blob: 3d98f6f1a47293e5f6389d8fa44265471ba9feee [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
Chris Lattner5dccfad2010-02-10 06:52:12 +000022// FIXME: This should move to a header.
23namespace llvm {
24namespace X86 {
25enum Fixups {
Chris Lattner11eafa82010-02-11 21:17:54 +000026 reloc_pcrel_4byte = FirstTargetFixupKind, // 32-bit pcrel, e.g. a branch.
27 reloc_pcrel_1byte // 8-bit pcrel, e.g. branch_1
Chris Lattner5dccfad2010-02-10 06:52:12 +000028};
29}
30}
31
Chris Lattner45762472010-02-03 21:24:49 +000032namespace {
33class X86MCCodeEmitter : public MCCodeEmitter {
34 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
35 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000036 const TargetMachine &TM;
37 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000038 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000039public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000040 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000041 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000042 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000043 }
44
45 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000046
47 unsigned getNumFixupKinds() const {
Chris Lattner8d31de62010-02-11 21:27:18 +000048 return 2;
Daniel Dunbar73c55742010-02-09 22:59:55 +000049 }
50
Chris Lattner8d31de62010-02-11 21:27:18 +000051 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
52 const static MCFixupKindInfo Infos[] = {
Chris Lattner11eafa82010-02-11 21:17:54 +000053 { "reloc_pcrel_4byte", 0, 4 * 8 },
54 { "reloc_pcrel_1byte", 0, 1 * 8 }
Daniel Dunbar73c55742010-02-09 22:59:55 +000055 };
Chris Lattner8d31de62010-02-11 21:27:18 +000056
57 if (Kind < FirstTargetFixupKind)
58 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000059
Chris Lattner8d31de62010-02-11 21:27:18 +000060 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000061 "Invalid kind!");
62 return Infos[Kind - FirstTargetFixupKind];
63 }
Chris Lattner45762472010-02-03 21:24:49 +000064
Chris Lattner28249d92010-02-05 01:53:19 +000065 static unsigned GetX86RegNum(const MCOperand &MO) {
66 return X86RegisterInfo::getX86RegNum(MO.getReg());
67 }
68
Chris Lattner37ce80e2010-02-10 06:41:02 +000069 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000070 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000071 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000072 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000073
Chris Lattner37ce80e2010-02-10 06:41:02 +000074 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
75 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000076 // Output the constant in little endian byte order.
77 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000078 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000079 Val >>= 8;
80 }
81 }
Chris Lattner0e73c392010-02-05 06:16:07 +000082
Chris Lattnercf653392010-02-12 22:36:47 +000083 void EmitImmediate(const MCOperand &Disp,
84 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000085 unsigned &CurByte, raw_ostream &OS,
86 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +000087
88 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
89 unsigned RM) {
90 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
91 return RM | (RegOpcode << 3) | (Mod << 6);
92 }
93
94 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000095 unsigned &CurByte, raw_ostream &OS) const {
96 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000097 }
98
Chris Lattner0e73c392010-02-05 06:16:07 +000099 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000100 unsigned &CurByte, raw_ostream &OS) const {
101 // SIB byte is in the same format as the ModRMByte.
102 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000103 }
104
105
Chris Lattner1ac23b12010-02-05 02:18:40 +0000106 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000107 unsigned RegOpcodeField,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000108 unsigned &CurByte, raw_ostream &OS,
109 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000110
Daniel Dunbar73c55742010-02-09 22:59:55 +0000111 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
112 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000113
Chris Lattner45762472010-02-03 21:24:49 +0000114};
115
116} // end anonymous namespace
117
118
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000119MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
120 TargetMachine &TM) {
121 return new X86MCCodeEmitter(TM, false);
122}
123
124MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
125 TargetMachine &TM) {
126 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000127}
128
129
Chris Lattner1ac23b12010-02-05 02:18:40 +0000130/// isDisp8 - Return true if this signed displacement fits in a 8-bit
131/// sign-extended field.
132static bool isDisp8(int Value) {
133 return Value == (signed char)Value;
134}
135
Chris Lattnercf653392010-02-12 22:36:47 +0000136/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
137/// in an instruction with the specified TSFlags.
138static MCFixupKind getImmFixupKind(unsigned TSFlags) {
139 unsigned Size = X86II::getSizeOfImm(TSFlags);
140 bool isPCRel = X86II::isImmPCRel(TSFlags);
141
142 // FIXME: Pass in the relocation type, this is just a hack..
143 switch (Size) {
144 default: assert(0 && "Unknown immediate size");
145 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
146 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
147 case 2: assert(!isPCRel); return FK_Data_2;
148 case 8: assert(!isPCRel); return FK_Data_8;
149 }
150}
151
152
Chris Lattner0e73c392010-02-05 06:16:07 +0000153void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000154EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000155 unsigned &CurByte, raw_ostream &OS,
156 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000157 // If this is a simple integer displacement that doesn't require a relocation,
158 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000159 if (DispOp.isImm()) {
Chris Lattnera38c7072010-02-11 06:54:23 +0000160 EmitConstant(DispOp.getImm(), Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000161 return;
162 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000163
Chris Lattner5dccfad2010-02-10 06:52:12 +0000164 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattnercf653392010-02-12 22:36:47 +0000165 Fixups.push_back(MCFixup::Create(CurByte, DispOp.getExpr(), FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000166 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000167}
168
169
Chris Lattner1ac23b12010-02-05 02:18:40 +0000170void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
171 unsigned RegOpcodeField,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000172 unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000173 raw_ostream &OS,
174 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000175 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000176 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000177 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000178 const MCOperand &IndexReg = MI.getOperand(Op+2);
179 unsigned BaseReg = Base.getReg();
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000180 unsigned BaseRegNo = -1U;
181 if (BaseReg != 0 && BaseReg != X86::RIP)
182 BaseRegNo = GetX86RegNum(Base);
183
Chris Lattnera8168ec2010-02-09 21:57:34 +0000184 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000185 // If no BaseReg, issue a RIP relative instruction only if the MCE can
186 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
187 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000188
Chris Lattnera8168ec2010-02-09 21:57:34 +0000189 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000190 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000191 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
192 // encode to an R/M value of 4, which indicates that a SIB byte is
193 // present.
194 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000195 // If there is no base register and we're in 64-bit mode, we need a SIB
196 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
197 (!Is64BitMode || BaseReg != 0)) {
198
199 if (BaseReg == 0 || // [disp32] in X86-32 mode
200 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000201 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000202 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000203 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000204 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000205
Chris Lattnera8168ec2010-02-09 21:57:34 +0000206 // If the base is not EBP/ESP and there is no displacement, use simple
207 // indirect register encoding, this handles addresses like [EAX]. The
208 // encoding for [EBP] with no displacement means [disp32] so we handle it
209 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000210 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000211 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000212 return;
213 }
214
215 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000216 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000217 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000218 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000219 return;
220 }
221
222 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000223 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000224 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000225 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000226 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000227
228 // We need a SIB byte, so start by outputting the ModR/M byte first
229 assert(IndexReg.getReg() != X86::ESP &&
230 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
231
232 bool ForceDisp32 = false;
233 bool ForceDisp8 = false;
234 if (BaseReg == 0) {
235 // If there is no base register, we emit the special case SIB byte with
236 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000237 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000238 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000239 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000240 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000241 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000242 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000243 } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000244 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000245 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000246 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000247 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000248 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000249 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
250 } else {
251 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000252 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000253 }
254
255 // Calculate what the SS field value should be...
256 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
257 unsigned SS = SSTable[Scale.getImm()];
258
259 if (BaseReg == 0) {
260 // Handle the SIB byte for the case where there is no base, see Intel
261 // Manual 2A, table 2-7. The displacement has already been output.
262 unsigned IndexRegNo;
263 if (IndexReg.getReg())
264 IndexRegNo = GetX86RegNum(IndexReg);
265 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
266 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000267 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000268 } else {
269 unsigned IndexRegNo;
270 if (IndexReg.getReg())
271 IndexRegNo = GetX86RegNum(IndexReg);
272 else
273 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000274 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000275 }
276
277 // Do we need to output a displacement?
278 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000279 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000280 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000281 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000282}
283
Chris Lattner39a612e2010-02-05 22:10:22 +0000284/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
285/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
286/// size, and 3) use of X86-64 extended registers.
287static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
288 const TargetInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000289 // Pseudo instructions shouldn't get here.
290 assert((TSFlags & X86II::FormMask) != X86II::Pseudo &&
291 "Can't encode pseudo instrs");
Chris Lattner39a612e2010-02-05 22:10:22 +0000292
Chris Lattner7e851802010-02-11 22:39:10 +0000293 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000294 if (TSFlags & X86II::REX_W)
295 REX |= 1 << 3;
296
297 if (MI.getNumOperands() == 0) return REX;
298
299 unsigned NumOps = MI.getNumOperands();
300 // FIXME: MCInst should explicitize the two-addrness.
301 bool isTwoAddr = NumOps > 1 &&
302 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
303
304 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
305 unsigned i = isTwoAddr ? 1 : 0;
306 for (; i != NumOps; ++i) {
307 const MCOperand &MO = MI.getOperand(i);
308 if (!MO.isReg()) continue;
309 unsigned Reg = MO.getReg();
310 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000311 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
312 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000313 REX |= 0x40;
314 break;
315 }
316
317 switch (TSFlags & X86II::FormMask) {
318 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
319 case X86II::MRMSrcReg:
320 if (MI.getOperand(0).isReg() &&
321 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
322 REX |= 1 << 2;
323 i = isTwoAddr ? 2 : 1;
324 for (; i != NumOps; ++i) {
325 const MCOperand &MO = MI.getOperand(i);
326 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
327 REX |= 1 << 0;
328 }
329 break;
330 case X86II::MRMSrcMem: {
331 if (MI.getOperand(0).isReg() &&
332 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
333 REX |= 1 << 2;
334 unsigned Bit = 0;
335 i = isTwoAddr ? 2 : 1;
336 for (; i != NumOps; ++i) {
337 const MCOperand &MO = MI.getOperand(i);
338 if (MO.isReg()) {
339 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
340 REX |= 1 << Bit;
341 Bit++;
342 }
343 }
344 break;
345 }
346 case X86II::MRM0m: case X86II::MRM1m:
347 case X86II::MRM2m: case X86II::MRM3m:
348 case X86II::MRM4m: case X86II::MRM5m:
349 case X86II::MRM6m: case X86II::MRM7m:
350 case X86II::MRMDestMem: {
351 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
352 i = isTwoAddr ? 1 : 0;
353 if (NumOps > e && MI.getOperand(e).isReg() &&
354 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
355 REX |= 1 << 2;
356 unsigned Bit = 0;
357 for (; i != e; ++i) {
358 const MCOperand &MO = MI.getOperand(i);
359 if (MO.isReg()) {
360 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
361 REX |= 1 << Bit;
362 Bit++;
363 }
364 }
365 break;
366 }
367 default:
368 if (MI.getOperand(0).isReg() &&
369 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
370 REX |= 1 << 0;
371 i = isTwoAddr ? 2 : 1;
372 for (unsigned e = NumOps; i != e; ++i) {
373 const MCOperand &MO = MI.getOperand(i);
374 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
375 REX |= 1 << 2;
376 }
377 break;
378 }
379 return REX;
380}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000381
382void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000383EncodeInstruction(const MCInst &MI, raw_ostream &OS,
384 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000385 unsigned Opcode = MI.getOpcode();
386 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000387 unsigned TSFlags = Desc.TSFlags;
388
Chris Lattner37ce80e2010-02-10 06:41:02 +0000389 // Keep track of the current byte being emitted.
390 unsigned CurByte = 0;
391
Chris Lattner1e80f402010-02-03 21:57:59 +0000392 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
393 // in order to provide diffability.
394
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000395 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000396 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000397 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000398
399 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000400 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000401 default: assert(0 && "Invalid segment!");
402 case 0: break; // No segment override!
403 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000404 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000405 break;
406 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000407 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000408 break;
409 }
410
Chris Lattner1e80f402010-02-03 21:57:59 +0000411 // Emit the repeat opcode prefix as needed.
412 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000413 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000414
Chris Lattner1e80f402010-02-03 21:57:59 +0000415 // Emit the operand size opcode prefix as needed.
416 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000417 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000418
419 // Emit the address size opcode prefix as needed.
420 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000421 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000422
423 bool Need0FPrefix = false;
424 switch (TSFlags & X86II::Op0Mask) {
425 default: assert(0 && "Invalid prefix!");
426 case 0: break; // No prefix!
427 case X86II::REP: break; // already handled.
428 case X86II::TB: // Two-byte opcode prefix
429 case X86II::T8: // 0F 38
430 case X86II::TA: // 0F 3A
431 Need0FPrefix = true;
432 break;
433 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000434 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000435 Need0FPrefix = true;
436 break;
437 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000438 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000439 Need0FPrefix = true;
440 break;
441 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000442 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000443 Need0FPrefix = true;
444 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000445 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
446 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
447 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
448 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
449 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
450 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
451 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
452 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000453 }
454
455 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000456 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000457 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000458 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000459 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000460 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000461
462 // 0x0F escape code must be emitted just before the opcode.
463 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000464 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000465
466 // FIXME: Pull this up into previous switch if REX can be moved earlier.
467 switch (TSFlags & X86II::Op0Mask) {
468 case X86II::TF: // F2 0F 38
469 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000470 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000471 break;
472 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000473 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000474 break;
475 }
476
477 // If this is a two-address instruction, skip one of the register operands.
478 unsigned NumOps = Desc.getNumOperands();
479 unsigned CurOp = 0;
480 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
481 ++CurOp;
482 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
483 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
484 --NumOps;
485
Chris Lattner74a21512010-02-05 19:24:13 +0000486 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000487 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000488 case X86II::MRMInitReg:
489 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000490 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000491 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
492 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000493 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000494 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000495
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000496 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000497 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000498 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000499
500 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000501 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000502 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000503 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000504 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000505 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000506
507 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000508 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000509 EmitMemModRMByte(MI, CurOp,
510 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner1b670602010-02-11 06:49:52 +0000511 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000512 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000513 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000514
515 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000516 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000517 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000518 CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000519 CurOp += 2;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000520 break;
521
522 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000523 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000524
525 // FIXME: Maybe lea should have its own form? This is a horrible hack.
526 int AddrOperands;
527 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
528 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
529 AddrOperands = X86AddrNumOperands - 1; // No segment register
530 else
531 AddrOperands = X86AddrNumOperands;
532
Chris Lattnerdaa45552010-02-05 19:04:37 +0000533 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner1b670602010-02-11 06:49:52 +0000534 CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000535 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000536 break;
537 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000538
539 case X86II::MRM0r: case X86II::MRM1r:
540 case X86II::MRM2r: case X86II::MRM3r:
541 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000542 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000543 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000544
545 // Special handling of lfence, mfence, monitor, and mwait.
546 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
547 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
548 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
Chris Lattnerc4d3f662010-02-12 01:06:22 +0000549 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r,
550 Opcode == X86::MWAIT),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000551 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000552 } else {
553 EmitRegModRMByte(MI.getOperand(CurOp++),
554 (TSFlags & X86II::FormMask)-X86II::MRM0r,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000555 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000556 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000557 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000558 case X86II::MRM0m: case X86II::MRM1m:
559 case X86II::MRM2m: case X86II::MRM3m:
560 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000561 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000562 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000563 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner1b670602010-02-11 06:49:52 +0000564 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000565 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000566 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000567 case X86II::MRM_C1:
568 EmitByte(BaseOpcode, CurByte, OS);
569 EmitByte(0xC1, CurByte, OS);
570 break;
571 case X86II::MRM_C8:
572 EmitByte(BaseOpcode, CurByte, OS);
573 EmitByte(0xC8, CurByte, OS);
574 break;
575 case X86II::MRM_C9:
576 EmitByte(BaseOpcode, CurByte, OS);
577 EmitByte(0xC9, CurByte, OS);
578 break;
579 case X86II::MRM_E8:
580 EmitByte(BaseOpcode, CurByte, OS);
581 EmitByte(0xE8, CurByte, OS);
582 break;
583 case X86II::MRM_F0:
584 EmitByte(BaseOpcode, CurByte, OS);
585 EmitByte(0xF0, CurByte, OS);
586 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000587 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000588
589 // If there is a remaining operand, it must be a trailing immediate. Emit it
590 // according to the right size for the instruction.
Chris Lattnerbd13fb62010-02-11 19:25:55 +0000591 // FIXME: This should pass in whether the value is pc relative or not. This
592 // information should be aquired from TSFlags as well.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000593 if (CurOp != NumOps)
Chris Lattnercf653392010-02-12 22:36:47 +0000594 EmitImmediate(MI.getOperand(CurOp++),
595 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000596 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000597
598#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000599 // FIXME: Verify.
600 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000601 errs() << "Cannot encode all operands of: ";
602 MI.dump();
603 errs() << '\n';
604 abort();
605 }
606#endif
Chris Lattner45762472010-02-03 21:24:49 +0000607}