blob: a0073ddc55c9c9ec0cea34209521a9e981207699 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
Eli Bendersky1de14102013-06-07 19:40:08 +0000390.. _visibilitystyles:
391
Sean Silvaf722b002012-12-07 10:36:55 +0000392Visibility Styles
393-----------------
394
395All Global Variables and Functions have one of the following visibility
396styles:
397
398"``default``" - Default style
399 On targets that use the ELF object file format, default visibility
400 means that the declaration is visible to other modules and, in
401 shared libraries, means that the declared entity may be overridden.
402 On Darwin, default visibility means that the declaration is visible
403 to other modules. Default visibility corresponds to "external
404 linkage" in the language.
405"``hidden``" - Hidden style
406 Two declarations of an object with hidden visibility refer to the
407 same object if they are in the same shared object. Usually, hidden
408 visibility indicates that the symbol will not be placed into the
409 dynamic symbol table, so no other module (executable or shared
410 library) can reference it directly.
411"``protected``" - Protected style
412 On ELF, protected visibility indicates that the symbol will be
413 placed in the dynamic symbol table, but that references within the
414 defining module will bind to the local symbol. That is, the symbol
415 cannot be overridden by another module.
416
Eli Bendersky1de14102013-06-07 19:40:08 +0000417.. _namedtypes:
418
Sean Silvaf722b002012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
451instead of run-time. Global variables may optionally be initialized, may
452have an explicit section to be placed in, and may have an optional
453explicit alignment specified.
454
455A variable may be defined as ``thread_local``, which means that it will
456not be shared by threads (each thread will have a separated copy of the
457variable). Not all targets support thread-local variables. Optionally, a
458TLS model may be specified:
459
460``localdynamic``
461 For variables that are only used within the current shared library.
462``initialexec``
463 For variables in modules that will not be loaded dynamically.
464``localexec``
465 For variables defined in the executable and only used within it.
466
467The models correspond to the ELF TLS models; see `ELF Handling For
468Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
469more information on under which circumstances the different models may
470be used. The target may choose a different TLS model if the specified
471model is not supported, or if a better choice of model can be made.
472
Michael Gottesmanf5735882013-01-31 05:48:48 +0000473A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000474the contents of the variable will **never** be modified (enabling better
475optimization, allowing the global data to be placed in the read-only
476section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000477initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000478variable.
479
480LLVM explicitly allows *declarations* of global variables to be marked
481constant, even if the final definition of the global is not. This
482capability can be used to enable slightly better optimization of the
483program, but requires the language definition to guarantee that
484optimizations based on the 'constantness' are valid for the translation
485units that do not include the definition.
486
487As SSA values, global variables define pointer values that are in scope
488(i.e. they dominate) all basic blocks in the program. Global variables
489always define a pointer to their "content" type because they describe a
490region of memory, and all memory objects in LLVM are accessed through
491pointers.
492
493Global variables can be marked with ``unnamed_addr`` which indicates
494that the address is not significant, only the content. Constants marked
495like this can be merged with other constants if they have the same
496initializer. Note that a constant with significant address *can* be
497merged with a ``unnamed_addr`` constant, the result being a constant
498whose address is significant.
499
500A global variable may be declared to reside in a target-specific
501numbered address space. For targets that support them, address spaces
502may affect how optimizations are performed and/or what target
503instructions are used to access the variable. The default address space
504is zero. The address space qualifier must precede any other attributes.
505
506LLVM allows an explicit section to be specified for globals. If the
507target supports it, it will emit globals to the section specified.
508
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000509By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000510variables defined within the module are not modified from their
511initial values before the start of the global initializer. This is
512true even for variables potentially accessible from outside the
513module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000514``@llvm.used``. This assumption may be suppressed by marking the
515variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000516
Sean Silvaf722b002012-12-07 10:36:55 +0000517An explicit alignment may be specified for a global, which must be a
518power of 2. If not present, or if the alignment is set to zero, the
519alignment of the global is set by the target to whatever it feels
520convenient. If an explicit alignment is specified, the global is forced
521to have exactly that alignment. Targets and optimizers are not allowed
522to over-align the global if the global has an assigned section. In this
523case, the extra alignment could be observable: for example, code could
524assume that the globals are densely packed in their section and try to
525iterate over them as an array, alignment padding would break this
526iteration.
527
528For example, the following defines a global in a numbered address space
529with an initializer, section, and alignment:
530
531.. code-block:: llvm
532
533 @G = addrspace(5) constant float 1.0, section "foo", align 4
534
535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
555collector name <gc>`, an opening curly brace, a list of basic blocks,
556and a closing curly brace.
557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
563name, a possibly empty list of arguments, an optional alignment, and an
564optional :ref:`garbage collector name <gc>`.
565
566A function definition contains a list of basic blocks, forming the CFG
567(Control Flow Graph) for the function. Each basic block may optionally
568start with a label (giving the basic block a symbol table entry),
569contains a list of instructions, and ends with a
570:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000571return). If explicit label is not provided, a block is assigned an
572implicit numbered label, using a next value from the same counter as used
573for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
574function entry block does not have explicit label, it will be assigned
575label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000576
577The first basic block in a function is special in two ways: it is
578immediately executed on entrance to the function, and it is not allowed
579to have predecessor basic blocks (i.e. there can not be any branches to
580the entry block of a function). Because the block can have no
581predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
582
583LLVM allows an explicit section to be specified for functions. If the
584target supports it, it will emit functions to the section specified.
585
586An explicit alignment may be specified for a function. If not present,
587or if the alignment is set to zero, the alignment of the function is set
588by the target to whatever it feels convenient. If an explicit alignment
589is specified, the function is forced to have at least that much
590alignment. All alignments must be a power of 2.
591
592If the ``unnamed_addr`` attribute is given, the address is know to not
593be significant and two identical functions can be merged.
594
595Syntax::
596
597 define [linkage] [visibility]
598 [cconv] [ret attrs]
599 <ResultType> @<FunctionName> ([argument list])
600 [fn Attrs] [section "name"] [align N]
601 [gc] { ... }
602
Eli Bendersky1de14102013-06-07 19:40:08 +0000603.. _langref_aliases:
604
Sean Silvaf722b002012-12-07 10:36:55 +0000605Aliases
606-------
607
608Aliases act as "second name" for the aliasee value (which can be either
609function, global variable, another alias or bitcast of global value).
610Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
611:ref:`visibility style <visibility>`.
612
613Syntax::
614
615 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
616
617.. _namedmetadatastructure:
618
619Named Metadata
620--------------
621
622Named metadata is a collection of metadata. :ref:`Metadata
623nodes <metadata>` (but not metadata strings) are the only valid
624operands for a named metadata.
625
626Syntax::
627
628 ; Some unnamed metadata nodes, which are referenced by the named metadata.
629 !0 = metadata !{metadata !"zero"}
630 !1 = metadata !{metadata !"one"}
631 !2 = metadata !{metadata !"two"}
632 ; A named metadata.
633 !name = !{!0, !1, !2}
634
635.. _paramattrs:
636
637Parameter Attributes
638--------------------
639
640The return type and each parameter of a function type may have a set of
641*parameter attributes* associated with them. Parameter attributes are
642used to communicate additional information about the result or
643parameters of a function. Parameter attributes are considered to be part
644of the function, not of the function type, so functions with different
645parameter attributes can have the same function type.
646
647Parameter attributes are simple keywords that follow the type specified.
648If multiple parameter attributes are needed, they are space separated.
649For example:
650
651.. code-block:: llvm
652
653 declare i32 @printf(i8* noalias nocapture, ...)
654 declare i32 @atoi(i8 zeroext)
655 declare signext i8 @returns_signed_char()
656
657Note that any attributes for the function result (``nounwind``,
658``readonly``) come immediately after the argument list.
659
660Currently, only the following parameter attributes are defined:
661
662``zeroext``
663 This indicates to the code generator that the parameter or return
664 value should be zero-extended to the extent required by the target's
665 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
666 the caller (for a parameter) or the callee (for a return value).
667``signext``
668 This indicates to the code generator that the parameter or return
669 value should be sign-extended to the extent required by the target's
670 ABI (which is usually 32-bits) by the caller (for a parameter) or
671 the callee (for a return value).
672``inreg``
673 This indicates that this parameter or return value should be treated
674 in a special target-dependent fashion during while emitting code for
675 a function call or return (usually, by putting it in a register as
676 opposed to memory, though some targets use it to distinguish between
677 two different kinds of registers). Use of this attribute is
678 target-specific.
679``byval``
680 This indicates that the pointer parameter should really be passed by
681 value to the function. The attribute implies that a hidden copy of
682 the pointee is made between the caller and the callee, so the callee
683 is unable to modify the value in the caller. This attribute is only
684 valid on LLVM pointer arguments. It is generally used to pass
685 structs and arrays by value, but is also valid on pointers to
686 scalars. The copy is considered to belong to the caller not the
687 callee (for example, ``readonly`` functions should not write to
688 ``byval`` parameters). This is not a valid attribute for return
689 values.
690
691 The byval attribute also supports specifying an alignment with the
692 align attribute. It indicates the alignment of the stack slot to
693 form and the known alignment of the pointer specified to the call
694 site. If the alignment is not specified, then the code generator
695 makes a target-specific assumption.
696
697``sret``
698 This indicates that the pointer parameter specifies the address of a
699 structure that is the return value of the function in the source
700 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000701 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000702 not to trap and to be properly aligned. This may only be applied to
703 the first parameter. This is not a valid attribute for return
704 values.
705``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000706 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000707 the argument or return value do not alias pointer values which are
708 not *based* on it, ignoring certain "irrelevant" dependencies. For a
709 call to the parent function, dependencies between memory references
710 from before or after the call and from those during the call are
711 "irrelevant" to the ``noalias`` keyword for the arguments and return
712 value used in that call. The caller shares the responsibility with
713 the callee for ensuring that these requirements are met. For further
714 details, please see the discussion of the NoAlias response in `alias
715 analysis <AliasAnalysis.html#MustMayNo>`_.
716
717 Note that this definition of ``noalias`` is intentionally similar
718 to the definition of ``restrict`` in C99 for function arguments,
719 though it is slightly weaker.
720
721 For function return values, C99's ``restrict`` is not meaningful,
722 while LLVM's ``noalias`` is.
723``nocapture``
724 This indicates that the callee does not make any copies of the
725 pointer that outlive the callee itself. This is not a valid
726 attribute for return values.
727
728.. _nest:
729
730``nest``
731 This indicates that the pointer parameter can be excised using the
732 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000733 attribute for return values and can only be applied to one parameter.
734
735``returned``
736 This indicates that the value of the function always returns the value
737 of the parameter as its return value. This is an optimization hint to
738 the code generator when generating the caller, allowing tail call
739 optimization and omission of register saves and restores in some cases;
740 it is not checked or enforced when generating the callee. The parameter
741 and the function return type must be valid operands for the
742 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
743 return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000744
745.. _gc:
746
747Garbage Collector Names
748-----------------------
749
750Each function may specify a garbage collector name, which is simply a
751string:
752
753.. code-block:: llvm
754
755 define void @f() gc "name" { ... }
756
757The compiler declares the supported values of *name*. Specifying a
758collector which will cause the compiler to alter its output in order to
759support the named garbage collection algorithm.
760
Bill Wendling95ce4c22013-02-06 06:52:58 +0000761.. _attrgrp:
762
763Attribute Groups
764----------------
765
766Attribute groups are groups of attributes that are referenced by objects within
767the IR. They are important for keeping ``.ll`` files readable, because a lot of
768functions will use the same set of attributes. In the degenerative case of a
769``.ll`` file that corresponds to a single ``.c`` file, the single attribute
770group will capture the important command line flags used to build that file.
771
772An attribute group is a module-level object. To use an attribute group, an
773object references the attribute group's ID (e.g. ``#37``). An object may refer
774to more than one attribute group. In that situation, the attributes from the
775different groups are merged.
776
777Here is an example of attribute groups for a function that should always be
778inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
779
780.. code-block:: llvm
781
782 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000783 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000784
785 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000786 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000787
788 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
789 define void @f() #0 #1 { ... }
790
Sean Silvaf722b002012-12-07 10:36:55 +0000791.. _fnattrs:
792
793Function Attributes
794-------------------
795
796Function attributes are set to communicate additional information about
797a function. Function attributes are considered to be part of the
798function, not of the function type, so functions with different function
799attributes can have the same function type.
800
801Function attributes are simple keywords that follow the type specified.
802If multiple attributes are needed, they are space separated. For
803example:
804
805.. code-block:: llvm
806
807 define void @f() noinline { ... }
808 define void @f() alwaysinline { ... }
809 define void @f() alwaysinline optsize { ... }
810 define void @f() optsize { ... }
811
Sean Silvaf722b002012-12-07 10:36:55 +0000812``alignstack(<n>)``
813 This attribute indicates that, when emitting the prologue and
814 epilogue, the backend should forcibly align the stack pointer.
815 Specify the desired alignment, which must be a power of two, in
816 parentheses.
817``alwaysinline``
818 This attribute indicates that the inliner should attempt to inline
819 this function into callers whenever possible, ignoring any active
820 inlining size threshold for this caller.
Diego Novillo77226a02013-05-24 12:26:52 +0000821``cold``
822 This attribute indicates that this function is rarely called. When
823 computing edge weights, basic blocks post-dominated by a cold
824 function call are also considered to be cold; and, thus, given low
825 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000826``nonlazybind``
827 This attribute suppresses lazy symbol binding for the function. This
828 may make calls to the function faster, at the cost of extra program
829 startup time if the function is not called during program startup.
830``inlinehint``
831 This attribute indicates that the source code contained a hint that
832 inlining this function is desirable (such as the "inline" keyword in
833 C/C++). It is just a hint; it imposes no requirements on the
834 inliner.
835``naked``
836 This attribute disables prologue / epilogue emission for the
837 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000838``nobuiltin``
839 This indicates that the callee function at a call site is not
840 recognized as a built-in function. LLVM will retain the original call
841 and not replace it with equivalent code based on the semantics of the
842 built-in function. This is only valid at call sites, not on function
843 declarations or definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000844``noduplicate``
845 This attribute indicates that calls to the function cannot be
846 duplicated. A call to a ``noduplicate`` function may be moved
847 within its parent function, but may not be duplicated within
848 its parent function.
849
850 A function containing a ``noduplicate`` call may still
851 be an inlining candidate, provided that the call is not
852 duplicated by inlining. That implies that the function has
853 internal linkage and only has one call site, so the original
854 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000855``noimplicitfloat``
856 This attributes disables implicit floating point instructions.
857``noinline``
858 This attribute indicates that the inliner should never inline this
859 function in any situation. This attribute may not be used together
860 with the ``alwaysinline`` attribute.
861``noredzone``
862 This attribute indicates that the code generator should not use a
863 red zone, even if the target-specific ABI normally permits it.
864``noreturn``
865 This function attribute indicates that the function never returns
866 normally. This produces undefined behavior at runtime if the
867 function ever does dynamically return.
868``nounwind``
869 This function attribute indicates that the function never returns
870 with an unwind or exceptional control flow. If the function does
871 unwind, its runtime behavior is undefined.
872``optsize``
873 This attribute suggests that optimization passes and code generator
874 passes make choices that keep the code size of this function low,
875 and otherwise do optimizations specifically to reduce code size.
876``readnone``
877 This attribute indicates that the function computes its result (or
878 decides to unwind an exception) based strictly on its arguments,
879 without dereferencing any pointer arguments or otherwise accessing
880 any mutable state (e.g. memory, control registers, etc) visible to
881 caller functions. It does not write through any pointer arguments
882 (including ``byval`` arguments) and never changes any state visible
883 to callers. This means that it cannot unwind exceptions by calling
884 the ``C++`` exception throwing methods.
885``readonly``
886 This attribute indicates that the function does not write through
887 any pointer arguments (including ``byval`` arguments) or otherwise
888 modify any state (e.g. memory, control registers, etc) visible to
889 caller functions. It may dereference pointer arguments and read
890 state that may be set in the caller. A readonly function always
891 returns the same value (or unwinds an exception identically) when
892 called with the same set of arguments and global state. It cannot
893 unwind an exception by calling the ``C++`` exception throwing
894 methods.
895``returns_twice``
896 This attribute indicates that this function can return twice. The C
897 ``setjmp`` is an example of such a function. The compiler disables
898 some optimizations (like tail calls) in the caller of these
899 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000900``sanitize_address``
901 This attribute indicates that AddressSanitizer checks
902 (dynamic address safety analysis) are enabled for this function.
903``sanitize_memory``
904 This attribute indicates that MemorySanitizer checks (dynamic detection
905 of accesses to uninitialized memory) are enabled for this function.
906``sanitize_thread``
907 This attribute indicates that ThreadSanitizer checks
908 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000909``ssp``
910 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000911 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000912 placed on the stack before the local variables that's checked upon
913 return from the function to see if it has been overwritten. A
914 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000915 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000916
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000917 - Character arrays larger than ``ssp-buffer-size`` (default 8).
918 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
919 - Calls to alloca() with variable sizes or constant sizes greater than
920 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000921
922 If a function that has an ``ssp`` attribute is inlined into a
923 function that doesn't have an ``ssp`` attribute, then the resulting
924 function will have an ``ssp`` attribute.
925``sspreq``
926 This attribute indicates that the function should *always* emit a
927 stack smashing protector. This overrides the ``ssp`` function
928 attribute.
929
930 If a function that has an ``sspreq`` attribute is inlined into a
931 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000932 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
933 an ``sspreq`` attribute.
934``sspstrong``
935 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000936 protector. This attribute causes a strong heuristic to be used when
937 determining if a function needs stack protectors. The strong heuristic
938 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000939
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000940 - Arrays of any size and type
941 - Aggregates containing an array of any size and type.
942 - Calls to alloca().
943 - Local variables that have had their address taken.
944
945 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000946
947 If a function that has an ``sspstrong`` attribute is inlined into a
948 function that doesn't have an ``sspstrong`` attribute, then the
949 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000950``uwtable``
951 This attribute indicates that the ABI being targeted requires that
952 an unwind table entry be produce for this function even if we can
953 show that no exceptions passes by it. This is normally the case for
954 the ELF x86-64 abi, but it can be disabled for some compilation
955 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000956
957.. _moduleasm:
958
959Module-Level Inline Assembly
960----------------------------
961
962Modules may contain "module-level inline asm" blocks, which corresponds
963to the GCC "file scope inline asm" blocks. These blocks are internally
964concatenated by LLVM and treated as a single unit, but may be separated
965in the ``.ll`` file if desired. The syntax is very simple:
966
967.. code-block:: llvm
968
969 module asm "inline asm code goes here"
970 module asm "more can go here"
971
972The strings can contain any character by escaping non-printable
973characters. The escape sequence used is simply "\\xx" where "xx" is the
974two digit hex code for the number.
975
976The inline asm code is simply printed to the machine code .s file when
977assembly code is generated.
978
Eli Bendersky1de14102013-06-07 19:40:08 +0000979.. _langref_datalayout:
980
Sean Silvaf722b002012-12-07 10:36:55 +0000981Data Layout
982-----------
983
984A module may specify a target specific data layout string that specifies
985how data is to be laid out in memory. The syntax for the data layout is
986simply:
987
988.. code-block:: llvm
989
990 target datalayout = "layout specification"
991
992The *layout specification* consists of a list of specifications
993separated by the minus sign character ('-'). Each specification starts
994with a letter and may include other information after the letter to
995define some aspect of the data layout. The specifications accepted are
996as follows:
997
998``E``
999 Specifies that the target lays out data in big-endian form. That is,
1000 the bits with the most significance have the lowest address
1001 location.
1002``e``
1003 Specifies that the target lays out data in little-endian form. That
1004 is, the bits with the least significance have the lowest address
1005 location.
1006``S<size>``
1007 Specifies the natural alignment of the stack in bits. Alignment
1008 promotion of stack variables is limited to the natural stack
1009 alignment to avoid dynamic stack realignment. The stack alignment
1010 must be a multiple of 8-bits. If omitted, the natural stack
1011 alignment defaults to "unspecified", which does not prevent any
1012 alignment promotions.
1013``p[n]:<size>:<abi>:<pref>``
1014 This specifies the *size* of a pointer and its ``<abi>`` and
1015 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1016 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1017 preceding ``:`` should be omitted too. The address space, ``n`` is
1018 optional, and if not specified, denotes the default address space 0.
1019 The value of ``n`` must be in the range [1,2^23).
1020``i<size>:<abi>:<pref>``
1021 This specifies the alignment for an integer type of a given bit
1022 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1023``v<size>:<abi>:<pref>``
1024 This specifies the alignment for a vector type of a given bit
1025 ``<size>``.
1026``f<size>:<abi>:<pref>``
1027 This specifies the alignment for a floating point type of a given bit
1028 ``<size>``. Only values of ``<size>`` that are supported by the target
1029 will work. 32 (float) and 64 (double) are supported on all targets; 80
1030 or 128 (different flavors of long double) are also supported on some
1031 targets.
1032``a<size>:<abi>:<pref>``
1033 This specifies the alignment for an aggregate type of a given bit
1034 ``<size>``.
1035``s<size>:<abi>:<pref>``
1036 This specifies the alignment for a stack object of a given bit
1037 ``<size>``.
1038``n<size1>:<size2>:<size3>...``
1039 This specifies a set of native integer widths for the target CPU in
1040 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1041 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1042 this set are considered to support most general arithmetic operations
1043 efficiently.
1044
1045When constructing the data layout for a given target, LLVM starts with a
1046default set of specifications which are then (possibly) overridden by
1047the specifications in the ``datalayout`` keyword. The default
1048specifications are given in this list:
1049
1050- ``E`` - big endian
1051- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001052- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001053- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1054- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1055- ``i16:16:16`` - i16 is 16-bit aligned
1056- ``i32:32:32`` - i32 is 32-bit aligned
1057- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1058 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001059- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001060- ``f32:32:32`` - float is 32-bit aligned
1061- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001062- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001063- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1064- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001065- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001066
1067When LLVM is determining the alignment for a given type, it uses the
1068following rules:
1069
1070#. If the type sought is an exact match for one of the specifications,
1071 that specification is used.
1072#. If no match is found, and the type sought is an integer type, then
1073 the smallest integer type that is larger than the bitwidth of the
1074 sought type is used. If none of the specifications are larger than
1075 the bitwidth then the largest integer type is used. For example,
1076 given the default specifications above, the i7 type will use the
1077 alignment of i8 (next largest) while both i65 and i256 will use the
1078 alignment of i64 (largest specified).
1079#. If no match is found, and the type sought is a vector type, then the
1080 largest vector type that is smaller than the sought vector type will
1081 be used as a fall back. This happens because <128 x double> can be
1082 implemented in terms of 64 <2 x double>, for example.
1083
1084The function of the data layout string may not be what you expect.
1085Notably, this is not a specification from the frontend of what alignment
1086the code generator should use.
1087
1088Instead, if specified, the target data layout is required to match what
1089the ultimate *code generator* expects. This string is used by the
1090mid-level optimizers to improve code, and this only works if it matches
1091what the ultimate code generator uses. If you would like to generate IR
1092that does not embed this target-specific detail into the IR, then you
1093don't have to specify the string. This will disable some optimizations
1094that require precise layout information, but this also prevents those
1095optimizations from introducing target specificity into the IR.
1096
1097.. _pointeraliasing:
1098
1099Pointer Aliasing Rules
1100----------------------
1101
1102Any memory access must be done through a pointer value associated with
1103an address range of the memory access, otherwise the behavior is
1104undefined. Pointer values are associated with address ranges according
1105to the following rules:
1106
1107- A pointer value is associated with the addresses associated with any
1108 value it is *based* on.
1109- An address of a global variable is associated with the address range
1110 of the variable's storage.
1111- The result value of an allocation instruction is associated with the
1112 address range of the allocated storage.
1113- A null pointer in the default address-space is associated with no
1114 address.
1115- An integer constant other than zero or a pointer value returned from
1116 a function not defined within LLVM may be associated with address
1117 ranges allocated through mechanisms other than those provided by
1118 LLVM. Such ranges shall not overlap with any ranges of addresses
1119 allocated by mechanisms provided by LLVM.
1120
1121A pointer value is *based* on another pointer value according to the
1122following rules:
1123
1124- A pointer value formed from a ``getelementptr`` operation is *based*
1125 on the first operand of the ``getelementptr``.
1126- The result value of a ``bitcast`` is *based* on the operand of the
1127 ``bitcast``.
1128- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1129 values that contribute (directly or indirectly) to the computation of
1130 the pointer's value.
1131- The "*based* on" relationship is transitive.
1132
1133Note that this definition of *"based"* is intentionally similar to the
1134definition of *"based"* in C99, though it is slightly weaker.
1135
1136LLVM IR does not associate types with memory. The result type of a
1137``load`` merely indicates the size and alignment of the memory from
1138which to load, as well as the interpretation of the value. The first
1139operand type of a ``store`` similarly only indicates the size and
1140alignment of the store.
1141
1142Consequently, type-based alias analysis, aka TBAA, aka
1143``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1144:ref:`Metadata <metadata>` may be used to encode additional information
1145which specialized optimization passes may use to implement type-based
1146alias analysis.
1147
1148.. _volatile:
1149
1150Volatile Memory Accesses
1151------------------------
1152
1153Certain memory accesses, such as :ref:`load <i_load>`'s,
1154:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1155marked ``volatile``. The optimizers must not change the number of
1156volatile operations or change their order of execution relative to other
1157volatile operations. The optimizers *may* change the order of volatile
1158operations relative to non-volatile operations. This is not Java's
1159"volatile" and has no cross-thread synchronization behavior.
1160
Andrew Trick9a6dd022013-01-30 21:19:35 +00001161IR-level volatile loads and stores cannot safely be optimized into
1162llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1163flagged volatile. Likewise, the backend should never split or merge
1164target-legal volatile load/store instructions.
1165
Andrew Trick946317d2013-01-31 00:49:39 +00001166.. admonition:: Rationale
1167
1168 Platforms may rely on volatile loads and stores of natively supported
1169 data width to be executed as single instruction. For example, in C
1170 this holds for an l-value of volatile primitive type with native
1171 hardware support, but not necessarily for aggregate types. The
1172 frontend upholds these expectations, which are intentionally
1173 unspecified in the IR. The rules above ensure that IR transformation
1174 do not violate the frontend's contract with the language.
1175
Sean Silvaf722b002012-12-07 10:36:55 +00001176.. _memmodel:
1177
1178Memory Model for Concurrent Operations
1179--------------------------------------
1180
1181The LLVM IR does not define any way to start parallel threads of
1182execution or to register signal handlers. Nonetheless, there are
1183platform-specific ways to create them, and we define LLVM IR's behavior
1184in their presence. This model is inspired by the C++0x memory model.
1185
1186For a more informal introduction to this model, see the :doc:`Atomics`.
1187
1188We define a *happens-before* partial order as the least partial order
1189that
1190
1191- Is a superset of single-thread program order, and
1192- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1193 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1194 techniques, like pthread locks, thread creation, thread joining,
1195 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1196 Constraints <ordering>`).
1197
1198Note that program order does not introduce *happens-before* edges
1199between a thread and signals executing inside that thread.
1200
1201Every (defined) read operation (load instructions, memcpy, atomic
1202loads/read-modify-writes, etc.) R reads a series of bytes written by
1203(defined) write operations (store instructions, atomic
1204stores/read-modify-writes, memcpy, etc.). For the purposes of this
1205section, initialized globals are considered to have a write of the
1206initializer which is atomic and happens before any other read or write
1207of the memory in question. For each byte of a read R, R\ :sub:`byte`
1208may see any write to the same byte, except:
1209
1210- If write\ :sub:`1` happens before write\ :sub:`2`, and
1211 write\ :sub:`2` happens before R\ :sub:`byte`, then
1212 R\ :sub:`byte` does not see write\ :sub:`1`.
1213- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1214 R\ :sub:`byte` does not see write\ :sub:`3`.
1215
1216Given that definition, R\ :sub:`byte` is defined as follows:
1217
1218- If R is volatile, the result is target-dependent. (Volatile is
1219 supposed to give guarantees which can support ``sig_atomic_t`` in
1220 C/C++, and may be used for accesses to addresses which do not behave
1221 like normal memory. It does not generally provide cross-thread
1222 synchronization.)
1223- Otherwise, if there is no write to the same byte that happens before
1224 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1225- Otherwise, if R\ :sub:`byte` may see exactly one write,
1226 R\ :sub:`byte` returns the value written by that write.
1227- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1228 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1229 Memory Ordering Constraints <ordering>` section for additional
1230 constraints on how the choice is made.
1231- Otherwise R\ :sub:`byte` returns ``undef``.
1232
1233R returns the value composed of the series of bytes it read. This
1234implies that some bytes within the value may be ``undef`` **without**
1235the entire value being ``undef``. Note that this only defines the
1236semantics of the operation; it doesn't mean that targets will emit more
1237than one instruction to read the series of bytes.
1238
1239Note that in cases where none of the atomic intrinsics are used, this
1240model places only one restriction on IR transformations on top of what
1241is required for single-threaded execution: introducing a store to a byte
1242which might not otherwise be stored is not allowed in general.
1243(Specifically, in the case where another thread might write to and read
1244from an address, introducing a store can change a load that may see
1245exactly one write into a load that may see multiple writes.)
1246
1247.. _ordering:
1248
1249Atomic Memory Ordering Constraints
1250----------------------------------
1251
1252Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1253:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1254:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1255an ordering parameter that determines which other atomic instructions on
1256the same address they *synchronize with*. These semantics are borrowed
1257from Java and C++0x, but are somewhat more colloquial. If these
1258descriptions aren't precise enough, check those specs (see spec
1259references in the :doc:`atomics guide <Atomics>`).
1260:ref:`fence <i_fence>` instructions treat these orderings somewhat
1261differently since they don't take an address. See that instruction's
1262documentation for details.
1263
1264For a simpler introduction to the ordering constraints, see the
1265:doc:`Atomics`.
1266
1267``unordered``
1268 The set of values that can be read is governed by the happens-before
1269 partial order. A value cannot be read unless some operation wrote
1270 it. This is intended to provide a guarantee strong enough to model
1271 Java's non-volatile shared variables. This ordering cannot be
1272 specified for read-modify-write operations; it is not strong enough
1273 to make them atomic in any interesting way.
1274``monotonic``
1275 In addition to the guarantees of ``unordered``, there is a single
1276 total order for modifications by ``monotonic`` operations on each
1277 address. All modification orders must be compatible with the
1278 happens-before order. There is no guarantee that the modification
1279 orders can be combined to a global total order for the whole program
1280 (and this often will not be possible). The read in an atomic
1281 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1282 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1283 order immediately before the value it writes. If one atomic read
1284 happens before another atomic read of the same address, the later
1285 read must see the same value or a later value in the address's
1286 modification order. This disallows reordering of ``monotonic`` (or
1287 stronger) operations on the same address. If an address is written
1288 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1289 read that address repeatedly, the other threads must eventually see
1290 the write. This corresponds to the C++0x/C1x
1291 ``memory_order_relaxed``.
1292``acquire``
1293 In addition to the guarantees of ``monotonic``, a
1294 *synchronizes-with* edge may be formed with a ``release`` operation.
1295 This is intended to model C++'s ``memory_order_acquire``.
1296``release``
1297 In addition to the guarantees of ``monotonic``, if this operation
1298 writes a value which is subsequently read by an ``acquire``
1299 operation, it *synchronizes-with* that operation. (This isn't a
1300 complete description; see the C++0x definition of a release
1301 sequence.) This corresponds to the C++0x/C1x
1302 ``memory_order_release``.
1303``acq_rel`` (acquire+release)
1304 Acts as both an ``acquire`` and ``release`` operation on its
1305 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1306``seq_cst`` (sequentially consistent)
1307 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1308 operation which only reads, ``release`` for an operation which only
1309 writes), there is a global total order on all
1310 sequentially-consistent operations on all addresses, which is
1311 consistent with the *happens-before* partial order and with the
1312 modification orders of all the affected addresses. Each
1313 sequentially-consistent read sees the last preceding write to the
1314 same address in this global order. This corresponds to the C++0x/C1x
1315 ``memory_order_seq_cst`` and Java volatile.
1316
1317.. _singlethread:
1318
1319If an atomic operation is marked ``singlethread``, it only *synchronizes
1320with* or participates in modification and seq\_cst total orderings with
1321other operations running in the same thread (for example, in signal
1322handlers).
1323
1324.. _fastmath:
1325
1326Fast-Math Flags
1327---------------
1328
1329LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1330:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1331:ref:`frem <i_frem>`) have the following flags that can set to enable
1332otherwise unsafe floating point operations
1333
1334``nnan``
1335 No NaNs - Allow optimizations to assume the arguments and result are not
1336 NaN. Such optimizations are required to retain defined behavior over
1337 NaNs, but the value of the result is undefined.
1338
1339``ninf``
1340 No Infs - Allow optimizations to assume the arguments and result are not
1341 +/-Inf. Such optimizations are required to retain defined behavior over
1342 +/-Inf, but the value of the result is undefined.
1343
1344``nsz``
1345 No Signed Zeros - Allow optimizations to treat the sign of a zero
1346 argument or result as insignificant.
1347
1348``arcp``
1349 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1350 argument rather than perform division.
1351
1352``fast``
1353 Fast - Allow algebraically equivalent transformations that may
1354 dramatically change results in floating point (e.g. reassociate). This
1355 flag implies all the others.
1356
1357.. _typesystem:
1358
1359Type System
1360===========
1361
1362The LLVM type system is one of the most important features of the
1363intermediate representation. Being typed enables a number of
1364optimizations to be performed on the intermediate representation
1365directly, without having to do extra analyses on the side before the
1366transformation. A strong type system makes it easier to read the
1367generated code and enables novel analyses and transformations that are
1368not feasible to perform on normal three address code representations.
1369
Eli Bendersky88fe6822013-06-07 20:24:43 +00001370.. _typeclassifications:
1371
Sean Silvaf722b002012-12-07 10:36:55 +00001372Type Classifications
1373--------------------
1374
1375The types fall into a few useful classifications:
1376
1377
1378.. list-table::
1379 :header-rows: 1
1380
1381 * - Classification
1382 - Types
1383
1384 * - :ref:`integer <t_integer>`
1385 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1386 ``i64``, ...
1387
1388 * - :ref:`floating point <t_floating>`
1389 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1390 ``ppc_fp128``
1391
1392
1393 * - first class
1394
1395 .. _t_firstclass:
1396
1397 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1398 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1399 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1400 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1401
1402 * - :ref:`primitive <t_primitive>`
1403 - :ref:`label <t_label>`,
1404 :ref:`void <t_void>`,
1405 :ref:`integer <t_integer>`,
1406 :ref:`floating point <t_floating>`,
1407 :ref:`x86mmx <t_x86mmx>`,
1408 :ref:`metadata <t_metadata>`.
1409
1410 * - :ref:`derived <t_derived>`
1411 - :ref:`array <t_array>`,
1412 :ref:`function <t_function>`,
1413 :ref:`pointer <t_pointer>`,
1414 :ref:`structure <t_struct>`,
1415 :ref:`vector <t_vector>`,
1416 :ref:`opaque <t_opaque>`.
1417
1418The :ref:`first class <t_firstclass>` types are perhaps the most important.
1419Values of these types are the only ones which can be produced by
1420instructions.
1421
1422.. _t_primitive:
1423
1424Primitive Types
1425---------------
1426
1427The primitive types are the fundamental building blocks of the LLVM
1428system.
1429
1430.. _t_integer:
1431
1432Integer Type
1433^^^^^^^^^^^^
1434
1435Overview:
1436"""""""""
1437
1438The integer type is a very simple type that simply specifies an
1439arbitrary bit width for the integer type desired. Any bit width from 1
1440bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1441
1442Syntax:
1443"""""""
1444
1445::
1446
1447 iN
1448
1449The number of bits the integer will occupy is specified by the ``N``
1450value.
1451
1452Examples:
1453"""""""""
1454
1455+----------------+------------------------------------------------+
1456| ``i1`` | a single-bit integer. |
1457+----------------+------------------------------------------------+
1458| ``i32`` | a 32-bit integer. |
1459+----------------+------------------------------------------------+
1460| ``i1942652`` | a really big integer of over 1 million bits. |
1461+----------------+------------------------------------------------+
1462
1463.. _t_floating:
1464
1465Floating Point Types
1466^^^^^^^^^^^^^^^^^^^^
1467
1468.. list-table::
1469 :header-rows: 1
1470
1471 * - Type
1472 - Description
1473
1474 * - ``half``
1475 - 16-bit floating point value
1476
1477 * - ``float``
1478 - 32-bit floating point value
1479
1480 * - ``double``
1481 - 64-bit floating point value
1482
1483 * - ``fp128``
1484 - 128-bit floating point value (112-bit mantissa)
1485
1486 * - ``x86_fp80``
1487 - 80-bit floating point value (X87)
1488
1489 * - ``ppc_fp128``
1490 - 128-bit floating point value (two 64-bits)
1491
1492.. _t_x86mmx:
1493
1494X86mmx Type
1495^^^^^^^^^^^
1496
1497Overview:
1498"""""""""
1499
1500The x86mmx type represents a value held in an MMX register on an x86
1501machine. The operations allowed on it are quite limited: parameters and
1502return values, load and store, and bitcast. User-specified MMX
1503instructions are represented as intrinsic or asm calls with arguments
1504and/or results of this type. There are no arrays, vectors or constants
1505of this type.
1506
1507Syntax:
1508"""""""
1509
1510::
1511
1512 x86mmx
1513
1514.. _t_void:
1515
1516Void Type
1517^^^^^^^^^
1518
1519Overview:
1520"""""""""
1521
1522The void type does not represent any value and has no size.
1523
1524Syntax:
1525"""""""
1526
1527::
1528
1529 void
1530
1531.. _t_label:
1532
1533Label Type
1534^^^^^^^^^^
1535
1536Overview:
1537"""""""""
1538
1539The label type represents code labels.
1540
1541Syntax:
1542"""""""
1543
1544::
1545
1546 label
1547
1548.. _t_metadata:
1549
1550Metadata Type
1551^^^^^^^^^^^^^
1552
1553Overview:
1554"""""""""
1555
1556The metadata type represents embedded metadata. No derived types may be
1557created from metadata except for :ref:`function <t_function>` arguments.
1558
1559Syntax:
1560"""""""
1561
1562::
1563
1564 metadata
1565
1566.. _t_derived:
1567
1568Derived Types
1569-------------
1570
1571The real power in LLVM comes from the derived types in the system. This
1572is what allows a programmer to represent arrays, functions, pointers,
1573and other useful types. Each of these types contain one or more element
1574types which may be a primitive type, or another derived type. For
1575example, it is possible to have a two dimensional array, using an array
1576as the element type of another array.
1577
1578.. _t_aggregate:
1579
1580Aggregate Types
1581^^^^^^^^^^^^^^^
1582
1583Aggregate Types are a subset of derived types that can contain multiple
1584member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1585aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1586aggregate types.
1587
1588.. _t_array:
1589
1590Array Type
1591^^^^^^^^^^
1592
1593Overview:
1594"""""""""
1595
1596The array type is a very simple derived type that arranges elements
1597sequentially in memory. The array type requires a size (number of
1598elements) and an underlying data type.
1599
1600Syntax:
1601"""""""
1602
1603::
1604
1605 [<# elements> x <elementtype>]
1606
1607The number of elements is a constant integer value; ``elementtype`` may
1608be any type with a size.
1609
1610Examples:
1611"""""""""
1612
1613+------------------+--------------------------------------+
1614| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1615+------------------+--------------------------------------+
1616| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1617+------------------+--------------------------------------+
1618| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1619+------------------+--------------------------------------+
1620
1621Here are some examples of multidimensional arrays:
1622
1623+-----------------------------+----------------------------------------------------------+
1624| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1625+-----------------------------+----------------------------------------------------------+
1626| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1627+-----------------------------+----------------------------------------------------------+
1628| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1629+-----------------------------+----------------------------------------------------------+
1630
1631There is no restriction on indexing beyond the end of the array implied
1632by a static type (though there are restrictions on indexing beyond the
1633bounds of an allocated object in some cases). This means that
1634single-dimension 'variable sized array' addressing can be implemented in
1635LLVM with a zero length array type. An implementation of 'pascal style
1636arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1637example.
1638
1639.. _t_function:
1640
1641Function Type
1642^^^^^^^^^^^^^
1643
1644Overview:
1645"""""""""
1646
1647The function type can be thought of as a function signature. It consists
1648of a return type and a list of formal parameter types. The return type
1649of a function type is a first class type or a void type.
1650
1651Syntax:
1652"""""""
1653
1654::
1655
1656 <returntype> (<parameter list>)
1657
1658...where '``<parameter list>``' is a comma-separated list of type
1659specifiers. Optionally, the parameter list may include a type ``...``,
1660which indicates that the function takes a variable number of arguments.
1661Variable argument functions can access their arguments with the
1662:ref:`variable argument handling intrinsic <int_varargs>` functions.
1663'``<returntype>``' is any type except :ref:`label <t_label>`.
1664
1665Examples:
1666"""""""""
1667
1668+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1669| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1670+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001671| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001672+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1673| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1674+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1675| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1676+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1677
1678.. _t_struct:
1679
1680Structure Type
1681^^^^^^^^^^^^^^
1682
1683Overview:
1684"""""""""
1685
1686The structure type is used to represent a collection of data members
1687together in memory. The elements of a structure may be any type that has
1688a size.
1689
1690Structures in memory are accessed using '``load``' and '``store``' by
1691getting a pointer to a field with the '``getelementptr``' instruction.
1692Structures in registers are accessed using the '``extractvalue``' and
1693'``insertvalue``' instructions.
1694
1695Structures may optionally be "packed" structures, which indicate that
1696the alignment of the struct is one byte, and that there is no padding
1697between the elements. In non-packed structs, padding between field types
1698is inserted as defined by the DataLayout string in the module, which is
1699required to match what the underlying code generator expects.
1700
1701Structures can either be "literal" or "identified". A literal structure
1702is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1703identified types are always defined at the top level with a name.
1704Literal types are uniqued by their contents and can never be recursive
1705or opaque since there is no way to write one. Identified types can be
1706recursive, can be opaqued, and are never uniqued.
1707
1708Syntax:
1709"""""""
1710
1711::
1712
1713 %T1 = type { <type list> } ; Identified normal struct type
1714 %T2 = type <{ <type list> }> ; Identified packed struct type
1715
1716Examples:
1717"""""""""
1718
1719+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1720| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1721+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001722| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001723+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1724| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1725+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1726
1727.. _t_opaque:
1728
1729Opaque Structure Types
1730^^^^^^^^^^^^^^^^^^^^^^
1731
1732Overview:
1733"""""""""
1734
1735Opaque structure types are used to represent named structure types that
1736do not have a body specified. This corresponds (for example) to the C
1737notion of a forward declared structure.
1738
1739Syntax:
1740"""""""
1741
1742::
1743
1744 %X = type opaque
1745 %52 = type opaque
1746
1747Examples:
1748"""""""""
1749
1750+--------------+-------------------+
1751| ``opaque`` | An opaque type. |
1752+--------------+-------------------+
1753
1754.. _t_pointer:
1755
1756Pointer Type
1757^^^^^^^^^^^^
1758
1759Overview:
1760"""""""""
1761
1762The pointer type is used to specify memory locations. Pointers are
1763commonly used to reference objects in memory.
1764
1765Pointer types may have an optional address space attribute defining the
1766numbered address space where the pointed-to object resides. The default
1767address space is number zero. The semantics of non-zero address spaces
1768are target-specific.
1769
1770Note that LLVM does not permit pointers to void (``void*``) nor does it
1771permit pointers to labels (``label*``). Use ``i8*`` instead.
1772
1773Syntax:
1774"""""""
1775
1776::
1777
1778 <type> *
1779
1780Examples:
1781"""""""""
1782
1783+-------------------------+--------------------------------------------------------------------------------------------------------------+
1784| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1785+-------------------------+--------------------------------------------------------------------------------------------------------------+
1786| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1787+-------------------------+--------------------------------------------------------------------------------------------------------------+
1788| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1789+-------------------------+--------------------------------------------------------------------------------------------------------------+
1790
1791.. _t_vector:
1792
1793Vector Type
1794^^^^^^^^^^^
1795
1796Overview:
1797"""""""""
1798
1799A vector type is a simple derived type that represents a vector of
1800elements. Vector types are used when multiple primitive data are
1801operated in parallel using a single instruction (SIMD). A vector type
1802requires a size (number of elements) and an underlying primitive data
1803type. Vector types are considered :ref:`first class <t_firstclass>`.
1804
1805Syntax:
1806"""""""
1807
1808::
1809
1810 < <# elements> x <elementtype> >
1811
1812The number of elements is a constant integer value larger than 0;
1813elementtype may be any integer or floating point type, or a pointer to
1814these types. Vectors of size zero are not allowed.
1815
1816Examples:
1817"""""""""
1818
1819+-------------------+--------------------------------------------------+
1820| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1821+-------------------+--------------------------------------------------+
1822| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1823+-------------------+--------------------------------------------------+
1824| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1825+-------------------+--------------------------------------------------+
1826| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1827+-------------------+--------------------------------------------------+
1828
1829Constants
1830=========
1831
1832LLVM has several different basic types of constants. This section
1833describes them all and their syntax.
1834
1835Simple Constants
1836----------------
1837
1838**Boolean constants**
1839 The two strings '``true``' and '``false``' are both valid constants
1840 of the ``i1`` type.
1841**Integer constants**
1842 Standard integers (such as '4') are constants of the
1843 :ref:`integer <t_integer>` type. Negative numbers may be used with
1844 integer types.
1845**Floating point constants**
1846 Floating point constants use standard decimal notation (e.g.
1847 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1848 hexadecimal notation (see below). The assembler requires the exact
1849 decimal value of a floating-point constant. For example, the
1850 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1851 decimal in binary. Floating point constants must have a :ref:`floating
1852 point <t_floating>` type.
1853**Null pointer constants**
1854 The identifier '``null``' is recognized as a null pointer constant
1855 and must be of :ref:`pointer type <t_pointer>`.
1856
1857The one non-intuitive notation for constants is the hexadecimal form of
1858floating point constants. For example, the form
1859'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1860than) '``double 4.5e+15``'. The only time hexadecimal floating point
1861constants are required (and the only time that they are generated by the
1862disassembler) is when a floating point constant must be emitted but it
1863cannot be represented as a decimal floating point number in a reasonable
1864number of digits. For example, NaN's, infinities, and other special
1865values are represented in their IEEE hexadecimal format so that assembly
1866and disassembly do not cause any bits to change in the constants.
1867
1868When using the hexadecimal form, constants of types half, float, and
1869double are represented using the 16-digit form shown above (which
1870matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001871must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001872precision, respectively. Hexadecimal format is always used for long
1873double, and there are three forms of long double. The 80-bit format used
1874by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1875128-bit format used by PowerPC (two adjacent doubles) is represented by
1876``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001877represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1878will only work if they match the long double format on your target.
1879The IEEE 16-bit format (half precision) is represented by ``0xH``
1880followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1881(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001882
1883There are no constants of type x86mmx.
1884
Eli Bendersky88fe6822013-06-07 20:24:43 +00001885.. _complexconstants:
1886
Sean Silvaf722b002012-12-07 10:36:55 +00001887Complex Constants
1888-----------------
1889
1890Complex constants are a (potentially recursive) combination of simple
1891constants and smaller complex constants.
1892
1893**Structure constants**
1894 Structure constants are represented with notation similar to
1895 structure type definitions (a comma separated list of elements,
1896 surrounded by braces (``{}``)). For example:
1897 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1898 "``@G = external global i32``". Structure constants must have
1899 :ref:`structure type <t_struct>`, and the number and types of elements
1900 must match those specified by the type.
1901**Array constants**
1902 Array constants are represented with notation similar to array type
1903 definitions (a comma separated list of elements, surrounded by
1904 square brackets (``[]``)). For example:
1905 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1906 :ref:`array type <t_array>`, and the number and types of elements must
1907 match those specified by the type.
1908**Vector constants**
1909 Vector constants are represented with notation similar to vector
1910 type definitions (a comma separated list of elements, surrounded by
1911 less-than/greater-than's (``<>``)). For example:
1912 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1913 must have :ref:`vector type <t_vector>`, and the number and types of
1914 elements must match those specified by the type.
1915**Zero initialization**
1916 The string '``zeroinitializer``' can be used to zero initialize a
1917 value to zero of *any* type, including scalar and
1918 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1919 having to print large zero initializers (e.g. for large arrays) and
1920 is always exactly equivalent to using explicit zero initializers.
1921**Metadata node**
1922 A metadata node is a structure-like constant with :ref:`metadata
1923 type <t_metadata>`. For example:
1924 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1925 constants that are meant to be interpreted as part of the
1926 instruction stream, metadata is a place to attach additional
1927 information such as debug info.
1928
1929Global Variable and Function Addresses
1930--------------------------------------
1931
1932The addresses of :ref:`global variables <globalvars>` and
1933:ref:`functions <functionstructure>` are always implicitly valid
1934(link-time) constants. These constants are explicitly referenced when
1935the :ref:`identifier for the global <identifiers>` is used and always have
1936:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1937file:
1938
1939.. code-block:: llvm
1940
1941 @X = global i32 17
1942 @Y = global i32 42
1943 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1944
1945.. _undefvalues:
1946
1947Undefined Values
1948----------------
1949
1950The string '``undef``' can be used anywhere a constant is expected, and
1951indicates that the user of the value may receive an unspecified
1952bit-pattern. Undefined values may be of any type (other than '``label``'
1953or '``void``') and be used anywhere a constant is permitted.
1954
1955Undefined values are useful because they indicate to the compiler that
1956the program is well defined no matter what value is used. This gives the
1957compiler more freedom to optimize. Here are some examples of
1958(potentially surprising) transformations that are valid (in pseudo IR):
1959
1960.. code-block:: llvm
1961
1962 %A = add %X, undef
1963 %B = sub %X, undef
1964 %C = xor %X, undef
1965 Safe:
1966 %A = undef
1967 %B = undef
1968 %C = undef
1969
1970This is safe because all of the output bits are affected by the undef
1971bits. Any output bit can have a zero or one depending on the input bits.
1972
1973.. code-block:: llvm
1974
1975 %A = or %X, undef
1976 %B = and %X, undef
1977 Safe:
1978 %A = -1
1979 %B = 0
1980 Unsafe:
1981 %A = undef
1982 %B = undef
1983
1984These logical operations have bits that are not always affected by the
1985input. For example, if ``%X`` has a zero bit, then the output of the
1986'``and``' operation will always be a zero for that bit, no matter what
1987the corresponding bit from the '``undef``' is. As such, it is unsafe to
1988optimize or assume that the result of the '``and``' is '``undef``'.
1989However, it is safe to assume that all bits of the '``undef``' could be
19900, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1991all the bits of the '``undef``' operand to the '``or``' could be set,
1992allowing the '``or``' to be folded to -1.
1993
1994.. code-block:: llvm
1995
1996 %A = select undef, %X, %Y
1997 %B = select undef, 42, %Y
1998 %C = select %X, %Y, undef
1999 Safe:
2000 %A = %X (or %Y)
2001 %B = 42 (or %Y)
2002 %C = %Y
2003 Unsafe:
2004 %A = undef
2005 %B = undef
2006 %C = undef
2007
2008This set of examples shows that undefined '``select``' (and conditional
2009branch) conditions can go *either way*, but they have to come from one
2010of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2011both known to have a clear low bit, then ``%A`` would have to have a
2012cleared low bit. However, in the ``%C`` example, the optimizer is
2013allowed to assume that the '``undef``' operand could be the same as
2014``%Y``, allowing the whole '``select``' to be eliminated.
2015
2016.. code-block:: llvm
2017
2018 %A = xor undef, undef
2019
2020 %B = undef
2021 %C = xor %B, %B
2022
2023 %D = undef
2024 %E = icmp lt %D, 4
2025 %F = icmp gte %D, 4
2026
2027 Safe:
2028 %A = undef
2029 %B = undef
2030 %C = undef
2031 %D = undef
2032 %E = undef
2033 %F = undef
2034
2035This example points out that two '``undef``' operands are not
2036necessarily the same. This can be surprising to people (and also matches
2037C semantics) where they assume that "``X^X``" is always zero, even if
2038``X`` is undefined. This isn't true for a number of reasons, but the
2039short answer is that an '``undef``' "variable" can arbitrarily change
2040its value over its "live range". This is true because the variable
2041doesn't actually *have a live range*. Instead, the value is logically
2042read from arbitrary registers that happen to be around when needed, so
2043the value is not necessarily consistent over time. In fact, ``%A`` and
2044``%C`` need to have the same semantics or the core LLVM "replace all
2045uses with" concept would not hold.
2046
2047.. code-block:: llvm
2048
2049 %A = fdiv undef, %X
2050 %B = fdiv %X, undef
2051 Safe:
2052 %A = undef
2053 b: unreachable
2054
2055These examples show the crucial difference between an *undefined value*
2056and *undefined behavior*. An undefined value (like '``undef``') is
2057allowed to have an arbitrary bit-pattern. This means that the ``%A``
2058operation can be constant folded to '``undef``', because the '``undef``'
2059could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2060However, in the second example, we can make a more aggressive
2061assumption: because the ``undef`` is allowed to be an arbitrary value,
2062we are allowed to assume that it could be zero. Since a divide by zero
2063has *undefined behavior*, we are allowed to assume that the operation
2064does not execute at all. This allows us to delete the divide and all
2065code after it. Because the undefined operation "can't happen", the
2066optimizer can assume that it occurs in dead code.
2067
2068.. code-block:: llvm
2069
2070 a: store undef -> %X
2071 b: store %X -> undef
2072 Safe:
2073 a: <deleted>
2074 b: unreachable
2075
2076These examples reiterate the ``fdiv`` example: a store *of* an undefined
2077value can be assumed to not have any effect; we can assume that the
2078value is overwritten with bits that happen to match what was already
2079there. However, a store *to* an undefined location could clobber
2080arbitrary memory, therefore, it has undefined behavior.
2081
2082.. _poisonvalues:
2083
2084Poison Values
2085-------------
2086
2087Poison values are similar to :ref:`undef values <undefvalues>`, however
2088they also represent the fact that an instruction or constant expression
2089which cannot evoke side effects has nevertheless detected a condition
2090which results in undefined behavior.
2091
2092There is currently no way of representing a poison value in the IR; they
2093only exist when produced by operations such as :ref:`add <i_add>` with
2094the ``nsw`` flag.
2095
2096Poison value behavior is defined in terms of value *dependence*:
2097
2098- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2099- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2100 their dynamic predecessor basic block.
2101- Function arguments depend on the corresponding actual argument values
2102 in the dynamic callers of their functions.
2103- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2104 instructions that dynamically transfer control back to them.
2105- :ref:`Invoke <i_invoke>` instructions depend on the
2106 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2107 call instructions that dynamically transfer control back to them.
2108- Non-volatile loads and stores depend on the most recent stores to all
2109 of the referenced memory addresses, following the order in the IR
2110 (including loads and stores implied by intrinsics such as
2111 :ref:`@llvm.memcpy <int_memcpy>`.)
2112- An instruction with externally visible side effects depends on the
2113 most recent preceding instruction with externally visible side
2114 effects, following the order in the IR. (This includes :ref:`volatile
2115 operations <volatile>`.)
2116- An instruction *control-depends* on a :ref:`terminator
2117 instruction <terminators>` if the terminator instruction has
2118 multiple successors and the instruction is always executed when
2119 control transfers to one of the successors, and may not be executed
2120 when control is transferred to another.
2121- Additionally, an instruction also *control-depends* on a terminator
2122 instruction if the set of instructions it otherwise depends on would
2123 be different if the terminator had transferred control to a different
2124 successor.
2125- Dependence is transitive.
2126
2127Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2128with the additional affect that any instruction which has a *dependence*
2129on a poison value has undefined behavior.
2130
2131Here are some examples:
2132
2133.. code-block:: llvm
2134
2135 entry:
2136 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2137 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2138 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2139 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2140
2141 store i32 %poison, i32* @g ; Poison value stored to memory.
2142 %poison2 = load i32* @g ; Poison value loaded back from memory.
2143
2144 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2145
2146 %narrowaddr = bitcast i32* @g to i16*
2147 %wideaddr = bitcast i32* @g to i64*
2148 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2149 %poison4 = load i64* %wideaddr ; Returns a poison value.
2150
2151 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2152 br i1 %cmp, label %true, label %end ; Branch to either destination.
2153
2154 true:
2155 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2156 ; it has undefined behavior.
2157 br label %end
2158
2159 end:
2160 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2161 ; Both edges into this PHI are
2162 ; control-dependent on %cmp, so this
2163 ; always results in a poison value.
2164
2165 store volatile i32 0, i32* @g ; This would depend on the store in %true
2166 ; if %cmp is true, or the store in %entry
2167 ; otherwise, so this is undefined behavior.
2168
2169 br i1 %cmp, label %second_true, label %second_end
2170 ; The same branch again, but this time the
2171 ; true block doesn't have side effects.
2172
2173 second_true:
2174 ; No side effects!
2175 ret void
2176
2177 second_end:
2178 store volatile i32 0, i32* @g ; This time, the instruction always depends
2179 ; on the store in %end. Also, it is
2180 ; control-equivalent to %end, so this is
2181 ; well-defined (ignoring earlier undefined
2182 ; behavior in this example).
2183
2184.. _blockaddress:
2185
2186Addresses of Basic Blocks
2187-------------------------
2188
2189``blockaddress(@function, %block)``
2190
2191The '``blockaddress``' constant computes the address of the specified
2192basic block in the specified function, and always has an ``i8*`` type.
2193Taking the address of the entry block is illegal.
2194
2195This value only has defined behavior when used as an operand to the
2196':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2197against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002198undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002199no label is equal to the null pointer. This may be passed around as an
2200opaque pointer sized value as long as the bits are not inspected. This
2201allows ``ptrtoint`` and arithmetic to be performed on these values so
2202long as the original value is reconstituted before the ``indirectbr``
2203instruction.
2204
2205Finally, some targets may provide defined semantics when using the value
2206as the operand to an inline assembly, but that is target specific.
2207
Eli Bendersky88fe6822013-06-07 20:24:43 +00002208.. _constantexprs:
2209
Sean Silvaf722b002012-12-07 10:36:55 +00002210Constant Expressions
2211--------------------
2212
2213Constant expressions are used to allow expressions involving other
2214constants to be used as constants. Constant expressions may be of any
2215:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2216that does not have side effects (e.g. load and call are not supported).
2217The following is the syntax for constant expressions:
2218
2219``trunc (CST to TYPE)``
2220 Truncate a constant to another type. The bit size of CST must be
2221 larger than the bit size of TYPE. Both types must be integers.
2222``zext (CST to TYPE)``
2223 Zero extend a constant to another type. The bit size of CST must be
2224 smaller than the bit size of TYPE. Both types must be integers.
2225``sext (CST to TYPE)``
2226 Sign extend a constant to another type. The bit size of CST must be
2227 smaller than the bit size of TYPE. Both types must be integers.
2228``fptrunc (CST to TYPE)``
2229 Truncate a floating point constant to another floating point type.
2230 The size of CST must be larger than the size of TYPE. Both types
2231 must be floating point.
2232``fpext (CST to TYPE)``
2233 Floating point extend a constant to another type. The size of CST
2234 must be smaller or equal to the size of TYPE. Both types must be
2235 floating point.
2236``fptoui (CST to TYPE)``
2237 Convert a floating point constant to the corresponding unsigned
2238 integer constant. TYPE must be a scalar or vector integer type. CST
2239 must be of scalar or vector floating point type. Both CST and TYPE
2240 must be scalars, or vectors of the same number of elements. If the
2241 value won't fit in the integer type, the results are undefined.
2242``fptosi (CST to TYPE)``
2243 Convert a floating point constant to the corresponding signed
2244 integer constant. TYPE must be a scalar or vector integer type. CST
2245 must be of scalar or vector floating point type. Both CST and TYPE
2246 must be scalars, or vectors of the same number of elements. If the
2247 value won't fit in the integer type, the results are undefined.
2248``uitofp (CST to TYPE)``
2249 Convert an unsigned integer constant to the corresponding floating
2250 point constant. TYPE must be a scalar or vector floating point type.
2251 CST must be of scalar or vector integer type. Both CST and TYPE must
2252 be scalars, or vectors of the same number of elements. If the value
2253 won't fit in the floating point type, the results are undefined.
2254``sitofp (CST to TYPE)``
2255 Convert a signed integer constant to the corresponding floating
2256 point constant. TYPE must be a scalar or vector floating point type.
2257 CST must be of scalar or vector integer type. Both CST and TYPE must
2258 be scalars, or vectors of the same number of elements. If the value
2259 won't fit in the floating point type, the results are undefined.
2260``ptrtoint (CST to TYPE)``
2261 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002262 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002263 pointer type. The ``CST`` value is zero extended, truncated, or
2264 unchanged to make it fit in ``TYPE``.
2265``inttoptr (CST to TYPE)``
2266 Convert an integer constant to a pointer constant. TYPE must be a
2267 pointer type. CST must be of integer type. The CST value is zero
2268 extended, truncated, or unchanged to make it fit in a pointer size.
2269 This one is *really* dangerous!
2270``bitcast (CST to TYPE)``
2271 Convert a constant, CST, to another TYPE. The constraints of the
2272 operands are the same as those for the :ref:`bitcast
2273 instruction <i_bitcast>`.
2274``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2275 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2276 constants. As with the :ref:`getelementptr <i_getelementptr>`
2277 instruction, the index list may have zero or more indexes, which are
2278 required to make sense for the type of "CSTPTR".
2279``select (COND, VAL1, VAL2)``
2280 Perform the :ref:`select operation <i_select>` on constants.
2281``icmp COND (VAL1, VAL2)``
2282 Performs the :ref:`icmp operation <i_icmp>` on constants.
2283``fcmp COND (VAL1, VAL2)``
2284 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2285``extractelement (VAL, IDX)``
2286 Perform the :ref:`extractelement operation <i_extractelement>` on
2287 constants.
2288``insertelement (VAL, ELT, IDX)``
2289 Perform the :ref:`insertelement operation <i_insertelement>` on
2290 constants.
2291``shufflevector (VEC1, VEC2, IDXMASK)``
2292 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2293 constants.
2294``extractvalue (VAL, IDX0, IDX1, ...)``
2295 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2296 constants. The index list is interpreted in a similar manner as
2297 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2298 least one index value must be specified.
2299``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2300 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2301 The index list is interpreted in a similar manner as indices in a
2302 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2303 value must be specified.
2304``OPCODE (LHS, RHS)``
2305 Perform the specified operation of the LHS and RHS constants. OPCODE
2306 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2307 binary <bitwiseops>` operations. The constraints on operands are
2308 the same as those for the corresponding instruction (e.g. no bitwise
2309 operations on floating point values are allowed).
2310
2311Other Values
2312============
2313
Eli Bendersky88fe6822013-06-07 20:24:43 +00002314.. _inlineasmexprs:
2315
Sean Silvaf722b002012-12-07 10:36:55 +00002316Inline Assembler Expressions
2317----------------------------
2318
2319LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2320Inline Assembly <moduleasm>`) through the use of a special value. This
2321value represents the inline assembler as a string (containing the
2322instructions to emit), a list of operand constraints (stored as a
2323string), a flag that indicates whether or not the inline asm expression
2324has side effects, and a flag indicating whether the function containing
2325the asm needs to align its stack conservatively. An example inline
2326assembler expression is:
2327
2328.. code-block:: llvm
2329
2330 i32 (i32) asm "bswap $0", "=r,r"
2331
2332Inline assembler expressions may **only** be used as the callee operand
2333of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2334Thus, typically we have:
2335
2336.. code-block:: llvm
2337
2338 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2339
2340Inline asms with side effects not visible in the constraint list must be
2341marked as having side effects. This is done through the use of the
2342'``sideeffect``' keyword, like so:
2343
2344.. code-block:: llvm
2345
2346 call void asm sideeffect "eieio", ""()
2347
2348In some cases inline asms will contain code that will not work unless
2349the stack is aligned in some way, such as calls or SSE instructions on
2350x86, yet will not contain code that does that alignment within the asm.
2351The compiler should make conservative assumptions about what the asm
2352might contain and should generate its usual stack alignment code in the
2353prologue if the '``alignstack``' keyword is present:
2354
2355.. code-block:: llvm
2356
2357 call void asm alignstack "eieio", ""()
2358
2359Inline asms also support using non-standard assembly dialects. The
2360assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2361the inline asm is using the Intel dialect. Currently, ATT and Intel are
2362the only supported dialects. An example is:
2363
2364.. code-block:: llvm
2365
2366 call void asm inteldialect "eieio", ""()
2367
2368If multiple keywords appear the '``sideeffect``' keyword must come
2369first, the '``alignstack``' keyword second and the '``inteldialect``'
2370keyword last.
2371
2372Inline Asm Metadata
2373^^^^^^^^^^^^^^^^^^^
2374
2375The call instructions that wrap inline asm nodes may have a
2376"``!srcloc``" MDNode attached to it that contains a list of constant
2377integers. If present, the code generator will use the integer as the
2378location cookie value when report errors through the ``LLVMContext``
2379error reporting mechanisms. This allows a front-end to correlate backend
2380errors that occur with inline asm back to the source code that produced
2381it. For example:
2382
2383.. code-block:: llvm
2384
2385 call void asm sideeffect "something bad", ""(), !srcloc !42
2386 ...
2387 !42 = !{ i32 1234567 }
2388
2389It is up to the front-end to make sense of the magic numbers it places
2390in the IR. If the MDNode contains multiple constants, the code generator
2391will use the one that corresponds to the line of the asm that the error
2392occurs on.
2393
2394.. _metadata:
2395
2396Metadata Nodes and Metadata Strings
2397-----------------------------------
2398
2399LLVM IR allows metadata to be attached to instructions in the program
2400that can convey extra information about the code to the optimizers and
2401code generator. One example application of metadata is source-level
2402debug information. There are two metadata primitives: strings and nodes.
2403All metadata has the ``metadata`` type and is identified in syntax by a
2404preceding exclamation point ('``!``').
2405
2406A metadata string is a string surrounded by double quotes. It can
2407contain any character by escaping non-printable characters with
2408"``\xx``" where "``xx``" is the two digit hex code. For example:
2409"``!"test\00"``".
2410
2411Metadata nodes are represented with notation similar to structure
2412constants (a comma separated list of elements, surrounded by braces and
2413preceded by an exclamation point). Metadata nodes can have any values as
2414their operand. For example:
2415
2416.. code-block:: llvm
2417
2418 !{ metadata !"test\00", i32 10}
2419
2420A :ref:`named metadata <namedmetadatastructure>` is a collection of
2421metadata nodes, which can be looked up in the module symbol table. For
2422example:
2423
2424.. code-block:: llvm
2425
2426 !foo = metadata !{!4, !3}
2427
2428Metadata can be used as function arguments. Here ``llvm.dbg.value``
2429function is using two metadata arguments:
2430
2431.. code-block:: llvm
2432
2433 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2434
2435Metadata can be attached with an instruction. Here metadata ``!21`` is
2436attached to the ``add`` instruction using the ``!dbg`` identifier:
2437
2438.. code-block:: llvm
2439
2440 %indvar.next = add i64 %indvar, 1, !dbg !21
2441
2442More information about specific metadata nodes recognized by the
2443optimizers and code generator is found below.
2444
2445'``tbaa``' Metadata
2446^^^^^^^^^^^^^^^^^^^
2447
2448In LLVM IR, memory does not have types, so LLVM's own type system is not
2449suitable for doing TBAA. Instead, metadata is added to the IR to
2450describe a type system of a higher level language. This can be used to
2451implement typical C/C++ TBAA, but it can also be used to implement
2452custom alias analysis behavior for other languages.
2453
2454The current metadata format is very simple. TBAA metadata nodes have up
2455to three fields, e.g.:
2456
2457.. code-block:: llvm
2458
2459 !0 = metadata !{ metadata !"an example type tree" }
2460 !1 = metadata !{ metadata !"int", metadata !0 }
2461 !2 = metadata !{ metadata !"float", metadata !0 }
2462 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2463
2464The first field is an identity field. It can be any value, usually a
2465metadata string, which uniquely identifies the type. The most important
2466name in the tree is the name of the root node. Two trees with different
2467root node names are entirely disjoint, even if they have leaves with
2468common names.
2469
2470The second field identifies the type's parent node in the tree, or is
2471null or omitted for a root node. A type is considered to alias all of
2472its descendants and all of its ancestors in the tree. Also, a type is
2473considered to alias all types in other trees, so that bitcode produced
2474from multiple front-ends is handled conservatively.
2475
2476If the third field is present, it's an integer which if equal to 1
2477indicates that the type is "constant" (meaning
2478``pointsToConstantMemory`` should return true; see `other useful
2479AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2480
2481'``tbaa.struct``' Metadata
2482^^^^^^^^^^^^^^^^^^^^^^^^^^
2483
2484The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2485aggregate assignment operations in C and similar languages, however it
2486is defined to copy a contiguous region of memory, which is more than
2487strictly necessary for aggregate types which contain holes due to
2488padding. Also, it doesn't contain any TBAA information about the fields
2489of the aggregate.
2490
2491``!tbaa.struct`` metadata can describe which memory subregions in a
2492memcpy are padding and what the TBAA tags of the struct are.
2493
2494The current metadata format is very simple. ``!tbaa.struct`` metadata
2495nodes are a list of operands which are in conceptual groups of three.
2496For each group of three, the first operand gives the byte offset of a
2497field in bytes, the second gives its size in bytes, and the third gives
2498its tbaa tag. e.g.:
2499
2500.. code-block:: llvm
2501
2502 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2503
2504This describes a struct with two fields. The first is at offset 0 bytes
2505with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2506and has size 4 bytes and has tbaa tag !2.
2507
2508Note that the fields need not be contiguous. In this example, there is a
25094 byte gap between the two fields. This gap represents padding which
2510does not carry useful data and need not be preserved.
2511
2512'``fpmath``' Metadata
2513^^^^^^^^^^^^^^^^^^^^^
2514
2515``fpmath`` metadata may be attached to any instruction of floating point
2516type. It can be used to express the maximum acceptable error in the
2517result of that instruction, in ULPs, thus potentially allowing the
2518compiler to use a more efficient but less accurate method of computing
2519it. ULP is defined as follows:
2520
2521 If ``x`` is a real number that lies between two finite consecutive
2522 floating-point numbers ``a`` and ``b``, without being equal to one
2523 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2524 distance between the two non-equal finite floating-point numbers
2525 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2526
2527The metadata node shall consist of a single positive floating point
2528number representing the maximum relative error, for example:
2529
2530.. code-block:: llvm
2531
2532 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2533
2534'``range``' Metadata
2535^^^^^^^^^^^^^^^^^^^^
2536
2537``range`` metadata may be attached only to loads of integer types. It
2538expresses the possible ranges the loaded value is in. The ranges are
2539represented with a flattened list of integers. The loaded value is known
2540to be in the union of the ranges defined by each consecutive pair. Each
2541pair has the following properties:
2542
2543- The type must match the type loaded by the instruction.
2544- The pair ``a,b`` represents the range ``[a,b)``.
2545- Both ``a`` and ``b`` are constants.
2546- The range is allowed to wrap.
2547- The range should not represent the full or empty set. That is,
2548 ``a!=b``.
2549
2550In addition, the pairs must be in signed order of the lower bound and
2551they must be non-contiguous.
2552
2553Examples:
2554
2555.. code-block:: llvm
2556
2557 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2558 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2559 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2560 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2561 ...
2562 !0 = metadata !{ i8 0, i8 2 }
2563 !1 = metadata !{ i8 255, i8 2 }
2564 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2565 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2566
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002567'``llvm.loop``'
2568^^^^^^^^^^^^^^^
2569
2570It is sometimes useful to attach information to loop constructs. Currently,
2571loop metadata is implemented as metadata attached to the branch instruction
2572in the loop latch block. This type of metadata refer to a metadata node that is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002573guaranteed to be separate for each loop. The loop identifier metadata is
2574specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002575
2576The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002577itself to avoid merging it with any other identifier metadata, e.g.,
2578during module linkage or function inlining. That is, each loop should refer
2579to their own identification metadata even if they reside in separate functions.
2580The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002581constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002582
2583.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002584
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002585 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002586 !1 = metadata !{ metadata !1 }
2587
Paul Redmondee21b6f2013-05-28 20:00:34 +00002588The loop identifier metadata can be used to specify additional per-loop
2589metadata. Any operands after the first operand can be treated as user-defined
2590metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2591by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002592
Paul Redmondee21b6f2013-05-28 20:00:34 +00002593.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002594
Paul Redmondee21b6f2013-05-28 20:00:34 +00002595 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2596 ...
2597 !0 = metadata !{ metadata !0, metadata !1 }
2598 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002599
2600'``llvm.mem``'
2601^^^^^^^^^^^^^^^
2602
2603Metadata types used to annotate memory accesses with information helpful
2604for optimizations are prefixed with ``llvm.mem``.
2605
2606'``llvm.mem.parallel_loop_access``' Metadata
2607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2608
2609For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002610the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002611also all of the memory accessing instructions in the loop body need to be
2612marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2613is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002614the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002615converted to sequential loops due to optimization passes that are unaware of
2616the parallel semantics and that insert new memory instructions to the loop
2617body.
2618
2619Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002620both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002621metadata types that refer to the same loop identifier metadata.
2622
2623.. code-block:: llvm
2624
2625 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002626 ...
2627 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2628 ...
2629 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2630 ...
2631 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002632
2633 for.end:
2634 ...
2635 !0 = metadata !{ metadata !0 }
2636
2637It is also possible to have nested parallel loops. In that case the
2638memory accesses refer to a list of loop identifier metadata nodes instead of
2639the loop identifier metadata node directly:
2640
2641.. code-block:: llvm
2642
2643 outer.for.body:
2644 ...
2645
2646 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002647 ...
2648 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2649 ...
2650 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2651 ...
2652 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002653
2654 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002655 ...
2656 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2657 ...
2658 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2659 ...
2660 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002661
2662 outer.for.end: ; preds = %for.body
2663 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002664 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2665 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2666 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002667
Paul Redmondee21b6f2013-05-28 20:00:34 +00002668'``llvm.vectorizer``'
2669^^^^^^^^^^^^^^^^^^^^^
2670
2671Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2672vectorization parameters such as vectorization factor and unroll factor.
2673
2674``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2675loop identification metadata.
2676
2677'``llvm.vectorizer.unroll``' Metadata
2678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2679
2680This metadata instructs the loop vectorizer to unroll the specified
2681loop exactly ``N`` times.
2682
2683The first operand is the string ``llvm.vectorizer.unroll`` and the second
2684operand is an integer specifying the unroll factor. For example:
2685
2686.. code-block:: llvm
2687
2688 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2689
2690Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2691loop.
2692
2693If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2694determined automatically.
2695
2696'``llvm.vectorizer.width``' Metadata
2697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2698
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002699This metadata sets the target width of the vectorizer to ``N``. Without
2700this metadata, the vectorizer will choose a width automatically.
2701Regardless of this metadata, the vectorizer will only vectorize loops if
2702it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002703
2704The first operand is the string ``llvm.vectorizer.width`` and the second
2705operand is an integer specifying the width. For example:
2706
2707.. code-block:: llvm
2708
2709 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2710
2711Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2712loop.
2713
2714If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2715automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002716
Sean Silvaf722b002012-12-07 10:36:55 +00002717Module Flags Metadata
2718=====================
2719
2720Information about the module as a whole is difficult to convey to LLVM's
2721subsystems. The LLVM IR isn't sufficient to transmit this information.
2722The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002723this. These flags are in the form of key / value pairs --- much like a
2724dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002725look it up.
2726
2727The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2728Each triplet has the following form:
2729
2730- The first element is a *behavior* flag, which specifies the behavior
2731 when two (or more) modules are merged together, and it encounters two
2732 (or more) metadata with the same ID. The supported behaviors are
2733 described below.
2734- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002735 metadata. Each module may only have one flag entry for each unique ID (not
2736 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002737- The third element is the value of the flag.
2738
2739When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002740``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2741each unique metadata ID string, there will be exactly one entry in the merged
2742modules ``llvm.module.flags`` metadata table, and the value for that entry will
2743be determined by the merge behavior flag, as described below. The only exception
2744is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002745
2746The following behaviors are supported:
2747
2748.. list-table::
2749 :header-rows: 1
2750 :widths: 10 90
2751
2752 * - Value
2753 - Behavior
2754
2755 * - 1
2756 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002757 Emits an error if two values disagree, otherwise the resulting value
2758 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002759
2760 * - 2
2761 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002762 Emits a warning if two values disagree. The result value will be the
2763 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002764
2765 * - 3
2766 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002767 Adds a requirement that another module flag be present and have a
2768 specified value after linking is performed. The value must be a
2769 metadata pair, where the first element of the pair is the ID of the
2770 module flag to be restricted, and the second element of the pair is
2771 the value the module flag should be restricted to. This behavior can
2772 be used to restrict the allowable results (via triggering of an
2773 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002774
2775 * - 4
2776 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002777 Uses the specified value, regardless of the behavior or value of the
2778 other module. If both modules specify **Override**, but the values
2779 differ, an error will be emitted.
2780
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002781 * - 5
2782 - **Append**
2783 Appends the two values, which are required to be metadata nodes.
2784
2785 * - 6
2786 - **AppendUnique**
2787 Appends the two values, which are required to be metadata
2788 nodes. However, duplicate entries in the second list are dropped
2789 during the append operation.
2790
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002791It is an error for a particular unique flag ID to have multiple behaviors,
2792except in the case of **Require** (which adds restrictions on another metadata
2793value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002794
2795An example of module flags:
2796
2797.. code-block:: llvm
2798
2799 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2800 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2801 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2802 !3 = metadata !{ i32 3, metadata !"qux",
2803 metadata !{
2804 metadata !"foo", i32 1
2805 }
2806 }
2807 !llvm.module.flags = !{ !0, !1, !2, !3 }
2808
2809- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2810 if two or more ``!"foo"`` flags are seen is to emit an error if their
2811 values are not equal.
2812
2813- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2814 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002815 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002816
2817- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2818 behavior if two or more ``!"qux"`` flags are seen is to emit a
2819 warning if their values are not equal.
2820
2821- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2822
2823 ::
2824
2825 metadata !{ metadata !"foo", i32 1 }
2826
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002827 The behavior is to emit an error if the ``llvm.module.flags`` does not
2828 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2829 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002830
2831Objective-C Garbage Collection Module Flags Metadata
2832----------------------------------------------------
2833
2834On the Mach-O platform, Objective-C stores metadata about garbage
2835collection in a special section called "image info". The metadata
2836consists of a version number and a bitmask specifying what types of
2837garbage collection are supported (if any) by the file. If two or more
2838modules are linked together their garbage collection metadata needs to
2839be merged rather than appended together.
2840
2841The Objective-C garbage collection module flags metadata consists of the
2842following key-value pairs:
2843
2844.. list-table::
2845 :header-rows: 1
2846 :widths: 30 70
2847
2848 * - Key
2849 - Value
2850
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002851 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002852 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002853
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002854 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002855 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002856 always 0.
2857
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002858 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002859 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002860 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2861 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2862 Objective-C ABI version 2.
2863
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002864 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002865 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002866 not. Valid values are 0, for no garbage collection, and 2, for garbage
2867 collection supported.
2868
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002869 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002870 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002871 If present, its value must be 6. This flag requires that the
2872 ``Objective-C Garbage Collection`` flag have the value 2.
2873
2874Some important flag interactions:
2875
2876- If a module with ``Objective-C Garbage Collection`` set to 0 is
2877 merged with a module with ``Objective-C Garbage Collection`` set to
2878 2, then the resulting module has the
2879 ``Objective-C Garbage Collection`` flag set to 0.
2880- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2881 merged with a module with ``Objective-C GC Only`` set to 6.
2882
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002883Automatic Linker Flags Module Flags Metadata
2884--------------------------------------------
2885
2886Some targets support embedding flags to the linker inside individual object
2887files. Typically this is used in conjunction with language extensions which
2888allow source files to explicitly declare the libraries they depend on, and have
2889these automatically be transmitted to the linker via object files.
2890
2891These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002892using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002893to be ``AppendUnique``, and the value for the key is expected to be a metadata
2894node which should be a list of other metadata nodes, each of which should be a
2895list of metadata strings defining linker options.
2896
2897For example, the following metadata section specifies two separate sets of
2898linker options, presumably to link against ``libz`` and the ``Cocoa``
2899framework::
2900
Michael Liao2faa0f32013-03-06 18:24:34 +00002901 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002902 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002903 metadata !{ metadata !"-lz" },
2904 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002905 !llvm.module.flags = !{ !0 }
2906
2907The metadata encoding as lists of lists of options, as opposed to a collapsed
2908list of options, is chosen so that the IR encoding can use multiple option
2909strings to specify e.g., a single library, while still having that specifier be
2910preserved as an atomic element that can be recognized by a target specific
2911assembly writer or object file emitter.
2912
2913Each individual option is required to be either a valid option for the target's
2914linker, or an option that is reserved by the target specific assembly writer or
2915object file emitter. No other aspect of these options is defined by the IR.
2916
Eli Bendersky88fe6822013-06-07 20:24:43 +00002917.. _intrinsicglobalvariables:
2918
Sean Silvaf722b002012-12-07 10:36:55 +00002919Intrinsic Global Variables
2920==========================
2921
2922LLVM has a number of "magic" global variables that contain data that
2923affect code generation or other IR semantics. These are documented here.
2924All globals of this sort should have a section specified as
2925"``llvm.metadata``". This section and all globals that start with
2926"``llvm.``" are reserved for use by LLVM.
2927
Eli Bendersky88fe6822013-06-07 20:24:43 +00002928.. _gv_llvmused:
2929
Sean Silvaf722b002012-12-07 10:36:55 +00002930The '``llvm.used``' Global Variable
2931-----------------------------------
2932
Rafael Espindolacde25b42013-04-22 14:58:02 +00002933The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00002934:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002935pointers to named global variables, functions and aliases which may optionally
2936have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00002937use of it is:
2938
2939.. code-block:: llvm
2940
2941 @X = global i8 4
2942 @Y = global i32 123
2943
2944 @llvm.used = appending global [2 x i8*] [
2945 i8* @X,
2946 i8* bitcast (i32* @Y to i8*)
2947 ], section "llvm.metadata"
2948
Rafael Espindolacde25b42013-04-22 14:58:02 +00002949If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2950and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002951symbol that it cannot see (which is why they have to be named). For example, if
2952a variable has internal linkage and no references other than that from the
2953``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
2954references from inline asms and other things the compiler cannot "see", and
2955corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002956
2957On some targets, the code generator must emit a directive to the
2958assembler or object file to prevent the assembler and linker from
2959molesting the symbol.
2960
Eli Bendersky88fe6822013-06-07 20:24:43 +00002961.. _gv_llvmcompilerused:
2962
Sean Silvaf722b002012-12-07 10:36:55 +00002963The '``llvm.compiler.used``' Global Variable
2964--------------------------------------------
2965
2966The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2967directive, except that it only prevents the compiler from touching the
2968symbol. On targets that support it, this allows an intelligent linker to
2969optimize references to the symbol without being impeded as it would be
2970by ``@llvm.used``.
2971
2972This is a rare construct that should only be used in rare circumstances,
2973and should not be exposed to source languages.
2974
Eli Bendersky88fe6822013-06-07 20:24:43 +00002975.. _gv_llvmglobalctors:
2976
Sean Silvaf722b002012-12-07 10:36:55 +00002977The '``llvm.global_ctors``' Global Variable
2978-------------------------------------------
2979
2980.. code-block:: llvm
2981
2982 %0 = type { i32, void ()* }
2983 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2984
2985The ``@llvm.global_ctors`` array contains a list of constructor
2986functions and associated priorities. The functions referenced by this
2987array will be called in ascending order of priority (i.e. lowest first)
2988when the module is loaded. The order of functions with the same priority
2989is not defined.
2990
Eli Bendersky88fe6822013-06-07 20:24:43 +00002991.. _llvmglobaldtors:
2992
Sean Silvaf722b002012-12-07 10:36:55 +00002993The '``llvm.global_dtors``' Global Variable
2994-------------------------------------------
2995
2996.. code-block:: llvm
2997
2998 %0 = type { i32, void ()* }
2999 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3000
3001The ``@llvm.global_dtors`` array contains a list of destructor functions
3002and associated priorities. The functions referenced by this array will
3003be called in descending order of priority (i.e. highest first) when the
3004module is loaded. The order of functions with the same priority is not
3005defined.
3006
3007Instruction Reference
3008=====================
3009
3010The LLVM instruction set consists of several different classifications
3011of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3012instructions <binaryops>`, :ref:`bitwise binary
3013instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3014:ref:`other instructions <otherops>`.
3015
3016.. _terminators:
3017
3018Terminator Instructions
3019-----------------------
3020
3021As mentioned :ref:`previously <functionstructure>`, every basic block in a
3022program ends with a "Terminator" instruction, which indicates which
3023block should be executed after the current block is finished. These
3024terminator instructions typically yield a '``void``' value: they produce
3025control flow, not values (the one exception being the
3026':ref:`invoke <i_invoke>`' instruction).
3027
3028The terminator instructions are: ':ref:`ret <i_ret>`',
3029':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3030':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3031':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3032
3033.. _i_ret:
3034
3035'``ret``' Instruction
3036^^^^^^^^^^^^^^^^^^^^^
3037
3038Syntax:
3039"""""""
3040
3041::
3042
3043 ret <type> <value> ; Return a value from a non-void function
3044 ret void ; Return from void function
3045
3046Overview:
3047"""""""""
3048
3049The '``ret``' instruction is used to return control flow (and optionally
3050a value) from a function back to the caller.
3051
3052There are two forms of the '``ret``' instruction: one that returns a
3053value and then causes control flow, and one that just causes control
3054flow to occur.
3055
3056Arguments:
3057""""""""""
3058
3059The '``ret``' instruction optionally accepts a single argument, the
3060return value. The type of the return value must be a ':ref:`first
3061class <t_firstclass>`' type.
3062
3063A function is not :ref:`well formed <wellformed>` if it it has a non-void
3064return type and contains a '``ret``' instruction with no return value or
3065a return value with a type that does not match its type, or if it has a
3066void return type and contains a '``ret``' instruction with a return
3067value.
3068
3069Semantics:
3070""""""""""
3071
3072When the '``ret``' instruction is executed, control flow returns back to
3073the calling function's context. If the caller is a
3074":ref:`call <i_call>`" instruction, execution continues at the
3075instruction after the call. If the caller was an
3076":ref:`invoke <i_invoke>`" instruction, execution continues at the
3077beginning of the "normal" destination block. If the instruction returns
3078a value, that value shall set the call or invoke instruction's return
3079value.
3080
3081Example:
3082""""""""
3083
3084.. code-block:: llvm
3085
3086 ret i32 5 ; Return an integer value of 5
3087 ret void ; Return from a void function
3088 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3089
3090.. _i_br:
3091
3092'``br``' Instruction
3093^^^^^^^^^^^^^^^^^^^^
3094
3095Syntax:
3096"""""""
3097
3098::
3099
3100 br i1 <cond>, label <iftrue>, label <iffalse>
3101 br label <dest> ; Unconditional branch
3102
3103Overview:
3104"""""""""
3105
3106The '``br``' instruction is used to cause control flow to transfer to a
3107different basic block in the current function. There are two forms of
3108this instruction, corresponding to a conditional branch and an
3109unconditional branch.
3110
3111Arguments:
3112""""""""""
3113
3114The conditional branch form of the '``br``' instruction takes a single
3115'``i1``' value and two '``label``' values. The unconditional form of the
3116'``br``' instruction takes a single '``label``' value as a target.
3117
3118Semantics:
3119""""""""""
3120
3121Upon execution of a conditional '``br``' instruction, the '``i1``'
3122argument is evaluated. If the value is ``true``, control flows to the
3123'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3124to the '``iffalse``' ``label`` argument.
3125
3126Example:
3127""""""""
3128
3129.. code-block:: llvm
3130
3131 Test:
3132 %cond = icmp eq i32 %a, %b
3133 br i1 %cond, label %IfEqual, label %IfUnequal
3134 IfEqual:
3135 ret i32 1
3136 IfUnequal:
3137 ret i32 0
3138
3139.. _i_switch:
3140
3141'``switch``' Instruction
3142^^^^^^^^^^^^^^^^^^^^^^^^
3143
3144Syntax:
3145"""""""
3146
3147::
3148
3149 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3150
3151Overview:
3152"""""""""
3153
3154The '``switch``' instruction is used to transfer control flow to one of
3155several different places. It is a generalization of the '``br``'
3156instruction, allowing a branch to occur to one of many possible
3157destinations.
3158
3159Arguments:
3160""""""""""
3161
3162The '``switch``' instruction uses three parameters: an integer
3163comparison value '``value``', a default '``label``' destination, and an
3164array of pairs of comparison value constants and '``label``'s. The table
3165is not allowed to contain duplicate constant entries.
3166
3167Semantics:
3168""""""""""
3169
3170The ``switch`` instruction specifies a table of values and destinations.
3171When the '``switch``' instruction is executed, this table is searched
3172for the given value. If the value is found, control flow is transferred
3173to the corresponding destination; otherwise, control flow is transferred
3174to the default destination.
3175
3176Implementation:
3177"""""""""""""""
3178
3179Depending on properties of the target machine and the particular
3180``switch`` instruction, this instruction may be code generated in
3181different ways. For example, it could be generated as a series of
3182chained conditional branches or with a lookup table.
3183
3184Example:
3185""""""""
3186
3187.. code-block:: llvm
3188
3189 ; Emulate a conditional br instruction
3190 %Val = zext i1 %value to i32
3191 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3192
3193 ; Emulate an unconditional br instruction
3194 switch i32 0, label %dest [ ]
3195
3196 ; Implement a jump table:
3197 switch i32 %val, label %otherwise [ i32 0, label %onzero
3198 i32 1, label %onone
3199 i32 2, label %ontwo ]
3200
3201.. _i_indirectbr:
3202
3203'``indirectbr``' Instruction
3204^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3205
3206Syntax:
3207"""""""
3208
3209::
3210
3211 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3212
3213Overview:
3214"""""""""
3215
3216The '``indirectbr``' instruction implements an indirect branch to a
3217label within the current function, whose address is specified by
3218"``address``". Address must be derived from a
3219:ref:`blockaddress <blockaddress>` constant.
3220
3221Arguments:
3222""""""""""
3223
3224The '``address``' argument is the address of the label to jump to. The
3225rest of the arguments indicate the full set of possible destinations
3226that the address may point to. Blocks are allowed to occur multiple
3227times in the destination list, though this isn't particularly useful.
3228
3229This destination list is required so that dataflow analysis has an
3230accurate understanding of the CFG.
3231
3232Semantics:
3233""""""""""
3234
3235Control transfers to the block specified in the address argument. All
3236possible destination blocks must be listed in the label list, otherwise
3237this instruction has undefined behavior. This implies that jumps to
3238labels defined in other functions have undefined behavior as well.
3239
3240Implementation:
3241"""""""""""""""
3242
3243This is typically implemented with a jump through a register.
3244
3245Example:
3246""""""""
3247
3248.. code-block:: llvm
3249
3250 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3251
3252.. _i_invoke:
3253
3254'``invoke``' Instruction
3255^^^^^^^^^^^^^^^^^^^^^^^^
3256
3257Syntax:
3258"""""""
3259
3260::
3261
3262 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3263 to label <normal label> unwind label <exception label>
3264
3265Overview:
3266"""""""""
3267
3268The '``invoke``' instruction causes control to transfer to a specified
3269function, with the possibility of control flow transfer to either the
3270'``normal``' label or the '``exception``' label. If the callee function
3271returns with the "``ret``" instruction, control flow will return to the
3272"normal" label. If the callee (or any indirect callees) returns via the
3273":ref:`resume <i_resume>`" instruction or other exception handling
3274mechanism, control is interrupted and continued at the dynamically
3275nearest "exception" label.
3276
3277The '``exception``' label is a `landing
3278pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3279'``exception``' label is required to have the
3280":ref:`landingpad <i_landingpad>`" instruction, which contains the
3281information about the behavior of the program after unwinding happens,
3282as its first non-PHI instruction. The restrictions on the
3283"``landingpad``" instruction's tightly couples it to the "``invoke``"
3284instruction, so that the important information contained within the
3285"``landingpad``" instruction can't be lost through normal code motion.
3286
3287Arguments:
3288""""""""""
3289
3290This instruction requires several arguments:
3291
3292#. The optional "cconv" marker indicates which :ref:`calling
3293 convention <callingconv>` the call should use. If none is
3294 specified, the call defaults to using C calling conventions.
3295#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3296 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3297 are valid here.
3298#. '``ptr to function ty``': shall be the signature of the pointer to
3299 function value being invoked. In most cases, this is a direct
3300 function invocation, but indirect ``invoke``'s are just as possible,
3301 branching off an arbitrary pointer to function value.
3302#. '``function ptr val``': An LLVM value containing a pointer to a
3303 function to be invoked.
3304#. '``function args``': argument list whose types match the function
3305 signature argument types and parameter attributes. All arguments must
3306 be of :ref:`first class <t_firstclass>` type. If the function signature
3307 indicates the function accepts a variable number of arguments, the
3308 extra arguments can be specified.
3309#. '``normal label``': the label reached when the called function
3310 executes a '``ret``' instruction.
3311#. '``exception label``': the label reached when a callee returns via
3312 the :ref:`resume <i_resume>` instruction or other exception handling
3313 mechanism.
3314#. The optional :ref:`function attributes <fnattrs>` list. Only
3315 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3316 attributes are valid here.
3317
3318Semantics:
3319""""""""""
3320
3321This instruction is designed to operate as a standard '``call``'
3322instruction in most regards. The primary difference is that it
3323establishes an association with a label, which is used by the runtime
3324library to unwind the stack.
3325
3326This instruction is used in languages with destructors to ensure that
3327proper cleanup is performed in the case of either a ``longjmp`` or a
3328thrown exception. Additionally, this is important for implementation of
3329'``catch``' clauses in high-level languages that support them.
3330
3331For the purposes of the SSA form, the definition of the value returned
3332by the '``invoke``' instruction is deemed to occur on the edge from the
3333current block to the "normal" label. If the callee unwinds then no
3334return value is available.
3335
3336Example:
3337""""""""
3338
3339.. code-block:: llvm
3340
3341 %retval = invoke i32 @Test(i32 15) to label %Continue
3342 unwind label %TestCleanup ; {i32}:retval set
3343 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3344 unwind label %TestCleanup ; {i32}:retval set
3345
3346.. _i_resume:
3347
3348'``resume``' Instruction
3349^^^^^^^^^^^^^^^^^^^^^^^^
3350
3351Syntax:
3352"""""""
3353
3354::
3355
3356 resume <type> <value>
3357
3358Overview:
3359"""""""""
3360
3361The '``resume``' instruction is a terminator instruction that has no
3362successors.
3363
3364Arguments:
3365""""""""""
3366
3367The '``resume``' instruction requires one argument, which must have the
3368same type as the result of any '``landingpad``' instruction in the same
3369function.
3370
3371Semantics:
3372""""""""""
3373
3374The '``resume``' instruction resumes propagation of an existing
3375(in-flight) exception whose unwinding was interrupted with a
3376:ref:`landingpad <i_landingpad>` instruction.
3377
3378Example:
3379""""""""
3380
3381.. code-block:: llvm
3382
3383 resume { i8*, i32 } %exn
3384
3385.. _i_unreachable:
3386
3387'``unreachable``' Instruction
3388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3389
3390Syntax:
3391"""""""
3392
3393::
3394
3395 unreachable
3396
3397Overview:
3398"""""""""
3399
3400The '``unreachable``' instruction has no defined semantics. This
3401instruction is used to inform the optimizer that a particular portion of
3402the code is not reachable. This can be used to indicate that the code
3403after a no-return function cannot be reached, and other facts.
3404
3405Semantics:
3406""""""""""
3407
3408The '``unreachable``' instruction has no defined semantics.
3409
3410.. _binaryops:
3411
3412Binary Operations
3413-----------------
3414
3415Binary operators are used to do most of the computation in a program.
3416They require two operands of the same type, execute an operation on
3417them, and produce a single value. The operands might represent multiple
3418data, as is the case with the :ref:`vector <t_vector>` data type. The
3419result value has the same type as its operands.
3420
3421There are several different binary operators:
3422
3423.. _i_add:
3424
3425'``add``' Instruction
3426^^^^^^^^^^^^^^^^^^^^^
3427
3428Syntax:
3429"""""""
3430
3431::
3432
3433 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3434 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3435 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3436 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3437
3438Overview:
3439"""""""""
3440
3441The '``add``' instruction returns the sum of its two operands.
3442
3443Arguments:
3444""""""""""
3445
3446The two arguments to the '``add``' instruction must be
3447:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3448arguments must have identical types.
3449
3450Semantics:
3451""""""""""
3452
3453The value produced is the integer sum of the two operands.
3454
3455If the sum has unsigned overflow, the result returned is the
3456mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3457the result.
3458
3459Because LLVM integers use a two's complement representation, this
3460instruction is appropriate for both signed and unsigned integers.
3461
3462``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3463respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3464result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3465unsigned and/or signed overflow, respectively, occurs.
3466
3467Example:
3468""""""""
3469
3470.. code-block:: llvm
3471
3472 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3473
3474.. _i_fadd:
3475
3476'``fadd``' Instruction
3477^^^^^^^^^^^^^^^^^^^^^^
3478
3479Syntax:
3480"""""""
3481
3482::
3483
3484 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3485
3486Overview:
3487"""""""""
3488
3489The '``fadd``' instruction returns the sum of its two operands.
3490
3491Arguments:
3492""""""""""
3493
3494The two arguments to the '``fadd``' instruction must be :ref:`floating
3495point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3496Both arguments must have identical types.
3497
3498Semantics:
3499""""""""""
3500
3501The value produced is the floating point sum of the two operands. This
3502instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3503which are optimization hints to enable otherwise unsafe floating point
3504optimizations:
3505
3506Example:
3507""""""""
3508
3509.. code-block:: llvm
3510
3511 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3512
3513'``sub``' Instruction
3514^^^^^^^^^^^^^^^^^^^^^
3515
3516Syntax:
3517"""""""
3518
3519::
3520
3521 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3522 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3523 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3524 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3525
3526Overview:
3527"""""""""
3528
3529The '``sub``' instruction returns the difference of its two operands.
3530
3531Note that the '``sub``' instruction is used to represent the '``neg``'
3532instruction present in most other intermediate representations.
3533
3534Arguments:
3535""""""""""
3536
3537The two arguments to the '``sub``' instruction must be
3538:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3539arguments must have identical types.
3540
3541Semantics:
3542""""""""""
3543
3544The value produced is the integer difference of the two operands.
3545
3546If the difference has unsigned overflow, the result returned is the
3547mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3548the result.
3549
3550Because LLVM integers use a two's complement representation, this
3551instruction is appropriate for both signed and unsigned integers.
3552
3553``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3554respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3555result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3556unsigned and/or signed overflow, respectively, occurs.
3557
3558Example:
3559""""""""
3560
3561.. code-block:: llvm
3562
3563 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3564 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3565
3566.. _i_fsub:
3567
3568'``fsub``' Instruction
3569^^^^^^^^^^^^^^^^^^^^^^
3570
3571Syntax:
3572"""""""
3573
3574::
3575
3576 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3577
3578Overview:
3579"""""""""
3580
3581The '``fsub``' instruction returns the difference of its two operands.
3582
3583Note that the '``fsub``' instruction is used to represent the '``fneg``'
3584instruction present in most other intermediate representations.
3585
3586Arguments:
3587""""""""""
3588
3589The two arguments to the '``fsub``' instruction must be :ref:`floating
3590point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3591Both arguments must have identical types.
3592
3593Semantics:
3594""""""""""
3595
3596The value produced is the floating point difference of the two operands.
3597This instruction can also take any number of :ref:`fast-math
3598flags <fastmath>`, which are optimization hints to enable otherwise
3599unsafe floating point optimizations:
3600
3601Example:
3602""""""""
3603
3604.. code-block:: llvm
3605
3606 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3607 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3608
3609'``mul``' Instruction
3610^^^^^^^^^^^^^^^^^^^^^
3611
3612Syntax:
3613"""""""
3614
3615::
3616
3617 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3618 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3619 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3620 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3621
3622Overview:
3623"""""""""
3624
3625The '``mul``' instruction returns the product of its two operands.
3626
3627Arguments:
3628""""""""""
3629
3630The two arguments to the '``mul``' instruction must be
3631:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3632arguments must have identical types.
3633
3634Semantics:
3635""""""""""
3636
3637The value produced is the integer product of the two operands.
3638
3639If the result of the multiplication has unsigned overflow, the result
3640returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3641bit width of the result.
3642
3643Because LLVM integers use a two's complement representation, and the
3644result is the same width as the operands, this instruction returns the
3645correct result for both signed and unsigned integers. If a full product
3646(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3647sign-extended or zero-extended as appropriate to the width of the full
3648product.
3649
3650``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3651respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3652result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3653unsigned and/or signed overflow, respectively, occurs.
3654
3655Example:
3656""""""""
3657
3658.. code-block:: llvm
3659
3660 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3661
3662.. _i_fmul:
3663
3664'``fmul``' Instruction
3665^^^^^^^^^^^^^^^^^^^^^^
3666
3667Syntax:
3668"""""""
3669
3670::
3671
3672 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3673
3674Overview:
3675"""""""""
3676
3677The '``fmul``' instruction returns the product of its two operands.
3678
3679Arguments:
3680""""""""""
3681
3682The two arguments to the '``fmul``' instruction must be :ref:`floating
3683point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3684Both arguments must have identical types.
3685
3686Semantics:
3687""""""""""
3688
3689The value produced is the floating point product of the two operands.
3690This instruction can also take any number of :ref:`fast-math
3691flags <fastmath>`, which are optimization hints to enable otherwise
3692unsafe floating point optimizations:
3693
3694Example:
3695""""""""
3696
3697.. code-block:: llvm
3698
3699 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3700
3701'``udiv``' Instruction
3702^^^^^^^^^^^^^^^^^^^^^^
3703
3704Syntax:
3705"""""""
3706
3707::
3708
3709 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3710 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3711
3712Overview:
3713"""""""""
3714
3715The '``udiv``' instruction returns the quotient of its two operands.
3716
3717Arguments:
3718""""""""""
3719
3720The two arguments to the '``udiv``' instruction must be
3721:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3722arguments must have identical types.
3723
3724Semantics:
3725""""""""""
3726
3727The value produced is the unsigned integer quotient of the two operands.
3728
3729Note that unsigned integer division and signed integer division are
3730distinct operations; for signed integer division, use '``sdiv``'.
3731
3732Division by zero leads to undefined behavior.
3733
3734If the ``exact`` keyword is present, the result value of the ``udiv`` is
3735a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3736such, "((a udiv exact b) mul b) == a").
3737
3738Example:
3739""""""""
3740
3741.. code-block:: llvm
3742
3743 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3744
3745'``sdiv``' Instruction
3746^^^^^^^^^^^^^^^^^^^^^^
3747
3748Syntax:
3749"""""""
3750
3751::
3752
3753 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3754 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3755
3756Overview:
3757"""""""""
3758
3759The '``sdiv``' instruction returns the quotient of its two operands.
3760
3761Arguments:
3762""""""""""
3763
3764The two arguments to the '``sdiv``' instruction must be
3765:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3766arguments must have identical types.
3767
3768Semantics:
3769""""""""""
3770
3771The value produced is the signed integer quotient of the two operands
3772rounded towards zero.
3773
3774Note that signed integer division and unsigned integer division are
3775distinct operations; for unsigned integer division, use '``udiv``'.
3776
3777Division by zero leads to undefined behavior. Overflow also leads to
3778undefined behavior; this is a rare case, but can occur, for example, by
3779doing a 32-bit division of -2147483648 by -1.
3780
3781If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3782a :ref:`poison value <poisonvalues>` if the result would be rounded.
3783
3784Example:
3785""""""""
3786
3787.. code-block:: llvm
3788
3789 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3790
3791.. _i_fdiv:
3792
3793'``fdiv``' Instruction
3794^^^^^^^^^^^^^^^^^^^^^^
3795
3796Syntax:
3797"""""""
3798
3799::
3800
3801 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3802
3803Overview:
3804"""""""""
3805
3806The '``fdiv``' instruction returns the quotient of its two operands.
3807
3808Arguments:
3809""""""""""
3810
3811The two arguments to the '``fdiv``' instruction must be :ref:`floating
3812point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3813Both arguments must have identical types.
3814
3815Semantics:
3816""""""""""
3817
3818The value produced is the floating point quotient of the two operands.
3819This instruction can also take any number of :ref:`fast-math
3820flags <fastmath>`, which are optimization hints to enable otherwise
3821unsafe floating point optimizations:
3822
3823Example:
3824""""""""
3825
3826.. code-block:: llvm
3827
3828 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3829
3830'``urem``' Instruction
3831^^^^^^^^^^^^^^^^^^^^^^
3832
3833Syntax:
3834"""""""
3835
3836::
3837
3838 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3839
3840Overview:
3841"""""""""
3842
3843The '``urem``' instruction returns the remainder from the unsigned
3844division of its two arguments.
3845
3846Arguments:
3847""""""""""
3848
3849The two arguments to the '``urem``' instruction must be
3850:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3851arguments must have identical types.
3852
3853Semantics:
3854""""""""""
3855
3856This instruction returns the unsigned integer *remainder* of a division.
3857This instruction always performs an unsigned division to get the
3858remainder.
3859
3860Note that unsigned integer remainder and signed integer remainder are
3861distinct operations; for signed integer remainder, use '``srem``'.
3862
3863Taking the remainder of a division by zero leads to undefined behavior.
3864
3865Example:
3866""""""""
3867
3868.. code-block:: llvm
3869
3870 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3871
3872'``srem``' Instruction
3873^^^^^^^^^^^^^^^^^^^^^^
3874
3875Syntax:
3876"""""""
3877
3878::
3879
3880 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3881
3882Overview:
3883"""""""""
3884
3885The '``srem``' instruction returns the remainder from the signed
3886division of its two operands. This instruction can also take
3887:ref:`vector <t_vector>` versions of the values in which case the elements
3888must be integers.
3889
3890Arguments:
3891""""""""""
3892
3893The two arguments to the '``srem``' instruction must be
3894:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3895arguments must have identical types.
3896
3897Semantics:
3898""""""""""
3899
3900This instruction returns the *remainder* of a division (where the result
3901is either zero or has the same sign as the dividend, ``op1``), not the
3902*modulo* operator (where the result is either zero or has the same sign
3903as the divisor, ``op2``) of a value. For more information about the
3904difference, see `The Math
3905Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3906table of how this is implemented in various languages, please see
3907`Wikipedia: modulo
3908operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3909
3910Note that signed integer remainder and unsigned integer remainder are
3911distinct operations; for unsigned integer remainder, use '``urem``'.
3912
3913Taking the remainder of a division by zero leads to undefined behavior.
3914Overflow also leads to undefined behavior; this is a rare case, but can
3915occur, for example, by taking the remainder of a 32-bit division of
3916-2147483648 by -1. (The remainder doesn't actually overflow, but this
3917rule lets srem be implemented using instructions that return both the
3918result of the division and the remainder.)
3919
3920Example:
3921""""""""
3922
3923.. code-block:: llvm
3924
3925 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3926
3927.. _i_frem:
3928
3929'``frem``' Instruction
3930^^^^^^^^^^^^^^^^^^^^^^
3931
3932Syntax:
3933"""""""
3934
3935::
3936
3937 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3938
3939Overview:
3940"""""""""
3941
3942The '``frem``' instruction returns the remainder from the division of
3943its two operands.
3944
3945Arguments:
3946""""""""""
3947
3948The two arguments to the '``frem``' instruction must be :ref:`floating
3949point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3950Both arguments must have identical types.
3951
3952Semantics:
3953""""""""""
3954
3955This instruction returns the *remainder* of a division. The remainder
3956has the same sign as the dividend. This instruction can also take any
3957number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3958to enable otherwise unsafe floating point optimizations:
3959
3960Example:
3961""""""""
3962
3963.. code-block:: llvm
3964
3965 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3966
3967.. _bitwiseops:
3968
3969Bitwise Binary Operations
3970-------------------------
3971
3972Bitwise binary operators are used to do various forms of bit-twiddling
3973in a program. They are generally very efficient instructions and can
3974commonly be strength reduced from other instructions. They require two
3975operands of the same type, execute an operation on them, and produce a
3976single value. The resulting value is the same type as its operands.
3977
3978'``shl``' Instruction
3979^^^^^^^^^^^^^^^^^^^^^
3980
3981Syntax:
3982"""""""
3983
3984::
3985
3986 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3987 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3988 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3989 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3990
3991Overview:
3992"""""""""
3993
3994The '``shl``' instruction returns the first operand shifted to the left
3995a specified number of bits.
3996
3997Arguments:
3998""""""""""
3999
4000Both arguments to the '``shl``' instruction must be the same
4001:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4002'``op2``' is treated as an unsigned value.
4003
4004Semantics:
4005""""""""""
4006
4007The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4008where ``n`` is the width of the result. If ``op2`` is (statically or
4009dynamically) negative or equal to or larger than the number of bits in
4010``op1``, the result is undefined. If the arguments are vectors, each
4011vector element of ``op1`` is shifted by the corresponding shift amount
4012in ``op2``.
4013
4014If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4015value <poisonvalues>` if it shifts out any non-zero bits. If the
4016``nsw`` keyword is present, then the shift produces a :ref:`poison
4017value <poisonvalues>` if it shifts out any bits that disagree with the
4018resultant sign bit. As such, NUW/NSW have the same semantics as they
4019would if the shift were expressed as a mul instruction with the same
4020nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4021
4022Example:
4023""""""""
4024
4025.. code-block:: llvm
4026
4027 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4028 <result> = shl i32 4, 2 ; yields {i32}: 16
4029 <result> = shl i32 1, 10 ; yields {i32}: 1024
4030 <result> = shl i32 1, 32 ; undefined
4031 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4032
4033'``lshr``' Instruction
4034^^^^^^^^^^^^^^^^^^^^^^
4035
4036Syntax:
4037"""""""
4038
4039::
4040
4041 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4042 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4043
4044Overview:
4045"""""""""
4046
4047The '``lshr``' instruction (logical shift right) returns the first
4048operand shifted to the right a specified number of bits with zero fill.
4049
4050Arguments:
4051""""""""""
4052
4053Both arguments to the '``lshr``' instruction must be the same
4054:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4055'``op2``' is treated as an unsigned value.
4056
4057Semantics:
4058""""""""""
4059
4060This instruction always performs a logical shift right operation. The
4061most significant bits of the result will be filled with zero bits after
4062the shift. If ``op2`` is (statically or dynamically) equal to or larger
4063than the number of bits in ``op1``, the result is undefined. If the
4064arguments are vectors, each vector element of ``op1`` is shifted by the
4065corresponding shift amount in ``op2``.
4066
4067If the ``exact`` keyword is present, the result value of the ``lshr`` is
4068a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4069non-zero.
4070
4071Example:
4072""""""""
4073
4074.. code-block:: llvm
4075
4076 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4077 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4078 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004079 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004080 <result> = lshr i32 1, 32 ; undefined
4081 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4082
4083'``ashr``' Instruction
4084^^^^^^^^^^^^^^^^^^^^^^
4085
4086Syntax:
4087"""""""
4088
4089::
4090
4091 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4092 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4093
4094Overview:
4095"""""""""
4096
4097The '``ashr``' instruction (arithmetic shift right) returns the first
4098operand shifted to the right a specified number of bits with sign
4099extension.
4100
4101Arguments:
4102""""""""""
4103
4104Both arguments to the '``ashr``' instruction must be the same
4105:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4106'``op2``' is treated as an unsigned value.
4107
4108Semantics:
4109""""""""""
4110
4111This instruction always performs an arithmetic shift right operation,
4112The most significant bits of the result will be filled with the sign bit
4113of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4114than the number of bits in ``op1``, the result is undefined. If the
4115arguments are vectors, each vector element of ``op1`` is shifted by the
4116corresponding shift amount in ``op2``.
4117
4118If the ``exact`` keyword is present, the result value of the ``ashr`` is
4119a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4120non-zero.
4121
4122Example:
4123""""""""
4124
4125.. code-block:: llvm
4126
4127 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4128 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4129 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4130 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4131 <result> = ashr i32 1, 32 ; undefined
4132 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4133
4134'``and``' Instruction
4135^^^^^^^^^^^^^^^^^^^^^
4136
4137Syntax:
4138"""""""
4139
4140::
4141
4142 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4143
4144Overview:
4145"""""""""
4146
4147The '``and``' instruction returns the bitwise logical and of its two
4148operands.
4149
4150Arguments:
4151""""""""""
4152
4153The two arguments to the '``and``' instruction must be
4154:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4155arguments must have identical types.
4156
4157Semantics:
4158""""""""""
4159
4160The truth table used for the '``and``' instruction is:
4161
4162+-----+-----+-----+
4163| In0 | In1 | Out |
4164+-----+-----+-----+
4165| 0 | 0 | 0 |
4166+-----+-----+-----+
4167| 0 | 1 | 0 |
4168+-----+-----+-----+
4169| 1 | 0 | 0 |
4170+-----+-----+-----+
4171| 1 | 1 | 1 |
4172+-----+-----+-----+
4173
4174Example:
4175""""""""
4176
4177.. code-block:: llvm
4178
4179 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4180 <result> = and i32 15, 40 ; yields {i32}:result = 8
4181 <result> = and i32 4, 8 ; yields {i32}:result = 0
4182
4183'``or``' Instruction
4184^^^^^^^^^^^^^^^^^^^^
4185
4186Syntax:
4187"""""""
4188
4189::
4190
4191 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4192
4193Overview:
4194"""""""""
4195
4196The '``or``' instruction returns the bitwise logical inclusive or of its
4197two operands.
4198
4199Arguments:
4200""""""""""
4201
4202The two arguments to the '``or``' instruction must be
4203:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4204arguments must have identical types.
4205
4206Semantics:
4207""""""""""
4208
4209The truth table used for the '``or``' instruction is:
4210
4211+-----+-----+-----+
4212| In0 | In1 | Out |
4213+-----+-----+-----+
4214| 0 | 0 | 0 |
4215+-----+-----+-----+
4216| 0 | 1 | 1 |
4217+-----+-----+-----+
4218| 1 | 0 | 1 |
4219+-----+-----+-----+
4220| 1 | 1 | 1 |
4221+-----+-----+-----+
4222
4223Example:
4224""""""""
4225
4226::
4227
4228 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4229 <result> = or i32 15, 40 ; yields {i32}:result = 47
4230 <result> = or i32 4, 8 ; yields {i32}:result = 12
4231
4232'``xor``' Instruction
4233^^^^^^^^^^^^^^^^^^^^^
4234
4235Syntax:
4236"""""""
4237
4238::
4239
4240 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4241
4242Overview:
4243"""""""""
4244
4245The '``xor``' instruction returns the bitwise logical exclusive or of
4246its two operands. The ``xor`` is used to implement the "one's
4247complement" operation, which is the "~" operator in C.
4248
4249Arguments:
4250""""""""""
4251
4252The two arguments to the '``xor``' instruction must be
4253:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4254arguments must have identical types.
4255
4256Semantics:
4257""""""""""
4258
4259The truth table used for the '``xor``' instruction is:
4260
4261+-----+-----+-----+
4262| In0 | In1 | Out |
4263+-----+-----+-----+
4264| 0 | 0 | 0 |
4265+-----+-----+-----+
4266| 0 | 1 | 1 |
4267+-----+-----+-----+
4268| 1 | 0 | 1 |
4269+-----+-----+-----+
4270| 1 | 1 | 0 |
4271+-----+-----+-----+
4272
4273Example:
4274""""""""
4275
4276.. code-block:: llvm
4277
4278 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4279 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4280 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4281 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4282
4283Vector Operations
4284-----------------
4285
4286LLVM supports several instructions to represent vector operations in a
4287target-independent manner. These instructions cover the element-access
4288and vector-specific operations needed to process vectors effectively.
4289While LLVM does directly support these vector operations, many
4290sophisticated algorithms will want to use target-specific intrinsics to
4291take full advantage of a specific target.
4292
4293.. _i_extractelement:
4294
4295'``extractelement``' Instruction
4296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4297
4298Syntax:
4299"""""""
4300
4301::
4302
4303 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4304
4305Overview:
4306"""""""""
4307
4308The '``extractelement``' instruction extracts a single scalar element
4309from a vector at a specified index.
4310
4311Arguments:
4312""""""""""
4313
4314The first operand of an '``extractelement``' instruction is a value of
4315:ref:`vector <t_vector>` type. The second operand is an index indicating
4316the position from which to extract the element. The index may be a
4317variable.
4318
4319Semantics:
4320""""""""""
4321
4322The result is a scalar of the same type as the element type of ``val``.
4323Its value is the value at position ``idx`` of ``val``. If ``idx``
4324exceeds the length of ``val``, the results are undefined.
4325
4326Example:
4327""""""""
4328
4329.. code-block:: llvm
4330
4331 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4332
4333.. _i_insertelement:
4334
4335'``insertelement``' Instruction
4336^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4337
4338Syntax:
4339"""""""
4340
4341::
4342
4343 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4344
4345Overview:
4346"""""""""
4347
4348The '``insertelement``' instruction inserts a scalar element into a
4349vector at a specified index.
4350
4351Arguments:
4352""""""""""
4353
4354The first operand of an '``insertelement``' instruction is a value of
4355:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4356type must equal the element type of the first operand. The third operand
4357is an index indicating the position at which to insert the value. The
4358index may be a variable.
4359
4360Semantics:
4361""""""""""
4362
4363The result is a vector of the same type as ``val``. Its element values
4364are those of ``val`` except at position ``idx``, where it gets the value
4365``elt``. If ``idx`` exceeds the length of ``val``, the results are
4366undefined.
4367
4368Example:
4369""""""""
4370
4371.. code-block:: llvm
4372
4373 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4374
4375.. _i_shufflevector:
4376
4377'``shufflevector``' Instruction
4378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4379
4380Syntax:
4381"""""""
4382
4383::
4384
4385 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4386
4387Overview:
4388"""""""""
4389
4390The '``shufflevector``' instruction constructs a permutation of elements
4391from two input vectors, returning a vector with the same element type as
4392the input and length that is the same as the shuffle mask.
4393
4394Arguments:
4395""""""""""
4396
4397The first two operands of a '``shufflevector``' instruction are vectors
4398with the same type. The third argument is a shuffle mask whose element
4399type is always 'i32'. The result of the instruction is a vector whose
4400length is the same as the shuffle mask and whose element type is the
4401same as the element type of the first two operands.
4402
4403The shuffle mask operand is required to be a constant vector with either
4404constant integer or undef values.
4405
4406Semantics:
4407""""""""""
4408
4409The elements of the two input vectors are numbered from left to right
4410across both of the vectors. The shuffle mask operand specifies, for each
4411element of the result vector, which element of the two input vectors the
4412result element gets. The element selector may be undef (meaning "don't
4413care") and the second operand may be undef if performing a shuffle from
4414only one vector.
4415
4416Example:
4417""""""""
4418
4419.. code-block:: llvm
4420
4421 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4422 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4423 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4424 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4425 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4426 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4427 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4428 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4429
4430Aggregate Operations
4431--------------------
4432
4433LLVM supports several instructions for working with
4434:ref:`aggregate <t_aggregate>` values.
4435
4436.. _i_extractvalue:
4437
4438'``extractvalue``' Instruction
4439^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4440
4441Syntax:
4442"""""""
4443
4444::
4445
4446 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4447
4448Overview:
4449"""""""""
4450
4451The '``extractvalue``' instruction extracts the value of a member field
4452from an :ref:`aggregate <t_aggregate>` value.
4453
4454Arguments:
4455""""""""""
4456
4457The first operand of an '``extractvalue``' instruction is a value of
4458:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4459constant indices to specify which value to extract in a similar manner
4460as indices in a '``getelementptr``' instruction.
4461
4462The major differences to ``getelementptr`` indexing are:
4463
4464- Since the value being indexed is not a pointer, the first index is
4465 omitted and assumed to be zero.
4466- At least one index must be specified.
4467- Not only struct indices but also array indices must be in bounds.
4468
4469Semantics:
4470""""""""""
4471
4472The result is the value at the position in the aggregate specified by
4473the index operands.
4474
4475Example:
4476""""""""
4477
4478.. code-block:: llvm
4479
4480 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4481
4482.. _i_insertvalue:
4483
4484'``insertvalue``' Instruction
4485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4486
4487Syntax:
4488"""""""
4489
4490::
4491
4492 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4493
4494Overview:
4495"""""""""
4496
4497The '``insertvalue``' instruction inserts a value into a member field in
4498an :ref:`aggregate <t_aggregate>` value.
4499
4500Arguments:
4501""""""""""
4502
4503The first operand of an '``insertvalue``' instruction is a value of
4504:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4505a first-class value to insert. The following operands are constant
4506indices indicating the position at which to insert the value in a
4507similar manner as indices in a '``extractvalue``' instruction. The value
4508to insert must have the same type as the value identified by the
4509indices.
4510
4511Semantics:
4512""""""""""
4513
4514The result is an aggregate of the same type as ``val``. Its value is
4515that of ``val`` except that the value at the position specified by the
4516indices is that of ``elt``.
4517
4518Example:
4519""""""""
4520
4521.. code-block:: llvm
4522
4523 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4524 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4525 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4526
4527.. _memoryops:
4528
4529Memory Access and Addressing Operations
4530---------------------------------------
4531
4532A key design point of an SSA-based representation is how it represents
4533memory. In LLVM, no memory locations are in SSA form, which makes things
4534very simple. This section describes how to read, write, and allocate
4535memory in LLVM.
4536
4537.. _i_alloca:
4538
4539'``alloca``' Instruction
4540^^^^^^^^^^^^^^^^^^^^^^^^
4541
4542Syntax:
4543"""""""
4544
4545::
4546
4547 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4548
4549Overview:
4550"""""""""
4551
4552The '``alloca``' instruction allocates memory on the stack frame of the
4553currently executing function, to be automatically released when this
4554function returns to its caller. The object is always allocated in the
4555generic address space (address space zero).
4556
4557Arguments:
4558""""""""""
4559
4560The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4561bytes of memory on the runtime stack, returning a pointer of the
4562appropriate type to the program. If "NumElements" is specified, it is
4563the number of elements allocated, otherwise "NumElements" is defaulted
4564to be one. If a constant alignment is specified, the value result of the
4565allocation is guaranteed to be aligned to at least that boundary. If not
4566specified, or if zero, the target can choose to align the allocation on
4567any convenient boundary compatible with the type.
4568
4569'``type``' may be any sized type.
4570
4571Semantics:
4572""""""""""
4573
4574Memory is allocated; a pointer is returned. The operation is undefined
4575if there is insufficient stack space for the allocation. '``alloca``'d
4576memory is automatically released when the function returns. The
4577'``alloca``' instruction is commonly used to represent automatic
4578variables that must have an address available. When the function returns
4579(either with the ``ret`` or ``resume`` instructions), the memory is
4580reclaimed. Allocating zero bytes is legal, but the result is undefined.
4581The order in which memory is allocated (ie., which way the stack grows)
4582is not specified.
4583
4584Example:
4585""""""""
4586
4587.. code-block:: llvm
4588
4589 %ptr = alloca i32 ; yields {i32*}:ptr
4590 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4591 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4592 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4593
4594.. _i_load:
4595
4596'``load``' Instruction
4597^^^^^^^^^^^^^^^^^^^^^^
4598
4599Syntax:
4600"""""""
4601
4602::
4603
4604 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4605 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4606 !<index> = !{ i32 1 }
4607
4608Overview:
4609"""""""""
4610
4611The '``load``' instruction is used to read from memory.
4612
4613Arguments:
4614""""""""""
4615
Eli Bendersky8c493382013-04-17 20:17:08 +00004616The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004617from which to load. The pointer must point to a :ref:`first
4618class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4619then the optimizer is not allowed to modify the number or order of
4620execution of this ``load`` with other :ref:`volatile
4621operations <volatile>`.
4622
4623If the ``load`` is marked as ``atomic``, it takes an extra
4624:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4625``release`` and ``acq_rel`` orderings are not valid on ``load``
4626instructions. Atomic loads produce :ref:`defined <memmodel>` results
4627when they may see multiple atomic stores. The type of the pointee must
4628be an integer type whose bit width is a power of two greater than or
4629equal to eight and less than or equal to a target-specific size limit.
4630``align`` must be explicitly specified on atomic loads, and the load has
4631undefined behavior if the alignment is not set to a value which is at
4632least the size in bytes of the pointee. ``!nontemporal`` does not have
4633any defined semantics for atomic loads.
4634
4635The optional constant ``align`` argument specifies the alignment of the
4636operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004637or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004638alignment for the target. It is the responsibility of the code emitter
4639to ensure that the alignment information is correct. Overestimating the
4640alignment results in undefined behavior. Underestimating the alignment
4641may produce less efficient code. An alignment of 1 is always safe.
4642
4643The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004644metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004645``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004646metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004647that this load is not expected to be reused in the cache. The code
4648generator may select special instructions to save cache bandwidth, such
4649as the ``MOVNT`` instruction on x86.
4650
4651The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004652metadata name ``<index>`` corresponding to a metadata node with no
4653entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004654instruction tells the optimizer and code generator that this load
4655address points to memory which does not change value during program
4656execution. The optimizer may then move this load around, for example, by
4657hoisting it out of loops using loop invariant code motion.
4658
4659Semantics:
4660""""""""""
4661
4662The location of memory pointed to is loaded. If the value being loaded
4663is of scalar type then the number of bytes read does not exceed the
4664minimum number of bytes needed to hold all bits of the type. For
4665example, loading an ``i24`` reads at most three bytes. When loading a
4666value of a type like ``i20`` with a size that is not an integral number
4667of bytes, the result is undefined if the value was not originally
4668written using a store of the same type.
4669
4670Examples:
4671"""""""""
4672
4673.. code-block:: llvm
4674
4675 %ptr = alloca i32 ; yields {i32*}:ptr
4676 store i32 3, i32* %ptr ; yields {void}
4677 %val = load i32* %ptr ; yields {i32}:val = i32 3
4678
4679.. _i_store:
4680
4681'``store``' Instruction
4682^^^^^^^^^^^^^^^^^^^^^^^
4683
4684Syntax:
4685"""""""
4686
4687::
4688
4689 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4690 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4691
4692Overview:
4693"""""""""
4694
4695The '``store``' instruction is used to write to memory.
4696
4697Arguments:
4698""""""""""
4699
Eli Bendersky8952d902013-04-17 17:17:20 +00004700There are two arguments to the ``store`` instruction: a value to store
4701and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004702operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004703the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004704then the optimizer is not allowed to modify the number or order of
4705execution of this ``store`` with other :ref:`volatile
4706operations <volatile>`.
4707
4708If the ``store`` is marked as ``atomic``, it takes an extra
4709:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4710``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4711instructions. Atomic loads produce :ref:`defined <memmodel>` results
4712when they may see multiple atomic stores. The type of the pointee must
4713be an integer type whose bit width is a power of two greater than or
4714equal to eight and less than or equal to a target-specific size limit.
4715``align`` must be explicitly specified on atomic stores, and the store
4716has undefined behavior if the alignment is not set to a value which is
4717at least the size in bytes of the pointee. ``!nontemporal`` does not
4718have any defined semantics for atomic stores.
4719
Eli Bendersky8952d902013-04-17 17:17:20 +00004720The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004721operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004722or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004723alignment for the target. It is the responsibility of the code emitter
4724to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004725alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004726alignment may produce less efficient code. An alignment of 1 is always
4727safe.
4728
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004729The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004730name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004731value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004732tells the optimizer and code generator that this load is not expected to
4733be reused in the cache. The code generator may select special
4734instructions to save cache bandwidth, such as the MOVNT instruction on
4735x86.
4736
4737Semantics:
4738""""""""""
4739
Eli Bendersky8952d902013-04-17 17:17:20 +00004740The contents of memory are updated to contain ``<value>`` at the
4741location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004742of scalar type then the number of bytes written does not exceed the
4743minimum number of bytes needed to hold all bits of the type. For
4744example, storing an ``i24`` writes at most three bytes. When writing a
4745value of a type like ``i20`` with a size that is not an integral number
4746of bytes, it is unspecified what happens to the extra bits that do not
4747belong to the type, but they will typically be overwritten.
4748
4749Example:
4750""""""""
4751
4752.. code-block:: llvm
4753
4754 %ptr = alloca i32 ; yields {i32*}:ptr
4755 store i32 3, i32* %ptr ; yields {void}
4756 %val = load i32* %ptr ; yields {i32}:val = i32 3
4757
4758.. _i_fence:
4759
4760'``fence``' Instruction
4761^^^^^^^^^^^^^^^^^^^^^^^
4762
4763Syntax:
4764"""""""
4765
4766::
4767
4768 fence [singlethread] <ordering> ; yields {void}
4769
4770Overview:
4771"""""""""
4772
4773The '``fence``' instruction is used to introduce happens-before edges
4774between operations.
4775
4776Arguments:
4777""""""""""
4778
4779'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4780defines what *synchronizes-with* edges they add. They can only be given
4781``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4782
4783Semantics:
4784""""""""""
4785
4786A fence A which has (at least) ``release`` ordering semantics
4787*synchronizes with* a fence B with (at least) ``acquire`` ordering
4788semantics if and only if there exist atomic operations X and Y, both
4789operating on some atomic object M, such that A is sequenced before X, X
4790modifies M (either directly or through some side effect of a sequence
4791headed by X), Y is sequenced before B, and Y observes M. This provides a
4792*happens-before* dependency between A and B. Rather than an explicit
4793``fence``, one (but not both) of the atomic operations X or Y might
4794provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4795still *synchronize-with* the explicit ``fence`` and establish the
4796*happens-before* edge.
4797
4798A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4799``acquire`` and ``release`` semantics specified above, participates in
4800the global program order of other ``seq_cst`` operations and/or fences.
4801
4802The optional ":ref:`singlethread <singlethread>`" argument specifies
4803that the fence only synchronizes with other fences in the same thread.
4804(This is useful for interacting with signal handlers.)
4805
4806Example:
4807""""""""
4808
4809.. code-block:: llvm
4810
4811 fence acquire ; yields {void}
4812 fence singlethread seq_cst ; yields {void}
4813
4814.. _i_cmpxchg:
4815
4816'``cmpxchg``' Instruction
4817^^^^^^^^^^^^^^^^^^^^^^^^^
4818
4819Syntax:
4820"""""""
4821
4822::
4823
4824 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4825
4826Overview:
4827"""""""""
4828
4829The '``cmpxchg``' instruction is used to atomically modify memory. It
4830loads a value in memory and compares it to a given value. If they are
4831equal, it stores a new value into the memory.
4832
4833Arguments:
4834""""""""""
4835
4836There are three arguments to the '``cmpxchg``' instruction: an address
4837to operate on, a value to compare to the value currently be at that
4838address, and a new value to place at that address if the compared values
4839are equal. The type of '<cmp>' must be an integer type whose bit width
4840is a power of two greater than or equal to eight and less than or equal
4841to a target-specific size limit. '<cmp>' and '<new>' must have the same
4842type, and the type of '<pointer>' must be a pointer to that type. If the
4843``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4844to modify the number or order of execution of this ``cmpxchg`` with
4845other :ref:`volatile operations <volatile>`.
4846
4847The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4848synchronizes with other atomic operations.
4849
4850The optional "``singlethread``" argument declares that the ``cmpxchg``
4851is only atomic with respect to code (usually signal handlers) running in
4852the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4853respect to all other code in the system.
4854
4855The pointer passed into cmpxchg must have alignment greater than or
4856equal to the size in memory of the operand.
4857
4858Semantics:
4859""""""""""
4860
4861The contents of memory at the location specified by the '``<pointer>``'
4862operand is read and compared to '``<cmp>``'; if the read value is the
4863equal, '``<new>``' is written. The original value at the location is
4864returned.
4865
4866A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4867of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4868atomic load with an ordering parameter determined by dropping any
4869``release`` part of the ``cmpxchg``'s ordering.
4870
4871Example:
4872""""""""
4873
4874.. code-block:: llvm
4875
4876 entry:
4877 %orig = atomic load i32* %ptr unordered ; yields {i32}
4878 br label %loop
4879
4880 loop:
4881 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4882 %squared = mul i32 %cmp, %cmp
4883 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4884 %success = icmp eq i32 %cmp, %old
4885 br i1 %success, label %done, label %loop
4886
4887 done:
4888 ...
4889
4890.. _i_atomicrmw:
4891
4892'``atomicrmw``' Instruction
4893^^^^^^^^^^^^^^^^^^^^^^^^^^^
4894
4895Syntax:
4896"""""""
4897
4898::
4899
4900 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4901
4902Overview:
4903"""""""""
4904
4905The '``atomicrmw``' instruction is used to atomically modify memory.
4906
4907Arguments:
4908""""""""""
4909
4910There are three arguments to the '``atomicrmw``' instruction: an
4911operation to apply, an address whose value to modify, an argument to the
4912operation. The operation must be one of the following keywords:
4913
4914- xchg
4915- add
4916- sub
4917- and
4918- nand
4919- or
4920- xor
4921- max
4922- min
4923- umax
4924- umin
4925
4926The type of '<value>' must be an integer type whose bit width is a power
4927of two greater than or equal to eight and less than or equal to a
4928target-specific size limit. The type of the '``<pointer>``' operand must
4929be a pointer to that type. If the ``atomicrmw`` is marked as
4930``volatile``, then the optimizer is not allowed to modify the number or
4931order of execution of this ``atomicrmw`` with other :ref:`volatile
4932operations <volatile>`.
4933
4934Semantics:
4935""""""""""
4936
4937The contents of memory at the location specified by the '``<pointer>``'
4938operand are atomically read, modified, and written back. The original
4939value at the location is returned. The modification is specified by the
4940operation argument:
4941
4942- xchg: ``*ptr = val``
4943- add: ``*ptr = *ptr + val``
4944- sub: ``*ptr = *ptr - val``
4945- and: ``*ptr = *ptr & val``
4946- nand: ``*ptr = ~(*ptr & val)``
4947- or: ``*ptr = *ptr | val``
4948- xor: ``*ptr = *ptr ^ val``
4949- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4950- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4951- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4952 comparison)
4953- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4954 comparison)
4955
4956Example:
4957""""""""
4958
4959.. code-block:: llvm
4960
4961 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4962
4963.. _i_getelementptr:
4964
4965'``getelementptr``' Instruction
4966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4967
4968Syntax:
4969"""""""
4970
4971::
4972
4973 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4974 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4975 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4976
4977Overview:
4978"""""""""
4979
4980The '``getelementptr``' instruction is used to get the address of a
4981subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4982address calculation only and does not access memory.
4983
4984Arguments:
4985""""""""""
4986
4987The first argument is always a pointer or a vector of pointers, and
4988forms the basis of the calculation. The remaining arguments are indices
4989that indicate which of the elements of the aggregate object are indexed.
4990The interpretation of each index is dependent on the type being indexed
4991into. The first index always indexes the pointer value given as the
4992first argument, the second index indexes a value of the type pointed to
4993(not necessarily the value directly pointed to, since the first index
4994can be non-zero), etc. The first type indexed into must be a pointer
4995value, subsequent types can be arrays, vectors, and structs. Note that
4996subsequent types being indexed into can never be pointers, since that
4997would require loading the pointer before continuing calculation.
4998
4999The type of each index argument depends on the type it is indexing into.
5000When indexing into a (optionally packed) structure, only ``i32`` integer
5001**constants** are allowed (when using a vector of indices they must all
5002be the **same** ``i32`` integer constant). When indexing into an array,
5003pointer or vector, integers of any width are allowed, and they are not
5004required to be constant. These integers are treated as signed values
5005where relevant.
5006
5007For example, let's consider a C code fragment and how it gets compiled
5008to LLVM:
5009
5010.. code-block:: c
5011
5012 struct RT {
5013 char A;
5014 int B[10][20];
5015 char C;
5016 };
5017 struct ST {
5018 int X;
5019 double Y;
5020 struct RT Z;
5021 };
5022
5023 int *foo(struct ST *s) {
5024 return &s[1].Z.B[5][13];
5025 }
5026
5027The LLVM code generated by Clang is:
5028
5029.. code-block:: llvm
5030
5031 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5032 %struct.ST = type { i32, double, %struct.RT }
5033
5034 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5035 entry:
5036 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5037 ret i32* %arrayidx
5038 }
5039
5040Semantics:
5041""""""""""
5042
5043In the example above, the first index is indexing into the
5044'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5045= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5046indexes into the third element of the structure, yielding a
5047'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5048structure. The third index indexes into the second element of the
5049structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5050dimensions of the array are subscripted into, yielding an '``i32``'
5051type. The '``getelementptr``' instruction returns a pointer to this
5052element, thus computing a value of '``i32*``' type.
5053
5054Note that it is perfectly legal to index partially through a structure,
5055returning a pointer to an inner element. Because of this, the LLVM code
5056for the given testcase is equivalent to:
5057
5058.. code-block:: llvm
5059
5060 define i32* @foo(%struct.ST* %s) {
5061 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5062 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5063 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5064 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5065 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5066 ret i32* %t5
5067 }
5068
5069If the ``inbounds`` keyword is present, the result value of the
5070``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5071pointer is not an *in bounds* address of an allocated object, or if any
5072of the addresses that would be formed by successive addition of the
5073offsets implied by the indices to the base address with infinitely
5074precise signed arithmetic are not an *in bounds* address of that
5075allocated object. The *in bounds* addresses for an allocated object are
5076all the addresses that point into the object, plus the address one byte
5077past the end. In cases where the base is a vector of pointers the
5078``inbounds`` keyword applies to each of the computations element-wise.
5079
5080If the ``inbounds`` keyword is not present, the offsets are added to the
5081base address with silently-wrapping two's complement arithmetic. If the
5082offsets have a different width from the pointer, they are sign-extended
5083or truncated to the width of the pointer. The result value of the
5084``getelementptr`` may be outside the object pointed to by the base
5085pointer. The result value may not necessarily be used to access memory
5086though, even if it happens to point into allocated storage. See the
5087:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5088information.
5089
5090The getelementptr instruction is often confusing. For some more insight
5091into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5092
5093Example:
5094""""""""
5095
5096.. code-block:: llvm
5097
5098 ; yields [12 x i8]*:aptr
5099 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5100 ; yields i8*:vptr
5101 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5102 ; yields i8*:eptr
5103 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5104 ; yields i32*:iptr
5105 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5106
5107In cases where the pointer argument is a vector of pointers, each index
5108must be a vector with the same number of elements. For example:
5109
5110.. code-block:: llvm
5111
5112 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5113
5114Conversion Operations
5115---------------------
5116
5117The instructions in this category are the conversion instructions
5118(casting) which all take a single operand and a type. They perform
5119various bit conversions on the operand.
5120
5121'``trunc .. to``' Instruction
5122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5123
5124Syntax:
5125"""""""
5126
5127::
5128
5129 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5130
5131Overview:
5132"""""""""
5133
5134The '``trunc``' instruction truncates its operand to the type ``ty2``.
5135
5136Arguments:
5137""""""""""
5138
5139The '``trunc``' instruction takes a value to trunc, and a type to trunc
5140it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5141of the same number of integers. The bit size of the ``value`` must be
5142larger than the bit size of the destination type, ``ty2``. Equal sized
5143types are not allowed.
5144
5145Semantics:
5146""""""""""
5147
5148The '``trunc``' instruction truncates the high order bits in ``value``
5149and converts the remaining bits to ``ty2``. Since the source size must
5150be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5151It will always truncate bits.
5152
5153Example:
5154""""""""
5155
5156.. code-block:: llvm
5157
5158 %X = trunc i32 257 to i8 ; yields i8:1
5159 %Y = trunc i32 123 to i1 ; yields i1:true
5160 %Z = trunc i32 122 to i1 ; yields i1:false
5161 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5162
5163'``zext .. to``' Instruction
5164^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5165
5166Syntax:
5167"""""""
5168
5169::
5170
5171 <result> = zext <ty> <value> to <ty2> ; yields ty2
5172
5173Overview:
5174"""""""""
5175
5176The '``zext``' instruction zero extends its operand to type ``ty2``.
5177
5178Arguments:
5179""""""""""
5180
5181The '``zext``' instruction takes a value to cast, and a type to cast it
5182to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5183the same number of integers. The bit size of the ``value`` must be
5184smaller than the bit size of the destination type, ``ty2``.
5185
5186Semantics:
5187""""""""""
5188
5189The ``zext`` fills the high order bits of the ``value`` with zero bits
5190until it reaches the size of the destination type, ``ty2``.
5191
5192When zero extending from i1, the result will always be either 0 or 1.
5193
5194Example:
5195""""""""
5196
5197.. code-block:: llvm
5198
5199 %X = zext i32 257 to i64 ; yields i64:257
5200 %Y = zext i1 true to i32 ; yields i32:1
5201 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5202
5203'``sext .. to``' Instruction
5204^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5205
5206Syntax:
5207"""""""
5208
5209::
5210
5211 <result> = sext <ty> <value> to <ty2> ; yields ty2
5212
5213Overview:
5214"""""""""
5215
5216The '``sext``' sign extends ``value`` to the type ``ty2``.
5217
5218Arguments:
5219""""""""""
5220
5221The '``sext``' instruction takes a value to cast, and a type to cast it
5222to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5223the same number of integers. The bit size of the ``value`` must be
5224smaller than the bit size of the destination type, ``ty2``.
5225
5226Semantics:
5227""""""""""
5228
5229The '``sext``' instruction performs a sign extension by copying the sign
5230bit (highest order bit) of the ``value`` until it reaches the bit size
5231of the type ``ty2``.
5232
5233When sign extending from i1, the extension always results in -1 or 0.
5234
5235Example:
5236""""""""
5237
5238.. code-block:: llvm
5239
5240 %X = sext i8 -1 to i16 ; yields i16 :65535
5241 %Y = sext i1 true to i32 ; yields i32:-1
5242 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5243
5244'``fptrunc .. to``' Instruction
5245^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5246
5247Syntax:
5248"""""""
5249
5250::
5251
5252 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5253
5254Overview:
5255"""""""""
5256
5257The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5258
5259Arguments:
5260""""""""""
5261
5262The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5263value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5264The size of ``value`` must be larger than the size of ``ty2``. This
5265implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5266
5267Semantics:
5268""""""""""
5269
5270The '``fptrunc``' instruction truncates a ``value`` from a larger
5271:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5272point <t_floating>` type. If the value cannot fit within the
5273destination type, ``ty2``, then the results are undefined.
5274
5275Example:
5276""""""""
5277
5278.. code-block:: llvm
5279
5280 %X = fptrunc double 123.0 to float ; yields float:123.0
5281 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5282
5283'``fpext .. to``' Instruction
5284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5285
5286Syntax:
5287"""""""
5288
5289::
5290
5291 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5292
5293Overview:
5294"""""""""
5295
5296The '``fpext``' extends a floating point ``value`` to a larger floating
5297point value.
5298
5299Arguments:
5300""""""""""
5301
5302The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5303``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5304to. The source type must be smaller than the destination type.
5305
5306Semantics:
5307""""""""""
5308
5309The '``fpext``' instruction extends the ``value`` from a smaller
5310:ref:`floating point <t_floating>` type to a larger :ref:`floating
5311point <t_floating>` type. The ``fpext`` cannot be used to make a
5312*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5313*no-op cast* for a floating point cast.
5314
5315Example:
5316""""""""
5317
5318.. code-block:: llvm
5319
5320 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5321 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5322
5323'``fptoui .. to``' Instruction
5324^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5325
5326Syntax:
5327"""""""
5328
5329::
5330
5331 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5332
5333Overview:
5334"""""""""
5335
5336The '``fptoui``' converts a floating point ``value`` to its unsigned
5337integer equivalent of type ``ty2``.
5338
5339Arguments:
5340""""""""""
5341
5342The '``fptoui``' instruction takes a value to cast, which must be a
5343scalar or vector :ref:`floating point <t_floating>` value, and a type to
5344cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5345``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5346type with the same number of elements as ``ty``
5347
5348Semantics:
5349""""""""""
5350
5351The '``fptoui``' instruction converts its :ref:`floating
5352point <t_floating>` operand into the nearest (rounding towards zero)
5353unsigned integer value. If the value cannot fit in ``ty2``, the results
5354are undefined.
5355
5356Example:
5357""""""""
5358
5359.. code-block:: llvm
5360
5361 %X = fptoui double 123.0 to i32 ; yields i32:123
5362 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5363 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5364
5365'``fptosi .. to``' Instruction
5366^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5367
5368Syntax:
5369"""""""
5370
5371::
5372
5373 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5374
5375Overview:
5376"""""""""
5377
5378The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5379``value`` to type ``ty2``.
5380
5381Arguments:
5382""""""""""
5383
5384The '``fptosi``' instruction takes a value to cast, which must be a
5385scalar or vector :ref:`floating point <t_floating>` value, and a type to
5386cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5387``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5388type with the same number of elements as ``ty``
5389
5390Semantics:
5391""""""""""
5392
5393The '``fptosi``' instruction converts its :ref:`floating
5394point <t_floating>` operand into the nearest (rounding towards zero)
5395signed integer value. If the value cannot fit in ``ty2``, the results
5396are undefined.
5397
5398Example:
5399""""""""
5400
5401.. code-block:: llvm
5402
5403 %X = fptosi double -123.0 to i32 ; yields i32:-123
5404 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5405 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5406
5407'``uitofp .. to``' Instruction
5408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5409
5410Syntax:
5411"""""""
5412
5413::
5414
5415 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5416
5417Overview:
5418"""""""""
5419
5420The '``uitofp``' instruction regards ``value`` as an unsigned integer
5421and converts that value to the ``ty2`` type.
5422
5423Arguments:
5424""""""""""
5425
5426The '``uitofp``' instruction takes a value to cast, which must be a
5427scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5428``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5429``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5430type with the same number of elements as ``ty``
5431
5432Semantics:
5433""""""""""
5434
5435The '``uitofp``' instruction interprets its operand as an unsigned
5436integer quantity and converts it to the corresponding floating point
5437value. If the value cannot fit in the floating point value, the results
5438are undefined.
5439
5440Example:
5441""""""""
5442
5443.. code-block:: llvm
5444
5445 %X = uitofp i32 257 to float ; yields float:257.0
5446 %Y = uitofp i8 -1 to double ; yields double:255.0
5447
5448'``sitofp .. to``' Instruction
5449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5450
5451Syntax:
5452"""""""
5453
5454::
5455
5456 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5457
5458Overview:
5459"""""""""
5460
5461The '``sitofp``' instruction regards ``value`` as a signed integer and
5462converts that value to the ``ty2`` type.
5463
5464Arguments:
5465""""""""""
5466
5467The '``sitofp``' instruction takes a value to cast, which must be a
5468scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5469``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5470``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5471type with the same number of elements as ``ty``
5472
5473Semantics:
5474""""""""""
5475
5476The '``sitofp``' instruction interprets its operand as a signed integer
5477quantity and converts it to the corresponding floating point value. If
5478the value cannot fit in the floating point value, the results are
5479undefined.
5480
5481Example:
5482""""""""
5483
5484.. code-block:: llvm
5485
5486 %X = sitofp i32 257 to float ; yields float:257.0
5487 %Y = sitofp i8 -1 to double ; yields double:-1.0
5488
5489.. _i_ptrtoint:
5490
5491'``ptrtoint .. to``' Instruction
5492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5493
5494Syntax:
5495"""""""
5496
5497::
5498
5499 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5500
5501Overview:
5502"""""""""
5503
5504The '``ptrtoint``' instruction converts the pointer or a vector of
5505pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5506
5507Arguments:
5508""""""""""
5509
5510The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5511a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5512type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5513a vector of integers type.
5514
5515Semantics:
5516""""""""""
5517
5518The '``ptrtoint``' instruction converts ``value`` to integer type
5519``ty2`` by interpreting the pointer value as an integer and either
5520truncating or zero extending that value to the size of the integer type.
5521If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5522``value`` is larger than ``ty2`` then a truncation is done. If they are
5523the same size, then nothing is done (*no-op cast*) other than a type
5524change.
5525
5526Example:
5527""""""""
5528
5529.. code-block:: llvm
5530
5531 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5532 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5533 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5534
5535.. _i_inttoptr:
5536
5537'``inttoptr .. to``' Instruction
5538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5539
5540Syntax:
5541"""""""
5542
5543::
5544
5545 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5546
5547Overview:
5548"""""""""
5549
5550The '``inttoptr``' instruction converts an integer ``value`` to a
5551pointer type, ``ty2``.
5552
5553Arguments:
5554""""""""""
5555
5556The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5557cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5558type.
5559
5560Semantics:
5561""""""""""
5562
5563The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5564applying either a zero extension or a truncation depending on the size
5565of the integer ``value``. If ``value`` is larger than the size of a
5566pointer then a truncation is done. If ``value`` is smaller than the size
5567of a pointer then a zero extension is done. If they are the same size,
5568nothing is done (*no-op cast*).
5569
5570Example:
5571""""""""
5572
5573.. code-block:: llvm
5574
5575 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5576 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5577 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5578 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5579
5580.. _i_bitcast:
5581
5582'``bitcast .. to``' Instruction
5583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5584
5585Syntax:
5586"""""""
5587
5588::
5589
5590 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5591
5592Overview:
5593"""""""""
5594
5595The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5596changing any bits.
5597
5598Arguments:
5599""""""""""
5600
5601The '``bitcast``' instruction takes a value to cast, which must be a
5602non-aggregate first class value, and a type to cast it to, which must
5603also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5604sizes of ``value`` and the destination type, ``ty2``, must be identical.
5605If the source type is a pointer, the destination type must also be a
5606pointer. This instruction supports bitwise conversion of vectors to
5607integers and to vectors of other types (as long as they have the same
5608size).
5609
5610Semantics:
5611""""""""""
5612
5613The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5614always a *no-op cast* because no bits change with this conversion. The
5615conversion is done as if the ``value`` had been stored to memory and
5616read back as type ``ty2``. Pointer (or vector of pointers) types may
5617only be converted to other pointer (or vector of pointers) types with
5618this instruction. To convert pointers to other types, use the
5619:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5620first.
5621
5622Example:
5623""""""""
5624
5625.. code-block:: llvm
5626
5627 %X = bitcast i8 255 to i8 ; yields i8 :-1
5628 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5629 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5630 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5631
5632.. _otherops:
5633
5634Other Operations
5635----------------
5636
5637The instructions in this category are the "miscellaneous" instructions,
5638which defy better classification.
5639
5640.. _i_icmp:
5641
5642'``icmp``' Instruction
5643^^^^^^^^^^^^^^^^^^^^^^
5644
5645Syntax:
5646"""""""
5647
5648::
5649
5650 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5651
5652Overview:
5653"""""""""
5654
5655The '``icmp``' instruction returns a boolean value or a vector of
5656boolean values based on comparison of its two integer, integer vector,
5657pointer, or pointer vector operands.
5658
5659Arguments:
5660""""""""""
5661
5662The '``icmp``' instruction takes three operands. The first operand is
5663the condition code indicating the kind of comparison to perform. It is
5664not a value, just a keyword. The possible condition code are:
5665
5666#. ``eq``: equal
5667#. ``ne``: not equal
5668#. ``ugt``: unsigned greater than
5669#. ``uge``: unsigned greater or equal
5670#. ``ult``: unsigned less than
5671#. ``ule``: unsigned less or equal
5672#. ``sgt``: signed greater than
5673#. ``sge``: signed greater or equal
5674#. ``slt``: signed less than
5675#. ``sle``: signed less or equal
5676
5677The remaining two arguments must be :ref:`integer <t_integer>` or
5678:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5679must also be identical types.
5680
5681Semantics:
5682""""""""""
5683
5684The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5685code given as ``cond``. The comparison performed always yields either an
5686:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5687
5688#. ``eq``: yields ``true`` if the operands are equal, ``false``
5689 otherwise. No sign interpretation is necessary or performed.
5690#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5691 otherwise. No sign interpretation is necessary or performed.
5692#. ``ugt``: interprets the operands as unsigned values and yields
5693 ``true`` if ``op1`` is greater than ``op2``.
5694#. ``uge``: interprets the operands as unsigned values and yields
5695 ``true`` if ``op1`` is greater than or equal to ``op2``.
5696#. ``ult``: interprets the operands as unsigned values and yields
5697 ``true`` if ``op1`` is less than ``op2``.
5698#. ``ule``: interprets the operands as unsigned values and yields
5699 ``true`` if ``op1`` is less than or equal to ``op2``.
5700#. ``sgt``: interprets the operands as signed values and yields ``true``
5701 if ``op1`` is greater than ``op2``.
5702#. ``sge``: interprets the operands as signed values and yields ``true``
5703 if ``op1`` is greater than or equal to ``op2``.
5704#. ``slt``: interprets the operands as signed values and yields ``true``
5705 if ``op1`` is less than ``op2``.
5706#. ``sle``: interprets the operands as signed values and yields ``true``
5707 if ``op1`` is less than or equal to ``op2``.
5708
5709If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5710are compared as if they were integers.
5711
5712If the operands are integer vectors, then they are compared element by
5713element. The result is an ``i1`` vector with the same number of elements
5714as the values being compared. Otherwise, the result is an ``i1``.
5715
5716Example:
5717""""""""
5718
5719.. code-block:: llvm
5720
5721 <result> = icmp eq i32 4, 5 ; yields: result=false
5722 <result> = icmp ne float* %X, %X ; yields: result=false
5723 <result> = icmp ult i16 4, 5 ; yields: result=true
5724 <result> = icmp sgt i16 4, 5 ; yields: result=false
5725 <result> = icmp ule i16 -4, 5 ; yields: result=false
5726 <result> = icmp sge i16 4, 5 ; yields: result=false
5727
5728Note that the code generator does not yet support vector types with the
5729``icmp`` instruction.
5730
5731.. _i_fcmp:
5732
5733'``fcmp``' Instruction
5734^^^^^^^^^^^^^^^^^^^^^^
5735
5736Syntax:
5737"""""""
5738
5739::
5740
5741 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5742
5743Overview:
5744"""""""""
5745
5746The '``fcmp``' instruction returns a boolean value or vector of boolean
5747values based on comparison of its operands.
5748
5749If the operands are floating point scalars, then the result type is a
5750boolean (:ref:`i1 <t_integer>`).
5751
5752If the operands are floating point vectors, then the result type is a
5753vector of boolean with the same number of elements as the operands being
5754compared.
5755
5756Arguments:
5757""""""""""
5758
5759The '``fcmp``' instruction takes three operands. The first operand is
5760the condition code indicating the kind of comparison to perform. It is
5761not a value, just a keyword. The possible condition code are:
5762
5763#. ``false``: no comparison, always returns false
5764#. ``oeq``: ordered and equal
5765#. ``ogt``: ordered and greater than
5766#. ``oge``: ordered and greater than or equal
5767#. ``olt``: ordered and less than
5768#. ``ole``: ordered and less than or equal
5769#. ``one``: ordered and not equal
5770#. ``ord``: ordered (no nans)
5771#. ``ueq``: unordered or equal
5772#. ``ugt``: unordered or greater than
5773#. ``uge``: unordered or greater than or equal
5774#. ``ult``: unordered or less than
5775#. ``ule``: unordered or less than or equal
5776#. ``une``: unordered or not equal
5777#. ``uno``: unordered (either nans)
5778#. ``true``: no comparison, always returns true
5779
5780*Ordered* means that neither operand is a QNAN while *unordered* means
5781that either operand may be a QNAN.
5782
5783Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5784point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5785type. They must have identical types.
5786
5787Semantics:
5788""""""""""
5789
5790The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5791condition code given as ``cond``. If the operands are vectors, then the
5792vectors are compared element by element. Each comparison performed
5793always yields an :ref:`i1 <t_integer>` result, as follows:
5794
5795#. ``false``: always yields ``false``, regardless of operands.
5796#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5797 is equal to ``op2``.
5798#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5799 is greater than ``op2``.
5800#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5801 is greater than or equal to ``op2``.
5802#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5803 is less than ``op2``.
5804#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5805 is less than or equal to ``op2``.
5806#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5807 is not equal to ``op2``.
5808#. ``ord``: yields ``true`` if both operands are not a QNAN.
5809#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5810 equal to ``op2``.
5811#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5812 greater than ``op2``.
5813#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5814 greater than or equal to ``op2``.
5815#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5816 less than ``op2``.
5817#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5818 less than or equal to ``op2``.
5819#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5820 not equal to ``op2``.
5821#. ``uno``: yields ``true`` if either operand is a QNAN.
5822#. ``true``: always yields ``true``, regardless of operands.
5823
5824Example:
5825""""""""
5826
5827.. code-block:: llvm
5828
5829 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5830 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5831 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5832 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5833
5834Note that the code generator does not yet support vector types with the
5835``fcmp`` instruction.
5836
5837.. _i_phi:
5838
5839'``phi``' Instruction
5840^^^^^^^^^^^^^^^^^^^^^
5841
5842Syntax:
5843"""""""
5844
5845::
5846
5847 <result> = phi <ty> [ <val0>, <label0>], ...
5848
5849Overview:
5850"""""""""
5851
5852The '``phi``' instruction is used to implement the φ node in the SSA
5853graph representing the function.
5854
5855Arguments:
5856""""""""""
5857
5858The type of the incoming values is specified with the first type field.
5859After this, the '``phi``' instruction takes a list of pairs as
5860arguments, with one pair for each predecessor basic block of the current
5861block. Only values of :ref:`first class <t_firstclass>` type may be used as
5862the value arguments to the PHI node. Only labels may be used as the
5863label arguments.
5864
5865There must be no non-phi instructions between the start of a basic block
5866and the PHI instructions: i.e. PHI instructions must be first in a basic
5867block.
5868
5869For the purposes of the SSA form, the use of each incoming value is
5870deemed to occur on the edge from the corresponding predecessor block to
5871the current block (but after any definition of an '``invoke``'
5872instruction's return value on the same edge).
5873
5874Semantics:
5875""""""""""
5876
5877At runtime, the '``phi``' instruction logically takes on the value
5878specified by the pair corresponding to the predecessor basic block that
5879executed just prior to the current block.
5880
5881Example:
5882""""""""
5883
5884.. code-block:: llvm
5885
5886 Loop: ; Infinite loop that counts from 0 on up...
5887 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5888 %nextindvar = add i32 %indvar, 1
5889 br label %Loop
5890
5891.. _i_select:
5892
5893'``select``' Instruction
5894^^^^^^^^^^^^^^^^^^^^^^^^
5895
5896Syntax:
5897"""""""
5898
5899::
5900
5901 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5902
5903 selty is either i1 or {<N x i1>}
5904
5905Overview:
5906"""""""""
5907
5908The '``select``' instruction is used to choose one value based on a
5909condition, without branching.
5910
5911Arguments:
5912""""""""""
5913
5914The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5915values indicating the condition, and two values of the same :ref:`first
5916class <t_firstclass>` type. If the val1/val2 are vectors and the
5917condition is a scalar, then entire vectors are selected, not individual
5918elements.
5919
5920Semantics:
5921""""""""""
5922
5923If the condition is an i1 and it evaluates to 1, the instruction returns
5924the first value argument; otherwise, it returns the second value
5925argument.
5926
5927If the condition is a vector of i1, then the value arguments must be
5928vectors of the same size, and the selection is done element by element.
5929
5930Example:
5931""""""""
5932
5933.. code-block:: llvm
5934
5935 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5936
5937.. _i_call:
5938
5939'``call``' Instruction
5940^^^^^^^^^^^^^^^^^^^^^^
5941
5942Syntax:
5943"""""""
5944
5945::
5946
5947 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5948
5949Overview:
5950"""""""""
5951
5952The '``call``' instruction represents a simple function call.
5953
5954Arguments:
5955""""""""""
5956
5957This instruction requires several arguments:
5958
5959#. The optional "tail" marker indicates that the callee function does
5960 not access any allocas or varargs in the caller. Note that calls may
5961 be marked "tail" even if they do not occur before a
5962 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5963 function call is eligible for tail call optimization, but `might not
5964 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5965 The code generator may optimize calls marked "tail" with either 1)
5966 automatic `sibling call
5967 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5968 callee have matching signatures, or 2) forced tail call optimization
5969 when the following extra requirements are met:
5970
5971 - Caller and callee both have the calling convention ``fastcc``.
5972 - The call is in tail position (ret immediately follows call and ret
5973 uses value of call or is void).
5974 - Option ``-tailcallopt`` is enabled, or
5975 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5976 - `Platform specific constraints are
5977 met. <CodeGenerator.html#tailcallopt>`_
5978
5979#. The optional "cconv" marker indicates which :ref:`calling
5980 convention <callingconv>` the call should use. If none is
5981 specified, the call defaults to using C calling conventions. The
5982 calling convention of the call must match the calling convention of
5983 the target function, or else the behavior is undefined.
5984#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5985 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5986 are valid here.
5987#. '``ty``': the type of the call instruction itself which is also the
5988 type of the return value. Functions that return no value are marked
5989 ``void``.
5990#. '``fnty``': shall be the signature of the pointer to function value
5991 being invoked. The argument types must match the types implied by
5992 this signature. This type can be omitted if the function is not
5993 varargs and if the function type does not return a pointer to a
5994 function.
5995#. '``fnptrval``': An LLVM value containing a pointer to a function to
5996 be invoked. In most cases, this is a direct function invocation, but
5997 indirect ``call``'s are just as possible, calling an arbitrary pointer
5998 to function value.
5999#. '``function args``': argument list whose types match the function
6000 signature argument types and parameter attributes. All arguments must
6001 be of :ref:`first class <t_firstclass>` type. If the function signature
6002 indicates the function accepts a variable number of arguments, the
6003 extra arguments can be specified.
6004#. The optional :ref:`function attributes <fnattrs>` list. Only
6005 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6006 attributes are valid here.
6007
6008Semantics:
6009""""""""""
6010
6011The '``call``' instruction is used to cause control flow to transfer to
6012a specified function, with its incoming arguments bound to the specified
6013values. Upon a '``ret``' instruction in the called function, control
6014flow continues with the instruction after the function call, and the
6015return value of the function is bound to the result argument.
6016
6017Example:
6018""""""""
6019
6020.. code-block:: llvm
6021
6022 %retval = call i32 @test(i32 %argc)
6023 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6024 %X = tail call i32 @foo() ; yields i32
6025 %Y = tail call fastcc i32 @foo() ; yields i32
6026 call void %foo(i8 97 signext)
6027
6028 %struct.A = type { i32, i8 }
6029 %r = call %struct.A @foo() ; yields { 32, i8 }
6030 %gr = extractvalue %struct.A %r, 0 ; yields i32
6031 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6032 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6033 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6034
6035llvm treats calls to some functions with names and arguments that match
6036the standard C99 library as being the C99 library functions, and may
6037perform optimizations or generate code for them under that assumption.
6038This is something we'd like to change in the future to provide better
6039support for freestanding environments and non-C-based languages.
6040
6041.. _i_va_arg:
6042
6043'``va_arg``' Instruction
6044^^^^^^^^^^^^^^^^^^^^^^^^
6045
6046Syntax:
6047"""""""
6048
6049::
6050
6051 <resultval> = va_arg <va_list*> <arglist>, <argty>
6052
6053Overview:
6054"""""""""
6055
6056The '``va_arg``' instruction is used to access arguments passed through
6057the "variable argument" area of a function call. It is used to implement
6058the ``va_arg`` macro in C.
6059
6060Arguments:
6061""""""""""
6062
6063This instruction takes a ``va_list*`` value and the type of the
6064argument. It returns a value of the specified argument type and
6065increments the ``va_list`` to point to the next argument. The actual
6066type of ``va_list`` is target specific.
6067
6068Semantics:
6069""""""""""
6070
6071The '``va_arg``' instruction loads an argument of the specified type
6072from the specified ``va_list`` and causes the ``va_list`` to point to
6073the next argument. For more information, see the variable argument
6074handling :ref:`Intrinsic Functions <int_varargs>`.
6075
6076It is legal for this instruction to be called in a function which does
6077not take a variable number of arguments, for example, the ``vfprintf``
6078function.
6079
6080``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6081function <intrinsics>` because it takes a type as an argument.
6082
6083Example:
6084""""""""
6085
6086See the :ref:`variable argument processing <int_varargs>` section.
6087
6088Note that the code generator does not yet fully support va\_arg on many
6089targets. Also, it does not currently support va\_arg with aggregate
6090types on any target.
6091
6092.. _i_landingpad:
6093
6094'``landingpad``' Instruction
6095^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6096
6097Syntax:
6098"""""""
6099
6100::
6101
6102 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6103 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6104
6105 <clause> := catch <type> <value>
6106 <clause> := filter <array constant type> <array constant>
6107
6108Overview:
6109"""""""""
6110
6111The '``landingpad``' instruction is used by `LLVM's exception handling
6112system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006113is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006114code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6115defines values supplied by the personality function (``pers_fn``) upon
6116re-entry to the function. The ``resultval`` has the type ``resultty``.
6117
6118Arguments:
6119""""""""""
6120
6121This instruction takes a ``pers_fn`` value. This is the personality
6122function associated with the unwinding mechanism. The optional
6123``cleanup`` flag indicates that the landing pad block is a cleanup.
6124
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006125A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006126contains the global variable representing the "type" that may be caught
6127or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6128clause takes an array constant as its argument. Use
6129"``[0 x i8**] undef``" for a filter which cannot throw. The
6130'``landingpad``' instruction must contain *at least* one ``clause`` or
6131the ``cleanup`` flag.
6132
6133Semantics:
6134""""""""""
6135
6136The '``landingpad``' instruction defines the values which are set by the
6137personality function (``pers_fn``) upon re-entry to the function, and
6138therefore the "result type" of the ``landingpad`` instruction. As with
6139calling conventions, how the personality function results are
6140represented in LLVM IR is target specific.
6141
6142The clauses are applied in order from top to bottom. If two
6143``landingpad`` instructions are merged together through inlining, the
6144clauses from the calling function are appended to the list of clauses.
6145When the call stack is being unwound due to an exception being thrown,
6146the exception is compared against each ``clause`` in turn. If it doesn't
6147match any of the clauses, and the ``cleanup`` flag is not set, then
6148unwinding continues further up the call stack.
6149
6150The ``landingpad`` instruction has several restrictions:
6151
6152- A landing pad block is a basic block which is the unwind destination
6153 of an '``invoke``' instruction.
6154- A landing pad block must have a '``landingpad``' instruction as its
6155 first non-PHI instruction.
6156- There can be only one '``landingpad``' instruction within the landing
6157 pad block.
6158- A basic block that is not a landing pad block may not include a
6159 '``landingpad``' instruction.
6160- All '``landingpad``' instructions in a function must have the same
6161 personality function.
6162
6163Example:
6164""""""""
6165
6166.. code-block:: llvm
6167
6168 ;; A landing pad which can catch an integer.
6169 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6170 catch i8** @_ZTIi
6171 ;; A landing pad that is a cleanup.
6172 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6173 cleanup
6174 ;; A landing pad which can catch an integer and can only throw a double.
6175 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6176 catch i8** @_ZTIi
6177 filter [1 x i8**] [@_ZTId]
6178
6179.. _intrinsics:
6180
6181Intrinsic Functions
6182===================
6183
6184LLVM supports the notion of an "intrinsic function". These functions
6185have well known names and semantics and are required to follow certain
6186restrictions. Overall, these intrinsics represent an extension mechanism
6187for the LLVM language that does not require changing all of the
6188transformations in LLVM when adding to the language (or the bitcode
6189reader/writer, the parser, etc...).
6190
6191Intrinsic function names must all start with an "``llvm.``" prefix. This
6192prefix is reserved in LLVM for intrinsic names; thus, function names may
6193not begin with this prefix. Intrinsic functions must always be external
6194functions: you cannot define the body of intrinsic functions. Intrinsic
6195functions may only be used in call or invoke instructions: it is illegal
6196to take the address of an intrinsic function. Additionally, because
6197intrinsic functions are part of the LLVM language, it is required if any
6198are added that they be documented here.
6199
6200Some intrinsic functions can be overloaded, i.e., the intrinsic
6201represents a family of functions that perform the same operation but on
6202different data types. Because LLVM can represent over 8 million
6203different integer types, overloading is used commonly to allow an
6204intrinsic function to operate on any integer type. One or more of the
6205argument types or the result type can be overloaded to accept any
6206integer type. Argument types may also be defined as exactly matching a
6207previous argument's type or the result type. This allows an intrinsic
6208function which accepts multiple arguments, but needs all of them to be
6209of the same type, to only be overloaded with respect to a single
6210argument or the result.
6211
6212Overloaded intrinsics will have the names of its overloaded argument
6213types encoded into its function name, each preceded by a period. Only
6214those types which are overloaded result in a name suffix. Arguments
6215whose type is matched against another type do not. For example, the
6216``llvm.ctpop`` function can take an integer of any width and returns an
6217integer of exactly the same integer width. This leads to a family of
6218functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6219``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6220overloaded, and only one type suffix is required. Because the argument's
6221type is matched against the return type, it does not require its own
6222name suffix.
6223
6224To learn how to add an intrinsic function, please see the `Extending
6225LLVM Guide <ExtendingLLVM.html>`_.
6226
6227.. _int_varargs:
6228
6229Variable Argument Handling Intrinsics
6230-------------------------------------
6231
6232Variable argument support is defined in LLVM with the
6233:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6234functions. These functions are related to the similarly named macros
6235defined in the ``<stdarg.h>`` header file.
6236
6237All of these functions operate on arguments that use a target-specific
6238value type "``va_list``". The LLVM assembly language reference manual
6239does not define what this type is, so all transformations should be
6240prepared to handle these functions regardless of the type used.
6241
6242This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6243variable argument handling intrinsic functions are used.
6244
6245.. code-block:: llvm
6246
6247 define i32 @test(i32 %X, ...) {
6248 ; Initialize variable argument processing
6249 %ap = alloca i8*
6250 %ap2 = bitcast i8** %ap to i8*
6251 call void @llvm.va_start(i8* %ap2)
6252
6253 ; Read a single integer argument
6254 %tmp = va_arg i8** %ap, i32
6255
6256 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6257 %aq = alloca i8*
6258 %aq2 = bitcast i8** %aq to i8*
6259 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6260 call void @llvm.va_end(i8* %aq2)
6261
6262 ; Stop processing of arguments.
6263 call void @llvm.va_end(i8* %ap2)
6264 ret i32 %tmp
6265 }
6266
6267 declare void @llvm.va_start(i8*)
6268 declare void @llvm.va_copy(i8*, i8*)
6269 declare void @llvm.va_end(i8*)
6270
6271.. _int_va_start:
6272
6273'``llvm.va_start``' Intrinsic
6274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6275
6276Syntax:
6277"""""""
6278
6279::
6280
6281 declare void %llvm.va_start(i8* <arglist>)
6282
6283Overview:
6284"""""""""
6285
6286The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6287subsequent use by ``va_arg``.
6288
6289Arguments:
6290""""""""""
6291
6292The argument is a pointer to a ``va_list`` element to initialize.
6293
6294Semantics:
6295""""""""""
6296
6297The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6298available in C. In a target-dependent way, it initializes the
6299``va_list`` element to which the argument points, so that the next call
6300to ``va_arg`` will produce the first variable argument passed to the
6301function. Unlike the C ``va_start`` macro, this intrinsic does not need
6302to know the last argument of the function as the compiler can figure
6303that out.
6304
6305'``llvm.va_end``' Intrinsic
6306^^^^^^^^^^^^^^^^^^^^^^^^^^^
6307
6308Syntax:
6309"""""""
6310
6311::
6312
6313 declare void @llvm.va_end(i8* <arglist>)
6314
6315Overview:
6316"""""""""
6317
6318The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6319initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6320
6321Arguments:
6322""""""""""
6323
6324The argument is a pointer to a ``va_list`` to destroy.
6325
6326Semantics:
6327""""""""""
6328
6329The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6330available in C. In a target-dependent way, it destroys the ``va_list``
6331element to which the argument points. Calls to
6332:ref:`llvm.va_start <int_va_start>` and
6333:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6334``llvm.va_end``.
6335
6336.. _int_va_copy:
6337
6338'``llvm.va_copy``' Intrinsic
6339^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6340
6341Syntax:
6342"""""""
6343
6344::
6345
6346 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6347
6348Overview:
6349"""""""""
6350
6351The '``llvm.va_copy``' intrinsic copies the current argument position
6352from the source argument list to the destination argument list.
6353
6354Arguments:
6355""""""""""
6356
6357The first argument is a pointer to a ``va_list`` element to initialize.
6358The second argument is a pointer to a ``va_list`` element to copy from.
6359
6360Semantics:
6361""""""""""
6362
6363The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6364available in C. In a target-dependent way, it copies the source
6365``va_list`` element into the destination ``va_list`` element. This
6366intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6367arbitrarily complex and require, for example, memory allocation.
6368
6369Accurate Garbage Collection Intrinsics
6370--------------------------------------
6371
6372LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6373(GC) requires the implementation and generation of these intrinsics.
6374These intrinsics allow identification of :ref:`GC roots on the
6375stack <int_gcroot>`, as well as garbage collector implementations that
6376require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6377Front-ends for type-safe garbage collected languages should generate
6378these intrinsics to make use of the LLVM garbage collectors. For more
6379details, see `Accurate Garbage Collection with
6380LLVM <GarbageCollection.html>`_.
6381
6382The garbage collection intrinsics only operate on objects in the generic
6383address space (address space zero).
6384
6385.. _int_gcroot:
6386
6387'``llvm.gcroot``' Intrinsic
6388^^^^^^^^^^^^^^^^^^^^^^^^^^^
6389
6390Syntax:
6391"""""""
6392
6393::
6394
6395 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6396
6397Overview:
6398"""""""""
6399
6400The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6401the code generator, and allows some metadata to be associated with it.
6402
6403Arguments:
6404""""""""""
6405
6406The first argument specifies the address of a stack object that contains
6407the root pointer. The second pointer (which must be either a constant or
6408a global value address) contains the meta-data to be associated with the
6409root.
6410
6411Semantics:
6412""""""""""
6413
6414At runtime, a call to this intrinsic stores a null pointer into the
6415"ptrloc" location. At compile-time, the code generator generates
6416information to allow the runtime to find the pointer at GC safe points.
6417The '``llvm.gcroot``' intrinsic may only be used in a function which
6418:ref:`specifies a GC algorithm <gc>`.
6419
6420.. _int_gcread:
6421
6422'``llvm.gcread``' Intrinsic
6423^^^^^^^^^^^^^^^^^^^^^^^^^^^
6424
6425Syntax:
6426"""""""
6427
6428::
6429
6430 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6431
6432Overview:
6433"""""""""
6434
6435The '``llvm.gcread``' intrinsic identifies reads of references from heap
6436locations, allowing garbage collector implementations that require read
6437barriers.
6438
6439Arguments:
6440""""""""""
6441
6442The second argument is the address to read from, which should be an
6443address allocated from the garbage collector. The first object is a
6444pointer to the start of the referenced object, if needed by the language
6445runtime (otherwise null).
6446
6447Semantics:
6448""""""""""
6449
6450The '``llvm.gcread``' intrinsic has the same semantics as a load
6451instruction, but may be replaced with substantially more complex code by
6452the garbage collector runtime, as needed. The '``llvm.gcread``'
6453intrinsic may only be used in a function which :ref:`specifies a GC
6454algorithm <gc>`.
6455
6456.. _int_gcwrite:
6457
6458'``llvm.gcwrite``' Intrinsic
6459^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6460
6461Syntax:
6462"""""""
6463
6464::
6465
6466 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6467
6468Overview:
6469"""""""""
6470
6471The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6472locations, allowing garbage collector implementations that require write
6473barriers (such as generational or reference counting collectors).
6474
6475Arguments:
6476""""""""""
6477
6478The first argument is the reference to store, the second is the start of
6479the object to store it to, and the third is the address of the field of
6480Obj to store to. If the runtime does not require a pointer to the
6481object, Obj may be null.
6482
6483Semantics:
6484""""""""""
6485
6486The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6487instruction, but may be replaced with substantially more complex code by
6488the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6489intrinsic may only be used in a function which :ref:`specifies a GC
6490algorithm <gc>`.
6491
6492Code Generator Intrinsics
6493-------------------------
6494
6495These intrinsics are provided by LLVM to expose special features that
6496may only be implemented with code generator support.
6497
6498'``llvm.returnaddress``' Intrinsic
6499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6500
6501Syntax:
6502"""""""
6503
6504::
6505
6506 declare i8 *@llvm.returnaddress(i32 <level>)
6507
6508Overview:
6509"""""""""
6510
6511The '``llvm.returnaddress``' intrinsic attempts to compute a
6512target-specific value indicating the return address of the current
6513function or one of its callers.
6514
6515Arguments:
6516""""""""""
6517
6518The argument to this intrinsic indicates which function to return the
6519address for. Zero indicates the calling function, one indicates its
6520caller, etc. The argument is **required** to be a constant integer
6521value.
6522
6523Semantics:
6524""""""""""
6525
6526The '``llvm.returnaddress``' intrinsic either returns a pointer
6527indicating the return address of the specified call frame, or zero if it
6528cannot be identified. The value returned by this intrinsic is likely to
6529be incorrect or 0 for arguments other than zero, so it should only be
6530used for debugging purposes.
6531
6532Note that calling this intrinsic does not prevent function inlining or
6533other aggressive transformations, so the value returned may not be that
6534of the obvious source-language caller.
6535
6536'``llvm.frameaddress``' Intrinsic
6537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6538
6539Syntax:
6540"""""""
6541
6542::
6543
6544 declare i8* @llvm.frameaddress(i32 <level>)
6545
6546Overview:
6547"""""""""
6548
6549The '``llvm.frameaddress``' intrinsic attempts to return the
6550target-specific frame pointer value for the specified stack frame.
6551
6552Arguments:
6553""""""""""
6554
6555The argument to this intrinsic indicates which function to return the
6556frame pointer for. Zero indicates the calling function, one indicates
6557its caller, etc. The argument is **required** to be a constant integer
6558value.
6559
6560Semantics:
6561""""""""""
6562
6563The '``llvm.frameaddress``' intrinsic either returns a pointer
6564indicating the frame address of the specified call frame, or zero if it
6565cannot be identified. The value returned by this intrinsic is likely to
6566be incorrect or 0 for arguments other than zero, so it should only be
6567used for debugging purposes.
6568
6569Note that calling this intrinsic does not prevent function inlining or
6570other aggressive transformations, so the value returned may not be that
6571of the obvious source-language caller.
6572
6573.. _int_stacksave:
6574
6575'``llvm.stacksave``' Intrinsic
6576^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6577
6578Syntax:
6579"""""""
6580
6581::
6582
6583 declare i8* @llvm.stacksave()
6584
6585Overview:
6586"""""""""
6587
6588The '``llvm.stacksave``' intrinsic is used to remember the current state
6589of the function stack, for use with
6590:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6591implementing language features like scoped automatic variable sized
6592arrays in C99.
6593
6594Semantics:
6595""""""""""
6596
6597This intrinsic returns a opaque pointer value that can be passed to
6598:ref:`llvm.stackrestore <int_stackrestore>`. When an
6599``llvm.stackrestore`` intrinsic is executed with a value saved from
6600``llvm.stacksave``, it effectively restores the state of the stack to
6601the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6602practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6603were allocated after the ``llvm.stacksave`` was executed.
6604
6605.. _int_stackrestore:
6606
6607'``llvm.stackrestore``' Intrinsic
6608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6609
6610Syntax:
6611"""""""
6612
6613::
6614
6615 declare void @llvm.stackrestore(i8* %ptr)
6616
6617Overview:
6618"""""""""
6619
6620The '``llvm.stackrestore``' intrinsic is used to restore the state of
6621the function stack to the state it was in when the corresponding
6622:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6623useful for implementing language features like scoped automatic variable
6624sized arrays in C99.
6625
6626Semantics:
6627""""""""""
6628
6629See the description for :ref:`llvm.stacksave <int_stacksave>`.
6630
6631'``llvm.prefetch``' Intrinsic
6632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6633
6634Syntax:
6635"""""""
6636
6637::
6638
6639 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6640
6641Overview:
6642"""""""""
6643
6644The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6645insert a prefetch instruction if supported; otherwise, it is a noop.
6646Prefetches have no effect on the behavior of the program but can change
6647its performance characteristics.
6648
6649Arguments:
6650""""""""""
6651
6652``address`` is the address to be prefetched, ``rw`` is the specifier
6653determining if the fetch should be for a read (0) or write (1), and
6654``locality`` is a temporal locality specifier ranging from (0) - no
6655locality, to (3) - extremely local keep in cache. The ``cache type``
6656specifies whether the prefetch is performed on the data (1) or
6657instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6658arguments must be constant integers.
6659
6660Semantics:
6661""""""""""
6662
6663This intrinsic does not modify the behavior of the program. In
6664particular, prefetches cannot trap and do not produce a value. On
6665targets that support this intrinsic, the prefetch can provide hints to
6666the processor cache for better performance.
6667
6668'``llvm.pcmarker``' Intrinsic
6669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6670
6671Syntax:
6672"""""""
6673
6674::
6675
6676 declare void @llvm.pcmarker(i32 <id>)
6677
6678Overview:
6679"""""""""
6680
6681The '``llvm.pcmarker``' intrinsic is a method to export a Program
6682Counter (PC) in a region of code to simulators and other tools. The
6683method is target specific, but it is expected that the marker will use
6684exported symbols to transmit the PC of the marker. The marker makes no
6685guarantees that it will remain with any specific instruction after
6686optimizations. It is possible that the presence of a marker will inhibit
6687optimizations. The intended use is to be inserted after optimizations to
6688allow correlations of simulation runs.
6689
6690Arguments:
6691""""""""""
6692
6693``id`` is a numerical id identifying the marker.
6694
6695Semantics:
6696""""""""""
6697
6698This intrinsic does not modify the behavior of the program. Backends
6699that do not support this intrinsic may ignore it.
6700
6701'``llvm.readcyclecounter``' Intrinsic
6702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6703
6704Syntax:
6705"""""""
6706
6707::
6708
6709 declare i64 @llvm.readcyclecounter()
6710
6711Overview:
6712"""""""""
6713
6714The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6715counter register (or similar low latency, high accuracy clocks) on those
6716targets that support it. On X86, it should map to RDTSC. On Alpha, it
6717should map to RPCC. As the backing counters overflow quickly (on the
6718order of 9 seconds on alpha), this should only be used for small
6719timings.
6720
6721Semantics:
6722""""""""""
6723
6724When directly supported, reading the cycle counter should not modify any
6725memory. Implementations are allowed to either return a application
6726specific value or a system wide value. On backends without support, this
6727is lowered to a constant 0.
6728
Tim Northover5a02fc42013-05-23 19:11:20 +00006729Note that runtime support may be conditional on the privilege-level code is
6730running at and the host platform.
6731
Sean Silvaf722b002012-12-07 10:36:55 +00006732Standard C Library Intrinsics
6733-----------------------------
6734
6735LLVM provides intrinsics for a few important standard C library
6736functions. These intrinsics allow source-language front-ends to pass
6737information about the alignment of the pointer arguments to the code
6738generator, providing opportunity for more efficient code generation.
6739
6740.. _int_memcpy:
6741
6742'``llvm.memcpy``' Intrinsic
6743^^^^^^^^^^^^^^^^^^^^^^^^^^^
6744
6745Syntax:
6746"""""""
6747
6748This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6749integer bit width and for different address spaces. Not all targets
6750support all bit widths however.
6751
6752::
6753
6754 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6755 i32 <len>, i32 <align>, i1 <isvolatile>)
6756 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6757 i64 <len>, i32 <align>, i1 <isvolatile>)
6758
6759Overview:
6760"""""""""
6761
6762The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6763source location to the destination location.
6764
6765Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6766intrinsics do not return a value, takes extra alignment/isvolatile
6767arguments and the pointers can be in specified address spaces.
6768
6769Arguments:
6770""""""""""
6771
6772The first argument is a pointer to the destination, the second is a
6773pointer to the source. The third argument is an integer argument
6774specifying the number of bytes to copy, the fourth argument is the
6775alignment of the source and destination locations, and the fifth is a
6776boolean indicating a volatile access.
6777
6778If the call to this intrinsic has an alignment value that is not 0 or 1,
6779then the caller guarantees that both the source and destination pointers
6780are aligned to that boundary.
6781
6782If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6783a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6784very cleanly specified and it is unwise to depend on it.
6785
6786Semantics:
6787""""""""""
6788
6789The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6790source location to the destination location, which are not allowed to
6791overlap. It copies "len" bytes of memory over. If the argument is known
6792to be aligned to some boundary, this can be specified as the fourth
6793argument, otherwise it should be set to 0 or 1.
6794
6795'``llvm.memmove``' Intrinsic
6796^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6797
6798Syntax:
6799"""""""
6800
6801This is an overloaded intrinsic. You can use llvm.memmove on any integer
6802bit width and for different address space. Not all targets support all
6803bit widths however.
6804
6805::
6806
6807 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6808 i32 <len>, i32 <align>, i1 <isvolatile>)
6809 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6810 i64 <len>, i32 <align>, i1 <isvolatile>)
6811
6812Overview:
6813"""""""""
6814
6815The '``llvm.memmove.*``' intrinsics move a block of memory from the
6816source location to the destination location. It is similar to the
6817'``llvm.memcpy``' intrinsic but allows the two memory locations to
6818overlap.
6819
6820Note that, unlike the standard libc function, the ``llvm.memmove.*``
6821intrinsics do not return a value, takes extra alignment/isvolatile
6822arguments and the pointers can be in specified address spaces.
6823
6824Arguments:
6825""""""""""
6826
6827The first argument is a pointer to the destination, the second is a
6828pointer to the source. The third argument is an integer argument
6829specifying the number of bytes to copy, the fourth argument is the
6830alignment of the source and destination locations, and the fifth is a
6831boolean indicating a volatile access.
6832
6833If the call to this intrinsic has an alignment value that is not 0 or 1,
6834then the caller guarantees that the source and destination pointers are
6835aligned to that boundary.
6836
6837If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6838is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6839not very cleanly specified and it is unwise to depend on it.
6840
6841Semantics:
6842""""""""""
6843
6844The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6845source location to the destination location, which may overlap. It
6846copies "len" bytes of memory over. If the argument is known to be
6847aligned to some boundary, this can be specified as the fourth argument,
6848otherwise it should be set to 0 or 1.
6849
6850'``llvm.memset.*``' Intrinsics
6851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6852
6853Syntax:
6854"""""""
6855
6856This is an overloaded intrinsic. You can use llvm.memset on any integer
6857bit width and for different address spaces. However, not all targets
6858support all bit widths.
6859
6860::
6861
6862 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6863 i32 <len>, i32 <align>, i1 <isvolatile>)
6864 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6865 i64 <len>, i32 <align>, i1 <isvolatile>)
6866
6867Overview:
6868"""""""""
6869
6870The '``llvm.memset.*``' intrinsics fill a block of memory with a
6871particular byte value.
6872
6873Note that, unlike the standard libc function, the ``llvm.memset``
6874intrinsic does not return a value and takes extra alignment/volatile
6875arguments. Also, the destination can be in an arbitrary address space.
6876
6877Arguments:
6878""""""""""
6879
6880The first argument is a pointer to the destination to fill, the second
6881is the byte value with which to fill it, the third argument is an
6882integer argument specifying the number of bytes to fill, and the fourth
6883argument is the known alignment of the destination location.
6884
6885If the call to this intrinsic has an alignment value that is not 0 or 1,
6886then the caller guarantees that the destination pointer is aligned to
6887that boundary.
6888
6889If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6890a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6891very cleanly specified and it is unwise to depend on it.
6892
6893Semantics:
6894""""""""""
6895
6896The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6897at the destination location. If the argument is known to be aligned to
6898some boundary, this can be specified as the fourth argument, otherwise
6899it should be set to 0 or 1.
6900
6901'``llvm.sqrt.*``' Intrinsic
6902^^^^^^^^^^^^^^^^^^^^^^^^^^^
6903
6904Syntax:
6905"""""""
6906
6907This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6908floating point or vector of floating point type. Not all targets support
6909all types however.
6910
6911::
6912
6913 declare float @llvm.sqrt.f32(float %Val)
6914 declare double @llvm.sqrt.f64(double %Val)
6915 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6916 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6917 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6918
6919Overview:
6920"""""""""
6921
6922The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6923returning the same value as the libm '``sqrt``' functions would. Unlike
6924``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6925negative numbers other than -0.0 (which allows for better optimization,
6926because there is no need to worry about errno being set).
6927``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6928
6929Arguments:
6930""""""""""
6931
6932The argument and return value are floating point numbers of the same
6933type.
6934
6935Semantics:
6936""""""""""
6937
6938This function returns the sqrt of the specified operand if it is a
6939nonnegative floating point number.
6940
6941'``llvm.powi.*``' Intrinsic
6942^^^^^^^^^^^^^^^^^^^^^^^^^^^
6943
6944Syntax:
6945"""""""
6946
6947This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6948floating point or vector of floating point type. Not all targets support
6949all types however.
6950
6951::
6952
6953 declare float @llvm.powi.f32(float %Val, i32 %power)
6954 declare double @llvm.powi.f64(double %Val, i32 %power)
6955 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6956 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6957 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6958
6959Overview:
6960"""""""""
6961
6962The '``llvm.powi.*``' intrinsics return the first operand raised to the
6963specified (positive or negative) power. The order of evaluation of
6964multiplications is not defined. When a vector of floating point type is
6965used, the second argument remains a scalar integer value.
6966
6967Arguments:
6968""""""""""
6969
6970The second argument is an integer power, and the first is a value to
6971raise to that power.
6972
6973Semantics:
6974""""""""""
6975
6976This function returns the first value raised to the second power with an
6977unspecified sequence of rounding operations.
6978
6979'``llvm.sin.*``' Intrinsic
6980^^^^^^^^^^^^^^^^^^^^^^^^^^
6981
6982Syntax:
6983"""""""
6984
6985This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6986floating point or vector of floating point type. Not all targets support
6987all types however.
6988
6989::
6990
6991 declare float @llvm.sin.f32(float %Val)
6992 declare double @llvm.sin.f64(double %Val)
6993 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6994 declare fp128 @llvm.sin.f128(fp128 %Val)
6995 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6996
6997Overview:
6998"""""""""
6999
7000The '``llvm.sin.*``' intrinsics return the sine of the operand.
7001
7002Arguments:
7003""""""""""
7004
7005The argument and return value are floating point numbers of the same
7006type.
7007
7008Semantics:
7009""""""""""
7010
7011This function returns the sine of the specified operand, returning the
7012same values as the libm ``sin`` functions would, and handles error
7013conditions in the same way.
7014
7015'``llvm.cos.*``' Intrinsic
7016^^^^^^^^^^^^^^^^^^^^^^^^^^
7017
7018Syntax:
7019"""""""
7020
7021This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7022floating point or vector of floating point type. Not all targets support
7023all types however.
7024
7025::
7026
7027 declare float @llvm.cos.f32(float %Val)
7028 declare double @llvm.cos.f64(double %Val)
7029 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7030 declare fp128 @llvm.cos.f128(fp128 %Val)
7031 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7032
7033Overview:
7034"""""""""
7035
7036The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7037
7038Arguments:
7039""""""""""
7040
7041The argument and return value are floating point numbers of the same
7042type.
7043
7044Semantics:
7045""""""""""
7046
7047This function returns the cosine of the specified operand, returning the
7048same values as the libm ``cos`` functions would, and handles error
7049conditions in the same way.
7050
7051'``llvm.pow.*``' Intrinsic
7052^^^^^^^^^^^^^^^^^^^^^^^^^^
7053
7054Syntax:
7055"""""""
7056
7057This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7058floating point or vector of floating point type. Not all targets support
7059all types however.
7060
7061::
7062
7063 declare float @llvm.pow.f32(float %Val, float %Power)
7064 declare double @llvm.pow.f64(double %Val, double %Power)
7065 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7066 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7067 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7068
7069Overview:
7070"""""""""
7071
7072The '``llvm.pow.*``' intrinsics return the first operand raised to the
7073specified (positive or negative) power.
7074
7075Arguments:
7076""""""""""
7077
7078The second argument is a floating point power, and the first is a value
7079to raise to that power.
7080
7081Semantics:
7082""""""""""
7083
7084This function returns the first value raised to the second power,
7085returning the same values as the libm ``pow`` functions would, and
7086handles error conditions in the same way.
7087
7088'``llvm.exp.*``' Intrinsic
7089^^^^^^^^^^^^^^^^^^^^^^^^^^
7090
7091Syntax:
7092"""""""
7093
7094This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7095floating point or vector of floating point type. Not all targets support
7096all types however.
7097
7098::
7099
7100 declare float @llvm.exp.f32(float %Val)
7101 declare double @llvm.exp.f64(double %Val)
7102 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7103 declare fp128 @llvm.exp.f128(fp128 %Val)
7104 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7105
7106Overview:
7107"""""""""
7108
7109The '``llvm.exp.*``' intrinsics perform the exp function.
7110
7111Arguments:
7112""""""""""
7113
7114The argument and return value are floating point numbers of the same
7115type.
7116
7117Semantics:
7118""""""""""
7119
7120This function returns the same values as the libm ``exp`` functions
7121would, and handles error conditions in the same way.
7122
7123'``llvm.exp2.*``' Intrinsic
7124^^^^^^^^^^^^^^^^^^^^^^^^^^^
7125
7126Syntax:
7127"""""""
7128
7129This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7130floating point or vector of floating point type. Not all targets support
7131all types however.
7132
7133::
7134
7135 declare float @llvm.exp2.f32(float %Val)
7136 declare double @llvm.exp2.f64(double %Val)
7137 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7138 declare fp128 @llvm.exp2.f128(fp128 %Val)
7139 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7140
7141Overview:
7142"""""""""
7143
7144The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7145
7146Arguments:
7147""""""""""
7148
7149The argument and return value are floating point numbers of the same
7150type.
7151
7152Semantics:
7153""""""""""
7154
7155This function returns the same values as the libm ``exp2`` functions
7156would, and handles error conditions in the same way.
7157
7158'``llvm.log.*``' Intrinsic
7159^^^^^^^^^^^^^^^^^^^^^^^^^^
7160
7161Syntax:
7162"""""""
7163
7164This is an overloaded intrinsic. You can use ``llvm.log`` on any
7165floating point or vector of floating point type. Not all targets support
7166all types however.
7167
7168::
7169
7170 declare float @llvm.log.f32(float %Val)
7171 declare double @llvm.log.f64(double %Val)
7172 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7173 declare fp128 @llvm.log.f128(fp128 %Val)
7174 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7175
7176Overview:
7177"""""""""
7178
7179The '``llvm.log.*``' intrinsics perform the log function.
7180
7181Arguments:
7182""""""""""
7183
7184The argument and return value are floating point numbers of the same
7185type.
7186
7187Semantics:
7188""""""""""
7189
7190This function returns the same values as the libm ``log`` functions
7191would, and handles error conditions in the same way.
7192
7193'``llvm.log10.*``' Intrinsic
7194^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7195
7196Syntax:
7197"""""""
7198
7199This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7200floating point or vector of floating point type. Not all targets support
7201all types however.
7202
7203::
7204
7205 declare float @llvm.log10.f32(float %Val)
7206 declare double @llvm.log10.f64(double %Val)
7207 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7208 declare fp128 @llvm.log10.f128(fp128 %Val)
7209 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7210
7211Overview:
7212"""""""""
7213
7214The '``llvm.log10.*``' intrinsics perform the log10 function.
7215
7216Arguments:
7217""""""""""
7218
7219The argument and return value are floating point numbers of the same
7220type.
7221
7222Semantics:
7223""""""""""
7224
7225This function returns the same values as the libm ``log10`` functions
7226would, and handles error conditions in the same way.
7227
7228'``llvm.log2.*``' Intrinsic
7229^^^^^^^^^^^^^^^^^^^^^^^^^^^
7230
7231Syntax:
7232"""""""
7233
7234This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7235floating point or vector of floating point type. Not all targets support
7236all types however.
7237
7238::
7239
7240 declare float @llvm.log2.f32(float %Val)
7241 declare double @llvm.log2.f64(double %Val)
7242 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7243 declare fp128 @llvm.log2.f128(fp128 %Val)
7244 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7245
7246Overview:
7247"""""""""
7248
7249The '``llvm.log2.*``' intrinsics perform the log2 function.
7250
7251Arguments:
7252""""""""""
7253
7254The argument and return value are floating point numbers of the same
7255type.
7256
7257Semantics:
7258""""""""""
7259
7260This function returns the same values as the libm ``log2`` functions
7261would, and handles error conditions in the same way.
7262
7263'``llvm.fma.*``' Intrinsic
7264^^^^^^^^^^^^^^^^^^^^^^^^^^
7265
7266Syntax:
7267"""""""
7268
7269This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7270floating point or vector of floating point type. Not all targets support
7271all types however.
7272
7273::
7274
7275 declare float @llvm.fma.f32(float %a, float %b, float %c)
7276 declare double @llvm.fma.f64(double %a, double %b, double %c)
7277 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7278 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7279 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7280
7281Overview:
7282"""""""""
7283
7284The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7285operation.
7286
7287Arguments:
7288""""""""""
7289
7290The argument and return value are floating point numbers of the same
7291type.
7292
7293Semantics:
7294""""""""""
7295
7296This function returns the same values as the libm ``fma`` functions
7297would.
7298
7299'``llvm.fabs.*``' Intrinsic
7300^^^^^^^^^^^^^^^^^^^^^^^^^^^
7301
7302Syntax:
7303"""""""
7304
7305This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7306floating point or vector of floating point type. Not all targets support
7307all types however.
7308
7309::
7310
7311 declare float @llvm.fabs.f32(float %Val)
7312 declare double @llvm.fabs.f64(double %Val)
7313 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7314 declare fp128 @llvm.fabs.f128(fp128 %Val)
7315 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7316
7317Overview:
7318"""""""""
7319
7320The '``llvm.fabs.*``' intrinsics return the absolute value of the
7321operand.
7322
7323Arguments:
7324""""""""""
7325
7326The argument and return value are floating point numbers of the same
7327type.
7328
7329Semantics:
7330""""""""""
7331
7332This function returns the same values as the libm ``fabs`` functions
7333would, and handles error conditions in the same way.
7334
7335'``llvm.floor.*``' Intrinsic
7336^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7337
7338Syntax:
7339"""""""
7340
7341This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7342floating point or vector of floating point type. Not all targets support
7343all types however.
7344
7345::
7346
7347 declare float @llvm.floor.f32(float %Val)
7348 declare double @llvm.floor.f64(double %Val)
7349 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7350 declare fp128 @llvm.floor.f128(fp128 %Val)
7351 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7352
7353Overview:
7354"""""""""
7355
7356The '``llvm.floor.*``' intrinsics return the floor of the operand.
7357
7358Arguments:
7359""""""""""
7360
7361The argument and return value are floating point numbers of the same
7362type.
7363
7364Semantics:
7365""""""""""
7366
7367This function returns the same values as the libm ``floor`` functions
7368would, and handles error conditions in the same way.
7369
7370'``llvm.ceil.*``' Intrinsic
7371^^^^^^^^^^^^^^^^^^^^^^^^^^^
7372
7373Syntax:
7374"""""""
7375
7376This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7377floating point or vector of floating point type. Not all targets support
7378all types however.
7379
7380::
7381
7382 declare float @llvm.ceil.f32(float %Val)
7383 declare double @llvm.ceil.f64(double %Val)
7384 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7385 declare fp128 @llvm.ceil.f128(fp128 %Val)
7386 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7387
7388Overview:
7389"""""""""
7390
7391The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7392
7393Arguments:
7394""""""""""
7395
7396The argument and return value are floating point numbers of the same
7397type.
7398
7399Semantics:
7400""""""""""
7401
7402This function returns the same values as the libm ``ceil`` functions
7403would, and handles error conditions in the same way.
7404
7405'``llvm.trunc.*``' Intrinsic
7406^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7407
7408Syntax:
7409"""""""
7410
7411This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7412floating point or vector of floating point type. Not all targets support
7413all types however.
7414
7415::
7416
7417 declare float @llvm.trunc.f32(float %Val)
7418 declare double @llvm.trunc.f64(double %Val)
7419 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7420 declare fp128 @llvm.trunc.f128(fp128 %Val)
7421 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7422
7423Overview:
7424"""""""""
7425
7426The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7427nearest integer not larger in magnitude than the operand.
7428
7429Arguments:
7430""""""""""
7431
7432The argument and return value are floating point numbers of the same
7433type.
7434
7435Semantics:
7436""""""""""
7437
7438This function returns the same values as the libm ``trunc`` functions
7439would, and handles error conditions in the same way.
7440
7441'``llvm.rint.*``' Intrinsic
7442^^^^^^^^^^^^^^^^^^^^^^^^^^^
7443
7444Syntax:
7445"""""""
7446
7447This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7448floating point or vector of floating point type. Not all targets support
7449all types however.
7450
7451::
7452
7453 declare float @llvm.rint.f32(float %Val)
7454 declare double @llvm.rint.f64(double %Val)
7455 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7456 declare fp128 @llvm.rint.f128(fp128 %Val)
7457 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7458
7459Overview:
7460"""""""""
7461
7462The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7463nearest integer. It may raise an inexact floating-point exception if the
7464operand isn't an integer.
7465
7466Arguments:
7467""""""""""
7468
7469The argument and return value are floating point numbers of the same
7470type.
7471
7472Semantics:
7473""""""""""
7474
7475This function returns the same values as the libm ``rint`` functions
7476would, and handles error conditions in the same way.
7477
7478'``llvm.nearbyint.*``' Intrinsic
7479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7480
7481Syntax:
7482"""""""
7483
7484This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7485floating point or vector of floating point type. Not all targets support
7486all types however.
7487
7488::
7489
7490 declare float @llvm.nearbyint.f32(float %Val)
7491 declare double @llvm.nearbyint.f64(double %Val)
7492 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7493 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7494 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7495
7496Overview:
7497"""""""""
7498
7499The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7500nearest integer.
7501
7502Arguments:
7503""""""""""
7504
7505The argument and return value are floating point numbers of the same
7506type.
7507
7508Semantics:
7509""""""""""
7510
7511This function returns the same values as the libm ``nearbyint``
7512functions would, and handles error conditions in the same way.
7513
7514Bit Manipulation Intrinsics
7515---------------------------
7516
7517LLVM provides intrinsics for a few important bit manipulation
7518operations. These allow efficient code generation for some algorithms.
7519
7520'``llvm.bswap.*``' Intrinsics
7521^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7522
7523Syntax:
7524"""""""
7525
7526This is an overloaded intrinsic function. You can use bswap on any
7527integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7528
7529::
7530
7531 declare i16 @llvm.bswap.i16(i16 <id>)
7532 declare i32 @llvm.bswap.i32(i32 <id>)
7533 declare i64 @llvm.bswap.i64(i64 <id>)
7534
7535Overview:
7536"""""""""
7537
7538The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7539values with an even number of bytes (positive multiple of 16 bits).
7540These are useful for performing operations on data that is not in the
7541target's native byte order.
7542
7543Semantics:
7544""""""""""
7545
7546The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7547and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7548intrinsic returns an i32 value that has the four bytes of the input i32
7549swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7550returned i32 will have its bytes in 3, 2, 1, 0 order. The
7551``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7552concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7553respectively).
7554
7555'``llvm.ctpop.*``' Intrinsic
7556^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7557
7558Syntax:
7559"""""""
7560
7561This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7562bit width, or on any vector with integer elements. Not all targets
7563support all bit widths or vector types, however.
7564
7565::
7566
7567 declare i8 @llvm.ctpop.i8(i8 <src>)
7568 declare i16 @llvm.ctpop.i16(i16 <src>)
7569 declare i32 @llvm.ctpop.i32(i32 <src>)
7570 declare i64 @llvm.ctpop.i64(i64 <src>)
7571 declare i256 @llvm.ctpop.i256(i256 <src>)
7572 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7573
7574Overview:
7575"""""""""
7576
7577The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7578in a value.
7579
7580Arguments:
7581""""""""""
7582
7583The only argument is the value to be counted. The argument may be of any
7584integer type, or a vector with integer elements. The return type must
7585match the argument type.
7586
7587Semantics:
7588""""""""""
7589
7590The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7591each element of a vector.
7592
7593'``llvm.ctlz.*``' Intrinsic
7594^^^^^^^^^^^^^^^^^^^^^^^^^^^
7595
7596Syntax:
7597"""""""
7598
7599This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7600integer bit width, or any vector whose elements are integers. Not all
7601targets support all bit widths or vector types, however.
7602
7603::
7604
7605 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7606 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7607 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7608 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7609 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7610 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7611
7612Overview:
7613"""""""""
7614
7615The '``llvm.ctlz``' family of intrinsic functions counts the number of
7616leading zeros in a variable.
7617
7618Arguments:
7619""""""""""
7620
7621The first argument is the value to be counted. This argument may be of
7622any integer type, or a vectory with integer element type. The return
7623type must match the first argument type.
7624
7625The second argument must be a constant and is a flag to indicate whether
7626the intrinsic should ensure that a zero as the first argument produces a
7627defined result. Historically some architectures did not provide a
7628defined result for zero values as efficiently, and many algorithms are
7629now predicated on avoiding zero-value inputs.
7630
7631Semantics:
7632""""""""""
7633
7634The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7635zeros in a variable, or within each element of the vector. If
7636``src == 0`` then the result is the size in bits of the type of ``src``
7637if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7638``llvm.ctlz(i32 2) = 30``.
7639
7640'``llvm.cttz.*``' Intrinsic
7641^^^^^^^^^^^^^^^^^^^^^^^^^^^
7642
7643Syntax:
7644"""""""
7645
7646This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7647integer bit width, or any vector of integer elements. Not all targets
7648support all bit widths or vector types, however.
7649
7650::
7651
7652 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7653 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7654 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7655 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7656 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7657 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7658
7659Overview:
7660"""""""""
7661
7662The '``llvm.cttz``' family of intrinsic functions counts the number of
7663trailing zeros.
7664
7665Arguments:
7666""""""""""
7667
7668The first argument is the value to be counted. This argument may be of
7669any integer type, or a vectory with integer element type. The return
7670type must match the first argument type.
7671
7672The second argument must be a constant and is a flag to indicate whether
7673the intrinsic should ensure that a zero as the first argument produces a
7674defined result. Historically some architectures did not provide a
7675defined result for zero values as efficiently, and many algorithms are
7676now predicated on avoiding zero-value inputs.
7677
7678Semantics:
7679""""""""""
7680
7681The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7682zeros in a variable, or within each element of a vector. If ``src == 0``
7683then the result is the size in bits of the type of ``src`` if
7684``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7685``llvm.cttz(2) = 1``.
7686
7687Arithmetic with Overflow Intrinsics
7688-----------------------------------
7689
7690LLVM provides intrinsics for some arithmetic with overflow operations.
7691
7692'``llvm.sadd.with.overflow.*``' Intrinsics
7693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7694
7695Syntax:
7696"""""""
7697
7698This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7699on any integer bit width.
7700
7701::
7702
7703 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7704 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7705 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7706
7707Overview:
7708"""""""""
7709
7710The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7711a signed addition of the two arguments, and indicate whether an overflow
7712occurred during the signed summation.
7713
7714Arguments:
7715""""""""""
7716
7717The arguments (%a and %b) and the first element of the result structure
7718may be of integer types of any bit width, but they must have the same
7719bit width. The second element of the result structure must be of type
7720``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7721addition.
7722
7723Semantics:
7724""""""""""
7725
7726The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007727a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007728first element of which is the signed summation, and the second element
7729of which is a bit specifying if the signed summation resulted in an
7730overflow.
7731
7732Examples:
7733"""""""""
7734
7735.. code-block:: llvm
7736
7737 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7738 %sum = extractvalue {i32, i1} %res, 0
7739 %obit = extractvalue {i32, i1} %res, 1
7740 br i1 %obit, label %overflow, label %normal
7741
7742'``llvm.uadd.with.overflow.*``' Intrinsics
7743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7744
7745Syntax:
7746"""""""
7747
7748This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7749on any integer bit width.
7750
7751::
7752
7753 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7754 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7755 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7756
7757Overview:
7758"""""""""
7759
7760The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7761an unsigned addition of the two arguments, and indicate whether a carry
7762occurred during the unsigned summation.
7763
7764Arguments:
7765""""""""""
7766
7767The arguments (%a and %b) and the first element of the result structure
7768may be of integer types of any bit width, but they must have the same
7769bit width. The second element of the result structure must be of type
7770``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7771addition.
7772
7773Semantics:
7774""""""""""
7775
7776The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007777an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007778first element of which is the sum, and the second element of which is a
7779bit specifying if the unsigned summation resulted in a carry.
7780
7781Examples:
7782"""""""""
7783
7784.. code-block:: llvm
7785
7786 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7787 %sum = extractvalue {i32, i1} %res, 0
7788 %obit = extractvalue {i32, i1} %res, 1
7789 br i1 %obit, label %carry, label %normal
7790
7791'``llvm.ssub.with.overflow.*``' Intrinsics
7792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7793
7794Syntax:
7795"""""""
7796
7797This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7798on any integer bit width.
7799
7800::
7801
7802 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7803 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7804 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7805
7806Overview:
7807"""""""""
7808
7809The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7810a signed subtraction of the two arguments, and indicate whether an
7811overflow occurred during the signed subtraction.
7812
7813Arguments:
7814""""""""""
7815
7816The arguments (%a and %b) and the first element of the result structure
7817may be of integer types of any bit width, but they must have the same
7818bit width. The second element of the result structure must be of type
7819``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7820subtraction.
7821
7822Semantics:
7823""""""""""
7824
7825The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007826a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007827first element of which is the subtraction, and the second element of
7828which is a bit specifying if the signed subtraction resulted in an
7829overflow.
7830
7831Examples:
7832"""""""""
7833
7834.. code-block:: llvm
7835
7836 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7837 %sum = extractvalue {i32, i1} %res, 0
7838 %obit = extractvalue {i32, i1} %res, 1
7839 br i1 %obit, label %overflow, label %normal
7840
7841'``llvm.usub.with.overflow.*``' Intrinsics
7842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7843
7844Syntax:
7845"""""""
7846
7847This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7848on any integer bit width.
7849
7850::
7851
7852 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7853 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7854 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7855
7856Overview:
7857"""""""""
7858
7859The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7860an unsigned subtraction of the two arguments, and indicate whether an
7861overflow occurred during the unsigned subtraction.
7862
7863Arguments:
7864""""""""""
7865
7866The arguments (%a and %b) and the first element of the result structure
7867may be of integer types of any bit width, but they must have the same
7868bit width. The second element of the result structure must be of type
7869``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7870subtraction.
7871
7872Semantics:
7873""""""""""
7874
7875The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007876an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007877the first element of which is the subtraction, and the second element of
7878which is a bit specifying if the unsigned subtraction resulted in an
7879overflow.
7880
7881Examples:
7882"""""""""
7883
7884.. code-block:: llvm
7885
7886 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7887 %sum = extractvalue {i32, i1} %res, 0
7888 %obit = extractvalue {i32, i1} %res, 1
7889 br i1 %obit, label %overflow, label %normal
7890
7891'``llvm.smul.with.overflow.*``' Intrinsics
7892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7893
7894Syntax:
7895"""""""
7896
7897This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7898on any integer bit width.
7899
7900::
7901
7902 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7903 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7904 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7905
7906Overview:
7907"""""""""
7908
7909The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7910a signed multiplication of the two arguments, and indicate whether an
7911overflow occurred during the signed multiplication.
7912
7913Arguments:
7914""""""""""
7915
7916The arguments (%a and %b) and the first element of the result structure
7917may be of integer types of any bit width, but they must have the same
7918bit width. The second element of the result structure must be of type
7919``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7920multiplication.
7921
7922Semantics:
7923""""""""""
7924
7925The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007926a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007927the first element of which is the multiplication, and the second element
7928of which is a bit specifying if the signed multiplication resulted in an
7929overflow.
7930
7931Examples:
7932"""""""""
7933
7934.. code-block:: llvm
7935
7936 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7937 %sum = extractvalue {i32, i1} %res, 0
7938 %obit = extractvalue {i32, i1} %res, 1
7939 br i1 %obit, label %overflow, label %normal
7940
7941'``llvm.umul.with.overflow.*``' Intrinsics
7942^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7943
7944Syntax:
7945"""""""
7946
7947This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7948on any integer bit width.
7949
7950::
7951
7952 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7953 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7954 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7955
7956Overview:
7957"""""""""
7958
7959The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7960a unsigned multiplication of the two arguments, and indicate whether an
7961overflow occurred during the unsigned multiplication.
7962
7963Arguments:
7964""""""""""
7965
7966The arguments (%a and %b) and the first element of the result structure
7967may be of integer types of any bit width, but they must have the same
7968bit width. The second element of the result structure must be of type
7969``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7970multiplication.
7971
7972Semantics:
7973""""""""""
7974
7975The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007976an unsigned multiplication of the two arguments. They return a structure ---
7977the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007978element of which is a bit specifying if the unsigned multiplication
7979resulted in an overflow.
7980
7981Examples:
7982"""""""""
7983
7984.. code-block:: llvm
7985
7986 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7987 %sum = extractvalue {i32, i1} %res, 0
7988 %obit = extractvalue {i32, i1} %res, 1
7989 br i1 %obit, label %overflow, label %normal
7990
7991Specialised Arithmetic Intrinsics
7992---------------------------------
7993
7994'``llvm.fmuladd.*``' Intrinsic
7995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7996
7997Syntax:
7998"""""""
7999
8000::
8001
8002 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8003 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8004
8005Overview:
8006"""""""""
8007
8008The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008009expressions that can be fused if the code generator determines that (a) the
8010target instruction set has support for a fused operation, and (b) that the
8011fused operation is more efficient than the equivalent, separate pair of mul
8012and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008013
8014Arguments:
8015""""""""""
8016
8017The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8018multiplicands, a and b, and an addend c.
8019
8020Semantics:
8021""""""""""
8022
8023The expression:
8024
8025::
8026
8027 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8028
8029is equivalent to the expression a \* b + c, except that rounding will
8030not be performed between the multiplication and addition steps if the
8031code generator fuses the operations. Fusion is not guaranteed, even if
8032the target platform supports it. If a fused multiply-add is required the
8033corresponding llvm.fma.\* intrinsic function should be used instead.
8034
8035Examples:
8036"""""""""
8037
8038.. code-block:: llvm
8039
8040 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8041
8042Half Precision Floating Point Intrinsics
8043----------------------------------------
8044
8045For most target platforms, half precision floating point is a
8046storage-only format. This means that it is a dense encoding (in memory)
8047but does not support computation in the format.
8048
8049This means that code must first load the half-precision floating point
8050value as an i16, then convert it to float with
8051:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8052then be performed on the float value (including extending to double
8053etc). To store the value back to memory, it is first converted to float
8054if needed, then converted to i16 with
8055:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8056i16 value.
8057
8058.. _int_convert_to_fp16:
8059
8060'``llvm.convert.to.fp16``' Intrinsic
8061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8062
8063Syntax:
8064"""""""
8065
8066::
8067
8068 declare i16 @llvm.convert.to.fp16(f32 %a)
8069
8070Overview:
8071"""""""""
8072
8073The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8074from single precision floating point format to half precision floating
8075point format.
8076
8077Arguments:
8078""""""""""
8079
8080The intrinsic function contains single argument - the value to be
8081converted.
8082
8083Semantics:
8084""""""""""
8085
8086The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8087from single precision floating point format to half precision floating
8088point format. The return value is an ``i16`` which contains the
8089converted number.
8090
8091Examples:
8092"""""""""
8093
8094.. code-block:: llvm
8095
8096 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8097 store i16 %res, i16* @x, align 2
8098
8099.. _int_convert_from_fp16:
8100
8101'``llvm.convert.from.fp16``' Intrinsic
8102^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8103
8104Syntax:
8105"""""""
8106
8107::
8108
8109 declare f32 @llvm.convert.from.fp16(i16 %a)
8110
8111Overview:
8112"""""""""
8113
8114The '``llvm.convert.from.fp16``' intrinsic function performs a
8115conversion from half precision floating point format to single precision
8116floating point format.
8117
8118Arguments:
8119""""""""""
8120
8121The intrinsic function contains single argument - the value to be
8122converted.
8123
8124Semantics:
8125""""""""""
8126
8127The '``llvm.convert.from.fp16``' intrinsic function performs a
8128conversion from half single precision floating point format to single
8129precision floating point format. The input half-float value is
8130represented by an ``i16`` value.
8131
8132Examples:
8133"""""""""
8134
8135.. code-block:: llvm
8136
8137 %a = load i16* @x, align 2
8138 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8139
8140Debugger Intrinsics
8141-------------------
8142
8143The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8144prefix), are described in the `LLVM Source Level
8145Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8146document.
8147
8148Exception Handling Intrinsics
8149-----------------------------
8150
8151The LLVM exception handling intrinsics (which all start with
8152``llvm.eh.`` prefix), are described in the `LLVM Exception
8153Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8154
8155.. _int_trampoline:
8156
8157Trampoline Intrinsics
8158---------------------
8159
8160These intrinsics make it possible to excise one parameter, marked with
8161the :ref:`nest <nest>` attribute, from a function. The result is a
8162callable function pointer lacking the nest parameter - the caller does
8163not need to provide a value for it. Instead, the value to use is stored
8164in advance in a "trampoline", a block of memory usually allocated on the
8165stack, which also contains code to splice the nest value into the
8166argument list. This is used to implement the GCC nested function address
8167extension.
8168
8169For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8170then the resulting function pointer has signature ``i32 (i32, i32)*``.
8171It can be created as follows:
8172
8173.. code-block:: llvm
8174
8175 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8176 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8177 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8178 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8179 %fp = bitcast i8* %p to i32 (i32, i32)*
8180
8181The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8182``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8183
8184.. _int_it:
8185
8186'``llvm.init.trampoline``' Intrinsic
8187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8188
8189Syntax:
8190"""""""
8191
8192::
8193
8194 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8195
8196Overview:
8197"""""""""
8198
8199This fills the memory pointed to by ``tramp`` with executable code,
8200turning it into a trampoline.
8201
8202Arguments:
8203""""""""""
8204
8205The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8206pointers. The ``tramp`` argument must point to a sufficiently large and
8207sufficiently aligned block of memory; this memory is written to by the
8208intrinsic. Note that the size and the alignment are target-specific -
8209LLVM currently provides no portable way of determining them, so a
8210front-end that generates this intrinsic needs to have some
8211target-specific knowledge. The ``func`` argument must hold a function
8212bitcast to an ``i8*``.
8213
8214Semantics:
8215""""""""""
8216
8217The block of memory pointed to by ``tramp`` is filled with target
8218dependent code, turning it into a function. Then ``tramp`` needs to be
8219passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8220be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8221function's signature is the same as that of ``func`` with any arguments
8222marked with the ``nest`` attribute removed. At most one such ``nest``
8223argument is allowed, and it must be of pointer type. Calling the new
8224function is equivalent to calling ``func`` with the same argument list,
8225but with ``nval`` used for the missing ``nest`` argument. If, after
8226calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8227modified, then the effect of any later call to the returned function
8228pointer is undefined.
8229
8230.. _int_at:
8231
8232'``llvm.adjust.trampoline``' Intrinsic
8233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8234
8235Syntax:
8236"""""""
8237
8238::
8239
8240 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8241
8242Overview:
8243"""""""""
8244
8245This performs any required machine-specific adjustment to the address of
8246a trampoline (passed as ``tramp``).
8247
8248Arguments:
8249""""""""""
8250
8251``tramp`` must point to a block of memory which already has trampoline
8252code filled in by a previous call to
8253:ref:`llvm.init.trampoline <int_it>`.
8254
8255Semantics:
8256""""""""""
8257
8258On some architectures the address of the code to be executed needs to be
8259different to the address where the trampoline is actually stored. This
8260intrinsic returns the executable address corresponding to ``tramp``
8261after performing the required machine specific adjustments. The pointer
8262returned can then be :ref:`bitcast and executed <int_trampoline>`.
8263
8264Memory Use Markers
8265------------------
8266
8267This class of intrinsics exists to information about the lifetime of
8268memory objects and ranges where variables are immutable.
8269
8270'``llvm.lifetime.start``' Intrinsic
8271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8272
8273Syntax:
8274"""""""
8275
8276::
8277
8278 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8279
8280Overview:
8281"""""""""
8282
8283The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8284object's lifetime.
8285
8286Arguments:
8287""""""""""
8288
8289The first argument is a constant integer representing the size of the
8290object, or -1 if it is variable sized. The second argument is a pointer
8291to the object.
8292
8293Semantics:
8294""""""""""
8295
8296This intrinsic indicates that before this point in the code, the value
8297of the memory pointed to by ``ptr`` is dead. This means that it is known
8298to never be used and has an undefined value. A load from the pointer
8299that precedes this intrinsic can be replaced with ``'undef'``.
8300
8301'``llvm.lifetime.end``' Intrinsic
8302^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8303
8304Syntax:
8305"""""""
8306
8307::
8308
8309 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8310
8311Overview:
8312"""""""""
8313
8314The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8315object's lifetime.
8316
8317Arguments:
8318""""""""""
8319
8320The first argument is a constant integer representing the size of the
8321object, or -1 if it is variable sized. The second argument is a pointer
8322to the object.
8323
8324Semantics:
8325""""""""""
8326
8327This intrinsic indicates that after this point in the code, the value of
8328the memory pointed to by ``ptr`` is dead. This means that it is known to
8329never be used and has an undefined value. Any stores into the memory
8330object following this intrinsic may be removed as dead.
8331
8332'``llvm.invariant.start``' Intrinsic
8333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8334
8335Syntax:
8336"""""""
8337
8338::
8339
8340 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8341
8342Overview:
8343"""""""""
8344
8345The '``llvm.invariant.start``' intrinsic specifies that the contents of
8346a memory object will not change.
8347
8348Arguments:
8349""""""""""
8350
8351The first argument is a constant integer representing the size of the
8352object, or -1 if it is variable sized. The second argument is a pointer
8353to the object.
8354
8355Semantics:
8356""""""""""
8357
8358This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8359the return value, the referenced memory location is constant and
8360unchanging.
8361
8362'``llvm.invariant.end``' Intrinsic
8363^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8364
8365Syntax:
8366"""""""
8367
8368::
8369
8370 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8371
8372Overview:
8373"""""""""
8374
8375The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8376memory object are mutable.
8377
8378Arguments:
8379""""""""""
8380
8381The first argument is the matching ``llvm.invariant.start`` intrinsic.
8382The second argument is a constant integer representing the size of the
8383object, or -1 if it is variable sized and the third argument is a
8384pointer to the object.
8385
8386Semantics:
8387""""""""""
8388
8389This intrinsic indicates that the memory is mutable again.
8390
8391General Intrinsics
8392------------------
8393
8394This class of intrinsics is designed to be generic and has no specific
8395purpose.
8396
8397'``llvm.var.annotation``' Intrinsic
8398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8399
8400Syntax:
8401"""""""
8402
8403::
8404
8405 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8406
8407Overview:
8408"""""""""
8409
8410The '``llvm.var.annotation``' intrinsic.
8411
8412Arguments:
8413""""""""""
8414
8415The first argument is a pointer to a value, the second is a pointer to a
8416global string, the third is a pointer to a global string which is the
8417source file name, and the last argument is the line number.
8418
8419Semantics:
8420""""""""""
8421
8422This intrinsic allows annotation of local variables with arbitrary
8423strings. This can be useful for special purpose optimizations that want
8424to look for these annotations. These have no other defined use; they are
8425ignored by code generation and optimization.
8426
Michael Gottesman872b4e52013-03-26 00:34:27 +00008427'``llvm.ptr.annotation.*``' Intrinsic
8428^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8429
8430Syntax:
8431"""""""
8432
8433This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8434pointer to an integer of any width. *NOTE* you must specify an address space for
8435the pointer. The identifier for the default address space is the integer
8436'``0``'.
8437
8438::
8439
8440 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8441 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8442 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8443 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8444 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8445
8446Overview:
8447"""""""""
8448
8449The '``llvm.ptr.annotation``' intrinsic.
8450
8451Arguments:
8452""""""""""
8453
8454The first argument is a pointer to an integer value of arbitrary bitwidth
8455(result of some expression), the second is a pointer to a global string, the
8456third is a pointer to a global string which is the source file name, and the
8457last argument is the line number. It returns the value of the first argument.
8458
8459Semantics:
8460""""""""""
8461
8462This intrinsic allows annotation of a pointer to an integer with arbitrary
8463strings. This can be useful for special purpose optimizations that want to look
8464for these annotations. These have no other defined use; they are ignored by code
8465generation and optimization.
8466
Sean Silvaf722b002012-12-07 10:36:55 +00008467'``llvm.annotation.*``' Intrinsic
8468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8469
8470Syntax:
8471"""""""
8472
8473This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8474any integer bit width.
8475
8476::
8477
8478 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8479 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8480 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8481 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8482 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8483
8484Overview:
8485"""""""""
8486
8487The '``llvm.annotation``' intrinsic.
8488
8489Arguments:
8490""""""""""
8491
8492The first argument is an integer value (result of some expression), the
8493second is a pointer to a global string, the third is a pointer to a
8494global string which is the source file name, and the last argument is
8495the line number. It returns the value of the first argument.
8496
8497Semantics:
8498""""""""""
8499
8500This intrinsic allows annotations to be put on arbitrary expressions
8501with arbitrary strings. This can be useful for special purpose
8502optimizations that want to look for these annotations. These have no
8503other defined use; they are ignored by code generation and optimization.
8504
8505'``llvm.trap``' Intrinsic
8506^^^^^^^^^^^^^^^^^^^^^^^^^
8507
8508Syntax:
8509"""""""
8510
8511::
8512
8513 declare void @llvm.trap() noreturn nounwind
8514
8515Overview:
8516"""""""""
8517
8518The '``llvm.trap``' intrinsic.
8519
8520Arguments:
8521""""""""""
8522
8523None.
8524
8525Semantics:
8526""""""""""
8527
8528This intrinsic is lowered to the target dependent trap instruction. If
8529the target does not have a trap instruction, this intrinsic will be
8530lowered to a call of the ``abort()`` function.
8531
8532'``llvm.debugtrap``' Intrinsic
8533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8534
8535Syntax:
8536"""""""
8537
8538::
8539
8540 declare void @llvm.debugtrap() nounwind
8541
8542Overview:
8543"""""""""
8544
8545The '``llvm.debugtrap``' intrinsic.
8546
8547Arguments:
8548""""""""""
8549
8550None.
8551
8552Semantics:
8553""""""""""
8554
8555This intrinsic is lowered to code which is intended to cause an
8556execution trap with the intention of requesting the attention of a
8557debugger.
8558
8559'``llvm.stackprotector``' Intrinsic
8560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8561
8562Syntax:
8563"""""""
8564
8565::
8566
8567 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8568
8569Overview:
8570"""""""""
8571
8572The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8573onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8574is placed on the stack before local variables.
8575
8576Arguments:
8577""""""""""
8578
8579The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8580The first argument is the value loaded from the stack guard
8581``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8582enough space to hold the value of the guard.
8583
8584Semantics:
8585""""""""""
8586
8587This intrinsic causes the prologue/epilogue inserter to force the
8588position of the ``AllocaInst`` stack slot to be before local variables
8589on the stack. This is to ensure that if a local variable on the stack is
8590overwritten, it will destroy the value of the guard. When the function
8591exits, the guard on the stack is checked against the original guard. If
8592they are different, then the program aborts by calling the
8593``__stack_chk_fail()`` function.
8594
8595'``llvm.objectsize``' Intrinsic
8596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8597
8598Syntax:
8599"""""""
8600
8601::
8602
8603 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8604 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8605
8606Overview:
8607"""""""""
8608
8609The ``llvm.objectsize`` intrinsic is designed to provide information to
8610the optimizers to determine at compile time whether a) an operation
8611(like memcpy) will overflow a buffer that corresponds to an object, or
8612b) that a runtime check for overflow isn't necessary. An object in this
8613context means an allocation of a specific class, structure, array, or
8614other object.
8615
8616Arguments:
8617""""""""""
8618
8619The ``llvm.objectsize`` intrinsic takes two arguments. The first
8620argument is a pointer to or into the ``object``. The second argument is
8621a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8622or -1 (if false) when the object size is unknown. The second argument
8623only accepts constants.
8624
8625Semantics:
8626""""""""""
8627
8628The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8629the size of the object concerned. If the size cannot be determined at
8630compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8631on the ``min`` argument).
8632
8633'``llvm.expect``' Intrinsic
8634^^^^^^^^^^^^^^^^^^^^^^^^^^^
8635
8636Syntax:
8637"""""""
8638
8639::
8640
8641 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8642 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8643
8644Overview:
8645"""""""""
8646
8647The ``llvm.expect`` intrinsic provides information about expected (the
8648most probable) value of ``val``, which can be used by optimizers.
8649
8650Arguments:
8651""""""""""
8652
8653The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8654a value. The second argument is an expected value, this needs to be a
8655constant value, variables are not allowed.
8656
8657Semantics:
8658""""""""""
8659
8660This intrinsic is lowered to the ``val``.
8661
8662'``llvm.donothing``' Intrinsic
8663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8664
8665Syntax:
8666"""""""
8667
8668::
8669
8670 declare void @llvm.donothing() nounwind readnone
8671
8672Overview:
8673"""""""""
8674
8675The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8676only intrinsic that can be called with an invoke instruction.
8677
8678Arguments:
8679""""""""""
8680
8681None.
8682
8683Semantics:
8684""""""""""
8685
8686This intrinsic does nothing, and it's removed by optimizers and ignored
8687by codegen.