blob: 9a3bcbcb8acf62dcc7c6eae33c44ae9604bdad12 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
Chris Lattner5dccfad2010-02-10 06:52:12 +000022// FIXME: This should move to a header.
23namespace llvm {
24namespace X86 {
25enum Fixups {
Chris Lattner11eafa82010-02-11 21:17:54 +000026 reloc_pcrel_4byte = FirstTargetFixupKind, // 32-bit pcrel, e.g. a branch.
27 reloc_pcrel_1byte // 8-bit pcrel, e.g. branch_1
Chris Lattner5dccfad2010-02-10 06:52:12 +000028};
29}
30}
31
Chris Lattner45762472010-02-03 21:24:49 +000032namespace {
33class X86MCCodeEmitter : public MCCodeEmitter {
34 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
35 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000036 const TargetMachine &TM;
37 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000038 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000039public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000040 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000041 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000042 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000043 }
44
45 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000046
47 unsigned getNumFixupKinds() const {
Chris Lattner8d31de62010-02-11 21:27:18 +000048 return 2;
Daniel Dunbar73c55742010-02-09 22:59:55 +000049 }
50
Chris Lattner8d31de62010-02-11 21:27:18 +000051 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
52 const static MCFixupKindInfo Infos[] = {
Chris Lattner11eafa82010-02-11 21:17:54 +000053 { "reloc_pcrel_4byte", 0, 4 * 8 },
54 { "reloc_pcrel_1byte", 0, 1 * 8 }
Daniel Dunbar73c55742010-02-09 22:59:55 +000055 };
Chris Lattner8d31de62010-02-11 21:27:18 +000056
57 if (Kind < FirstTargetFixupKind)
58 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000059
Chris Lattner8d31de62010-02-11 21:27:18 +000060 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000061 "Invalid kind!");
62 return Infos[Kind - FirstTargetFixupKind];
63 }
Chris Lattner45762472010-02-03 21:24:49 +000064
Chris Lattner28249d92010-02-05 01:53:19 +000065 static unsigned GetX86RegNum(const MCOperand &MO) {
66 return X86RegisterInfo::getX86RegNum(MO.getReg());
67 }
68
Chris Lattner37ce80e2010-02-10 06:41:02 +000069 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000070 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000071 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000072 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000073
Chris Lattner37ce80e2010-02-10 06:41:02 +000074 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
75 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000076 // Output the constant in little endian byte order.
77 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000078 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000079 Val >>= 8;
80 }
81 }
Chris Lattner0e73c392010-02-05 06:16:07 +000082
Chris Lattnercf653392010-02-12 22:36:47 +000083 void EmitImmediate(const MCOperand &Disp,
84 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000085 unsigned &CurByte, raw_ostream &OS,
86 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +000087
88 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
89 unsigned RM) {
90 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
91 return RM | (RegOpcode << 3) | (Mod << 6);
92 }
93
94 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000095 unsigned &CurByte, raw_ostream &OS) const {
96 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000097 }
98
Chris Lattner0e73c392010-02-05 06:16:07 +000099 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000100 unsigned &CurByte, raw_ostream &OS) const {
101 // SIB byte is in the same format as the ModRMByte.
102 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000103 }
104
105
Chris Lattner1ac23b12010-02-05 02:18:40 +0000106 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000107 unsigned RegOpcodeField,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000108 unsigned &CurByte, raw_ostream &OS,
109 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000110
Daniel Dunbar73c55742010-02-09 22:59:55 +0000111 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
112 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000113
Chris Lattner45762472010-02-03 21:24:49 +0000114};
115
116} // end anonymous namespace
117
118
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000119MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
120 TargetMachine &TM) {
121 return new X86MCCodeEmitter(TM, false);
122}
123
124MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
125 TargetMachine &TM) {
126 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000127}
128
129
Chris Lattner1ac23b12010-02-05 02:18:40 +0000130/// isDisp8 - Return true if this signed displacement fits in a 8-bit
131/// sign-extended field.
132static bool isDisp8(int Value) {
133 return Value == (signed char)Value;
134}
135
Chris Lattnercf653392010-02-12 22:36:47 +0000136/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
137/// in an instruction with the specified TSFlags.
138static MCFixupKind getImmFixupKind(unsigned TSFlags) {
139 unsigned Size = X86II::getSizeOfImm(TSFlags);
140 bool isPCRel = X86II::isImmPCRel(TSFlags);
141
Chris Lattnercf653392010-02-12 22:36:47 +0000142 switch (Size) {
143 default: assert(0 && "Unknown immediate size");
144 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
145 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
146 case 2: assert(!isPCRel); return FK_Data_2;
147 case 8: assert(!isPCRel); return FK_Data_8;
148 }
149}
150
151
Chris Lattner0e73c392010-02-05 06:16:07 +0000152void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000153EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000154 unsigned &CurByte, raw_ostream &OS,
155 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000156 // If this is a simple integer displacement that doesn't require a relocation,
157 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000158 if (DispOp.isImm()) {
Chris Lattnera38c7072010-02-11 06:54:23 +0000159 EmitConstant(DispOp.getImm(), Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000160 return;
161 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000162
Chris Lattner5dccfad2010-02-10 06:52:12 +0000163 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattnercf653392010-02-12 22:36:47 +0000164 Fixups.push_back(MCFixup::Create(CurByte, DispOp.getExpr(), FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000165 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000166}
167
168
Chris Lattner1ac23b12010-02-05 02:18:40 +0000169void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
170 unsigned RegOpcodeField,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000171 unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000172 raw_ostream &OS,
173 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000174 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000175 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000176 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000177 const MCOperand &IndexReg = MI.getOperand(Op+2);
178 unsigned BaseReg = Base.getReg();
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000179 unsigned BaseRegNo = -1U;
180 if (BaseReg != 0 && BaseReg != X86::RIP)
181 BaseRegNo = GetX86RegNum(Base);
182
Chris Lattnera8168ec2010-02-09 21:57:34 +0000183 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000184 // If no BaseReg, issue a RIP relative instruction only if the MCE can
185 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
186 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000187
Chris Lattnera8168ec2010-02-09 21:57:34 +0000188 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000189 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000190 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
191 // encode to an R/M value of 4, which indicates that a SIB byte is
192 // present.
193 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000194 // If there is no base register and we're in 64-bit mode, we need a SIB
195 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
196 (!Is64BitMode || BaseReg != 0)) {
197
198 if (BaseReg == 0 || // [disp32] in X86-32 mode
199 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000200 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000201 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000202 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000203 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000204
Chris Lattnera8168ec2010-02-09 21:57:34 +0000205 // If the base is not EBP/ESP and there is no displacement, use simple
206 // indirect register encoding, this handles addresses like [EAX]. The
207 // encoding for [EBP] with no displacement means [disp32] so we handle it
208 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000209 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000210 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000211 return;
212 }
213
214 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000215 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000216 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000217 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000218 return;
219 }
220
221 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000222 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000223 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000224 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000225 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000226
227 // We need a SIB byte, so start by outputting the ModR/M byte first
228 assert(IndexReg.getReg() != X86::ESP &&
229 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
230
231 bool ForceDisp32 = false;
232 bool ForceDisp8 = false;
233 if (BaseReg == 0) {
234 // If there is no base register, we emit the special case SIB byte with
235 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000236 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000237 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000238 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000239 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000240 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000241 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000242 } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000243 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000244 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000245 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000246 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000247 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000248 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
249 } else {
250 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000251 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000252 }
253
254 // Calculate what the SS field value should be...
255 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
256 unsigned SS = SSTable[Scale.getImm()];
257
258 if (BaseReg == 0) {
259 // Handle the SIB byte for the case where there is no base, see Intel
260 // Manual 2A, table 2-7. The displacement has already been output.
261 unsigned IndexRegNo;
262 if (IndexReg.getReg())
263 IndexRegNo = GetX86RegNum(IndexReg);
264 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
265 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000266 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000267 } else {
268 unsigned IndexRegNo;
269 if (IndexReg.getReg())
270 IndexRegNo = GetX86RegNum(IndexReg);
271 else
272 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000273 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000274 }
275
276 // Do we need to output a displacement?
277 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000278 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000279 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000280 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000281}
282
Chris Lattner39a612e2010-02-05 22:10:22 +0000283/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
284/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
285/// size, and 3) use of X86-64 extended registers.
286static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
287 const TargetInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000288 // Pseudo instructions shouldn't get here.
289 assert((TSFlags & X86II::FormMask) != X86II::Pseudo &&
290 "Can't encode pseudo instrs");
Chris Lattner39a612e2010-02-05 22:10:22 +0000291
Chris Lattner7e851802010-02-11 22:39:10 +0000292 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000293 if (TSFlags & X86II::REX_W)
294 REX |= 1 << 3;
295
296 if (MI.getNumOperands() == 0) return REX;
297
298 unsigned NumOps = MI.getNumOperands();
299 // FIXME: MCInst should explicitize the two-addrness.
300 bool isTwoAddr = NumOps > 1 &&
301 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
302
303 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
304 unsigned i = isTwoAddr ? 1 : 0;
305 for (; i != NumOps; ++i) {
306 const MCOperand &MO = MI.getOperand(i);
307 if (!MO.isReg()) continue;
308 unsigned Reg = MO.getReg();
309 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000310 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
311 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000312 REX |= 0x40;
313 break;
314 }
315
316 switch (TSFlags & X86II::FormMask) {
317 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
318 case X86II::MRMSrcReg:
319 if (MI.getOperand(0).isReg() &&
320 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
321 REX |= 1 << 2;
322 i = isTwoAddr ? 2 : 1;
323 for (; i != NumOps; ++i) {
324 const MCOperand &MO = MI.getOperand(i);
325 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
326 REX |= 1 << 0;
327 }
328 break;
329 case X86II::MRMSrcMem: {
330 if (MI.getOperand(0).isReg() &&
331 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
332 REX |= 1 << 2;
333 unsigned Bit = 0;
334 i = isTwoAddr ? 2 : 1;
335 for (; i != NumOps; ++i) {
336 const MCOperand &MO = MI.getOperand(i);
337 if (MO.isReg()) {
338 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
339 REX |= 1 << Bit;
340 Bit++;
341 }
342 }
343 break;
344 }
345 case X86II::MRM0m: case X86II::MRM1m:
346 case X86II::MRM2m: case X86II::MRM3m:
347 case X86II::MRM4m: case X86II::MRM5m:
348 case X86II::MRM6m: case X86II::MRM7m:
349 case X86II::MRMDestMem: {
350 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
351 i = isTwoAddr ? 1 : 0;
352 if (NumOps > e && MI.getOperand(e).isReg() &&
353 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
354 REX |= 1 << 2;
355 unsigned Bit = 0;
356 for (; i != e; ++i) {
357 const MCOperand &MO = MI.getOperand(i);
358 if (MO.isReg()) {
359 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
360 REX |= 1 << Bit;
361 Bit++;
362 }
363 }
364 break;
365 }
366 default:
367 if (MI.getOperand(0).isReg() &&
368 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
369 REX |= 1 << 0;
370 i = isTwoAddr ? 2 : 1;
371 for (unsigned e = NumOps; i != e; ++i) {
372 const MCOperand &MO = MI.getOperand(i);
373 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
374 REX |= 1 << 2;
375 }
376 break;
377 }
378 return REX;
379}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000380
381void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000382EncodeInstruction(const MCInst &MI, raw_ostream &OS,
383 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000384 unsigned Opcode = MI.getOpcode();
385 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000386 unsigned TSFlags = Desc.TSFlags;
387
Chris Lattner37ce80e2010-02-10 06:41:02 +0000388 // Keep track of the current byte being emitted.
389 unsigned CurByte = 0;
390
Chris Lattner1e80f402010-02-03 21:57:59 +0000391 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
392 // in order to provide diffability.
393
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000394 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000395 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000396 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000397
398 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000399 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000400 default: assert(0 && "Invalid segment!");
401 case 0: break; // No segment override!
402 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000403 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000404 break;
405 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000406 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000407 break;
408 }
409
Chris Lattner1e80f402010-02-03 21:57:59 +0000410 // Emit the repeat opcode prefix as needed.
411 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000412 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000413
Chris Lattner1e80f402010-02-03 21:57:59 +0000414 // Emit the operand size opcode prefix as needed.
415 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000416 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000417
418 // Emit the address size opcode prefix as needed.
419 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000420 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000421
422 bool Need0FPrefix = false;
423 switch (TSFlags & X86II::Op0Mask) {
424 default: assert(0 && "Invalid prefix!");
425 case 0: break; // No prefix!
426 case X86II::REP: break; // already handled.
427 case X86II::TB: // Two-byte opcode prefix
428 case X86II::T8: // 0F 38
429 case X86II::TA: // 0F 3A
430 Need0FPrefix = true;
431 break;
432 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000433 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000434 Need0FPrefix = true;
435 break;
436 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000437 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000438 Need0FPrefix = true;
439 break;
440 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000441 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000442 Need0FPrefix = true;
443 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000444 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
445 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
446 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
447 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
448 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
449 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
450 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
451 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000452 }
453
454 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000455 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000456 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000457 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000458 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000459 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000460
461 // 0x0F escape code must be emitted just before the opcode.
462 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000463 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000464
465 // FIXME: Pull this up into previous switch if REX can be moved earlier.
466 switch (TSFlags & X86II::Op0Mask) {
467 case X86II::TF: // F2 0F 38
468 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000469 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000470 break;
471 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000472 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000473 break;
474 }
475
476 // If this is a two-address instruction, skip one of the register operands.
477 unsigned NumOps = Desc.getNumOperands();
478 unsigned CurOp = 0;
479 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
480 ++CurOp;
481 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
482 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
483 --NumOps;
484
Chris Lattner74a21512010-02-05 19:24:13 +0000485 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000486 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000487 case X86II::MRMInitReg:
488 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000489 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000490 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
491 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000492 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000493 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000494
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000495 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000496 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000497 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000498
499 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000500 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000501 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000502 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000503 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000504 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000505
506 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000507 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000508 EmitMemModRMByte(MI, CurOp,
509 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner1b670602010-02-11 06:49:52 +0000510 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000511 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000512 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000513
514 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000515 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000516 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000517 CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000518 CurOp += 2;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000519 break;
520
521 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000522 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000523
524 // FIXME: Maybe lea should have its own form? This is a horrible hack.
525 int AddrOperands;
526 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
527 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
528 AddrOperands = X86AddrNumOperands - 1; // No segment register
529 else
530 AddrOperands = X86AddrNumOperands;
531
Chris Lattnerdaa45552010-02-05 19:04:37 +0000532 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner1b670602010-02-11 06:49:52 +0000533 CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000534 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000535 break;
536 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000537
538 case X86II::MRM0r: case X86II::MRM1r:
539 case X86II::MRM2r: case X86II::MRM3r:
540 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000541 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000542 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000543
544 // Special handling of lfence, mfence, monitor, and mwait.
545 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
546 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
547 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
Chris Lattnerc4d3f662010-02-12 01:06:22 +0000548 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r,
549 Opcode == X86::MWAIT),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000550 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000551 } else {
552 EmitRegModRMByte(MI.getOperand(CurOp++),
553 (TSFlags & X86II::FormMask)-X86II::MRM0r,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000554 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000555 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000556 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000557 case X86II::MRM0m: case X86II::MRM1m:
558 case X86II::MRM2m: case X86II::MRM3m:
559 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000560 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000561 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000562 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner1b670602010-02-11 06:49:52 +0000563 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000564 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000565 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000566 case X86II::MRM_C1:
567 EmitByte(BaseOpcode, CurByte, OS);
568 EmitByte(0xC1, CurByte, OS);
569 break;
570 case X86II::MRM_C8:
571 EmitByte(BaseOpcode, CurByte, OS);
572 EmitByte(0xC8, CurByte, OS);
573 break;
574 case X86II::MRM_C9:
575 EmitByte(BaseOpcode, CurByte, OS);
576 EmitByte(0xC9, CurByte, OS);
577 break;
578 case X86II::MRM_E8:
579 EmitByte(BaseOpcode, CurByte, OS);
580 EmitByte(0xE8, CurByte, OS);
581 break;
582 case X86II::MRM_F0:
583 EmitByte(BaseOpcode, CurByte, OS);
584 EmitByte(0xF0, CurByte, OS);
585 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000586 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000587
588 // If there is a remaining operand, it must be a trailing immediate. Emit it
589 // according to the right size for the instruction.
Chris Lattnerbd13fb62010-02-11 19:25:55 +0000590 // FIXME: This should pass in whether the value is pc relative or not. This
591 // information should be aquired from TSFlags as well.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000592 if (CurOp != NumOps)
Chris Lattnercf653392010-02-12 22:36:47 +0000593 EmitImmediate(MI.getOperand(CurOp++),
594 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000595 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000596
597#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000598 // FIXME: Verify.
599 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000600 errs() << "Cannot encode all operands of: ";
601 MI.dump();
602 errs() << '\n';
603 abort();
604 }
605#endif
Chris Lattner45762472010-02-03 21:24:49 +0000606}