blob: cd72cc963e9e0f6c426ac14178bef7ddab2674cc [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
Eli Bendersky1de14102013-06-07 19:40:08 +0000390.. _visibilitystyles:
391
Sean Silvaf722b002012-12-07 10:36:55 +0000392Visibility Styles
393-----------------
394
395All Global Variables and Functions have one of the following visibility
396styles:
397
398"``default``" - Default style
399 On targets that use the ELF object file format, default visibility
400 means that the declaration is visible to other modules and, in
401 shared libraries, means that the declared entity may be overridden.
402 On Darwin, default visibility means that the declaration is visible
403 to other modules. Default visibility corresponds to "external
404 linkage" in the language.
405"``hidden``" - Hidden style
406 Two declarations of an object with hidden visibility refer to the
407 same object if they are in the same shared object. Usually, hidden
408 visibility indicates that the symbol will not be placed into the
409 dynamic symbol table, so no other module (executable or shared
410 library) can reference it directly.
411"``protected``" - Protected style
412 On ELF, protected visibility indicates that the symbol will be
413 placed in the dynamic symbol table, but that references within the
414 defining module will bind to the local symbol. That is, the symbol
415 cannot be overridden by another module.
416
Eli Bendersky1de14102013-06-07 19:40:08 +0000417.. _namedtypes:
418
Sean Silvaf722b002012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
451instead of run-time. Global variables may optionally be initialized, may
452have an explicit section to be placed in, and may have an optional
453explicit alignment specified.
454
455A variable may be defined as ``thread_local``, which means that it will
456not be shared by threads (each thread will have a separated copy of the
457variable). Not all targets support thread-local variables. Optionally, a
458TLS model may be specified:
459
460``localdynamic``
461 For variables that are only used within the current shared library.
462``initialexec``
463 For variables in modules that will not be loaded dynamically.
464``localexec``
465 For variables defined in the executable and only used within it.
466
467The models correspond to the ELF TLS models; see `ELF Handling For
468Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
469more information on under which circumstances the different models may
470be used. The target may choose a different TLS model if the specified
471model is not supported, or if a better choice of model can be made.
472
Michael Gottesmanf5735882013-01-31 05:48:48 +0000473A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000474the contents of the variable will **never** be modified (enabling better
475optimization, allowing the global data to be placed in the read-only
476section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000477initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000478variable.
479
480LLVM explicitly allows *declarations* of global variables to be marked
481constant, even if the final definition of the global is not. This
482capability can be used to enable slightly better optimization of the
483program, but requires the language definition to guarantee that
484optimizations based on the 'constantness' are valid for the translation
485units that do not include the definition.
486
487As SSA values, global variables define pointer values that are in scope
488(i.e. they dominate) all basic blocks in the program. Global variables
489always define a pointer to their "content" type because they describe a
490region of memory, and all memory objects in LLVM are accessed through
491pointers.
492
493Global variables can be marked with ``unnamed_addr`` which indicates
494that the address is not significant, only the content. Constants marked
495like this can be merged with other constants if they have the same
496initializer. Note that a constant with significant address *can* be
497merged with a ``unnamed_addr`` constant, the result being a constant
498whose address is significant.
499
500A global variable may be declared to reside in a target-specific
501numbered address space. For targets that support them, address spaces
502may affect how optimizations are performed and/or what target
503instructions are used to access the variable. The default address space
504is zero. The address space qualifier must precede any other attributes.
505
506LLVM allows an explicit section to be specified for globals. If the
507target supports it, it will emit globals to the section specified.
508
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000509By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000510variables defined within the module are not modified from their
511initial values before the start of the global initializer. This is
512true even for variables potentially accessible from outside the
513module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000514``@llvm.used``. This assumption may be suppressed by marking the
515variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000516
Sean Silvaf722b002012-12-07 10:36:55 +0000517An explicit alignment may be specified for a global, which must be a
518power of 2. If not present, or if the alignment is set to zero, the
519alignment of the global is set by the target to whatever it feels
520convenient. If an explicit alignment is specified, the global is forced
521to have exactly that alignment. Targets and optimizers are not allowed
522to over-align the global if the global has an assigned section. In this
523case, the extra alignment could be observable: for example, code could
524assume that the globals are densely packed in their section and try to
525iterate over them as an array, alignment padding would break this
526iteration.
527
528For example, the following defines a global in a numbered address space
529with an initializer, section, and alignment:
530
531.. code-block:: llvm
532
533 @G = addrspace(5) constant float 1.0, section "foo", align 4
534
535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
555collector name <gc>`, an opening curly brace, a list of basic blocks,
556and a closing curly brace.
557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
563name, a possibly empty list of arguments, an optional alignment, and an
564optional :ref:`garbage collector name <gc>`.
565
566A function definition contains a list of basic blocks, forming the CFG
567(Control Flow Graph) for the function. Each basic block may optionally
568start with a label (giving the basic block a symbol table entry),
569contains a list of instructions, and ends with a
570:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000571return). If explicit label is not provided, a block is assigned an
572implicit numbered label, using a next value from the same counter as used
573for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
574function entry block does not have explicit label, it will be assigned
575label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000576
577The first basic block in a function is special in two ways: it is
578immediately executed on entrance to the function, and it is not allowed
579to have predecessor basic blocks (i.e. there can not be any branches to
580the entry block of a function). Because the block can have no
581predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
582
583LLVM allows an explicit section to be specified for functions. If the
584target supports it, it will emit functions to the section specified.
585
586An explicit alignment may be specified for a function. If not present,
587or if the alignment is set to zero, the alignment of the function is set
588by the target to whatever it feels convenient. If an explicit alignment
589is specified, the function is forced to have at least that much
590alignment. All alignments must be a power of 2.
591
592If the ``unnamed_addr`` attribute is given, the address is know to not
593be significant and two identical functions can be merged.
594
595Syntax::
596
597 define [linkage] [visibility]
598 [cconv] [ret attrs]
599 <ResultType> @<FunctionName> ([argument list])
600 [fn Attrs] [section "name"] [align N]
601 [gc] { ... }
602
Eli Bendersky1de14102013-06-07 19:40:08 +0000603.. _langref_aliases:
604
Sean Silvaf722b002012-12-07 10:36:55 +0000605Aliases
606-------
607
608Aliases act as "second name" for the aliasee value (which can be either
609function, global variable, another alias or bitcast of global value).
610Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
611:ref:`visibility style <visibility>`.
612
613Syntax::
614
615 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
616
617.. _namedmetadatastructure:
618
619Named Metadata
620--------------
621
622Named metadata is a collection of metadata. :ref:`Metadata
623nodes <metadata>` (but not metadata strings) are the only valid
624operands for a named metadata.
625
626Syntax::
627
628 ; Some unnamed metadata nodes, which are referenced by the named metadata.
629 !0 = metadata !{metadata !"zero"}
630 !1 = metadata !{metadata !"one"}
631 !2 = metadata !{metadata !"two"}
632 ; A named metadata.
633 !name = !{!0, !1, !2}
634
635.. _paramattrs:
636
637Parameter Attributes
638--------------------
639
640The return type and each parameter of a function type may have a set of
641*parameter attributes* associated with them. Parameter attributes are
642used to communicate additional information about the result or
643parameters of a function. Parameter attributes are considered to be part
644of the function, not of the function type, so functions with different
645parameter attributes can have the same function type.
646
647Parameter attributes are simple keywords that follow the type specified.
648If multiple parameter attributes are needed, they are space separated.
649For example:
650
651.. code-block:: llvm
652
653 declare i32 @printf(i8* noalias nocapture, ...)
654 declare i32 @atoi(i8 zeroext)
655 declare signext i8 @returns_signed_char()
656
657Note that any attributes for the function result (``nounwind``,
658``readonly``) come immediately after the argument list.
659
660Currently, only the following parameter attributes are defined:
661
662``zeroext``
663 This indicates to the code generator that the parameter or return
664 value should be zero-extended to the extent required by the target's
665 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
666 the caller (for a parameter) or the callee (for a return value).
667``signext``
668 This indicates to the code generator that the parameter or return
669 value should be sign-extended to the extent required by the target's
670 ABI (which is usually 32-bits) by the caller (for a parameter) or
671 the callee (for a return value).
672``inreg``
673 This indicates that this parameter or return value should be treated
674 in a special target-dependent fashion during while emitting code for
675 a function call or return (usually, by putting it in a register as
676 opposed to memory, though some targets use it to distinguish between
677 two different kinds of registers). Use of this attribute is
678 target-specific.
679``byval``
680 This indicates that the pointer parameter should really be passed by
681 value to the function. The attribute implies that a hidden copy of
682 the pointee is made between the caller and the callee, so the callee
683 is unable to modify the value in the caller. This attribute is only
684 valid on LLVM pointer arguments. It is generally used to pass
685 structs and arrays by value, but is also valid on pointers to
686 scalars. The copy is considered to belong to the caller not the
687 callee (for example, ``readonly`` functions should not write to
688 ``byval`` parameters). This is not a valid attribute for return
689 values.
690
691 The byval attribute also supports specifying an alignment with the
692 align attribute. It indicates the alignment of the stack slot to
693 form and the known alignment of the pointer specified to the call
694 site. If the alignment is not specified, then the code generator
695 makes a target-specific assumption.
696
697``sret``
698 This indicates that the pointer parameter specifies the address of a
699 structure that is the return value of the function in the source
700 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000701 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000702 not to trap and to be properly aligned. This may only be applied to
703 the first parameter. This is not a valid attribute for return
704 values.
705``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000706 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000707 the argument or return value do not alias pointer values which are
708 not *based* on it, ignoring certain "irrelevant" dependencies. For a
709 call to the parent function, dependencies between memory references
710 from before or after the call and from those during the call are
711 "irrelevant" to the ``noalias`` keyword for the arguments and return
712 value used in that call. The caller shares the responsibility with
713 the callee for ensuring that these requirements are met. For further
714 details, please see the discussion of the NoAlias response in `alias
715 analysis <AliasAnalysis.html#MustMayNo>`_.
716
717 Note that this definition of ``noalias`` is intentionally similar
718 to the definition of ``restrict`` in C99 for function arguments,
719 though it is slightly weaker.
720
721 For function return values, C99's ``restrict`` is not meaningful,
722 while LLVM's ``noalias`` is.
723``nocapture``
724 This indicates that the callee does not make any copies of the
725 pointer that outlive the callee itself. This is not a valid
726 attribute for return values.
727
728.. _nest:
729
730``nest``
731 This indicates that the pointer parameter can be excised using the
732 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000733 attribute for return values and can only be applied to one parameter.
734
735``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000736 This indicates that the function always returns the argument as its return
737 value. This is an optimization hint to the code generator when generating
738 the caller, allowing tail call optimization and omission of register saves
739 and restores in some cases; it is not checked or enforced when generating
740 the callee. The parameter and the function return type must be valid
741 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
742 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000743
744.. _gc:
745
746Garbage Collector Names
747-----------------------
748
749Each function may specify a garbage collector name, which is simply a
750string:
751
752.. code-block:: llvm
753
754 define void @f() gc "name" { ... }
755
756The compiler declares the supported values of *name*. Specifying a
757collector which will cause the compiler to alter its output in order to
758support the named garbage collection algorithm.
759
Bill Wendling95ce4c22013-02-06 06:52:58 +0000760.. _attrgrp:
761
762Attribute Groups
763----------------
764
765Attribute groups are groups of attributes that are referenced by objects within
766the IR. They are important for keeping ``.ll`` files readable, because a lot of
767functions will use the same set of attributes. In the degenerative case of a
768``.ll`` file that corresponds to a single ``.c`` file, the single attribute
769group will capture the important command line flags used to build that file.
770
771An attribute group is a module-level object. To use an attribute group, an
772object references the attribute group's ID (e.g. ``#37``). An object may refer
773to more than one attribute group. In that situation, the attributes from the
774different groups are merged.
775
776Here is an example of attribute groups for a function that should always be
777inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
778
779.. code-block:: llvm
780
781 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000782 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000783
784 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000785 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000786
787 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
788 define void @f() #0 #1 { ... }
789
Sean Silvaf722b002012-12-07 10:36:55 +0000790.. _fnattrs:
791
792Function Attributes
793-------------------
794
795Function attributes are set to communicate additional information about
796a function. Function attributes are considered to be part of the
797function, not of the function type, so functions with different function
798attributes can have the same function type.
799
800Function attributes are simple keywords that follow the type specified.
801If multiple attributes are needed, they are space separated. For
802example:
803
804.. code-block:: llvm
805
806 define void @f() noinline { ... }
807 define void @f() alwaysinline { ... }
808 define void @f() alwaysinline optsize { ... }
809 define void @f() optsize { ... }
810
Sean Silvaf722b002012-12-07 10:36:55 +0000811``alignstack(<n>)``
812 This attribute indicates that, when emitting the prologue and
813 epilogue, the backend should forcibly align the stack pointer.
814 Specify the desired alignment, which must be a power of two, in
815 parentheses.
816``alwaysinline``
817 This attribute indicates that the inliner should attempt to inline
818 this function into callers whenever possible, ignoring any active
819 inlining size threshold for this caller.
Diego Novillo77226a02013-05-24 12:26:52 +0000820``cold``
821 This attribute indicates that this function is rarely called. When
822 computing edge weights, basic blocks post-dominated by a cold
823 function call are also considered to be cold; and, thus, given low
824 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000825``nonlazybind``
826 This attribute suppresses lazy symbol binding for the function. This
827 may make calls to the function faster, at the cost of extra program
828 startup time if the function is not called during program startup.
829``inlinehint``
830 This attribute indicates that the source code contained a hint that
831 inlining this function is desirable (such as the "inline" keyword in
832 C/C++). It is just a hint; it imposes no requirements on the
833 inliner.
834``naked``
835 This attribute disables prologue / epilogue emission for the
836 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000837``nobuiltin``
838 This indicates that the callee function at a call site is not
839 recognized as a built-in function. LLVM will retain the original call
840 and not replace it with equivalent code based on the semantics of the
841 built-in function. This is only valid at call sites, not on function
842 declarations or definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000843``noduplicate``
844 This attribute indicates that calls to the function cannot be
845 duplicated. A call to a ``noduplicate`` function may be moved
846 within its parent function, but may not be duplicated within
847 its parent function.
848
849 A function containing a ``noduplicate`` call may still
850 be an inlining candidate, provided that the call is not
851 duplicated by inlining. That implies that the function has
852 internal linkage and only has one call site, so the original
853 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000854``noimplicitfloat``
855 This attributes disables implicit floating point instructions.
856``noinline``
857 This attribute indicates that the inliner should never inline this
858 function in any situation. This attribute may not be used together
859 with the ``alwaysinline`` attribute.
860``noredzone``
861 This attribute indicates that the code generator should not use a
862 red zone, even if the target-specific ABI normally permits it.
863``noreturn``
864 This function attribute indicates that the function never returns
865 normally. This produces undefined behavior at runtime if the
866 function ever does dynamically return.
867``nounwind``
868 This function attribute indicates that the function never returns
869 with an unwind or exceptional control flow. If the function does
870 unwind, its runtime behavior is undefined.
871``optsize``
872 This attribute suggests that optimization passes and code generator
873 passes make choices that keep the code size of this function low,
874 and otherwise do optimizations specifically to reduce code size.
875``readnone``
876 This attribute indicates that the function computes its result (or
877 decides to unwind an exception) based strictly on its arguments,
878 without dereferencing any pointer arguments or otherwise accessing
879 any mutable state (e.g. memory, control registers, etc) visible to
880 caller functions. It does not write through any pointer arguments
881 (including ``byval`` arguments) and never changes any state visible
882 to callers. This means that it cannot unwind exceptions by calling
883 the ``C++`` exception throwing methods.
884``readonly``
885 This attribute indicates that the function does not write through
886 any pointer arguments (including ``byval`` arguments) or otherwise
887 modify any state (e.g. memory, control registers, etc) visible to
888 caller functions. It may dereference pointer arguments and read
889 state that may be set in the caller. A readonly function always
890 returns the same value (or unwinds an exception identically) when
891 called with the same set of arguments and global state. It cannot
892 unwind an exception by calling the ``C++`` exception throwing
893 methods.
894``returns_twice``
895 This attribute indicates that this function can return twice. The C
896 ``setjmp`` is an example of such a function. The compiler disables
897 some optimizations (like tail calls) in the caller of these
898 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000899``sanitize_address``
900 This attribute indicates that AddressSanitizer checks
901 (dynamic address safety analysis) are enabled for this function.
902``sanitize_memory``
903 This attribute indicates that MemorySanitizer checks (dynamic detection
904 of accesses to uninitialized memory) are enabled for this function.
905``sanitize_thread``
906 This attribute indicates that ThreadSanitizer checks
907 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000908``ssp``
909 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000910 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000911 placed on the stack before the local variables that's checked upon
912 return from the function to see if it has been overwritten. A
913 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000914 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000915
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000916 - Character arrays larger than ``ssp-buffer-size`` (default 8).
917 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
918 - Calls to alloca() with variable sizes or constant sizes greater than
919 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000920
921 If a function that has an ``ssp`` attribute is inlined into a
922 function that doesn't have an ``ssp`` attribute, then the resulting
923 function will have an ``ssp`` attribute.
924``sspreq``
925 This attribute indicates that the function should *always* emit a
926 stack smashing protector. This overrides the ``ssp`` function
927 attribute.
928
929 If a function that has an ``sspreq`` attribute is inlined into a
930 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000931 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
932 an ``sspreq`` attribute.
933``sspstrong``
934 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000935 protector. This attribute causes a strong heuristic to be used when
936 determining if a function needs stack protectors. The strong heuristic
937 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000938
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000939 - Arrays of any size and type
940 - Aggregates containing an array of any size and type.
941 - Calls to alloca().
942 - Local variables that have had their address taken.
943
944 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000945
946 If a function that has an ``sspstrong`` attribute is inlined into a
947 function that doesn't have an ``sspstrong`` attribute, then the
948 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000949``uwtable``
950 This attribute indicates that the ABI being targeted requires that
951 an unwind table entry be produce for this function even if we can
952 show that no exceptions passes by it. This is normally the case for
953 the ELF x86-64 abi, but it can be disabled for some compilation
954 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000955
956.. _moduleasm:
957
958Module-Level Inline Assembly
959----------------------------
960
961Modules may contain "module-level inline asm" blocks, which corresponds
962to the GCC "file scope inline asm" blocks. These blocks are internally
963concatenated by LLVM and treated as a single unit, but may be separated
964in the ``.ll`` file if desired. The syntax is very simple:
965
966.. code-block:: llvm
967
968 module asm "inline asm code goes here"
969 module asm "more can go here"
970
971The strings can contain any character by escaping non-printable
972characters. The escape sequence used is simply "\\xx" where "xx" is the
973two digit hex code for the number.
974
975The inline asm code is simply printed to the machine code .s file when
976assembly code is generated.
977
Eli Bendersky1de14102013-06-07 19:40:08 +0000978.. _langref_datalayout:
979
Sean Silvaf722b002012-12-07 10:36:55 +0000980Data Layout
981-----------
982
983A module may specify a target specific data layout string that specifies
984how data is to be laid out in memory. The syntax for the data layout is
985simply:
986
987.. code-block:: llvm
988
989 target datalayout = "layout specification"
990
991The *layout specification* consists of a list of specifications
992separated by the minus sign character ('-'). Each specification starts
993with a letter and may include other information after the letter to
994define some aspect of the data layout. The specifications accepted are
995as follows:
996
997``E``
998 Specifies that the target lays out data in big-endian form. That is,
999 the bits with the most significance have the lowest address
1000 location.
1001``e``
1002 Specifies that the target lays out data in little-endian form. That
1003 is, the bits with the least significance have the lowest address
1004 location.
1005``S<size>``
1006 Specifies the natural alignment of the stack in bits. Alignment
1007 promotion of stack variables is limited to the natural stack
1008 alignment to avoid dynamic stack realignment. The stack alignment
1009 must be a multiple of 8-bits. If omitted, the natural stack
1010 alignment defaults to "unspecified", which does not prevent any
1011 alignment promotions.
1012``p[n]:<size>:<abi>:<pref>``
1013 This specifies the *size* of a pointer and its ``<abi>`` and
1014 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1015 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1016 preceding ``:`` should be omitted too. The address space, ``n`` is
1017 optional, and if not specified, denotes the default address space 0.
1018 The value of ``n`` must be in the range [1,2^23).
1019``i<size>:<abi>:<pref>``
1020 This specifies the alignment for an integer type of a given bit
1021 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1022``v<size>:<abi>:<pref>``
1023 This specifies the alignment for a vector type of a given bit
1024 ``<size>``.
1025``f<size>:<abi>:<pref>``
1026 This specifies the alignment for a floating point type of a given bit
1027 ``<size>``. Only values of ``<size>`` that are supported by the target
1028 will work. 32 (float) and 64 (double) are supported on all targets; 80
1029 or 128 (different flavors of long double) are also supported on some
1030 targets.
1031``a<size>:<abi>:<pref>``
1032 This specifies the alignment for an aggregate type of a given bit
1033 ``<size>``.
1034``s<size>:<abi>:<pref>``
1035 This specifies the alignment for a stack object of a given bit
1036 ``<size>``.
1037``n<size1>:<size2>:<size3>...``
1038 This specifies a set of native integer widths for the target CPU in
1039 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1040 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1041 this set are considered to support most general arithmetic operations
1042 efficiently.
1043
1044When constructing the data layout for a given target, LLVM starts with a
1045default set of specifications which are then (possibly) overridden by
1046the specifications in the ``datalayout`` keyword. The default
1047specifications are given in this list:
1048
1049- ``E`` - big endian
1050- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001051- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001052- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1053- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1054- ``i16:16:16`` - i16 is 16-bit aligned
1055- ``i32:32:32`` - i32 is 32-bit aligned
1056- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1057 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001058- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001059- ``f32:32:32`` - float is 32-bit aligned
1060- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001061- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001062- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1063- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001064- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001065
1066When LLVM is determining the alignment for a given type, it uses the
1067following rules:
1068
1069#. If the type sought is an exact match for one of the specifications,
1070 that specification is used.
1071#. If no match is found, and the type sought is an integer type, then
1072 the smallest integer type that is larger than the bitwidth of the
1073 sought type is used. If none of the specifications are larger than
1074 the bitwidth then the largest integer type is used. For example,
1075 given the default specifications above, the i7 type will use the
1076 alignment of i8 (next largest) while both i65 and i256 will use the
1077 alignment of i64 (largest specified).
1078#. If no match is found, and the type sought is a vector type, then the
1079 largest vector type that is smaller than the sought vector type will
1080 be used as a fall back. This happens because <128 x double> can be
1081 implemented in terms of 64 <2 x double>, for example.
1082
1083The function of the data layout string may not be what you expect.
1084Notably, this is not a specification from the frontend of what alignment
1085the code generator should use.
1086
1087Instead, if specified, the target data layout is required to match what
1088the ultimate *code generator* expects. This string is used by the
1089mid-level optimizers to improve code, and this only works if it matches
1090what the ultimate code generator uses. If you would like to generate IR
1091that does not embed this target-specific detail into the IR, then you
1092don't have to specify the string. This will disable some optimizations
1093that require precise layout information, but this also prevents those
1094optimizations from introducing target specificity into the IR.
1095
1096.. _pointeraliasing:
1097
1098Pointer Aliasing Rules
1099----------------------
1100
1101Any memory access must be done through a pointer value associated with
1102an address range of the memory access, otherwise the behavior is
1103undefined. Pointer values are associated with address ranges according
1104to the following rules:
1105
1106- A pointer value is associated with the addresses associated with any
1107 value it is *based* on.
1108- An address of a global variable is associated with the address range
1109 of the variable's storage.
1110- The result value of an allocation instruction is associated with the
1111 address range of the allocated storage.
1112- A null pointer in the default address-space is associated with no
1113 address.
1114- An integer constant other than zero or a pointer value returned from
1115 a function not defined within LLVM may be associated with address
1116 ranges allocated through mechanisms other than those provided by
1117 LLVM. Such ranges shall not overlap with any ranges of addresses
1118 allocated by mechanisms provided by LLVM.
1119
1120A pointer value is *based* on another pointer value according to the
1121following rules:
1122
1123- A pointer value formed from a ``getelementptr`` operation is *based*
1124 on the first operand of the ``getelementptr``.
1125- The result value of a ``bitcast`` is *based* on the operand of the
1126 ``bitcast``.
1127- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1128 values that contribute (directly or indirectly) to the computation of
1129 the pointer's value.
1130- The "*based* on" relationship is transitive.
1131
1132Note that this definition of *"based"* is intentionally similar to the
1133definition of *"based"* in C99, though it is slightly weaker.
1134
1135LLVM IR does not associate types with memory. The result type of a
1136``load`` merely indicates the size and alignment of the memory from
1137which to load, as well as the interpretation of the value. The first
1138operand type of a ``store`` similarly only indicates the size and
1139alignment of the store.
1140
1141Consequently, type-based alias analysis, aka TBAA, aka
1142``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1143:ref:`Metadata <metadata>` may be used to encode additional information
1144which specialized optimization passes may use to implement type-based
1145alias analysis.
1146
1147.. _volatile:
1148
1149Volatile Memory Accesses
1150------------------------
1151
1152Certain memory accesses, such as :ref:`load <i_load>`'s,
1153:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1154marked ``volatile``. The optimizers must not change the number of
1155volatile operations or change their order of execution relative to other
1156volatile operations. The optimizers *may* change the order of volatile
1157operations relative to non-volatile operations. This is not Java's
1158"volatile" and has no cross-thread synchronization behavior.
1159
Andrew Trick9a6dd022013-01-30 21:19:35 +00001160IR-level volatile loads and stores cannot safely be optimized into
1161llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1162flagged volatile. Likewise, the backend should never split or merge
1163target-legal volatile load/store instructions.
1164
Andrew Trick946317d2013-01-31 00:49:39 +00001165.. admonition:: Rationale
1166
1167 Platforms may rely on volatile loads and stores of natively supported
1168 data width to be executed as single instruction. For example, in C
1169 this holds for an l-value of volatile primitive type with native
1170 hardware support, but not necessarily for aggregate types. The
1171 frontend upholds these expectations, which are intentionally
1172 unspecified in the IR. The rules above ensure that IR transformation
1173 do not violate the frontend's contract with the language.
1174
Sean Silvaf722b002012-12-07 10:36:55 +00001175.. _memmodel:
1176
1177Memory Model for Concurrent Operations
1178--------------------------------------
1179
1180The LLVM IR does not define any way to start parallel threads of
1181execution or to register signal handlers. Nonetheless, there are
1182platform-specific ways to create them, and we define LLVM IR's behavior
1183in their presence. This model is inspired by the C++0x memory model.
1184
1185For a more informal introduction to this model, see the :doc:`Atomics`.
1186
1187We define a *happens-before* partial order as the least partial order
1188that
1189
1190- Is a superset of single-thread program order, and
1191- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1192 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1193 techniques, like pthread locks, thread creation, thread joining,
1194 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1195 Constraints <ordering>`).
1196
1197Note that program order does not introduce *happens-before* edges
1198between a thread and signals executing inside that thread.
1199
1200Every (defined) read operation (load instructions, memcpy, atomic
1201loads/read-modify-writes, etc.) R reads a series of bytes written by
1202(defined) write operations (store instructions, atomic
1203stores/read-modify-writes, memcpy, etc.). For the purposes of this
1204section, initialized globals are considered to have a write of the
1205initializer which is atomic and happens before any other read or write
1206of the memory in question. For each byte of a read R, R\ :sub:`byte`
1207may see any write to the same byte, except:
1208
1209- If write\ :sub:`1` happens before write\ :sub:`2`, and
1210 write\ :sub:`2` happens before R\ :sub:`byte`, then
1211 R\ :sub:`byte` does not see write\ :sub:`1`.
1212- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1213 R\ :sub:`byte` does not see write\ :sub:`3`.
1214
1215Given that definition, R\ :sub:`byte` is defined as follows:
1216
1217- If R is volatile, the result is target-dependent. (Volatile is
1218 supposed to give guarantees which can support ``sig_atomic_t`` in
1219 C/C++, and may be used for accesses to addresses which do not behave
1220 like normal memory. It does not generally provide cross-thread
1221 synchronization.)
1222- Otherwise, if there is no write to the same byte that happens before
1223 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1224- Otherwise, if R\ :sub:`byte` may see exactly one write,
1225 R\ :sub:`byte` returns the value written by that write.
1226- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1227 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1228 Memory Ordering Constraints <ordering>` section for additional
1229 constraints on how the choice is made.
1230- Otherwise R\ :sub:`byte` returns ``undef``.
1231
1232R returns the value composed of the series of bytes it read. This
1233implies that some bytes within the value may be ``undef`` **without**
1234the entire value being ``undef``. Note that this only defines the
1235semantics of the operation; it doesn't mean that targets will emit more
1236than one instruction to read the series of bytes.
1237
1238Note that in cases where none of the atomic intrinsics are used, this
1239model places only one restriction on IR transformations on top of what
1240is required for single-threaded execution: introducing a store to a byte
1241which might not otherwise be stored is not allowed in general.
1242(Specifically, in the case where another thread might write to and read
1243from an address, introducing a store can change a load that may see
1244exactly one write into a load that may see multiple writes.)
1245
1246.. _ordering:
1247
1248Atomic Memory Ordering Constraints
1249----------------------------------
1250
1251Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1252:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1253:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1254an ordering parameter that determines which other atomic instructions on
1255the same address they *synchronize with*. These semantics are borrowed
1256from Java and C++0x, but are somewhat more colloquial. If these
1257descriptions aren't precise enough, check those specs (see spec
1258references in the :doc:`atomics guide <Atomics>`).
1259:ref:`fence <i_fence>` instructions treat these orderings somewhat
1260differently since they don't take an address. See that instruction's
1261documentation for details.
1262
1263For a simpler introduction to the ordering constraints, see the
1264:doc:`Atomics`.
1265
1266``unordered``
1267 The set of values that can be read is governed by the happens-before
1268 partial order. A value cannot be read unless some operation wrote
1269 it. This is intended to provide a guarantee strong enough to model
1270 Java's non-volatile shared variables. This ordering cannot be
1271 specified for read-modify-write operations; it is not strong enough
1272 to make them atomic in any interesting way.
1273``monotonic``
1274 In addition to the guarantees of ``unordered``, there is a single
1275 total order for modifications by ``monotonic`` operations on each
1276 address. All modification orders must be compatible with the
1277 happens-before order. There is no guarantee that the modification
1278 orders can be combined to a global total order for the whole program
1279 (and this often will not be possible). The read in an atomic
1280 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1281 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1282 order immediately before the value it writes. If one atomic read
1283 happens before another atomic read of the same address, the later
1284 read must see the same value or a later value in the address's
1285 modification order. This disallows reordering of ``monotonic`` (or
1286 stronger) operations on the same address. If an address is written
1287 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1288 read that address repeatedly, the other threads must eventually see
1289 the write. This corresponds to the C++0x/C1x
1290 ``memory_order_relaxed``.
1291``acquire``
1292 In addition to the guarantees of ``monotonic``, a
1293 *synchronizes-with* edge may be formed with a ``release`` operation.
1294 This is intended to model C++'s ``memory_order_acquire``.
1295``release``
1296 In addition to the guarantees of ``monotonic``, if this operation
1297 writes a value which is subsequently read by an ``acquire``
1298 operation, it *synchronizes-with* that operation. (This isn't a
1299 complete description; see the C++0x definition of a release
1300 sequence.) This corresponds to the C++0x/C1x
1301 ``memory_order_release``.
1302``acq_rel`` (acquire+release)
1303 Acts as both an ``acquire`` and ``release`` operation on its
1304 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1305``seq_cst`` (sequentially consistent)
1306 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1307 operation which only reads, ``release`` for an operation which only
1308 writes), there is a global total order on all
1309 sequentially-consistent operations on all addresses, which is
1310 consistent with the *happens-before* partial order and with the
1311 modification orders of all the affected addresses. Each
1312 sequentially-consistent read sees the last preceding write to the
1313 same address in this global order. This corresponds to the C++0x/C1x
1314 ``memory_order_seq_cst`` and Java volatile.
1315
1316.. _singlethread:
1317
1318If an atomic operation is marked ``singlethread``, it only *synchronizes
1319with* or participates in modification and seq\_cst total orderings with
1320other operations running in the same thread (for example, in signal
1321handlers).
1322
1323.. _fastmath:
1324
1325Fast-Math Flags
1326---------------
1327
1328LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1329:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1330:ref:`frem <i_frem>`) have the following flags that can set to enable
1331otherwise unsafe floating point operations
1332
1333``nnan``
1334 No NaNs - Allow optimizations to assume the arguments and result are not
1335 NaN. Such optimizations are required to retain defined behavior over
1336 NaNs, but the value of the result is undefined.
1337
1338``ninf``
1339 No Infs - Allow optimizations to assume the arguments and result are not
1340 +/-Inf. Such optimizations are required to retain defined behavior over
1341 +/-Inf, but the value of the result is undefined.
1342
1343``nsz``
1344 No Signed Zeros - Allow optimizations to treat the sign of a zero
1345 argument or result as insignificant.
1346
1347``arcp``
1348 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1349 argument rather than perform division.
1350
1351``fast``
1352 Fast - Allow algebraically equivalent transformations that may
1353 dramatically change results in floating point (e.g. reassociate). This
1354 flag implies all the others.
1355
1356.. _typesystem:
1357
1358Type System
1359===========
1360
1361The LLVM type system is one of the most important features of the
1362intermediate representation. Being typed enables a number of
1363optimizations to be performed on the intermediate representation
1364directly, without having to do extra analyses on the side before the
1365transformation. A strong type system makes it easier to read the
1366generated code and enables novel analyses and transformations that are
1367not feasible to perform on normal three address code representations.
1368
Eli Bendersky88fe6822013-06-07 20:24:43 +00001369.. _typeclassifications:
1370
Sean Silvaf722b002012-12-07 10:36:55 +00001371Type Classifications
1372--------------------
1373
1374The types fall into a few useful classifications:
1375
1376
1377.. list-table::
1378 :header-rows: 1
1379
1380 * - Classification
1381 - Types
1382
1383 * - :ref:`integer <t_integer>`
1384 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1385 ``i64``, ...
1386
1387 * - :ref:`floating point <t_floating>`
1388 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1389 ``ppc_fp128``
1390
1391
1392 * - first class
1393
1394 .. _t_firstclass:
1395
1396 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1397 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1398 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1399 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1400
1401 * - :ref:`primitive <t_primitive>`
1402 - :ref:`label <t_label>`,
1403 :ref:`void <t_void>`,
1404 :ref:`integer <t_integer>`,
1405 :ref:`floating point <t_floating>`,
1406 :ref:`x86mmx <t_x86mmx>`,
1407 :ref:`metadata <t_metadata>`.
1408
1409 * - :ref:`derived <t_derived>`
1410 - :ref:`array <t_array>`,
1411 :ref:`function <t_function>`,
1412 :ref:`pointer <t_pointer>`,
1413 :ref:`structure <t_struct>`,
1414 :ref:`vector <t_vector>`,
1415 :ref:`opaque <t_opaque>`.
1416
1417The :ref:`first class <t_firstclass>` types are perhaps the most important.
1418Values of these types are the only ones which can be produced by
1419instructions.
1420
1421.. _t_primitive:
1422
1423Primitive Types
1424---------------
1425
1426The primitive types are the fundamental building blocks of the LLVM
1427system.
1428
1429.. _t_integer:
1430
1431Integer Type
1432^^^^^^^^^^^^
1433
1434Overview:
1435"""""""""
1436
1437The integer type is a very simple type that simply specifies an
1438arbitrary bit width for the integer type desired. Any bit width from 1
1439bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1440
1441Syntax:
1442"""""""
1443
1444::
1445
1446 iN
1447
1448The number of bits the integer will occupy is specified by the ``N``
1449value.
1450
1451Examples:
1452"""""""""
1453
1454+----------------+------------------------------------------------+
1455| ``i1`` | a single-bit integer. |
1456+----------------+------------------------------------------------+
1457| ``i32`` | a 32-bit integer. |
1458+----------------+------------------------------------------------+
1459| ``i1942652`` | a really big integer of over 1 million bits. |
1460+----------------+------------------------------------------------+
1461
1462.. _t_floating:
1463
1464Floating Point Types
1465^^^^^^^^^^^^^^^^^^^^
1466
1467.. list-table::
1468 :header-rows: 1
1469
1470 * - Type
1471 - Description
1472
1473 * - ``half``
1474 - 16-bit floating point value
1475
1476 * - ``float``
1477 - 32-bit floating point value
1478
1479 * - ``double``
1480 - 64-bit floating point value
1481
1482 * - ``fp128``
1483 - 128-bit floating point value (112-bit mantissa)
1484
1485 * - ``x86_fp80``
1486 - 80-bit floating point value (X87)
1487
1488 * - ``ppc_fp128``
1489 - 128-bit floating point value (two 64-bits)
1490
1491.. _t_x86mmx:
1492
1493X86mmx Type
1494^^^^^^^^^^^
1495
1496Overview:
1497"""""""""
1498
1499The x86mmx type represents a value held in an MMX register on an x86
1500machine. The operations allowed on it are quite limited: parameters and
1501return values, load and store, and bitcast. User-specified MMX
1502instructions are represented as intrinsic or asm calls with arguments
1503and/or results of this type. There are no arrays, vectors or constants
1504of this type.
1505
1506Syntax:
1507"""""""
1508
1509::
1510
1511 x86mmx
1512
1513.. _t_void:
1514
1515Void Type
1516^^^^^^^^^
1517
1518Overview:
1519"""""""""
1520
1521The void type does not represent any value and has no size.
1522
1523Syntax:
1524"""""""
1525
1526::
1527
1528 void
1529
1530.. _t_label:
1531
1532Label Type
1533^^^^^^^^^^
1534
1535Overview:
1536"""""""""
1537
1538The label type represents code labels.
1539
1540Syntax:
1541"""""""
1542
1543::
1544
1545 label
1546
1547.. _t_metadata:
1548
1549Metadata Type
1550^^^^^^^^^^^^^
1551
1552Overview:
1553"""""""""
1554
1555The metadata type represents embedded metadata. No derived types may be
1556created from metadata except for :ref:`function <t_function>` arguments.
1557
1558Syntax:
1559"""""""
1560
1561::
1562
1563 metadata
1564
1565.. _t_derived:
1566
1567Derived Types
1568-------------
1569
1570The real power in LLVM comes from the derived types in the system. This
1571is what allows a programmer to represent arrays, functions, pointers,
1572and other useful types. Each of these types contain one or more element
1573types which may be a primitive type, or another derived type. For
1574example, it is possible to have a two dimensional array, using an array
1575as the element type of another array.
1576
1577.. _t_aggregate:
1578
1579Aggregate Types
1580^^^^^^^^^^^^^^^
1581
1582Aggregate Types are a subset of derived types that can contain multiple
1583member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1584aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1585aggregate types.
1586
1587.. _t_array:
1588
1589Array Type
1590^^^^^^^^^^
1591
1592Overview:
1593"""""""""
1594
1595The array type is a very simple derived type that arranges elements
1596sequentially in memory. The array type requires a size (number of
1597elements) and an underlying data type.
1598
1599Syntax:
1600"""""""
1601
1602::
1603
1604 [<# elements> x <elementtype>]
1605
1606The number of elements is a constant integer value; ``elementtype`` may
1607be any type with a size.
1608
1609Examples:
1610"""""""""
1611
1612+------------------+--------------------------------------+
1613| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1614+------------------+--------------------------------------+
1615| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1616+------------------+--------------------------------------+
1617| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1618+------------------+--------------------------------------+
1619
1620Here are some examples of multidimensional arrays:
1621
1622+-----------------------------+----------------------------------------------------------+
1623| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1624+-----------------------------+----------------------------------------------------------+
1625| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1626+-----------------------------+----------------------------------------------------------+
1627| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1628+-----------------------------+----------------------------------------------------------+
1629
1630There is no restriction on indexing beyond the end of the array implied
1631by a static type (though there are restrictions on indexing beyond the
1632bounds of an allocated object in some cases). This means that
1633single-dimension 'variable sized array' addressing can be implemented in
1634LLVM with a zero length array type. An implementation of 'pascal style
1635arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1636example.
1637
1638.. _t_function:
1639
1640Function Type
1641^^^^^^^^^^^^^
1642
1643Overview:
1644"""""""""
1645
1646The function type can be thought of as a function signature. It consists
1647of a return type and a list of formal parameter types. The return type
1648of a function type is a first class type or a void type.
1649
1650Syntax:
1651"""""""
1652
1653::
1654
1655 <returntype> (<parameter list>)
1656
1657...where '``<parameter list>``' is a comma-separated list of type
1658specifiers. Optionally, the parameter list may include a type ``...``,
1659which indicates that the function takes a variable number of arguments.
1660Variable argument functions can access their arguments with the
1661:ref:`variable argument handling intrinsic <int_varargs>` functions.
1662'``<returntype>``' is any type except :ref:`label <t_label>`.
1663
1664Examples:
1665"""""""""
1666
1667+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1668| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1669+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001670| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001671+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1672| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1673+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1674| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1675+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1676
1677.. _t_struct:
1678
1679Structure Type
1680^^^^^^^^^^^^^^
1681
1682Overview:
1683"""""""""
1684
1685The structure type is used to represent a collection of data members
1686together in memory. The elements of a structure may be any type that has
1687a size.
1688
1689Structures in memory are accessed using '``load``' and '``store``' by
1690getting a pointer to a field with the '``getelementptr``' instruction.
1691Structures in registers are accessed using the '``extractvalue``' and
1692'``insertvalue``' instructions.
1693
1694Structures may optionally be "packed" structures, which indicate that
1695the alignment of the struct is one byte, and that there is no padding
1696between the elements. In non-packed structs, padding between field types
1697is inserted as defined by the DataLayout string in the module, which is
1698required to match what the underlying code generator expects.
1699
1700Structures can either be "literal" or "identified". A literal structure
1701is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1702identified types are always defined at the top level with a name.
1703Literal types are uniqued by their contents and can never be recursive
1704or opaque since there is no way to write one. Identified types can be
1705recursive, can be opaqued, and are never uniqued.
1706
1707Syntax:
1708"""""""
1709
1710::
1711
1712 %T1 = type { <type list> } ; Identified normal struct type
1713 %T2 = type <{ <type list> }> ; Identified packed struct type
1714
1715Examples:
1716"""""""""
1717
1718+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1719| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1720+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001721| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001722+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1723| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1724+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1725
1726.. _t_opaque:
1727
1728Opaque Structure Types
1729^^^^^^^^^^^^^^^^^^^^^^
1730
1731Overview:
1732"""""""""
1733
1734Opaque structure types are used to represent named structure types that
1735do not have a body specified. This corresponds (for example) to the C
1736notion of a forward declared structure.
1737
1738Syntax:
1739"""""""
1740
1741::
1742
1743 %X = type opaque
1744 %52 = type opaque
1745
1746Examples:
1747"""""""""
1748
1749+--------------+-------------------+
1750| ``opaque`` | An opaque type. |
1751+--------------+-------------------+
1752
1753.. _t_pointer:
1754
1755Pointer Type
1756^^^^^^^^^^^^
1757
1758Overview:
1759"""""""""
1760
1761The pointer type is used to specify memory locations. Pointers are
1762commonly used to reference objects in memory.
1763
1764Pointer types may have an optional address space attribute defining the
1765numbered address space where the pointed-to object resides. The default
1766address space is number zero. The semantics of non-zero address spaces
1767are target-specific.
1768
1769Note that LLVM does not permit pointers to void (``void*``) nor does it
1770permit pointers to labels (``label*``). Use ``i8*`` instead.
1771
1772Syntax:
1773"""""""
1774
1775::
1776
1777 <type> *
1778
1779Examples:
1780"""""""""
1781
1782+-------------------------+--------------------------------------------------------------------------------------------------------------+
1783| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1784+-------------------------+--------------------------------------------------------------------------------------------------------------+
1785| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1786+-------------------------+--------------------------------------------------------------------------------------------------------------+
1787| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1788+-------------------------+--------------------------------------------------------------------------------------------------------------+
1789
1790.. _t_vector:
1791
1792Vector Type
1793^^^^^^^^^^^
1794
1795Overview:
1796"""""""""
1797
1798A vector type is a simple derived type that represents a vector of
1799elements. Vector types are used when multiple primitive data are
1800operated in parallel using a single instruction (SIMD). A vector type
1801requires a size (number of elements) and an underlying primitive data
1802type. Vector types are considered :ref:`first class <t_firstclass>`.
1803
1804Syntax:
1805"""""""
1806
1807::
1808
1809 < <# elements> x <elementtype> >
1810
1811The number of elements is a constant integer value larger than 0;
1812elementtype may be any integer or floating point type, or a pointer to
1813these types. Vectors of size zero are not allowed.
1814
1815Examples:
1816"""""""""
1817
1818+-------------------+--------------------------------------------------+
1819| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1820+-------------------+--------------------------------------------------+
1821| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1822+-------------------+--------------------------------------------------+
1823| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1824+-------------------+--------------------------------------------------+
1825| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1826+-------------------+--------------------------------------------------+
1827
1828Constants
1829=========
1830
1831LLVM has several different basic types of constants. This section
1832describes them all and their syntax.
1833
1834Simple Constants
1835----------------
1836
1837**Boolean constants**
1838 The two strings '``true``' and '``false``' are both valid constants
1839 of the ``i1`` type.
1840**Integer constants**
1841 Standard integers (such as '4') are constants of the
1842 :ref:`integer <t_integer>` type. Negative numbers may be used with
1843 integer types.
1844**Floating point constants**
1845 Floating point constants use standard decimal notation (e.g.
1846 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1847 hexadecimal notation (see below). The assembler requires the exact
1848 decimal value of a floating-point constant. For example, the
1849 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1850 decimal in binary. Floating point constants must have a :ref:`floating
1851 point <t_floating>` type.
1852**Null pointer constants**
1853 The identifier '``null``' is recognized as a null pointer constant
1854 and must be of :ref:`pointer type <t_pointer>`.
1855
1856The one non-intuitive notation for constants is the hexadecimal form of
1857floating point constants. For example, the form
1858'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1859than) '``double 4.5e+15``'. The only time hexadecimal floating point
1860constants are required (and the only time that they are generated by the
1861disassembler) is when a floating point constant must be emitted but it
1862cannot be represented as a decimal floating point number in a reasonable
1863number of digits. For example, NaN's, infinities, and other special
1864values are represented in their IEEE hexadecimal format so that assembly
1865and disassembly do not cause any bits to change in the constants.
1866
1867When using the hexadecimal form, constants of types half, float, and
1868double are represented using the 16-digit form shown above (which
1869matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001870must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001871precision, respectively. Hexadecimal format is always used for long
1872double, and there are three forms of long double. The 80-bit format used
1873by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1874128-bit format used by PowerPC (two adjacent doubles) is represented by
1875``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001876represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1877will only work if they match the long double format on your target.
1878The IEEE 16-bit format (half precision) is represented by ``0xH``
1879followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1880(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001881
1882There are no constants of type x86mmx.
1883
Eli Bendersky88fe6822013-06-07 20:24:43 +00001884.. _complexconstants:
1885
Sean Silvaf722b002012-12-07 10:36:55 +00001886Complex Constants
1887-----------------
1888
1889Complex constants are a (potentially recursive) combination of simple
1890constants and smaller complex constants.
1891
1892**Structure constants**
1893 Structure constants are represented with notation similar to
1894 structure type definitions (a comma separated list of elements,
1895 surrounded by braces (``{}``)). For example:
1896 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1897 "``@G = external global i32``". Structure constants must have
1898 :ref:`structure type <t_struct>`, and the number and types of elements
1899 must match those specified by the type.
1900**Array constants**
1901 Array constants are represented with notation similar to array type
1902 definitions (a comma separated list of elements, surrounded by
1903 square brackets (``[]``)). For example:
1904 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1905 :ref:`array type <t_array>`, and the number and types of elements must
1906 match those specified by the type.
1907**Vector constants**
1908 Vector constants are represented with notation similar to vector
1909 type definitions (a comma separated list of elements, surrounded by
1910 less-than/greater-than's (``<>``)). For example:
1911 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1912 must have :ref:`vector type <t_vector>`, and the number and types of
1913 elements must match those specified by the type.
1914**Zero initialization**
1915 The string '``zeroinitializer``' can be used to zero initialize a
1916 value to zero of *any* type, including scalar and
1917 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1918 having to print large zero initializers (e.g. for large arrays) and
1919 is always exactly equivalent to using explicit zero initializers.
1920**Metadata node**
1921 A metadata node is a structure-like constant with :ref:`metadata
1922 type <t_metadata>`. For example:
1923 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1924 constants that are meant to be interpreted as part of the
1925 instruction stream, metadata is a place to attach additional
1926 information such as debug info.
1927
1928Global Variable and Function Addresses
1929--------------------------------------
1930
1931The addresses of :ref:`global variables <globalvars>` and
1932:ref:`functions <functionstructure>` are always implicitly valid
1933(link-time) constants. These constants are explicitly referenced when
1934the :ref:`identifier for the global <identifiers>` is used and always have
1935:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1936file:
1937
1938.. code-block:: llvm
1939
1940 @X = global i32 17
1941 @Y = global i32 42
1942 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1943
1944.. _undefvalues:
1945
1946Undefined Values
1947----------------
1948
1949The string '``undef``' can be used anywhere a constant is expected, and
1950indicates that the user of the value may receive an unspecified
1951bit-pattern. Undefined values may be of any type (other than '``label``'
1952or '``void``') and be used anywhere a constant is permitted.
1953
1954Undefined values are useful because they indicate to the compiler that
1955the program is well defined no matter what value is used. This gives the
1956compiler more freedom to optimize. Here are some examples of
1957(potentially surprising) transformations that are valid (in pseudo IR):
1958
1959.. code-block:: llvm
1960
1961 %A = add %X, undef
1962 %B = sub %X, undef
1963 %C = xor %X, undef
1964 Safe:
1965 %A = undef
1966 %B = undef
1967 %C = undef
1968
1969This is safe because all of the output bits are affected by the undef
1970bits. Any output bit can have a zero or one depending on the input bits.
1971
1972.. code-block:: llvm
1973
1974 %A = or %X, undef
1975 %B = and %X, undef
1976 Safe:
1977 %A = -1
1978 %B = 0
1979 Unsafe:
1980 %A = undef
1981 %B = undef
1982
1983These logical operations have bits that are not always affected by the
1984input. For example, if ``%X`` has a zero bit, then the output of the
1985'``and``' operation will always be a zero for that bit, no matter what
1986the corresponding bit from the '``undef``' is. As such, it is unsafe to
1987optimize or assume that the result of the '``and``' is '``undef``'.
1988However, it is safe to assume that all bits of the '``undef``' could be
19890, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1990all the bits of the '``undef``' operand to the '``or``' could be set,
1991allowing the '``or``' to be folded to -1.
1992
1993.. code-block:: llvm
1994
1995 %A = select undef, %X, %Y
1996 %B = select undef, 42, %Y
1997 %C = select %X, %Y, undef
1998 Safe:
1999 %A = %X (or %Y)
2000 %B = 42 (or %Y)
2001 %C = %Y
2002 Unsafe:
2003 %A = undef
2004 %B = undef
2005 %C = undef
2006
2007This set of examples shows that undefined '``select``' (and conditional
2008branch) conditions can go *either way*, but they have to come from one
2009of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2010both known to have a clear low bit, then ``%A`` would have to have a
2011cleared low bit. However, in the ``%C`` example, the optimizer is
2012allowed to assume that the '``undef``' operand could be the same as
2013``%Y``, allowing the whole '``select``' to be eliminated.
2014
2015.. code-block:: llvm
2016
2017 %A = xor undef, undef
2018
2019 %B = undef
2020 %C = xor %B, %B
2021
2022 %D = undef
2023 %E = icmp lt %D, 4
2024 %F = icmp gte %D, 4
2025
2026 Safe:
2027 %A = undef
2028 %B = undef
2029 %C = undef
2030 %D = undef
2031 %E = undef
2032 %F = undef
2033
2034This example points out that two '``undef``' operands are not
2035necessarily the same. This can be surprising to people (and also matches
2036C semantics) where they assume that "``X^X``" is always zero, even if
2037``X`` is undefined. This isn't true for a number of reasons, but the
2038short answer is that an '``undef``' "variable" can arbitrarily change
2039its value over its "live range". This is true because the variable
2040doesn't actually *have a live range*. Instead, the value is logically
2041read from arbitrary registers that happen to be around when needed, so
2042the value is not necessarily consistent over time. In fact, ``%A`` and
2043``%C`` need to have the same semantics or the core LLVM "replace all
2044uses with" concept would not hold.
2045
2046.. code-block:: llvm
2047
2048 %A = fdiv undef, %X
2049 %B = fdiv %X, undef
2050 Safe:
2051 %A = undef
2052 b: unreachable
2053
2054These examples show the crucial difference between an *undefined value*
2055and *undefined behavior*. An undefined value (like '``undef``') is
2056allowed to have an arbitrary bit-pattern. This means that the ``%A``
2057operation can be constant folded to '``undef``', because the '``undef``'
2058could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2059However, in the second example, we can make a more aggressive
2060assumption: because the ``undef`` is allowed to be an arbitrary value,
2061we are allowed to assume that it could be zero. Since a divide by zero
2062has *undefined behavior*, we are allowed to assume that the operation
2063does not execute at all. This allows us to delete the divide and all
2064code after it. Because the undefined operation "can't happen", the
2065optimizer can assume that it occurs in dead code.
2066
2067.. code-block:: llvm
2068
2069 a: store undef -> %X
2070 b: store %X -> undef
2071 Safe:
2072 a: <deleted>
2073 b: unreachable
2074
2075These examples reiterate the ``fdiv`` example: a store *of* an undefined
2076value can be assumed to not have any effect; we can assume that the
2077value is overwritten with bits that happen to match what was already
2078there. However, a store *to* an undefined location could clobber
2079arbitrary memory, therefore, it has undefined behavior.
2080
2081.. _poisonvalues:
2082
2083Poison Values
2084-------------
2085
2086Poison values are similar to :ref:`undef values <undefvalues>`, however
2087they also represent the fact that an instruction or constant expression
2088which cannot evoke side effects has nevertheless detected a condition
2089which results in undefined behavior.
2090
2091There is currently no way of representing a poison value in the IR; they
2092only exist when produced by operations such as :ref:`add <i_add>` with
2093the ``nsw`` flag.
2094
2095Poison value behavior is defined in terms of value *dependence*:
2096
2097- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2098- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2099 their dynamic predecessor basic block.
2100- Function arguments depend on the corresponding actual argument values
2101 in the dynamic callers of their functions.
2102- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2103 instructions that dynamically transfer control back to them.
2104- :ref:`Invoke <i_invoke>` instructions depend on the
2105 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2106 call instructions that dynamically transfer control back to them.
2107- Non-volatile loads and stores depend on the most recent stores to all
2108 of the referenced memory addresses, following the order in the IR
2109 (including loads and stores implied by intrinsics such as
2110 :ref:`@llvm.memcpy <int_memcpy>`.)
2111- An instruction with externally visible side effects depends on the
2112 most recent preceding instruction with externally visible side
2113 effects, following the order in the IR. (This includes :ref:`volatile
2114 operations <volatile>`.)
2115- An instruction *control-depends* on a :ref:`terminator
2116 instruction <terminators>` if the terminator instruction has
2117 multiple successors and the instruction is always executed when
2118 control transfers to one of the successors, and may not be executed
2119 when control is transferred to another.
2120- Additionally, an instruction also *control-depends* on a terminator
2121 instruction if the set of instructions it otherwise depends on would
2122 be different if the terminator had transferred control to a different
2123 successor.
2124- Dependence is transitive.
2125
2126Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2127with the additional affect that any instruction which has a *dependence*
2128on a poison value has undefined behavior.
2129
2130Here are some examples:
2131
2132.. code-block:: llvm
2133
2134 entry:
2135 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2136 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2137 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2138 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2139
2140 store i32 %poison, i32* @g ; Poison value stored to memory.
2141 %poison2 = load i32* @g ; Poison value loaded back from memory.
2142
2143 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2144
2145 %narrowaddr = bitcast i32* @g to i16*
2146 %wideaddr = bitcast i32* @g to i64*
2147 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2148 %poison4 = load i64* %wideaddr ; Returns a poison value.
2149
2150 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2151 br i1 %cmp, label %true, label %end ; Branch to either destination.
2152
2153 true:
2154 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2155 ; it has undefined behavior.
2156 br label %end
2157
2158 end:
2159 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2160 ; Both edges into this PHI are
2161 ; control-dependent on %cmp, so this
2162 ; always results in a poison value.
2163
2164 store volatile i32 0, i32* @g ; This would depend on the store in %true
2165 ; if %cmp is true, or the store in %entry
2166 ; otherwise, so this is undefined behavior.
2167
2168 br i1 %cmp, label %second_true, label %second_end
2169 ; The same branch again, but this time the
2170 ; true block doesn't have side effects.
2171
2172 second_true:
2173 ; No side effects!
2174 ret void
2175
2176 second_end:
2177 store volatile i32 0, i32* @g ; This time, the instruction always depends
2178 ; on the store in %end. Also, it is
2179 ; control-equivalent to %end, so this is
2180 ; well-defined (ignoring earlier undefined
2181 ; behavior in this example).
2182
2183.. _blockaddress:
2184
2185Addresses of Basic Blocks
2186-------------------------
2187
2188``blockaddress(@function, %block)``
2189
2190The '``blockaddress``' constant computes the address of the specified
2191basic block in the specified function, and always has an ``i8*`` type.
2192Taking the address of the entry block is illegal.
2193
2194This value only has defined behavior when used as an operand to the
2195':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2196against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002197undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002198no label is equal to the null pointer. This may be passed around as an
2199opaque pointer sized value as long as the bits are not inspected. This
2200allows ``ptrtoint`` and arithmetic to be performed on these values so
2201long as the original value is reconstituted before the ``indirectbr``
2202instruction.
2203
2204Finally, some targets may provide defined semantics when using the value
2205as the operand to an inline assembly, but that is target specific.
2206
Eli Bendersky88fe6822013-06-07 20:24:43 +00002207.. _constantexprs:
2208
Sean Silvaf722b002012-12-07 10:36:55 +00002209Constant Expressions
2210--------------------
2211
2212Constant expressions are used to allow expressions involving other
2213constants to be used as constants. Constant expressions may be of any
2214:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2215that does not have side effects (e.g. load and call are not supported).
2216The following is the syntax for constant expressions:
2217
2218``trunc (CST to TYPE)``
2219 Truncate a constant to another type. The bit size of CST must be
2220 larger than the bit size of TYPE. Both types must be integers.
2221``zext (CST to TYPE)``
2222 Zero extend a constant to another type. The bit size of CST must be
2223 smaller than the bit size of TYPE. Both types must be integers.
2224``sext (CST to TYPE)``
2225 Sign extend a constant to another type. The bit size of CST must be
2226 smaller than the bit size of TYPE. Both types must be integers.
2227``fptrunc (CST to TYPE)``
2228 Truncate a floating point constant to another floating point type.
2229 The size of CST must be larger than the size of TYPE. Both types
2230 must be floating point.
2231``fpext (CST to TYPE)``
2232 Floating point extend a constant to another type. The size of CST
2233 must be smaller or equal to the size of TYPE. Both types must be
2234 floating point.
2235``fptoui (CST to TYPE)``
2236 Convert a floating point constant to the corresponding unsigned
2237 integer constant. TYPE must be a scalar or vector integer type. CST
2238 must be of scalar or vector floating point type. Both CST and TYPE
2239 must be scalars, or vectors of the same number of elements. If the
2240 value won't fit in the integer type, the results are undefined.
2241``fptosi (CST to TYPE)``
2242 Convert a floating point constant to the corresponding signed
2243 integer constant. TYPE must be a scalar or vector integer type. CST
2244 must be of scalar or vector floating point type. Both CST and TYPE
2245 must be scalars, or vectors of the same number of elements. If the
2246 value won't fit in the integer type, the results are undefined.
2247``uitofp (CST to TYPE)``
2248 Convert an unsigned integer constant to the corresponding floating
2249 point constant. TYPE must be a scalar or vector floating point type.
2250 CST must be of scalar or vector integer type. Both CST and TYPE must
2251 be scalars, or vectors of the same number of elements. If the value
2252 won't fit in the floating point type, the results are undefined.
2253``sitofp (CST to TYPE)``
2254 Convert a signed integer constant to the corresponding floating
2255 point constant. TYPE must be a scalar or vector floating point type.
2256 CST must be of scalar or vector integer type. Both CST and TYPE must
2257 be scalars, or vectors of the same number of elements. If the value
2258 won't fit in the floating point type, the results are undefined.
2259``ptrtoint (CST to TYPE)``
2260 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002261 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002262 pointer type. The ``CST`` value is zero extended, truncated, or
2263 unchanged to make it fit in ``TYPE``.
2264``inttoptr (CST to TYPE)``
2265 Convert an integer constant to a pointer constant. TYPE must be a
2266 pointer type. CST must be of integer type. The CST value is zero
2267 extended, truncated, or unchanged to make it fit in a pointer size.
2268 This one is *really* dangerous!
2269``bitcast (CST to TYPE)``
2270 Convert a constant, CST, to another TYPE. The constraints of the
2271 operands are the same as those for the :ref:`bitcast
2272 instruction <i_bitcast>`.
2273``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2274 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2275 constants. As with the :ref:`getelementptr <i_getelementptr>`
2276 instruction, the index list may have zero or more indexes, which are
2277 required to make sense for the type of "CSTPTR".
2278``select (COND, VAL1, VAL2)``
2279 Perform the :ref:`select operation <i_select>` on constants.
2280``icmp COND (VAL1, VAL2)``
2281 Performs the :ref:`icmp operation <i_icmp>` on constants.
2282``fcmp COND (VAL1, VAL2)``
2283 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2284``extractelement (VAL, IDX)``
2285 Perform the :ref:`extractelement operation <i_extractelement>` on
2286 constants.
2287``insertelement (VAL, ELT, IDX)``
2288 Perform the :ref:`insertelement operation <i_insertelement>` on
2289 constants.
2290``shufflevector (VEC1, VEC2, IDXMASK)``
2291 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2292 constants.
2293``extractvalue (VAL, IDX0, IDX1, ...)``
2294 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2295 constants. The index list is interpreted in a similar manner as
2296 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2297 least one index value must be specified.
2298``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2299 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2300 The index list is interpreted in a similar manner as indices in a
2301 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2302 value must be specified.
2303``OPCODE (LHS, RHS)``
2304 Perform the specified operation of the LHS and RHS constants. OPCODE
2305 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2306 binary <bitwiseops>` operations. The constraints on operands are
2307 the same as those for the corresponding instruction (e.g. no bitwise
2308 operations on floating point values are allowed).
2309
2310Other Values
2311============
2312
Eli Bendersky88fe6822013-06-07 20:24:43 +00002313.. _inlineasmexprs:
2314
Sean Silvaf722b002012-12-07 10:36:55 +00002315Inline Assembler Expressions
2316----------------------------
2317
2318LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2319Inline Assembly <moduleasm>`) through the use of a special value. This
2320value represents the inline assembler as a string (containing the
2321instructions to emit), a list of operand constraints (stored as a
2322string), a flag that indicates whether or not the inline asm expression
2323has side effects, and a flag indicating whether the function containing
2324the asm needs to align its stack conservatively. An example inline
2325assembler expression is:
2326
2327.. code-block:: llvm
2328
2329 i32 (i32) asm "bswap $0", "=r,r"
2330
2331Inline assembler expressions may **only** be used as the callee operand
2332of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2333Thus, typically we have:
2334
2335.. code-block:: llvm
2336
2337 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2338
2339Inline asms with side effects not visible in the constraint list must be
2340marked as having side effects. This is done through the use of the
2341'``sideeffect``' keyword, like so:
2342
2343.. code-block:: llvm
2344
2345 call void asm sideeffect "eieio", ""()
2346
2347In some cases inline asms will contain code that will not work unless
2348the stack is aligned in some way, such as calls or SSE instructions on
2349x86, yet will not contain code that does that alignment within the asm.
2350The compiler should make conservative assumptions about what the asm
2351might contain and should generate its usual stack alignment code in the
2352prologue if the '``alignstack``' keyword is present:
2353
2354.. code-block:: llvm
2355
2356 call void asm alignstack "eieio", ""()
2357
2358Inline asms also support using non-standard assembly dialects. The
2359assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2360the inline asm is using the Intel dialect. Currently, ATT and Intel are
2361the only supported dialects. An example is:
2362
2363.. code-block:: llvm
2364
2365 call void asm inteldialect "eieio", ""()
2366
2367If multiple keywords appear the '``sideeffect``' keyword must come
2368first, the '``alignstack``' keyword second and the '``inteldialect``'
2369keyword last.
2370
2371Inline Asm Metadata
2372^^^^^^^^^^^^^^^^^^^
2373
2374The call instructions that wrap inline asm nodes may have a
2375"``!srcloc``" MDNode attached to it that contains a list of constant
2376integers. If present, the code generator will use the integer as the
2377location cookie value when report errors through the ``LLVMContext``
2378error reporting mechanisms. This allows a front-end to correlate backend
2379errors that occur with inline asm back to the source code that produced
2380it. For example:
2381
2382.. code-block:: llvm
2383
2384 call void asm sideeffect "something bad", ""(), !srcloc !42
2385 ...
2386 !42 = !{ i32 1234567 }
2387
2388It is up to the front-end to make sense of the magic numbers it places
2389in the IR. If the MDNode contains multiple constants, the code generator
2390will use the one that corresponds to the line of the asm that the error
2391occurs on.
2392
2393.. _metadata:
2394
2395Metadata Nodes and Metadata Strings
2396-----------------------------------
2397
2398LLVM IR allows metadata to be attached to instructions in the program
2399that can convey extra information about the code to the optimizers and
2400code generator. One example application of metadata is source-level
2401debug information. There are two metadata primitives: strings and nodes.
2402All metadata has the ``metadata`` type and is identified in syntax by a
2403preceding exclamation point ('``!``').
2404
2405A metadata string is a string surrounded by double quotes. It can
2406contain any character by escaping non-printable characters with
2407"``\xx``" where "``xx``" is the two digit hex code. For example:
2408"``!"test\00"``".
2409
2410Metadata nodes are represented with notation similar to structure
2411constants (a comma separated list of elements, surrounded by braces and
2412preceded by an exclamation point). Metadata nodes can have any values as
2413their operand. For example:
2414
2415.. code-block:: llvm
2416
2417 !{ metadata !"test\00", i32 10}
2418
2419A :ref:`named metadata <namedmetadatastructure>` is a collection of
2420metadata nodes, which can be looked up in the module symbol table. For
2421example:
2422
2423.. code-block:: llvm
2424
2425 !foo = metadata !{!4, !3}
2426
2427Metadata can be used as function arguments. Here ``llvm.dbg.value``
2428function is using two metadata arguments:
2429
2430.. code-block:: llvm
2431
2432 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2433
2434Metadata can be attached with an instruction. Here metadata ``!21`` is
2435attached to the ``add`` instruction using the ``!dbg`` identifier:
2436
2437.. code-block:: llvm
2438
2439 %indvar.next = add i64 %indvar, 1, !dbg !21
2440
2441More information about specific metadata nodes recognized by the
2442optimizers and code generator is found below.
2443
2444'``tbaa``' Metadata
2445^^^^^^^^^^^^^^^^^^^
2446
2447In LLVM IR, memory does not have types, so LLVM's own type system is not
2448suitable for doing TBAA. Instead, metadata is added to the IR to
2449describe a type system of a higher level language. This can be used to
2450implement typical C/C++ TBAA, but it can also be used to implement
2451custom alias analysis behavior for other languages.
2452
2453The current metadata format is very simple. TBAA metadata nodes have up
2454to three fields, e.g.:
2455
2456.. code-block:: llvm
2457
2458 !0 = metadata !{ metadata !"an example type tree" }
2459 !1 = metadata !{ metadata !"int", metadata !0 }
2460 !2 = metadata !{ metadata !"float", metadata !0 }
2461 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2462
2463The first field is an identity field. It can be any value, usually a
2464metadata string, which uniquely identifies the type. The most important
2465name in the tree is the name of the root node. Two trees with different
2466root node names are entirely disjoint, even if they have leaves with
2467common names.
2468
2469The second field identifies the type's parent node in the tree, or is
2470null or omitted for a root node. A type is considered to alias all of
2471its descendants and all of its ancestors in the tree. Also, a type is
2472considered to alias all types in other trees, so that bitcode produced
2473from multiple front-ends is handled conservatively.
2474
2475If the third field is present, it's an integer which if equal to 1
2476indicates that the type is "constant" (meaning
2477``pointsToConstantMemory`` should return true; see `other useful
2478AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2479
2480'``tbaa.struct``' Metadata
2481^^^^^^^^^^^^^^^^^^^^^^^^^^
2482
2483The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2484aggregate assignment operations in C and similar languages, however it
2485is defined to copy a contiguous region of memory, which is more than
2486strictly necessary for aggregate types which contain holes due to
2487padding. Also, it doesn't contain any TBAA information about the fields
2488of the aggregate.
2489
2490``!tbaa.struct`` metadata can describe which memory subregions in a
2491memcpy are padding and what the TBAA tags of the struct are.
2492
2493The current metadata format is very simple. ``!tbaa.struct`` metadata
2494nodes are a list of operands which are in conceptual groups of three.
2495For each group of three, the first operand gives the byte offset of a
2496field in bytes, the second gives its size in bytes, and the third gives
2497its tbaa tag. e.g.:
2498
2499.. code-block:: llvm
2500
2501 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2502
2503This describes a struct with two fields. The first is at offset 0 bytes
2504with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2505and has size 4 bytes and has tbaa tag !2.
2506
2507Note that the fields need not be contiguous. In this example, there is a
25084 byte gap between the two fields. This gap represents padding which
2509does not carry useful data and need not be preserved.
2510
2511'``fpmath``' Metadata
2512^^^^^^^^^^^^^^^^^^^^^
2513
2514``fpmath`` metadata may be attached to any instruction of floating point
2515type. It can be used to express the maximum acceptable error in the
2516result of that instruction, in ULPs, thus potentially allowing the
2517compiler to use a more efficient but less accurate method of computing
2518it. ULP is defined as follows:
2519
2520 If ``x`` is a real number that lies between two finite consecutive
2521 floating-point numbers ``a`` and ``b``, without being equal to one
2522 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2523 distance between the two non-equal finite floating-point numbers
2524 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2525
2526The metadata node shall consist of a single positive floating point
2527number representing the maximum relative error, for example:
2528
2529.. code-block:: llvm
2530
2531 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2532
2533'``range``' Metadata
2534^^^^^^^^^^^^^^^^^^^^
2535
2536``range`` metadata may be attached only to loads of integer types. It
2537expresses the possible ranges the loaded value is in. The ranges are
2538represented with a flattened list of integers. The loaded value is known
2539to be in the union of the ranges defined by each consecutive pair. Each
2540pair has the following properties:
2541
2542- The type must match the type loaded by the instruction.
2543- The pair ``a,b`` represents the range ``[a,b)``.
2544- Both ``a`` and ``b`` are constants.
2545- The range is allowed to wrap.
2546- The range should not represent the full or empty set. That is,
2547 ``a!=b``.
2548
2549In addition, the pairs must be in signed order of the lower bound and
2550they must be non-contiguous.
2551
2552Examples:
2553
2554.. code-block:: llvm
2555
2556 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2557 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2558 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2559 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2560 ...
2561 !0 = metadata !{ i8 0, i8 2 }
2562 !1 = metadata !{ i8 255, i8 2 }
2563 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2564 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2565
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002566'``llvm.loop``'
2567^^^^^^^^^^^^^^^
2568
2569It is sometimes useful to attach information to loop constructs. Currently,
2570loop metadata is implemented as metadata attached to the branch instruction
2571in the loop latch block. This type of metadata refer to a metadata node that is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002572guaranteed to be separate for each loop. The loop identifier metadata is
2573specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002574
2575The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002576itself to avoid merging it with any other identifier metadata, e.g.,
2577during module linkage or function inlining. That is, each loop should refer
2578to their own identification metadata even if they reside in separate functions.
2579The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002580constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002581
2582.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002583
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002584 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002585 !1 = metadata !{ metadata !1 }
2586
Paul Redmondee21b6f2013-05-28 20:00:34 +00002587The loop identifier metadata can be used to specify additional per-loop
2588metadata. Any operands after the first operand can be treated as user-defined
2589metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2590by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002591
Paul Redmondee21b6f2013-05-28 20:00:34 +00002592.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002593
Paul Redmondee21b6f2013-05-28 20:00:34 +00002594 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2595 ...
2596 !0 = metadata !{ metadata !0, metadata !1 }
2597 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002598
2599'``llvm.mem``'
2600^^^^^^^^^^^^^^^
2601
2602Metadata types used to annotate memory accesses with information helpful
2603for optimizations are prefixed with ``llvm.mem``.
2604
2605'``llvm.mem.parallel_loop_access``' Metadata
2606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2607
2608For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002609the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002610also all of the memory accessing instructions in the loop body need to be
2611marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2612is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002613the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002614converted to sequential loops due to optimization passes that are unaware of
2615the parallel semantics and that insert new memory instructions to the loop
2616body.
2617
2618Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002619both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002620metadata types that refer to the same loop identifier metadata.
2621
2622.. code-block:: llvm
2623
2624 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002625 ...
2626 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2627 ...
2628 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2629 ...
2630 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002631
2632 for.end:
2633 ...
2634 !0 = metadata !{ metadata !0 }
2635
2636It is also possible to have nested parallel loops. In that case the
2637memory accesses refer to a list of loop identifier metadata nodes instead of
2638the loop identifier metadata node directly:
2639
2640.. code-block:: llvm
2641
2642 outer.for.body:
2643 ...
2644
2645 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002646 ...
2647 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2648 ...
2649 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2650 ...
2651 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002652
2653 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002654 ...
2655 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2656 ...
2657 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2658 ...
2659 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002660
2661 outer.for.end: ; preds = %for.body
2662 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002663 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2664 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2665 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002666
Paul Redmondee21b6f2013-05-28 20:00:34 +00002667'``llvm.vectorizer``'
2668^^^^^^^^^^^^^^^^^^^^^
2669
2670Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2671vectorization parameters such as vectorization factor and unroll factor.
2672
2673``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2674loop identification metadata.
2675
2676'``llvm.vectorizer.unroll``' Metadata
2677^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2678
2679This metadata instructs the loop vectorizer to unroll the specified
2680loop exactly ``N`` times.
2681
2682The first operand is the string ``llvm.vectorizer.unroll`` and the second
2683operand is an integer specifying the unroll factor. For example:
2684
2685.. code-block:: llvm
2686
2687 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2688
2689Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2690loop.
2691
2692If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2693determined automatically.
2694
2695'``llvm.vectorizer.width``' Metadata
2696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2697
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002698This metadata sets the target width of the vectorizer to ``N``. Without
2699this metadata, the vectorizer will choose a width automatically.
2700Regardless of this metadata, the vectorizer will only vectorize loops if
2701it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002702
2703The first operand is the string ``llvm.vectorizer.width`` and the second
2704operand is an integer specifying the width. For example:
2705
2706.. code-block:: llvm
2707
2708 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2709
2710Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2711loop.
2712
2713If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2714automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002715
Sean Silvaf722b002012-12-07 10:36:55 +00002716Module Flags Metadata
2717=====================
2718
2719Information about the module as a whole is difficult to convey to LLVM's
2720subsystems. The LLVM IR isn't sufficient to transmit this information.
2721The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002722this. These flags are in the form of key / value pairs --- much like a
2723dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002724look it up.
2725
2726The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2727Each triplet has the following form:
2728
2729- The first element is a *behavior* flag, which specifies the behavior
2730 when two (or more) modules are merged together, and it encounters two
2731 (or more) metadata with the same ID. The supported behaviors are
2732 described below.
2733- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002734 metadata. Each module may only have one flag entry for each unique ID (not
2735 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002736- The third element is the value of the flag.
2737
2738When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002739``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2740each unique metadata ID string, there will be exactly one entry in the merged
2741modules ``llvm.module.flags`` metadata table, and the value for that entry will
2742be determined by the merge behavior flag, as described below. The only exception
2743is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002744
2745The following behaviors are supported:
2746
2747.. list-table::
2748 :header-rows: 1
2749 :widths: 10 90
2750
2751 * - Value
2752 - Behavior
2753
2754 * - 1
2755 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002756 Emits an error if two values disagree, otherwise the resulting value
2757 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002758
2759 * - 2
2760 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002761 Emits a warning if two values disagree. The result value will be the
2762 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002763
2764 * - 3
2765 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002766 Adds a requirement that another module flag be present and have a
2767 specified value after linking is performed. The value must be a
2768 metadata pair, where the first element of the pair is the ID of the
2769 module flag to be restricted, and the second element of the pair is
2770 the value the module flag should be restricted to. This behavior can
2771 be used to restrict the allowable results (via triggering of an
2772 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002773
2774 * - 4
2775 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002776 Uses the specified value, regardless of the behavior or value of the
2777 other module. If both modules specify **Override**, but the values
2778 differ, an error will be emitted.
2779
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002780 * - 5
2781 - **Append**
2782 Appends the two values, which are required to be metadata nodes.
2783
2784 * - 6
2785 - **AppendUnique**
2786 Appends the two values, which are required to be metadata
2787 nodes. However, duplicate entries in the second list are dropped
2788 during the append operation.
2789
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002790It is an error for a particular unique flag ID to have multiple behaviors,
2791except in the case of **Require** (which adds restrictions on another metadata
2792value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002793
2794An example of module flags:
2795
2796.. code-block:: llvm
2797
2798 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2799 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2800 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2801 !3 = metadata !{ i32 3, metadata !"qux",
2802 metadata !{
2803 metadata !"foo", i32 1
2804 }
2805 }
2806 !llvm.module.flags = !{ !0, !1, !2, !3 }
2807
2808- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2809 if two or more ``!"foo"`` flags are seen is to emit an error if their
2810 values are not equal.
2811
2812- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2813 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002814 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002815
2816- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2817 behavior if two or more ``!"qux"`` flags are seen is to emit a
2818 warning if their values are not equal.
2819
2820- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2821
2822 ::
2823
2824 metadata !{ metadata !"foo", i32 1 }
2825
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002826 The behavior is to emit an error if the ``llvm.module.flags`` does not
2827 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2828 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002829
2830Objective-C Garbage Collection Module Flags Metadata
2831----------------------------------------------------
2832
2833On the Mach-O platform, Objective-C stores metadata about garbage
2834collection in a special section called "image info". The metadata
2835consists of a version number and a bitmask specifying what types of
2836garbage collection are supported (if any) by the file. If two or more
2837modules are linked together their garbage collection metadata needs to
2838be merged rather than appended together.
2839
2840The Objective-C garbage collection module flags metadata consists of the
2841following key-value pairs:
2842
2843.. list-table::
2844 :header-rows: 1
2845 :widths: 30 70
2846
2847 * - Key
2848 - Value
2849
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002850 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002851 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002852
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002853 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002854 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002855 always 0.
2856
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002857 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002858 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002859 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2860 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2861 Objective-C ABI version 2.
2862
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002863 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002864 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002865 not. Valid values are 0, for no garbage collection, and 2, for garbage
2866 collection supported.
2867
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002868 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002869 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002870 If present, its value must be 6. This flag requires that the
2871 ``Objective-C Garbage Collection`` flag have the value 2.
2872
2873Some important flag interactions:
2874
2875- If a module with ``Objective-C Garbage Collection`` set to 0 is
2876 merged with a module with ``Objective-C Garbage Collection`` set to
2877 2, then the resulting module has the
2878 ``Objective-C Garbage Collection`` flag set to 0.
2879- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2880 merged with a module with ``Objective-C GC Only`` set to 6.
2881
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002882Automatic Linker Flags Module Flags Metadata
2883--------------------------------------------
2884
2885Some targets support embedding flags to the linker inside individual object
2886files. Typically this is used in conjunction with language extensions which
2887allow source files to explicitly declare the libraries they depend on, and have
2888these automatically be transmitted to the linker via object files.
2889
2890These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002891using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002892to be ``AppendUnique``, and the value for the key is expected to be a metadata
2893node which should be a list of other metadata nodes, each of which should be a
2894list of metadata strings defining linker options.
2895
2896For example, the following metadata section specifies two separate sets of
2897linker options, presumably to link against ``libz`` and the ``Cocoa``
2898framework::
2899
Michael Liao2faa0f32013-03-06 18:24:34 +00002900 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002901 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002902 metadata !{ metadata !"-lz" },
2903 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002904 !llvm.module.flags = !{ !0 }
2905
2906The metadata encoding as lists of lists of options, as opposed to a collapsed
2907list of options, is chosen so that the IR encoding can use multiple option
2908strings to specify e.g., a single library, while still having that specifier be
2909preserved as an atomic element that can be recognized by a target specific
2910assembly writer or object file emitter.
2911
2912Each individual option is required to be either a valid option for the target's
2913linker, or an option that is reserved by the target specific assembly writer or
2914object file emitter. No other aspect of these options is defined by the IR.
2915
Eli Bendersky88fe6822013-06-07 20:24:43 +00002916.. _intrinsicglobalvariables:
2917
Sean Silvaf722b002012-12-07 10:36:55 +00002918Intrinsic Global Variables
2919==========================
2920
2921LLVM has a number of "magic" global variables that contain data that
2922affect code generation or other IR semantics. These are documented here.
2923All globals of this sort should have a section specified as
2924"``llvm.metadata``". This section and all globals that start with
2925"``llvm.``" are reserved for use by LLVM.
2926
Eli Bendersky88fe6822013-06-07 20:24:43 +00002927.. _gv_llvmused:
2928
Sean Silvaf722b002012-12-07 10:36:55 +00002929The '``llvm.used``' Global Variable
2930-----------------------------------
2931
Rafael Espindolacde25b42013-04-22 14:58:02 +00002932The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00002933:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002934pointers to named global variables, functions and aliases which may optionally
2935have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00002936use of it is:
2937
2938.. code-block:: llvm
2939
2940 @X = global i8 4
2941 @Y = global i32 123
2942
2943 @llvm.used = appending global [2 x i8*] [
2944 i8* @X,
2945 i8* bitcast (i32* @Y to i8*)
2946 ], section "llvm.metadata"
2947
Rafael Espindolacde25b42013-04-22 14:58:02 +00002948If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2949and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002950symbol that it cannot see (which is why they have to be named). For example, if
2951a variable has internal linkage and no references other than that from the
2952``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
2953references from inline asms and other things the compiler cannot "see", and
2954corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002955
2956On some targets, the code generator must emit a directive to the
2957assembler or object file to prevent the assembler and linker from
2958molesting the symbol.
2959
Eli Bendersky88fe6822013-06-07 20:24:43 +00002960.. _gv_llvmcompilerused:
2961
Sean Silvaf722b002012-12-07 10:36:55 +00002962The '``llvm.compiler.used``' Global Variable
2963--------------------------------------------
2964
2965The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2966directive, except that it only prevents the compiler from touching the
2967symbol. On targets that support it, this allows an intelligent linker to
2968optimize references to the symbol without being impeded as it would be
2969by ``@llvm.used``.
2970
2971This is a rare construct that should only be used in rare circumstances,
2972and should not be exposed to source languages.
2973
Eli Bendersky88fe6822013-06-07 20:24:43 +00002974.. _gv_llvmglobalctors:
2975
Sean Silvaf722b002012-12-07 10:36:55 +00002976The '``llvm.global_ctors``' Global Variable
2977-------------------------------------------
2978
2979.. code-block:: llvm
2980
2981 %0 = type { i32, void ()* }
2982 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2983
2984The ``@llvm.global_ctors`` array contains a list of constructor
2985functions and associated priorities. The functions referenced by this
2986array will be called in ascending order of priority (i.e. lowest first)
2987when the module is loaded. The order of functions with the same priority
2988is not defined.
2989
Eli Bendersky88fe6822013-06-07 20:24:43 +00002990.. _llvmglobaldtors:
2991
Sean Silvaf722b002012-12-07 10:36:55 +00002992The '``llvm.global_dtors``' Global Variable
2993-------------------------------------------
2994
2995.. code-block:: llvm
2996
2997 %0 = type { i32, void ()* }
2998 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2999
3000The ``@llvm.global_dtors`` array contains a list of destructor functions
3001and associated priorities. The functions referenced by this array will
3002be called in descending order of priority (i.e. highest first) when the
3003module is loaded. The order of functions with the same priority is not
3004defined.
3005
3006Instruction Reference
3007=====================
3008
3009The LLVM instruction set consists of several different classifications
3010of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3011instructions <binaryops>`, :ref:`bitwise binary
3012instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3013:ref:`other instructions <otherops>`.
3014
3015.. _terminators:
3016
3017Terminator Instructions
3018-----------------------
3019
3020As mentioned :ref:`previously <functionstructure>`, every basic block in a
3021program ends with a "Terminator" instruction, which indicates which
3022block should be executed after the current block is finished. These
3023terminator instructions typically yield a '``void``' value: they produce
3024control flow, not values (the one exception being the
3025':ref:`invoke <i_invoke>`' instruction).
3026
3027The terminator instructions are: ':ref:`ret <i_ret>`',
3028':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3029':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3030':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3031
3032.. _i_ret:
3033
3034'``ret``' Instruction
3035^^^^^^^^^^^^^^^^^^^^^
3036
3037Syntax:
3038"""""""
3039
3040::
3041
3042 ret <type> <value> ; Return a value from a non-void function
3043 ret void ; Return from void function
3044
3045Overview:
3046"""""""""
3047
3048The '``ret``' instruction is used to return control flow (and optionally
3049a value) from a function back to the caller.
3050
3051There are two forms of the '``ret``' instruction: one that returns a
3052value and then causes control flow, and one that just causes control
3053flow to occur.
3054
3055Arguments:
3056""""""""""
3057
3058The '``ret``' instruction optionally accepts a single argument, the
3059return value. The type of the return value must be a ':ref:`first
3060class <t_firstclass>`' type.
3061
3062A function is not :ref:`well formed <wellformed>` if it it has a non-void
3063return type and contains a '``ret``' instruction with no return value or
3064a return value with a type that does not match its type, or if it has a
3065void return type and contains a '``ret``' instruction with a return
3066value.
3067
3068Semantics:
3069""""""""""
3070
3071When the '``ret``' instruction is executed, control flow returns back to
3072the calling function's context. If the caller is a
3073":ref:`call <i_call>`" instruction, execution continues at the
3074instruction after the call. If the caller was an
3075":ref:`invoke <i_invoke>`" instruction, execution continues at the
3076beginning of the "normal" destination block. If the instruction returns
3077a value, that value shall set the call or invoke instruction's return
3078value.
3079
3080Example:
3081""""""""
3082
3083.. code-block:: llvm
3084
3085 ret i32 5 ; Return an integer value of 5
3086 ret void ; Return from a void function
3087 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3088
3089.. _i_br:
3090
3091'``br``' Instruction
3092^^^^^^^^^^^^^^^^^^^^
3093
3094Syntax:
3095"""""""
3096
3097::
3098
3099 br i1 <cond>, label <iftrue>, label <iffalse>
3100 br label <dest> ; Unconditional branch
3101
3102Overview:
3103"""""""""
3104
3105The '``br``' instruction is used to cause control flow to transfer to a
3106different basic block in the current function. There are two forms of
3107this instruction, corresponding to a conditional branch and an
3108unconditional branch.
3109
3110Arguments:
3111""""""""""
3112
3113The conditional branch form of the '``br``' instruction takes a single
3114'``i1``' value and two '``label``' values. The unconditional form of the
3115'``br``' instruction takes a single '``label``' value as a target.
3116
3117Semantics:
3118""""""""""
3119
3120Upon execution of a conditional '``br``' instruction, the '``i1``'
3121argument is evaluated. If the value is ``true``, control flows to the
3122'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3123to the '``iffalse``' ``label`` argument.
3124
3125Example:
3126""""""""
3127
3128.. code-block:: llvm
3129
3130 Test:
3131 %cond = icmp eq i32 %a, %b
3132 br i1 %cond, label %IfEqual, label %IfUnequal
3133 IfEqual:
3134 ret i32 1
3135 IfUnequal:
3136 ret i32 0
3137
3138.. _i_switch:
3139
3140'``switch``' Instruction
3141^^^^^^^^^^^^^^^^^^^^^^^^
3142
3143Syntax:
3144"""""""
3145
3146::
3147
3148 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3149
3150Overview:
3151"""""""""
3152
3153The '``switch``' instruction is used to transfer control flow to one of
3154several different places. It is a generalization of the '``br``'
3155instruction, allowing a branch to occur to one of many possible
3156destinations.
3157
3158Arguments:
3159""""""""""
3160
3161The '``switch``' instruction uses three parameters: an integer
3162comparison value '``value``', a default '``label``' destination, and an
3163array of pairs of comparison value constants and '``label``'s. The table
3164is not allowed to contain duplicate constant entries.
3165
3166Semantics:
3167""""""""""
3168
3169The ``switch`` instruction specifies a table of values and destinations.
3170When the '``switch``' instruction is executed, this table is searched
3171for the given value. If the value is found, control flow is transferred
3172to the corresponding destination; otherwise, control flow is transferred
3173to the default destination.
3174
3175Implementation:
3176"""""""""""""""
3177
3178Depending on properties of the target machine and the particular
3179``switch`` instruction, this instruction may be code generated in
3180different ways. For example, it could be generated as a series of
3181chained conditional branches or with a lookup table.
3182
3183Example:
3184""""""""
3185
3186.. code-block:: llvm
3187
3188 ; Emulate a conditional br instruction
3189 %Val = zext i1 %value to i32
3190 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3191
3192 ; Emulate an unconditional br instruction
3193 switch i32 0, label %dest [ ]
3194
3195 ; Implement a jump table:
3196 switch i32 %val, label %otherwise [ i32 0, label %onzero
3197 i32 1, label %onone
3198 i32 2, label %ontwo ]
3199
3200.. _i_indirectbr:
3201
3202'``indirectbr``' Instruction
3203^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3204
3205Syntax:
3206"""""""
3207
3208::
3209
3210 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3211
3212Overview:
3213"""""""""
3214
3215The '``indirectbr``' instruction implements an indirect branch to a
3216label within the current function, whose address is specified by
3217"``address``". Address must be derived from a
3218:ref:`blockaddress <blockaddress>` constant.
3219
3220Arguments:
3221""""""""""
3222
3223The '``address``' argument is the address of the label to jump to. The
3224rest of the arguments indicate the full set of possible destinations
3225that the address may point to. Blocks are allowed to occur multiple
3226times in the destination list, though this isn't particularly useful.
3227
3228This destination list is required so that dataflow analysis has an
3229accurate understanding of the CFG.
3230
3231Semantics:
3232""""""""""
3233
3234Control transfers to the block specified in the address argument. All
3235possible destination blocks must be listed in the label list, otherwise
3236this instruction has undefined behavior. This implies that jumps to
3237labels defined in other functions have undefined behavior as well.
3238
3239Implementation:
3240"""""""""""""""
3241
3242This is typically implemented with a jump through a register.
3243
3244Example:
3245""""""""
3246
3247.. code-block:: llvm
3248
3249 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3250
3251.. _i_invoke:
3252
3253'``invoke``' Instruction
3254^^^^^^^^^^^^^^^^^^^^^^^^
3255
3256Syntax:
3257"""""""
3258
3259::
3260
3261 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3262 to label <normal label> unwind label <exception label>
3263
3264Overview:
3265"""""""""
3266
3267The '``invoke``' instruction causes control to transfer to a specified
3268function, with the possibility of control flow transfer to either the
3269'``normal``' label or the '``exception``' label. If the callee function
3270returns with the "``ret``" instruction, control flow will return to the
3271"normal" label. If the callee (or any indirect callees) returns via the
3272":ref:`resume <i_resume>`" instruction or other exception handling
3273mechanism, control is interrupted and continued at the dynamically
3274nearest "exception" label.
3275
3276The '``exception``' label is a `landing
3277pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3278'``exception``' label is required to have the
3279":ref:`landingpad <i_landingpad>`" instruction, which contains the
3280information about the behavior of the program after unwinding happens,
3281as its first non-PHI instruction. The restrictions on the
3282"``landingpad``" instruction's tightly couples it to the "``invoke``"
3283instruction, so that the important information contained within the
3284"``landingpad``" instruction can't be lost through normal code motion.
3285
3286Arguments:
3287""""""""""
3288
3289This instruction requires several arguments:
3290
3291#. The optional "cconv" marker indicates which :ref:`calling
3292 convention <callingconv>` the call should use. If none is
3293 specified, the call defaults to using C calling conventions.
3294#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3295 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3296 are valid here.
3297#. '``ptr to function ty``': shall be the signature of the pointer to
3298 function value being invoked. In most cases, this is a direct
3299 function invocation, but indirect ``invoke``'s are just as possible,
3300 branching off an arbitrary pointer to function value.
3301#. '``function ptr val``': An LLVM value containing a pointer to a
3302 function to be invoked.
3303#. '``function args``': argument list whose types match the function
3304 signature argument types and parameter attributes. All arguments must
3305 be of :ref:`first class <t_firstclass>` type. If the function signature
3306 indicates the function accepts a variable number of arguments, the
3307 extra arguments can be specified.
3308#. '``normal label``': the label reached when the called function
3309 executes a '``ret``' instruction.
3310#. '``exception label``': the label reached when a callee returns via
3311 the :ref:`resume <i_resume>` instruction or other exception handling
3312 mechanism.
3313#. The optional :ref:`function attributes <fnattrs>` list. Only
3314 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3315 attributes are valid here.
3316
3317Semantics:
3318""""""""""
3319
3320This instruction is designed to operate as a standard '``call``'
3321instruction in most regards. The primary difference is that it
3322establishes an association with a label, which is used by the runtime
3323library to unwind the stack.
3324
3325This instruction is used in languages with destructors to ensure that
3326proper cleanup is performed in the case of either a ``longjmp`` or a
3327thrown exception. Additionally, this is important for implementation of
3328'``catch``' clauses in high-level languages that support them.
3329
3330For the purposes of the SSA form, the definition of the value returned
3331by the '``invoke``' instruction is deemed to occur on the edge from the
3332current block to the "normal" label. If the callee unwinds then no
3333return value is available.
3334
3335Example:
3336""""""""
3337
3338.. code-block:: llvm
3339
3340 %retval = invoke i32 @Test(i32 15) to label %Continue
3341 unwind label %TestCleanup ; {i32}:retval set
3342 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3343 unwind label %TestCleanup ; {i32}:retval set
3344
3345.. _i_resume:
3346
3347'``resume``' Instruction
3348^^^^^^^^^^^^^^^^^^^^^^^^
3349
3350Syntax:
3351"""""""
3352
3353::
3354
3355 resume <type> <value>
3356
3357Overview:
3358"""""""""
3359
3360The '``resume``' instruction is a terminator instruction that has no
3361successors.
3362
3363Arguments:
3364""""""""""
3365
3366The '``resume``' instruction requires one argument, which must have the
3367same type as the result of any '``landingpad``' instruction in the same
3368function.
3369
3370Semantics:
3371""""""""""
3372
3373The '``resume``' instruction resumes propagation of an existing
3374(in-flight) exception whose unwinding was interrupted with a
3375:ref:`landingpad <i_landingpad>` instruction.
3376
3377Example:
3378""""""""
3379
3380.. code-block:: llvm
3381
3382 resume { i8*, i32 } %exn
3383
3384.. _i_unreachable:
3385
3386'``unreachable``' Instruction
3387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3388
3389Syntax:
3390"""""""
3391
3392::
3393
3394 unreachable
3395
3396Overview:
3397"""""""""
3398
3399The '``unreachable``' instruction has no defined semantics. This
3400instruction is used to inform the optimizer that a particular portion of
3401the code is not reachable. This can be used to indicate that the code
3402after a no-return function cannot be reached, and other facts.
3403
3404Semantics:
3405""""""""""
3406
3407The '``unreachable``' instruction has no defined semantics.
3408
3409.. _binaryops:
3410
3411Binary Operations
3412-----------------
3413
3414Binary operators are used to do most of the computation in a program.
3415They require two operands of the same type, execute an operation on
3416them, and produce a single value. The operands might represent multiple
3417data, as is the case with the :ref:`vector <t_vector>` data type. The
3418result value has the same type as its operands.
3419
3420There are several different binary operators:
3421
3422.. _i_add:
3423
3424'``add``' Instruction
3425^^^^^^^^^^^^^^^^^^^^^
3426
3427Syntax:
3428"""""""
3429
3430::
3431
3432 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3433 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3434 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3435 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3436
3437Overview:
3438"""""""""
3439
3440The '``add``' instruction returns the sum of its two operands.
3441
3442Arguments:
3443""""""""""
3444
3445The two arguments to the '``add``' instruction must be
3446:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3447arguments must have identical types.
3448
3449Semantics:
3450""""""""""
3451
3452The value produced is the integer sum of the two operands.
3453
3454If the sum has unsigned overflow, the result returned is the
3455mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3456the result.
3457
3458Because LLVM integers use a two's complement representation, this
3459instruction is appropriate for both signed and unsigned integers.
3460
3461``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3462respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3463result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3464unsigned and/or signed overflow, respectively, occurs.
3465
3466Example:
3467""""""""
3468
3469.. code-block:: llvm
3470
3471 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3472
3473.. _i_fadd:
3474
3475'``fadd``' Instruction
3476^^^^^^^^^^^^^^^^^^^^^^
3477
3478Syntax:
3479"""""""
3480
3481::
3482
3483 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3484
3485Overview:
3486"""""""""
3487
3488The '``fadd``' instruction returns the sum of its two operands.
3489
3490Arguments:
3491""""""""""
3492
3493The two arguments to the '``fadd``' instruction must be :ref:`floating
3494point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3495Both arguments must have identical types.
3496
3497Semantics:
3498""""""""""
3499
3500The value produced is the floating point sum of the two operands. This
3501instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3502which are optimization hints to enable otherwise unsafe floating point
3503optimizations:
3504
3505Example:
3506""""""""
3507
3508.. code-block:: llvm
3509
3510 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3511
3512'``sub``' Instruction
3513^^^^^^^^^^^^^^^^^^^^^
3514
3515Syntax:
3516"""""""
3517
3518::
3519
3520 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3521 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3522 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3523 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3524
3525Overview:
3526"""""""""
3527
3528The '``sub``' instruction returns the difference of its two operands.
3529
3530Note that the '``sub``' instruction is used to represent the '``neg``'
3531instruction present in most other intermediate representations.
3532
3533Arguments:
3534""""""""""
3535
3536The two arguments to the '``sub``' instruction must be
3537:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3538arguments must have identical types.
3539
3540Semantics:
3541""""""""""
3542
3543The value produced is the integer difference of the two operands.
3544
3545If the difference has unsigned overflow, the result returned is the
3546mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3547the result.
3548
3549Because LLVM integers use a two's complement representation, this
3550instruction is appropriate for both signed and unsigned integers.
3551
3552``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3553respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3554result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3555unsigned and/or signed overflow, respectively, occurs.
3556
3557Example:
3558""""""""
3559
3560.. code-block:: llvm
3561
3562 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3563 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3564
3565.. _i_fsub:
3566
3567'``fsub``' Instruction
3568^^^^^^^^^^^^^^^^^^^^^^
3569
3570Syntax:
3571"""""""
3572
3573::
3574
3575 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3576
3577Overview:
3578"""""""""
3579
3580The '``fsub``' instruction returns the difference of its two operands.
3581
3582Note that the '``fsub``' instruction is used to represent the '``fneg``'
3583instruction present in most other intermediate representations.
3584
3585Arguments:
3586""""""""""
3587
3588The two arguments to the '``fsub``' instruction must be :ref:`floating
3589point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3590Both arguments must have identical types.
3591
3592Semantics:
3593""""""""""
3594
3595The value produced is the floating point difference of the two operands.
3596This instruction can also take any number of :ref:`fast-math
3597flags <fastmath>`, which are optimization hints to enable otherwise
3598unsafe floating point optimizations:
3599
3600Example:
3601""""""""
3602
3603.. code-block:: llvm
3604
3605 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3606 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3607
3608'``mul``' Instruction
3609^^^^^^^^^^^^^^^^^^^^^
3610
3611Syntax:
3612"""""""
3613
3614::
3615
3616 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3617 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3618 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3619 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3620
3621Overview:
3622"""""""""
3623
3624The '``mul``' instruction returns the product of its two operands.
3625
3626Arguments:
3627""""""""""
3628
3629The two arguments to the '``mul``' instruction must be
3630:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3631arguments must have identical types.
3632
3633Semantics:
3634""""""""""
3635
3636The value produced is the integer product of the two operands.
3637
3638If the result of the multiplication has unsigned overflow, the result
3639returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3640bit width of the result.
3641
3642Because LLVM integers use a two's complement representation, and the
3643result is the same width as the operands, this instruction returns the
3644correct result for both signed and unsigned integers. If a full product
3645(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3646sign-extended or zero-extended as appropriate to the width of the full
3647product.
3648
3649``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3650respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3651result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3652unsigned and/or signed overflow, respectively, occurs.
3653
3654Example:
3655""""""""
3656
3657.. code-block:: llvm
3658
3659 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3660
3661.. _i_fmul:
3662
3663'``fmul``' Instruction
3664^^^^^^^^^^^^^^^^^^^^^^
3665
3666Syntax:
3667"""""""
3668
3669::
3670
3671 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3672
3673Overview:
3674"""""""""
3675
3676The '``fmul``' instruction returns the product of its two operands.
3677
3678Arguments:
3679""""""""""
3680
3681The two arguments to the '``fmul``' instruction must be :ref:`floating
3682point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3683Both arguments must have identical types.
3684
3685Semantics:
3686""""""""""
3687
3688The value produced is the floating point product of the two operands.
3689This instruction can also take any number of :ref:`fast-math
3690flags <fastmath>`, which are optimization hints to enable otherwise
3691unsafe floating point optimizations:
3692
3693Example:
3694""""""""
3695
3696.. code-block:: llvm
3697
3698 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3699
3700'``udiv``' Instruction
3701^^^^^^^^^^^^^^^^^^^^^^
3702
3703Syntax:
3704"""""""
3705
3706::
3707
3708 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3709 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3710
3711Overview:
3712"""""""""
3713
3714The '``udiv``' instruction returns the quotient of its two operands.
3715
3716Arguments:
3717""""""""""
3718
3719The two arguments to the '``udiv``' instruction must be
3720:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3721arguments must have identical types.
3722
3723Semantics:
3724""""""""""
3725
3726The value produced is the unsigned integer quotient of the two operands.
3727
3728Note that unsigned integer division and signed integer division are
3729distinct operations; for signed integer division, use '``sdiv``'.
3730
3731Division by zero leads to undefined behavior.
3732
3733If the ``exact`` keyword is present, the result value of the ``udiv`` is
3734a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3735such, "((a udiv exact b) mul b) == a").
3736
3737Example:
3738""""""""
3739
3740.. code-block:: llvm
3741
3742 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3743
3744'``sdiv``' Instruction
3745^^^^^^^^^^^^^^^^^^^^^^
3746
3747Syntax:
3748"""""""
3749
3750::
3751
3752 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3753 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3754
3755Overview:
3756"""""""""
3757
3758The '``sdiv``' instruction returns the quotient of its two operands.
3759
3760Arguments:
3761""""""""""
3762
3763The two arguments to the '``sdiv``' instruction must be
3764:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3765arguments must have identical types.
3766
3767Semantics:
3768""""""""""
3769
3770The value produced is the signed integer quotient of the two operands
3771rounded towards zero.
3772
3773Note that signed integer division and unsigned integer division are
3774distinct operations; for unsigned integer division, use '``udiv``'.
3775
3776Division by zero leads to undefined behavior. Overflow also leads to
3777undefined behavior; this is a rare case, but can occur, for example, by
3778doing a 32-bit division of -2147483648 by -1.
3779
3780If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3781a :ref:`poison value <poisonvalues>` if the result would be rounded.
3782
3783Example:
3784""""""""
3785
3786.. code-block:: llvm
3787
3788 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3789
3790.. _i_fdiv:
3791
3792'``fdiv``' Instruction
3793^^^^^^^^^^^^^^^^^^^^^^
3794
3795Syntax:
3796"""""""
3797
3798::
3799
3800 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3801
3802Overview:
3803"""""""""
3804
3805The '``fdiv``' instruction returns the quotient of its two operands.
3806
3807Arguments:
3808""""""""""
3809
3810The two arguments to the '``fdiv``' instruction must be :ref:`floating
3811point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3812Both arguments must have identical types.
3813
3814Semantics:
3815""""""""""
3816
3817The value produced is the floating point quotient of the two operands.
3818This instruction can also take any number of :ref:`fast-math
3819flags <fastmath>`, which are optimization hints to enable otherwise
3820unsafe floating point optimizations:
3821
3822Example:
3823""""""""
3824
3825.. code-block:: llvm
3826
3827 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3828
3829'``urem``' Instruction
3830^^^^^^^^^^^^^^^^^^^^^^
3831
3832Syntax:
3833"""""""
3834
3835::
3836
3837 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3838
3839Overview:
3840"""""""""
3841
3842The '``urem``' instruction returns the remainder from the unsigned
3843division of its two arguments.
3844
3845Arguments:
3846""""""""""
3847
3848The two arguments to the '``urem``' instruction must be
3849:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3850arguments must have identical types.
3851
3852Semantics:
3853""""""""""
3854
3855This instruction returns the unsigned integer *remainder* of a division.
3856This instruction always performs an unsigned division to get the
3857remainder.
3858
3859Note that unsigned integer remainder and signed integer remainder are
3860distinct operations; for signed integer remainder, use '``srem``'.
3861
3862Taking the remainder of a division by zero leads to undefined behavior.
3863
3864Example:
3865""""""""
3866
3867.. code-block:: llvm
3868
3869 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3870
3871'``srem``' Instruction
3872^^^^^^^^^^^^^^^^^^^^^^
3873
3874Syntax:
3875"""""""
3876
3877::
3878
3879 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3880
3881Overview:
3882"""""""""
3883
3884The '``srem``' instruction returns the remainder from the signed
3885division of its two operands. This instruction can also take
3886:ref:`vector <t_vector>` versions of the values in which case the elements
3887must be integers.
3888
3889Arguments:
3890""""""""""
3891
3892The two arguments to the '``srem``' instruction must be
3893:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3894arguments must have identical types.
3895
3896Semantics:
3897""""""""""
3898
3899This instruction returns the *remainder* of a division (where the result
3900is either zero or has the same sign as the dividend, ``op1``), not the
3901*modulo* operator (where the result is either zero or has the same sign
3902as the divisor, ``op2``) of a value. For more information about the
3903difference, see `The Math
3904Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3905table of how this is implemented in various languages, please see
3906`Wikipedia: modulo
3907operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3908
3909Note that signed integer remainder and unsigned integer remainder are
3910distinct operations; for unsigned integer remainder, use '``urem``'.
3911
3912Taking the remainder of a division by zero leads to undefined behavior.
3913Overflow also leads to undefined behavior; this is a rare case, but can
3914occur, for example, by taking the remainder of a 32-bit division of
3915-2147483648 by -1. (The remainder doesn't actually overflow, but this
3916rule lets srem be implemented using instructions that return both the
3917result of the division and the remainder.)
3918
3919Example:
3920""""""""
3921
3922.. code-block:: llvm
3923
3924 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3925
3926.. _i_frem:
3927
3928'``frem``' Instruction
3929^^^^^^^^^^^^^^^^^^^^^^
3930
3931Syntax:
3932"""""""
3933
3934::
3935
3936 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3937
3938Overview:
3939"""""""""
3940
3941The '``frem``' instruction returns the remainder from the division of
3942its two operands.
3943
3944Arguments:
3945""""""""""
3946
3947The two arguments to the '``frem``' instruction must be :ref:`floating
3948point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3949Both arguments must have identical types.
3950
3951Semantics:
3952""""""""""
3953
3954This instruction returns the *remainder* of a division. The remainder
3955has the same sign as the dividend. This instruction can also take any
3956number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3957to enable otherwise unsafe floating point optimizations:
3958
3959Example:
3960""""""""
3961
3962.. code-block:: llvm
3963
3964 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3965
3966.. _bitwiseops:
3967
3968Bitwise Binary Operations
3969-------------------------
3970
3971Bitwise binary operators are used to do various forms of bit-twiddling
3972in a program. They are generally very efficient instructions and can
3973commonly be strength reduced from other instructions. They require two
3974operands of the same type, execute an operation on them, and produce a
3975single value. The resulting value is the same type as its operands.
3976
3977'``shl``' Instruction
3978^^^^^^^^^^^^^^^^^^^^^
3979
3980Syntax:
3981"""""""
3982
3983::
3984
3985 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3986 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3987 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3988 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3989
3990Overview:
3991"""""""""
3992
3993The '``shl``' instruction returns the first operand shifted to the left
3994a specified number of bits.
3995
3996Arguments:
3997""""""""""
3998
3999Both arguments to the '``shl``' instruction must be the same
4000:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4001'``op2``' is treated as an unsigned value.
4002
4003Semantics:
4004""""""""""
4005
4006The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4007where ``n`` is the width of the result. If ``op2`` is (statically or
4008dynamically) negative or equal to or larger than the number of bits in
4009``op1``, the result is undefined. If the arguments are vectors, each
4010vector element of ``op1`` is shifted by the corresponding shift amount
4011in ``op2``.
4012
4013If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4014value <poisonvalues>` if it shifts out any non-zero bits. If the
4015``nsw`` keyword is present, then the shift produces a :ref:`poison
4016value <poisonvalues>` if it shifts out any bits that disagree with the
4017resultant sign bit. As such, NUW/NSW have the same semantics as they
4018would if the shift were expressed as a mul instruction with the same
4019nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4020
4021Example:
4022""""""""
4023
4024.. code-block:: llvm
4025
4026 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4027 <result> = shl i32 4, 2 ; yields {i32}: 16
4028 <result> = shl i32 1, 10 ; yields {i32}: 1024
4029 <result> = shl i32 1, 32 ; undefined
4030 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4031
4032'``lshr``' Instruction
4033^^^^^^^^^^^^^^^^^^^^^^
4034
4035Syntax:
4036"""""""
4037
4038::
4039
4040 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4041 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4042
4043Overview:
4044"""""""""
4045
4046The '``lshr``' instruction (logical shift right) returns the first
4047operand shifted to the right a specified number of bits with zero fill.
4048
4049Arguments:
4050""""""""""
4051
4052Both arguments to the '``lshr``' instruction must be the same
4053:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4054'``op2``' is treated as an unsigned value.
4055
4056Semantics:
4057""""""""""
4058
4059This instruction always performs a logical shift right operation. The
4060most significant bits of the result will be filled with zero bits after
4061the shift. If ``op2`` is (statically or dynamically) equal to or larger
4062than the number of bits in ``op1``, the result is undefined. If the
4063arguments are vectors, each vector element of ``op1`` is shifted by the
4064corresponding shift amount in ``op2``.
4065
4066If the ``exact`` keyword is present, the result value of the ``lshr`` is
4067a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4068non-zero.
4069
4070Example:
4071""""""""
4072
4073.. code-block:: llvm
4074
4075 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4076 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4077 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004078 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004079 <result> = lshr i32 1, 32 ; undefined
4080 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4081
4082'``ashr``' Instruction
4083^^^^^^^^^^^^^^^^^^^^^^
4084
4085Syntax:
4086"""""""
4087
4088::
4089
4090 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4091 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4092
4093Overview:
4094"""""""""
4095
4096The '``ashr``' instruction (arithmetic shift right) returns the first
4097operand shifted to the right a specified number of bits with sign
4098extension.
4099
4100Arguments:
4101""""""""""
4102
4103Both arguments to the '``ashr``' instruction must be the same
4104:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4105'``op2``' is treated as an unsigned value.
4106
4107Semantics:
4108""""""""""
4109
4110This instruction always performs an arithmetic shift right operation,
4111The most significant bits of the result will be filled with the sign bit
4112of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4113than the number of bits in ``op1``, the result is undefined. If the
4114arguments are vectors, each vector element of ``op1`` is shifted by the
4115corresponding shift amount in ``op2``.
4116
4117If the ``exact`` keyword is present, the result value of the ``ashr`` is
4118a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4119non-zero.
4120
4121Example:
4122""""""""
4123
4124.. code-block:: llvm
4125
4126 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4127 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4128 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4129 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4130 <result> = ashr i32 1, 32 ; undefined
4131 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4132
4133'``and``' Instruction
4134^^^^^^^^^^^^^^^^^^^^^
4135
4136Syntax:
4137"""""""
4138
4139::
4140
4141 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4142
4143Overview:
4144"""""""""
4145
4146The '``and``' instruction returns the bitwise logical and of its two
4147operands.
4148
4149Arguments:
4150""""""""""
4151
4152The two arguments to the '``and``' instruction must be
4153:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4154arguments must have identical types.
4155
4156Semantics:
4157""""""""""
4158
4159The truth table used for the '``and``' instruction is:
4160
4161+-----+-----+-----+
4162| In0 | In1 | Out |
4163+-----+-----+-----+
4164| 0 | 0 | 0 |
4165+-----+-----+-----+
4166| 0 | 1 | 0 |
4167+-----+-----+-----+
4168| 1 | 0 | 0 |
4169+-----+-----+-----+
4170| 1 | 1 | 1 |
4171+-----+-----+-----+
4172
4173Example:
4174""""""""
4175
4176.. code-block:: llvm
4177
4178 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4179 <result> = and i32 15, 40 ; yields {i32}:result = 8
4180 <result> = and i32 4, 8 ; yields {i32}:result = 0
4181
4182'``or``' Instruction
4183^^^^^^^^^^^^^^^^^^^^
4184
4185Syntax:
4186"""""""
4187
4188::
4189
4190 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4191
4192Overview:
4193"""""""""
4194
4195The '``or``' instruction returns the bitwise logical inclusive or of its
4196two operands.
4197
4198Arguments:
4199""""""""""
4200
4201The two arguments to the '``or``' instruction must be
4202:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4203arguments must have identical types.
4204
4205Semantics:
4206""""""""""
4207
4208The truth table used for the '``or``' instruction is:
4209
4210+-----+-----+-----+
4211| In0 | In1 | Out |
4212+-----+-----+-----+
4213| 0 | 0 | 0 |
4214+-----+-----+-----+
4215| 0 | 1 | 1 |
4216+-----+-----+-----+
4217| 1 | 0 | 1 |
4218+-----+-----+-----+
4219| 1 | 1 | 1 |
4220+-----+-----+-----+
4221
4222Example:
4223""""""""
4224
4225::
4226
4227 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4228 <result> = or i32 15, 40 ; yields {i32}:result = 47
4229 <result> = or i32 4, 8 ; yields {i32}:result = 12
4230
4231'``xor``' Instruction
4232^^^^^^^^^^^^^^^^^^^^^
4233
4234Syntax:
4235"""""""
4236
4237::
4238
4239 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4240
4241Overview:
4242"""""""""
4243
4244The '``xor``' instruction returns the bitwise logical exclusive or of
4245its two operands. The ``xor`` is used to implement the "one's
4246complement" operation, which is the "~" operator in C.
4247
4248Arguments:
4249""""""""""
4250
4251The two arguments to the '``xor``' instruction must be
4252:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4253arguments must have identical types.
4254
4255Semantics:
4256""""""""""
4257
4258The truth table used for the '``xor``' instruction is:
4259
4260+-----+-----+-----+
4261| In0 | In1 | Out |
4262+-----+-----+-----+
4263| 0 | 0 | 0 |
4264+-----+-----+-----+
4265| 0 | 1 | 1 |
4266+-----+-----+-----+
4267| 1 | 0 | 1 |
4268+-----+-----+-----+
4269| 1 | 1 | 0 |
4270+-----+-----+-----+
4271
4272Example:
4273""""""""
4274
4275.. code-block:: llvm
4276
4277 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4278 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4279 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4280 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4281
4282Vector Operations
4283-----------------
4284
4285LLVM supports several instructions to represent vector operations in a
4286target-independent manner. These instructions cover the element-access
4287and vector-specific operations needed to process vectors effectively.
4288While LLVM does directly support these vector operations, many
4289sophisticated algorithms will want to use target-specific intrinsics to
4290take full advantage of a specific target.
4291
4292.. _i_extractelement:
4293
4294'``extractelement``' Instruction
4295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4296
4297Syntax:
4298"""""""
4299
4300::
4301
4302 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4303
4304Overview:
4305"""""""""
4306
4307The '``extractelement``' instruction extracts a single scalar element
4308from a vector at a specified index.
4309
4310Arguments:
4311""""""""""
4312
4313The first operand of an '``extractelement``' instruction is a value of
4314:ref:`vector <t_vector>` type. The second operand is an index indicating
4315the position from which to extract the element. The index may be a
4316variable.
4317
4318Semantics:
4319""""""""""
4320
4321The result is a scalar of the same type as the element type of ``val``.
4322Its value is the value at position ``idx`` of ``val``. If ``idx``
4323exceeds the length of ``val``, the results are undefined.
4324
4325Example:
4326""""""""
4327
4328.. code-block:: llvm
4329
4330 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4331
4332.. _i_insertelement:
4333
4334'``insertelement``' Instruction
4335^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4336
4337Syntax:
4338"""""""
4339
4340::
4341
4342 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4343
4344Overview:
4345"""""""""
4346
4347The '``insertelement``' instruction inserts a scalar element into a
4348vector at a specified index.
4349
4350Arguments:
4351""""""""""
4352
4353The first operand of an '``insertelement``' instruction is a value of
4354:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4355type must equal the element type of the first operand. The third operand
4356is an index indicating the position at which to insert the value. The
4357index may be a variable.
4358
4359Semantics:
4360""""""""""
4361
4362The result is a vector of the same type as ``val``. Its element values
4363are those of ``val`` except at position ``idx``, where it gets the value
4364``elt``. If ``idx`` exceeds the length of ``val``, the results are
4365undefined.
4366
4367Example:
4368""""""""
4369
4370.. code-block:: llvm
4371
4372 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4373
4374.. _i_shufflevector:
4375
4376'``shufflevector``' Instruction
4377^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4378
4379Syntax:
4380"""""""
4381
4382::
4383
4384 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4385
4386Overview:
4387"""""""""
4388
4389The '``shufflevector``' instruction constructs a permutation of elements
4390from two input vectors, returning a vector with the same element type as
4391the input and length that is the same as the shuffle mask.
4392
4393Arguments:
4394""""""""""
4395
4396The first two operands of a '``shufflevector``' instruction are vectors
4397with the same type. The third argument is a shuffle mask whose element
4398type is always 'i32'. The result of the instruction is a vector whose
4399length is the same as the shuffle mask and whose element type is the
4400same as the element type of the first two operands.
4401
4402The shuffle mask operand is required to be a constant vector with either
4403constant integer or undef values.
4404
4405Semantics:
4406""""""""""
4407
4408The elements of the two input vectors are numbered from left to right
4409across both of the vectors. The shuffle mask operand specifies, for each
4410element of the result vector, which element of the two input vectors the
4411result element gets. The element selector may be undef (meaning "don't
4412care") and the second operand may be undef if performing a shuffle from
4413only one vector.
4414
4415Example:
4416""""""""
4417
4418.. code-block:: llvm
4419
4420 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4421 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4422 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4423 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4424 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4425 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4426 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4427 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4428
4429Aggregate Operations
4430--------------------
4431
4432LLVM supports several instructions for working with
4433:ref:`aggregate <t_aggregate>` values.
4434
4435.. _i_extractvalue:
4436
4437'``extractvalue``' Instruction
4438^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4439
4440Syntax:
4441"""""""
4442
4443::
4444
4445 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4446
4447Overview:
4448"""""""""
4449
4450The '``extractvalue``' instruction extracts the value of a member field
4451from an :ref:`aggregate <t_aggregate>` value.
4452
4453Arguments:
4454""""""""""
4455
4456The first operand of an '``extractvalue``' instruction is a value of
4457:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4458constant indices to specify which value to extract in a similar manner
4459as indices in a '``getelementptr``' instruction.
4460
4461The major differences to ``getelementptr`` indexing are:
4462
4463- Since the value being indexed is not a pointer, the first index is
4464 omitted and assumed to be zero.
4465- At least one index must be specified.
4466- Not only struct indices but also array indices must be in bounds.
4467
4468Semantics:
4469""""""""""
4470
4471The result is the value at the position in the aggregate specified by
4472the index operands.
4473
4474Example:
4475""""""""
4476
4477.. code-block:: llvm
4478
4479 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4480
4481.. _i_insertvalue:
4482
4483'``insertvalue``' Instruction
4484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4485
4486Syntax:
4487"""""""
4488
4489::
4490
4491 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4492
4493Overview:
4494"""""""""
4495
4496The '``insertvalue``' instruction inserts a value into a member field in
4497an :ref:`aggregate <t_aggregate>` value.
4498
4499Arguments:
4500""""""""""
4501
4502The first operand of an '``insertvalue``' instruction is a value of
4503:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4504a first-class value to insert. The following operands are constant
4505indices indicating the position at which to insert the value in a
4506similar manner as indices in a '``extractvalue``' instruction. The value
4507to insert must have the same type as the value identified by the
4508indices.
4509
4510Semantics:
4511""""""""""
4512
4513The result is an aggregate of the same type as ``val``. Its value is
4514that of ``val`` except that the value at the position specified by the
4515indices is that of ``elt``.
4516
4517Example:
4518""""""""
4519
4520.. code-block:: llvm
4521
4522 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4523 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4524 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4525
4526.. _memoryops:
4527
4528Memory Access and Addressing Operations
4529---------------------------------------
4530
4531A key design point of an SSA-based representation is how it represents
4532memory. In LLVM, no memory locations are in SSA form, which makes things
4533very simple. This section describes how to read, write, and allocate
4534memory in LLVM.
4535
4536.. _i_alloca:
4537
4538'``alloca``' Instruction
4539^^^^^^^^^^^^^^^^^^^^^^^^
4540
4541Syntax:
4542"""""""
4543
4544::
4545
4546 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4547
4548Overview:
4549"""""""""
4550
4551The '``alloca``' instruction allocates memory on the stack frame of the
4552currently executing function, to be automatically released when this
4553function returns to its caller. The object is always allocated in the
4554generic address space (address space zero).
4555
4556Arguments:
4557""""""""""
4558
4559The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4560bytes of memory on the runtime stack, returning a pointer of the
4561appropriate type to the program. If "NumElements" is specified, it is
4562the number of elements allocated, otherwise "NumElements" is defaulted
4563to be one. If a constant alignment is specified, the value result of the
4564allocation is guaranteed to be aligned to at least that boundary. If not
4565specified, or if zero, the target can choose to align the allocation on
4566any convenient boundary compatible with the type.
4567
4568'``type``' may be any sized type.
4569
4570Semantics:
4571""""""""""
4572
4573Memory is allocated; a pointer is returned. The operation is undefined
4574if there is insufficient stack space for the allocation. '``alloca``'d
4575memory is automatically released when the function returns. The
4576'``alloca``' instruction is commonly used to represent automatic
4577variables that must have an address available. When the function returns
4578(either with the ``ret`` or ``resume`` instructions), the memory is
4579reclaimed. Allocating zero bytes is legal, but the result is undefined.
4580The order in which memory is allocated (ie., which way the stack grows)
4581is not specified.
4582
4583Example:
4584""""""""
4585
4586.. code-block:: llvm
4587
4588 %ptr = alloca i32 ; yields {i32*}:ptr
4589 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4590 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4591 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4592
4593.. _i_load:
4594
4595'``load``' Instruction
4596^^^^^^^^^^^^^^^^^^^^^^
4597
4598Syntax:
4599"""""""
4600
4601::
4602
4603 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4604 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4605 !<index> = !{ i32 1 }
4606
4607Overview:
4608"""""""""
4609
4610The '``load``' instruction is used to read from memory.
4611
4612Arguments:
4613""""""""""
4614
Eli Bendersky8c493382013-04-17 20:17:08 +00004615The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004616from which to load. The pointer must point to a :ref:`first
4617class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4618then the optimizer is not allowed to modify the number or order of
4619execution of this ``load`` with other :ref:`volatile
4620operations <volatile>`.
4621
4622If the ``load`` is marked as ``atomic``, it takes an extra
4623:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4624``release`` and ``acq_rel`` orderings are not valid on ``load``
4625instructions. Atomic loads produce :ref:`defined <memmodel>` results
4626when they may see multiple atomic stores. The type of the pointee must
4627be an integer type whose bit width is a power of two greater than or
4628equal to eight and less than or equal to a target-specific size limit.
4629``align`` must be explicitly specified on atomic loads, and the load has
4630undefined behavior if the alignment is not set to a value which is at
4631least the size in bytes of the pointee. ``!nontemporal`` does not have
4632any defined semantics for atomic loads.
4633
4634The optional constant ``align`` argument specifies the alignment of the
4635operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004636or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004637alignment for the target. It is the responsibility of the code emitter
4638to ensure that the alignment information is correct. Overestimating the
4639alignment results in undefined behavior. Underestimating the alignment
4640may produce less efficient code. An alignment of 1 is always safe.
4641
4642The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004643metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004644``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004645metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004646that this load is not expected to be reused in the cache. The code
4647generator may select special instructions to save cache bandwidth, such
4648as the ``MOVNT`` instruction on x86.
4649
4650The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004651metadata name ``<index>`` corresponding to a metadata node with no
4652entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004653instruction tells the optimizer and code generator that this load
4654address points to memory which does not change value during program
4655execution. The optimizer may then move this load around, for example, by
4656hoisting it out of loops using loop invariant code motion.
4657
4658Semantics:
4659""""""""""
4660
4661The location of memory pointed to is loaded. If the value being loaded
4662is of scalar type then the number of bytes read does not exceed the
4663minimum number of bytes needed to hold all bits of the type. For
4664example, loading an ``i24`` reads at most three bytes. When loading a
4665value of a type like ``i20`` with a size that is not an integral number
4666of bytes, the result is undefined if the value was not originally
4667written using a store of the same type.
4668
4669Examples:
4670"""""""""
4671
4672.. code-block:: llvm
4673
4674 %ptr = alloca i32 ; yields {i32*}:ptr
4675 store i32 3, i32* %ptr ; yields {void}
4676 %val = load i32* %ptr ; yields {i32}:val = i32 3
4677
4678.. _i_store:
4679
4680'``store``' Instruction
4681^^^^^^^^^^^^^^^^^^^^^^^
4682
4683Syntax:
4684"""""""
4685
4686::
4687
4688 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4689 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4690
4691Overview:
4692"""""""""
4693
4694The '``store``' instruction is used to write to memory.
4695
4696Arguments:
4697""""""""""
4698
Eli Bendersky8952d902013-04-17 17:17:20 +00004699There are two arguments to the ``store`` instruction: a value to store
4700and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004701operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004702the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004703then the optimizer is not allowed to modify the number or order of
4704execution of this ``store`` with other :ref:`volatile
4705operations <volatile>`.
4706
4707If the ``store`` is marked as ``atomic``, it takes an extra
4708:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4709``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4710instructions. Atomic loads produce :ref:`defined <memmodel>` results
4711when they may see multiple atomic stores. The type of the pointee must
4712be an integer type whose bit width is a power of two greater than or
4713equal to eight and less than or equal to a target-specific size limit.
4714``align`` must be explicitly specified on atomic stores, and the store
4715has undefined behavior if the alignment is not set to a value which is
4716at least the size in bytes of the pointee. ``!nontemporal`` does not
4717have any defined semantics for atomic stores.
4718
Eli Bendersky8952d902013-04-17 17:17:20 +00004719The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004720operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004721or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004722alignment for the target. It is the responsibility of the code emitter
4723to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004724alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004725alignment may produce less efficient code. An alignment of 1 is always
4726safe.
4727
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004728The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004729name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004730value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004731tells the optimizer and code generator that this load is not expected to
4732be reused in the cache. The code generator may select special
4733instructions to save cache bandwidth, such as the MOVNT instruction on
4734x86.
4735
4736Semantics:
4737""""""""""
4738
Eli Bendersky8952d902013-04-17 17:17:20 +00004739The contents of memory are updated to contain ``<value>`` at the
4740location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004741of scalar type then the number of bytes written does not exceed the
4742minimum number of bytes needed to hold all bits of the type. For
4743example, storing an ``i24`` writes at most three bytes. When writing a
4744value of a type like ``i20`` with a size that is not an integral number
4745of bytes, it is unspecified what happens to the extra bits that do not
4746belong to the type, but they will typically be overwritten.
4747
4748Example:
4749""""""""
4750
4751.. code-block:: llvm
4752
4753 %ptr = alloca i32 ; yields {i32*}:ptr
4754 store i32 3, i32* %ptr ; yields {void}
4755 %val = load i32* %ptr ; yields {i32}:val = i32 3
4756
4757.. _i_fence:
4758
4759'``fence``' Instruction
4760^^^^^^^^^^^^^^^^^^^^^^^
4761
4762Syntax:
4763"""""""
4764
4765::
4766
4767 fence [singlethread] <ordering> ; yields {void}
4768
4769Overview:
4770"""""""""
4771
4772The '``fence``' instruction is used to introduce happens-before edges
4773between operations.
4774
4775Arguments:
4776""""""""""
4777
4778'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4779defines what *synchronizes-with* edges they add. They can only be given
4780``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4781
4782Semantics:
4783""""""""""
4784
4785A fence A which has (at least) ``release`` ordering semantics
4786*synchronizes with* a fence B with (at least) ``acquire`` ordering
4787semantics if and only if there exist atomic operations X and Y, both
4788operating on some atomic object M, such that A is sequenced before X, X
4789modifies M (either directly or through some side effect of a sequence
4790headed by X), Y is sequenced before B, and Y observes M. This provides a
4791*happens-before* dependency between A and B. Rather than an explicit
4792``fence``, one (but not both) of the atomic operations X or Y might
4793provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4794still *synchronize-with* the explicit ``fence`` and establish the
4795*happens-before* edge.
4796
4797A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4798``acquire`` and ``release`` semantics specified above, participates in
4799the global program order of other ``seq_cst`` operations and/or fences.
4800
4801The optional ":ref:`singlethread <singlethread>`" argument specifies
4802that the fence only synchronizes with other fences in the same thread.
4803(This is useful for interacting with signal handlers.)
4804
4805Example:
4806""""""""
4807
4808.. code-block:: llvm
4809
4810 fence acquire ; yields {void}
4811 fence singlethread seq_cst ; yields {void}
4812
4813.. _i_cmpxchg:
4814
4815'``cmpxchg``' Instruction
4816^^^^^^^^^^^^^^^^^^^^^^^^^
4817
4818Syntax:
4819"""""""
4820
4821::
4822
4823 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4824
4825Overview:
4826"""""""""
4827
4828The '``cmpxchg``' instruction is used to atomically modify memory. It
4829loads a value in memory and compares it to a given value. If they are
4830equal, it stores a new value into the memory.
4831
4832Arguments:
4833""""""""""
4834
4835There are three arguments to the '``cmpxchg``' instruction: an address
4836to operate on, a value to compare to the value currently be at that
4837address, and a new value to place at that address if the compared values
4838are equal. The type of '<cmp>' must be an integer type whose bit width
4839is a power of two greater than or equal to eight and less than or equal
4840to a target-specific size limit. '<cmp>' and '<new>' must have the same
4841type, and the type of '<pointer>' must be a pointer to that type. If the
4842``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4843to modify the number or order of execution of this ``cmpxchg`` with
4844other :ref:`volatile operations <volatile>`.
4845
4846The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4847synchronizes with other atomic operations.
4848
4849The optional "``singlethread``" argument declares that the ``cmpxchg``
4850is only atomic with respect to code (usually signal handlers) running in
4851the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4852respect to all other code in the system.
4853
4854The pointer passed into cmpxchg must have alignment greater than or
4855equal to the size in memory of the operand.
4856
4857Semantics:
4858""""""""""
4859
4860The contents of memory at the location specified by the '``<pointer>``'
4861operand is read and compared to '``<cmp>``'; if the read value is the
4862equal, '``<new>``' is written. The original value at the location is
4863returned.
4864
4865A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4866of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4867atomic load with an ordering parameter determined by dropping any
4868``release`` part of the ``cmpxchg``'s ordering.
4869
4870Example:
4871""""""""
4872
4873.. code-block:: llvm
4874
4875 entry:
4876 %orig = atomic load i32* %ptr unordered ; yields {i32}
4877 br label %loop
4878
4879 loop:
4880 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4881 %squared = mul i32 %cmp, %cmp
4882 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4883 %success = icmp eq i32 %cmp, %old
4884 br i1 %success, label %done, label %loop
4885
4886 done:
4887 ...
4888
4889.. _i_atomicrmw:
4890
4891'``atomicrmw``' Instruction
4892^^^^^^^^^^^^^^^^^^^^^^^^^^^
4893
4894Syntax:
4895"""""""
4896
4897::
4898
4899 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4900
4901Overview:
4902"""""""""
4903
4904The '``atomicrmw``' instruction is used to atomically modify memory.
4905
4906Arguments:
4907""""""""""
4908
4909There are three arguments to the '``atomicrmw``' instruction: an
4910operation to apply, an address whose value to modify, an argument to the
4911operation. The operation must be one of the following keywords:
4912
4913- xchg
4914- add
4915- sub
4916- and
4917- nand
4918- or
4919- xor
4920- max
4921- min
4922- umax
4923- umin
4924
4925The type of '<value>' must be an integer type whose bit width is a power
4926of two greater than or equal to eight and less than or equal to a
4927target-specific size limit. The type of the '``<pointer>``' operand must
4928be a pointer to that type. If the ``atomicrmw`` is marked as
4929``volatile``, then the optimizer is not allowed to modify the number or
4930order of execution of this ``atomicrmw`` with other :ref:`volatile
4931operations <volatile>`.
4932
4933Semantics:
4934""""""""""
4935
4936The contents of memory at the location specified by the '``<pointer>``'
4937operand are atomically read, modified, and written back. The original
4938value at the location is returned. The modification is specified by the
4939operation argument:
4940
4941- xchg: ``*ptr = val``
4942- add: ``*ptr = *ptr + val``
4943- sub: ``*ptr = *ptr - val``
4944- and: ``*ptr = *ptr & val``
4945- nand: ``*ptr = ~(*ptr & val)``
4946- or: ``*ptr = *ptr | val``
4947- xor: ``*ptr = *ptr ^ val``
4948- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4949- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4950- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4951 comparison)
4952- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4953 comparison)
4954
4955Example:
4956""""""""
4957
4958.. code-block:: llvm
4959
4960 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4961
4962.. _i_getelementptr:
4963
4964'``getelementptr``' Instruction
4965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4966
4967Syntax:
4968"""""""
4969
4970::
4971
4972 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4973 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4974 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4975
4976Overview:
4977"""""""""
4978
4979The '``getelementptr``' instruction is used to get the address of a
4980subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4981address calculation only and does not access memory.
4982
4983Arguments:
4984""""""""""
4985
4986The first argument is always a pointer or a vector of pointers, and
4987forms the basis of the calculation. The remaining arguments are indices
4988that indicate which of the elements of the aggregate object are indexed.
4989The interpretation of each index is dependent on the type being indexed
4990into. The first index always indexes the pointer value given as the
4991first argument, the second index indexes a value of the type pointed to
4992(not necessarily the value directly pointed to, since the first index
4993can be non-zero), etc. The first type indexed into must be a pointer
4994value, subsequent types can be arrays, vectors, and structs. Note that
4995subsequent types being indexed into can never be pointers, since that
4996would require loading the pointer before continuing calculation.
4997
4998The type of each index argument depends on the type it is indexing into.
4999When indexing into a (optionally packed) structure, only ``i32`` integer
5000**constants** are allowed (when using a vector of indices they must all
5001be the **same** ``i32`` integer constant). When indexing into an array,
5002pointer or vector, integers of any width are allowed, and they are not
5003required to be constant. These integers are treated as signed values
5004where relevant.
5005
5006For example, let's consider a C code fragment and how it gets compiled
5007to LLVM:
5008
5009.. code-block:: c
5010
5011 struct RT {
5012 char A;
5013 int B[10][20];
5014 char C;
5015 };
5016 struct ST {
5017 int X;
5018 double Y;
5019 struct RT Z;
5020 };
5021
5022 int *foo(struct ST *s) {
5023 return &s[1].Z.B[5][13];
5024 }
5025
5026The LLVM code generated by Clang is:
5027
5028.. code-block:: llvm
5029
5030 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5031 %struct.ST = type { i32, double, %struct.RT }
5032
5033 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5034 entry:
5035 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5036 ret i32* %arrayidx
5037 }
5038
5039Semantics:
5040""""""""""
5041
5042In the example above, the first index is indexing into the
5043'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5044= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5045indexes into the third element of the structure, yielding a
5046'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5047structure. The third index indexes into the second element of the
5048structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5049dimensions of the array are subscripted into, yielding an '``i32``'
5050type. The '``getelementptr``' instruction returns a pointer to this
5051element, thus computing a value of '``i32*``' type.
5052
5053Note that it is perfectly legal to index partially through a structure,
5054returning a pointer to an inner element. Because of this, the LLVM code
5055for the given testcase is equivalent to:
5056
5057.. code-block:: llvm
5058
5059 define i32* @foo(%struct.ST* %s) {
5060 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5061 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5062 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5063 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5064 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5065 ret i32* %t5
5066 }
5067
5068If the ``inbounds`` keyword is present, the result value of the
5069``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5070pointer is not an *in bounds* address of an allocated object, or if any
5071of the addresses that would be formed by successive addition of the
5072offsets implied by the indices to the base address with infinitely
5073precise signed arithmetic are not an *in bounds* address of that
5074allocated object. The *in bounds* addresses for an allocated object are
5075all the addresses that point into the object, plus the address one byte
5076past the end. In cases where the base is a vector of pointers the
5077``inbounds`` keyword applies to each of the computations element-wise.
5078
5079If the ``inbounds`` keyword is not present, the offsets are added to the
5080base address with silently-wrapping two's complement arithmetic. If the
5081offsets have a different width from the pointer, they are sign-extended
5082or truncated to the width of the pointer. The result value of the
5083``getelementptr`` may be outside the object pointed to by the base
5084pointer. The result value may not necessarily be used to access memory
5085though, even if it happens to point into allocated storage. See the
5086:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5087information.
5088
5089The getelementptr instruction is often confusing. For some more insight
5090into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5091
5092Example:
5093""""""""
5094
5095.. code-block:: llvm
5096
5097 ; yields [12 x i8]*:aptr
5098 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5099 ; yields i8*:vptr
5100 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5101 ; yields i8*:eptr
5102 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5103 ; yields i32*:iptr
5104 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5105
5106In cases where the pointer argument is a vector of pointers, each index
5107must be a vector with the same number of elements. For example:
5108
5109.. code-block:: llvm
5110
5111 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5112
5113Conversion Operations
5114---------------------
5115
5116The instructions in this category are the conversion instructions
5117(casting) which all take a single operand and a type. They perform
5118various bit conversions on the operand.
5119
5120'``trunc .. to``' Instruction
5121^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5122
5123Syntax:
5124"""""""
5125
5126::
5127
5128 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5129
5130Overview:
5131"""""""""
5132
5133The '``trunc``' instruction truncates its operand to the type ``ty2``.
5134
5135Arguments:
5136""""""""""
5137
5138The '``trunc``' instruction takes a value to trunc, and a type to trunc
5139it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5140of the same number of integers. The bit size of the ``value`` must be
5141larger than the bit size of the destination type, ``ty2``. Equal sized
5142types are not allowed.
5143
5144Semantics:
5145""""""""""
5146
5147The '``trunc``' instruction truncates the high order bits in ``value``
5148and converts the remaining bits to ``ty2``. Since the source size must
5149be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5150It will always truncate bits.
5151
5152Example:
5153""""""""
5154
5155.. code-block:: llvm
5156
5157 %X = trunc i32 257 to i8 ; yields i8:1
5158 %Y = trunc i32 123 to i1 ; yields i1:true
5159 %Z = trunc i32 122 to i1 ; yields i1:false
5160 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5161
5162'``zext .. to``' Instruction
5163^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5164
5165Syntax:
5166"""""""
5167
5168::
5169
5170 <result> = zext <ty> <value> to <ty2> ; yields ty2
5171
5172Overview:
5173"""""""""
5174
5175The '``zext``' instruction zero extends its operand to type ``ty2``.
5176
5177Arguments:
5178""""""""""
5179
5180The '``zext``' instruction takes a value to cast, and a type to cast it
5181to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5182the same number of integers. The bit size of the ``value`` must be
5183smaller than the bit size of the destination type, ``ty2``.
5184
5185Semantics:
5186""""""""""
5187
5188The ``zext`` fills the high order bits of the ``value`` with zero bits
5189until it reaches the size of the destination type, ``ty2``.
5190
5191When zero extending from i1, the result will always be either 0 or 1.
5192
5193Example:
5194""""""""
5195
5196.. code-block:: llvm
5197
5198 %X = zext i32 257 to i64 ; yields i64:257
5199 %Y = zext i1 true to i32 ; yields i32:1
5200 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5201
5202'``sext .. to``' Instruction
5203^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5204
5205Syntax:
5206"""""""
5207
5208::
5209
5210 <result> = sext <ty> <value> to <ty2> ; yields ty2
5211
5212Overview:
5213"""""""""
5214
5215The '``sext``' sign extends ``value`` to the type ``ty2``.
5216
5217Arguments:
5218""""""""""
5219
5220The '``sext``' instruction takes a value to cast, and a type to cast it
5221to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5222the same number of integers. The bit size of the ``value`` must be
5223smaller than the bit size of the destination type, ``ty2``.
5224
5225Semantics:
5226""""""""""
5227
5228The '``sext``' instruction performs a sign extension by copying the sign
5229bit (highest order bit) of the ``value`` until it reaches the bit size
5230of the type ``ty2``.
5231
5232When sign extending from i1, the extension always results in -1 or 0.
5233
5234Example:
5235""""""""
5236
5237.. code-block:: llvm
5238
5239 %X = sext i8 -1 to i16 ; yields i16 :65535
5240 %Y = sext i1 true to i32 ; yields i32:-1
5241 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5242
5243'``fptrunc .. to``' Instruction
5244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5245
5246Syntax:
5247"""""""
5248
5249::
5250
5251 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5252
5253Overview:
5254"""""""""
5255
5256The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5257
5258Arguments:
5259""""""""""
5260
5261The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5262value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5263The size of ``value`` must be larger than the size of ``ty2``. This
5264implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5265
5266Semantics:
5267""""""""""
5268
5269The '``fptrunc``' instruction truncates a ``value`` from a larger
5270:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5271point <t_floating>` type. If the value cannot fit within the
5272destination type, ``ty2``, then the results are undefined.
5273
5274Example:
5275""""""""
5276
5277.. code-block:: llvm
5278
5279 %X = fptrunc double 123.0 to float ; yields float:123.0
5280 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5281
5282'``fpext .. to``' Instruction
5283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5284
5285Syntax:
5286"""""""
5287
5288::
5289
5290 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5291
5292Overview:
5293"""""""""
5294
5295The '``fpext``' extends a floating point ``value`` to a larger floating
5296point value.
5297
5298Arguments:
5299""""""""""
5300
5301The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5302``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5303to. The source type must be smaller than the destination type.
5304
5305Semantics:
5306""""""""""
5307
5308The '``fpext``' instruction extends the ``value`` from a smaller
5309:ref:`floating point <t_floating>` type to a larger :ref:`floating
5310point <t_floating>` type. The ``fpext`` cannot be used to make a
5311*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5312*no-op cast* for a floating point cast.
5313
5314Example:
5315""""""""
5316
5317.. code-block:: llvm
5318
5319 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5320 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5321
5322'``fptoui .. to``' Instruction
5323^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5324
5325Syntax:
5326"""""""
5327
5328::
5329
5330 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5331
5332Overview:
5333"""""""""
5334
5335The '``fptoui``' converts a floating point ``value`` to its unsigned
5336integer equivalent of type ``ty2``.
5337
5338Arguments:
5339""""""""""
5340
5341The '``fptoui``' instruction takes a value to cast, which must be a
5342scalar or vector :ref:`floating point <t_floating>` value, and a type to
5343cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5344``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5345type with the same number of elements as ``ty``
5346
5347Semantics:
5348""""""""""
5349
5350The '``fptoui``' instruction converts its :ref:`floating
5351point <t_floating>` operand into the nearest (rounding towards zero)
5352unsigned integer value. If the value cannot fit in ``ty2``, the results
5353are undefined.
5354
5355Example:
5356""""""""
5357
5358.. code-block:: llvm
5359
5360 %X = fptoui double 123.0 to i32 ; yields i32:123
5361 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5362 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5363
5364'``fptosi .. to``' Instruction
5365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5366
5367Syntax:
5368"""""""
5369
5370::
5371
5372 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5373
5374Overview:
5375"""""""""
5376
5377The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5378``value`` to type ``ty2``.
5379
5380Arguments:
5381""""""""""
5382
5383The '``fptosi``' instruction takes a value to cast, which must be a
5384scalar or vector :ref:`floating point <t_floating>` value, and a type to
5385cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5386``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5387type with the same number of elements as ``ty``
5388
5389Semantics:
5390""""""""""
5391
5392The '``fptosi``' instruction converts its :ref:`floating
5393point <t_floating>` operand into the nearest (rounding towards zero)
5394signed integer value. If the value cannot fit in ``ty2``, the results
5395are undefined.
5396
5397Example:
5398""""""""
5399
5400.. code-block:: llvm
5401
5402 %X = fptosi double -123.0 to i32 ; yields i32:-123
5403 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5404 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5405
5406'``uitofp .. to``' Instruction
5407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5408
5409Syntax:
5410"""""""
5411
5412::
5413
5414 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5415
5416Overview:
5417"""""""""
5418
5419The '``uitofp``' instruction regards ``value`` as an unsigned integer
5420and converts that value to the ``ty2`` type.
5421
5422Arguments:
5423""""""""""
5424
5425The '``uitofp``' instruction takes a value to cast, which must be a
5426scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5427``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5428``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5429type with the same number of elements as ``ty``
5430
5431Semantics:
5432""""""""""
5433
5434The '``uitofp``' instruction interprets its operand as an unsigned
5435integer quantity and converts it to the corresponding floating point
5436value. If the value cannot fit in the floating point value, the results
5437are undefined.
5438
5439Example:
5440""""""""
5441
5442.. code-block:: llvm
5443
5444 %X = uitofp i32 257 to float ; yields float:257.0
5445 %Y = uitofp i8 -1 to double ; yields double:255.0
5446
5447'``sitofp .. to``' Instruction
5448^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5449
5450Syntax:
5451"""""""
5452
5453::
5454
5455 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5456
5457Overview:
5458"""""""""
5459
5460The '``sitofp``' instruction regards ``value`` as a signed integer and
5461converts that value to the ``ty2`` type.
5462
5463Arguments:
5464""""""""""
5465
5466The '``sitofp``' instruction takes a value to cast, which must be a
5467scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5468``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5469``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5470type with the same number of elements as ``ty``
5471
5472Semantics:
5473""""""""""
5474
5475The '``sitofp``' instruction interprets its operand as a signed integer
5476quantity and converts it to the corresponding floating point value. If
5477the value cannot fit in the floating point value, the results are
5478undefined.
5479
5480Example:
5481""""""""
5482
5483.. code-block:: llvm
5484
5485 %X = sitofp i32 257 to float ; yields float:257.0
5486 %Y = sitofp i8 -1 to double ; yields double:-1.0
5487
5488.. _i_ptrtoint:
5489
5490'``ptrtoint .. to``' Instruction
5491^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5492
5493Syntax:
5494"""""""
5495
5496::
5497
5498 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5499
5500Overview:
5501"""""""""
5502
5503The '``ptrtoint``' instruction converts the pointer or a vector of
5504pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5505
5506Arguments:
5507""""""""""
5508
5509The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5510a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5511type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5512a vector of integers type.
5513
5514Semantics:
5515""""""""""
5516
5517The '``ptrtoint``' instruction converts ``value`` to integer type
5518``ty2`` by interpreting the pointer value as an integer and either
5519truncating or zero extending that value to the size of the integer type.
5520If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5521``value`` is larger than ``ty2`` then a truncation is done. If they are
5522the same size, then nothing is done (*no-op cast*) other than a type
5523change.
5524
5525Example:
5526""""""""
5527
5528.. code-block:: llvm
5529
5530 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5531 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5532 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5533
5534.. _i_inttoptr:
5535
5536'``inttoptr .. to``' Instruction
5537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5538
5539Syntax:
5540"""""""
5541
5542::
5543
5544 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5545
5546Overview:
5547"""""""""
5548
5549The '``inttoptr``' instruction converts an integer ``value`` to a
5550pointer type, ``ty2``.
5551
5552Arguments:
5553""""""""""
5554
5555The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5556cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5557type.
5558
5559Semantics:
5560""""""""""
5561
5562The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5563applying either a zero extension or a truncation depending on the size
5564of the integer ``value``. If ``value`` is larger than the size of a
5565pointer then a truncation is done. If ``value`` is smaller than the size
5566of a pointer then a zero extension is done. If they are the same size,
5567nothing is done (*no-op cast*).
5568
5569Example:
5570""""""""
5571
5572.. code-block:: llvm
5573
5574 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5575 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5576 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5577 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5578
5579.. _i_bitcast:
5580
5581'``bitcast .. to``' Instruction
5582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5583
5584Syntax:
5585"""""""
5586
5587::
5588
5589 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5590
5591Overview:
5592"""""""""
5593
5594The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5595changing any bits.
5596
5597Arguments:
5598""""""""""
5599
5600The '``bitcast``' instruction takes a value to cast, which must be a
5601non-aggregate first class value, and a type to cast it to, which must
5602also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5603sizes of ``value`` and the destination type, ``ty2``, must be identical.
5604If the source type is a pointer, the destination type must also be a
5605pointer. This instruction supports bitwise conversion of vectors to
5606integers and to vectors of other types (as long as they have the same
5607size).
5608
5609Semantics:
5610""""""""""
5611
5612The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5613always a *no-op cast* because no bits change with this conversion. The
5614conversion is done as if the ``value`` had been stored to memory and
5615read back as type ``ty2``. Pointer (or vector of pointers) types may
5616only be converted to other pointer (or vector of pointers) types with
5617this instruction. To convert pointers to other types, use the
5618:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5619first.
5620
5621Example:
5622""""""""
5623
5624.. code-block:: llvm
5625
5626 %X = bitcast i8 255 to i8 ; yields i8 :-1
5627 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5628 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5629 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5630
5631.. _otherops:
5632
5633Other Operations
5634----------------
5635
5636The instructions in this category are the "miscellaneous" instructions,
5637which defy better classification.
5638
5639.. _i_icmp:
5640
5641'``icmp``' Instruction
5642^^^^^^^^^^^^^^^^^^^^^^
5643
5644Syntax:
5645"""""""
5646
5647::
5648
5649 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5650
5651Overview:
5652"""""""""
5653
5654The '``icmp``' instruction returns a boolean value or a vector of
5655boolean values based on comparison of its two integer, integer vector,
5656pointer, or pointer vector operands.
5657
5658Arguments:
5659""""""""""
5660
5661The '``icmp``' instruction takes three operands. The first operand is
5662the condition code indicating the kind of comparison to perform. It is
5663not a value, just a keyword. The possible condition code are:
5664
5665#. ``eq``: equal
5666#. ``ne``: not equal
5667#. ``ugt``: unsigned greater than
5668#. ``uge``: unsigned greater or equal
5669#. ``ult``: unsigned less than
5670#. ``ule``: unsigned less or equal
5671#. ``sgt``: signed greater than
5672#. ``sge``: signed greater or equal
5673#. ``slt``: signed less than
5674#. ``sle``: signed less or equal
5675
5676The remaining two arguments must be :ref:`integer <t_integer>` or
5677:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5678must also be identical types.
5679
5680Semantics:
5681""""""""""
5682
5683The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5684code given as ``cond``. The comparison performed always yields either an
5685:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5686
5687#. ``eq``: yields ``true`` if the operands are equal, ``false``
5688 otherwise. No sign interpretation is necessary or performed.
5689#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5690 otherwise. No sign interpretation is necessary or performed.
5691#. ``ugt``: interprets the operands as unsigned values and yields
5692 ``true`` if ``op1`` is greater than ``op2``.
5693#. ``uge``: interprets the operands as unsigned values and yields
5694 ``true`` if ``op1`` is greater than or equal to ``op2``.
5695#. ``ult``: interprets the operands as unsigned values and yields
5696 ``true`` if ``op1`` is less than ``op2``.
5697#. ``ule``: interprets the operands as unsigned values and yields
5698 ``true`` if ``op1`` is less than or equal to ``op2``.
5699#. ``sgt``: interprets the operands as signed values and yields ``true``
5700 if ``op1`` is greater than ``op2``.
5701#. ``sge``: interprets the operands as signed values and yields ``true``
5702 if ``op1`` is greater than or equal to ``op2``.
5703#. ``slt``: interprets the operands as signed values and yields ``true``
5704 if ``op1`` is less than ``op2``.
5705#. ``sle``: interprets the operands as signed values and yields ``true``
5706 if ``op1`` is less than or equal to ``op2``.
5707
5708If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5709are compared as if they were integers.
5710
5711If the operands are integer vectors, then they are compared element by
5712element. The result is an ``i1`` vector with the same number of elements
5713as the values being compared. Otherwise, the result is an ``i1``.
5714
5715Example:
5716""""""""
5717
5718.. code-block:: llvm
5719
5720 <result> = icmp eq i32 4, 5 ; yields: result=false
5721 <result> = icmp ne float* %X, %X ; yields: result=false
5722 <result> = icmp ult i16 4, 5 ; yields: result=true
5723 <result> = icmp sgt i16 4, 5 ; yields: result=false
5724 <result> = icmp ule i16 -4, 5 ; yields: result=false
5725 <result> = icmp sge i16 4, 5 ; yields: result=false
5726
5727Note that the code generator does not yet support vector types with the
5728``icmp`` instruction.
5729
5730.. _i_fcmp:
5731
5732'``fcmp``' Instruction
5733^^^^^^^^^^^^^^^^^^^^^^
5734
5735Syntax:
5736"""""""
5737
5738::
5739
5740 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5741
5742Overview:
5743"""""""""
5744
5745The '``fcmp``' instruction returns a boolean value or vector of boolean
5746values based on comparison of its operands.
5747
5748If the operands are floating point scalars, then the result type is a
5749boolean (:ref:`i1 <t_integer>`).
5750
5751If the operands are floating point vectors, then the result type is a
5752vector of boolean with the same number of elements as the operands being
5753compared.
5754
5755Arguments:
5756""""""""""
5757
5758The '``fcmp``' instruction takes three operands. The first operand is
5759the condition code indicating the kind of comparison to perform. It is
5760not a value, just a keyword. The possible condition code are:
5761
5762#. ``false``: no comparison, always returns false
5763#. ``oeq``: ordered and equal
5764#. ``ogt``: ordered and greater than
5765#. ``oge``: ordered and greater than or equal
5766#. ``olt``: ordered and less than
5767#. ``ole``: ordered and less than or equal
5768#. ``one``: ordered and not equal
5769#. ``ord``: ordered (no nans)
5770#. ``ueq``: unordered or equal
5771#. ``ugt``: unordered or greater than
5772#. ``uge``: unordered or greater than or equal
5773#. ``ult``: unordered or less than
5774#. ``ule``: unordered or less than or equal
5775#. ``une``: unordered or not equal
5776#. ``uno``: unordered (either nans)
5777#. ``true``: no comparison, always returns true
5778
5779*Ordered* means that neither operand is a QNAN while *unordered* means
5780that either operand may be a QNAN.
5781
5782Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5783point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5784type. They must have identical types.
5785
5786Semantics:
5787""""""""""
5788
5789The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5790condition code given as ``cond``. If the operands are vectors, then the
5791vectors are compared element by element. Each comparison performed
5792always yields an :ref:`i1 <t_integer>` result, as follows:
5793
5794#. ``false``: always yields ``false``, regardless of operands.
5795#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5796 is equal to ``op2``.
5797#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5798 is greater than ``op2``.
5799#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5800 is greater than or equal to ``op2``.
5801#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5802 is less than ``op2``.
5803#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5804 is less than or equal to ``op2``.
5805#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5806 is not equal to ``op2``.
5807#. ``ord``: yields ``true`` if both operands are not a QNAN.
5808#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5809 equal to ``op2``.
5810#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5811 greater than ``op2``.
5812#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5813 greater than or equal to ``op2``.
5814#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5815 less than ``op2``.
5816#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5817 less than or equal to ``op2``.
5818#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5819 not equal to ``op2``.
5820#. ``uno``: yields ``true`` if either operand is a QNAN.
5821#. ``true``: always yields ``true``, regardless of operands.
5822
5823Example:
5824""""""""
5825
5826.. code-block:: llvm
5827
5828 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5829 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5830 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5831 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5832
5833Note that the code generator does not yet support vector types with the
5834``fcmp`` instruction.
5835
5836.. _i_phi:
5837
5838'``phi``' Instruction
5839^^^^^^^^^^^^^^^^^^^^^
5840
5841Syntax:
5842"""""""
5843
5844::
5845
5846 <result> = phi <ty> [ <val0>, <label0>], ...
5847
5848Overview:
5849"""""""""
5850
5851The '``phi``' instruction is used to implement the φ node in the SSA
5852graph representing the function.
5853
5854Arguments:
5855""""""""""
5856
5857The type of the incoming values is specified with the first type field.
5858After this, the '``phi``' instruction takes a list of pairs as
5859arguments, with one pair for each predecessor basic block of the current
5860block. Only values of :ref:`first class <t_firstclass>` type may be used as
5861the value arguments to the PHI node. Only labels may be used as the
5862label arguments.
5863
5864There must be no non-phi instructions between the start of a basic block
5865and the PHI instructions: i.e. PHI instructions must be first in a basic
5866block.
5867
5868For the purposes of the SSA form, the use of each incoming value is
5869deemed to occur on the edge from the corresponding predecessor block to
5870the current block (but after any definition of an '``invoke``'
5871instruction's return value on the same edge).
5872
5873Semantics:
5874""""""""""
5875
5876At runtime, the '``phi``' instruction logically takes on the value
5877specified by the pair corresponding to the predecessor basic block that
5878executed just prior to the current block.
5879
5880Example:
5881""""""""
5882
5883.. code-block:: llvm
5884
5885 Loop: ; Infinite loop that counts from 0 on up...
5886 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5887 %nextindvar = add i32 %indvar, 1
5888 br label %Loop
5889
5890.. _i_select:
5891
5892'``select``' Instruction
5893^^^^^^^^^^^^^^^^^^^^^^^^
5894
5895Syntax:
5896"""""""
5897
5898::
5899
5900 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5901
5902 selty is either i1 or {<N x i1>}
5903
5904Overview:
5905"""""""""
5906
5907The '``select``' instruction is used to choose one value based on a
5908condition, without branching.
5909
5910Arguments:
5911""""""""""
5912
5913The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5914values indicating the condition, and two values of the same :ref:`first
5915class <t_firstclass>` type. If the val1/val2 are vectors and the
5916condition is a scalar, then entire vectors are selected, not individual
5917elements.
5918
5919Semantics:
5920""""""""""
5921
5922If the condition is an i1 and it evaluates to 1, the instruction returns
5923the first value argument; otherwise, it returns the second value
5924argument.
5925
5926If the condition is a vector of i1, then the value arguments must be
5927vectors of the same size, and the selection is done element by element.
5928
5929Example:
5930""""""""
5931
5932.. code-block:: llvm
5933
5934 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5935
5936.. _i_call:
5937
5938'``call``' Instruction
5939^^^^^^^^^^^^^^^^^^^^^^
5940
5941Syntax:
5942"""""""
5943
5944::
5945
5946 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5947
5948Overview:
5949"""""""""
5950
5951The '``call``' instruction represents a simple function call.
5952
5953Arguments:
5954""""""""""
5955
5956This instruction requires several arguments:
5957
5958#. The optional "tail" marker indicates that the callee function does
5959 not access any allocas or varargs in the caller. Note that calls may
5960 be marked "tail" even if they do not occur before a
5961 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5962 function call is eligible for tail call optimization, but `might not
5963 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5964 The code generator may optimize calls marked "tail" with either 1)
5965 automatic `sibling call
5966 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5967 callee have matching signatures, or 2) forced tail call optimization
5968 when the following extra requirements are met:
5969
5970 - Caller and callee both have the calling convention ``fastcc``.
5971 - The call is in tail position (ret immediately follows call and ret
5972 uses value of call or is void).
5973 - Option ``-tailcallopt`` is enabled, or
5974 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5975 - `Platform specific constraints are
5976 met. <CodeGenerator.html#tailcallopt>`_
5977
5978#. The optional "cconv" marker indicates which :ref:`calling
5979 convention <callingconv>` the call should use. If none is
5980 specified, the call defaults to using C calling conventions. The
5981 calling convention of the call must match the calling convention of
5982 the target function, or else the behavior is undefined.
5983#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5984 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5985 are valid here.
5986#. '``ty``': the type of the call instruction itself which is also the
5987 type of the return value. Functions that return no value are marked
5988 ``void``.
5989#. '``fnty``': shall be the signature of the pointer to function value
5990 being invoked. The argument types must match the types implied by
5991 this signature. This type can be omitted if the function is not
5992 varargs and if the function type does not return a pointer to a
5993 function.
5994#. '``fnptrval``': An LLVM value containing a pointer to a function to
5995 be invoked. In most cases, this is a direct function invocation, but
5996 indirect ``call``'s are just as possible, calling an arbitrary pointer
5997 to function value.
5998#. '``function args``': argument list whose types match the function
5999 signature argument types and parameter attributes. All arguments must
6000 be of :ref:`first class <t_firstclass>` type. If the function signature
6001 indicates the function accepts a variable number of arguments, the
6002 extra arguments can be specified.
6003#. The optional :ref:`function attributes <fnattrs>` list. Only
6004 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6005 attributes are valid here.
6006
6007Semantics:
6008""""""""""
6009
6010The '``call``' instruction is used to cause control flow to transfer to
6011a specified function, with its incoming arguments bound to the specified
6012values. Upon a '``ret``' instruction in the called function, control
6013flow continues with the instruction after the function call, and the
6014return value of the function is bound to the result argument.
6015
6016Example:
6017""""""""
6018
6019.. code-block:: llvm
6020
6021 %retval = call i32 @test(i32 %argc)
6022 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6023 %X = tail call i32 @foo() ; yields i32
6024 %Y = tail call fastcc i32 @foo() ; yields i32
6025 call void %foo(i8 97 signext)
6026
6027 %struct.A = type { i32, i8 }
6028 %r = call %struct.A @foo() ; yields { 32, i8 }
6029 %gr = extractvalue %struct.A %r, 0 ; yields i32
6030 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6031 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6032 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6033
6034llvm treats calls to some functions with names and arguments that match
6035the standard C99 library as being the C99 library functions, and may
6036perform optimizations or generate code for them under that assumption.
6037This is something we'd like to change in the future to provide better
6038support for freestanding environments and non-C-based languages.
6039
6040.. _i_va_arg:
6041
6042'``va_arg``' Instruction
6043^^^^^^^^^^^^^^^^^^^^^^^^
6044
6045Syntax:
6046"""""""
6047
6048::
6049
6050 <resultval> = va_arg <va_list*> <arglist>, <argty>
6051
6052Overview:
6053"""""""""
6054
6055The '``va_arg``' instruction is used to access arguments passed through
6056the "variable argument" area of a function call. It is used to implement
6057the ``va_arg`` macro in C.
6058
6059Arguments:
6060""""""""""
6061
6062This instruction takes a ``va_list*`` value and the type of the
6063argument. It returns a value of the specified argument type and
6064increments the ``va_list`` to point to the next argument. The actual
6065type of ``va_list`` is target specific.
6066
6067Semantics:
6068""""""""""
6069
6070The '``va_arg``' instruction loads an argument of the specified type
6071from the specified ``va_list`` and causes the ``va_list`` to point to
6072the next argument. For more information, see the variable argument
6073handling :ref:`Intrinsic Functions <int_varargs>`.
6074
6075It is legal for this instruction to be called in a function which does
6076not take a variable number of arguments, for example, the ``vfprintf``
6077function.
6078
6079``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6080function <intrinsics>` because it takes a type as an argument.
6081
6082Example:
6083""""""""
6084
6085See the :ref:`variable argument processing <int_varargs>` section.
6086
6087Note that the code generator does not yet fully support va\_arg on many
6088targets. Also, it does not currently support va\_arg with aggregate
6089types on any target.
6090
6091.. _i_landingpad:
6092
6093'``landingpad``' Instruction
6094^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6095
6096Syntax:
6097"""""""
6098
6099::
6100
6101 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6102 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6103
6104 <clause> := catch <type> <value>
6105 <clause> := filter <array constant type> <array constant>
6106
6107Overview:
6108"""""""""
6109
6110The '``landingpad``' instruction is used by `LLVM's exception handling
6111system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006112is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006113code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6114defines values supplied by the personality function (``pers_fn``) upon
6115re-entry to the function. The ``resultval`` has the type ``resultty``.
6116
6117Arguments:
6118""""""""""
6119
6120This instruction takes a ``pers_fn`` value. This is the personality
6121function associated with the unwinding mechanism. The optional
6122``cleanup`` flag indicates that the landing pad block is a cleanup.
6123
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006124A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006125contains the global variable representing the "type" that may be caught
6126or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6127clause takes an array constant as its argument. Use
6128"``[0 x i8**] undef``" for a filter which cannot throw. The
6129'``landingpad``' instruction must contain *at least* one ``clause`` or
6130the ``cleanup`` flag.
6131
6132Semantics:
6133""""""""""
6134
6135The '``landingpad``' instruction defines the values which are set by the
6136personality function (``pers_fn``) upon re-entry to the function, and
6137therefore the "result type" of the ``landingpad`` instruction. As with
6138calling conventions, how the personality function results are
6139represented in LLVM IR is target specific.
6140
6141The clauses are applied in order from top to bottom. If two
6142``landingpad`` instructions are merged together through inlining, the
6143clauses from the calling function are appended to the list of clauses.
6144When the call stack is being unwound due to an exception being thrown,
6145the exception is compared against each ``clause`` in turn. If it doesn't
6146match any of the clauses, and the ``cleanup`` flag is not set, then
6147unwinding continues further up the call stack.
6148
6149The ``landingpad`` instruction has several restrictions:
6150
6151- A landing pad block is a basic block which is the unwind destination
6152 of an '``invoke``' instruction.
6153- A landing pad block must have a '``landingpad``' instruction as its
6154 first non-PHI instruction.
6155- There can be only one '``landingpad``' instruction within the landing
6156 pad block.
6157- A basic block that is not a landing pad block may not include a
6158 '``landingpad``' instruction.
6159- All '``landingpad``' instructions in a function must have the same
6160 personality function.
6161
6162Example:
6163""""""""
6164
6165.. code-block:: llvm
6166
6167 ;; A landing pad which can catch an integer.
6168 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6169 catch i8** @_ZTIi
6170 ;; A landing pad that is a cleanup.
6171 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6172 cleanup
6173 ;; A landing pad which can catch an integer and can only throw a double.
6174 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6175 catch i8** @_ZTIi
6176 filter [1 x i8**] [@_ZTId]
6177
6178.. _intrinsics:
6179
6180Intrinsic Functions
6181===================
6182
6183LLVM supports the notion of an "intrinsic function". These functions
6184have well known names and semantics and are required to follow certain
6185restrictions. Overall, these intrinsics represent an extension mechanism
6186for the LLVM language that does not require changing all of the
6187transformations in LLVM when adding to the language (or the bitcode
6188reader/writer, the parser, etc...).
6189
6190Intrinsic function names must all start with an "``llvm.``" prefix. This
6191prefix is reserved in LLVM for intrinsic names; thus, function names may
6192not begin with this prefix. Intrinsic functions must always be external
6193functions: you cannot define the body of intrinsic functions. Intrinsic
6194functions may only be used in call or invoke instructions: it is illegal
6195to take the address of an intrinsic function. Additionally, because
6196intrinsic functions are part of the LLVM language, it is required if any
6197are added that they be documented here.
6198
6199Some intrinsic functions can be overloaded, i.e., the intrinsic
6200represents a family of functions that perform the same operation but on
6201different data types. Because LLVM can represent over 8 million
6202different integer types, overloading is used commonly to allow an
6203intrinsic function to operate on any integer type. One or more of the
6204argument types or the result type can be overloaded to accept any
6205integer type. Argument types may also be defined as exactly matching a
6206previous argument's type or the result type. This allows an intrinsic
6207function which accepts multiple arguments, but needs all of them to be
6208of the same type, to only be overloaded with respect to a single
6209argument or the result.
6210
6211Overloaded intrinsics will have the names of its overloaded argument
6212types encoded into its function name, each preceded by a period. Only
6213those types which are overloaded result in a name suffix. Arguments
6214whose type is matched against another type do not. For example, the
6215``llvm.ctpop`` function can take an integer of any width and returns an
6216integer of exactly the same integer width. This leads to a family of
6217functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6218``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6219overloaded, and only one type suffix is required. Because the argument's
6220type is matched against the return type, it does not require its own
6221name suffix.
6222
6223To learn how to add an intrinsic function, please see the `Extending
6224LLVM Guide <ExtendingLLVM.html>`_.
6225
6226.. _int_varargs:
6227
6228Variable Argument Handling Intrinsics
6229-------------------------------------
6230
6231Variable argument support is defined in LLVM with the
6232:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6233functions. These functions are related to the similarly named macros
6234defined in the ``<stdarg.h>`` header file.
6235
6236All of these functions operate on arguments that use a target-specific
6237value type "``va_list``". The LLVM assembly language reference manual
6238does not define what this type is, so all transformations should be
6239prepared to handle these functions regardless of the type used.
6240
6241This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6242variable argument handling intrinsic functions are used.
6243
6244.. code-block:: llvm
6245
6246 define i32 @test(i32 %X, ...) {
6247 ; Initialize variable argument processing
6248 %ap = alloca i8*
6249 %ap2 = bitcast i8** %ap to i8*
6250 call void @llvm.va_start(i8* %ap2)
6251
6252 ; Read a single integer argument
6253 %tmp = va_arg i8** %ap, i32
6254
6255 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6256 %aq = alloca i8*
6257 %aq2 = bitcast i8** %aq to i8*
6258 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6259 call void @llvm.va_end(i8* %aq2)
6260
6261 ; Stop processing of arguments.
6262 call void @llvm.va_end(i8* %ap2)
6263 ret i32 %tmp
6264 }
6265
6266 declare void @llvm.va_start(i8*)
6267 declare void @llvm.va_copy(i8*, i8*)
6268 declare void @llvm.va_end(i8*)
6269
6270.. _int_va_start:
6271
6272'``llvm.va_start``' Intrinsic
6273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6274
6275Syntax:
6276"""""""
6277
6278::
6279
6280 declare void %llvm.va_start(i8* <arglist>)
6281
6282Overview:
6283"""""""""
6284
6285The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6286subsequent use by ``va_arg``.
6287
6288Arguments:
6289""""""""""
6290
6291The argument is a pointer to a ``va_list`` element to initialize.
6292
6293Semantics:
6294""""""""""
6295
6296The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6297available in C. In a target-dependent way, it initializes the
6298``va_list`` element to which the argument points, so that the next call
6299to ``va_arg`` will produce the first variable argument passed to the
6300function. Unlike the C ``va_start`` macro, this intrinsic does not need
6301to know the last argument of the function as the compiler can figure
6302that out.
6303
6304'``llvm.va_end``' Intrinsic
6305^^^^^^^^^^^^^^^^^^^^^^^^^^^
6306
6307Syntax:
6308"""""""
6309
6310::
6311
6312 declare void @llvm.va_end(i8* <arglist>)
6313
6314Overview:
6315"""""""""
6316
6317The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6318initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6319
6320Arguments:
6321""""""""""
6322
6323The argument is a pointer to a ``va_list`` to destroy.
6324
6325Semantics:
6326""""""""""
6327
6328The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6329available in C. In a target-dependent way, it destroys the ``va_list``
6330element to which the argument points. Calls to
6331:ref:`llvm.va_start <int_va_start>` and
6332:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6333``llvm.va_end``.
6334
6335.. _int_va_copy:
6336
6337'``llvm.va_copy``' Intrinsic
6338^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6339
6340Syntax:
6341"""""""
6342
6343::
6344
6345 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6346
6347Overview:
6348"""""""""
6349
6350The '``llvm.va_copy``' intrinsic copies the current argument position
6351from the source argument list to the destination argument list.
6352
6353Arguments:
6354""""""""""
6355
6356The first argument is a pointer to a ``va_list`` element to initialize.
6357The second argument is a pointer to a ``va_list`` element to copy from.
6358
6359Semantics:
6360""""""""""
6361
6362The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6363available in C. In a target-dependent way, it copies the source
6364``va_list`` element into the destination ``va_list`` element. This
6365intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6366arbitrarily complex and require, for example, memory allocation.
6367
6368Accurate Garbage Collection Intrinsics
6369--------------------------------------
6370
6371LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6372(GC) requires the implementation and generation of these intrinsics.
6373These intrinsics allow identification of :ref:`GC roots on the
6374stack <int_gcroot>`, as well as garbage collector implementations that
6375require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6376Front-ends for type-safe garbage collected languages should generate
6377these intrinsics to make use of the LLVM garbage collectors. For more
6378details, see `Accurate Garbage Collection with
6379LLVM <GarbageCollection.html>`_.
6380
6381The garbage collection intrinsics only operate on objects in the generic
6382address space (address space zero).
6383
6384.. _int_gcroot:
6385
6386'``llvm.gcroot``' Intrinsic
6387^^^^^^^^^^^^^^^^^^^^^^^^^^^
6388
6389Syntax:
6390"""""""
6391
6392::
6393
6394 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6395
6396Overview:
6397"""""""""
6398
6399The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6400the code generator, and allows some metadata to be associated with it.
6401
6402Arguments:
6403""""""""""
6404
6405The first argument specifies the address of a stack object that contains
6406the root pointer. The second pointer (which must be either a constant or
6407a global value address) contains the meta-data to be associated with the
6408root.
6409
6410Semantics:
6411""""""""""
6412
6413At runtime, a call to this intrinsic stores a null pointer into the
6414"ptrloc" location. At compile-time, the code generator generates
6415information to allow the runtime to find the pointer at GC safe points.
6416The '``llvm.gcroot``' intrinsic may only be used in a function which
6417:ref:`specifies a GC algorithm <gc>`.
6418
6419.. _int_gcread:
6420
6421'``llvm.gcread``' Intrinsic
6422^^^^^^^^^^^^^^^^^^^^^^^^^^^
6423
6424Syntax:
6425"""""""
6426
6427::
6428
6429 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6430
6431Overview:
6432"""""""""
6433
6434The '``llvm.gcread``' intrinsic identifies reads of references from heap
6435locations, allowing garbage collector implementations that require read
6436barriers.
6437
6438Arguments:
6439""""""""""
6440
6441The second argument is the address to read from, which should be an
6442address allocated from the garbage collector. The first object is a
6443pointer to the start of the referenced object, if needed by the language
6444runtime (otherwise null).
6445
6446Semantics:
6447""""""""""
6448
6449The '``llvm.gcread``' intrinsic has the same semantics as a load
6450instruction, but may be replaced with substantially more complex code by
6451the garbage collector runtime, as needed. The '``llvm.gcread``'
6452intrinsic may only be used in a function which :ref:`specifies a GC
6453algorithm <gc>`.
6454
6455.. _int_gcwrite:
6456
6457'``llvm.gcwrite``' Intrinsic
6458^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6459
6460Syntax:
6461"""""""
6462
6463::
6464
6465 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6466
6467Overview:
6468"""""""""
6469
6470The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6471locations, allowing garbage collector implementations that require write
6472barriers (such as generational or reference counting collectors).
6473
6474Arguments:
6475""""""""""
6476
6477The first argument is the reference to store, the second is the start of
6478the object to store it to, and the third is the address of the field of
6479Obj to store to. If the runtime does not require a pointer to the
6480object, Obj may be null.
6481
6482Semantics:
6483""""""""""
6484
6485The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6486instruction, but may be replaced with substantially more complex code by
6487the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6488intrinsic may only be used in a function which :ref:`specifies a GC
6489algorithm <gc>`.
6490
6491Code Generator Intrinsics
6492-------------------------
6493
6494These intrinsics are provided by LLVM to expose special features that
6495may only be implemented with code generator support.
6496
6497'``llvm.returnaddress``' Intrinsic
6498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6499
6500Syntax:
6501"""""""
6502
6503::
6504
6505 declare i8 *@llvm.returnaddress(i32 <level>)
6506
6507Overview:
6508"""""""""
6509
6510The '``llvm.returnaddress``' intrinsic attempts to compute a
6511target-specific value indicating the return address of the current
6512function or one of its callers.
6513
6514Arguments:
6515""""""""""
6516
6517The argument to this intrinsic indicates which function to return the
6518address for. Zero indicates the calling function, one indicates its
6519caller, etc. The argument is **required** to be a constant integer
6520value.
6521
6522Semantics:
6523""""""""""
6524
6525The '``llvm.returnaddress``' intrinsic either returns a pointer
6526indicating the return address of the specified call frame, or zero if it
6527cannot be identified. The value returned by this intrinsic is likely to
6528be incorrect or 0 for arguments other than zero, so it should only be
6529used for debugging purposes.
6530
6531Note that calling this intrinsic does not prevent function inlining or
6532other aggressive transformations, so the value returned may not be that
6533of the obvious source-language caller.
6534
6535'``llvm.frameaddress``' Intrinsic
6536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6537
6538Syntax:
6539"""""""
6540
6541::
6542
6543 declare i8* @llvm.frameaddress(i32 <level>)
6544
6545Overview:
6546"""""""""
6547
6548The '``llvm.frameaddress``' intrinsic attempts to return the
6549target-specific frame pointer value for the specified stack frame.
6550
6551Arguments:
6552""""""""""
6553
6554The argument to this intrinsic indicates which function to return the
6555frame pointer for. Zero indicates the calling function, one indicates
6556its caller, etc. The argument is **required** to be a constant integer
6557value.
6558
6559Semantics:
6560""""""""""
6561
6562The '``llvm.frameaddress``' intrinsic either returns a pointer
6563indicating the frame address of the specified call frame, or zero if it
6564cannot be identified. The value returned by this intrinsic is likely to
6565be incorrect or 0 for arguments other than zero, so it should only be
6566used for debugging purposes.
6567
6568Note that calling this intrinsic does not prevent function inlining or
6569other aggressive transformations, so the value returned may not be that
6570of the obvious source-language caller.
6571
6572.. _int_stacksave:
6573
6574'``llvm.stacksave``' Intrinsic
6575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6576
6577Syntax:
6578"""""""
6579
6580::
6581
6582 declare i8* @llvm.stacksave()
6583
6584Overview:
6585"""""""""
6586
6587The '``llvm.stacksave``' intrinsic is used to remember the current state
6588of the function stack, for use with
6589:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6590implementing language features like scoped automatic variable sized
6591arrays in C99.
6592
6593Semantics:
6594""""""""""
6595
6596This intrinsic returns a opaque pointer value that can be passed to
6597:ref:`llvm.stackrestore <int_stackrestore>`. When an
6598``llvm.stackrestore`` intrinsic is executed with a value saved from
6599``llvm.stacksave``, it effectively restores the state of the stack to
6600the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6601practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6602were allocated after the ``llvm.stacksave`` was executed.
6603
6604.. _int_stackrestore:
6605
6606'``llvm.stackrestore``' Intrinsic
6607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6608
6609Syntax:
6610"""""""
6611
6612::
6613
6614 declare void @llvm.stackrestore(i8* %ptr)
6615
6616Overview:
6617"""""""""
6618
6619The '``llvm.stackrestore``' intrinsic is used to restore the state of
6620the function stack to the state it was in when the corresponding
6621:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6622useful for implementing language features like scoped automatic variable
6623sized arrays in C99.
6624
6625Semantics:
6626""""""""""
6627
6628See the description for :ref:`llvm.stacksave <int_stacksave>`.
6629
6630'``llvm.prefetch``' Intrinsic
6631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6632
6633Syntax:
6634"""""""
6635
6636::
6637
6638 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6639
6640Overview:
6641"""""""""
6642
6643The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6644insert a prefetch instruction if supported; otherwise, it is a noop.
6645Prefetches have no effect on the behavior of the program but can change
6646its performance characteristics.
6647
6648Arguments:
6649""""""""""
6650
6651``address`` is the address to be prefetched, ``rw`` is the specifier
6652determining if the fetch should be for a read (0) or write (1), and
6653``locality`` is a temporal locality specifier ranging from (0) - no
6654locality, to (3) - extremely local keep in cache. The ``cache type``
6655specifies whether the prefetch is performed on the data (1) or
6656instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6657arguments must be constant integers.
6658
6659Semantics:
6660""""""""""
6661
6662This intrinsic does not modify the behavior of the program. In
6663particular, prefetches cannot trap and do not produce a value. On
6664targets that support this intrinsic, the prefetch can provide hints to
6665the processor cache for better performance.
6666
6667'``llvm.pcmarker``' Intrinsic
6668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6669
6670Syntax:
6671"""""""
6672
6673::
6674
6675 declare void @llvm.pcmarker(i32 <id>)
6676
6677Overview:
6678"""""""""
6679
6680The '``llvm.pcmarker``' intrinsic is a method to export a Program
6681Counter (PC) in a region of code to simulators and other tools. The
6682method is target specific, but it is expected that the marker will use
6683exported symbols to transmit the PC of the marker. The marker makes no
6684guarantees that it will remain with any specific instruction after
6685optimizations. It is possible that the presence of a marker will inhibit
6686optimizations. The intended use is to be inserted after optimizations to
6687allow correlations of simulation runs.
6688
6689Arguments:
6690""""""""""
6691
6692``id`` is a numerical id identifying the marker.
6693
6694Semantics:
6695""""""""""
6696
6697This intrinsic does not modify the behavior of the program. Backends
6698that do not support this intrinsic may ignore it.
6699
6700'``llvm.readcyclecounter``' Intrinsic
6701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6702
6703Syntax:
6704"""""""
6705
6706::
6707
6708 declare i64 @llvm.readcyclecounter()
6709
6710Overview:
6711"""""""""
6712
6713The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6714counter register (or similar low latency, high accuracy clocks) on those
6715targets that support it. On X86, it should map to RDTSC. On Alpha, it
6716should map to RPCC. As the backing counters overflow quickly (on the
6717order of 9 seconds on alpha), this should only be used for small
6718timings.
6719
6720Semantics:
6721""""""""""
6722
6723When directly supported, reading the cycle counter should not modify any
6724memory. Implementations are allowed to either return a application
6725specific value or a system wide value. On backends without support, this
6726is lowered to a constant 0.
6727
Tim Northover5a02fc42013-05-23 19:11:20 +00006728Note that runtime support may be conditional on the privilege-level code is
6729running at and the host platform.
6730
Sean Silvaf722b002012-12-07 10:36:55 +00006731Standard C Library Intrinsics
6732-----------------------------
6733
6734LLVM provides intrinsics for a few important standard C library
6735functions. These intrinsics allow source-language front-ends to pass
6736information about the alignment of the pointer arguments to the code
6737generator, providing opportunity for more efficient code generation.
6738
6739.. _int_memcpy:
6740
6741'``llvm.memcpy``' Intrinsic
6742^^^^^^^^^^^^^^^^^^^^^^^^^^^
6743
6744Syntax:
6745"""""""
6746
6747This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6748integer bit width and for different address spaces. Not all targets
6749support all bit widths however.
6750
6751::
6752
6753 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6754 i32 <len>, i32 <align>, i1 <isvolatile>)
6755 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6756 i64 <len>, i32 <align>, i1 <isvolatile>)
6757
6758Overview:
6759"""""""""
6760
6761The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6762source location to the destination location.
6763
6764Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6765intrinsics do not return a value, takes extra alignment/isvolatile
6766arguments and the pointers can be in specified address spaces.
6767
6768Arguments:
6769""""""""""
6770
6771The first argument is a pointer to the destination, the second is a
6772pointer to the source. The third argument is an integer argument
6773specifying the number of bytes to copy, the fourth argument is the
6774alignment of the source and destination locations, and the fifth is a
6775boolean indicating a volatile access.
6776
6777If the call to this intrinsic has an alignment value that is not 0 or 1,
6778then the caller guarantees that both the source and destination pointers
6779are aligned to that boundary.
6780
6781If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6782a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6783very cleanly specified and it is unwise to depend on it.
6784
6785Semantics:
6786""""""""""
6787
6788The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6789source location to the destination location, which are not allowed to
6790overlap. It copies "len" bytes of memory over. If the argument is known
6791to be aligned to some boundary, this can be specified as the fourth
6792argument, otherwise it should be set to 0 or 1.
6793
6794'``llvm.memmove``' Intrinsic
6795^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6796
6797Syntax:
6798"""""""
6799
6800This is an overloaded intrinsic. You can use llvm.memmove on any integer
6801bit width and for different address space. Not all targets support all
6802bit widths however.
6803
6804::
6805
6806 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6807 i32 <len>, i32 <align>, i1 <isvolatile>)
6808 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6809 i64 <len>, i32 <align>, i1 <isvolatile>)
6810
6811Overview:
6812"""""""""
6813
6814The '``llvm.memmove.*``' intrinsics move a block of memory from the
6815source location to the destination location. It is similar to the
6816'``llvm.memcpy``' intrinsic but allows the two memory locations to
6817overlap.
6818
6819Note that, unlike the standard libc function, the ``llvm.memmove.*``
6820intrinsics do not return a value, takes extra alignment/isvolatile
6821arguments and the pointers can be in specified address spaces.
6822
6823Arguments:
6824""""""""""
6825
6826The first argument is a pointer to the destination, the second is a
6827pointer to the source. The third argument is an integer argument
6828specifying the number of bytes to copy, the fourth argument is the
6829alignment of the source and destination locations, and the fifth is a
6830boolean indicating a volatile access.
6831
6832If the call to this intrinsic has an alignment value that is not 0 or 1,
6833then the caller guarantees that the source and destination pointers are
6834aligned to that boundary.
6835
6836If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6837is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6838not very cleanly specified and it is unwise to depend on it.
6839
6840Semantics:
6841""""""""""
6842
6843The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6844source location to the destination location, which may overlap. It
6845copies "len" bytes of memory over. If the argument is known to be
6846aligned to some boundary, this can be specified as the fourth argument,
6847otherwise it should be set to 0 or 1.
6848
6849'``llvm.memset.*``' Intrinsics
6850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6851
6852Syntax:
6853"""""""
6854
6855This is an overloaded intrinsic. You can use llvm.memset on any integer
6856bit width and for different address spaces. However, not all targets
6857support all bit widths.
6858
6859::
6860
6861 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6862 i32 <len>, i32 <align>, i1 <isvolatile>)
6863 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6864 i64 <len>, i32 <align>, i1 <isvolatile>)
6865
6866Overview:
6867"""""""""
6868
6869The '``llvm.memset.*``' intrinsics fill a block of memory with a
6870particular byte value.
6871
6872Note that, unlike the standard libc function, the ``llvm.memset``
6873intrinsic does not return a value and takes extra alignment/volatile
6874arguments. Also, the destination can be in an arbitrary address space.
6875
6876Arguments:
6877""""""""""
6878
6879The first argument is a pointer to the destination to fill, the second
6880is the byte value with which to fill it, the third argument is an
6881integer argument specifying the number of bytes to fill, and the fourth
6882argument is the known alignment of the destination location.
6883
6884If the call to this intrinsic has an alignment value that is not 0 or 1,
6885then the caller guarantees that the destination pointer is aligned to
6886that boundary.
6887
6888If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6889a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6890very cleanly specified and it is unwise to depend on it.
6891
6892Semantics:
6893""""""""""
6894
6895The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6896at the destination location. If the argument is known to be aligned to
6897some boundary, this can be specified as the fourth argument, otherwise
6898it should be set to 0 or 1.
6899
6900'``llvm.sqrt.*``' Intrinsic
6901^^^^^^^^^^^^^^^^^^^^^^^^^^^
6902
6903Syntax:
6904"""""""
6905
6906This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6907floating point or vector of floating point type. Not all targets support
6908all types however.
6909
6910::
6911
6912 declare float @llvm.sqrt.f32(float %Val)
6913 declare double @llvm.sqrt.f64(double %Val)
6914 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6915 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6916 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6917
6918Overview:
6919"""""""""
6920
6921The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6922returning the same value as the libm '``sqrt``' functions would. Unlike
6923``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6924negative numbers other than -0.0 (which allows for better optimization,
6925because there is no need to worry about errno being set).
6926``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6927
6928Arguments:
6929""""""""""
6930
6931The argument and return value are floating point numbers of the same
6932type.
6933
6934Semantics:
6935""""""""""
6936
6937This function returns the sqrt of the specified operand if it is a
6938nonnegative floating point number.
6939
6940'``llvm.powi.*``' Intrinsic
6941^^^^^^^^^^^^^^^^^^^^^^^^^^^
6942
6943Syntax:
6944"""""""
6945
6946This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6947floating point or vector of floating point type. Not all targets support
6948all types however.
6949
6950::
6951
6952 declare float @llvm.powi.f32(float %Val, i32 %power)
6953 declare double @llvm.powi.f64(double %Val, i32 %power)
6954 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6955 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6956 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6957
6958Overview:
6959"""""""""
6960
6961The '``llvm.powi.*``' intrinsics return the first operand raised to the
6962specified (positive or negative) power. The order of evaluation of
6963multiplications is not defined. When a vector of floating point type is
6964used, the second argument remains a scalar integer value.
6965
6966Arguments:
6967""""""""""
6968
6969The second argument is an integer power, and the first is a value to
6970raise to that power.
6971
6972Semantics:
6973""""""""""
6974
6975This function returns the first value raised to the second power with an
6976unspecified sequence of rounding operations.
6977
6978'``llvm.sin.*``' Intrinsic
6979^^^^^^^^^^^^^^^^^^^^^^^^^^
6980
6981Syntax:
6982"""""""
6983
6984This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6985floating point or vector of floating point type. Not all targets support
6986all types however.
6987
6988::
6989
6990 declare float @llvm.sin.f32(float %Val)
6991 declare double @llvm.sin.f64(double %Val)
6992 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6993 declare fp128 @llvm.sin.f128(fp128 %Val)
6994 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6995
6996Overview:
6997"""""""""
6998
6999The '``llvm.sin.*``' intrinsics return the sine of the operand.
7000
7001Arguments:
7002""""""""""
7003
7004The argument and return value are floating point numbers of the same
7005type.
7006
7007Semantics:
7008""""""""""
7009
7010This function returns the sine of the specified operand, returning the
7011same values as the libm ``sin`` functions would, and handles error
7012conditions in the same way.
7013
7014'``llvm.cos.*``' Intrinsic
7015^^^^^^^^^^^^^^^^^^^^^^^^^^
7016
7017Syntax:
7018"""""""
7019
7020This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7021floating point or vector of floating point type. Not all targets support
7022all types however.
7023
7024::
7025
7026 declare float @llvm.cos.f32(float %Val)
7027 declare double @llvm.cos.f64(double %Val)
7028 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7029 declare fp128 @llvm.cos.f128(fp128 %Val)
7030 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7031
7032Overview:
7033"""""""""
7034
7035The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7036
7037Arguments:
7038""""""""""
7039
7040The argument and return value are floating point numbers of the same
7041type.
7042
7043Semantics:
7044""""""""""
7045
7046This function returns the cosine of the specified operand, returning the
7047same values as the libm ``cos`` functions would, and handles error
7048conditions in the same way.
7049
7050'``llvm.pow.*``' Intrinsic
7051^^^^^^^^^^^^^^^^^^^^^^^^^^
7052
7053Syntax:
7054"""""""
7055
7056This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7057floating point or vector of floating point type. Not all targets support
7058all types however.
7059
7060::
7061
7062 declare float @llvm.pow.f32(float %Val, float %Power)
7063 declare double @llvm.pow.f64(double %Val, double %Power)
7064 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7065 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7066 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7067
7068Overview:
7069"""""""""
7070
7071The '``llvm.pow.*``' intrinsics return the first operand raised to the
7072specified (positive or negative) power.
7073
7074Arguments:
7075""""""""""
7076
7077The second argument is a floating point power, and the first is a value
7078to raise to that power.
7079
7080Semantics:
7081""""""""""
7082
7083This function returns the first value raised to the second power,
7084returning the same values as the libm ``pow`` functions would, and
7085handles error conditions in the same way.
7086
7087'``llvm.exp.*``' Intrinsic
7088^^^^^^^^^^^^^^^^^^^^^^^^^^
7089
7090Syntax:
7091"""""""
7092
7093This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7094floating point or vector of floating point type. Not all targets support
7095all types however.
7096
7097::
7098
7099 declare float @llvm.exp.f32(float %Val)
7100 declare double @llvm.exp.f64(double %Val)
7101 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7102 declare fp128 @llvm.exp.f128(fp128 %Val)
7103 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7104
7105Overview:
7106"""""""""
7107
7108The '``llvm.exp.*``' intrinsics perform the exp function.
7109
7110Arguments:
7111""""""""""
7112
7113The argument and return value are floating point numbers of the same
7114type.
7115
7116Semantics:
7117""""""""""
7118
7119This function returns the same values as the libm ``exp`` functions
7120would, and handles error conditions in the same way.
7121
7122'``llvm.exp2.*``' Intrinsic
7123^^^^^^^^^^^^^^^^^^^^^^^^^^^
7124
7125Syntax:
7126"""""""
7127
7128This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7129floating point or vector of floating point type. Not all targets support
7130all types however.
7131
7132::
7133
7134 declare float @llvm.exp2.f32(float %Val)
7135 declare double @llvm.exp2.f64(double %Val)
7136 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7137 declare fp128 @llvm.exp2.f128(fp128 %Val)
7138 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7139
7140Overview:
7141"""""""""
7142
7143The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7144
7145Arguments:
7146""""""""""
7147
7148The argument and return value are floating point numbers of the same
7149type.
7150
7151Semantics:
7152""""""""""
7153
7154This function returns the same values as the libm ``exp2`` functions
7155would, and handles error conditions in the same way.
7156
7157'``llvm.log.*``' Intrinsic
7158^^^^^^^^^^^^^^^^^^^^^^^^^^
7159
7160Syntax:
7161"""""""
7162
7163This is an overloaded intrinsic. You can use ``llvm.log`` on any
7164floating point or vector of floating point type. Not all targets support
7165all types however.
7166
7167::
7168
7169 declare float @llvm.log.f32(float %Val)
7170 declare double @llvm.log.f64(double %Val)
7171 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7172 declare fp128 @llvm.log.f128(fp128 %Val)
7173 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7174
7175Overview:
7176"""""""""
7177
7178The '``llvm.log.*``' intrinsics perform the log function.
7179
7180Arguments:
7181""""""""""
7182
7183The argument and return value are floating point numbers of the same
7184type.
7185
7186Semantics:
7187""""""""""
7188
7189This function returns the same values as the libm ``log`` functions
7190would, and handles error conditions in the same way.
7191
7192'``llvm.log10.*``' Intrinsic
7193^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7194
7195Syntax:
7196"""""""
7197
7198This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7199floating point or vector of floating point type. Not all targets support
7200all types however.
7201
7202::
7203
7204 declare float @llvm.log10.f32(float %Val)
7205 declare double @llvm.log10.f64(double %Val)
7206 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7207 declare fp128 @llvm.log10.f128(fp128 %Val)
7208 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7209
7210Overview:
7211"""""""""
7212
7213The '``llvm.log10.*``' intrinsics perform the log10 function.
7214
7215Arguments:
7216""""""""""
7217
7218The argument and return value are floating point numbers of the same
7219type.
7220
7221Semantics:
7222""""""""""
7223
7224This function returns the same values as the libm ``log10`` functions
7225would, and handles error conditions in the same way.
7226
7227'``llvm.log2.*``' Intrinsic
7228^^^^^^^^^^^^^^^^^^^^^^^^^^^
7229
7230Syntax:
7231"""""""
7232
7233This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7234floating point or vector of floating point type. Not all targets support
7235all types however.
7236
7237::
7238
7239 declare float @llvm.log2.f32(float %Val)
7240 declare double @llvm.log2.f64(double %Val)
7241 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7242 declare fp128 @llvm.log2.f128(fp128 %Val)
7243 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7244
7245Overview:
7246"""""""""
7247
7248The '``llvm.log2.*``' intrinsics perform the log2 function.
7249
7250Arguments:
7251""""""""""
7252
7253The argument and return value are floating point numbers of the same
7254type.
7255
7256Semantics:
7257""""""""""
7258
7259This function returns the same values as the libm ``log2`` functions
7260would, and handles error conditions in the same way.
7261
7262'``llvm.fma.*``' Intrinsic
7263^^^^^^^^^^^^^^^^^^^^^^^^^^
7264
7265Syntax:
7266"""""""
7267
7268This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7269floating point or vector of floating point type. Not all targets support
7270all types however.
7271
7272::
7273
7274 declare float @llvm.fma.f32(float %a, float %b, float %c)
7275 declare double @llvm.fma.f64(double %a, double %b, double %c)
7276 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7277 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7278 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7279
7280Overview:
7281"""""""""
7282
7283The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7284operation.
7285
7286Arguments:
7287""""""""""
7288
7289The argument and return value are floating point numbers of the same
7290type.
7291
7292Semantics:
7293""""""""""
7294
7295This function returns the same values as the libm ``fma`` functions
7296would.
7297
7298'``llvm.fabs.*``' Intrinsic
7299^^^^^^^^^^^^^^^^^^^^^^^^^^^
7300
7301Syntax:
7302"""""""
7303
7304This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7305floating point or vector of floating point type. Not all targets support
7306all types however.
7307
7308::
7309
7310 declare float @llvm.fabs.f32(float %Val)
7311 declare double @llvm.fabs.f64(double %Val)
7312 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7313 declare fp128 @llvm.fabs.f128(fp128 %Val)
7314 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7315
7316Overview:
7317"""""""""
7318
7319The '``llvm.fabs.*``' intrinsics return the absolute value of the
7320operand.
7321
7322Arguments:
7323""""""""""
7324
7325The argument and return value are floating point numbers of the same
7326type.
7327
7328Semantics:
7329""""""""""
7330
7331This function returns the same values as the libm ``fabs`` functions
7332would, and handles error conditions in the same way.
7333
7334'``llvm.floor.*``' Intrinsic
7335^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7336
7337Syntax:
7338"""""""
7339
7340This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7341floating point or vector of floating point type. Not all targets support
7342all types however.
7343
7344::
7345
7346 declare float @llvm.floor.f32(float %Val)
7347 declare double @llvm.floor.f64(double %Val)
7348 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7349 declare fp128 @llvm.floor.f128(fp128 %Val)
7350 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7351
7352Overview:
7353"""""""""
7354
7355The '``llvm.floor.*``' intrinsics return the floor of the operand.
7356
7357Arguments:
7358""""""""""
7359
7360The argument and return value are floating point numbers of the same
7361type.
7362
7363Semantics:
7364""""""""""
7365
7366This function returns the same values as the libm ``floor`` functions
7367would, and handles error conditions in the same way.
7368
7369'``llvm.ceil.*``' Intrinsic
7370^^^^^^^^^^^^^^^^^^^^^^^^^^^
7371
7372Syntax:
7373"""""""
7374
7375This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7376floating point or vector of floating point type. Not all targets support
7377all types however.
7378
7379::
7380
7381 declare float @llvm.ceil.f32(float %Val)
7382 declare double @llvm.ceil.f64(double %Val)
7383 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7384 declare fp128 @llvm.ceil.f128(fp128 %Val)
7385 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7386
7387Overview:
7388"""""""""
7389
7390The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7391
7392Arguments:
7393""""""""""
7394
7395The argument and return value are floating point numbers of the same
7396type.
7397
7398Semantics:
7399""""""""""
7400
7401This function returns the same values as the libm ``ceil`` functions
7402would, and handles error conditions in the same way.
7403
7404'``llvm.trunc.*``' Intrinsic
7405^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7406
7407Syntax:
7408"""""""
7409
7410This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7411floating point or vector of floating point type. Not all targets support
7412all types however.
7413
7414::
7415
7416 declare float @llvm.trunc.f32(float %Val)
7417 declare double @llvm.trunc.f64(double %Val)
7418 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7419 declare fp128 @llvm.trunc.f128(fp128 %Val)
7420 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7421
7422Overview:
7423"""""""""
7424
7425The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7426nearest integer not larger in magnitude than the operand.
7427
7428Arguments:
7429""""""""""
7430
7431The argument and return value are floating point numbers of the same
7432type.
7433
7434Semantics:
7435""""""""""
7436
7437This function returns the same values as the libm ``trunc`` functions
7438would, and handles error conditions in the same way.
7439
7440'``llvm.rint.*``' Intrinsic
7441^^^^^^^^^^^^^^^^^^^^^^^^^^^
7442
7443Syntax:
7444"""""""
7445
7446This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7447floating point or vector of floating point type. Not all targets support
7448all types however.
7449
7450::
7451
7452 declare float @llvm.rint.f32(float %Val)
7453 declare double @llvm.rint.f64(double %Val)
7454 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7455 declare fp128 @llvm.rint.f128(fp128 %Val)
7456 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7457
7458Overview:
7459"""""""""
7460
7461The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7462nearest integer. It may raise an inexact floating-point exception if the
7463operand isn't an integer.
7464
7465Arguments:
7466""""""""""
7467
7468The argument and return value are floating point numbers of the same
7469type.
7470
7471Semantics:
7472""""""""""
7473
7474This function returns the same values as the libm ``rint`` functions
7475would, and handles error conditions in the same way.
7476
7477'``llvm.nearbyint.*``' Intrinsic
7478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7479
7480Syntax:
7481"""""""
7482
7483This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7484floating point or vector of floating point type. Not all targets support
7485all types however.
7486
7487::
7488
7489 declare float @llvm.nearbyint.f32(float %Val)
7490 declare double @llvm.nearbyint.f64(double %Val)
7491 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7492 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7493 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7494
7495Overview:
7496"""""""""
7497
7498The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7499nearest integer.
7500
7501Arguments:
7502""""""""""
7503
7504The argument and return value are floating point numbers of the same
7505type.
7506
7507Semantics:
7508""""""""""
7509
7510This function returns the same values as the libm ``nearbyint``
7511functions would, and handles error conditions in the same way.
7512
7513Bit Manipulation Intrinsics
7514---------------------------
7515
7516LLVM provides intrinsics for a few important bit manipulation
7517operations. These allow efficient code generation for some algorithms.
7518
7519'``llvm.bswap.*``' Intrinsics
7520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7521
7522Syntax:
7523"""""""
7524
7525This is an overloaded intrinsic function. You can use bswap on any
7526integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7527
7528::
7529
7530 declare i16 @llvm.bswap.i16(i16 <id>)
7531 declare i32 @llvm.bswap.i32(i32 <id>)
7532 declare i64 @llvm.bswap.i64(i64 <id>)
7533
7534Overview:
7535"""""""""
7536
7537The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7538values with an even number of bytes (positive multiple of 16 bits).
7539These are useful for performing operations on data that is not in the
7540target's native byte order.
7541
7542Semantics:
7543""""""""""
7544
7545The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7546and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7547intrinsic returns an i32 value that has the four bytes of the input i32
7548swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7549returned i32 will have its bytes in 3, 2, 1, 0 order. The
7550``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7551concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7552respectively).
7553
7554'``llvm.ctpop.*``' Intrinsic
7555^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7556
7557Syntax:
7558"""""""
7559
7560This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7561bit width, or on any vector with integer elements. Not all targets
7562support all bit widths or vector types, however.
7563
7564::
7565
7566 declare i8 @llvm.ctpop.i8(i8 <src>)
7567 declare i16 @llvm.ctpop.i16(i16 <src>)
7568 declare i32 @llvm.ctpop.i32(i32 <src>)
7569 declare i64 @llvm.ctpop.i64(i64 <src>)
7570 declare i256 @llvm.ctpop.i256(i256 <src>)
7571 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7572
7573Overview:
7574"""""""""
7575
7576The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7577in a value.
7578
7579Arguments:
7580""""""""""
7581
7582The only argument is the value to be counted. The argument may be of any
7583integer type, or a vector with integer elements. The return type must
7584match the argument type.
7585
7586Semantics:
7587""""""""""
7588
7589The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7590each element of a vector.
7591
7592'``llvm.ctlz.*``' Intrinsic
7593^^^^^^^^^^^^^^^^^^^^^^^^^^^
7594
7595Syntax:
7596"""""""
7597
7598This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7599integer bit width, or any vector whose elements are integers. Not all
7600targets support all bit widths or vector types, however.
7601
7602::
7603
7604 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7605 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7606 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7607 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7608 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7609 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7610
7611Overview:
7612"""""""""
7613
7614The '``llvm.ctlz``' family of intrinsic functions counts the number of
7615leading zeros in a variable.
7616
7617Arguments:
7618""""""""""
7619
7620The first argument is the value to be counted. This argument may be of
7621any integer type, or a vectory with integer element type. The return
7622type must match the first argument type.
7623
7624The second argument must be a constant and is a flag to indicate whether
7625the intrinsic should ensure that a zero as the first argument produces a
7626defined result. Historically some architectures did not provide a
7627defined result for zero values as efficiently, and many algorithms are
7628now predicated on avoiding zero-value inputs.
7629
7630Semantics:
7631""""""""""
7632
7633The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7634zeros in a variable, or within each element of the vector. If
7635``src == 0`` then the result is the size in bits of the type of ``src``
7636if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7637``llvm.ctlz(i32 2) = 30``.
7638
7639'``llvm.cttz.*``' Intrinsic
7640^^^^^^^^^^^^^^^^^^^^^^^^^^^
7641
7642Syntax:
7643"""""""
7644
7645This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7646integer bit width, or any vector of integer elements. Not all targets
7647support all bit widths or vector types, however.
7648
7649::
7650
7651 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7652 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7653 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7654 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7655 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7656 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7657
7658Overview:
7659"""""""""
7660
7661The '``llvm.cttz``' family of intrinsic functions counts the number of
7662trailing zeros.
7663
7664Arguments:
7665""""""""""
7666
7667The first argument is the value to be counted. This argument may be of
7668any integer type, or a vectory with integer element type. The return
7669type must match the first argument type.
7670
7671The second argument must be a constant and is a flag to indicate whether
7672the intrinsic should ensure that a zero as the first argument produces a
7673defined result. Historically some architectures did not provide a
7674defined result for zero values as efficiently, and many algorithms are
7675now predicated on avoiding zero-value inputs.
7676
7677Semantics:
7678""""""""""
7679
7680The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7681zeros in a variable, or within each element of a vector. If ``src == 0``
7682then the result is the size in bits of the type of ``src`` if
7683``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7684``llvm.cttz(2) = 1``.
7685
7686Arithmetic with Overflow Intrinsics
7687-----------------------------------
7688
7689LLVM provides intrinsics for some arithmetic with overflow operations.
7690
7691'``llvm.sadd.with.overflow.*``' Intrinsics
7692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7693
7694Syntax:
7695"""""""
7696
7697This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7698on any integer bit width.
7699
7700::
7701
7702 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7703 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7704 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7705
7706Overview:
7707"""""""""
7708
7709The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7710a signed addition of the two arguments, and indicate whether an overflow
7711occurred during the signed summation.
7712
7713Arguments:
7714""""""""""
7715
7716The arguments (%a and %b) and the first element of the result structure
7717may be of integer types of any bit width, but they must have the same
7718bit width. The second element of the result structure must be of type
7719``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7720addition.
7721
7722Semantics:
7723""""""""""
7724
7725The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007726a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007727first element of which is the signed summation, and the second element
7728of which is a bit specifying if the signed summation resulted in an
7729overflow.
7730
7731Examples:
7732"""""""""
7733
7734.. code-block:: llvm
7735
7736 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7737 %sum = extractvalue {i32, i1} %res, 0
7738 %obit = extractvalue {i32, i1} %res, 1
7739 br i1 %obit, label %overflow, label %normal
7740
7741'``llvm.uadd.with.overflow.*``' Intrinsics
7742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7743
7744Syntax:
7745"""""""
7746
7747This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7748on any integer bit width.
7749
7750::
7751
7752 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7753 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7754 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7755
7756Overview:
7757"""""""""
7758
7759The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7760an unsigned addition of the two arguments, and indicate whether a carry
7761occurred during the unsigned summation.
7762
7763Arguments:
7764""""""""""
7765
7766The arguments (%a and %b) and the first element of the result structure
7767may be of integer types of any bit width, but they must have the same
7768bit width. The second element of the result structure must be of type
7769``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7770addition.
7771
7772Semantics:
7773""""""""""
7774
7775The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007776an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007777first element of which is the sum, and the second element of which is a
7778bit specifying if the unsigned summation resulted in a carry.
7779
7780Examples:
7781"""""""""
7782
7783.. code-block:: llvm
7784
7785 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7786 %sum = extractvalue {i32, i1} %res, 0
7787 %obit = extractvalue {i32, i1} %res, 1
7788 br i1 %obit, label %carry, label %normal
7789
7790'``llvm.ssub.with.overflow.*``' Intrinsics
7791^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7792
7793Syntax:
7794"""""""
7795
7796This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7797on any integer bit width.
7798
7799::
7800
7801 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7802 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7803 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7804
7805Overview:
7806"""""""""
7807
7808The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7809a signed subtraction of the two arguments, and indicate whether an
7810overflow occurred during the signed subtraction.
7811
7812Arguments:
7813""""""""""
7814
7815The arguments (%a and %b) and the first element of the result structure
7816may be of integer types of any bit width, but they must have the same
7817bit width. The second element of the result structure must be of type
7818``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7819subtraction.
7820
7821Semantics:
7822""""""""""
7823
7824The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007825a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007826first element of which is the subtraction, and the second element of
7827which is a bit specifying if the signed subtraction resulted in an
7828overflow.
7829
7830Examples:
7831"""""""""
7832
7833.. code-block:: llvm
7834
7835 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7836 %sum = extractvalue {i32, i1} %res, 0
7837 %obit = extractvalue {i32, i1} %res, 1
7838 br i1 %obit, label %overflow, label %normal
7839
7840'``llvm.usub.with.overflow.*``' Intrinsics
7841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7842
7843Syntax:
7844"""""""
7845
7846This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7847on any integer bit width.
7848
7849::
7850
7851 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7852 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7853 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7854
7855Overview:
7856"""""""""
7857
7858The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7859an unsigned subtraction of the two arguments, and indicate whether an
7860overflow occurred during the unsigned subtraction.
7861
7862Arguments:
7863""""""""""
7864
7865The arguments (%a and %b) and the first element of the result structure
7866may be of integer types of any bit width, but they must have the same
7867bit width. The second element of the result structure must be of type
7868``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7869subtraction.
7870
7871Semantics:
7872""""""""""
7873
7874The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007875an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007876the first element of which is the subtraction, and the second element of
7877which is a bit specifying if the unsigned subtraction resulted in an
7878overflow.
7879
7880Examples:
7881"""""""""
7882
7883.. code-block:: llvm
7884
7885 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7886 %sum = extractvalue {i32, i1} %res, 0
7887 %obit = extractvalue {i32, i1} %res, 1
7888 br i1 %obit, label %overflow, label %normal
7889
7890'``llvm.smul.with.overflow.*``' Intrinsics
7891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7892
7893Syntax:
7894"""""""
7895
7896This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7897on any integer bit width.
7898
7899::
7900
7901 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7902 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7903 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7904
7905Overview:
7906"""""""""
7907
7908The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7909a signed multiplication of the two arguments, and indicate whether an
7910overflow occurred during the signed multiplication.
7911
7912Arguments:
7913""""""""""
7914
7915The arguments (%a and %b) and the first element of the result structure
7916may be of integer types of any bit width, but they must have the same
7917bit width. The second element of the result structure must be of type
7918``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7919multiplication.
7920
7921Semantics:
7922""""""""""
7923
7924The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007925a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007926the first element of which is the multiplication, and the second element
7927of which is a bit specifying if the signed multiplication resulted in an
7928overflow.
7929
7930Examples:
7931"""""""""
7932
7933.. code-block:: llvm
7934
7935 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7936 %sum = extractvalue {i32, i1} %res, 0
7937 %obit = extractvalue {i32, i1} %res, 1
7938 br i1 %obit, label %overflow, label %normal
7939
7940'``llvm.umul.with.overflow.*``' Intrinsics
7941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7942
7943Syntax:
7944"""""""
7945
7946This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7947on any integer bit width.
7948
7949::
7950
7951 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7952 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7953 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7954
7955Overview:
7956"""""""""
7957
7958The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7959a unsigned multiplication of the two arguments, and indicate whether an
7960overflow occurred during the unsigned multiplication.
7961
7962Arguments:
7963""""""""""
7964
7965The arguments (%a and %b) and the first element of the result structure
7966may be of integer types of any bit width, but they must have the same
7967bit width. The second element of the result structure must be of type
7968``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7969multiplication.
7970
7971Semantics:
7972""""""""""
7973
7974The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007975an unsigned multiplication of the two arguments. They return a structure ---
7976the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007977element of which is a bit specifying if the unsigned multiplication
7978resulted in an overflow.
7979
7980Examples:
7981"""""""""
7982
7983.. code-block:: llvm
7984
7985 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7986 %sum = extractvalue {i32, i1} %res, 0
7987 %obit = extractvalue {i32, i1} %res, 1
7988 br i1 %obit, label %overflow, label %normal
7989
7990Specialised Arithmetic Intrinsics
7991---------------------------------
7992
7993'``llvm.fmuladd.*``' Intrinsic
7994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7995
7996Syntax:
7997"""""""
7998
7999::
8000
8001 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8002 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8003
8004Overview:
8005"""""""""
8006
8007The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008008expressions that can be fused if the code generator determines that (a) the
8009target instruction set has support for a fused operation, and (b) that the
8010fused operation is more efficient than the equivalent, separate pair of mul
8011and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008012
8013Arguments:
8014""""""""""
8015
8016The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8017multiplicands, a and b, and an addend c.
8018
8019Semantics:
8020""""""""""
8021
8022The expression:
8023
8024::
8025
8026 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8027
8028is equivalent to the expression a \* b + c, except that rounding will
8029not be performed between the multiplication and addition steps if the
8030code generator fuses the operations. Fusion is not guaranteed, even if
8031the target platform supports it. If a fused multiply-add is required the
8032corresponding llvm.fma.\* intrinsic function should be used instead.
8033
8034Examples:
8035"""""""""
8036
8037.. code-block:: llvm
8038
8039 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8040
8041Half Precision Floating Point Intrinsics
8042----------------------------------------
8043
8044For most target platforms, half precision floating point is a
8045storage-only format. This means that it is a dense encoding (in memory)
8046but does not support computation in the format.
8047
8048This means that code must first load the half-precision floating point
8049value as an i16, then convert it to float with
8050:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8051then be performed on the float value (including extending to double
8052etc). To store the value back to memory, it is first converted to float
8053if needed, then converted to i16 with
8054:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8055i16 value.
8056
8057.. _int_convert_to_fp16:
8058
8059'``llvm.convert.to.fp16``' Intrinsic
8060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8061
8062Syntax:
8063"""""""
8064
8065::
8066
8067 declare i16 @llvm.convert.to.fp16(f32 %a)
8068
8069Overview:
8070"""""""""
8071
8072The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8073from single precision floating point format to half precision floating
8074point format.
8075
8076Arguments:
8077""""""""""
8078
8079The intrinsic function contains single argument - the value to be
8080converted.
8081
8082Semantics:
8083""""""""""
8084
8085The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8086from single precision floating point format to half precision floating
8087point format. The return value is an ``i16`` which contains the
8088converted number.
8089
8090Examples:
8091"""""""""
8092
8093.. code-block:: llvm
8094
8095 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8096 store i16 %res, i16* @x, align 2
8097
8098.. _int_convert_from_fp16:
8099
8100'``llvm.convert.from.fp16``' Intrinsic
8101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8102
8103Syntax:
8104"""""""
8105
8106::
8107
8108 declare f32 @llvm.convert.from.fp16(i16 %a)
8109
8110Overview:
8111"""""""""
8112
8113The '``llvm.convert.from.fp16``' intrinsic function performs a
8114conversion from half precision floating point format to single precision
8115floating point format.
8116
8117Arguments:
8118""""""""""
8119
8120The intrinsic function contains single argument - the value to be
8121converted.
8122
8123Semantics:
8124""""""""""
8125
8126The '``llvm.convert.from.fp16``' intrinsic function performs a
8127conversion from half single precision floating point format to single
8128precision floating point format. The input half-float value is
8129represented by an ``i16`` value.
8130
8131Examples:
8132"""""""""
8133
8134.. code-block:: llvm
8135
8136 %a = load i16* @x, align 2
8137 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8138
8139Debugger Intrinsics
8140-------------------
8141
8142The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8143prefix), are described in the `LLVM Source Level
8144Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8145document.
8146
8147Exception Handling Intrinsics
8148-----------------------------
8149
8150The LLVM exception handling intrinsics (which all start with
8151``llvm.eh.`` prefix), are described in the `LLVM Exception
8152Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8153
8154.. _int_trampoline:
8155
8156Trampoline Intrinsics
8157---------------------
8158
8159These intrinsics make it possible to excise one parameter, marked with
8160the :ref:`nest <nest>` attribute, from a function. The result is a
8161callable function pointer lacking the nest parameter - the caller does
8162not need to provide a value for it. Instead, the value to use is stored
8163in advance in a "trampoline", a block of memory usually allocated on the
8164stack, which also contains code to splice the nest value into the
8165argument list. This is used to implement the GCC nested function address
8166extension.
8167
8168For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8169then the resulting function pointer has signature ``i32 (i32, i32)*``.
8170It can be created as follows:
8171
8172.. code-block:: llvm
8173
8174 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8175 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8176 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8177 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8178 %fp = bitcast i8* %p to i32 (i32, i32)*
8179
8180The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8181``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8182
8183.. _int_it:
8184
8185'``llvm.init.trampoline``' Intrinsic
8186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8187
8188Syntax:
8189"""""""
8190
8191::
8192
8193 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8194
8195Overview:
8196"""""""""
8197
8198This fills the memory pointed to by ``tramp`` with executable code,
8199turning it into a trampoline.
8200
8201Arguments:
8202""""""""""
8203
8204The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8205pointers. The ``tramp`` argument must point to a sufficiently large and
8206sufficiently aligned block of memory; this memory is written to by the
8207intrinsic. Note that the size and the alignment are target-specific -
8208LLVM currently provides no portable way of determining them, so a
8209front-end that generates this intrinsic needs to have some
8210target-specific knowledge. The ``func`` argument must hold a function
8211bitcast to an ``i8*``.
8212
8213Semantics:
8214""""""""""
8215
8216The block of memory pointed to by ``tramp`` is filled with target
8217dependent code, turning it into a function. Then ``tramp`` needs to be
8218passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8219be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8220function's signature is the same as that of ``func`` with any arguments
8221marked with the ``nest`` attribute removed. At most one such ``nest``
8222argument is allowed, and it must be of pointer type. Calling the new
8223function is equivalent to calling ``func`` with the same argument list,
8224but with ``nval`` used for the missing ``nest`` argument. If, after
8225calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8226modified, then the effect of any later call to the returned function
8227pointer is undefined.
8228
8229.. _int_at:
8230
8231'``llvm.adjust.trampoline``' Intrinsic
8232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8233
8234Syntax:
8235"""""""
8236
8237::
8238
8239 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8240
8241Overview:
8242"""""""""
8243
8244This performs any required machine-specific adjustment to the address of
8245a trampoline (passed as ``tramp``).
8246
8247Arguments:
8248""""""""""
8249
8250``tramp`` must point to a block of memory which already has trampoline
8251code filled in by a previous call to
8252:ref:`llvm.init.trampoline <int_it>`.
8253
8254Semantics:
8255""""""""""
8256
8257On some architectures the address of the code to be executed needs to be
8258different to the address where the trampoline is actually stored. This
8259intrinsic returns the executable address corresponding to ``tramp``
8260after performing the required machine specific adjustments. The pointer
8261returned can then be :ref:`bitcast and executed <int_trampoline>`.
8262
8263Memory Use Markers
8264------------------
8265
8266This class of intrinsics exists to information about the lifetime of
8267memory objects and ranges where variables are immutable.
8268
8269'``llvm.lifetime.start``' Intrinsic
8270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8271
8272Syntax:
8273"""""""
8274
8275::
8276
8277 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8278
8279Overview:
8280"""""""""
8281
8282The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8283object's lifetime.
8284
8285Arguments:
8286""""""""""
8287
8288The first argument is a constant integer representing the size of the
8289object, or -1 if it is variable sized. The second argument is a pointer
8290to the object.
8291
8292Semantics:
8293""""""""""
8294
8295This intrinsic indicates that before this point in the code, the value
8296of the memory pointed to by ``ptr`` is dead. This means that it is known
8297to never be used and has an undefined value. A load from the pointer
8298that precedes this intrinsic can be replaced with ``'undef'``.
8299
8300'``llvm.lifetime.end``' Intrinsic
8301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8302
8303Syntax:
8304"""""""
8305
8306::
8307
8308 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8309
8310Overview:
8311"""""""""
8312
8313The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8314object's lifetime.
8315
8316Arguments:
8317""""""""""
8318
8319The first argument is a constant integer representing the size of the
8320object, or -1 if it is variable sized. The second argument is a pointer
8321to the object.
8322
8323Semantics:
8324""""""""""
8325
8326This intrinsic indicates that after this point in the code, the value of
8327the memory pointed to by ``ptr`` is dead. This means that it is known to
8328never be used and has an undefined value. Any stores into the memory
8329object following this intrinsic may be removed as dead.
8330
8331'``llvm.invariant.start``' Intrinsic
8332^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8333
8334Syntax:
8335"""""""
8336
8337::
8338
8339 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8340
8341Overview:
8342"""""""""
8343
8344The '``llvm.invariant.start``' intrinsic specifies that the contents of
8345a memory object will not change.
8346
8347Arguments:
8348""""""""""
8349
8350The first argument is a constant integer representing the size of the
8351object, or -1 if it is variable sized. The second argument is a pointer
8352to the object.
8353
8354Semantics:
8355""""""""""
8356
8357This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8358the return value, the referenced memory location is constant and
8359unchanging.
8360
8361'``llvm.invariant.end``' Intrinsic
8362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8363
8364Syntax:
8365"""""""
8366
8367::
8368
8369 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8370
8371Overview:
8372"""""""""
8373
8374The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8375memory object are mutable.
8376
8377Arguments:
8378""""""""""
8379
8380The first argument is the matching ``llvm.invariant.start`` intrinsic.
8381The second argument is a constant integer representing the size of the
8382object, or -1 if it is variable sized and the third argument is a
8383pointer to the object.
8384
8385Semantics:
8386""""""""""
8387
8388This intrinsic indicates that the memory is mutable again.
8389
8390General Intrinsics
8391------------------
8392
8393This class of intrinsics is designed to be generic and has no specific
8394purpose.
8395
8396'``llvm.var.annotation``' Intrinsic
8397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8398
8399Syntax:
8400"""""""
8401
8402::
8403
8404 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8405
8406Overview:
8407"""""""""
8408
8409The '``llvm.var.annotation``' intrinsic.
8410
8411Arguments:
8412""""""""""
8413
8414The first argument is a pointer to a value, the second is a pointer to a
8415global string, the third is a pointer to a global string which is the
8416source file name, and the last argument is the line number.
8417
8418Semantics:
8419""""""""""
8420
8421This intrinsic allows annotation of local variables with arbitrary
8422strings. This can be useful for special purpose optimizations that want
8423to look for these annotations. These have no other defined use; they are
8424ignored by code generation and optimization.
8425
Michael Gottesman872b4e52013-03-26 00:34:27 +00008426'``llvm.ptr.annotation.*``' Intrinsic
8427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8428
8429Syntax:
8430"""""""
8431
8432This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8433pointer to an integer of any width. *NOTE* you must specify an address space for
8434the pointer. The identifier for the default address space is the integer
8435'``0``'.
8436
8437::
8438
8439 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8440 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8441 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8442 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8443 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8444
8445Overview:
8446"""""""""
8447
8448The '``llvm.ptr.annotation``' intrinsic.
8449
8450Arguments:
8451""""""""""
8452
8453The first argument is a pointer to an integer value of arbitrary bitwidth
8454(result of some expression), the second is a pointer to a global string, the
8455third is a pointer to a global string which is the source file name, and the
8456last argument is the line number. It returns the value of the first argument.
8457
8458Semantics:
8459""""""""""
8460
8461This intrinsic allows annotation of a pointer to an integer with arbitrary
8462strings. This can be useful for special purpose optimizations that want to look
8463for these annotations. These have no other defined use; they are ignored by code
8464generation and optimization.
8465
Sean Silvaf722b002012-12-07 10:36:55 +00008466'``llvm.annotation.*``' Intrinsic
8467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8468
8469Syntax:
8470"""""""
8471
8472This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8473any integer bit width.
8474
8475::
8476
8477 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8478 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8479 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8480 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8481 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8482
8483Overview:
8484"""""""""
8485
8486The '``llvm.annotation``' intrinsic.
8487
8488Arguments:
8489""""""""""
8490
8491The first argument is an integer value (result of some expression), the
8492second is a pointer to a global string, the third is a pointer to a
8493global string which is the source file name, and the last argument is
8494the line number. It returns the value of the first argument.
8495
8496Semantics:
8497""""""""""
8498
8499This intrinsic allows annotations to be put on arbitrary expressions
8500with arbitrary strings. This can be useful for special purpose
8501optimizations that want to look for these annotations. These have no
8502other defined use; they are ignored by code generation and optimization.
8503
8504'``llvm.trap``' Intrinsic
8505^^^^^^^^^^^^^^^^^^^^^^^^^
8506
8507Syntax:
8508"""""""
8509
8510::
8511
8512 declare void @llvm.trap() noreturn nounwind
8513
8514Overview:
8515"""""""""
8516
8517The '``llvm.trap``' intrinsic.
8518
8519Arguments:
8520""""""""""
8521
8522None.
8523
8524Semantics:
8525""""""""""
8526
8527This intrinsic is lowered to the target dependent trap instruction. If
8528the target does not have a trap instruction, this intrinsic will be
8529lowered to a call of the ``abort()`` function.
8530
8531'``llvm.debugtrap``' Intrinsic
8532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8533
8534Syntax:
8535"""""""
8536
8537::
8538
8539 declare void @llvm.debugtrap() nounwind
8540
8541Overview:
8542"""""""""
8543
8544The '``llvm.debugtrap``' intrinsic.
8545
8546Arguments:
8547""""""""""
8548
8549None.
8550
8551Semantics:
8552""""""""""
8553
8554This intrinsic is lowered to code which is intended to cause an
8555execution trap with the intention of requesting the attention of a
8556debugger.
8557
8558'``llvm.stackprotector``' Intrinsic
8559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8560
8561Syntax:
8562"""""""
8563
8564::
8565
8566 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8567
8568Overview:
8569"""""""""
8570
8571The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8572onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8573is placed on the stack before local variables.
8574
8575Arguments:
8576""""""""""
8577
8578The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8579The first argument is the value loaded from the stack guard
8580``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8581enough space to hold the value of the guard.
8582
8583Semantics:
8584""""""""""
8585
8586This intrinsic causes the prologue/epilogue inserter to force the
8587position of the ``AllocaInst`` stack slot to be before local variables
8588on the stack. This is to ensure that if a local variable on the stack is
8589overwritten, it will destroy the value of the guard. When the function
8590exits, the guard on the stack is checked against the original guard. If
8591they are different, then the program aborts by calling the
8592``__stack_chk_fail()`` function.
8593
8594'``llvm.objectsize``' Intrinsic
8595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8596
8597Syntax:
8598"""""""
8599
8600::
8601
8602 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8603 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8604
8605Overview:
8606"""""""""
8607
8608The ``llvm.objectsize`` intrinsic is designed to provide information to
8609the optimizers to determine at compile time whether a) an operation
8610(like memcpy) will overflow a buffer that corresponds to an object, or
8611b) that a runtime check for overflow isn't necessary. An object in this
8612context means an allocation of a specific class, structure, array, or
8613other object.
8614
8615Arguments:
8616""""""""""
8617
8618The ``llvm.objectsize`` intrinsic takes two arguments. The first
8619argument is a pointer to or into the ``object``. The second argument is
8620a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8621or -1 (if false) when the object size is unknown. The second argument
8622only accepts constants.
8623
8624Semantics:
8625""""""""""
8626
8627The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8628the size of the object concerned. If the size cannot be determined at
8629compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8630on the ``min`` argument).
8631
8632'``llvm.expect``' Intrinsic
8633^^^^^^^^^^^^^^^^^^^^^^^^^^^
8634
8635Syntax:
8636"""""""
8637
8638::
8639
8640 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8641 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8642
8643Overview:
8644"""""""""
8645
8646The ``llvm.expect`` intrinsic provides information about expected (the
8647most probable) value of ``val``, which can be used by optimizers.
8648
8649Arguments:
8650""""""""""
8651
8652The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8653a value. The second argument is an expected value, this needs to be a
8654constant value, variables are not allowed.
8655
8656Semantics:
8657""""""""""
8658
8659This intrinsic is lowered to the ``val``.
8660
8661'``llvm.donothing``' Intrinsic
8662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8663
8664Syntax:
8665"""""""
8666
8667::
8668
8669 declare void @llvm.donothing() nounwind readnone
8670
8671Overview:
8672"""""""""
8673
8674The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8675only intrinsic that can be called with an invoke instruction.
8676
8677Arguments:
8678""""""""""
8679
8680None.
8681
8682Semantics:
8683""""""""""
8684
8685This intrinsic does nothing, and it's removed by optimizers and ignored
8686by codegen.