46:06 +00003784}
3785
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003786/// BuildCallToObjectOfClassType - Build a call to an object of class
3787/// type (C++ [over.call.object]), which can end up invoking an
3788/// overloaded function call operator (@c operator()) or performing a
3789/// user-defined conversion on the object argument.
Douglas Gregor88a35142008-12-22 05:46:06 +00003790Sema::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00003791Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3792 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003793 Expr **Args, unsigned NumArgs,
3794 SourceLocation *CommaLocs,
3795 SourceLocation RParenLoc) {
3796 assert(Object->getType()->isRecordType() && "Requires object type argument");
3797 const RecordType *Record = Object->getType()->getAsRecordType();
3798
3799 // C++ [over.call.object]p1:
3800 // If the primary-expression E in the function call syntax
3801 // evaluates to a class object of type “cv T”, then the set of
3802 // candidate functions includes at least the function call
3803 // operators of T. The function call operators of T are obtained by
3804 // ordinary lookup of the name operator() in the context of
3805 // (E).operator().
3806 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00003807 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003808 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00003809 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003810 Oper != OperEnd; ++Oper)
3811 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
3812 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003813
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003814 // C++ [over.call.object]p2:
3815 // In addition, for each conversion function declared in T of the
3816 // form
3817 //
3818 // operator conversion-type-id () cv-qualifier;
3819 //
3820 // where cv-qualifier is the same cv-qualification as, or a
3821 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00003822 // denotes the type "pointer to function of (P1,...,Pn) returning
3823 // R", or the type "reference to pointer to function of
3824 // (P1,...,Pn) returning R", or the type "reference to function
3825 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003826 // is also considered as a candidate function. Similarly,
3827 // surrogate call functions are added to the set of candidate
3828 // functions for each conversion function declared in an
3829 // accessible base class provided the function is not hidden
3830 // within T by another intervening declaration.
3831 //
3832 // FIXME: Look in base classes for more conversion operators!
3833 OverloadedFunctionDecl *Conversions
3834 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00003835 for (OverloadedFunctionDecl::function_iterator
3836 Func = Conversions->function_begin(),
3837 FuncEnd = Conversions->function_end();
3838 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003839 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3840
3841 // Strip the reference type (if any) and then the pointer type (if
3842 // any) to get down to what might be a function type.
3843 QualType ConvType = Conv->getConversionType().getNonReferenceType();
3844 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3845 ConvType = ConvPtrType->getPointeeType();
3846
Douglas Gregor72564e72009-02-26 23:50:07 +00003847 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003848 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3849 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003850
3851 // Perform overload resolution.
3852 OverloadCandidateSet::iterator Best;
3853 switch (BestViableFunction(CandidateSet, Best)) {
3854 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003855 // Overload resolution succeeded; we'll build the appropriate call
3856 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003857 break;
3858
3859 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00003860 Diag(Object->getSourceRange().getBegin(),
3861 diag::err_ovl_no_viable_object_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003862 << Object->getType() << Object->getSourceRange();
Sebastian Redle4c452c2008-11-22 13:44:36 +00003863 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003864 break;
3865
3866 case OR_Ambiguous:
3867 Diag(Object->getSourceRange().getBegin(),
3868 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003869 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003870 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3871 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003872
3873 case OR_Deleted:
3874 Diag(Object->getSourceRange().getBegin(),
3875 diag::err_ovl_deleted_object_call)
3876 << Best->Function->isDeleted()
3877 << Object->getType() << Object->getSourceRange();
3878 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3879 break;
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003880 }
3881
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003882 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003883 // We had an error; delete all of the subexpressions and return
3884 // the error.
Ted Kremenek8189cde2009-02-07 01:47:29 +00003885 Object->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003886 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Ted Kremenek8189cde2009-02-07 01:47:29 +00003887 Args[ArgIdx]->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003888 return true;
3889 }
3890
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003891 if (Best->Function == 0) {
3892 // Since there is no function declaration, this is one of the
3893 // surrogate candidates. Dig out the conversion function.
3894 CXXConversionDecl *Conv
3895 = cast<CXXConversionDecl>(
3896 Best->Conversions[0].UserDefined.ConversionFunction);
3897
3898 // We selected one of the surrogate functions that converts the
3899 // object parameter to a function pointer. Perform the conversion
3900 // on the object argument, then let ActOnCallExpr finish the job.
3901 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl0eb23302009-01-19 00:08:26 +00003902 ImpCastExprToType(Object,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003903 Conv->getConversionType().getNonReferenceType(),
3904 Conv->getConversionType()->isReferenceType());
Sebastian Redl0eb23302009-01-19 00:08:26 +00003905 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
3906 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
3907 CommaLocs, RParenLoc).release();
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003908 }
3909
3910 // We found an overloaded operator(). Build a CXXOperatorCallExpr
3911 // that calls this method, using Object for the implicit object
3912 // parameter and passing along the remaining arguments.
3913 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor72564e72009-02-26 23:50:07 +00003914 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003915
3916 unsigned NumArgsInProto = Proto->getNumArgs();
3917 unsigned NumArgsToCheck = NumArgs;
3918
3919 // Build the full argument list for the method call (the
3920 // implicit object parameter is placed at the beginning of the
3921 // list).
3922 Expr **MethodArgs;
3923 if (NumArgs < NumArgsInProto) {
3924 NumArgsToCheck = NumArgsInProto;
3925 MethodArgs = new Expr*[NumArgsInProto + 1];
3926 } else {
3927 MethodArgs = new Expr*[NumArgs + 1];
3928 }
3929 MethodArgs[0] = Object;
3930 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3931 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3932
Ted Kremenek8189cde2009-02-07 01:47:29 +00003933 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
3934 SourceLocation());
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003935 UsualUnaryConversions(NewFn);
3936
3937 // Once we've built TheCall, all of the expressions are properly
3938 // owned.
3939 QualType ResultTy = Method->getResultType().getNonReferenceType();
Ted Kremenek8189cde2009-02-07 01:47:29 +00003940 ExprOwningPtr<CXXOperatorCallExpr>
Ted Kremenek668bf912009-02-09 20:51:47 +00003941 TheCall(this, new (Context) CXXOperatorCallExpr(Context, NewFn, MethodArgs,
Ted Kremenek8189cde2009-02-07 01:47:29 +00003942 NumArgs + 1,
3943 ResultTy, RParenLoc));
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003944 delete [] MethodArgs;
3945
Douglas Gregor518fda12009-01-13 05:10:00 +00003946 // We may have default arguments. If so, we need to allocate more
3947 // slots in the call for them.
3948 if (NumArgs < NumArgsInProto)
Ted Kremenek8189cde2009-02-07 01:47:29 +00003949 TheCall->setNumArgs(Context, NumArgsInProto + 1);
Douglas Gregor518fda12009-01-13 05:10:00 +00003950 else if (NumArgs > NumArgsInProto)
3951 NumArgsToCheck = NumArgsInProto;
3952
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003953 // Initialize the implicit object parameter.
Douglas Gregor518fda12009-01-13 05:10:00 +00003954 if (PerformObjectArgumentInitialization(Object, Method))
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003955 return true;
3956 TheCall->setArg(0, Object);
3957
3958 // Check the argument types.
3959 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003960 Expr *Arg;
Douglas Gregor518fda12009-01-13 05:10:00 +00003961 if (i < NumArgs) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003962 Arg = Args[i];
Douglas Gregor518fda12009-01-13 05:10:00 +00003963
3964 // Pass the argument.
3965 QualType ProtoArgType = Proto->getArgType(i);
3966 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3967 return true;
3968 } else {
Ted Kremenek8189cde2009-02-07 01:47:29 +00003969 Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
Douglas Gregor518fda12009-01-13 05:10:00 +00003970 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003971
3972 TheCall->setArg(i + 1, Arg);
3973 }
3974
3975 // If this is a variadic call, handle args passed through "...".
3976 if (Proto->isVariadic()) {
3977 // Promote the arguments (C99 6.5.2.2p7).
3978 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3979 Expr *Arg = Args[i];
Anders Carlsson906fed02009-01-13 05:48:52 +00003980
Anders Carlssondce5e2c2009-01-16 16:48:51 +00003981 DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003982 TheCall->setArg(i + 1, Arg);
3983 }
3984 }
3985
Sebastian Redl0eb23302009-01-19 00:08:26 +00003986 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003987}
3988
Douglas Gregor8ba10742008-11-20 16:27:02 +00003989/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3990/// (if one exists), where @c Base is an expression of class type and
3991/// @c Member is the name of the member we're trying to find.
3992Action::ExprResult
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003993Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Douglas Gregor8ba10742008-11-20 16:27:02 +00003994 SourceLocation MemberLoc,
3995 IdentifierInfo &Member) {
3996 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3997
3998 // C++ [over.ref]p1:
3999 //
4000 // [...] An expression x->m is interpreted as (x.operator->())->m
4001 // for a class object x of type T if T::operator->() exists and if
4002 // the operator is selected as the best match function by the
4003 // overload resolution mechanism (13.3).
4004 // FIXME: look in base classes.
4005 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4006 OverloadCandidateSet CandidateSet;
4007 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004008
4009 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00004010 for (llvm::tie(Oper, OperEnd) = BaseRecord->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004011 Oper != OperEnd; ++Oper)
4012 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004013 /*SuppressUserConversions=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004014
Ted Kremenek8189cde2009-02-07 01:47:29 +00004015 ExprOwningPtr<Expr> BasePtr(this, Base);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004016
Douglas Gregor8ba10742008-11-20 16:27:02 +00004017 // Perform overload resolution.
4018 OverloadCandidateSet::iterator Best;
4019 switch (BestViableFunction(CandidateSet, Best)) {
4020 case OR_Success:
4021 // Overload resolution succeeded; we'll build the call below.
4022 break;
4023
4024 case OR_No_Viable_Function:
4025 if (CandidateSet.empty())
4026 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00004027 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004028 else
4029 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Chris Lattner4330d652009-02-17 07:29:20 +00004030 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004031 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004032 return true;
4033
4034 case OR_Ambiguous:
4035 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00004036 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004037 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004038 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004039
4040 case OR_Deleted:
4041 Diag(OpLoc, diag::err_ovl_deleted_oper)
4042 << Best->Function->isDeleted()
4043 << "operator->" << BasePtr->getSourceRange();
4044 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4045 return true;
Douglas Gregor8ba10742008-11-20 16:27:02 +00004046 }
4047
4048 // Convert the object parameter.
4049 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004050 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00004051 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004052
4053 // No concerns about early exits now.
4054 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004055
4056 // Build the operator call.
Ted Kremenek8189cde2009-02-07 01:47:29 +00004057 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4058 SourceLocation());
Douglas Gregor8ba10742008-11-20 16:27:02 +00004059 UsualUnaryConversions(FnExpr);
Ted Kremenek668bf912009-02-09 20:51:47 +00004060 Base = new (Context) CXXOperatorCallExpr(Context, FnExpr, &Base, 1,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004061 Method->getResultType().getNonReferenceType(),
4062 OpLoc);
Sebastian Redl0eb23302009-01-19 00:08:26 +00004063 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
4064 MemberLoc, Member).release();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004065}
4066
Douglas Gregor904eed32008-11-10 20:40:00 +00004067/// FixOverloadedFunctionReference - E is an expression that refers to
4068/// a C++ overloaded function (possibly with some parentheses and
4069/// perhaps a '&' around it). We have resolved the overloaded function
4070/// to the function declaration Fn, so patch up the expression E to
4071/// refer (possibly indirectly) to Fn.
4072void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4073 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4074 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4075 E->setType(PE->getSubExpr()->getType());
4076 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4077 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4078 "Can only take the address of an overloaded function");
Douglas Gregorb86b0572009-02-11 01:18:59 +00004079 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4080 if (Method->isStatic()) {
4081 // Do nothing: static member functions aren't any different
4082 // from non-member functions.
4083 }
4084 else if (QualifiedDeclRefExpr *DRE
4085 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4086 // We have taken the address of a pointer to member
4087 // function. Perform the computation here so that we get the
4088 // appropriate pointer to member type.
4089 DRE->setDecl(Fn);
4090 DRE->setType(Fn->getType());
4091 QualType ClassType
4092 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4093 E->setType(Context.getMemberPointerType(Fn->getType(),
4094 ClassType.getTypePtr()));
4095 return;
4096 }
4097 }
Douglas Gregor904eed32008-11-10 20:40:00 +00004098 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
Douglas Gregora35284b2009-02-11 00:19:33 +00004099 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
Douglas Gregor904eed32008-11-10 20:40:00 +00004100 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4101 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
4102 "Expected overloaded function");
4103 DR->setDecl(Fn);
4104 E->setType(Fn->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00004105 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4106 MemExpr->setMemberDecl(Fn);
4107 E->setType(Fn->getType());
Douglas Gregor904eed32008-11-10 20:40:00 +00004108 } else {
4109 assert(false && "Invalid reference to overloaded function");
4110 }
4111}
4112
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00004113} // end namespace clang