blob: ef175315e6e9e980667f2db675df24df1bc20652 [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor3fc749d2008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000042 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000045 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000050 ICC_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000051 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000052 ICC_Conversion
53 };
54 return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000069 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000072 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000077 ICR_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000078 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000079 ICR_Conversion
80 };
81 return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000095 "Complex promotion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000096 "Integral conversion",
97 "Floating conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000098 "Complex conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000099 "Floating-integral conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000100 "Complex-real conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000101 "Pointer conversion",
102 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000103 "Boolean conversion",
Douglas Gregorf9201e02009-02-11 23:02:49 +0000104 "Compatible-types conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000105 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000106 };
107 return Name[Kind];
108}
109
Douglas Gregor60d62c22008-10-31 16:23:19 +0000110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
Sebastian Redl85002392009-03-29 22:46:24 +0000119 RRefBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000120 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000121}
122
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127 ImplicitConversionRank Rank = ICR_Exact_Match;
128 if (GetConversionRank(First) > Rank)
129 Rank = GetConversionRank(First);
130 if (GetConversionRank(Second) > Rank)
131 Rank = GetConversionRank(Second);
132 if (GetConversionRank(Third) > Rank)
133 Rank = GetConversionRank(Third);
134 return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146 // Note that FromType has not necessarily been transformed by the
147 // array-to-pointer or function-to-pointer implicit conversions, so
148 // check for their presence as well as checking whether FromType is
149 // a pointer.
150 if (ToType->isBooleanType() &&
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000151 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000152 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153 return true;
154
155 return false;
156}
157
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169 // Note that FromType has not necessarily been transformed by the
170 // array-to-pointer implicit conversion, so check for its presence
171 // and redo the conversion to get a pointer.
172 if (First == ICK_Array_To_Pointer)
173 FromType = Context.getArrayDecayedType(FromType);
174
175 if (Second == ICK_Pointer_Conversion)
176 if (const PointerType* ToPtrType = ToType->getAsPointerType())
177 return ToPtrType->getPointeeType()->isVoidType();
178
179 return false;
180}
181
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185 bool PrintedSomething = false;
186 if (First != ICK_Identity) {
187 fprintf(stderr, "%s", GetImplicitConversionName(First));
188 PrintedSomething = true;
189 }
190
191 if (Second != ICK_Identity) {
192 if (PrintedSomething) {
193 fprintf(stderr, " -> ");
194 }
195 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000196
197 if (CopyConstructor) {
198 fprintf(stderr, " (by copy constructor)");
199 } else if (DirectBinding) {
200 fprintf(stderr, " (direct reference binding)");
201 } else if (ReferenceBinding) {
202 fprintf(stderr, " (reference binding)");
203 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000204 PrintedSomething = true;
205 }
206
207 if (Third != ICK_Identity) {
208 if (PrintedSomething) {
209 fprintf(stderr, " -> ");
210 }
211 fprintf(stderr, "%s", GetImplicitConversionName(Third));
212 PrintedSomething = true;
213 }
214
215 if (!PrintedSomething) {
216 fprintf(stderr, "No conversions required");
217 }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223 if (Before.First || Before.Second || Before.Third) {
224 Before.DebugPrint();
225 fprintf(stderr, " -> ");
226 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000228 if (After.First || After.Second || After.Third) {
229 fprintf(stderr, " -> ");
230 After.DebugPrint();
231 }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237 switch (ConversionKind) {
238 case StandardConversion:
239 fprintf(stderr, "Standard conversion: ");
240 Standard.DebugPrint();
241 break;
242 case UserDefinedConversion:
243 fprintf(stderr, "User-defined conversion: ");
244 UserDefined.DebugPrint();
245 break;
246 case EllipsisConversion:
247 fprintf(stderr, "Ellipsis conversion");
248 break;
249 case BadConversion:
250 fprintf(stderr, "Bad conversion");
251 break;
252 }
253
254 fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267// void f(int, float); // #1
268// void f(int, int); // #2
269// int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1. By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290 // Is this new function an overload of every function in the
291 // overload set?
292 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293 FuncEnd = Ovl->function_end();
294 for (; Func != FuncEnd; ++Func) {
295 if (!IsOverload(New, *Func, MatchedDecl)) {
296 MatchedDecl = Func;
297 return false;
298 }
299 }
300
301 // This function overloads every function in the overload set.
302 return true;
303 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
304 // Is the function New an overload of the function Old?
305 QualType OldQType = Context.getCanonicalType(Old->getType());
306 QualType NewQType = Context.getCanonicalType(New->getType());
307
308 // Compare the signatures (C++ 1.3.10) of the two functions to
309 // determine whether they are overloads. If we find any mismatch
310 // in the signature, they are overloads.
311
312 // If either of these functions is a K&R-style function (no
313 // prototype), then we consider them to have matching signatures.
Douglas Gregor72564e72009-02-26 23:50:07 +0000314 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
315 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000316 return false;
317
Douglas Gregor72564e72009-02-26 23:50:07 +0000318 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType.getTypePtr());
319 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType.getTypePtr());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000320
321 // The signature of a function includes the types of its
322 // parameters (C++ 1.3.10), which includes the presence or absence
323 // of the ellipsis; see C++ DR 357).
324 if (OldQType != NewQType &&
325 (OldType->getNumArgs() != NewType->getNumArgs() ||
326 OldType->isVariadic() != NewType->isVariadic() ||
327 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
328 NewType->arg_type_begin())))
329 return true;
330
331 // If the function is a class member, its signature includes the
332 // cv-qualifiers (if any) on the function itself.
333 //
334 // As part of this, also check whether one of the member functions
335 // is static, in which case they are not overloads (C++
336 // 13.1p2). While not part of the definition of the signature,
337 // this check is important to determine whether these functions
338 // can be overloaded.
339 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
340 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
341 if (OldMethod && NewMethod &&
342 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000343 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000344 return true;
345
346 // The signatures match; this is not an overload.
347 return false;
348 } else {
349 // (C++ 13p1):
350 // Only function declarations can be overloaded; object and type
351 // declarations cannot be overloaded.
352 return false;
353 }
354}
355
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000356/// TryImplicitConversion - Attempt to perform an implicit conversion
357/// from the given expression (Expr) to the given type (ToType). This
358/// function returns an implicit conversion sequence that can be used
359/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000360///
361/// void f(float f);
362/// void g(int i) { f(i); }
363///
364/// this routine would produce an implicit conversion sequence to
365/// describe the initialization of f from i, which will be a standard
366/// conversion sequence containing an lvalue-to-rvalue conversion (C++
367/// 4.1) followed by a floating-integral conversion (C++ 4.9).
368//
369/// Note that this routine only determines how the conversion can be
370/// performed; it does not actually perform the conversion. As such,
371/// it will not produce any diagnostics if no conversion is available,
372/// but will instead return an implicit conversion sequence of kind
373/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000374///
375/// If @p SuppressUserConversions, then user-defined conversions are
376/// not permitted.
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000377/// If @p AllowExplicit, then explicit user-defined conversions are
378/// permitted.
Sebastian Redle2b68332009-04-12 17:16:29 +0000379/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
380/// no matter its actual lvalueness.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000381ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000382Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000383 bool SuppressUserConversions,
Sebastian Redle2b68332009-04-12 17:16:29 +0000384 bool AllowExplicit, bool ForceRValue)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000385{
386 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000387 if (IsStandardConversion(From, ToType, ICS.Standard))
388 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000389 else if (getLangOptions().CPlusPlus &&
390 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
Sebastian Redle2b68332009-04-12 17:16:29 +0000391 !SuppressUserConversions, AllowExplicit,
392 ForceRValue)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000393 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000394 // C++ [over.ics.user]p4:
395 // A conversion of an expression of class type to the same class
396 // type is given Exact Match rank, and a conversion of an
397 // expression of class type to a base class of that type is
398 // given Conversion rank, in spite of the fact that a copy
399 // constructor (i.e., a user-defined conversion function) is
400 // called for those cases.
401 if (CXXConstructorDecl *Constructor
402 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000403 QualType FromCanon
404 = Context.getCanonicalType(From->getType().getUnqualifiedType());
405 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
406 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000407 // Turn this into a "standard" conversion sequence, so that it
408 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000409 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
410 ICS.Standard.setAsIdentityConversion();
411 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
412 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000413 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000414 if (ToCanon != FromCanon)
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000415 ICS.Standard.Second = ICK_Derived_To_Base;
416 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000417 }
Douglas Gregor734d9862009-01-30 23:27:23 +0000418
419 // C++ [over.best.ics]p4:
420 // However, when considering the argument of a user-defined
421 // conversion function that is a candidate by 13.3.1.3 when
422 // invoked for the copying of the temporary in the second step
423 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
424 // 13.3.1.6 in all cases, only standard conversion sequences and
425 // ellipsis conversion sequences are allowed.
426 if (SuppressUserConversions &&
427 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
428 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000429 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000430 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000431
432 return ICS;
433}
434
435/// IsStandardConversion - Determines whether there is a standard
436/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
437/// expression From to the type ToType. Standard conversion sequences
438/// only consider non-class types; for conversions that involve class
439/// types, use TryImplicitConversion. If a conversion exists, SCS will
440/// contain the standard conversion sequence required to perform this
441/// conversion and this routine will return true. Otherwise, this
442/// routine will return false and the value of SCS is unspecified.
443bool
444Sema::IsStandardConversion(Expr* From, QualType ToType,
445 StandardConversionSequence &SCS)
446{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000447 QualType FromType = From->getType();
448
Douglas Gregor60d62c22008-10-31 16:23:19 +0000449 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000450 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000451 SCS.Deprecated = false;
Douglas Gregor45920e82008-12-19 17:40:08 +0000452 SCS.IncompatibleObjC = false;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000453 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000454 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000455
Douglas Gregorf9201e02009-02-11 23:02:49 +0000456 // There are no standard conversions for class types in C++, so
457 // abort early. When overloading in C, however, we do permit
458 if (FromType->isRecordType() || ToType->isRecordType()) {
459 if (getLangOptions().CPlusPlus)
460 return false;
461
462 // When we're overloading in C, we allow, as standard conversions,
463 }
464
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000465 // The first conversion can be an lvalue-to-rvalue conversion,
466 // array-to-pointer conversion, or function-to-pointer conversion
467 // (C++ 4p1).
468
469 // Lvalue-to-rvalue conversion (C++ 4.1):
470 // An lvalue (3.10) of a non-function, non-array type T can be
471 // converted to an rvalue.
472 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
473 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000474 !FromType->isFunctionType() && !FromType->isArrayType() &&
Douglas Gregor063daf62009-03-13 18:40:31 +0000475 Context.getCanonicalType(FromType) != Context.OverloadTy) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000476 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000477
478 // If T is a non-class type, the type of the rvalue is the
479 // cv-unqualified version of T. Otherwise, the type of the rvalue
Douglas Gregorf9201e02009-02-11 23:02:49 +0000480 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
481 // just strip the qualifiers because they don't matter.
482
483 // FIXME: Doesn't see through to qualifiers behind a typedef!
Douglas Gregor60d62c22008-10-31 16:23:19 +0000484 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000485 }
486 // Array-to-pointer conversion (C++ 4.2)
487 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000488 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000489
490 // An lvalue or rvalue of type "array of N T" or "array of unknown
491 // bound of T" can be converted to an rvalue of type "pointer to
492 // T" (C++ 4.2p1).
493 FromType = Context.getArrayDecayedType(FromType);
494
495 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
496 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000497 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000498
499 // For the purpose of ranking in overload resolution
500 // (13.3.3.1.1), this conversion is considered an
501 // array-to-pointer conversion followed by a qualification
502 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000503 SCS.Second = ICK_Identity;
504 SCS.Third = ICK_Qualification;
505 SCS.ToTypePtr = ToType.getAsOpaquePtr();
506 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000507 }
508 }
509 // Function-to-pointer conversion (C++ 4.3).
510 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000511 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000512
513 // An lvalue of function type T can be converted to an rvalue of
514 // type "pointer to T." The result is a pointer to the
515 // function. (C++ 4.3p1).
516 FromType = Context.getPointerType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000517 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000518 // Address of overloaded function (C++ [over.over]).
519 else if (FunctionDecl *Fn
520 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
521 SCS.First = ICK_Function_To_Pointer;
522
523 // We were able to resolve the address of the overloaded function,
524 // so we can convert to the type of that function.
525 FromType = Fn->getType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +0000526 if (ToType->isLValueReferenceType())
527 FromType = Context.getLValueReferenceType(FromType);
528 else if (ToType->isRValueReferenceType())
529 FromType = Context.getRValueReferenceType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000530 else if (ToType->isMemberPointerType()) {
531 // Resolve address only succeeds if both sides are member pointers,
532 // but it doesn't have to be the same class. See DR 247.
533 // Note that this means that the type of &Derived::fn can be
534 // Ret (Base::*)(Args) if the fn overload actually found is from the
535 // base class, even if it was brought into the derived class via a
536 // using declaration. The standard isn't clear on this issue at all.
537 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
538 FromType = Context.getMemberPointerType(FromType,
539 Context.getTypeDeclType(M->getParent()).getTypePtr());
540 } else
Douglas Gregor904eed32008-11-10 20:40:00 +0000541 FromType = Context.getPointerType(FromType);
542 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000543 // We don't require any conversions for the first step.
544 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000545 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000546 }
547
548 // The second conversion can be an integral promotion, floating
549 // point promotion, integral conversion, floating point conversion,
550 // floating-integral conversion, pointer conversion,
551 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregorf9201e02009-02-11 23:02:49 +0000552 // For overloading in C, this can also be a "compatible-type"
553 // conversion.
Douglas Gregor45920e82008-12-19 17:40:08 +0000554 bool IncompatibleObjC = false;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000555 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000556 // The unqualified versions of the types are the same: there's no
557 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000558 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000559 }
560 // Integral promotion (C++ 4.5).
561 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000562 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000563 FromType = ToType.getUnqualifiedType();
564 }
565 // Floating point promotion (C++ 4.6).
566 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000567 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000568 FromType = ToType.getUnqualifiedType();
569 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000570 // Complex promotion (Clang extension)
571 else if (IsComplexPromotion(FromType, ToType)) {
572 SCS.Second = ICK_Complex_Promotion;
573 FromType = ToType.getUnqualifiedType();
574 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000575 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000576 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000577 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000578 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000579 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000580 FromType = ToType.getUnqualifiedType();
581 }
582 // Floating point conversions (C++ 4.8).
583 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000584 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000585 FromType = ToType.getUnqualifiedType();
586 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000587 // Complex conversions (C99 6.3.1.6)
588 else if (FromType->isComplexType() && ToType->isComplexType()) {
589 SCS.Second = ICK_Complex_Conversion;
590 FromType = ToType.getUnqualifiedType();
591 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000592 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000593 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000594 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000595 ToType->isIntegralType() && !ToType->isBooleanType() &&
596 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000597 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
598 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000599 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000600 FromType = ToType.getUnqualifiedType();
601 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000602 // Complex-real conversions (C99 6.3.1.7)
603 else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
604 (ToType->isComplexType() && FromType->isArithmeticType())) {
605 SCS.Second = ICK_Complex_Real;
606 FromType = ToType.getUnqualifiedType();
607 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000608 // Pointer conversions (C++ 4.10).
Douglas Gregor45920e82008-12-19 17:40:08 +0000609 else if (IsPointerConversion(From, FromType, ToType, FromType,
610 IncompatibleObjC)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000611 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor45920e82008-12-19 17:40:08 +0000612 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl07779722008-10-31 14:43:28 +0000613 }
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000614 // Pointer to member conversions (4.11).
615 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
616 SCS.Second = ICK_Pointer_Member;
617 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000618 // Boolean conversions (C++ 4.12).
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000619 else if (ToType->isBooleanType() &&
620 (FromType->isArithmeticType() ||
621 FromType->isEnumeralType() ||
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000622 FromType->isPointerType() ||
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000623 FromType->isBlockPointerType() ||
Sebastian Redl6e8ed162009-05-10 18:38:11 +0000624 FromType->isMemberPointerType() ||
625 FromType->isNullPtrType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000626 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000627 FromType = Context.BoolTy;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000628 }
629 // Compatible conversions (Clang extension for C function overloading)
630 else if (!getLangOptions().CPlusPlus &&
631 Context.typesAreCompatible(ToType, FromType)) {
632 SCS.Second = ICK_Compatible_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000633 } else {
634 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000635 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000636 }
637
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000638 QualType CanonFrom;
639 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000640 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000641 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000642 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000643 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000644 CanonFrom = Context.getCanonicalType(FromType);
645 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000646 } else {
647 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000648 SCS.Third = ICK_Identity;
649
650 // C++ [over.best.ics]p6:
651 // [...] Any difference in top-level cv-qualification is
652 // subsumed by the initialization itself and does not constitute
653 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000654 CanonFrom = Context.getCanonicalType(FromType);
655 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000656 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000657 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
658 FromType = ToType;
659 CanonFrom = CanonTo;
660 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000661 }
662
663 // If we have not converted the argument type to the parameter type,
664 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000665 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000666 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000667
Douglas Gregor60d62c22008-10-31 16:23:19 +0000668 SCS.ToTypePtr = FromType.getAsOpaquePtr();
669 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000670}
671
672/// IsIntegralPromotion - Determines whether the conversion from the
673/// expression From (whose potentially-adjusted type is FromType) to
674/// ToType is an integral promotion (C++ 4.5). If so, returns true and
675/// sets PromotedType to the promoted type.
676bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
677{
678 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000679 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000680 if (!To) {
681 return false;
682 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000683
684 // An rvalue of type char, signed char, unsigned char, short int, or
685 // unsigned short int can be converted to an rvalue of type int if
686 // int can represent all the values of the source type; otherwise,
687 // the source rvalue can be converted to an rvalue of type unsigned
688 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000689 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000690 if (// We can promote any signed, promotable integer type to an int
691 (FromType->isSignedIntegerType() ||
692 // We can promote any unsigned integer type whose size is
693 // less than int to an int.
694 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000695 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000696 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000697 }
698
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000699 return To->getKind() == BuiltinType::UInt;
700 }
701
702 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
703 // can be converted to an rvalue of the first of the following types
704 // that can represent all the values of its underlying type: int,
705 // unsigned int, long, or unsigned long (C++ 4.5p2).
706 if ((FromType->isEnumeralType() || FromType->isWideCharType())
707 && ToType->isIntegerType()) {
708 // Determine whether the type we're converting from is signed or
709 // unsigned.
710 bool FromIsSigned;
711 uint64_t FromSize = Context.getTypeSize(FromType);
712 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
713 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
714 FromIsSigned = UnderlyingType->isSignedIntegerType();
715 } else {
716 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
717 FromIsSigned = true;
718 }
719
720 // The types we'll try to promote to, in the appropriate
721 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000722 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000723 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000724 Context.LongTy, Context.UnsignedLongTy ,
725 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000726 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000727 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000728 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
729 if (FromSize < ToSize ||
730 (FromSize == ToSize &&
731 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
732 // We found the type that we can promote to. If this is the
733 // type we wanted, we have a promotion. Otherwise, no
734 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000735 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000736 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
737 }
738 }
739 }
740
741 // An rvalue for an integral bit-field (9.6) can be converted to an
742 // rvalue of type int if int can represent all the values of the
743 // bit-field; otherwise, it can be converted to unsigned int if
744 // unsigned int can represent all the values of the bit-field. If
745 // the bit-field is larger yet, no integral promotion applies to
746 // it. If the bit-field has an enumerated type, it is treated as any
747 // other value of that type for promotion purposes (C++ 4.5p3).
Mike Stump390b4cc2009-05-16 07:39:55 +0000748 // FIXME: We should delay checking of bit-fields until we actually perform the
749 // conversion.
Douglas Gregor33bbbc52009-05-02 02:18:30 +0000750 using llvm::APSInt;
751 if (From)
752 if (FieldDecl *MemberDecl = From->getBitField()) {
Douglas Gregor86f19402008-12-20 23:49:58 +0000753 APSInt BitWidth;
Douglas Gregor33bbbc52009-05-02 02:18:30 +0000754 if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
755 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
756 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
757 ToSize = Context.getTypeSize(ToType);
Douglas Gregor86f19402008-12-20 23:49:58 +0000758
759 // Are we promoting to an int from a bitfield that fits in an int?
760 if (BitWidth < ToSize ||
761 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
762 return To->getKind() == BuiltinType::Int;
763 }
764
765 // Are we promoting to an unsigned int from an unsigned bitfield
766 // that fits into an unsigned int?
767 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
768 return To->getKind() == BuiltinType::UInt;
769 }
770
771 return false;
Sebastian Redl07779722008-10-31 14:43:28 +0000772 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000773 }
Douglas Gregor33bbbc52009-05-02 02:18:30 +0000774
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000775 // An rvalue of type bool can be converted to an rvalue of type int,
776 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000777 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000778 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000779 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000780
781 return false;
782}
783
784/// IsFloatingPointPromotion - Determines whether the conversion from
785/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
786/// returns true and sets PromotedType to the promoted type.
787bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
788{
789 /// An rvalue of type float can be converted to an rvalue of type
790 /// double. (C++ 4.6p1).
791 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000792 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000793 if (FromBuiltin->getKind() == BuiltinType::Float &&
794 ToBuiltin->getKind() == BuiltinType::Double)
795 return true;
796
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000797 // C99 6.3.1.5p1:
798 // When a float is promoted to double or long double, or a
799 // double is promoted to long double [...].
800 if (!getLangOptions().CPlusPlus &&
801 (FromBuiltin->getKind() == BuiltinType::Float ||
802 FromBuiltin->getKind() == BuiltinType::Double) &&
803 (ToBuiltin->getKind() == BuiltinType::LongDouble))
804 return true;
805 }
806
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000807 return false;
808}
809
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000810/// \brief Determine if a conversion is a complex promotion.
811///
812/// A complex promotion is defined as a complex -> complex conversion
813/// where the conversion between the underlying real types is a
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000814/// floating-point or integral promotion.
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000815bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
816 const ComplexType *FromComplex = FromType->getAsComplexType();
817 if (!FromComplex)
818 return false;
819
820 const ComplexType *ToComplex = ToType->getAsComplexType();
821 if (!ToComplex)
822 return false;
823
824 return IsFloatingPointPromotion(FromComplex->getElementType(),
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000825 ToComplex->getElementType()) ||
826 IsIntegralPromotion(0, FromComplex->getElementType(),
827 ToComplex->getElementType());
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000828}
829
Douglas Gregorcb7de522008-11-26 23:31:11 +0000830/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
831/// the pointer type FromPtr to a pointer to type ToPointee, with the
832/// same type qualifiers as FromPtr has on its pointee type. ToType,
833/// if non-empty, will be a pointer to ToType that may or may not have
834/// the right set of qualifiers on its pointee.
835static QualType
836BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
837 QualType ToPointee, QualType ToType,
838 ASTContext &Context) {
839 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
840 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
841 unsigned Quals = CanonFromPointee.getCVRQualifiers();
842
843 // Exact qualifier match -> return the pointer type we're converting to.
844 if (CanonToPointee.getCVRQualifiers() == Quals) {
845 // ToType is exactly what we need. Return it.
846 if (ToType.getTypePtr())
847 return ToType;
848
849 // Build a pointer to ToPointee. It has the right qualifiers
850 // already.
851 return Context.getPointerType(ToPointee);
852 }
853
854 // Just build a canonical type that has the right qualifiers.
855 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
856}
857
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000858/// IsPointerConversion - Determines whether the conversion of the
859/// expression From, which has the (possibly adjusted) type FromType,
860/// can be converted to the type ToType via a pointer conversion (C++
861/// 4.10). If so, returns true and places the converted type (that
862/// might differ from ToType in its cv-qualifiers at some level) into
863/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000864///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000865/// This routine also supports conversions to and from block pointers
866/// and conversions with Objective-C's 'id', 'id<protocols...>', and
867/// pointers to interfaces. FIXME: Once we've determined the
868/// appropriate overloading rules for Objective-C, we may want to
869/// split the Objective-C checks into a different routine; however,
870/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor45920e82008-12-19 17:40:08 +0000871/// conversions, so for now they live here. IncompatibleObjC will be
872/// set if the conversion is an allowed Objective-C conversion that
873/// should result in a warning.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000874bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor45920e82008-12-19 17:40:08 +0000875 QualType& ConvertedType,
876 bool &IncompatibleObjC)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000877{
Douglas Gregor45920e82008-12-19 17:40:08 +0000878 IncompatibleObjC = false;
Douglas Gregorc7887512008-12-19 19:13:09 +0000879 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
880 return true;
Douglas Gregor45920e82008-12-19 17:40:08 +0000881
Douglas Gregor27b09ac2008-12-22 20:51:52 +0000882 // Conversion from a null pointer constant to any Objective-C pointer type.
883 if (Context.isObjCObjectPointerType(ToType) &&
884 From->isNullPointerConstant(Context)) {
885 ConvertedType = ToType;
886 return true;
887 }
888
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000889 // Blocks: Block pointers can be converted to void*.
890 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
891 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
892 ConvertedType = ToType;
893 return true;
894 }
895 // Blocks: A null pointer constant can be converted to a block
896 // pointer type.
897 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
898 ConvertedType = ToType;
899 return true;
900 }
901
Sebastian Redl6e8ed162009-05-10 18:38:11 +0000902 // If the left-hand-side is nullptr_t, the right side can be a null
903 // pointer constant.
904 if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
905 ConvertedType = ToType;
906 return true;
907 }
908
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000909 const PointerType* ToTypePtr = ToType->getAsPointerType();
910 if (!ToTypePtr)
911 return false;
912
913 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
914 if (From->isNullPointerConstant(Context)) {
915 ConvertedType = ToType;
916 return true;
917 }
Sebastian Redl07779722008-10-31 14:43:28 +0000918
Douglas Gregorcb7de522008-11-26 23:31:11 +0000919 // Beyond this point, both types need to be pointers.
920 const PointerType *FromTypePtr = FromType->getAsPointerType();
921 if (!FromTypePtr)
922 return false;
923
924 QualType FromPointeeType = FromTypePtr->getPointeeType();
925 QualType ToPointeeType = ToTypePtr->getPointeeType();
926
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000927 // An rvalue of type "pointer to cv T," where T is an object type,
928 // can be converted to an rvalue of type "pointer to cv void" (C++
929 // 4.10p2).
Douglas Gregorbad0e652009-03-24 20:32:41 +0000930 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000931 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
932 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000933 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000934 return true;
935 }
936
Douglas Gregorf9201e02009-02-11 23:02:49 +0000937 // When we're overloading in C, we allow a special kind of pointer
938 // conversion for compatible-but-not-identical pointee types.
939 if (!getLangOptions().CPlusPlus &&
940 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
941 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
942 ToPointeeType,
943 ToType, Context);
944 return true;
945 }
946
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000947 // C++ [conv.ptr]p3:
948 //
949 // An rvalue of type "pointer to cv D," where D is a class type,
950 // can be converted to an rvalue of type "pointer to cv B," where
951 // B is a base class (clause 10) of D. If B is an inaccessible
952 // (clause 11) or ambiguous (10.2) base class of D, a program that
953 // necessitates this conversion is ill-formed. The result of the
954 // conversion is a pointer to the base class sub-object of the
955 // derived class object. The null pointer value is converted to
956 // the null pointer value of the destination type.
957 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000958 // Note that we do not check for ambiguity or inaccessibility
959 // here. That is handled by CheckPointerConversion.
Douglas Gregorf9201e02009-02-11 23:02:49 +0000960 if (getLangOptions().CPlusPlus &&
961 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
Douglas Gregorcb7de522008-11-26 23:31:11 +0000962 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000963 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
964 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000965 ToType, Context);
966 return true;
967 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000968
Douglas Gregorc7887512008-12-19 19:13:09 +0000969 return false;
970}
971
972/// isObjCPointerConversion - Determines whether this is an
973/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
974/// with the same arguments and return values.
975bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
976 QualType& ConvertedType,
977 bool &IncompatibleObjC) {
978 if (!getLangOptions().ObjC1)
979 return false;
980
981 // Conversions with Objective-C's id<...>.
982 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
983 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
984 ConvertedType = ToType;
985 return true;
986 }
987
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000988 // Beyond this point, both types need to be pointers or block pointers.
989 QualType ToPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000990 const PointerType* ToTypePtr = ToType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000991 if (ToTypePtr)
992 ToPointeeType = ToTypePtr->getPointeeType();
993 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
994 ToPointeeType = ToBlockPtr->getPointeeType();
995 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000996 return false;
997
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000998 QualType FromPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000999 const PointerType *FromTypePtr = FromType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001000 if (FromTypePtr)
1001 FromPointeeType = FromTypePtr->getPointeeType();
1002 else if (const BlockPointerType *FromBlockPtr
1003 = FromType->getAsBlockPointerType())
1004 FromPointeeType = FromBlockPtr->getPointeeType();
1005 else
Douglas Gregorc7887512008-12-19 19:13:09 +00001006 return false;
1007
Douglas Gregorcb7de522008-11-26 23:31:11 +00001008 // Objective C++: We're able to convert from a pointer to an
1009 // interface to a pointer to a different interface.
1010 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
1011 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1012 if (FromIface && ToIface &&
1013 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001014 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregorbf408182008-11-27 00:52:49 +00001015 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001016 ToType, Context);
1017 return true;
1018 }
1019
Douglas Gregor45920e82008-12-19 17:40:08 +00001020 if (FromIface && ToIface &&
1021 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1022 // Okay: this is some kind of implicit downcast of Objective-C
1023 // interfaces, which is permitted. However, we're going to
1024 // complain about it.
1025 IncompatibleObjC = true;
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001026 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor45920e82008-12-19 17:40:08 +00001027 ToPointeeType,
1028 ToType, Context);
1029 return true;
1030 }
1031
Douglas Gregorcb7de522008-11-26 23:31:11 +00001032 // Objective C++: We're able to convert between "id" and a pointer
1033 // to any interface (in both directions).
Steve Naroff389bf462009-02-12 17:52:19 +00001034 if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1035 || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +00001036 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1037 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001038 ToType, Context);
1039 return true;
1040 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001041
Douglas Gregordda78892008-12-18 23:43:31 +00001042 // Objective C++: Allow conversions between the Objective-C "id" and
1043 // "Class", in either direction.
Steve Naroff389bf462009-02-12 17:52:19 +00001044 if ((Context.isObjCIdStructType(FromPointeeType) &&
1045 Context.isObjCClassStructType(ToPointeeType)) ||
1046 (Context.isObjCClassStructType(FromPointeeType) &&
1047 Context.isObjCIdStructType(ToPointeeType))) {
Douglas Gregordda78892008-12-18 23:43:31 +00001048 ConvertedType = ToType;
1049 return true;
1050 }
1051
Douglas Gregorc7887512008-12-19 19:13:09 +00001052 // If we have pointers to pointers, recursively check whether this
1053 // is an Objective-C conversion.
1054 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1055 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1056 IncompatibleObjC)) {
1057 // We always complain about this conversion.
1058 IncompatibleObjC = true;
1059 ConvertedType = ToType;
1060 return true;
1061 }
1062
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001063 // If we have pointers to functions or blocks, check whether the only
Douglas Gregorc7887512008-12-19 19:13:09 +00001064 // differences in the argument and result types are in Objective-C
1065 // pointer conversions. If so, we permit the conversion (but
1066 // complain about it).
Douglas Gregor72564e72009-02-26 23:50:07 +00001067 const FunctionProtoType *FromFunctionType
1068 = FromPointeeType->getAsFunctionProtoType();
1069 const FunctionProtoType *ToFunctionType
1070 = ToPointeeType->getAsFunctionProtoType();
Douglas Gregorc7887512008-12-19 19:13:09 +00001071 if (FromFunctionType && ToFunctionType) {
1072 // If the function types are exactly the same, this isn't an
1073 // Objective-C pointer conversion.
1074 if (Context.getCanonicalType(FromPointeeType)
1075 == Context.getCanonicalType(ToPointeeType))
1076 return false;
1077
1078 // Perform the quick checks that will tell us whether these
1079 // function types are obviously different.
1080 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1081 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1082 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1083 return false;
1084
1085 bool HasObjCConversion = false;
1086 if (Context.getCanonicalType(FromFunctionType->getResultType())
1087 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1088 // Okay, the types match exactly. Nothing to do.
1089 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1090 ToFunctionType->getResultType(),
1091 ConvertedType, IncompatibleObjC)) {
1092 // Okay, we have an Objective-C pointer conversion.
1093 HasObjCConversion = true;
1094 } else {
1095 // Function types are too different. Abort.
1096 return false;
1097 }
1098
1099 // Check argument types.
1100 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1101 ArgIdx != NumArgs; ++ArgIdx) {
1102 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1103 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1104 if (Context.getCanonicalType(FromArgType)
1105 == Context.getCanonicalType(ToArgType)) {
1106 // Okay, the types match exactly. Nothing to do.
1107 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1108 ConvertedType, IncompatibleObjC)) {
1109 // Okay, we have an Objective-C pointer conversion.
1110 HasObjCConversion = true;
1111 } else {
1112 // Argument types are too different. Abort.
1113 return false;
1114 }
1115 }
1116
1117 if (HasObjCConversion) {
1118 // We had an Objective-C conversion. Allow this pointer
1119 // conversion, but complain about it.
1120 ConvertedType = ToType;
1121 IncompatibleObjC = true;
1122 return true;
1123 }
1124 }
1125
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001126 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001127}
1128
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001129/// CheckPointerConversion - Check the pointer conversion from the
1130/// expression From to the type ToType. This routine checks for
1131/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1132/// conversions for which IsPointerConversion has already returned
1133/// true. It returns true and produces a diagnostic if there was an
1134/// error, or returns false otherwise.
1135bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1136 QualType FromType = From->getType();
1137
1138 if (const PointerType *FromPtrType = FromType->getAsPointerType())
1139 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001140 QualType FromPointeeType = FromPtrType->getPointeeType(),
1141 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregordda78892008-12-18 23:43:31 +00001142
1143 // Objective-C++ conversions are always okay.
Mike Stump390b4cc2009-05-16 07:39:55 +00001144 // FIXME: We should have a different class of conversions for the
1145 // Objective-C++ implicit conversions.
Steve Naroff389bf462009-02-12 17:52:19 +00001146 if (Context.isObjCIdStructType(FromPointeeType) ||
1147 Context.isObjCIdStructType(ToPointeeType) ||
1148 Context.isObjCClassStructType(FromPointeeType) ||
1149 Context.isObjCClassStructType(ToPointeeType))
Douglas Gregordda78892008-12-18 23:43:31 +00001150 return false;
1151
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001152 if (FromPointeeType->isRecordType() &&
1153 ToPointeeType->isRecordType()) {
1154 // We must have a derived-to-base conversion. Check an
1155 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +00001156 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1157 From->getExprLoc(),
1158 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001159 }
1160 }
1161
1162 return false;
1163}
1164
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001165/// IsMemberPointerConversion - Determines whether the conversion of the
1166/// expression From, which has the (possibly adjusted) type FromType, can be
1167/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1168/// If so, returns true and places the converted type (that might differ from
1169/// ToType in its cv-qualifiers at some level) into ConvertedType.
1170bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1171 QualType ToType, QualType &ConvertedType)
1172{
1173 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1174 if (!ToTypePtr)
1175 return false;
1176
1177 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1178 if (From->isNullPointerConstant(Context)) {
1179 ConvertedType = ToType;
1180 return true;
1181 }
1182
1183 // Otherwise, both types have to be member pointers.
1184 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1185 if (!FromTypePtr)
1186 return false;
1187
1188 // A pointer to member of B can be converted to a pointer to member of D,
1189 // where D is derived from B (C++ 4.11p2).
1190 QualType FromClass(FromTypePtr->getClass(), 0);
1191 QualType ToClass(ToTypePtr->getClass(), 0);
1192 // FIXME: What happens when these are dependent? Is this function even called?
1193
1194 if (IsDerivedFrom(ToClass, FromClass)) {
1195 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1196 ToClass.getTypePtr());
1197 return true;
1198 }
1199
1200 return false;
1201}
1202
1203/// CheckMemberPointerConversion - Check the member pointer conversion from the
1204/// expression From to the type ToType. This routine checks for ambiguous or
1205/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1206/// for which IsMemberPointerConversion has already returned true. It returns
1207/// true and produces a diagnostic if there was an error, or returns false
1208/// otherwise.
1209bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1210 QualType FromType = From->getType();
Sebastian Redl21593ac2009-01-28 18:33:18 +00001211 const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1212 if (!FromPtrType)
1213 return false;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001214
Sebastian Redl21593ac2009-01-28 18:33:18 +00001215 const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1216 assert(ToPtrType && "No member pointer cast has a target type "
1217 "that is not a member pointer.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001218
Sebastian Redl21593ac2009-01-28 18:33:18 +00001219 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1220 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001221
Sebastian Redl21593ac2009-01-28 18:33:18 +00001222 // FIXME: What about dependent types?
1223 assert(FromClass->isRecordType() && "Pointer into non-class.");
1224 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001225
Sebastian Redl21593ac2009-01-28 18:33:18 +00001226 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1227 /*DetectVirtual=*/true);
1228 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1229 assert(DerivationOkay &&
1230 "Should not have been called if derivation isn't OK.");
1231 (void)DerivationOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001232
Sebastian Redl21593ac2009-01-28 18:33:18 +00001233 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1234 getUnqualifiedType())) {
1235 // Derivation is ambiguous. Redo the check to find the exact paths.
1236 Paths.clear();
1237 Paths.setRecordingPaths(true);
1238 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1239 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1240 (void)StillOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001241
Sebastian Redl21593ac2009-01-28 18:33:18 +00001242 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1243 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1244 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1245 return true;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001246 }
Sebastian Redl21593ac2009-01-28 18:33:18 +00001247
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001248 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
Sebastian Redl21593ac2009-01-28 18:33:18 +00001249 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1250 << FromClass << ToClass << QualType(VBase, 0)
1251 << From->getSourceRange();
1252 return true;
1253 }
1254
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001255 return false;
1256}
1257
Douglas Gregor98cd5992008-10-21 23:43:52 +00001258/// IsQualificationConversion - Determines whether the conversion from
1259/// an rvalue of type FromType to ToType is a qualification conversion
1260/// (C++ 4.4).
1261bool
1262Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1263{
1264 FromType = Context.getCanonicalType(FromType);
1265 ToType = Context.getCanonicalType(ToType);
1266
1267 // If FromType and ToType are the same type, this is not a
1268 // qualification conversion.
1269 if (FromType == ToType)
1270 return false;
Sebastian Redl21593ac2009-01-28 18:33:18 +00001271
Douglas Gregor98cd5992008-10-21 23:43:52 +00001272 // (C++ 4.4p4):
1273 // A conversion can add cv-qualifiers at levels other than the first
1274 // in multi-level pointers, subject to the following rules: [...]
1275 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001276 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +00001277 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +00001278 // Within each iteration of the loop, we check the qualifiers to
1279 // determine if this still looks like a qualification
1280 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001281 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +00001282 // until there are no more pointers or pointers-to-members left to
1283 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +00001284 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001285
1286 // -- for every j > 0, if const is in cv 1,j then const is in cv
1287 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +00001288 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +00001289 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001290
Douglas Gregor98cd5992008-10-21 23:43:52 +00001291 // -- if the cv 1,j and cv 2,j are different, then const is in
1292 // every cv for 0 < k < j.
1293 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +00001294 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +00001295 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001296
Douglas Gregor98cd5992008-10-21 23:43:52 +00001297 // Keep track of whether all prior cv-qualifiers in the "to" type
1298 // include const.
1299 PreviousToQualsIncludeConst
1300 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +00001301 }
Douglas Gregor98cd5992008-10-21 23:43:52 +00001302
1303 // We are left with FromType and ToType being the pointee types
1304 // after unwrapping the original FromType and ToType the same number
1305 // of types. If we unwrapped any pointers, and if FromType and
1306 // ToType have the same unqualified type (since we checked
1307 // qualifiers above), then this is a qualification conversion.
1308 return UnwrappedAnyPointer &&
1309 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1310}
1311
Douglas Gregor734d9862009-01-30 23:27:23 +00001312/// Determines whether there is a user-defined conversion sequence
1313/// (C++ [over.ics.user]) that converts expression From to the type
1314/// ToType. If such a conversion exists, User will contain the
1315/// user-defined conversion sequence that performs such a conversion
1316/// and this routine will return true. Otherwise, this routine returns
1317/// false and User is unspecified.
1318///
1319/// \param AllowConversionFunctions true if the conversion should
1320/// consider conversion functions at all. If false, only constructors
1321/// will be considered.
1322///
1323/// \param AllowExplicit true if the conversion should consider C++0x
1324/// "explicit" conversion functions as well as non-explicit conversion
1325/// functions (C++0x [class.conv.fct]p2).
Sebastian Redle2b68332009-04-12 17:16:29 +00001326///
1327/// \param ForceRValue true if the expression should be treated as an rvalue
1328/// for overload resolution.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001329bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001330 UserDefinedConversionSequence& User,
Douglas Gregor734d9862009-01-30 23:27:23 +00001331 bool AllowConversionFunctions,
Sebastian Redle2b68332009-04-12 17:16:29 +00001332 bool AllowExplicit, bool ForceRValue)
Douglas Gregor60d62c22008-10-31 16:23:19 +00001333{
1334 OverloadCandidateSet CandidateSet;
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001335 if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1336 if (CXXRecordDecl *ToRecordDecl
1337 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1338 // C++ [over.match.ctor]p1:
1339 // When objects of class type are direct-initialized (8.5), or
1340 // copy-initialized from an expression of the same or a
1341 // derived class type (8.5), overload resolution selects the
1342 // constructor. [...] For copy-initialization, the candidate
1343 // functions are all the converting constructors (12.3.1) of
1344 // that class. The argument list is the expression-list within
1345 // the parentheses of the initializer.
1346 DeclarationName ConstructorName
1347 = Context.DeclarationNames.getCXXConstructorName(
1348 Context.getCanonicalType(ToType).getUnqualifiedType());
1349 DeclContext::lookup_iterator Con, ConEnd;
Douglas Gregor6ab35242009-04-09 21:40:53 +00001350 for (llvm::tie(Con, ConEnd)
1351 = ToRecordDecl->lookup(Context, ConstructorName);
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001352 Con != ConEnd; ++Con) {
1353 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1354 if (Constructor->isConvertingConstructor())
1355 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
Sebastian Redle2b68332009-04-12 17:16:29 +00001356 /*SuppressUserConversions=*/true, ForceRValue);
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001357 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001358 }
1359 }
1360
Douglas Gregor734d9862009-01-30 23:27:23 +00001361 if (!AllowConversionFunctions) {
1362 // Don't allow any conversion functions to enter the overload set.
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001363 } else if (const RecordType *FromRecordType
1364 = From->getType()->getAsRecordType()) {
1365 if (CXXRecordDecl *FromRecordDecl
1366 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1367 // Add all of the conversion functions as candidates.
1368 // FIXME: Look for conversions in base classes!
1369 OverloadedFunctionDecl *Conversions
1370 = FromRecordDecl->getConversionFunctions();
1371 for (OverloadedFunctionDecl::function_iterator Func
1372 = Conversions->function_begin();
1373 Func != Conversions->function_end(); ++Func) {
1374 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1375 if (AllowExplicit || !Conv->isExplicit())
1376 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1377 }
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001378 }
1379 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001380
1381 OverloadCandidateSet::iterator Best;
1382 switch (BestViableFunction(CandidateSet, Best)) {
1383 case OR_Success:
1384 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001385 if (CXXConstructorDecl *Constructor
1386 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1387 // C++ [over.ics.user]p1:
1388 // If the user-defined conversion is specified by a
1389 // constructor (12.3.1), the initial standard conversion
1390 // sequence converts the source type to the type required by
1391 // the argument of the constructor.
1392 //
1393 // FIXME: What about ellipsis conversions?
1394 QualType ThisType = Constructor->getThisType(Context);
1395 User.Before = Best->Conversions[0].Standard;
1396 User.ConversionFunction = Constructor;
1397 User.After.setAsIdentityConversion();
1398 User.After.FromTypePtr
1399 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1400 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1401 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001402 } else if (CXXConversionDecl *Conversion
1403 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1404 // C++ [over.ics.user]p1:
1405 //
1406 // [...] If the user-defined conversion is specified by a
1407 // conversion function (12.3.2), the initial standard
1408 // conversion sequence converts the source type to the
1409 // implicit object parameter of the conversion function.
1410 User.Before = Best->Conversions[0].Standard;
1411 User.ConversionFunction = Conversion;
1412
1413 // C++ [over.ics.user]p2:
1414 // The second standard conversion sequence converts the
1415 // result of the user-defined conversion to the target type
1416 // for the sequence. Since an implicit conversion sequence
1417 // is an initialization, the special rules for
1418 // initialization by user-defined conversion apply when
1419 // selecting the best user-defined conversion for a
1420 // user-defined conversion sequence (see 13.3.3 and
1421 // 13.3.3.1).
1422 User.After = Best->FinalConversion;
1423 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001424 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001425 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001426 return false;
1427 }
1428
1429 case OR_No_Viable_Function:
Douglas Gregor48f3bb92009-02-18 21:56:37 +00001430 case OR_Deleted:
Douglas Gregor60d62c22008-10-31 16:23:19 +00001431 // No conversion here! We're done.
1432 return false;
1433
1434 case OR_Ambiguous:
1435 // FIXME: See C++ [over.best.ics]p10 for the handling of
1436 // ambiguous conversion sequences.
1437 return false;
1438 }
1439
1440 return false;
1441}
1442
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001443/// CompareImplicitConversionSequences - Compare two implicit
1444/// conversion sequences to determine whether one is better than the
1445/// other or if they are indistinguishable (C++ 13.3.3.2).
1446ImplicitConversionSequence::CompareKind
1447Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1448 const ImplicitConversionSequence& ICS2)
1449{
1450 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1451 // conversion sequences (as defined in 13.3.3.1)
1452 // -- a standard conversion sequence (13.3.3.1.1) is a better
1453 // conversion sequence than a user-defined conversion sequence or
1454 // an ellipsis conversion sequence, and
1455 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1456 // conversion sequence than an ellipsis conversion sequence
1457 // (13.3.3.1.3).
1458 //
1459 if (ICS1.ConversionKind < ICS2.ConversionKind)
1460 return ImplicitConversionSequence::Better;
1461 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1462 return ImplicitConversionSequence::Worse;
1463
1464 // Two implicit conversion sequences of the same form are
1465 // indistinguishable conversion sequences unless one of the
1466 // following rules apply: (C++ 13.3.3.2p3):
1467 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1468 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1469 else if (ICS1.ConversionKind ==
1470 ImplicitConversionSequence::UserDefinedConversion) {
1471 // User-defined conversion sequence U1 is a better conversion
1472 // sequence than another user-defined conversion sequence U2 if
1473 // they contain the same user-defined conversion function or
1474 // constructor and if the second standard conversion sequence of
1475 // U1 is better than the second standard conversion sequence of
1476 // U2 (C++ 13.3.3.2p3).
1477 if (ICS1.UserDefined.ConversionFunction ==
1478 ICS2.UserDefined.ConversionFunction)
1479 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1480 ICS2.UserDefined.After);
1481 }
1482
1483 return ImplicitConversionSequence::Indistinguishable;
1484}
1485
1486/// CompareStandardConversionSequences - Compare two standard
1487/// conversion sequences to determine whether one is better than the
1488/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1489ImplicitConversionSequence::CompareKind
1490Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1491 const StandardConversionSequence& SCS2)
1492{
1493 // Standard conversion sequence S1 is a better conversion sequence
1494 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1495
1496 // -- S1 is a proper subsequence of S2 (comparing the conversion
1497 // sequences in the canonical form defined by 13.3.3.1.1,
1498 // excluding any Lvalue Transformation; the identity conversion
1499 // sequence is considered to be a subsequence of any
1500 // non-identity conversion sequence) or, if not that,
1501 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1502 // Neither is a proper subsequence of the other. Do nothing.
1503 ;
1504 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1505 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1506 (SCS1.Second == ICK_Identity &&
1507 SCS1.Third == ICK_Identity))
1508 // SCS1 is a proper subsequence of SCS2.
1509 return ImplicitConversionSequence::Better;
1510 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1511 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1512 (SCS2.Second == ICK_Identity &&
1513 SCS2.Third == ICK_Identity))
1514 // SCS2 is a proper subsequence of SCS1.
1515 return ImplicitConversionSequence::Worse;
1516
1517 // -- the rank of S1 is better than the rank of S2 (by the rules
1518 // defined below), or, if not that,
1519 ImplicitConversionRank Rank1 = SCS1.getRank();
1520 ImplicitConversionRank Rank2 = SCS2.getRank();
1521 if (Rank1 < Rank2)
1522 return ImplicitConversionSequence::Better;
1523 else if (Rank2 < Rank1)
1524 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001525
Douglas Gregor57373262008-10-22 14:17:15 +00001526 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1527 // are indistinguishable unless one of the following rules
1528 // applies:
1529
1530 // A conversion that is not a conversion of a pointer, or
1531 // pointer to member, to bool is better than another conversion
1532 // that is such a conversion.
1533 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1534 return SCS2.isPointerConversionToBool()
1535 ? ImplicitConversionSequence::Better
1536 : ImplicitConversionSequence::Worse;
1537
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001538 // C++ [over.ics.rank]p4b2:
1539 //
1540 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001541 // conversion of B* to A* is better than conversion of B* to
1542 // void*, and conversion of A* to void* is better than conversion
1543 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001544 bool SCS1ConvertsToVoid
1545 = SCS1.isPointerConversionToVoidPointer(Context);
1546 bool SCS2ConvertsToVoid
1547 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001548 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1549 // Exactly one of the conversion sequences is a conversion to
1550 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001551 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1552 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001553 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1554 // Neither conversion sequence converts to a void pointer; compare
1555 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001556 if (ImplicitConversionSequence::CompareKind DerivedCK
1557 = CompareDerivedToBaseConversions(SCS1, SCS2))
1558 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001559 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1560 // Both conversion sequences are conversions to void
1561 // pointers. Compare the source types to determine if there's an
1562 // inheritance relationship in their sources.
1563 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1564 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1565
1566 // Adjust the types we're converting from via the array-to-pointer
1567 // conversion, if we need to.
1568 if (SCS1.First == ICK_Array_To_Pointer)
1569 FromType1 = Context.getArrayDecayedType(FromType1);
1570 if (SCS2.First == ICK_Array_To_Pointer)
1571 FromType2 = Context.getArrayDecayedType(FromType2);
1572
1573 QualType FromPointee1
1574 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1575 QualType FromPointee2
1576 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1577
1578 if (IsDerivedFrom(FromPointee2, FromPointee1))
1579 return ImplicitConversionSequence::Better;
1580 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1581 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001582
1583 // Objective-C++: If one interface is more specific than the
1584 // other, it is the better one.
1585 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1586 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1587 if (FromIface1 && FromIface1) {
1588 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1589 return ImplicitConversionSequence::Better;
1590 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1591 return ImplicitConversionSequence::Worse;
1592 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001593 }
Douglas Gregor57373262008-10-22 14:17:15 +00001594
1595 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1596 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001597 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001598 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001599 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001600
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001601 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
Sebastian Redlf2e21e52009-03-22 23:49:27 +00001602 // C++0x [over.ics.rank]p3b4:
1603 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1604 // implicit object parameter of a non-static member function declared
1605 // without a ref-qualifier, and S1 binds an rvalue reference to an
1606 // rvalue and S2 binds an lvalue reference.
Sebastian Redla9845802009-03-29 15:27:50 +00001607 // FIXME: We don't know if we're dealing with the implicit object parameter,
1608 // or if the member function in this case has a ref qualifier.
1609 // (Of course, we don't have ref qualifiers yet.)
1610 if (SCS1.RRefBinding != SCS2.RRefBinding)
1611 return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1612 : ImplicitConversionSequence::Worse;
Sebastian Redlf2e21e52009-03-22 23:49:27 +00001613
1614 // C++ [over.ics.rank]p3b4:
1615 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1616 // which the references refer are the same type except for
1617 // top-level cv-qualifiers, and the type to which the reference
1618 // initialized by S2 refers is more cv-qualified than the type
1619 // to which the reference initialized by S1 refers.
Sebastian Redla9845802009-03-29 15:27:50 +00001620 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1621 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001622 T1 = Context.getCanonicalType(T1);
1623 T2 = Context.getCanonicalType(T2);
1624 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1625 if (T2.isMoreQualifiedThan(T1))
1626 return ImplicitConversionSequence::Better;
1627 else if (T1.isMoreQualifiedThan(T2))
1628 return ImplicitConversionSequence::Worse;
1629 }
1630 }
Douglas Gregor57373262008-10-22 14:17:15 +00001631
1632 return ImplicitConversionSequence::Indistinguishable;
1633}
1634
1635/// CompareQualificationConversions - Compares two standard conversion
1636/// sequences to determine whether they can be ranked based on their
1637/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1638ImplicitConversionSequence::CompareKind
1639Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1640 const StandardConversionSequence& SCS2)
1641{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001642 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001643 // -- S1 and S2 differ only in their qualification conversion and
1644 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1645 // cv-qualification signature of type T1 is a proper subset of
1646 // the cv-qualification signature of type T2, and S1 is not the
1647 // deprecated string literal array-to-pointer conversion (4.2).
1648 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1649 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1650 return ImplicitConversionSequence::Indistinguishable;
1651
1652 // FIXME: the example in the standard doesn't use a qualification
1653 // conversion (!)
1654 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1655 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1656 T1 = Context.getCanonicalType(T1);
1657 T2 = Context.getCanonicalType(T2);
1658
1659 // If the types are the same, we won't learn anything by unwrapped
1660 // them.
1661 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1662 return ImplicitConversionSequence::Indistinguishable;
1663
1664 ImplicitConversionSequence::CompareKind Result
1665 = ImplicitConversionSequence::Indistinguishable;
1666 while (UnwrapSimilarPointerTypes(T1, T2)) {
1667 // Within each iteration of the loop, we check the qualifiers to
1668 // determine if this still looks like a qualification
1669 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001670 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001671 // until there are no more pointers or pointers-to-members left
1672 // to unwrap. This essentially mimics what
1673 // IsQualificationConversion does, but here we're checking for a
1674 // strict subset of qualifiers.
1675 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1676 // The qualifiers are the same, so this doesn't tell us anything
1677 // about how the sequences rank.
1678 ;
1679 else if (T2.isMoreQualifiedThan(T1)) {
1680 // T1 has fewer qualifiers, so it could be the better sequence.
1681 if (Result == ImplicitConversionSequence::Worse)
1682 // Neither has qualifiers that are a subset of the other's
1683 // qualifiers.
1684 return ImplicitConversionSequence::Indistinguishable;
1685
1686 Result = ImplicitConversionSequence::Better;
1687 } else if (T1.isMoreQualifiedThan(T2)) {
1688 // T2 has fewer qualifiers, so it could be the better sequence.
1689 if (Result == ImplicitConversionSequence::Better)
1690 // Neither has qualifiers that are a subset of the other's
1691 // qualifiers.
1692 return ImplicitConversionSequence::Indistinguishable;
1693
1694 Result = ImplicitConversionSequence::Worse;
1695 } else {
1696 // Qualifiers are disjoint.
1697 return ImplicitConversionSequence::Indistinguishable;
1698 }
1699
1700 // If the types after this point are equivalent, we're done.
1701 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1702 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001703 }
1704
Douglas Gregor57373262008-10-22 14:17:15 +00001705 // Check that the winning standard conversion sequence isn't using
1706 // the deprecated string literal array to pointer conversion.
1707 switch (Result) {
1708 case ImplicitConversionSequence::Better:
1709 if (SCS1.Deprecated)
1710 Result = ImplicitConversionSequence::Indistinguishable;
1711 break;
1712
1713 case ImplicitConversionSequence::Indistinguishable:
1714 break;
1715
1716 case ImplicitConversionSequence::Worse:
1717 if (SCS2.Deprecated)
1718 Result = ImplicitConversionSequence::Indistinguishable;
1719 break;
1720 }
1721
1722 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001723}
1724
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001725/// CompareDerivedToBaseConversions - Compares two standard conversion
1726/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001727/// various kinds of derived-to-base conversions (C++
1728/// [over.ics.rank]p4b3). As part of these checks, we also look at
1729/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001730ImplicitConversionSequence::CompareKind
1731Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1732 const StandardConversionSequence& SCS2) {
1733 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1734 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1735 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1736 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1737
1738 // Adjust the types we're converting from via the array-to-pointer
1739 // conversion, if we need to.
1740 if (SCS1.First == ICK_Array_To_Pointer)
1741 FromType1 = Context.getArrayDecayedType(FromType1);
1742 if (SCS2.First == ICK_Array_To_Pointer)
1743 FromType2 = Context.getArrayDecayedType(FromType2);
1744
1745 // Canonicalize all of the types.
1746 FromType1 = Context.getCanonicalType(FromType1);
1747 ToType1 = Context.getCanonicalType(ToType1);
1748 FromType2 = Context.getCanonicalType(FromType2);
1749 ToType2 = Context.getCanonicalType(ToType2);
1750
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001751 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001752 //
1753 // If class B is derived directly or indirectly from class A and
1754 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001755 //
1756 // For Objective-C, we let A, B, and C also be Objective-C
1757 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001758
1759 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001760 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001761 SCS2.Second == ICK_Pointer_Conversion &&
1762 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1763 FromType1->isPointerType() && FromType2->isPointerType() &&
1764 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001765 QualType FromPointee1
1766 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1767 QualType ToPointee1
1768 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1769 QualType FromPointee2
1770 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1771 QualType ToPointee2
1772 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001773
1774 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1775 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1776 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1777 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1778
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001779 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001780 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1781 if (IsDerivedFrom(ToPointee1, ToPointee2))
1782 return ImplicitConversionSequence::Better;
1783 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1784 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001785
1786 if (ToIface1 && ToIface2) {
1787 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1788 return ImplicitConversionSequence::Better;
1789 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1790 return ImplicitConversionSequence::Worse;
1791 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001792 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001793
1794 // -- conversion of B* to A* is better than conversion of C* to A*,
1795 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1796 if (IsDerivedFrom(FromPointee2, FromPointee1))
1797 return ImplicitConversionSequence::Better;
1798 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1799 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001800
1801 if (FromIface1 && FromIface2) {
1802 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1803 return ImplicitConversionSequence::Better;
1804 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1805 return ImplicitConversionSequence::Worse;
1806 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001807 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001808 }
1809
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001810 // Compare based on reference bindings.
1811 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1812 SCS1.Second == ICK_Derived_To_Base) {
1813 // -- binding of an expression of type C to a reference of type
1814 // B& is better than binding an expression of type C to a
1815 // reference of type A&,
1816 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1817 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1818 if (IsDerivedFrom(ToType1, ToType2))
1819 return ImplicitConversionSequence::Better;
1820 else if (IsDerivedFrom(ToType2, ToType1))
1821 return ImplicitConversionSequence::Worse;
1822 }
1823
Douglas Gregor225c41e2008-11-03 19:09:14 +00001824 // -- binding of an expression of type B to a reference of type
1825 // A& is better than binding an expression of type C to a
1826 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001827 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1828 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1829 if (IsDerivedFrom(FromType2, FromType1))
1830 return ImplicitConversionSequence::Better;
1831 else if (IsDerivedFrom(FromType1, FromType2))
1832 return ImplicitConversionSequence::Worse;
1833 }
1834 }
1835
1836
1837 // FIXME: conversion of A::* to B::* is better than conversion of
1838 // A::* to C::*,
1839
1840 // FIXME: conversion of B::* to C::* is better than conversion of
1841 // A::* to C::*, and
1842
Douglas Gregor225c41e2008-11-03 19:09:14 +00001843 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1844 SCS1.Second == ICK_Derived_To_Base) {
1845 // -- conversion of C to B is better than conversion of C to A,
1846 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1847 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1848 if (IsDerivedFrom(ToType1, ToType2))
1849 return ImplicitConversionSequence::Better;
1850 else if (IsDerivedFrom(ToType2, ToType1))
1851 return ImplicitConversionSequence::Worse;
1852 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001853
Douglas Gregor225c41e2008-11-03 19:09:14 +00001854 // -- conversion of B to A is better than conversion of C to A.
1855 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1856 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1857 if (IsDerivedFrom(FromType2, FromType1))
1858 return ImplicitConversionSequence::Better;
1859 else if (IsDerivedFrom(FromType1, FromType2))
1860 return ImplicitConversionSequence::Worse;
1861 }
1862 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001863
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001864 return ImplicitConversionSequence::Indistinguishable;
1865}
1866
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001867/// TryCopyInitialization - Try to copy-initialize a value of type
1868/// ToType from the expression From. Return the implicit conversion
1869/// sequence required to pass this argument, which may be a bad
1870/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001871/// a parameter of this type). If @p SuppressUserConversions, then we
Sebastian Redle2b68332009-04-12 17:16:29 +00001872/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1873/// then we treat @p From as an rvalue, even if it is an lvalue.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001874ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001875Sema::TryCopyInitialization(Expr *From, QualType ToType,
Sebastian Redle2b68332009-04-12 17:16:29 +00001876 bool SuppressUserConversions, bool ForceRValue) {
Douglas Gregorf9201e02009-02-11 23:02:49 +00001877 if (ToType->isReferenceType()) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001878 ImplicitConversionSequence ICS;
Sebastian Redle2b68332009-04-12 17:16:29 +00001879 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1880 /*AllowExplicit=*/false, ForceRValue);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001881 return ICS;
1882 } else {
Sebastian Redle2b68332009-04-12 17:16:29 +00001883 return TryImplicitConversion(From, ToType, SuppressUserConversions,
1884 ForceRValue);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001885 }
1886}
1887
Sebastian Redle2b68332009-04-12 17:16:29 +00001888/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1889/// the expression @p From. Returns true (and emits a diagnostic) if there was
1890/// an error, returns false if the initialization succeeded. Elidable should
1891/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1892/// differently in C++0x for this case.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001893bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
Sebastian Redle2b68332009-04-12 17:16:29 +00001894 const char* Flavor, bool Elidable) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001895 if (!getLangOptions().CPlusPlus) {
1896 // In C, argument passing is the same as performing an assignment.
1897 QualType FromType = From->getType();
Douglas Gregor0c74e8a2009-04-29 22:16:16 +00001898
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001899 AssignConvertType ConvTy =
1900 CheckSingleAssignmentConstraints(ToType, From);
Douglas Gregor0c74e8a2009-04-29 22:16:16 +00001901 if (ConvTy != Compatible &&
1902 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1903 ConvTy = Compatible;
1904
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001905 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1906 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001907 }
Sebastian Redle2b68332009-04-12 17:16:29 +00001908
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001909 if (ToType->isReferenceType())
1910 return CheckReferenceInit(From, ToType);
1911
Sebastian Redle2b68332009-04-12 17:16:29 +00001912 if (!PerformImplicitConversion(From, ToType, Flavor,
1913 /*AllowExplicit=*/false, Elidable))
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001914 return false;
Sebastian Redle2b68332009-04-12 17:16:29 +00001915
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001916 return Diag(From->getSourceRange().getBegin(),
1917 diag::err_typecheck_convert_incompatible)
1918 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001919}
1920
Douglas Gregor96176b32008-11-18 23:14:02 +00001921/// TryObjectArgumentInitialization - Try to initialize the object
1922/// parameter of the given member function (@c Method) from the
1923/// expression @p From.
1924ImplicitConversionSequence
1925Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1926 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1927 unsigned MethodQuals = Method->getTypeQualifiers();
1928 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1929
1930 // Set up the conversion sequence as a "bad" conversion, to allow us
1931 // to exit early.
1932 ImplicitConversionSequence ICS;
1933 ICS.Standard.setAsIdentityConversion();
1934 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1935
1936 // We need to have an object of class type.
1937 QualType FromType = From->getType();
Anders Carlssona552f7c2009-05-01 18:34:30 +00001938 if (const PointerType *PT = FromType->getAsPointerType())
1939 FromType = PT->getPointeeType();
1940
1941 assert(FromType->isRecordType());
Douglas Gregor96176b32008-11-18 23:14:02 +00001942
1943 // The implicit object parmeter is has the type "reference to cv X",
1944 // where X is the class of which the function is a member
1945 // (C++ [over.match.funcs]p4). However, when finding an implicit
1946 // conversion sequence for the argument, we are not allowed to
1947 // create temporaries or perform user-defined conversions
1948 // (C++ [over.match.funcs]p5). We perform a simplified version of
1949 // reference binding here, that allows class rvalues to bind to
1950 // non-constant references.
1951
1952 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1953 // with the implicit object parameter (C++ [over.match.funcs]p5).
1954 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1955 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1956 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1957 return ICS;
1958
1959 // Check that we have either the same type or a derived type. It
1960 // affects the conversion rank.
1961 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1962 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1963 ICS.Standard.Second = ICK_Identity;
1964 else if (IsDerivedFrom(FromType, ClassType))
1965 ICS.Standard.Second = ICK_Derived_To_Base;
1966 else
1967 return ICS;
1968
1969 // Success. Mark this as a reference binding.
1970 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1971 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1972 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1973 ICS.Standard.ReferenceBinding = true;
1974 ICS.Standard.DirectBinding = true;
Sebastian Redl85002392009-03-29 22:46:24 +00001975 ICS.Standard.RRefBinding = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001976 return ICS;
1977}
1978
1979/// PerformObjectArgumentInitialization - Perform initialization of
1980/// the implicit object parameter for the given Method with the given
1981/// expression.
1982bool
1983Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
Anders Carlssona552f7c2009-05-01 18:34:30 +00001984 QualType FromRecordType, DestType;
1985 QualType ImplicitParamRecordType =
1986 Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1987
1988 if (const PointerType *PT = From->getType()->getAsPointerType()) {
1989 FromRecordType = PT->getPointeeType();
1990 DestType = Method->getThisType(Context);
1991 } else {
1992 FromRecordType = From->getType();
1993 DestType = ImplicitParamRecordType;
1994 }
1995
Douglas Gregor96176b32008-11-18 23:14:02 +00001996 ImplicitConversionSequence ICS
1997 = TryObjectArgumentInitialization(From, Method);
1998 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1999 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00002000 diag::err_implicit_object_parameter_init)
Anders Carlssona552f7c2009-05-01 18:34:30 +00002001 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2002
Douglas Gregor96176b32008-11-18 23:14:02 +00002003 if (ICS.Standard.Second == ICK_Derived_To_Base &&
Anders Carlssona552f7c2009-05-01 18:34:30 +00002004 CheckDerivedToBaseConversion(FromRecordType,
2005 ImplicitParamRecordType,
Douglas Gregor96176b32008-11-18 23:14:02 +00002006 From->getSourceRange().getBegin(),
2007 From->getSourceRange()))
2008 return true;
2009
Anders Carlssona552f7c2009-05-01 18:34:30 +00002010 ImpCastExprToType(From, DestType, /*isLvalue=*/true);
Douglas Gregor96176b32008-11-18 23:14:02 +00002011 return false;
2012}
2013
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002014/// TryContextuallyConvertToBool - Attempt to contextually convert the
2015/// expression From to bool (C++0x [conv]p3).
2016ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2017 return TryImplicitConversion(From, Context.BoolTy, false, true);
2018}
2019
2020/// PerformContextuallyConvertToBool - Perform a contextual conversion
2021/// of the expression From to bool (C++0x [conv]p3).
2022bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2023 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2024 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2025 return false;
2026
2027 return Diag(From->getSourceRange().getBegin(),
2028 diag::err_typecheck_bool_condition)
2029 << From->getType() << From->getSourceRange();
2030}
2031
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002032/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00002033/// candidate functions, using the given function call arguments. If
2034/// @p SuppressUserConversions, then don't allow user-defined
2035/// conversions via constructors or conversion operators.
Sebastian Redle2b68332009-04-12 17:16:29 +00002036/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2037/// hacky way to implement the overloading rules for elidable copy
2038/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002039void
2040Sema::AddOverloadCandidate(FunctionDecl *Function,
2041 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00002042 OverloadCandidateSet& CandidateSet,
Sebastian Redle2b68332009-04-12 17:16:29 +00002043 bool SuppressUserConversions,
2044 bool ForceRValue)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002045{
Douglas Gregor72564e72009-02-26 23:50:07 +00002046 const FunctionProtoType* Proto
2047 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002048 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002049 assert(!isa<CXXConversionDecl>(Function) &&
2050 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002051
Douglas Gregor88a35142008-12-22 05:46:06 +00002052 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002053 if (!isa<CXXConstructorDecl>(Method)) {
2054 // If we get here, it's because we're calling a member function
2055 // that is named without a member access expression (e.g.,
2056 // "this->f") that was either written explicitly or created
2057 // implicitly. This can happen with a qualified call to a member
2058 // function, e.g., X::f(). We use a NULL object as the implied
2059 // object argument (C++ [over.call.func]p3).
2060 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2061 SuppressUserConversions, ForceRValue);
2062 return;
2063 }
2064 // We treat a constructor like a non-member function, since its object
2065 // argument doesn't participate in overload resolution.
Douglas Gregor88a35142008-12-22 05:46:06 +00002066 }
2067
2068
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002069 // Add this candidate
2070 CandidateSet.push_back(OverloadCandidate());
2071 OverloadCandidate& Candidate = CandidateSet.back();
2072 Candidate.Function = Function;
Douglas Gregor88a35142008-12-22 05:46:06 +00002073 Candidate.Viable = true;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002074 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002075 Candidate.IgnoreObjectArgument = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002076
2077 unsigned NumArgsInProto = Proto->getNumArgs();
2078
2079 // (C++ 13.3.2p2): A candidate function having fewer than m
2080 // parameters is viable only if it has an ellipsis in its parameter
2081 // list (8.3.5).
2082 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2083 Candidate.Viable = false;
2084 return;
2085 }
2086
2087 // (C++ 13.3.2p2): A candidate function having more than m parameters
2088 // is viable only if the (m+1)st parameter has a default argument
2089 // (8.3.6). For the purposes of overload resolution, the
2090 // parameter list is truncated on the right, so that there are
2091 // exactly m parameters.
2092 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2093 if (NumArgs < MinRequiredArgs) {
2094 // Not enough arguments.
2095 Candidate.Viable = false;
2096 return;
2097 }
2098
2099 // Determine the implicit conversion sequences for each of the
2100 // arguments.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002101 Candidate.Conversions.resize(NumArgs);
2102 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2103 if (ArgIdx < NumArgsInProto) {
2104 // (C++ 13.3.2p3): for F to be a viable function, there shall
2105 // exist for each argument an implicit conversion sequence
2106 // (13.3.3.1) that converts that argument to the corresponding
2107 // parameter of F.
2108 QualType ParamType = Proto->getArgType(ArgIdx);
2109 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00002110 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redle2b68332009-04-12 17:16:29 +00002111 SuppressUserConversions, ForceRValue);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002112 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002113 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002114 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002115 break;
2116 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002117 } else {
2118 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2119 // argument for which there is no corresponding parameter is
2120 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2121 Candidate.Conversions[ArgIdx].ConversionKind
2122 = ImplicitConversionSequence::EllipsisConversion;
2123 }
2124 }
2125}
2126
Douglas Gregor063daf62009-03-13 18:40:31 +00002127/// \brief Add all of the function declarations in the given function set to
2128/// the overload canddiate set.
2129void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2130 Expr **Args, unsigned NumArgs,
2131 OverloadCandidateSet& CandidateSet,
2132 bool SuppressUserConversions) {
2133 for (FunctionSet::const_iterator F = Functions.begin(),
2134 FEnd = Functions.end();
2135 F != FEnd; ++F)
2136 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2137 SuppressUserConversions);
2138}
2139
Douglas Gregor96176b32008-11-18 23:14:02 +00002140/// AddMethodCandidate - Adds the given C++ member function to the set
2141/// of candidate functions, using the given function call arguments
2142/// and the object argument (@c Object). For example, in a call
2143/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2144/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2145/// allow user-defined conversions via constructors or conversion
Sebastian Redle2b68332009-04-12 17:16:29 +00002146/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2147/// a slightly hacky way to implement the overloading rules for elidable copy
2148/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregor96176b32008-11-18 23:14:02 +00002149void
2150Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2151 Expr **Args, unsigned NumArgs,
2152 OverloadCandidateSet& CandidateSet,
Sebastian Redle2b68332009-04-12 17:16:29 +00002153 bool SuppressUserConversions, bool ForceRValue)
Douglas Gregor96176b32008-11-18 23:14:02 +00002154{
Douglas Gregor72564e72009-02-26 23:50:07 +00002155 const FunctionProtoType* Proto
2156 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
Douglas Gregor96176b32008-11-18 23:14:02 +00002157 assert(Proto && "Methods without a prototype cannot be overloaded");
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002158 assert(!isa<CXXConversionDecl>(Method) &&
Douglas Gregor96176b32008-11-18 23:14:02 +00002159 "Use AddConversionCandidate for conversion functions");
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002160 assert(!isa<CXXConstructorDecl>(Method) &&
2161 "Use AddOverloadCandidate for constructors");
Douglas Gregor96176b32008-11-18 23:14:02 +00002162
2163 // Add this candidate
2164 CandidateSet.push_back(OverloadCandidate());
2165 OverloadCandidate& Candidate = CandidateSet.back();
2166 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002167 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002168 Candidate.IgnoreObjectArgument = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002169
2170 unsigned NumArgsInProto = Proto->getNumArgs();
2171
2172 // (C++ 13.3.2p2): A candidate function having fewer than m
2173 // parameters is viable only if it has an ellipsis in its parameter
2174 // list (8.3.5).
2175 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2176 Candidate.Viable = false;
2177 return;
2178 }
2179
2180 // (C++ 13.3.2p2): A candidate function having more than m parameters
2181 // is viable only if the (m+1)st parameter has a default argument
2182 // (8.3.6). For the purposes of overload resolution, the
2183 // parameter list is truncated on the right, so that there are
2184 // exactly m parameters.
2185 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2186 if (NumArgs < MinRequiredArgs) {
2187 // Not enough arguments.
2188 Candidate.Viable = false;
2189 return;
2190 }
2191
2192 Candidate.Viable = true;
2193 Candidate.Conversions.resize(NumArgs + 1);
2194
Douglas Gregor88a35142008-12-22 05:46:06 +00002195 if (Method->isStatic() || !Object)
2196 // The implicit object argument is ignored.
2197 Candidate.IgnoreObjectArgument = true;
2198 else {
2199 // Determine the implicit conversion sequence for the object
2200 // parameter.
2201 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2202 if (Candidate.Conversions[0].ConversionKind
2203 == ImplicitConversionSequence::BadConversion) {
2204 Candidate.Viable = false;
2205 return;
2206 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002207 }
2208
2209 // Determine the implicit conversion sequences for each of the
2210 // arguments.
2211 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2212 if (ArgIdx < NumArgsInProto) {
2213 // (C++ 13.3.2p3): for F to be a viable function, there shall
2214 // exist for each argument an implicit conversion sequence
2215 // (13.3.3.1) that converts that argument to the corresponding
2216 // parameter of F.
2217 QualType ParamType = Proto->getArgType(ArgIdx);
2218 Candidate.Conversions[ArgIdx + 1]
2219 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redle2b68332009-04-12 17:16:29 +00002220 SuppressUserConversions, ForceRValue);
Douglas Gregor96176b32008-11-18 23:14:02 +00002221 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2222 == ImplicitConversionSequence::BadConversion) {
2223 Candidate.Viable = false;
2224 break;
2225 }
2226 } else {
2227 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2228 // argument for which there is no corresponding parameter is
2229 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2230 Candidate.Conversions[ArgIdx + 1].ConversionKind
2231 = ImplicitConversionSequence::EllipsisConversion;
2232 }
2233 }
2234}
2235
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002236/// AddConversionCandidate - Add a C++ conversion function as a
2237/// candidate in the candidate set (C++ [over.match.conv],
2238/// C++ [over.match.copy]). From is the expression we're converting from,
2239/// and ToType is the type that we're eventually trying to convert to
2240/// (which may or may not be the same type as the type that the
2241/// conversion function produces).
2242void
2243Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2244 Expr *From, QualType ToType,
2245 OverloadCandidateSet& CandidateSet) {
2246 // Add this candidate
2247 CandidateSet.push_back(OverloadCandidate());
2248 OverloadCandidate& Candidate = CandidateSet.back();
2249 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002250 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002251 Candidate.IgnoreObjectArgument = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002252 Candidate.FinalConversion.setAsIdentityConversion();
2253 Candidate.FinalConversion.FromTypePtr
2254 = Conversion->getConversionType().getAsOpaquePtr();
2255 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2256
Douglas Gregor96176b32008-11-18 23:14:02 +00002257 // Determine the implicit conversion sequence for the implicit
2258 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002259 Candidate.Viable = true;
2260 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00002261 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002262
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002263 if (Candidate.Conversions[0].ConversionKind
2264 == ImplicitConversionSequence::BadConversion) {
2265 Candidate.Viable = false;
2266 return;
2267 }
2268
2269 // To determine what the conversion from the result of calling the
2270 // conversion function to the type we're eventually trying to
2271 // convert to (ToType), we need to synthesize a call to the
2272 // conversion function and attempt copy initialization from it. This
2273 // makes sure that we get the right semantics with respect to
2274 // lvalues/rvalues and the type. Fortunately, we can allocate this
2275 // call on the stack and we don't need its arguments to be
2276 // well-formed.
2277 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2278 SourceLocation());
2279 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002280 &ConversionRef, false);
Ted Kremenek668bf912009-02-09 20:51:47 +00002281
2282 // Note that it is safe to allocate CallExpr on the stack here because
2283 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2284 // allocator).
2285 CallExpr Call(Context, &ConversionFn, 0, 0,
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002286 Conversion->getConversionType().getNonReferenceType(),
2287 SourceLocation());
2288 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2289 switch (ICS.ConversionKind) {
2290 case ImplicitConversionSequence::StandardConversion:
2291 Candidate.FinalConversion = ICS.Standard;
2292 break;
2293
2294 case ImplicitConversionSequence::BadConversion:
2295 Candidate.Viable = false;
2296 break;
2297
2298 default:
2299 assert(false &&
2300 "Can only end up with a standard conversion sequence or failure");
2301 }
2302}
2303
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002304/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2305/// converts the given @c Object to a function pointer via the
2306/// conversion function @c Conversion, and then attempts to call it
2307/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2308/// the type of function that we'll eventually be calling.
2309void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
Douglas Gregor72564e72009-02-26 23:50:07 +00002310 const FunctionProtoType *Proto,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002311 Expr *Object, Expr **Args, unsigned NumArgs,
2312 OverloadCandidateSet& CandidateSet) {
2313 CandidateSet.push_back(OverloadCandidate());
2314 OverloadCandidate& Candidate = CandidateSet.back();
2315 Candidate.Function = 0;
2316 Candidate.Surrogate = Conversion;
2317 Candidate.Viable = true;
2318 Candidate.IsSurrogate = true;
Douglas Gregor88a35142008-12-22 05:46:06 +00002319 Candidate.IgnoreObjectArgument = false;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002320 Candidate.Conversions.resize(NumArgs + 1);
2321
2322 // Determine the implicit conversion sequence for the implicit
2323 // object parameter.
2324 ImplicitConversionSequence ObjectInit
2325 = TryObjectArgumentInitialization(Object, Conversion);
2326 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2327 Candidate.Viable = false;
2328 return;
2329 }
2330
2331 // The first conversion is actually a user-defined conversion whose
2332 // first conversion is ObjectInit's standard conversion (which is
2333 // effectively a reference binding). Record it as such.
2334 Candidate.Conversions[0].ConversionKind
2335 = ImplicitConversionSequence::UserDefinedConversion;
2336 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2337 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2338 Candidate.Conversions[0].UserDefined.After
2339 = Candidate.Conversions[0].UserDefined.Before;
2340 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2341
2342 // Find the
2343 unsigned NumArgsInProto = Proto->getNumArgs();
2344
2345 // (C++ 13.3.2p2): A candidate function having fewer than m
2346 // parameters is viable only if it has an ellipsis in its parameter
2347 // list (8.3.5).
2348 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2349 Candidate.Viable = false;
2350 return;
2351 }
2352
2353 // Function types don't have any default arguments, so just check if
2354 // we have enough arguments.
2355 if (NumArgs < NumArgsInProto) {
2356 // Not enough arguments.
2357 Candidate.Viable = false;
2358 return;
2359 }
2360
2361 // Determine the implicit conversion sequences for each of the
2362 // arguments.
2363 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2364 if (ArgIdx < NumArgsInProto) {
2365 // (C++ 13.3.2p3): for F to be a viable function, there shall
2366 // exist for each argument an implicit conversion sequence
2367 // (13.3.3.1) that converts that argument to the corresponding
2368 // parameter of F.
2369 QualType ParamType = Proto->getArgType(ArgIdx);
2370 Candidate.Conversions[ArgIdx + 1]
2371 = TryCopyInitialization(Args[ArgIdx], ParamType,
2372 /*SuppressUserConversions=*/false);
2373 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2374 == ImplicitConversionSequence::BadConversion) {
2375 Candidate.Viable = false;
2376 break;
2377 }
2378 } else {
2379 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2380 // argument for which there is no corresponding parameter is
2381 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2382 Candidate.Conversions[ArgIdx + 1].ConversionKind
2383 = ImplicitConversionSequence::EllipsisConversion;
2384 }
2385 }
2386}
2387
Mike Stump390b4cc2009-05-16 07:39:55 +00002388// FIXME: This will eventually be removed, once we've migrated all of the
2389// operator overloading logic over to the scheme used by binary operators, which
2390// works for template instantiation.
Douglas Gregor063daf62009-03-13 18:40:31 +00002391void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002392 SourceLocation OpLoc,
Douglas Gregor96176b32008-11-18 23:14:02 +00002393 Expr **Args, unsigned NumArgs,
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002394 OverloadCandidateSet& CandidateSet,
2395 SourceRange OpRange) {
Douglas Gregor063daf62009-03-13 18:40:31 +00002396
2397 FunctionSet Functions;
2398
2399 QualType T1 = Args[0]->getType();
2400 QualType T2;
2401 if (NumArgs > 1)
2402 T2 = Args[1]->getType();
2403
2404 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
Douglas Gregor3384c9c2009-05-19 00:01:19 +00002405 if (S)
2406 LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
Douglas Gregor063daf62009-03-13 18:40:31 +00002407 ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2408 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2409 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2410 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2411}
2412
2413/// \brief Add overload candidates for overloaded operators that are
2414/// member functions.
2415///
2416/// Add the overloaded operator candidates that are member functions
2417/// for the operator Op that was used in an operator expression such
2418/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2419/// CandidateSet will store the added overload candidates. (C++
2420/// [over.match.oper]).
2421void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2422 SourceLocation OpLoc,
2423 Expr **Args, unsigned NumArgs,
2424 OverloadCandidateSet& CandidateSet,
2425 SourceRange OpRange) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002426 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2427
2428 // C++ [over.match.oper]p3:
2429 // For a unary operator @ with an operand of a type whose
2430 // cv-unqualified version is T1, and for a binary operator @ with
2431 // a left operand of a type whose cv-unqualified version is T1 and
2432 // a right operand of a type whose cv-unqualified version is T2,
2433 // three sets of candidate functions, designated member
2434 // candidates, non-member candidates and built-in candidates, are
2435 // constructed as follows:
2436 QualType T1 = Args[0]->getType();
2437 QualType T2;
2438 if (NumArgs > 1)
2439 T2 = Args[1]->getType();
2440
2441 // -- If T1 is a class type, the set of member candidates is the
2442 // result of the qualified lookup of T1::operator@
2443 // (13.3.1.1.1); otherwise, the set of member candidates is
2444 // empty.
Douglas Gregor063daf62009-03-13 18:40:31 +00002445 // FIXME: Lookup in base classes, too!
Douglas Gregor96176b32008-11-18 23:14:02 +00002446 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002447 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregor6ab35242009-04-09 21:40:53 +00002448 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(Context, OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002449 Oper != OperEnd; ++Oper)
2450 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2451 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor96176b32008-11-18 23:14:02 +00002452 /*SuppressUserConversions=*/false);
Douglas Gregor96176b32008-11-18 23:14:02 +00002453 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002454}
2455
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002456/// AddBuiltinCandidate - Add a candidate for a built-in
2457/// operator. ResultTy and ParamTys are the result and parameter types
2458/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002459/// arguments being passed to the candidate. IsAssignmentOperator
2460/// should be true when this built-in candidate is an assignment
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002461/// operator. NumContextualBoolArguments is the number of arguments
2462/// (at the beginning of the argument list) that will be contextually
2463/// converted to bool.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002464void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2465 Expr **Args, unsigned NumArgs,
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002466 OverloadCandidateSet& CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002467 bool IsAssignmentOperator,
2468 unsigned NumContextualBoolArguments) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002469 // Add this candidate
2470 CandidateSet.push_back(OverloadCandidate());
2471 OverloadCandidate& Candidate = CandidateSet.back();
2472 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002473 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002474 Candidate.IgnoreObjectArgument = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002475 Candidate.BuiltinTypes.ResultTy = ResultTy;
2476 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2477 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2478
2479 // Determine the implicit conversion sequences for each of the
2480 // arguments.
2481 Candidate.Viable = true;
2482 Candidate.Conversions.resize(NumArgs);
2483 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002484 // C++ [over.match.oper]p4:
2485 // For the built-in assignment operators, conversions of the
2486 // left operand are restricted as follows:
2487 // -- no temporaries are introduced to hold the left operand, and
2488 // -- no user-defined conversions are applied to the left
2489 // operand to achieve a type match with the left-most
2490 // parameter of a built-in candidate.
2491 //
2492 // We block these conversions by turning off user-defined
2493 // conversions, since that is the only way that initialization of
2494 // a reference to a non-class type can occur from something that
2495 // is not of the same type.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002496 if (ArgIdx < NumContextualBoolArguments) {
2497 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2498 "Contextual conversion to bool requires bool type");
2499 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2500 } else {
2501 Candidate.Conversions[ArgIdx]
2502 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2503 ArgIdx == 0 && IsAssignmentOperator);
2504 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002505 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002506 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002507 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002508 break;
2509 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002510 }
2511}
2512
2513/// BuiltinCandidateTypeSet - A set of types that will be used for the
2514/// candidate operator functions for built-in operators (C++
2515/// [over.built]). The types are separated into pointer types and
2516/// enumeration types.
2517class BuiltinCandidateTypeSet {
2518 /// TypeSet - A set of types.
Chris Lattnere37b94c2009-03-29 00:04:01 +00002519 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002520
2521 /// PointerTypes - The set of pointer types that will be used in the
2522 /// built-in candidates.
2523 TypeSet PointerTypes;
2524
Sebastian Redl78eb8742009-04-19 21:53:20 +00002525 /// MemberPointerTypes - The set of member pointer types that will be
2526 /// used in the built-in candidates.
2527 TypeSet MemberPointerTypes;
2528
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002529 /// EnumerationTypes - The set of enumeration types that will be
2530 /// used in the built-in candidates.
2531 TypeSet EnumerationTypes;
2532
2533 /// Context - The AST context in which we will build the type sets.
2534 ASTContext &Context;
2535
Sebastian Redl78eb8742009-04-19 21:53:20 +00002536 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2537 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002538
2539public:
2540 /// iterator - Iterates through the types that are part of the set.
Chris Lattnere37b94c2009-03-29 00:04:01 +00002541 typedef TypeSet::iterator iterator;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002542
2543 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2544
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002545 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2546 bool AllowExplicitConversions);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002547
2548 /// pointer_begin - First pointer type found;
2549 iterator pointer_begin() { return PointerTypes.begin(); }
2550
Sebastian Redl78eb8742009-04-19 21:53:20 +00002551 /// pointer_end - Past the last pointer type found;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002552 iterator pointer_end() { return PointerTypes.end(); }
2553
Sebastian Redl78eb8742009-04-19 21:53:20 +00002554 /// member_pointer_begin - First member pointer type found;
2555 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2556
2557 /// member_pointer_end - Past the last member pointer type found;
2558 iterator member_pointer_end() { return MemberPointerTypes.end(); }
2559
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002560 /// enumeration_begin - First enumeration type found;
2561 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2562
Sebastian Redl78eb8742009-04-19 21:53:20 +00002563 /// enumeration_end - Past the last enumeration type found;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002564 iterator enumeration_end() { return EnumerationTypes.end(); }
2565};
2566
Sebastian Redl78eb8742009-04-19 21:53:20 +00002567/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002568/// the set of pointer types along with any more-qualified variants of
2569/// that type. For example, if @p Ty is "int const *", this routine
2570/// will add "int const *", "int const volatile *", "int const
2571/// restrict *", and "int const volatile restrict *" to the set of
2572/// pointer types. Returns true if the add of @p Ty itself succeeded,
2573/// false otherwise.
Sebastian Redl78eb8742009-04-19 21:53:20 +00002574bool
2575BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002576 // Insert this type.
Chris Lattnere37b94c2009-03-29 00:04:01 +00002577 if (!PointerTypes.insert(Ty))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002578 return false;
2579
2580 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2581 QualType PointeeTy = PointerTy->getPointeeType();
2582 // FIXME: Optimize this so that we don't keep trying to add the same types.
2583
Mike Stump390b4cc2009-05-16 07:39:55 +00002584 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2585 // pointer conversions that don't cast away constness?
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002586 if (!PointeeTy.isConstQualified())
Sebastian Redl78eb8742009-04-19 21:53:20 +00002587 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002588 (Context.getPointerType(PointeeTy.withConst()));
2589 if (!PointeeTy.isVolatileQualified())
Sebastian Redl78eb8742009-04-19 21:53:20 +00002590 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002591 (Context.getPointerType(PointeeTy.withVolatile()));
2592 if (!PointeeTy.isRestrictQualified())
Sebastian Redl78eb8742009-04-19 21:53:20 +00002593 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002594 (Context.getPointerType(PointeeTy.withRestrict()));
2595 }
2596
2597 return true;
2598}
2599
Sebastian Redl78eb8742009-04-19 21:53:20 +00002600/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2601/// to the set of pointer types along with any more-qualified variants of
2602/// that type. For example, if @p Ty is "int const *", this routine
2603/// will add "int const *", "int const volatile *", "int const
2604/// restrict *", and "int const volatile restrict *" to the set of
2605/// pointer types. Returns true if the add of @p Ty itself succeeded,
2606/// false otherwise.
2607bool
2608BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2609 QualType Ty) {
2610 // Insert this type.
2611 if (!MemberPointerTypes.insert(Ty))
2612 return false;
2613
2614 if (const MemberPointerType *PointerTy = Ty->getAsMemberPointerType()) {
2615 QualType PointeeTy = PointerTy->getPointeeType();
2616 const Type *ClassTy = PointerTy->getClass();
2617 // FIXME: Optimize this so that we don't keep trying to add the same types.
2618
2619 if (!PointeeTy.isConstQualified())
2620 AddMemberPointerWithMoreQualifiedTypeVariants
2621 (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2622 if (!PointeeTy.isVolatileQualified())
2623 AddMemberPointerWithMoreQualifiedTypeVariants
2624 (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2625 if (!PointeeTy.isRestrictQualified())
2626 AddMemberPointerWithMoreQualifiedTypeVariants
2627 (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2628 }
2629
2630 return true;
2631}
2632
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002633/// AddTypesConvertedFrom - Add each of the types to which the type @p
2634/// Ty can be implicit converted to the given set of @p Types. We're
Sebastian Redl78eb8742009-04-19 21:53:20 +00002635/// primarily interested in pointer types and enumeration types. We also
2636/// take member pointer types, for the conditional operator.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002637/// AllowUserConversions is true if we should look at the conversion
2638/// functions of a class type, and AllowExplicitConversions if we
2639/// should also include the explicit conversion functions of a class
2640/// type.
2641void
2642BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2643 bool AllowUserConversions,
2644 bool AllowExplicitConversions) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002645 // Only deal with canonical types.
2646 Ty = Context.getCanonicalType(Ty);
2647
2648 // Look through reference types; they aren't part of the type of an
2649 // expression for the purposes of conversions.
2650 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2651 Ty = RefTy->getPointeeType();
2652
2653 // We don't care about qualifiers on the type.
2654 Ty = Ty.getUnqualifiedType();
2655
2656 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2657 QualType PointeeTy = PointerTy->getPointeeType();
2658
2659 // Insert our type, and its more-qualified variants, into the set
2660 // of types.
Sebastian Redl78eb8742009-04-19 21:53:20 +00002661 if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002662 return;
2663
2664 // Add 'cv void*' to our set of types.
2665 if (!Ty->isVoidType()) {
2666 QualType QualVoid
2667 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
Sebastian Redl78eb8742009-04-19 21:53:20 +00002668 AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002669 }
2670
2671 // If this is a pointer to a class type, add pointers to its bases
2672 // (with the same level of cv-qualification as the original
2673 // derived class, of course).
2674 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2675 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2676 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2677 Base != ClassDecl->bases_end(); ++Base) {
2678 QualType BaseTy = Context.getCanonicalType(Base->getType());
2679 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2680
2681 // Add the pointer type, recursively, so that we get all of
2682 // the indirect base classes, too.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002683 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002684 }
2685 }
Sebastian Redl78eb8742009-04-19 21:53:20 +00002686 } else if (Ty->isMemberPointerType()) {
2687 // Member pointers are far easier, since the pointee can't be converted.
2688 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2689 return;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002690 } else if (Ty->isEnumeralType()) {
Chris Lattnere37b94c2009-03-29 00:04:01 +00002691 EnumerationTypes.insert(Ty);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002692 } else if (AllowUserConversions) {
2693 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2694 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2695 // FIXME: Visit conversion functions in the base classes, too.
2696 OverloadedFunctionDecl *Conversions
2697 = ClassDecl->getConversionFunctions();
2698 for (OverloadedFunctionDecl::function_iterator Func
2699 = Conversions->function_begin();
2700 Func != Conversions->function_end(); ++Func) {
2701 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002702 if (AllowExplicitConversions || !Conv->isExplicit())
2703 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002704 }
2705 }
2706 }
2707}
2708
Douglas Gregor74253732008-11-19 15:42:04 +00002709/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2710/// operator overloads to the candidate set (C++ [over.built]), based
2711/// on the operator @p Op and the arguments given. For example, if the
2712/// operator is a binary '+', this routine might add "int
2713/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002714void
Douglas Gregor74253732008-11-19 15:42:04 +00002715Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2716 Expr **Args, unsigned NumArgs,
2717 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002718 // The set of "promoted arithmetic types", which are the arithmetic
2719 // types are that preserved by promotion (C++ [over.built]p2). Note
2720 // that the first few of these types are the promoted integral
2721 // types; these types need to be first.
2722 // FIXME: What about complex?
2723 const unsigned FirstIntegralType = 0;
2724 const unsigned LastIntegralType = 13;
2725 const unsigned FirstPromotedIntegralType = 7,
2726 LastPromotedIntegralType = 13;
2727 const unsigned FirstPromotedArithmeticType = 7,
2728 LastPromotedArithmeticType = 16;
2729 const unsigned NumArithmeticTypes = 16;
2730 QualType ArithmeticTypes[NumArithmeticTypes] = {
2731 Context.BoolTy, Context.CharTy, Context.WCharTy,
2732 Context.SignedCharTy, Context.ShortTy,
2733 Context.UnsignedCharTy, Context.UnsignedShortTy,
2734 Context.IntTy, Context.LongTy, Context.LongLongTy,
2735 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2736 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2737 };
2738
2739 // Find all of the types that the arguments can convert to, but only
2740 // if the operator we're looking at has built-in operator candidates
2741 // that make use of these types.
2742 BuiltinCandidateTypeSet CandidateTypes(Context);
2743 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2744 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002745 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002746 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002747 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002748 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
Douglas Gregor74253732008-11-19 15:42:04 +00002749 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002750 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2751 true,
2752 (Op == OO_Exclaim ||
2753 Op == OO_AmpAmp ||
2754 Op == OO_PipePipe));
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002755 }
2756
2757 bool isComparison = false;
2758 switch (Op) {
2759 case OO_None:
2760 case NUM_OVERLOADED_OPERATORS:
2761 assert(false && "Expected an overloaded operator");
2762 break;
2763
Douglas Gregor74253732008-11-19 15:42:04 +00002764 case OO_Star: // '*' is either unary or binary
2765 if (NumArgs == 1)
2766 goto UnaryStar;
2767 else
2768 goto BinaryStar;
2769 break;
2770
2771 case OO_Plus: // '+' is either unary or binary
2772 if (NumArgs == 1)
2773 goto UnaryPlus;
2774 else
2775 goto BinaryPlus;
2776 break;
2777
2778 case OO_Minus: // '-' is either unary or binary
2779 if (NumArgs == 1)
2780 goto UnaryMinus;
2781 else
2782 goto BinaryMinus;
2783 break;
2784
2785 case OO_Amp: // '&' is either unary or binary
2786 if (NumArgs == 1)
2787 goto UnaryAmp;
2788 else
2789 goto BinaryAmp;
2790
2791 case OO_PlusPlus:
2792 case OO_MinusMinus:
2793 // C++ [over.built]p3:
2794 //
2795 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2796 // is either volatile or empty, there exist candidate operator
2797 // functions of the form
2798 //
2799 // VQ T& operator++(VQ T&);
2800 // T operator++(VQ T&, int);
2801 //
2802 // C++ [over.built]p4:
2803 //
2804 // For every pair (T, VQ), where T is an arithmetic type other
2805 // than bool, and VQ is either volatile or empty, there exist
2806 // candidate operator functions of the form
2807 //
2808 // VQ T& operator--(VQ T&);
2809 // T operator--(VQ T&, int);
2810 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2811 Arith < NumArithmeticTypes; ++Arith) {
2812 QualType ArithTy = ArithmeticTypes[Arith];
2813 QualType ParamTypes[2]
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002814 = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
Douglas Gregor74253732008-11-19 15:42:04 +00002815
2816 // Non-volatile version.
2817 if (NumArgs == 1)
2818 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2819 else
2820 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2821
2822 // Volatile version
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002823 ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
Douglas Gregor74253732008-11-19 15:42:04 +00002824 if (NumArgs == 1)
2825 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2826 else
2827 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2828 }
2829
2830 // C++ [over.built]p5:
2831 //
2832 // For every pair (T, VQ), where T is a cv-qualified or
2833 // cv-unqualified object type, and VQ is either volatile or
2834 // empty, there exist candidate operator functions of the form
2835 //
2836 // T*VQ& operator++(T*VQ&);
2837 // T*VQ& operator--(T*VQ&);
2838 // T* operator++(T*VQ&, int);
2839 // T* operator--(T*VQ&, int);
2840 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2841 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2842 // Skip pointer types that aren't pointers to object types.
Douglas Gregorbad0e652009-03-24 20:32:41 +00002843 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002844 continue;
2845
2846 QualType ParamTypes[2] = {
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002847 Context.getLValueReferenceType(*Ptr), Context.IntTy
Douglas Gregor74253732008-11-19 15:42:04 +00002848 };
2849
2850 // Without volatile
2851 if (NumArgs == 1)
2852 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2853 else
2854 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2855
2856 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2857 // With volatile
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002858 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor74253732008-11-19 15:42:04 +00002859 if (NumArgs == 1)
2860 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2861 else
2862 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2863 }
2864 }
2865 break;
2866
2867 UnaryStar:
2868 // C++ [over.built]p6:
2869 // For every cv-qualified or cv-unqualified object type T, there
2870 // exist candidate operator functions of the form
2871 //
2872 // T& operator*(T*);
2873 //
2874 // C++ [over.built]p7:
2875 // For every function type T, there exist candidate operator
2876 // functions of the form
2877 // T& operator*(T*);
2878 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2879 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2880 QualType ParamTy = *Ptr;
2881 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002882 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
Douglas Gregor74253732008-11-19 15:42:04 +00002883 &ParamTy, Args, 1, CandidateSet);
2884 }
2885 break;
2886
2887 UnaryPlus:
2888 // C++ [over.built]p8:
2889 // For every type T, there exist candidate operator functions of
2890 // the form
2891 //
2892 // T* operator+(T*);
2893 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2894 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2895 QualType ParamTy = *Ptr;
2896 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2897 }
2898
2899 // Fall through
2900
2901 UnaryMinus:
2902 // C++ [over.built]p9:
2903 // For every promoted arithmetic type T, there exist candidate
2904 // operator functions of the form
2905 //
2906 // T operator+(T);
2907 // T operator-(T);
2908 for (unsigned Arith = FirstPromotedArithmeticType;
2909 Arith < LastPromotedArithmeticType; ++Arith) {
2910 QualType ArithTy = ArithmeticTypes[Arith];
2911 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2912 }
2913 break;
2914
2915 case OO_Tilde:
2916 // C++ [over.built]p10:
2917 // For every promoted integral type T, there exist candidate
2918 // operator functions of the form
2919 //
2920 // T operator~(T);
2921 for (unsigned Int = FirstPromotedIntegralType;
2922 Int < LastPromotedIntegralType; ++Int) {
2923 QualType IntTy = ArithmeticTypes[Int];
2924 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2925 }
2926 break;
2927
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002928 case OO_New:
2929 case OO_Delete:
2930 case OO_Array_New:
2931 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002932 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002933 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002934 break;
2935
2936 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002937 UnaryAmp:
2938 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002939 // C++ [over.match.oper]p3:
2940 // -- For the operator ',', the unary operator '&', or the
2941 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002942 break;
2943
2944 case OO_Less:
2945 case OO_Greater:
2946 case OO_LessEqual:
2947 case OO_GreaterEqual:
2948 case OO_EqualEqual:
2949 case OO_ExclaimEqual:
2950 // C++ [over.built]p15:
2951 //
2952 // For every pointer or enumeration type T, there exist
2953 // candidate operator functions of the form
2954 //
2955 // bool operator<(T, T);
2956 // bool operator>(T, T);
2957 // bool operator<=(T, T);
2958 // bool operator>=(T, T);
2959 // bool operator==(T, T);
2960 // bool operator!=(T, T);
2961 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2962 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2963 QualType ParamTypes[2] = { *Ptr, *Ptr };
2964 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2965 }
2966 for (BuiltinCandidateTypeSet::iterator Enum
2967 = CandidateTypes.enumeration_begin();
2968 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2969 QualType ParamTypes[2] = { *Enum, *Enum };
2970 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2971 }
2972
2973 // Fall through.
2974 isComparison = true;
2975
Douglas Gregor74253732008-11-19 15:42:04 +00002976 BinaryPlus:
2977 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002978 if (!isComparison) {
2979 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2980
2981 // C++ [over.built]p13:
2982 //
2983 // For every cv-qualified or cv-unqualified object type T
2984 // there exist candidate operator functions of the form
2985 //
2986 // T* operator+(T*, ptrdiff_t);
2987 // T& operator[](T*, ptrdiff_t); [BELOW]
2988 // T* operator-(T*, ptrdiff_t);
2989 // T* operator+(ptrdiff_t, T*);
2990 // T& operator[](ptrdiff_t, T*); [BELOW]
2991 //
2992 // C++ [over.built]p14:
2993 //
2994 // For every T, where T is a pointer to object type, there
2995 // exist candidate operator functions of the form
2996 //
2997 // ptrdiff_t operator-(T, T);
2998 for (BuiltinCandidateTypeSet::iterator Ptr
2999 = CandidateTypes.pointer_begin();
3000 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3001 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3002
3003 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3004 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3005
3006 if (Op == OO_Plus) {
3007 // T* operator+(ptrdiff_t, T*);
3008 ParamTypes[0] = ParamTypes[1];
3009 ParamTypes[1] = *Ptr;
3010 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3011 } else {
3012 // ptrdiff_t operator-(T, T);
3013 ParamTypes[1] = *Ptr;
3014 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3015 Args, 2, CandidateSet);
3016 }
3017 }
3018 }
3019 // Fall through
3020
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003021 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00003022 BinaryStar:
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003023 Conditional:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003024 // C++ [over.built]p12:
3025 //
3026 // For every pair of promoted arithmetic types L and R, there
3027 // exist candidate operator functions of the form
3028 //
3029 // LR operator*(L, R);
3030 // LR operator/(L, R);
3031 // LR operator+(L, R);
3032 // LR operator-(L, R);
3033 // bool operator<(L, R);
3034 // bool operator>(L, R);
3035 // bool operator<=(L, R);
3036 // bool operator>=(L, R);
3037 // bool operator==(L, R);
3038 // bool operator!=(L, R);
3039 //
3040 // where LR is the result of the usual arithmetic conversions
3041 // between types L and R.
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003042 //
3043 // C++ [over.built]p24:
3044 //
3045 // For every pair of promoted arithmetic types L and R, there exist
3046 // candidate operator functions of the form
3047 //
3048 // LR operator?(bool, L, R);
3049 //
3050 // where LR is the result of the usual arithmetic conversions
3051 // between types L and R.
3052 // Our candidates ignore the first parameter.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003053 for (unsigned Left = FirstPromotedArithmeticType;
3054 Left < LastPromotedArithmeticType; ++Left) {
3055 for (unsigned Right = FirstPromotedArithmeticType;
3056 Right < LastPromotedArithmeticType; ++Right) {
3057 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3058 QualType Result
3059 = isComparison? Context.BoolTy
3060 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3061 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3062 }
3063 }
3064 break;
3065
3066 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00003067 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003068 case OO_Caret:
3069 case OO_Pipe:
3070 case OO_LessLess:
3071 case OO_GreaterGreater:
3072 // C++ [over.built]p17:
3073 //
3074 // For every pair of promoted integral types L and R, there
3075 // exist candidate operator functions of the form
3076 //
3077 // LR operator%(L, R);
3078 // LR operator&(L, R);
3079 // LR operator^(L, R);
3080 // LR operator|(L, R);
3081 // L operator<<(L, R);
3082 // L operator>>(L, R);
3083 //
3084 // where LR is the result of the usual arithmetic conversions
3085 // between types L and R.
3086 for (unsigned Left = FirstPromotedIntegralType;
3087 Left < LastPromotedIntegralType; ++Left) {
3088 for (unsigned Right = FirstPromotedIntegralType;
3089 Right < LastPromotedIntegralType; ++Right) {
3090 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3091 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3092 ? LandR[0]
3093 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3094 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3095 }
3096 }
3097 break;
3098
3099 case OO_Equal:
3100 // C++ [over.built]p20:
3101 //
3102 // For every pair (T, VQ), where T is an enumeration or
3103 // (FIXME:) pointer to member type and VQ is either volatile or
3104 // empty, there exist candidate operator functions of the form
3105 //
3106 // VQ T& operator=(VQ T&, T);
3107 for (BuiltinCandidateTypeSet::iterator Enum
3108 = CandidateTypes.enumeration_begin();
3109 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3110 QualType ParamTypes[2];
3111
3112 // T& operator=(T&, T)
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003113 ParamTypes[0] = Context.getLValueReferenceType(*Enum);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003114 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003115 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003116 /*IsAssignmentOperator=*/false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003117
Douglas Gregor74253732008-11-19 15:42:04 +00003118 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3119 // volatile T& operator=(volatile T&, T)
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003120 ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
Douglas Gregor74253732008-11-19 15:42:04 +00003121 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003122 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003123 /*IsAssignmentOperator=*/false);
Douglas Gregor74253732008-11-19 15:42:04 +00003124 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003125 }
3126 // Fall through.
3127
3128 case OO_PlusEqual:
3129 case OO_MinusEqual:
3130 // C++ [over.built]p19:
3131 //
3132 // For every pair (T, VQ), where T is any type and VQ is either
3133 // volatile or empty, there exist candidate operator functions
3134 // of the form
3135 //
3136 // T*VQ& operator=(T*VQ&, T*);
3137 //
3138 // C++ [over.built]p21:
3139 //
3140 // For every pair (T, VQ), where T is a cv-qualified or
3141 // cv-unqualified object type and VQ is either volatile or
3142 // empty, there exist candidate operator functions of the form
3143 //
3144 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3145 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3146 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3147 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3148 QualType ParamTypes[2];
3149 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3150
3151 // non-volatile version
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003152 ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003153 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3154 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003155
Douglas Gregor74253732008-11-19 15:42:04 +00003156 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3157 // volatile version
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003158 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003159 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3160 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor74253732008-11-19 15:42:04 +00003161 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003162 }
3163 // Fall through.
3164
3165 case OO_StarEqual:
3166 case OO_SlashEqual:
3167 // C++ [over.built]p18:
3168 //
3169 // For every triple (L, VQ, R), where L is an arithmetic type,
3170 // VQ is either volatile or empty, and R is a promoted
3171 // arithmetic type, there exist candidate operator functions of
3172 // the form
3173 //
3174 // VQ L& operator=(VQ L&, R);
3175 // VQ L& operator*=(VQ L&, R);
3176 // VQ L& operator/=(VQ L&, R);
3177 // VQ L& operator+=(VQ L&, R);
3178 // VQ L& operator-=(VQ L&, R);
3179 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3180 for (unsigned Right = FirstPromotedArithmeticType;
3181 Right < LastPromotedArithmeticType; ++Right) {
3182 QualType ParamTypes[2];
3183 ParamTypes[1] = ArithmeticTypes[Right];
3184
3185 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003186 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003187 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3188 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003189
3190 // Add this built-in operator as a candidate (VQ is 'volatile').
3191 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003192 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003193 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3194 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003195 }
3196 }
3197 break;
3198
3199 case OO_PercentEqual:
3200 case OO_LessLessEqual:
3201 case OO_GreaterGreaterEqual:
3202 case OO_AmpEqual:
3203 case OO_CaretEqual:
3204 case OO_PipeEqual:
3205 // C++ [over.built]p22:
3206 //
3207 // For every triple (L, VQ, R), where L is an integral type, VQ
3208 // is either volatile or empty, and R is a promoted integral
3209 // type, there exist candidate operator functions of the form
3210 //
3211 // VQ L& operator%=(VQ L&, R);
3212 // VQ L& operator<<=(VQ L&, R);
3213 // VQ L& operator>>=(VQ L&, R);
3214 // VQ L& operator&=(VQ L&, R);
3215 // VQ L& operator^=(VQ L&, R);
3216 // VQ L& operator|=(VQ L&, R);
3217 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3218 for (unsigned Right = FirstPromotedIntegralType;
3219 Right < LastPromotedIntegralType; ++Right) {
3220 QualType ParamTypes[2];
3221 ParamTypes[1] = ArithmeticTypes[Right];
3222
3223 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003224 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003225 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3226
3227 // Add this built-in operator as a candidate (VQ is 'volatile').
3228 ParamTypes[0] = ArithmeticTypes[Left];
3229 ParamTypes[0].addVolatile();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003230 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003231 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3232 }
3233 }
3234 break;
3235
Douglas Gregor74253732008-11-19 15:42:04 +00003236 case OO_Exclaim: {
3237 // C++ [over.operator]p23:
3238 //
3239 // There also exist candidate operator functions of the form
3240 //
3241 // bool operator!(bool);
3242 // bool operator&&(bool, bool); [BELOW]
3243 // bool operator||(bool, bool); [BELOW]
3244 QualType ParamTy = Context.BoolTy;
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003245 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3246 /*IsAssignmentOperator=*/false,
3247 /*NumContextualBoolArguments=*/1);
Douglas Gregor74253732008-11-19 15:42:04 +00003248 break;
3249 }
3250
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003251 case OO_AmpAmp:
3252 case OO_PipePipe: {
3253 // C++ [over.operator]p23:
3254 //
3255 // There also exist candidate operator functions of the form
3256 //
Douglas Gregor74253732008-11-19 15:42:04 +00003257 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003258 // bool operator&&(bool, bool);
3259 // bool operator||(bool, bool);
3260 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003261 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3262 /*IsAssignmentOperator=*/false,
3263 /*NumContextualBoolArguments=*/2);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003264 break;
3265 }
3266
3267 case OO_Subscript:
3268 // C++ [over.built]p13:
3269 //
3270 // For every cv-qualified or cv-unqualified object type T there
3271 // exist candidate operator functions of the form
3272 //
3273 // T* operator+(T*, ptrdiff_t); [ABOVE]
3274 // T& operator[](T*, ptrdiff_t);
3275 // T* operator-(T*, ptrdiff_t); [ABOVE]
3276 // T* operator+(ptrdiff_t, T*); [ABOVE]
3277 // T& operator[](ptrdiff_t, T*);
3278 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3279 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3280 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3281 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003282 QualType ResultTy = Context.getLValueReferenceType(PointeeType);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003283
3284 // T& operator[](T*, ptrdiff_t)
3285 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3286
3287 // T& operator[](ptrdiff_t, T*);
3288 ParamTypes[0] = ParamTypes[1];
3289 ParamTypes[1] = *Ptr;
3290 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3291 }
3292 break;
3293
3294 case OO_ArrowStar:
3295 // FIXME: No support for pointer-to-members yet.
3296 break;
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003297
3298 case OO_Conditional:
3299 // Note that we don't consider the first argument, since it has been
3300 // contextually converted to bool long ago. The candidates below are
3301 // therefore added as binary.
3302 //
3303 // C++ [over.built]p24:
3304 // For every type T, where T is a pointer or pointer-to-member type,
3305 // there exist candidate operator functions of the form
3306 //
3307 // T operator?(bool, T, T);
3308 //
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003309 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3310 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3311 QualType ParamTypes[2] = { *Ptr, *Ptr };
3312 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3313 }
Sebastian Redl78eb8742009-04-19 21:53:20 +00003314 for (BuiltinCandidateTypeSet::iterator Ptr =
3315 CandidateTypes.member_pointer_begin(),
3316 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3317 QualType ParamTypes[2] = { *Ptr, *Ptr };
3318 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3319 }
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003320 goto Conditional;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003321 }
3322}
3323
Douglas Gregorfa047642009-02-04 00:32:51 +00003324/// \brief Add function candidates found via argument-dependent lookup
3325/// to the set of overloading candidates.
3326///
3327/// This routine performs argument-dependent name lookup based on the
3328/// given function name (which may also be an operator name) and adds
3329/// all of the overload candidates found by ADL to the overload
3330/// candidate set (C++ [basic.lookup.argdep]).
3331void
3332Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3333 Expr **Args, unsigned NumArgs,
3334 OverloadCandidateSet& CandidateSet) {
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003335 FunctionSet Functions;
Douglas Gregorfa047642009-02-04 00:32:51 +00003336
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003337 // Record all of the function candidates that we've already
3338 // added to the overload set, so that we don't add those same
3339 // candidates a second time.
3340 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3341 CandEnd = CandidateSet.end();
3342 Cand != CandEnd; ++Cand)
3343 if (Cand->Function)
3344 Functions.insert(Cand->Function);
Douglas Gregorfa047642009-02-04 00:32:51 +00003345
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003346 ArgumentDependentLookup(Name, Args, NumArgs, Functions);
Douglas Gregorfa047642009-02-04 00:32:51 +00003347
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003348 // Erase all of the candidates we already knew about.
3349 // FIXME: This is suboptimal. Is there a better way?
3350 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3351 CandEnd = CandidateSet.end();
3352 Cand != CandEnd; ++Cand)
3353 if (Cand->Function)
3354 Functions.erase(Cand->Function);
3355
3356 // For each of the ADL candidates we found, add it to the overload
3357 // set.
3358 for (FunctionSet::iterator Func = Functions.begin(),
3359 FuncEnd = Functions.end();
3360 Func != FuncEnd; ++Func)
3361 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
Douglas Gregorfa047642009-02-04 00:32:51 +00003362}
3363
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003364/// isBetterOverloadCandidate - Determines whether the first overload
3365/// candidate is a better candidate than the second (C++ 13.3.3p1).
3366bool
3367Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3368 const OverloadCandidate& Cand2)
3369{
3370 // Define viable functions to be better candidates than non-viable
3371 // functions.
3372 if (!Cand2.Viable)
3373 return Cand1.Viable;
3374 else if (!Cand1.Viable)
3375 return false;
3376
Douglas Gregor88a35142008-12-22 05:46:06 +00003377 // C++ [over.match.best]p1:
3378 //
3379 // -- if F is a static member function, ICS1(F) is defined such
3380 // that ICS1(F) is neither better nor worse than ICS1(G) for
3381 // any function G, and, symmetrically, ICS1(G) is neither
3382 // better nor worse than ICS1(F).
3383 unsigned StartArg = 0;
3384 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3385 StartArg = 1;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003386
3387 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3388 // function than another viable function F2 if for all arguments i,
3389 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3390 // then...
3391 unsigned NumArgs = Cand1.Conversions.size();
3392 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3393 bool HasBetterConversion = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00003394 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003395 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3396 Cand2.Conversions[ArgIdx])) {
3397 case ImplicitConversionSequence::Better:
3398 // Cand1 has a better conversion sequence.
3399 HasBetterConversion = true;
3400 break;
3401
3402 case ImplicitConversionSequence::Worse:
3403 // Cand1 can't be better than Cand2.
3404 return false;
3405
3406 case ImplicitConversionSequence::Indistinguishable:
3407 // Do nothing.
3408 break;
3409 }
3410 }
3411
3412 if (HasBetterConversion)
3413 return true;
3414
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003415 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3416 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003417
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003418 // C++ [over.match.best]p1b4:
3419 //
3420 // -- the context is an initialization by user-defined conversion
3421 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3422 // from the return type of F1 to the destination type (i.e.,
3423 // the type of the entity being initialized) is a better
3424 // conversion sequence than the standard conversion sequence
3425 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00003426 if (Cand1.Function && Cand2.Function &&
3427 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003428 isa<CXXConversionDecl>(Cand2.Function)) {
3429 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3430 Cand2.FinalConversion)) {
3431 case ImplicitConversionSequence::Better:
3432 // Cand1 has a better conversion sequence.
3433 return true;
3434
3435 case ImplicitConversionSequence::Worse:
3436 // Cand1 can't be better than Cand2.
3437 return false;
3438
3439 case ImplicitConversionSequence::Indistinguishable:
3440 // Do nothing
3441 break;
3442 }
3443 }
3444
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003445 return false;
3446}
3447
3448/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3449/// within an overload candidate set. If overloading is successful,
3450/// the result will be OR_Success and Best will be set to point to the
3451/// best viable function within the candidate set. Otherwise, one of
3452/// several kinds of errors will be returned; see
3453/// Sema::OverloadingResult.
3454Sema::OverloadingResult
3455Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3456 OverloadCandidateSet::iterator& Best)
3457{
3458 // Find the best viable function.
3459 Best = CandidateSet.end();
3460 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3461 Cand != CandidateSet.end(); ++Cand) {
3462 if (Cand->Viable) {
3463 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3464 Best = Cand;
3465 }
3466 }
3467
3468 // If we didn't find any viable functions, abort.
3469 if (Best == CandidateSet.end())
3470 return OR_No_Viable_Function;
3471
3472 // Make sure that this function is better than every other viable
3473 // function. If not, we have an ambiguity.
3474 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3475 Cand != CandidateSet.end(); ++Cand) {
3476 if (Cand->Viable &&
3477 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003478 !isBetterOverloadCandidate(*Best, *Cand)) {
3479 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003480 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003481 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003482 }
3483
3484 // Best is the best viable function.
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003485 if (Best->Function &&
3486 (Best->Function->isDeleted() ||
3487 Best->Function->getAttr<UnavailableAttr>()))
3488 return OR_Deleted;
3489
3490 // If Best refers to a function that is either deleted (C++0x) or
3491 // unavailable (Clang extension) report an error.
3492
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003493 return OR_Success;
3494}
3495
3496/// PrintOverloadCandidates - When overload resolution fails, prints
3497/// diagnostic messages containing the candidates in the candidate
3498/// set. If OnlyViable is true, only viable candidates will be printed.
3499void
3500Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3501 bool OnlyViable)
3502{
3503 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3504 LastCand = CandidateSet.end();
3505 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003506 if (Cand->Viable || !OnlyViable) {
3507 if (Cand->Function) {
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003508 if (Cand->Function->isDeleted() ||
3509 Cand->Function->getAttr<UnavailableAttr>()) {
3510 // Deleted or "unavailable" function.
3511 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3512 << Cand->Function->isDeleted();
3513 } else {
3514 // Normal function
3515 // FIXME: Give a better reason!
3516 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3517 }
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003518 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003519 // Desugar the type of the surrogate down to a function type,
3520 // retaining as many typedefs as possible while still showing
3521 // the function type (and, therefore, its parameter types).
3522 QualType FnType = Cand->Surrogate->getConversionType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003523 bool isLValueReference = false;
3524 bool isRValueReference = false;
Douglas Gregor621b3932008-11-21 02:54:28 +00003525 bool isPointer = false;
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003526 if (const LValueReferenceType *FnTypeRef =
3527 FnType->getAsLValueReferenceType()) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003528 FnType = FnTypeRef->getPointeeType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003529 isLValueReference = true;
3530 } else if (const RValueReferenceType *FnTypeRef =
3531 FnType->getAsRValueReferenceType()) {
3532 FnType = FnTypeRef->getPointeeType();
3533 isRValueReference = true;
Douglas Gregor621b3932008-11-21 02:54:28 +00003534 }
3535 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3536 FnType = FnTypePtr->getPointeeType();
3537 isPointer = true;
3538 }
3539 // Desugar down to a function type.
3540 FnType = QualType(FnType->getAsFunctionType(), 0);
3541 // Reconstruct the pointer/reference as appropriate.
3542 if (isPointer) FnType = Context.getPointerType(FnType);
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003543 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3544 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
Douglas Gregor621b3932008-11-21 02:54:28 +00003545
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003546 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00003547 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003548 } else {
3549 // FIXME: We need to get the identifier in here
Mike Stump390b4cc2009-05-16 07:39:55 +00003550 // FIXME: Do we want the error message to point at the operator?
3551 // (built-ins won't have a location)
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003552 QualType FnType
3553 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3554 Cand->BuiltinTypes.ParamTypes,
3555 Cand->Conversions.size(),
3556 false, 0);
3557
Chris Lattnerd1625842008-11-24 06:25:27 +00003558 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003559 }
3560 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003561 }
3562}
3563
Douglas Gregor904eed32008-11-10 20:40:00 +00003564/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3565/// an overloaded function (C++ [over.over]), where @p From is an
3566/// expression with overloaded function type and @p ToType is the type
3567/// we're trying to resolve to. For example:
3568///
3569/// @code
3570/// int f(double);
3571/// int f(int);
3572///
3573/// int (*pfd)(double) = f; // selects f(double)
3574/// @endcode
3575///
3576/// This routine returns the resulting FunctionDecl if it could be
3577/// resolved, and NULL otherwise. When @p Complain is true, this
3578/// routine will emit diagnostics if there is an error.
3579FunctionDecl *
Sebastian Redl33b399a2009-02-04 21:23:32 +00003580Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor904eed32008-11-10 20:40:00 +00003581 bool Complain) {
3582 QualType FunctionType = ToType;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003583 bool IsMember = false;
Daniel Dunbarbb710012009-02-26 19:13:44 +00003584 if (const PointerType *ToTypePtr = ToType->getAsPointerType())
Douglas Gregor904eed32008-11-10 20:40:00 +00003585 FunctionType = ToTypePtr->getPointeeType();
Daniel Dunbarbb710012009-02-26 19:13:44 +00003586 else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3587 FunctionType = ToTypeRef->getPointeeType();
Sebastian Redl33b399a2009-02-04 21:23:32 +00003588 else if (const MemberPointerType *MemTypePtr =
3589 ToType->getAsMemberPointerType()) {
3590 FunctionType = MemTypePtr->getPointeeType();
3591 IsMember = true;
3592 }
Douglas Gregor904eed32008-11-10 20:40:00 +00003593
3594 // We only look at pointers or references to functions.
3595 if (!FunctionType->isFunctionType())
3596 return 0;
3597
3598 // Find the actual overloaded function declaration.
3599 OverloadedFunctionDecl *Ovl = 0;
3600
3601 // C++ [over.over]p1:
3602 // [...] [Note: any redundant set of parentheses surrounding the
3603 // overloaded function name is ignored (5.1). ]
3604 Expr *OvlExpr = From->IgnoreParens();
3605
3606 // C++ [over.over]p1:
3607 // [...] The overloaded function name can be preceded by the &
3608 // operator.
3609 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3610 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3611 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3612 }
3613
3614 // Try to dig out the overloaded function.
3615 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3616 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3617
3618 // If there's no overloaded function declaration, we're done.
3619 if (!Ovl)
3620 return 0;
3621
3622 // Look through all of the overloaded functions, searching for one
3623 // whose type matches exactly.
3624 // FIXME: When templates or using declarations come along, we'll actually
3625 // have to deal with duplicates, partial ordering, etc. For now, we
3626 // can just do a simple search.
3627 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3628 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3629 Fun != Ovl->function_end(); ++Fun) {
3630 // C++ [over.over]p3:
3631 // Non-member functions and static member functions match
Sebastian Redl0defd762009-02-05 12:33:33 +00003632 // targets of type "pointer-to-function" or "reference-to-function."
3633 // Nonstatic member functions match targets of
Sebastian Redl33b399a2009-02-04 21:23:32 +00003634 // type "pointer-to-member-function."
3635 // Note that according to DR 247, the containing class does not matter.
3636 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3637 // Skip non-static functions when converting to pointer, and static
3638 // when converting to member pointer.
3639 if (Method->isStatic() == IsMember)
Douglas Gregor904eed32008-11-10 20:40:00 +00003640 continue;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003641 } else if (IsMember)
3642 continue;
Douglas Gregor904eed32008-11-10 20:40:00 +00003643
3644 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3645 return *Fun;
3646 }
3647
3648 return 0;
3649}
3650
Douglas Gregorf6b89692008-11-26 05:54:23 +00003651/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregorfa047642009-02-04 00:32:51 +00003652/// (which eventually refers to the declaration Func) and the call
3653/// arguments Args/NumArgs, attempt to resolve the function call down
3654/// to a specific function. If overload resolution succeeds, returns
3655/// the function declaration produced by overload
Douglas Gregor0a396682008-11-26 06:01:48 +00003656/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003657/// arguments and Fn, and returns NULL.
Douglas Gregorfa047642009-02-04 00:32:51 +00003658FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor17330012009-02-04 15:01:18 +00003659 DeclarationName UnqualifiedName,
Douglas Gregor0a396682008-11-26 06:01:48 +00003660 SourceLocation LParenLoc,
3661 Expr **Args, unsigned NumArgs,
3662 SourceLocation *CommaLocs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003663 SourceLocation RParenLoc,
Douglas Gregor17330012009-02-04 15:01:18 +00003664 bool &ArgumentDependentLookup) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003665 OverloadCandidateSet CandidateSet;
Douglas Gregor17330012009-02-04 15:01:18 +00003666
3667 // Add the functions denoted by Callee to the set of candidate
3668 // functions. While we're doing so, track whether argument-dependent
3669 // lookup still applies, per:
3670 //
3671 // C++0x [basic.lookup.argdep]p3:
3672 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3673 // and let Y be the lookup set produced by argument dependent
3674 // lookup (defined as follows). If X contains
3675 //
3676 // -- a declaration of a class member, or
3677 //
3678 // -- a block-scope function declaration that is not a
3679 // using-declaration, or
3680 //
3681 // -- a declaration that is neither a function or a function
3682 // template
3683 //
3684 // then Y is empty.
Douglas Gregorfa047642009-02-04 00:32:51 +00003685 if (OverloadedFunctionDecl *Ovl
Douglas Gregor17330012009-02-04 15:01:18 +00003686 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3687 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3688 FuncEnd = Ovl->function_end();
3689 Func != FuncEnd; ++Func) {
3690 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3691
3692 if ((*Func)->getDeclContext()->isRecord() ||
3693 (*Func)->getDeclContext()->isFunctionOrMethod())
3694 ArgumentDependentLookup = false;
3695 }
3696 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3697 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3698
3699 if (Func->getDeclContext()->isRecord() ||
3700 Func->getDeclContext()->isFunctionOrMethod())
3701 ArgumentDependentLookup = false;
3702 }
3703
3704 if (Callee)
3705 UnqualifiedName = Callee->getDeclName();
3706
Douglas Gregorfa047642009-02-04 00:32:51 +00003707 if (ArgumentDependentLookup)
Douglas Gregor17330012009-02-04 15:01:18 +00003708 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003709 CandidateSet);
3710
Douglas Gregorf6b89692008-11-26 05:54:23 +00003711 OverloadCandidateSet::iterator Best;
3712 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003713 case OR_Success:
3714 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003715
3716 case OR_No_Viable_Function:
Chris Lattner4330d652009-02-17 07:29:20 +00003717 Diag(Fn->getSourceRange().getBegin(),
Douglas Gregorf6b89692008-11-26 05:54:23 +00003718 diag::err_ovl_no_viable_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003719 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003720 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3721 break;
3722
3723 case OR_Ambiguous:
3724 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor17330012009-02-04 15:01:18 +00003725 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003726 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3727 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003728
3729 case OR_Deleted:
3730 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3731 << Best->Function->isDeleted()
3732 << UnqualifiedName
3733 << Fn->getSourceRange();
3734 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3735 break;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003736 }
3737
3738 // Overload resolution failed. Destroy all of the subexpressions and
3739 // return NULL.
3740 Fn->Destroy(Context);
3741 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3742 Args[Arg]->Destroy(Context);
3743 return 0;
3744}
3745
Douglas Gregorbc736fc2009-03-13 23:49:33 +00003746/// \brief Create a unary operation that may resolve to an overloaded
3747/// operator.
3748///
3749/// \param OpLoc The location of the operator itself (e.g., '*').
3750///
3751/// \param OpcIn The UnaryOperator::Opcode that describes this
3752/// operator.
3753///
3754/// \param Functions The set of non-member functions that will be
3755/// considered by overload resolution. The caller needs to build this
3756/// set based on the context using, e.g.,
3757/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3758/// set should not contain any member functions; those will be added
3759/// by CreateOverloadedUnaryOp().
3760///
3761/// \param input The input argument.
3762Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3763 unsigned OpcIn,
3764 FunctionSet &Functions,
3765 ExprArg input) {
3766 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3767 Expr *Input = (Expr *)input.get();
3768
3769 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3770 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3771 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3772
3773 Expr *Args[2] = { Input, 0 };
3774 unsigned NumArgs = 1;
3775
3776 // For post-increment and post-decrement, add the implicit '0' as
3777 // the second argument, so that we know this is a post-increment or
3778 // post-decrement.
3779 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3780 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3781 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3782 SourceLocation());
3783 NumArgs = 2;
3784 }
3785
3786 if (Input->isTypeDependent()) {
3787 OverloadedFunctionDecl *Overloads
3788 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3789 for (FunctionSet::iterator Func = Functions.begin(),
3790 FuncEnd = Functions.end();
3791 Func != FuncEnd; ++Func)
3792 Overloads->addOverload(*Func);
3793
3794 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3795 OpLoc, false, false);
3796
3797 input.release();
3798 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3799 &Args[0], NumArgs,
3800 Context.DependentTy,
3801 OpLoc));
3802 }
3803
3804 // Build an empty overload set.
3805 OverloadCandidateSet CandidateSet;
3806
3807 // Add the candidates from the given function set.
3808 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
3809
3810 // Add operator candidates that are member functions.
3811 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
3812
3813 // Add builtin operator candidates.
3814 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
3815
3816 // Perform overload resolution.
3817 OverloadCandidateSet::iterator Best;
3818 switch (BestViableFunction(CandidateSet, Best)) {
3819 case OR_Success: {
3820 // We found a built-in operator or an overloaded operator.
3821 FunctionDecl *FnDecl = Best->Function;
3822
3823 if (FnDecl) {
3824 // We matched an overloaded operator. Build a call to that
3825 // operator.
3826
3827 // Convert the arguments.
3828 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3829 if (PerformObjectArgumentInitialization(Input, Method))
3830 return ExprError();
3831 } else {
3832 // Convert the arguments.
3833 if (PerformCopyInitialization(Input,
3834 FnDecl->getParamDecl(0)->getType(),
3835 "passing"))
3836 return ExprError();
3837 }
3838
3839 // Determine the result type
3840 QualType ResultTy
3841 = FnDecl->getType()->getAsFunctionType()->getResultType();
3842 ResultTy = ResultTy.getNonReferenceType();
3843
3844 // Build the actual expression node.
3845 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3846 SourceLocation());
3847 UsualUnaryConversions(FnExpr);
3848
3849 input.release();
3850 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3851 &Input, 1, ResultTy,
3852 OpLoc));
3853 } else {
3854 // We matched a built-in operator. Convert the arguments, then
3855 // break out so that we will build the appropriate built-in
3856 // operator node.
3857 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
3858 Best->Conversions[0], "passing"))
3859 return ExprError();
3860
3861 break;
3862 }
3863 }
3864
3865 case OR_No_Viable_Function:
3866 // No viable function; fall through to handling this as a
3867 // built-in operator, which will produce an error message for us.
3868 break;
3869
3870 case OR_Ambiguous:
3871 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
3872 << UnaryOperator::getOpcodeStr(Opc)
3873 << Input->getSourceRange();
3874 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3875 return ExprError();
3876
3877 case OR_Deleted:
3878 Diag(OpLoc, diag::err_ovl_deleted_oper)
3879 << Best->Function->isDeleted()
3880 << UnaryOperator::getOpcodeStr(Opc)
3881 << Input->getSourceRange();
3882 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3883 return ExprError();
3884 }
3885
3886 // Either we found no viable overloaded operator or we matched a
3887 // built-in operator. In either case, fall through to trying to
3888 // build a built-in operation.
3889 input.release();
3890 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
3891}
3892
Douglas Gregor063daf62009-03-13 18:40:31 +00003893/// \brief Create a binary operation that may resolve to an overloaded
3894/// operator.
3895///
3896/// \param OpLoc The location of the operator itself (e.g., '+').
3897///
3898/// \param OpcIn The BinaryOperator::Opcode that describes this
3899/// operator.
3900///
3901/// \param Functions The set of non-member functions that will be
3902/// considered by overload resolution. The caller needs to build this
3903/// set based on the context using, e.g.,
3904/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3905/// set should not contain any member functions; those will be added
3906/// by CreateOverloadedBinOp().
3907///
3908/// \param LHS Left-hand argument.
3909/// \param RHS Right-hand argument.
3910Sema::OwningExprResult
3911Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
3912 unsigned OpcIn,
3913 FunctionSet &Functions,
3914 Expr *LHS, Expr *RHS) {
Douglas Gregor063daf62009-03-13 18:40:31 +00003915 Expr *Args[2] = { LHS, RHS };
3916
3917 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
3918 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
3919 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3920
3921 // If either side is type-dependent, create an appropriate dependent
3922 // expression.
3923 if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
3924 // .* cannot be overloaded.
3925 if (Opc == BinaryOperator::PtrMemD)
3926 return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
3927 Context.DependentTy, OpLoc));
3928
3929 OverloadedFunctionDecl *Overloads
3930 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3931 for (FunctionSet::iterator Func = Functions.begin(),
3932 FuncEnd = Functions.end();
3933 Func != FuncEnd; ++Func)
3934 Overloads->addOverload(*Func);
3935
3936 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3937 OpLoc, false, false);
3938
3939 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3940 Args, 2,
3941 Context.DependentTy,
3942 OpLoc));
3943 }
3944
3945 // If this is the .* operator, which is not overloadable, just
3946 // create a built-in binary operator.
3947 if (Opc == BinaryOperator::PtrMemD)
3948 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3949
3950 // If this is one of the assignment operators, we only perform
3951 // overload resolution if the left-hand side is a class or
3952 // enumeration type (C++ [expr.ass]p3).
3953 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3954 !LHS->getType()->isOverloadableType())
3955 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3956
Douglas Gregorbc736fc2009-03-13 23:49:33 +00003957 // Build an empty overload set.
3958 OverloadCandidateSet CandidateSet;
Douglas Gregor063daf62009-03-13 18:40:31 +00003959
3960 // Add the candidates from the given function set.
3961 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
3962
3963 // Add operator candidates that are member functions.
3964 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
3965
3966 // Add builtin operator candidates.
3967 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
3968
3969 // Perform overload resolution.
3970 OverloadCandidateSet::iterator Best;
3971 switch (BestViableFunction(CandidateSet, Best)) {
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003972 case OR_Success: {
Douglas Gregor063daf62009-03-13 18:40:31 +00003973 // We found a built-in operator or an overloaded operator.
3974 FunctionDecl *FnDecl = Best->Function;
3975
3976 if (FnDecl) {
3977 // We matched an overloaded operator. Build a call to that
3978 // operator.
3979
3980 // Convert the arguments.
3981 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3982 if (PerformObjectArgumentInitialization(LHS, Method) ||
3983 PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
3984 "passing"))
3985 return ExprError();
3986 } else {
3987 // Convert the arguments.
3988 if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
3989 "passing") ||
3990 PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
3991 "passing"))
3992 return ExprError();
3993 }
3994
3995 // Determine the result type
3996 QualType ResultTy
3997 = FnDecl->getType()->getAsFunctionType()->getResultType();
3998 ResultTy = ResultTy.getNonReferenceType();
3999
4000 // Build the actual expression node.
4001 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4002 SourceLocation());
4003 UsualUnaryConversions(FnExpr);
4004
4005 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4006 Args, 2, ResultTy,
4007 OpLoc));
4008 } else {
4009 // We matched a built-in operator. Convert the arguments, then
4010 // break out so that we will build the appropriate built-in
4011 // operator node.
4012 if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4013 Best->Conversions[0], "passing") ||
4014 PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4015 Best->Conversions[1], "passing"))
4016 return ExprError();
4017
4018 break;
4019 }
4020 }
4021
4022 case OR_No_Viable_Function:
4023 // No viable function; fall through to handling this as a
4024 // built-in operator, which will produce an error message for us.
4025 break;
4026
4027 case OR_Ambiguous:
4028 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4029 << BinaryOperator::getOpcodeStr(Opc)
4030 << LHS->getSourceRange() << RHS->getSourceRange();
4031 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4032 return ExprError();
4033
4034 case OR_Deleted:
4035 Diag(OpLoc, diag::err_ovl_deleted_oper)
4036 << Best->Function->isDeleted()
4037 << BinaryOperator::getOpcodeStr(Opc)
4038 << LHS->getSourceRange() << RHS->getSourceRange();
4039 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4040 return ExprError();
4041 }
4042
4043 // Either we found no viable overloaded operator or we matched a
4044 // built-in operator. In either case, try to build a built-in
4045 // operation.
4046 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4047}
4048
Douglas Gregor88a35142008-12-22 05:46:06 +00004049/// BuildCallToMemberFunction - Build a call to a member
4050/// function. MemExpr is the expression that refers to the member
4051/// function (and includes the object parameter), Args/NumArgs are the
4052/// arguments to the function call (not including the object
4053/// parameter). The caller needs to validate that the member
4054/// expression refers to a member function or an overloaded member
4055/// function.
4056Sema::ExprResult
4057Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4058 SourceLocation LParenLoc, Expr **Args,
4059 unsigned NumArgs, SourceLocation *CommaLocs,
4060 SourceLocation RParenLoc) {
4061 // Dig out the member expression. This holds both the object
4062 // argument and the member function we're referring to.
4063 MemberExpr *MemExpr = 0;
4064 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4065 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4066 else
4067 MemExpr = dyn_cast<MemberExpr>(MemExprE);
4068 assert(MemExpr && "Building member call without member expression");
4069
4070 // Extract the object argument.
4071 Expr *ObjectArg = MemExpr->getBase();
Anders Carlssona552f7c2009-05-01 18:34:30 +00004072
Douglas Gregor88a35142008-12-22 05:46:06 +00004073 CXXMethodDecl *Method = 0;
4074 if (OverloadedFunctionDecl *Ovl
4075 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4076 // Add overload candidates
4077 OverloadCandidateSet CandidateSet;
4078 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4079 FuncEnd = Ovl->function_end();
4080 Func != FuncEnd; ++Func) {
4081 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4082 Method = cast<CXXMethodDecl>(*Func);
4083 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4084 /*SuppressUserConversions=*/false);
4085 }
4086
4087 OverloadCandidateSet::iterator Best;
4088 switch (BestViableFunction(CandidateSet, Best)) {
4089 case OR_Success:
4090 Method = cast<CXXMethodDecl>(Best->Function);
4091 break;
4092
4093 case OR_No_Viable_Function:
4094 Diag(MemExpr->getSourceRange().getBegin(),
4095 diag::err_ovl_no_viable_member_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00004096 << Ovl->getDeclName() << MemExprE->getSourceRange();
Douglas Gregor88a35142008-12-22 05:46:06 +00004097 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4098 // FIXME: Leaking incoming expressions!
4099 return true;
4100
4101 case OR_Ambiguous:
4102 Diag(MemExpr->getSourceRange().getBegin(),
4103 diag::err_ovl_ambiguous_member_call)
4104 << Ovl->getDeclName() << MemExprE->getSourceRange();
4105 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4106 // FIXME: Leaking incoming expressions!
4107 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004108
4109 case OR_Deleted:
4110 Diag(MemExpr->getSourceRange().getBegin(),
4111 diag::err_ovl_deleted_member_call)
4112 << Best->Function->isDeleted()
4113 << Ovl->getDeclName() << MemExprE->getSourceRange();
4114 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4115 // FIXME: Leaking incoming expressions!
4116 return true;
Douglas Gregor88a35142008-12-22 05:46:06 +00004117 }
4118
4119 FixOverloadedFunctionReference(MemExpr, Method);
4120 } else {
4121 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4122 }
4123
4124 assert(Method && "Member call to something that isn't a method?");
Ted Kremenek8189cde2009-02-07 01:47:29 +00004125 ExprOwningPtr<CXXMemberCallExpr>
Ted Kremenek668bf912009-02-09 20:51:47 +00004126 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4127 NumArgs,
Douglas Gregor88a35142008-12-22 05:46:06 +00004128 Method->getResultType().getNonReferenceType(),
4129 RParenLoc));
4130
4131 // Convert the object argument (for a non-static member function call).
4132 if (!Method->isStatic() &&
4133 PerformObjectArgumentInitialization(ObjectArg, Method))
4134 return true;
4135 MemExpr->setBase(ObjectArg);
4136
4137 // Convert the rest of the arguments
Douglas Gregor72564e72009-02-26 23:50:07 +00004138 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00004139 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4140 RParenLoc))
4141 return true;
4142
Sebastian Redl0eb23302009-01-19 00:08:26 +00004143 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor88a35142008-12-22 05:46:06 +00004144}
4145
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004146/// BuildCallToObjectOfClassType - Build a call to an object of class
4147/// type (C++ [over.call.object]), which can end up invoking an
4148/// overloaded function call operator (@c operator()) or performing a
4149/// user-defined conversion on the object argument.
Douglas Gregor88a35142008-12-22 05:46:06 +00004150Sema::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00004151Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4152 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004153 Expr **Args, unsigned NumArgs,
4154 SourceLocation *CommaLocs,
4155 SourceLocation RParenLoc) {
4156 assert(Object->getType()->isRecordType() && "Requires object type argument");
4157 const RecordType *Record = Object->getType()->getAsRecordType();
4158
4159 // C++ [over.call.object]p1:
4160 // If the primary-expression E in the function call syntax
4161 // evaluates to a class object of type “cv T”, then the set of
4162 // candidate functions includes at least the function call
4163 // operators of T. The function call operators of T are obtained by
4164 // ordinary lookup of the name operator() in the context of
4165 // (E).operator().
4166 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00004167 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004168 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregor6ab35242009-04-09 21:40:53 +00004169 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(Context, OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004170 Oper != OperEnd; ++Oper)
4171 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4172 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004173
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004174 // C++ [over.call.object]p2:
4175 // In addition, for each conversion function declared in T of the
4176 // form
4177 //
4178 // operator conversion-type-id () cv-qualifier;
4179 //
4180 // where cv-qualifier is the same cv-qualification as, or a
4181 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00004182 // denotes the type "pointer to function of (P1,...,Pn) returning
4183 // R", or the type "reference to pointer to function of
4184 // (P1,...,Pn) returning R", or the type "reference to function
4185 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004186 // is also considered as a candidate function. Similarly,
4187 // surrogate call functions are added to the set of candidate
4188 // functions for each conversion function declared in an
4189 // accessible base class provided the function is not hidden
4190 // within T by another intervening declaration.
4191 //
4192 // FIXME: Look in base classes for more conversion operators!
4193 OverloadedFunctionDecl *Conversions
4194 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00004195 for (OverloadedFunctionDecl::function_iterator
4196 Func = Conversions->function_begin(),
4197 FuncEnd = Conversions->function_end();
4198 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004199 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4200
4201 // Strip the reference type (if any) and then the pointer type (if
4202 // any) to get down to what might be a function type.
4203 QualType ConvType = Conv->getConversionType().getNonReferenceType();
4204 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
4205 ConvType = ConvPtrType->getPointeeType();
4206
Douglas Gregor72564e72009-02-26 23:50:07 +00004207 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004208 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4209 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004210
4211 // Perform overload resolution.
4212 OverloadCandidateSet::iterator Best;
4213 switch (BestViableFunction(CandidateSet, Best)) {
4214 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004215 // Overload resolution succeeded; we'll build the appropriate call
4216 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004217 break;
4218
4219 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00004220 Diag(Object->getSourceRange().getBegin(),
4221 diag::err_ovl_no_viable_object_call)
Chris Lattner4330d652009-02-17 07:29:20 +00004222 << Object->getType() << Object->getSourceRange();
Sebastian Redle4c452c2008-11-22 13:44:36 +00004223 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004224 break;
4225
4226 case OR_Ambiguous:
4227 Diag(Object->getSourceRange().getBegin(),
4228 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00004229 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004230 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4231 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004232
4233 case OR_Deleted:
4234 Diag(Object->getSourceRange().getBegin(),
4235 diag::err_ovl_deleted_object_call)
4236 << Best->Function->isDeleted()
4237 << Object->getType() << Object->getSourceRange();
4238 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4239 break;
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004240 }
4241
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004242 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004243 // We had an error; delete all of the subexpressions and return
4244 // the error.
Ted Kremenek8189cde2009-02-07 01:47:29 +00004245 Object->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004246 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Ted Kremenek8189cde2009-02-07 01:47:29 +00004247 Args[ArgIdx]->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004248 return true;
4249 }
4250
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004251 if (Best->Function == 0) {
4252 // Since there is no function declaration, this is one of the
4253 // surrogate candidates. Dig out the conversion function.
4254 CXXConversionDecl *Conv
4255 = cast<CXXConversionDecl>(
4256 Best->Conversions[0].UserDefined.ConversionFunction);
4257
4258 // We selected one of the surrogate functions that converts the
4259 // object parameter to a function pointer. Perform the conversion
4260 // on the object argument, then let ActOnCallExpr finish the job.
4261 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl0eb23302009-01-19 00:08:26 +00004262 ImpCastExprToType(Object,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004263 Conv->getConversionType().getNonReferenceType(),
Sebastian Redl7c80bd62009-03-16 23:22:08 +00004264 Conv->getConversionType()->isLValueReferenceType());
Sebastian Redl0eb23302009-01-19 00:08:26 +00004265 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4266 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4267 CommaLocs, RParenLoc).release();
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004268 }
4269
4270 // We found an overloaded operator(). Build a CXXOperatorCallExpr
4271 // that calls this method, using Object for the implicit object
4272 // parameter and passing along the remaining arguments.
4273 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor72564e72009-02-26 23:50:07 +00004274 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004275
4276 unsigned NumArgsInProto = Proto->getNumArgs();
4277 unsigned NumArgsToCheck = NumArgs;
4278
4279 // Build the full argument list for the method call (the
4280 // implicit object parameter is placed at the beginning of the
4281 // list).
4282 Expr **MethodArgs;
4283 if (NumArgs < NumArgsInProto) {
4284 NumArgsToCheck = NumArgsInProto;
4285 MethodArgs = new Expr*[NumArgsInProto + 1];
4286 } else {
4287 MethodArgs = new Expr*[NumArgs + 1];
4288 }
4289 MethodArgs[0] = Object;
4290 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4291 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4292
Ted Kremenek8189cde2009-02-07 01:47:29 +00004293 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4294 SourceLocation());
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004295 UsualUnaryConversions(NewFn);
4296
4297 // Once we've built TheCall, all of the expressions are properly
4298 // owned.
4299 QualType ResultTy = Method->getResultType().getNonReferenceType();
Ted Kremenek8189cde2009-02-07 01:47:29 +00004300 ExprOwningPtr<CXXOperatorCallExpr>
Douglas Gregor063daf62009-03-13 18:40:31 +00004301 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4302 MethodArgs, NumArgs + 1,
Ted Kremenek8189cde2009-02-07 01:47:29 +00004303 ResultTy, RParenLoc));
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004304 delete [] MethodArgs;
4305
Douglas Gregor518fda12009-01-13 05:10:00 +00004306 // We may have default arguments. If so, we need to allocate more
4307 // slots in the call for them.
4308 if (NumArgs < NumArgsInProto)
Ted Kremenek8189cde2009-02-07 01:47:29 +00004309 TheCall->setNumArgs(Context, NumArgsInProto + 1);
Douglas Gregor518fda12009-01-13 05:10:00 +00004310 else if (NumArgs > NumArgsInProto)
4311 NumArgsToCheck = NumArgsInProto;
4312
Chris Lattner312531a2009-04-12 08:11:20 +00004313 bool IsError = false;
4314
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004315 // Initialize the implicit object parameter.
Chris Lattner312531a2009-04-12 08:11:20 +00004316 IsError |= PerformObjectArgumentInitialization(Object, Method);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004317 TheCall->setArg(0, Object);
4318
Chris Lattner312531a2009-04-12 08:11:20 +00004319
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004320 // Check the argument types.
4321 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004322 Expr *Arg;
Douglas Gregor518fda12009-01-13 05:10:00 +00004323 if (i < NumArgs) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004324 Arg = Args[i];
Douglas Gregor518fda12009-01-13 05:10:00 +00004325
4326 // Pass the argument.
4327 QualType ProtoArgType = Proto->getArgType(i);
Chris Lattner312531a2009-04-12 08:11:20 +00004328 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
Douglas Gregor518fda12009-01-13 05:10:00 +00004329 } else {
Ted Kremenek8189cde2009-02-07 01:47:29 +00004330 Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
Douglas Gregor518fda12009-01-13 05:10:00 +00004331 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004332
4333 TheCall->setArg(i + 1, Arg);
4334 }
4335
4336 // If this is a variadic call, handle args passed through "...".
4337 if (Proto->isVariadic()) {
4338 // Promote the arguments (C99 6.5.2.2p7).
4339 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4340 Expr *Arg = Args[i];
Chris Lattner312531a2009-04-12 08:11:20 +00004341 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004342 TheCall->setArg(i + 1, Arg);
4343 }
4344 }
4345
Chris Lattner312531a2009-04-12 08:11:20 +00004346 if (IsError) return true;
4347
Sebastian Redl0eb23302009-01-19 00:08:26 +00004348 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004349}
4350
Douglas Gregor8ba10742008-11-20 16:27:02 +00004351/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4352/// (if one exists), where @c Base is an expression of class type and
4353/// @c Member is the name of the member we're trying to find.
4354Action::ExprResult
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004355Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004356 SourceLocation MemberLoc,
4357 IdentifierInfo &Member) {
4358 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4359
4360 // C++ [over.ref]p1:
4361 //
4362 // [...] An expression x->m is interpreted as (x.operator->())->m
4363 // for a class object x of type T if T::operator->() exists and if
4364 // the operator is selected as the best match function by the
4365 // overload resolution mechanism (13.3).
4366 // FIXME: look in base classes.
4367 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4368 OverloadCandidateSet CandidateSet;
4369 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004370
4371 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregor6ab35242009-04-09 21:40:53 +00004372 for (llvm::tie(Oper, OperEnd)
4373 = BaseRecord->getDecl()->lookup(Context, OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004374 Oper != OperEnd; ++Oper)
4375 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004376 /*SuppressUserConversions=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004377
Ted Kremenek8189cde2009-02-07 01:47:29 +00004378 ExprOwningPtr<Expr> BasePtr(this, Base);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004379
Douglas Gregor8ba10742008-11-20 16:27:02 +00004380 // Perform overload resolution.
4381 OverloadCandidateSet::iterator Best;
4382 switch (BestViableFunction(CandidateSet, Best)) {
4383 case OR_Success:
4384 // Overload resolution succeeded; we'll build the call below.
4385 break;
4386
4387 case OR_No_Viable_Function:
4388 if (CandidateSet.empty())
4389 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00004390 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004391 else
4392 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Chris Lattner4330d652009-02-17 07:29:20 +00004393 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004394 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004395 return true;
4396
4397 case OR_Ambiguous:
4398 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00004399 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004400 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004401 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004402
4403 case OR_Deleted:
4404 Diag(OpLoc, diag::err_ovl_deleted_oper)
4405 << Best->Function->isDeleted()
4406 << "operator->" << BasePtr->getSourceRange();
4407 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4408 return true;
Douglas Gregor8ba10742008-11-20 16:27:02 +00004409 }
4410
4411 // Convert the object parameter.
4412 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004413 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00004414 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004415
4416 // No concerns about early exits now.
4417 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004418
4419 // Build the operator call.
Ted Kremenek8189cde2009-02-07 01:47:29 +00004420 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4421 SourceLocation());
Douglas Gregor8ba10742008-11-20 16:27:02 +00004422 UsualUnaryConversions(FnExpr);
Douglas Gregor063daf62009-03-13 18:40:31 +00004423 Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004424 Method->getResultType().getNonReferenceType(),
4425 OpLoc);
Sebastian Redl0eb23302009-01-19 00:08:26 +00004426 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
Chris Lattnerb28317a2009-03-28 19:18:32 +00004427 MemberLoc, Member, DeclPtrTy()).release();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004428}
4429
Douglas Gregor904eed32008-11-10 20:40:00 +00004430/// FixOverloadedFunctionReference - E is an expression that refers to
4431/// a C++ overloaded function (possibly with some parentheses and
4432/// perhaps a '&' around it). We have resolved the overloaded function
4433/// to the function declaration Fn, so patch up the expression E to
4434/// refer (possibly indirectly) to Fn.
4435void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4436 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4437 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4438 E->setType(PE->getSubExpr()->getType());
4439 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4440 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4441 "Can only take the address of an overloaded function");
Douglas Gregorb86b0572009-02-11 01:18:59 +00004442 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4443 if (Method->isStatic()) {
4444 // Do nothing: static member functions aren't any different
4445 // from non-member functions.
4446 }
4447 else if (QualifiedDeclRefExpr *DRE
4448 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4449 // We have taken the address of a pointer to member
4450 // function. Perform the computation here so that we get the
4451 // appropriate pointer to member type.
4452 DRE->setDecl(Fn);
4453 DRE->setType(Fn->getType());
4454 QualType ClassType
4455 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4456 E->setType(Context.getMemberPointerType(Fn->getType(),
4457 ClassType.getTypePtr()));
4458 return;
4459 }
4460 }
Douglas Gregor904eed32008-11-10 20:40:00 +00004461 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
Douglas Gregora35284b2009-02-11 00:19:33 +00004462 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
Douglas Gregor904eed32008-11-10 20:40:00 +00004463 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4464 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
4465 "Expected overloaded function");
4466 DR->setDecl(Fn);
4467 E->setType(Fn->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00004468 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4469 MemExpr->setMemberDecl(Fn);
4470 E->setType(Fn->getType());
Douglas Gregor904eed32008-11-10 20:40:00 +00004471 } else {
4472 assert(false && "Invalid reference to overloaded function");
4473 }
4474}
4475
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00004476} // end namespace clang