blob: a65e55afb56d4a50eadbcc199e4efd3d5018d7e5 [file] [log] [blame]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision floating
11// point values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner36d26c22007-12-08 19:00:03 +000015#include "llvm/ADT/APFloat.h"
Ted Kremenek1f801fa2008-02-11 17:24:50 +000016#include "llvm/ADT/FoldingSet.h"
Dale Johannesend3b51fd2007-08-24 05:08:11 +000017#include "llvm/Support/MathExtras.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000018#include <cstring>
Chris Lattnerb39cdde2007-08-20 22:49:32 +000019
20using namespace llvm;
21
22#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
23
Neil Bootha30b0ee2007-10-03 22:26:02 +000024/* Assumed in hexadecimal significand parsing, and conversion to
25 hexadecimal strings. */
Chris Lattner9f17eb02008-08-17 04:58:58 +000026#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +000027COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
28
29namespace llvm {
30
31 /* Represents floating point arithmetic semantics. */
32 struct fltSemantics {
33 /* The largest E such that 2^E is representable; this matches the
34 definition of IEEE 754. */
35 exponent_t maxExponent;
36
37 /* The smallest E such that 2^E is a normalized number; this
38 matches the definition of IEEE 754. */
39 exponent_t minExponent;
40
41 /* Number of bits in the significand. This includes the integer
42 bit. */
Neil Booth7a951ca2007-10-12 15:33:27 +000043 unsigned int precision;
Neil Boothcaf19d72007-10-14 10:29:28 +000044
45 /* True if arithmetic is supported. */
46 unsigned int arithmeticOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +000047 };
48
Neil Boothcaf19d72007-10-14 10:29:28 +000049 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
50 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
51 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
52 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
53 const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
Dale Johannesena471c2e2007-10-11 18:07:22 +000054
55 // The PowerPC format consists of two doubles. It does not map cleanly
56 // onto the usual format above. For now only storage of constants of
57 // this type is supported, no arithmetic.
Neil Boothcaf19d72007-10-14 10:29:28 +000058 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
Neil Booth96c74712007-10-12 16:02:31 +000059
60 /* A tight upper bound on number of parts required to hold the value
61 pow(5, power) is
62
Neil Booth686700e2007-10-15 15:00:55 +000063 power * 815 / (351 * integerPartWidth) + 1
Neil Booth96c74712007-10-12 16:02:31 +000064
65 However, whilst the result may require only this many parts,
66 because we are multiplying two values to get it, the
67 multiplication may require an extra part with the excess part
68 being zero (consider the trivial case of 1 * 1, tcFullMultiply
69 requires two parts to hold the single-part result). So we add an
70 extra one to guarantee enough space whilst multiplying. */
71 const unsigned int maxExponent = 16383;
72 const unsigned int maxPrecision = 113;
73 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
Neil Booth686700e2007-10-15 15:00:55 +000074 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
75 / (351 * integerPartWidth));
Chris Lattnerb39cdde2007-08-20 22:49:32 +000076}
77
78/* Put a bunch of private, handy routines in an anonymous namespace. */
79namespace {
80
Dan Gohman3bd659b2008-04-10 21:11:47 +000081 static inline unsigned int
Chris Lattnerb39cdde2007-08-20 22:49:32 +000082 partCountForBits(unsigned int bits)
83 {
84 return ((bits) + integerPartWidth - 1) / integerPartWidth;
85 }
86
Neil Booth1870f292007-10-14 10:16:12 +000087 /* Returns 0U-9U. Return values >= 10U are not digits. */
Dan Gohman3bd659b2008-04-10 21:11:47 +000088 static inline unsigned int
Neil Booth1870f292007-10-14 10:16:12 +000089 decDigitValue(unsigned int c)
Chris Lattnerb39cdde2007-08-20 22:49:32 +000090 {
Neil Booth1870f292007-10-14 10:16:12 +000091 return c - '0';
Chris Lattnerb39cdde2007-08-20 22:49:32 +000092 }
93
Dan Gohman3bd659b2008-04-10 21:11:47 +000094 static unsigned int
Neil Booth96c74712007-10-12 16:02:31 +000095 hexDigitValue(unsigned int c)
Chris Lattnerb39cdde2007-08-20 22:49:32 +000096 {
97 unsigned int r;
98
99 r = c - '0';
100 if(r <= 9)
101 return r;
102
103 r = c - 'A';
104 if(r <= 5)
105 return r + 10;
106
107 r = c - 'a';
108 if(r <= 5)
109 return r + 10;
110
111 return -1U;
112 }
113
Dan Gohman3bd659b2008-04-10 21:11:47 +0000114 static inline void
Neil Boothcaf19d72007-10-14 10:29:28 +0000115 assertArithmeticOK(const llvm::fltSemantics &semantics) {
116 assert(semantics.arithmeticOK
117 && "Compile-time arithmetic does not support these semantics");
118 }
119
Neil Booth1870f292007-10-14 10:16:12 +0000120 /* Return the value of a decimal exponent of the form
121 [+-]ddddddd.
122
123 If the exponent overflows, returns a large exponent with the
124 appropriate sign. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000125 static int
Neil Booth1870f292007-10-14 10:16:12 +0000126 readExponent(const char *p)
127 {
128 bool isNegative;
129 unsigned int absExponent;
130 const unsigned int overlargeExponent = 24000; /* FIXME. */
131
132 isNegative = (*p == '-');
133 if (*p == '-' || *p == '+')
134 p++;
135
136 absExponent = decDigitValue(*p++);
137 assert (absExponent < 10U);
138
139 for (;;) {
140 unsigned int value;
141
142 value = decDigitValue(*p);
143 if (value >= 10U)
144 break;
145
146 p++;
147 value += absExponent * 10;
148 if (absExponent >= overlargeExponent) {
149 absExponent = overlargeExponent;
150 break;
151 }
152 absExponent = value;
153 }
154
155 if (isNegative)
156 return -(int) absExponent;
157 else
158 return (int) absExponent;
159 }
160
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000161 /* This is ugly and needs cleaning up, but I don't immediately see
162 how whilst remaining safe. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000163 static int
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000164 totalExponent(const char *p, int exponentAdjustment)
165 {
Evan Cheng48e8c802008-05-02 21:15:08 +0000166 int unsignedExponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000167 bool negative, overflow;
Evan Cheng48e8c802008-05-02 21:15:08 +0000168 int exponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000169
170 /* Move past the exponent letter and sign to the digits. */
171 p++;
172 negative = *p == '-';
173 if(*p == '-' || *p == '+')
174 p++;
175
176 unsignedExponent = 0;
177 overflow = false;
178 for(;;) {
179 unsigned int value;
180
Neil Booth1870f292007-10-14 10:16:12 +0000181 value = decDigitValue(*p);
182 if(value >= 10U)
Neil Booth4f881702007-09-26 21:33:42 +0000183 break;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000184
185 p++;
186 unsignedExponent = unsignedExponent * 10 + value;
187 if(unsignedExponent > 65535)
Neil Booth4f881702007-09-26 21:33:42 +0000188 overflow = true;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000189 }
190
191 if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
192 overflow = true;
193
194 if(!overflow) {
195 exponent = unsignedExponent;
196 if(negative)
Neil Booth4f881702007-09-26 21:33:42 +0000197 exponent = -exponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000198 exponent += exponentAdjustment;
199 if(exponent > 65535 || exponent < -65536)
Neil Booth4f881702007-09-26 21:33:42 +0000200 overflow = true;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000201 }
202
203 if(overflow)
204 exponent = negative ? -65536: 65535;
205
206 return exponent;
207 }
208
Dan Gohman3bd659b2008-04-10 21:11:47 +0000209 static const char *
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000210 skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
211 {
212 *dot = 0;
213 while(*p == '0')
214 p++;
215
216 if(*p == '.') {
217 *dot = p++;
218 while(*p == '0')
Neil Booth4f881702007-09-26 21:33:42 +0000219 p++;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000220 }
221
222 return p;
223 }
224
Neil Booth1870f292007-10-14 10:16:12 +0000225 /* Given a normal decimal floating point number of the form
226
227 dddd.dddd[eE][+-]ddd
228
229 where the decimal point and exponent are optional, fill out the
Neil Booth686700e2007-10-15 15:00:55 +0000230 structure D. Exponent is appropriate if the significand is
231 treated as an integer, and normalizedExponent if the significand
232 is taken to have the decimal point after a single leading
233 non-zero digit.
234
Neil Bootha89e45f2007-12-05 13:01:24 +0000235 If the value is zero, V->firstSigDigit points to a non-digit, and
236 the return exponent is zero.
Neil Booth686700e2007-10-15 15:00:55 +0000237 */
Neil Booth1870f292007-10-14 10:16:12 +0000238 struct decimalInfo {
239 const char *firstSigDigit;
240 const char *lastSigDigit;
241 int exponent;
Neil Booth686700e2007-10-15 15:00:55 +0000242 int normalizedExponent;
Neil Booth1870f292007-10-14 10:16:12 +0000243 };
244
Dan Gohman3bd659b2008-04-10 21:11:47 +0000245 static void
Neil Booth1870f292007-10-14 10:16:12 +0000246 interpretDecimal(const char *p, decimalInfo *D)
247 {
248 const char *dot;
249
250 p = skipLeadingZeroesAndAnyDot (p, &dot);
251
252 D->firstSigDigit = p;
253 D->exponent = 0;
Neil Booth686700e2007-10-15 15:00:55 +0000254 D->normalizedExponent = 0;
Neil Booth1870f292007-10-14 10:16:12 +0000255
256 for (;;) {
257 if (*p == '.') {
258 assert(dot == 0);
259 dot = p++;
260 }
261 if (decDigitValue(*p) >= 10U)
262 break;
263 p++;
264 }
265
266 /* If number is all zerooes accept any exponent. */
Neil Boothcc233592007-12-05 13:06:04 +0000267 if (p != D->firstSigDigit) {
Neil Booth1870f292007-10-14 10:16:12 +0000268 if (*p == 'e' || *p == 'E')
269 D->exponent = readExponent(p + 1);
270
271 /* Implied decimal point? */
272 if (!dot)
273 dot = p;
274
275 /* Drop insignificant trailing zeroes. */
276 do
277 do
278 p--;
279 while (*p == '0');
280 while (*p == '.');
281
Neil Booth686700e2007-10-15 15:00:55 +0000282 /* Adjust the exponents for any decimal point. */
Evan Cheng48e8c802008-05-02 21:15:08 +0000283 D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
284 D->normalizedExponent = (D->exponent +
285 static_cast<exponent_t>((p - D->firstSigDigit)
286 - (dot > D->firstSigDigit && dot < p)));
Neil Booth1870f292007-10-14 10:16:12 +0000287 }
288
289 D->lastSigDigit = p;
290 }
291
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000292 /* Return the trailing fraction of a hexadecimal number.
293 DIGITVALUE is the first hex digit of the fraction, P points to
294 the next digit. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000295 static lostFraction
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000296 trailingHexadecimalFraction(const char *p, unsigned int digitValue)
297 {
298 unsigned int hexDigit;
299
300 /* If the first trailing digit isn't 0 or 8 we can work out the
301 fraction immediately. */
302 if(digitValue > 8)
303 return lfMoreThanHalf;
304 else if(digitValue < 8 && digitValue > 0)
305 return lfLessThanHalf;
306
307 /* Otherwise we need to find the first non-zero digit. */
308 while(*p == '0')
309 p++;
310
311 hexDigit = hexDigitValue(*p);
312
313 /* If we ran off the end it is exactly zero or one-half, otherwise
314 a little more. */
315 if(hexDigit == -1U)
316 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
317 else
318 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
319 }
320
Neil Boothb7dea4c2007-10-03 15:16:41 +0000321 /* Return the fraction lost were a bignum truncated losing the least
322 significant BITS bits. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000323 static lostFraction
Neil Bootha30b0ee2007-10-03 22:26:02 +0000324 lostFractionThroughTruncation(const integerPart *parts,
Neil Booth4f881702007-09-26 21:33:42 +0000325 unsigned int partCount,
326 unsigned int bits)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000327 {
328 unsigned int lsb;
329
330 lsb = APInt::tcLSB(parts, partCount);
331
332 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
333 if(bits <= lsb)
334 return lfExactlyZero;
335 if(bits == lsb + 1)
336 return lfExactlyHalf;
337 if(bits <= partCount * integerPartWidth
338 && APInt::tcExtractBit(parts, bits - 1))
339 return lfMoreThanHalf;
340
341 return lfLessThanHalf;
342 }
343
344 /* Shift DST right BITS bits noting lost fraction. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000345 static lostFraction
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000346 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
347 {
348 lostFraction lost_fraction;
349
350 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
351
352 APInt::tcShiftRight(dst, parts, bits);
353
354 return lost_fraction;
355 }
Neil Bootha30b0ee2007-10-03 22:26:02 +0000356
Neil Booth33d4c922007-10-07 08:51:21 +0000357 /* Combine the effect of two lost fractions. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000358 static lostFraction
Neil Booth33d4c922007-10-07 08:51:21 +0000359 combineLostFractions(lostFraction moreSignificant,
360 lostFraction lessSignificant)
361 {
362 if(lessSignificant != lfExactlyZero) {
363 if(moreSignificant == lfExactlyZero)
364 moreSignificant = lfLessThanHalf;
365 else if(moreSignificant == lfExactlyHalf)
366 moreSignificant = lfMoreThanHalf;
367 }
368
369 return moreSignificant;
370 }
Neil Bootha30b0ee2007-10-03 22:26:02 +0000371
Neil Booth96c74712007-10-12 16:02:31 +0000372 /* The error from the true value, in half-ulps, on multiplying two
373 floating point numbers, which differ from the value they
374 approximate by at most HUE1 and HUE2 half-ulps, is strictly less
375 than the returned value.
376
377 See "How to Read Floating Point Numbers Accurately" by William D
378 Clinger. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000379 static unsigned int
Neil Booth96c74712007-10-12 16:02:31 +0000380 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
381 {
382 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
383
384 if (HUerr1 + HUerr2 == 0)
385 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
386 else
387 return inexactMultiply + 2 * (HUerr1 + HUerr2);
388 }
389
390 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
391 when the least significant BITS are truncated. BITS cannot be
392 zero. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000393 static integerPart
Neil Booth96c74712007-10-12 16:02:31 +0000394 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
395 {
396 unsigned int count, partBits;
397 integerPart part, boundary;
398
399 assert (bits != 0);
400
401 bits--;
402 count = bits / integerPartWidth;
403 partBits = bits % integerPartWidth + 1;
404
405 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
406
407 if (isNearest)
408 boundary = (integerPart) 1 << (partBits - 1);
409 else
410 boundary = 0;
411
412 if (count == 0) {
413 if (part - boundary <= boundary - part)
414 return part - boundary;
415 else
416 return boundary - part;
417 }
418
419 if (part == boundary) {
420 while (--count)
421 if (parts[count])
422 return ~(integerPart) 0; /* A lot. */
423
424 return parts[0];
425 } else if (part == boundary - 1) {
426 while (--count)
427 if (~parts[count])
428 return ~(integerPart) 0; /* A lot. */
429
430 return -parts[0];
431 }
432
433 return ~(integerPart) 0; /* A lot. */
434 }
435
436 /* Place pow(5, power) in DST, and return the number of parts used.
437 DST must be at least one part larger than size of the answer. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000438 static unsigned int
Neil Booth96c74712007-10-12 16:02:31 +0000439 powerOf5(integerPart *dst, unsigned int power)
440 {
Dan Gohman7c2e4f22008-05-12 16:38:14 +0000441 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
442 15625, 78125 };
Neil Booth96c74712007-10-12 16:02:31 +0000443 static integerPart pow5s[maxPowerOfFiveParts * 2 + 5] = { 78125 * 5 };
444 static unsigned int partsCount[16] = { 1 };
445
446 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
447 unsigned int result;
448
449 assert(power <= maxExponent);
450
451 p1 = dst;
452 p2 = scratch;
453
454 *p1 = firstEightPowers[power & 7];
455 power >>= 3;
456
457 result = 1;
458 pow5 = pow5s;
459
460 for (unsigned int n = 0; power; power >>= 1, n++) {
461 unsigned int pc;
462
463 pc = partsCount[n];
464
465 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
466 if (pc == 0) {
467 pc = partsCount[n - 1];
468 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
469 pc *= 2;
470 if (pow5[pc - 1] == 0)
471 pc--;
472 partsCount[n] = pc;
473 }
474
475 if (power & 1) {
476 integerPart *tmp;
477
478 APInt::tcFullMultiply(p2, p1, pow5, result, pc);
479 result += pc;
480 if (p2[result - 1] == 0)
481 result--;
482
483 /* Now result is in p1 with partsCount parts and p2 is scratch
484 space. */
485 tmp = p1, p1 = p2, p2 = tmp;
486 }
487
488 pow5 += pc;
489 }
490
491 if (p1 != dst)
492 APInt::tcAssign(dst, p1, result);
493
494 return result;
495 }
496
Neil Bootha30b0ee2007-10-03 22:26:02 +0000497 /* Zero at the end to avoid modular arithmetic when adding one; used
498 when rounding up during hexadecimal output. */
499 static const char hexDigitsLower[] = "0123456789abcdef0";
500 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
501 static const char infinityL[] = "infinity";
502 static const char infinityU[] = "INFINITY";
503 static const char NaNL[] = "nan";
504 static const char NaNU[] = "NAN";
505
506 /* Write out an integerPart in hexadecimal, starting with the most
507 significant nibble. Write out exactly COUNT hexdigits, return
508 COUNT. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000509 static unsigned int
Neil Bootha30b0ee2007-10-03 22:26:02 +0000510 partAsHex (char *dst, integerPart part, unsigned int count,
511 const char *hexDigitChars)
512 {
513 unsigned int result = count;
514
515 assert (count != 0 && count <= integerPartWidth / 4);
516
517 part >>= (integerPartWidth - 4 * count);
518 while (count--) {
519 dst[count] = hexDigitChars[part & 0xf];
520 part >>= 4;
521 }
522
523 return result;
524 }
525
Neil Booth92f7e8d2007-10-06 07:29:25 +0000526 /* Write out an unsigned decimal integer. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000527 static char *
Neil Booth92f7e8d2007-10-06 07:29:25 +0000528 writeUnsignedDecimal (char *dst, unsigned int n)
Neil Bootha30b0ee2007-10-03 22:26:02 +0000529 {
Neil Booth92f7e8d2007-10-06 07:29:25 +0000530 char buff[40], *p;
Neil Bootha30b0ee2007-10-03 22:26:02 +0000531
Neil Booth92f7e8d2007-10-06 07:29:25 +0000532 p = buff;
533 do
534 *p++ = '0' + n % 10;
535 while (n /= 10);
536
537 do
538 *dst++ = *--p;
539 while (p != buff);
540
541 return dst;
542 }
543
544 /* Write out a signed decimal integer. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000545 static char *
Neil Booth92f7e8d2007-10-06 07:29:25 +0000546 writeSignedDecimal (char *dst, int value)
547 {
548 if (value < 0) {
Neil Bootha30b0ee2007-10-03 22:26:02 +0000549 *dst++ = '-';
Neil Booth92f7e8d2007-10-06 07:29:25 +0000550 dst = writeUnsignedDecimal(dst, -(unsigned) value);
551 } else
552 dst = writeUnsignedDecimal(dst, value);
Neil Bootha30b0ee2007-10-03 22:26:02 +0000553
554 return dst;
555 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000556}
557
558/* Constructors. */
559void
560APFloat::initialize(const fltSemantics *ourSemantics)
561{
562 unsigned int count;
563
564 semantics = ourSemantics;
565 count = partCount();
566 if(count > 1)
567 significand.parts = new integerPart[count];
568}
569
570void
571APFloat::freeSignificand()
572{
573 if(partCount() > 1)
574 delete [] significand.parts;
575}
576
577void
578APFloat::assign(const APFloat &rhs)
579{
580 assert(semantics == rhs.semantics);
581
582 sign = rhs.sign;
583 category = rhs.category;
584 exponent = rhs.exponent;
Dale Johannesena471c2e2007-10-11 18:07:22 +0000585 sign2 = rhs.sign2;
586 exponent2 = rhs.exponent2;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000587 if(category == fcNormal || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000588 copySignificand(rhs);
589}
590
591void
592APFloat::copySignificand(const APFloat &rhs)
593{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000594 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000595 assert(rhs.partCount() >= partCount());
596
597 APInt::tcAssign(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +0000598 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000599}
600
Neil Boothe5e01942007-10-14 10:39:51 +0000601/* Make this number a NaN, with an arbitrary but deterministic value
602 for the significand. */
603void
604APFloat::makeNaN(void)
605{
606 category = fcNaN;
607 APInt::tcSet(significandParts(), ~0U, partCount());
608}
609
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000610APFloat &
611APFloat::operator=(const APFloat &rhs)
612{
613 if(this != &rhs) {
614 if(semantics != rhs.semantics) {
615 freeSignificand();
616 initialize(rhs.semantics);
617 }
618 assign(rhs);
619 }
620
621 return *this;
622}
623
Dale Johannesen343e7702007-08-24 00:56:33 +0000624bool
Dale Johannesen12595d72007-08-24 22:09:56 +0000625APFloat::bitwiseIsEqual(const APFloat &rhs) const {
Dale Johannesen343e7702007-08-24 00:56:33 +0000626 if (this == &rhs)
627 return true;
628 if (semantics != rhs.semantics ||
Dale Johanneseneaf08942007-08-31 04:03:46 +0000629 category != rhs.category ||
630 sign != rhs.sign)
Dale Johannesen343e7702007-08-24 00:56:33 +0000631 return false;
Dan Gohmanb10abe12008-01-29 12:08:20 +0000632 if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesena471c2e2007-10-11 18:07:22 +0000633 sign2 != rhs.sign2)
634 return false;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000635 if (category==fcZero || category==fcInfinity)
Dale Johannesen343e7702007-08-24 00:56:33 +0000636 return true;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000637 else if (category==fcNormal && exponent!=rhs.exponent)
638 return false;
Dan Gohmanb10abe12008-01-29 12:08:20 +0000639 else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesena471c2e2007-10-11 18:07:22 +0000640 exponent2!=rhs.exponent2)
641 return false;
Dale Johannesen343e7702007-08-24 00:56:33 +0000642 else {
Dale Johannesen343e7702007-08-24 00:56:33 +0000643 int i= partCount();
644 const integerPart* p=significandParts();
645 const integerPart* q=rhs.significandParts();
646 for (; i>0; i--, p++, q++) {
647 if (*p != *q)
648 return false;
649 }
650 return true;
651 }
652}
653
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000654APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
655{
Neil Boothcaf19d72007-10-14 10:29:28 +0000656 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000657 initialize(&ourSemantics);
658 sign = 0;
659 zeroSignificand();
660 exponent = ourSemantics.precision - 1;
661 significandParts()[0] = value;
662 normalize(rmNearestTiesToEven, lfExactlyZero);
663}
664
665APFloat::APFloat(const fltSemantics &ourSemantics,
Neil Booth4f881702007-09-26 21:33:42 +0000666 fltCategory ourCategory, bool negative)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000667{
Neil Boothcaf19d72007-10-14 10:29:28 +0000668 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000669 initialize(&ourSemantics);
670 category = ourCategory;
671 sign = negative;
672 if(category == fcNormal)
673 category = fcZero;
Neil Boothe5e01942007-10-14 10:39:51 +0000674 else if (ourCategory == fcNaN)
675 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000676}
677
678APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
679{
Neil Boothcaf19d72007-10-14 10:29:28 +0000680 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000681 initialize(&ourSemantics);
682 convertFromString(text, rmNearestTiesToEven);
683}
684
685APFloat::APFloat(const APFloat &rhs)
686{
687 initialize(rhs.semantics);
688 assign(rhs);
689}
690
691APFloat::~APFloat()
692{
693 freeSignificand();
694}
695
Ted Kremenek1f801fa2008-02-11 17:24:50 +0000696// Profile - This method 'profiles' an APFloat for use with FoldingSet.
697void APFloat::Profile(FoldingSetNodeID& ID) const {
Dale Johannesen7111b022008-10-09 18:53:47 +0000698 ID.Add(bitcastToAPInt());
Ted Kremenek1f801fa2008-02-11 17:24:50 +0000699}
700
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000701unsigned int
702APFloat::partCount() const
703{
Dale Johannesena72a5a02007-09-20 23:47:58 +0000704 return partCountForBits(semantics->precision + 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000705}
706
707unsigned int
708APFloat::semanticsPrecision(const fltSemantics &semantics)
709{
710 return semantics.precision;
711}
712
713const integerPart *
714APFloat::significandParts() const
715{
716 return const_cast<APFloat *>(this)->significandParts();
717}
718
719integerPart *
720APFloat::significandParts()
721{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000722 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000723
724 if(partCount() > 1)
725 return significand.parts;
726 else
727 return &significand.part;
728}
729
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000730void
731APFloat::zeroSignificand()
732{
733 category = fcNormal;
734 APInt::tcSet(significandParts(), 0, partCount());
735}
736
737/* Increment an fcNormal floating point number's significand. */
738void
739APFloat::incrementSignificand()
740{
741 integerPart carry;
742
743 carry = APInt::tcIncrement(significandParts(), partCount());
744
745 /* Our callers should never cause us to overflow. */
746 assert(carry == 0);
747}
748
749/* Add the significand of the RHS. Returns the carry flag. */
750integerPart
751APFloat::addSignificand(const APFloat &rhs)
752{
753 integerPart *parts;
754
755 parts = significandParts();
756
757 assert(semantics == rhs.semantics);
758 assert(exponent == rhs.exponent);
759
760 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
761}
762
763/* Subtract the significand of the RHS with a borrow flag. Returns
764 the borrow flag. */
765integerPart
766APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
767{
768 integerPart *parts;
769
770 parts = significandParts();
771
772 assert(semantics == rhs.semantics);
773 assert(exponent == rhs.exponent);
774
775 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
Neil Booth4f881702007-09-26 21:33:42 +0000776 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000777}
778
779/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
780 on to the full-precision result of the multiplication. Returns the
781 lost fraction. */
782lostFraction
783APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
784{
Neil Booth4f881702007-09-26 21:33:42 +0000785 unsigned int omsb; // One, not zero, based MSB.
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000786 unsigned int partsCount, newPartsCount, precision;
787 integerPart *lhsSignificand;
788 integerPart scratch[4];
789 integerPart *fullSignificand;
790 lostFraction lost_fraction;
Dale Johannesen23a98552008-10-09 23:00:39 +0000791 bool ignored;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000792
793 assert(semantics == rhs.semantics);
794
795 precision = semantics->precision;
796 newPartsCount = partCountForBits(precision * 2);
797
798 if(newPartsCount > 4)
799 fullSignificand = new integerPart[newPartsCount];
800 else
801 fullSignificand = scratch;
802
803 lhsSignificand = significandParts();
804 partsCount = partCount();
805
806 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
Neil Booth978661d2007-10-06 00:24:48 +0000807 rhs.significandParts(), partsCount, partsCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000808
809 lost_fraction = lfExactlyZero;
810 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
811 exponent += rhs.exponent;
812
813 if(addend) {
814 Significand savedSignificand = significand;
815 const fltSemantics *savedSemantics = semantics;
816 fltSemantics extendedSemantics;
817 opStatus status;
818 unsigned int extendedPrecision;
819
820 /* Normalize our MSB. */
821 extendedPrecision = precision + precision - 1;
822 if(omsb != extendedPrecision)
823 {
Neil Booth4f881702007-09-26 21:33:42 +0000824 APInt::tcShiftLeft(fullSignificand, newPartsCount,
825 extendedPrecision - omsb);
826 exponent -= extendedPrecision - omsb;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000827 }
828
829 /* Create new semantics. */
830 extendedSemantics = *semantics;
831 extendedSemantics.precision = extendedPrecision;
832
833 if(newPartsCount == 1)
834 significand.part = fullSignificand[0];
835 else
836 significand.parts = fullSignificand;
837 semantics = &extendedSemantics;
838
839 APFloat extendedAddend(*addend);
Dale Johannesen23a98552008-10-09 23:00:39 +0000840 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000841 assert(status == opOK);
842 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
843
844 /* Restore our state. */
845 if(newPartsCount == 1)
846 fullSignificand[0] = significand.part;
847 significand = savedSignificand;
848 semantics = savedSemantics;
849
850 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
851 }
852
853 exponent -= (precision - 1);
854
855 if(omsb > precision) {
856 unsigned int bits, significantParts;
857 lostFraction lf;
858
859 bits = omsb - precision;
860 significantParts = partCountForBits(omsb);
861 lf = shiftRight(fullSignificand, significantParts, bits);
862 lost_fraction = combineLostFractions(lf, lost_fraction);
863 exponent += bits;
864 }
865
866 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
867
868 if(newPartsCount > 4)
869 delete [] fullSignificand;
870
871 return lost_fraction;
872}
873
874/* Multiply the significands of LHS and RHS to DST. */
875lostFraction
876APFloat::divideSignificand(const APFloat &rhs)
877{
878 unsigned int bit, i, partsCount;
879 const integerPart *rhsSignificand;
880 integerPart *lhsSignificand, *dividend, *divisor;
881 integerPart scratch[4];
882 lostFraction lost_fraction;
883
884 assert(semantics == rhs.semantics);
885
886 lhsSignificand = significandParts();
887 rhsSignificand = rhs.significandParts();
888 partsCount = partCount();
889
890 if(partsCount > 2)
891 dividend = new integerPart[partsCount * 2];
892 else
893 dividend = scratch;
894
895 divisor = dividend + partsCount;
896
897 /* Copy the dividend and divisor as they will be modified in-place. */
898 for(i = 0; i < partsCount; i++) {
899 dividend[i] = lhsSignificand[i];
900 divisor[i] = rhsSignificand[i];
901 lhsSignificand[i] = 0;
902 }
903
904 exponent -= rhs.exponent;
905
906 unsigned int precision = semantics->precision;
907
908 /* Normalize the divisor. */
909 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
910 if(bit) {
911 exponent += bit;
912 APInt::tcShiftLeft(divisor, partsCount, bit);
913 }
914
915 /* Normalize the dividend. */
916 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
917 if(bit) {
918 exponent -= bit;
919 APInt::tcShiftLeft(dividend, partsCount, bit);
920 }
921
Neil Booth96c74712007-10-12 16:02:31 +0000922 /* Ensure the dividend >= divisor initially for the loop below.
923 Incidentally, this means that the division loop below is
924 guaranteed to set the integer bit to one. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000925 if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
926 exponent--;
927 APInt::tcShiftLeft(dividend, partsCount, 1);
928 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
929 }
930
931 /* Long division. */
932 for(bit = precision; bit; bit -= 1) {
933 if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
934 APInt::tcSubtract(dividend, divisor, 0, partsCount);
935 APInt::tcSetBit(lhsSignificand, bit - 1);
936 }
937
938 APInt::tcShiftLeft(dividend, partsCount, 1);
939 }
940
941 /* Figure out the lost fraction. */
942 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
943
944 if(cmp > 0)
945 lost_fraction = lfMoreThanHalf;
946 else if(cmp == 0)
947 lost_fraction = lfExactlyHalf;
948 else if(APInt::tcIsZero(dividend, partsCount))
949 lost_fraction = lfExactlyZero;
950 else
951 lost_fraction = lfLessThanHalf;
952
953 if(partsCount > 2)
954 delete [] dividend;
955
956 return lost_fraction;
957}
958
959unsigned int
960APFloat::significandMSB() const
961{
962 return APInt::tcMSB(significandParts(), partCount());
963}
964
965unsigned int
966APFloat::significandLSB() const
967{
968 return APInt::tcLSB(significandParts(), partCount());
969}
970
971/* Note that a zero result is NOT normalized to fcZero. */
972lostFraction
973APFloat::shiftSignificandRight(unsigned int bits)
974{
975 /* Our exponent should not overflow. */
976 assert((exponent_t) (exponent + bits) >= exponent);
977
978 exponent += bits;
979
980 return shiftRight(significandParts(), partCount(), bits);
981}
982
983/* Shift the significand left BITS bits, subtract BITS from its exponent. */
984void
985APFloat::shiftSignificandLeft(unsigned int bits)
986{
987 assert(bits < semantics->precision);
988
989 if(bits) {
990 unsigned int partsCount = partCount();
991
992 APInt::tcShiftLeft(significandParts(), partsCount, bits);
993 exponent -= bits;
994
995 assert(!APInt::tcIsZero(significandParts(), partsCount));
996 }
997}
998
999APFloat::cmpResult
1000APFloat::compareAbsoluteValue(const APFloat &rhs) const
1001{
1002 int compare;
1003
1004 assert(semantics == rhs.semantics);
1005 assert(category == fcNormal);
1006 assert(rhs.category == fcNormal);
1007
1008 compare = exponent - rhs.exponent;
1009
1010 /* If exponents are equal, do an unsigned bignum comparison of the
1011 significands. */
1012 if(compare == 0)
1013 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +00001014 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001015
1016 if(compare > 0)
1017 return cmpGreaterThan;
1018 else if(compare < 0)
1019 return cmpLessThan;
1020 else
1021 return cmpEqual;
1022}
1023
1024/* Handle overflow. Sign is preserved. We either become infinity or
1025 the largest finite number. */
1026APFloat::opStatus
1027APFloat::handleOverflow(roundingMode rounding_mode)
1028{
1029 /* Infinity? */
1030 if(rounding_mode == rmNearestTiesToEven
1031 || rounding_mode == rmNearestTiesToAway
1032 || (rounding_mode == rmTowardPositive && !sign)
1033 || (rounding_mode == rmTowardNegative && sign))
1034 {
1035 category = fcInfinity;
1036 return (opStatus) (opOverflow | opInexact);
1037 }
1038
1039 /* Otherwise we become the largest finite number. */
1040 category = fcNormal;
1041 exponent = semantics->maxExponent;
1042 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
Neil Booth4f881702007-09-26 21:33:42 +00001043 semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001044
1045 return opInexact;
1046}
1047
Neil Boothb7dea4c2007-10-03 15:16:41 +00001048/* Returns TRUE if, when truncating the current number, with BIT the
1049 new LSB, with the given lost fraction and rounding mode, the result
1050 would need to be rounded away from zero (i.e., by increasing the
1051 signficand). This routine must work for fcZero of both signs, and
1052 fcNormal numbers. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001053bool
1054APFloat::roundAwayFromZero(roundingMode rounding_mode,
Neil Boothb7dea4c2007-10-03 15:16:41 +00001055 lostFraction lost_fraction,
1056 unsigned int bit) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001057{
Dale Johanneseneaf08942007-08-31 04:03:46 +00001058 /* NaNs and infinities should not have lost fractions. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001059 assert(category == fcNormal || category == fcZero);
1060
Neil Boothb7dea4c2007-10-03 15:16:41 +00001061 /* Current callers never pass this so we don't handle it. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001062 assert(lost_fraction != lfExactlyZero);
1063
1064 switch(rounding_mode) {
1065 default:
1066 assert(0);
1067
1068 case rmNearestTiesToAway:
1069 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1070
1071 case rmNearestTiesToEven:
1072 if(lost_fraction == lfMoreThanHalf)
1073 return true;
1074
1075 /* Our zeroes don't have a significand to test. */
1076 if(lost_fraction == lfExactlyHalf && category != fcZero)
Neil Boothb7dea4c2007-10-03 15:16:41 +00001077 return APInt::tcExtractBit(significandParts(), bit);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001078
1079 return false;
1080
1081 case rmTowardZero:
1082 return false;
1083
1084 case rmTowardPositive:
1085 return sign == false;
1086
1087 case rmTowardNegative:
1088 return sign == true;
1089 }
1090}
1091
1092APFloat::opStatus
1093APFloat::normalize(roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001094 lostFraction lost_fraction)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001095{
Neil Booth4f881702007-09-26 21:33:42 +00001096 unsigned int omsb; /* One, not zero, based MSB. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001097 int exponentChange;
1098
1099 if(category != fcNormal)
1100 return opOK;
1101
1102 /* Before rounding normalize the exponent of fcNormal numbers. */
1103 omsb = significandMSB() + 1;
1104
1105 if(omsb) {
1106 /* OMSB is numbered from 1. We want to place it in the integer
1107 bit numbered PRECISON if possible, with a compensating change in
1108 the exponent. */
1109 exponentChange = omsb - semantics->precision;
1110
1111 /* If the resulting exponent is too high, overflow according to
1112 the rounding mode. */
1113 if(exponent + exponentChange > semantics->maxExponent)
1114 return handleOverflow(rounding_mode);
1115
1116 /* Subnormal numbers have exponent minExponent, and their MSB
1117 is forced based on that. */
1118 if(exponent + exponentChange < semantics->minExponent)
1119 exponentChange = semantics->minExponent - exponent;
1120
1121 /* Shifting left is easy as we don't lose precision. */
1122 if(exponentChange < 0) {
1123 assert(lost_fraction == lfExactlyZero);
1124
1125 shiftSignificandLeft(-exponentChange);
1126
1127 return opOK;
1128 }
1129
1130 if(exponentChange > 0) {
1131 lostFraction lf;
1132
1133 /* Shift right and capture any new lost fraction. */
1134 lf = shiftSignificandRight(exponentChange);
1135
1136 lost_fraction = combineLostFractions(lf, lost_fraction);
1137
1138 /* Keep OMSB up-to-date. */
1139 if(omsb > (unsigned) exponentChange)
Neil Booth96c74712007-10-12 16:02:31 +00001140 omsb -= exponentChange;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001141 else
Neil Booth4f881702007-09-26 21:33:42 +00001142 omsb = 0;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001143 }
1144 }
1145
1146 /* Now round the number according to rounding_mode given the lost
1147 fraction. */
1148
1149 /* As specified in IEEE 754, since we do not trap we do not report
1150 underflow for exact results. */
1151 if(lost_fraction == lfExactlyZero) {
1152 /* Canonicalize zeroes. */
1153 if(omsb == 0)
1154 category = fcZero;
1155
1156 return opOK;
1157 }
1158
1159 /* Increment the significand if we're rounding away from zero. */
Neil Boothb7dea4c2007-10-03 15:16:41 +00001160 if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001161 if(omsb == 0)
1162 exponent = semantics->minExponent;
1163
1164 incrementSignificand();
1165 omsb = significandMSB() + 1;
1166
1167 /* Did the significand increment overflow? */
1168 if(omsb == (unsigned) semantics->precision + 1) {
1169 /* Renormalize by incrementing the exponent and shifting our
Neil Booth4f881702007-09-26 21:33:42 +00001170 significand right one. However if we already have the
1171 maximum exponent we overflow to infinity. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001172 if(exponent == semantics->maxExponent) {
Neil Booth4f881702007-09-26 21:33:42 +00001173 category = fcInfinity;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001174
Neil Booth4f881702007-09-26 21:33:42 +00001175 return (opStatus) (opOverflow | opInexact);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001176 }
1177
1178 shiftSignificandRight(1);
1179
1180 return opInexact;
1181 }
1182 }
1183
1184 /* The normal case - we were and are not denormal, and any
1185 significand increment above didn't overflow. */
1186 if(omsb == semantics->precision)
1187 return opInexact;
1188
1189 /* We have a non-zero denormal. */
1190 assert(omsb < semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001191
1192 /* Canonicalize zeroes. */
1193 if(omsb == 0)
1194 category = fcZero;
1195
1196 /* The fcZero case is a denormal that underflowed to zero. */
1197 return (opStatus) (opUnderflow | opInexact);
1198}
1199
1200APFloat::opStatus
1201APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1202{
1203 switch(convolve(category, rhs.category)) {
1204 default:
1205 assert(0);
1206
Dale Johanneseneaf08942007-08-31 04:03:46 +00001207 case convolve(fcNaN, fcZero):
1208 case convolve(fcNaN, fcNormal):
1209 case convolve(fcNaN, fcInfinity):
1210 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001211 case convolve(fcNormal, fcZero):
1212 case convolve(fcInfinity, fcNormal):
1213 case convolve(fcInfinity, fcZero):
1214 return opOK;
1215
Dale Johanneseneaf08942007-08-31 04:03:46 +00001216 case convolve(fcZero, fcNaN):
1217 case convolve(fcNormal, fcNaN):
1218 case convolve(fcInfinity, fcNaN):
1219 category = fcNaN;
1220 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001221 return opOK;
1222
1223 case convolve(fcNormal, fcInfinity):
1224 case convolve(fcZero, fcInfinity):
1225 category = fcInfinity;
1226 sign = rhs.sign ^ subtract;
1227 return opOK;
1228
1229 case convolve(fcZero, fcNormal):
1230 assign(rhs);
1231 sign = rhs.sign ^ subtract;
1232 return opOK;
1233
1234 case convolve(fcZero, fcZero):
1235 /* Sign depends on rounding mode; handled by caller. */
1236 return opOK;
1237
1238 case convolve(fcInfinity, fcInfinity):
1239 /* Differently signed infinities can only be validly
1240 subtracted. */
Hartmut Kaiser8df77a92007-10-25 23:15:31 +00001241 if((sign ^ rhs.sign) != subtract) {
Neil Boothe5e01942007-10-14 10:39:51 +00001242 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001243 return opInvalidOp;
1244 }
1245
1246 return opOK;
1247
1248 case convolve(fcNormal, fcNormal):
1249 return opDivByZero;
1250 }
1251}
1252
1253/* Add or subtract two normal numbers. */
1254lostFraction
1255APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1256{
1257 integerPart carry;
1258 lostFraction lost_fraction;
1259 int bits;
1260
1261 /* Determine if the operation on the absolute values is effectively
1262 an addition or subtraction. */
Hartmut Kaiser8df77a92007-10-25 23:15:31 +00001263 subtract ^= (sign ^ rhs.sign) ? true : false;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001264
1265 /* Are we bigger exponent-wise than the RHS? */
1266 bits = exponent - rhs.exponent;
1267
1268 /* Subtraction is more subtle than one might naively expect. */
1269 if(subtract) {
1270 APFloat temp_rhs(rhs);
1271 bool reverse;
1272
Chris Lattnerada530b2007-08-24 03:02:34 +00001273 if (bits == 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001274 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1275 lost_fraction = lfExactlyZero;
Chris Lattnerada530b2007-08-24 03:02:34 +00001276 } else if (bits > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001277 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1278 shiftSignificandLeft(1);
1279 reverse = false;
Chris Lattnerada530b2007-08-24 03:02:34 +00001280 } else {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001281 lost_fraction = shiftSignificandRight(-bits - 1);
1282 temp_rhs.shiftSignificandLeft(1);
1283 reverse = true;
1284 }
1285
Chris Lattnerada530b2007-08-24 03:02:34 +00001286 if (reverse) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001287 carry = temp_rhs.subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001288 (*this, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001289 copySignificand(temp_rhs);
1290 sign = !sign;
1291 } else {
1292 carry = subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001293 (temp_rhs, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001294 }
1295
1296 /* Invert the lost fraction - it was on the RHS and
1297 subtracted. */
1298 if(lost_fraction == lfLessThanHalf)
1299 lost_fraction = lfMoreThanHalf;
1300 else if(lost_fraction == lfMoreThanHalf)
1301 lost_fraction = lfLessThanHalf;
1302
1303 /* The code above is intended to ensure that no borrow is
1304 necessary. */
1305 assert(!carry);
1306 } else {
1307 if(bits > 0) {
1308 APFloat temp_rhs(rhs);
1309
1310 lost_fraction = temp_rhs.shiftSignificandRight(bits);
1311 carry = addSignificand(temp_rhs);
1312 } else {
1313 lost_fraction = shiftSignificandRight(-bits);
1314 carry = addSignificand(rhs);
1315 }
1316
1317 /* We have a guard bit; generating a carry cannot happen. */
1318 assert(!carry);
1319 }
1320
1321 return lost_fraction;
1322}
1323
1324APFloat::opStatus
1325APFloat::multiplySpecials(const APFloat &rhs)
1326{
1327 switch(convolve(category, rhs.category)) {
1328 default:
1329 assert(0);
1330
Dale Johanneseneaf08942007-08-31 04:03:46 +00001331 case convolve(fcNaN, fcZero):
1332 case convolve(fcNaN, fcNormal):
1333 case convolve(fcNaN, fcInfinity):
1334 case convolve(fcNaN, fcNaN):
1335 return opOK;
1336
1337 case convolve(fcZero, fcNaN):
1338 case convolve(fcNormal, fcNaN):
1339 case convolve(fcInfinity, fcNaN):
1340 category = fcNaN;
1341 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001342 return opOK;
1343
1344 case convolve(fcNormal, fcInfinity):
1345 case convolve(fcInfinity, fcNormal):
1346 case convolve(fcInfinity, fcInfinity):
1347 category = fcInfinity;
1348 return opOK;
1349
1350 case convolve(fcZero, fcNormal):
1351 case convolve(fcNormal, fcZero):
1352 case convolve(fcZero, fcZero):
1353 category = fcZero;
1354 return opOK;
1355
1356 case convolve(fcZero, fcInfinity):
1357 case convolve(fcInfinity, fcZero):
Neil Boothe5e01942007-10-14 10:39:51 +00001358 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001359 return opInvalidOp;
1360
1361 case convolve(fcNormal, fcNormal):
1362 return opOK;
1363 }
1364}
1365
1366APFloat::opStatus
1367APFloat::divideSpecials(const APFloat &rhs)
1368{
1369 switch(convolve(category, rhs.category)) {
1370 default:
1371 assert(0);
1372
Dale Johanneseneaf08942007-08-31 04:03:46 +00001373 case convolve(fcNaN, fcZero):
1374 case convolve(fcNaN, fcNormal):
1375 case convolve(fcNaN, fcInfinity):
1376 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001377 case convolve(fcInfinity, fcZero):
1378 case convolve(fcInfinity, fcNormal):
1379 case convolve(fcZero, fcInfinity):
1380 case convolve(fcZero, fcNormal):
1381 return opOK;
1382
Dale Johanneseneaf08942007-08-31 04:03:46 +00001383 case convolve(fcZero, fcNaN):
1384 case convolve(fcNormal, fcNaN):
1385 case convolve(fcInfinity, fcNaN):
1386 category = fcNaN;
1387 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001388 return opOK;
1389
1390 case convolve(fcNormal, fcInfinity):
1391 category = fcZero;
1392 return opOK;
1393
1394 case convolve(fcNormal, fcZero):
1395 category = fcInfinity;
1396 return opDivByZero;
1397
1398 case convolve(fcInfinity, fcInfinity):
1399 case convolve(fcZero, fcZero):
Neil Boothe5e01942007-10-14 10:39:51 +00001400 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001401 return opInvalidOp;
1402
1403 case convolve(fcNormal, fcNormal):
1404 return opOK;
1405 }
1406}
1407
1408/* Change sign. */
1409void
1410APFloat::changeSign()
1411{
1412 /* Look mummy, this one's easy. */
1413 sign = !sign;
1414}
1415
Dale Johannesene15c2db2007-08-31 23:35:31 +00001416void
1417APFloat::clearSign()
1418{
1419 /* So is this one. */
1420 sign = 0;
1421}
1422
1423void
1424APFloat::copySign(const APFloat &rhs)
1425{
1426 /* And this one. */
1427 sign = rhs.sign;
1428}
1429
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001430/* Normalized addition or subtraction. */
1431APFloat::opStatus
1432APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001433 bool subtract)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001434{
1435 opStatus fs;
1436
Neil Boothcaf19d72007-10-14 10:29:28 +00001437 assertArithmeticOK(*semantics);
1438
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001439 fs = addOrSubtractSpecials(rhs, subtract);
1440
1441 /* This return code means it was not a simple case. */
1442 if(fs == opDivByZero) {
1443 lostFraction lost_fraction;
1444
1445 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1446 fs = normalize(rounding_mode, lost_fraction);
1447
1448 /* Can only be zero if we lost no fraction. */
1449 assert(category != fcZero || lost_fraction == lfExactlyZero);
1450 }
1451
1452 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1453 positive zero unless rounding to minus infinity, except that
1454 adding two like-signed zeroes gives that zero. */
1455 if(category == fcZero) {
1456 if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
1457 sign = (rounding_mode == rmTowardNegative);
1458 }
1459
1460 return fs;
1461}
1462
1463/* Normalized addition. */
1464APFloat::opStatus
1465APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1466{
1467 return addOrSubtract(rhs, rounding_mode, false);
1468}
1469
1470/* Normalized subtraction. */
1471APFloat::opStatus
1472APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1473{
1474 return addOrSubtract(rhs, rounding_mode, true);
1475}
1476
1477/* Normalized multiply. */
1478APFloat::opStatus
1479APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1480{
1481 opStatus fs;
1482
Neil Boothcaf19d72007-10-14 10:29:28 +00001483 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001484 sign ^= rhs.sign;
1485 fs = multiplySpecials(rhs);
1486
1487 if(category == fcNormal) {
1488 lostFraction lost_fraction = multiplySignificand(rhs, 0);
1489 fs = normalize(rounding_mode, lost_fraction);
1490 if(lost_fraction != lfExactlyZero)
1491 fs = (opStatus) (fs | opInexact);
1492 }
1493
1494 return fs;
1495}
1496
1497/* Normalized divide. */
1498APFloat::opStatus
1499APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1500{
1501 opStatus fs;
1502
Neil Boothcaf19d72007-10-14 10:29:28 +00001503 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001504 sign ^= rhs.sign;
1505 fs = divideSpecials(rhs);
1506
1507 if(category == fcNormal) {
1508 lostFraction lost_fraction = divideSignificand(rhs);
1509 fs = normalize(rounding_mode, lost_fraction);
1510 if(lost_fraction != lfExactlyZero)
1511 fs = (opStatus) (fs | opInexact);
1512 }
1513
1514 return fs;
1515}
1516
Neil Bootha30b0ee2007-10-03 22:26:02 +00001517/* Normalized remainder. This is not currently doing TRT. */
Dale Johannesene15c2db2007-08-31 23:35:31 +00001518APFloat::opStatus
1519APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1520{
1521 opStatus fs;
1522 APFloat V = *this;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001523 unsigned int origSign = sign;
Neil Boothcaf19d72007-10-14 10:29:28 +00001524
1525 assertArithmeticOK(*semantics);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001526 fs = V.divide(rhs, rmNearestTiesToEven);
1527 if (fs == opDivByZero)
1528 return fs;
1529
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001530 int parts = partCount();
1531 integerPart *x = new integerPart[parts];
Dale Johannesen23a98552008-10-09 23:00:39 +00001532 bool ignored;
Neil Booth4f881702007-09-26 21:33:42 +00001533 fs = V.convertToInteger(x, parts * integerPartWidth, true,
Dale Johannesen23a98552008-10-09 23:00:39 +00001534 rmNearestTiesToEven, &ignored);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001535 if (fs==opInvalidOp)
1536 return fs;
1537
Neil Boothccf596a2007-10-07 11:45:55 +00001538 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1539 rmNearestTiesToEven);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001540 assert(fs==opOK); // should always work
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001541
Dale Johannesene15c2db2007-08-31 23:35:31 +00001542 fs = V.multiply(rhs, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001543 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1544
Dale Johannesene15c2db2007-08-31 23:35:31 +00001545 fs = subtract(V, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001546 assert(fs==opOK || fs==opInexact); // likewise
1547
1548 if (isZero())
1549 sign = origSign; // IEEE754 requires this
1550 delete[] x;
Dale Johannesene15c2db2007-08-31 23:35:31 +00001551 return fs;
1552}
1553
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001554/* Normalized fused-multiply-add. */
1555APFloat::opStatus
1556APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
Neil Booth4f881702007-09-26 21:33:42 +00001557 const APFloat &addend,
1558 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001559{
1560 opStatus fs;
1561
Neil Boothcaf19d72007-10-14 10:29:28 +00001562 assertArithmeticOK(*semantics);
1563
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001564 /* Post-multiplication sign, before addition. */
1565 sign ^= multiplicand.sign;
1566
1567 /* If and only if all arguments are normal do we need to do an
1568 extended-precision calculation. */
1569 if(category == fcNormal
1570 && multiplicand.category == fcNormal
1571 && addend.category == fcNormal) {
1572 lostFraction lost_fraction;
1573
1574 lost_fraction = multiplySignificand(multiplicand, &addend);
1575 fs = normalize(rounding_mode, lost_fraction);
1576 if(lost_fraction != lfExactlyZero)
1577 fs = (opStatus) (fs | opInexact);
1578
1579 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1580 positive zero unless rounding to minus infinity, except that
1581 adding two like-signed zeroes gives that zero. */
1582 if(category == fcZero && sign != addend.sign)
1583 sign = (rounding_mode == rmTowardNegative);
1584 } else {
1585 fs = multiplySpecials(multiplicand);
1586
1587 /* FS can only be opOK or opInvalidOp. There is no more work
1588 to do in the latter case. The IEEE-754R standard says it is
1589 implementation-defined in this case whether, if ADDEND is a
Dale Johanneseneaf08942007-08-31 04:03:46 +00001590 quiet NaN, we raise invalid op; this implementation does so.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001591
1592 If we need to do the addition we can do so with normal
1593 precision. */
1594 if(fs == opOK)
1595 fs = addOrSubtract(addend, rounding_mode, false);
1596 }
1597
1598 return fs;
1599}
1600
1601/* Comparison requires normalized numbers. */
1602APFloat::cmpResult
1603APFloat::compare(const APFloat &rhs) const
1604{
1605 cmpResult result;
1606
Neil Boothcaf19d72007-10-14 10:29:28 +00001607 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001608 assert(semantics == rhs.semantics);
1609
1610 switch(convolve(category, rhs.category)) {
1611 default:
1612 assert(0);
1613
Dale Johanneseneaf08942007-08-31 04:03:46 +00001614 case convolve(fcNaN, fcZero):
1615 case convolve(fcNaN, fcNormal):
1616 case convolve(fcNaN, fcInfinity):
1617 case convolve(fcNaN, fcNaN):
1618 case convolve(fcZero, fcNaN):
1619 case convolve(fcNormal, fcNaN):
1620 case convolve(fcInfinity, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001621 return cmpUnordered;
1622
1623 case convolve(fcInfinity, fcNormal):
1624 case convolve(fcInfinity, fcZero):
1625 case convolve(fcNormal, fcZero):
1626 if(sign)
1627 return cmpLessThan;
1628 else
1629 return cmpGreaterThan;
1630
1631 case convolve(fcNormal, fcInfinity):
1632 case convolve(fcZero, fcInfinity):
1633 case convolve(fcZero, fcNormal):
1634 if(rhs.sign)
1635 return cmpGreaterThan;
1636 else
1637 return cmpLessThan;
1638
1639 case convolve(fcInfinity, fcInfinity):
1640 if(sign == rhs.sign)
1641 return cmpEqual;
1642 else if(sign)
1643 return cmpLessThan;
1644 else
1645 return cmpGreaterThan;
1646
1647 case convolve(fcZero, fcZero):
1648 return cmpEqual;
1649
1650 case convolve(fcNormal, fcNormal):
1651 break;
1652 }
1653
1654 /* Two normal numbers. Do they have the same sign? */
1655 if(sign != rhs.sign) {
1656 if(sign)
1657 result = cmpLessThan;
1658 else
1659 result = cmpGreaterThan;
1660 } else {
1661 /* Compare absolute values; invert result if negative. */
1662 result = compareAbsoluteValue(rhs);
1663
1664 if(sign) {
1665 if(result == cmpLessThan)
Neil Booth4f881702007-09-26 21:33:42 +00001666 result = cmpGreaterThan;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001667 else if(result == cmpGreaterThan)
Neil Booth4f881702007-09-26 21:33:42 +00001668 result = cmpLessThan;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001669 }
1670 }
1671
1672 return result;
1673}
1674
Dale Johannesen23a98552008-10-09 23:00:39 +00001675/// APFloat::convert - convert a value of one floating point type to another.
1676/// The return value corresponds to the IEEE754 exceptions. *losesInfo
1677/// records whether the transformation lost information, i.e. whether
1678/// converting the result back to the original type will produce the
1679/// original value (this is almost the same as return value==fsOK, but there
1680/// are edge cases where this is not so).
1681
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001682APFloat::opStatus
1683APFloat::convert(const fltSemantics &toSemantics,
Dale Johannesen23a98552008-10-09 23:00:39 +00001684 roundingMode rounding_mode, bool *losesInfo)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001685{
Neil Boothc8db43d2007-09-22 02:56:19 +00001686 lostFraction lostFraction;
1687 unsigned int newPartCount, oldPartCount;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001688 opStatus fs;
Neil Booth4f881702007-09-26 21:33:42 +00001689
Neil Boothcaf19d72007-10-14 10:29:28 +00001690 assertArithmeticOK(*semantics);
Dale Johannesen79f82f92008-04-20 01:34:03 +00001691 assertArithmeticOK(toSemantics);
Neil Boothc8db43d2007-09-22 02:56:19 +00001692 lostFraction = lfExactlyZero;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001693 newPartCount = partCountForBits(toSemantics.precision + 1);
Neil Boothc8db43d2007-09-22 02:56:19 +00001694 oldPartCount = partCount();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001695
Neil Boothc8db43d2007-09-22 02:56:19 +00001696 /* Handle storage complications. If our new form is wider,
1697 re-allocate our bit pattern into wider storage. If it is
1698 narrower, we ignore the excess parts, but if narrowing to a
Dale Johannesen902ff942007-09-25 17:25:00 +00001699 single part we need to free the old storage.
1700 Be careful not to reference significandParts for zeroes
1701 and infinities, since it aborts. */
Neil Boothc8db43d2007-09-22 02:56:19 +00001702 if (newPartCount > oldPartCount) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001703 integerPart *newParts;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001704 newParts = new integerPart[newPartCount];
1705 APInt::tcSet(newParts, 0, newPartCount);
Dale Johannesen902ff942007-09-25 17:25:00 +00001706 if (category==fcNormal || category==fcNaN)
1707 APInt::tcAssign(newParts, significandParts(), oldPartCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001708 freeSignificand();
1709 significand.parts = newParts;
Neil Boothc8db43d2007-09-22 02:56:19 +00001710 } else if (newPartCount < oldPartCount) {
1711 /* Capture any lost fraction through truncation of parts so we get
1712 correct rounding whilst normalizing. */
Dale Johannesen902ff942007-09-25 17:25:00 +00001713 if (category==fcNormal)
1714 lostFraction = lostFractionThroughTruncation
1715 (significandParts(), oldPartCount, toSemantics.precision);
1716 if (newPartCount == 1) {
1717 integerPart newPart = 0;
Neil Booth4f881702007-09-26 21:33:42 +00001718 if (category==fcNormal || category==fcNaN)
Dale Johannesen902ff942007-09-25 17:25:00 +00001719 newPart = significandParts()[0];
1720 freeSignificand();
1721 significand.part = newPart;
1722 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001723 }
1724
1725 if(category == fcNormal) {
1726 /* Re-interpret our bit-pattern. */
1727 exponent += toSemantics.precision - semantics->precision;
1728 semantics = &toSemantics;
Neil Boothc8db43d2007-09-22 02:56:19 +00001729 fs = normalize(rounding_mode, lostFraction);
Dale Johannesen23a98552008-10-09 23:00:39 +00001730 *losesInfo = (fs != opOK);
Dale Johannesen902ff942007-09-25 17:25:00 +00001731 } else if (category == fcNaN) {
1732 int shift = toSemantics.precision - semantics->precision;
Dale Johannesenb63fa052008-01-31 18:34:01 +00001733 // Do this now so significandParts gets the right answer
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001734 const fltSemantics *oldSemantics = semantics;
Dale Johannesenb63fa052008-01-31 18:34:01 +00001735 semantics = &toSemantics;
Dale Johannesen23a98552008-10-09 23:00:39 +00001736 *losesInfo = false;
Dale Johannesen902ff942007-09-25 17:25:00 +00001737 // No normalization here, just truncate
1738 if (shift>0)
1739 APInt::tcShiftLeft(significandParts(), newPartCount, shift);
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001740 else if (shift < 0) {
1741 unsigned ushift = -shift;
Dale Johannesen23a98552008-10-09 23:00:39 +00001742 // Figure out if we are losing information. This happens
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001743 // if are shifting out something other than 0s, or if the x87 long
1744 // double input did not have its integer bit set (pseudo-NaN), or if the
1745 // x87 long double input did not have its QNan bit set (because the x87
1746 // hardware sets this bit when converting a lower-precision NaN to
1747 // x87 long double).
1748 if (APInt::tcLSB(significandParts(), newPartCount) < ushift)
Dale Johannesen23a98552008-10-09 23:00:39 +00001749 *losesInfo = true;
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001750 if (oldSemantics == &APFloat::x87DoubleExtended &&
1751 (!(*significandParts() & 0x8000000000000000ULL) ||
1752 !(*significandParts() & 0x4000000000000000ULL)))
Dale Johannesen23a98552008-10-09 23:00:39 +00001753 *losesInfo = true;
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001754 APInt::tcShiftRight(significandParts(), newPartCount, ushift);
1755 }
Dale Johannesen902ff942007-09-25 17:25:00 +00001756 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
1757 // does not give you back the same bits. This is dubious, and we
1758 // don't currently do it. You're really supposed to get
1759 // an invalid operation signal at runtime, but nobody does that.
Dale Johannesen23a98552008-10-09 23:00:39 +00001760 fs = opOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001761 } else {
1762 semantics = &toSemantics;
1763 fs = opOK;
Dale Johannesen23a98552008-10-09 23:00:39 +00001764 *losesInfo = false;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001765 }
1766
1767 return fs;
1768}
1769
1770/* Convert a floating point number to an integer according to the
1771 rounding mode. If the rounded integer value is out of range this
Neil Boothee7ae382007-11-01 22:43:37 +00001772 returns an invalid operation exception and the contents of the
1773 destination parts are unspecified. If the rounded value is in
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001774 range but the floating point number is not the exact integer, the C
1775 standard doesn't require an inexact exception to be raised. IEEE
1776 854 does require it so we do that.
1777
1778 Note that for conversions to integer type the C standard requires
1779 round-to-zero to always be used. */
1780APFloat::opStatus
Neil Boothee7ae382007-11-01 22:43:37 +00001781APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
1782 bool isSigned,
Dale Johannesen23a98552008-10-09 23:00:39 +00001783 roundingMode rounding_mode,
1784 bool *isExact) const
Neil Boothee7ae382007-11-01 22:43:37 +00001785{
1786 lostFraction lost_fraction;
1787 const integerPart *src;
1788 unsigned int dstPartsCount, truncatedBits;
1789
Neil Boothe3d936a2007-11-02 15:10:05 +00001790 assertArithmeticOK(*semantics);
1791
Dale Johannesen23a98552008-10-09 23:00:39 +00001792 *isExact = false;
1793
Neil Boothee7ae382007-11-01 22:43:37 +00001794 /* Handle the three special cases first. */
1795 if(category == fcInfinity || category == fcNaN)
1796 return opInvalidOp;
1797
1798 dstPartsCount = partCountForBits(width);
1799
1800 if(category == fcZero) {
1801 APInt::tcSet(parts, 0, dstPartsCount);
Dale Johannesene4a42452008-10-07 00:40:01 +00001802 // Negative zero can't be represented as an int.
Dale Johannesen23a98552008-10-09 23:00:39 +00001803 *isExact = !sign;
1804 return opOK;
Neil Boothee7ae382007-11-01 22:43:37 +00001805 }
1806
1807 src = significandParts();
1808
1809 /* Step 1: place our absolute value, with any fraction truncated, in
1810 the destination. */
1811 if (exponent < 0) {
1812 /* Our absolute value is less than one; truncate everything. */
1813 APInt::tcSet(parts, 0, dstPartsCount);
1814 truncatedBits = semantics->precision;
1815 } else {
1816 /* We want the most significant (exponent + 1) bits; the rest are
1817 truncated. */
1818 unsigned int bits = exponent + 1U;
1819
1820 /* Hopelessly large in magnitude? */
1821 if (bits > width)
1822 return opInvalidOp;
1823
1824 if (bits < semantics->precision) {
1825 /* We truncate (semantics->precision - bits) bits. */
1826 truncatedBits = semantics->precision - bits;
1827 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
1828 } else {
1829 /* We want at least as many bits as are available. */
1830 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
1831 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
1832 truncatedBits = 0;
1833 }
1834 }
1835
1836 /* Step 2: work out any lost fraction, and increment the absolute
1837 value if we would round away from zero. */
1838 if (truncatedBits) {
1839 lost_fraction = lostFractionThroughTruncation(src, partCount(),
1840 truncatedBits);
1841 if (lost_fraction != lfExactlyZero
1842 && roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
1843 if (APInt::tcIncrement(parts, dstPartsCount))
1844 return opInvalidOp; /* Overflow. */
1845 }
1846 } else {
1847 lost_fraction = lfExactlyZero;
1848 }
1849
1850 /* Step 3: check if we fit in the destination. */
1851 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
1852
1853 if (sign) {
1854 if (!isSigned) {
1855 /* Negative numbers cannot be represented as unsigned. */
1856 if (omsb != 0)
1857 return opInvalidOp;
1858 } else {
1859 /* It takes omsb bits to represent the unsigned integer value.
1860 We lose a bit for the sign, but care is needed as the
1861 maximally negative integer is a special case. */
1862 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
1863 return opInvalidOp;
1864
1865 /* This case can happen because of rounding. */
1866 if (omsb > width)
1867 return opInvalidOp;
1868 }
1869
1870 APInt::tcNegate (parts, dstPartsCount);
1871 } else {
1872 if (omsb >= width + !isSigned)
1873 return opInvalidOp;
1874 }
1875
Dale Johannesen23a98552008-10-09 23:00:39 +00001876 if (lost_fraction == lfExactlyZero) {
1877 *isExact = true;
Neil Boothee7ae382007-11-01 22:43:37 +00001878 return opOK;
Dale Johannesen23a98552008-10-09 23:00:39 +00001879 } else
Neil Boothee7ae382007-11-01 22:43:37 +00001880 return opInexact;
1881}
1882
1883/* Same as convertToSignExtendedInteger, except we provide
1884 deterministic values in case of an invalid operation exception,
1885 namely zero for NaNs and the minimal or maximal value respectively
Dale Johannesen23a98552008-10-09 23:00:39 +00001886 for underflow or overflow.
1887 The *isExact output tells whether the result is exact, in the sense
1888 that converting it back to the original floating point type produces
1889 the original value. This is almost equivalent to result==opOK,
1890 except for negative zeroes.
1891*/
Neil Boothee7ae382007-11-01 22:43:37 +00001892APFloat::opStatus
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001893APFloat::convertToInteger(integerPart *parts, unsigned int width,
Neil Booth4f881702007-09-26 21:33:42 +00001894 bool isSigned,
Dale Johannesen23a98552008-10-09 23:00:39 +00001895 roundingMode rounding_mode, bool *isExact) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001896{
Neil Boothee7ae382007-11-01 22:43:37 +00001897 opStatus fs;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001898
Dale Johannesen23a98552008-10-09 23:00:39 +00001899 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
1900 isExact);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001901
Neil Boothee7ae382007-11-01 22:43:37 +00001902 if (fs == opInvalidOp) {
1903 unsigned int bits, dstPartsCount;
1904
1905 dstPartsCount = partCountForBits(width);
1906
1907 if (category == fcNaN)
1908 bits = 0;
1909 else if (sign)
1910 bits = isSigned;
1911 else
1912 bits = width - isSigned;
1913
1914 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
1915 if (sign && isSigned)
1916 APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001917 }
1918
Neil Boothee7ae382007-11-01 22:43:37 +00001919 return fs;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001920}
1921
Neil Booth643ce592007-10-07 12:07:53 +00001922/* Convert an unsigned integer SRC to a floating point number,
1923 rounding according to ROUNDING_MODE. The sign of the floating
1924 point number is not modified. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001925APFloat::opStatus
Neil Booth643ce592007-10-07 12:07:53 +00001926APFloat::convertFromUnsignedParts(const integerPart *src,
1927 unsigned int srcCount,
1928 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001929{
Neil Booth5477f852007-10-08 14:39:42 +00001930 unsigned int omsb, precision, dstCount;
Neil Booth643ce592007-10-07 12:07:53 +00001931 integerPart *dst;
Neil Booth5477f852007-10-08 14:39:42 +00001932 lostFraction lost_fraction;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001933
Neil Boothcaf19d72007-10-14 10:29:28 +00001934 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001935 category = fcNormal;
Neil Booth5477f852007-10-08 14:39:42 +00001936 omsb = APInt::tcMSB(src, srcCount) + 1;
Neil Booth643ce592007-10-07 12:07:53 +00001937 dst = significandParts();
1938 dstCount = partCount();
Neil Booth5477f852007-10-08 14:39:42 +00001939 precision = semantics->precision;
Neil Booth643ce592007-10-07 12:07:53 +00001940
Neil Booth5477f852007-10-08 14:39:42 +00001941 /* We want the most significant PRECISON bits of SRC. There may not
1942 be that many; extract what we can. */
1943 if (precision <= omsb) {
1944 exponent = omsb - 1;
Neil Booth643ce592007-10-07 12:07:53 +00001945 lost_fraction = lostFractionThroughTruncation(src, srcCount,
Neil Booth5477f852007-10-08 14:39:42 +00001946 omsb - precision);
1947 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
1948 } else {
1949 exponent = precision - 1;
1950 lost_fraction = lfExactlyZero;
1951 APInt::tcExtract(dst, dstCount, src, omsb, 0);
Neil Booth643ce592007-10-07 12:07:53 +00001952 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001953
1954 return normalize(rounding_mode, lost_fraction);
1955}
1956
Dan Gohman93c276e2008-02-29 01:26:11 +00001957APFloat::opStatus
1958APFloat::convertFromAPInt(const APInt &Val,
1959 bool isSigned,
1960 roundingMode rounding_mode)
1961{
1962 unsigned int partCount = Val.getNumWords();
1963 APInt api = Val;
1964
1965 sign = false;
1966 if (isSigned && api.isNegative()) {
1967 sign = true;
1968 api = -api;
1969 }
1970
1971 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
1972}
1973
Neil Boothf16c5952007-10-07 12:15:41 +00001974/* Convert a two's complement integer SRC to a floating point number,
1975 rounding according to ROUNDING_MODE. ISSIGNED is true if the
1976 integer is signed, in which case it must be sign-extended. */
1977APFloat::opStatus
1978APFloat::convertFromSignExtendedInteger(const integerPart *src,
1979 unsigned int srcCount,
1980 bool isSigned,
1981 roundingMode rounding_mode)
1982{
1983 opStatus status;
1984
Neil Boothcaf19d72007-10-14 10:29:28 +00001985 assertArithmeticOK(*semantics);
Neil Boothf16c5952007-10-07 12:15:41 +00001986 if (isSigned
1987 && APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
1988 integerPart *copy;
1989
1990 /* If we're signed and negative negate a copy. */
1991 sign = true;
1992 copy = new integerPart[srcCount];
1993 APInt::tcAssign(copy, src, srcCount);
1994 APInt::tcNegate(copy, srcCount);
1995 status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
1996 delete [] copy;
1997 } else {
1998 sign = false;
1999 status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2000 }
2001
2002 return status;
2003}
2004
Neil Boothccf596a2007-10-07 11:45:55 +00002005/* FIXME: should this just take a const APInt reference? */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002006APFloat::opStatus
Neil Boothccf596a2007-10-07 11:45:55 +00002007APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2008 unsigned int width, bool isSigned,
2009 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002010{
Dale Johannesen910993e2007-09-21 22:09:37 +00002011 unsigned int partCount = partCountForBits(width);
Dale Johannesen910993e2007-09-21 22:09:37 +00002012 APInt api = APInt(width, partCount, parts);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002013
2014 sign = false;
Dale Johannesencce23a42007-09-30 18:17:01 +00002015 if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
2016 sign = true;
2017 api = -api;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002018 }
2019
Neil Booth7a7bc0f2007-10-07 12:10:57 +00002020 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002021}
2022
2023APFloat::opStatus
2024APFloat::convertFromHexadecimalString(const char *p,
Neil Booth4f881702007-09-26 21:33:42 +00002025 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002026{
2027 lostFraction lost_fraction;
2028 integerPart *significand;
2029 unsigned int bitPos, partsCount;
2030 const char *dot, *firstSignificantDigit;
2031
2032 zeroSignificand();
2033 exponent = 0;
2034 category = fcNormal;
2035
2036 significand = significandParts();
2037 partsCount = partCount();
2038 bitPos = partsCount * integerPartWidth;
2039
Neil Booth33d4c922007-10-07 08:51:21 +00002040 /* Skip leading zeroes and any (hexa)decimal point. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002041 p = skipLeadingZeroesAndAnyDot(p, &dot);
2042 firstSignificantDigit = p;
2043
2044 for(;;) {
Dale Johannesen386f3e92008-05-14 22:53:25 +00002045 integerPart hex_value;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002046
2047 if(*p == '.') {
2048 assert(dot == 0);
2049 dot = p++;
2050 }
2051
2052 hex_value = hexDigitValue(*p);
2053 if(hex_value == -1U) {
2054 lost_fraction = lfExactlyZero;
2055 break;
2056 }
2057
2058 p++;
2059
2060 /* Store the number whilst 4-bit nibbles remain. */
2061 if(bitPos) {
2062 bitPos -= 4;
2063 hex_value <<= bitPos % integerPartWidth;
2064 significand[bitPos / integerPartWidth] |= hex_value;
2065 } else {
2066 lost_fraction = trailingHexadecimalFraction(p, hex_value);
2067 while(hexDigitValue(*p) != -1U)
Neil Booth4f881702007-09-26 21:33:42 +00002068 p++;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002069 break;
2070 }
2071 }
2072
2073 /* Hex floats require an exponent but not a hexadecimal point. */
2074 assert(*p == 'p' || *p == 'P');
2075
2076 /* Ignore the exponent if we are zero. */
2077 if(p != firstSignificantDigit) {
2078 int expAdjustment;
2079
2080 /* Implicit hexadecimal point? */
2081 if(!dot)
2082 dot = p;
2083
2084 /* Calculate the exponent adjustment implicit in the number of
2085 significant digits. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002086 expAdjustment = static_cast<int>(dot - firstSignificantDigit);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002087 if(expAdjustment < 0)
2088 expAdjustment++;
2089 expAdjustment = expAdjustment * 4 - 1;
2090
2091 /* Adjust for writing the significand starting at the most
2092 significant nibble. */
2093 expAdjustment += semantics->precision;
2094 expAdjustment -= partsCount * integerPartWidth;
2095
2096 /* Adjust for the given exponent. */
2097 exponent = totalExponent(p, expAdjustment);
2098 }
2099
2100 return normalize(rounding_mode, lost_fraction);
2101}
2102
2103APFloat::opStatus
Neil Booth96c74712007-10-12 16:02:31 +00002104APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2105 unsigned sigPartCount, int exp,
2106 roundingMode rounding_mode)
2107{
2108 unsigned int parts, pow5PartCount;
Neil Boothcaf19d72007-10-14 10:29:28 +00002109 fltSemantics calcSemantics = { 32767, -32767, 0, true };
Neil Booth96c74712007-10-12 16:02:31 +00002110 integerPart pow5Parts[maxPowerOfFiveParts];
2111 bool isNearest;
2112
2113 isNearest = (rounding_mode == rmNearestTiesToEven
2114 || rounding_mode == rmNearestTiesToAway);
2115
2116 parts = partCountForBits(semantics->precision + 11);
2117
2118 /* Calculate pow(5, abs(exp)). */
2119 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2120
2121 for (;; parts *= 2) {
2122 opStatus sigStatus, powStatus;
2123 unsigned int excessPrecision, truncatedBits;
2124
2125 calcSemantics.precision = parts * integerPartWidth - 1;
2126 excessPrecision = calcSemantics.precision - semantics->precision;
2127 truncatedBits = excessPrecision;
2128
2129 APFloat decSig(calcSemantics, fcZero, sign);
2130 APFloat pow5(calcSemantics, fcZero, false);
2131
2132 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2133 rmNearestTiesToEven);
2134 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2135 rmNearestTiesToEven);
2136 /* Add exp, as 10^n = 5^n * 2^n. */
2137 decSig.exponent += exp;
2138
2139 lostFraction calcLostFraction;
Evan Cheng48e8c802008-05-02 21:15:08 +00002140 integerPart HUerr, HUdistance;
2141 unsigned int powHUerr;
Neil Booth96c74712007-10-12 16:02:31 +00002142
2143 if (exp >= 0) {
2144 /* multiplySignificand leaves the precision-th bit set to 1. */
2145 calcLostFraction = decSig.multiplySignificand(pow5, NULL);
2146 powHUerr = powStatus != opOK;
2147 } else {
2148 calcLostFraction = decSig.divideSignificand(pow5);
2149 /* Denormal numbers have less precision. */
2150 if (decSig.exponent < semantics->minExponent) {
2151 excessPrecision += (semantics->minExponent - decSig.exponent);
2152 truncatedBits = excessPrecision;
2153 if (excessPrecision > calcSemantics.precision)
2154 excessPrecision = calcSemantics.precision;
2155 }
2156 /* Extra half-ulp lost in reciprocal of exponent. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002157 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
Neil Booth96c74712007-10-12 16:02:31 +00002158 }
2159
2160 /* Both multiplySignificand and divideSignificand return the
2161 result with the integer bit set. */
2162 assert (APInt::tcExtractBit
2163 (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2164
2165 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2166 powHUerr);
2167 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2168 excessPrecision, isNearest);
2169
2170 /* Are we guaranteed to round correctly if we truncate? */
2171 if (HUdistance >= HUerr) {
2172 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2173 calcSemantics.precision - excessPrecision,
2174 excessPrecision);
2175 /* Take the exponent of decSig. If we tcExtract-ed less bits
2176 above we must adjust our exponent to compensate for the
2177 implicit right shift. */
2178 exponent = (decSig.exponent + semantics->precision
2179 - (calcSemantics.precision - excessPrecision));
2180 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2181 decSig.partCount(),
2182 truncatedBits);
2183 return normalize(rounding_mode, calcLostFraction);
2184 }
2185 }
2186}
2187
2188APFloat::opStatus
2189APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
2190{
Neil Booth1870f292007-10-14 10:16:12 +00002191 decimalInfo D;
Neil Booth96c74712007-10-12 16:02:31 +00002192 opStatus fs;
2193
Neil Booth1870f292007-10-14 10:16:12 +00002194 /* Scan the text. */
2195 interpretDecimal(p, &D);
Neil Booth96c74712007-10-12 16:02:31 +00002196
Neil Booth686700e2007-10-15 15:00:55 +00002197 /* Handle the quick cases. First the case of no significant digits,
2198 i.e. zero, and then exponents that are obviously too large or too
2199 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
2200 definitely overflows if
2201
2202 (exp - 1) * L >= maxExponent
2203
2204 and definitely underflows to zero where
2205
2206 (exp + 1) * L <= minExponent - precision
2207
2208 With integer arithmetic the tightest bounds for L are
2209
2210 93/28 < L < 196/59 [ numerator <= 256 ]
2211 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
2212 */
2213
Neil Boothcc233592007-12-05 13:06:04 +00002214 if (decDigitValue(*D.firstSigDigit) >= 10U) {
Neil Booth96c74712007-10-12 16:02:31 +00002215 category = fcZero;
2216 fs = opOK;
Neil Booth686700e2007-10-15 15:00:55 +00002217 } else if ((D.normalizedExponent + 1) * 28738
2218 <= 8651 * (semantics->minExponent - (int) semantics->precision)) {
2219 /* Underflow to zero and round. */
2220 zeroSignificand();
2221 fs = normalize(rounding_mode, lfLessThanHalf);
2222 } else if ((D.normalizedExponent - 1) * 42039
2223 >= 12655 * semantics->maxExponent) {
2224 /* Overflow and round. */
2225 fs = handleOverflow(rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002226 } else {
Neil Booth1870f292007-10-14 10:16:12 +00002227 integerPart *decSignificand;
2228 unsigned int partCount;
Neil Booth96c74712007-10-12 16:02:31 +00002229
Neil Booth1870f292007-10-14 10:16:12 +00002230 /* A tight upper bound on number of bits required to hold an
Neil Booth686700e2007-10-15 15:00:55 +00002231 N-digit decimal integer is N * 196 / 59. Allocate enough space
Neil Booth1870f292007-10-14 10:16:12 +00002232 to hold the full significand, and an extra part required by
2233 tcMultiplyPart. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002234 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
Neil Booth686700e2007-10-15 15:00:55 +00002235 partCount = partCountForBits(1 + 196 * partCount / 59);
Neil Booth1870f292007-10-14 10:16:12 +00002236 decSignificand = new integerPart[partCount + 1];
2237 partCount = 0;
Neil Booth96c74712007-10-12 16:02:31 +00002238
Neil Booth1870f292007-10-14 10:16:12 +00002239 /* Convert to binary efficiently - we do almost all multiplication
2240 in an integerPart. When this would overflow do we do a single
2241 bignum multiplication, and then revert again to multiplication
2242 in an integerPart. */
2243 do {
2244 integerPart decValue, val, multiplier;
2245
2246 val = 0;
2247 multiplier = 1;
2248
2249 do {
2250 if (*p == '.')
2251 p++;
2252
2253 decValue = decDigitValue(*p++);
2254 multiplier *= 10;
2255 val = val * 10 + decValue;
2256 /* The maximum number that can be multiplied by ten with any
2257 digit added without overflowing an integerPart. */
2258 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2259
2260 /* Multiply out the current part. */
2261 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2262 partCount, partCount + 1, false);
2263
2264 /* If we used another part (likely but not guaranteed), increase
2265 the count. */
2266 if (decSignificand[partCount])
2267 partCount++;
2268 } while (p <= D.lastSigDigit);
Neil Booth96c74712007-10-12 16:02:31 +00002269
Neil Booth43a4b282007-11-01 22:51:07 +00002270 category = fcNormal;
Neil Booth96c74712007-10-12 16:02:31 +00002271 fs = roundSignificandWithExponent(decSignificand, partCount,
Neil Booth1870f292007-10-14 10:16:12 +00002272 D.exponent, rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002273
Neil Booth1870f292007-10-14 10:16:12 +00002274 delete [] decSignificand;
2275 }
Neil Booth96c74712007-10-12 16:02:31 +00002276
2277 return fs;
2278}
2279
2280APFloat::opStatus
Neil Booth4f881702007-09-26 21:33:42 +00002281APFloat::convertFromString(const char *p, roundingMode rounding_mode)
2282{
Neil Boothcaf19d72007-10-14 10:29:28 +00002283 assertArithmeticOK(*semantics);
2284
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002285 /* Handle a leading minus sign. */
2286 if(*p == '-')
2287 sign = 1, p++;
2288 else
2289 sign = 0;
2290
2291 if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
2292 return convertFromHexadecimalString(p + 2, rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002293 else
2294 return convertFromDecimalString(p, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002295}
Dale Johannesen343e7702007-08-24 00:56:33 +00002296
Neil Bootha30b0ee2007-10-03 22:26:02 +00002297/* Write out a hexadecimal representation of the floating point value
2298 to DST, which must be of sufficient size, in the C99 form
2299 [-]0xh.hhhhp[+-]d. Return the number of characters written,
2300 excluding the terminating NUL.
2301
2302 If UPPERCASE, the output is in upper case, otherwise in lower case.
2303
2304 HEXDIGITS digits appear altogether, rounding the value if
2305 necessary. If HEXDIGITS is 0, the minimal precision to display the
2306 number precisely is used instead. If nothing would appear after
2307 the decimal point it is suppressed.
2308
2309 The decimal exponent is always printed and has at least one digit.
2310 Zero values display an exponent of zero. Infinities and NaNs
2311 appear as "infinity" or "nan" respectively.
2312
2313 The above rules are as specified by C99. There is ambiguity about
2314 what the leading hexadecimal digit should be. This implementation
2315 uses whatever is necessary so that the exponent is displayed as
2316 stored. This implies the exponent will fall within the IEEE format
2317 range, and the leading hexadecimal digit will be 0 (for denormals),
2318 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2319 any other digits zero).
2320*/
2321unsigned int
2322APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2323 bool upperCase, roundingMode rounding_mode) const
2324{
2325 char *p;
2326
Neil Boothcaf19d72007-10-14 10:29:28 +00002327 assertArithmeticOK(*semantics);
2328
Neil Bootha30b0ee2007-10-03 22:26:02 +00002329 p = dst;
2330 if (sign)
2331 *dst++ = '-';
2332
2333 switch (category) {
2334 case fcInfinity:
2335 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2336 dst += sizeof infinityL - 1;
2337 break;
2338
2339 case fcNaN:
2340 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2341 dst += sizeof NaNU - 1;
2342 break;
2343
2344 case fcZero:
2345 *dst++ = '0';
2346 *dst++ = upperCase ? 'X': 'x';
2347 *dst++ = '0';
2348 if (hexDigits > 1) {
2349 *dst++ = '.';
2350 memset (dst, '0', hexDigits - 1);
2351 dst += hexDigits - 1;
2352 }
2353 *dst++ = upperCase ? 'P': 'p';
2354 *dst++ = '0';
2355 break;
2356
2357 case fcNormal:
2358 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2359 break;
2360 }
2361
2362 *dst = 0;
2363
Evan Cheng48e8c802008-05-02 21:15:08 +00002364 return static_cast<unsigned int>(dst - p);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002365}
2366
2367/* Does the hard work of outputting the correctly rounded hexadecimal
2368 form of a normal floating point number with the specified number of
2369 hexadecimal digits. If HEXDIGITS is zero the minimum number of
2370 digits necessary to print the value precisely is output. */
2371char *
2372APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2373 bool upperCase,
2374 roundingMode rounding_mode) const
2375{
2376 unsigned int count, valueBits, shift, partsCount, outputDigits;
2377 const char *hexDigitChars;
2378 const integerPart *significand;
2379 char *p;
2380 bool roundUp;
2381
2382 *dst++ = '0';
2383 *dst++ = upperCase ? 'X': 'x';
2384
2385 roundUp = false;
2386 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2387
2388 significand = significandParts();
2389 partsCount = partCount();
2390
2391 /* +3 because the first digit only uses the single integer bit, so
2392 we have 3 virtual zero most-significant-bits. */
2393 valueBits = semantics->precision + 3;
2394 shift = integerPartWidth - valueBits % integerPartWidth;
2395
2396 /* The natural number of digits required ignoring trailing
2397 insignificant zeroes. */
2398 outputDigits = (valueBits - significandLSB () + 3) / 4;
2399
2400 /* hexDigits of zero means use the required number for the
2401 precision. Otherwise, see if we are truncating. If we are,
Neil Booth978661d2007-10-06 00:24:48 +00002402 find out if we need to round away from zero. */
Neil Bootha30b0ee2007-10-03 22:26:02 +00002403 if (hexDigits) {
2404 if (hexDigits < outputDigits) {
2405 /* We are dropping non-zero bits, so need to check how to round.
2406 "bits" is the number of dropped bits. */
2407 unsigned int bits;
2408 lostFraction fraction;
2409
2410 bits = valueBits - hexDigits * 4;
2411 fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2412 roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2413 }
2414 outputDigits = hexDigits;
2415 }
2416
2417 /* Write the digits consecutively, and start writing in the location
2418 of the hexadecimal point. We move the most significant digit
2419 left and add the hexadecimal point later. */
2420 p = ++dst;
2421
2422 count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2423
2424 while (outputDigits && count) {
2425 integerPart part;
2426
2427 /* Put the most significant integerPartWidth bits in "part". */
2428 if (--count == partsCount)
2429 part = 0; /* An imaginary higher zero part. */
2430 else
2431 part = significand[count] << shift;
2432
2433 if (count && shift)
2434 part |= significand[count - 1] >> (integerPartWidth - shift);
2435
2436 /* Convert as much of "part" to hexdigits as we can. */
2437 unsigned int curDigits = integerPartWidth / 4;
2438
2439 if (curDigits > outputDigits)
2440 curDigits = outputDigits;
2441 dst += partAsHex (dst, part, curDigits, hexDigitChars);
2442 outputDigits -= curDigits;
2443 }
2444
2445 if (roundUp) {
2446 char *q = dst;
2447
2448 /* Note that hexDigitChars has a trailing '0'. */
2449 do {
2450 q--;
2451 *q = hexDigitChars[hexDigitValue (*q) + 1];
Neil Booth978661d2007-10-06 00:24:48 +00002452 } while (*q == '0');
2453 assert (q >= p);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002454 } else {
2455 /* Add trailing zeroes. */
2456 memset (dst, '0', outputDigits);
2457 dst += outputDigits;
2458 }
2459
2460 /* Move the most significant digit to before the point, and if there
2461 is something after the decimal point add it. This must come
2462 after rounding above. */
2463 p[-1] = p[0];
2464 if (dst -1 == p)
2465 dst--;
2466 else
2467 p[0] = '.';
2468
2469 /* Finally output the exponent. */
2470 *dst++ = upperCase ? 'P': 'p';
2471
Neil Booth92f7e8d2007-10-06 07:29:25 +00002472 return writeSignedDecimal (dst, exponent);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002473}
2474
Dale Johannesen343e7702007-08-24 00:56:33 +00002475// For good performance it is desirable for different APFloats
2476// to produce different integers.
2477uint32_t
Neil Booth4f881702007-09-26 21:33:42 +00002478APFloat::getHashValue() const
2479{
Dale Johannesen343e7702007-08-24 00:56:33 +00002480 if (category==fcZero) return sign<<8 | semantics->precision ;
2481 else if (category==fcInfinity) return sign<<9 | semantics->precision;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002482 else if (category==fcNaN) return 1<<10 | semantics->precision;
Dale Johannesen343e7702007-08-24 00:56:33 +00002483 else {
2484 uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
2485 const integerPart* p = significandParts();
2486 for (int i=partCount(); i>0; i--, p++)
Evan Cheng48e8c802008-05-02 21:15:08 +00002487 hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
Dale Johannesen343e7702007-08-24 00:56:33 +00002488 return hash;
2489 }
2490}
2491
2492// Conversion from APFloat to/from host float/double. It may eventually be
2493// possible to eliminate these and have everybody deal with APFloats, but that
2494// will take a while. This approach will not easily extend to long double.
Dale Johannesena72a5a02007-09-20 23:47:58 +00002495// Current implementation requires integerPartWidth==64, which is correct at
2496// the moment but could be made more general.
Dale Johannesen343e7702007-08-24 00:56:33 +00002497
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002498// Denormals have exponent minExponent in APFloat, but minExponent-1 in
Dale Johannesena72a5a02007-09-20 23:47:58 +00002499// the actual IEEE respresentations. We compensate for that here.
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002500
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002501APInt
Neil Booth4f881702007-09-26 21:33:42 +00002502APFloat::convertF80LongDoubleAPFloatToAPInt() const
2503{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002504 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00002505 assert (partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002506
2507 uint64_t myexponent, mysignificand;
2508
2509 if (category==fcNormal) {
2510 myexponent = exponent+16383; //bias
Dale Johannesena72a5a02007-09-20 23:47:58 +00002511 mysignificand = significandParts()[0];
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002512 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2513 myexponent = 0; // denormal
2514 } else if (category==fcZero) {
2515 myexponent = 0;
2516 mysignificand = 0;
2517 } else if (category==fcInfinity) {
2518 myexponent = 0x7fff;
2519 mysignificand = 0x8000000000000000ULL;
Chris Lattnera11ef822007-10-06 06:13:42 +00002520 } else {
2521 assert(category == fcNaN && "Unknown category");
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002522 myexponent = 0x7fff;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002523 mysignificand = significandParts()[0];
Chris Lattnera11ef822007-10-06 06:13:42 +00002524 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002525
2526 uint64_t words[2];
Evan Cheng48e8c802008-05-02 21:15:08 +00002527 words[0] = ((uint64_t)(sign & 1) << 63) |
2528 ((myexponent & 0x7fffLL) << 48) |
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002529 ((mysignificand >>16) & 0xffffffffffffLL);
2530 words[1] = mysignificand & 0xffff;
Chris Lattnera11ef822007-10-06 06:13:42 +00002531 return APInt(80, 2, words);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002532}
2533
2534APInt
Dale Johannesena471c2e2007-10-11 18:07:22 +00002535APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2536{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002537 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002538 assert (partCount()==2);
2539
2540 uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
2541
2542 if (category==fcNormal) {
2543 myexponent = exponent + 1023; //bias
2544 myexponent2 = exponent2 + 1023;
2545 mysignificand = significandParts()[0];
2546 mysignificand2 = significandParts()[1];
2547 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2548 myexponent = 0; // denormal
2549 if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
2550 myexponent2 = 0; // denormal
2551 } else if (category==fcZero) {
2552 myexponent = 0;
2553 mysignificand = 0;
2554 myexponent2 = 0;
2555 mysignificand2 = 0;
2556 } else if (category==fcInfinity) {
2557 myexponent = 0x7ff;
2558 myexponent2 = 0;
2559 mysignificand = 0;
2560 mysignificand2 = 0;
2561 } else {
2562 assert(category == fcNaN && "Unknown category");
2563 myexponent = 0x7ff;
2564 mysignificand = significandParts()[0];
2565 myexponent2 = exponent2;
2566 mysignificand2 = significandParts()[1];
2567 }
2568
2569 uint64_t words[2];
Evan Cheng48e8c802008-05-02 21:15:08 +00002570 words[0] = ((uint64_t)(sign & 1) << 63) |
Dale Johannesena471c2e2007-10-11 18:07:22 +00002571 ((myexponent & 0x7ff) << 52) |
2572 (mysignificand & 0xfffffffffffffLL);
Evan Cheng48e8c802008-05-02 21:15:08 +00002573 words[1] = ((uint64_t)(sign2 & 1) << 63) |
Dale Johannesena471c2e2007-10-11 18:07:22 +00002574 ((myexponent2 & 0x7ff) << 52) |
2575 (mysignificand2 & 0xfffffffffffffLL);
2576 return APInt(128, 2, words);
2577}
2578
2579APInt
Neil Booth4f881702007-09-26 21:33:42 +00002580APFloat::convertDoubleAPFloatToAPInt() const
2581{
Dan Gohmancb648f92007-09-14 20:08:19 +00002582 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00002583 assert (partCount()==1);
2584
Dale Johanneseneaf08942007-08-31 04:03:46 +00002585 uint64_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002586
2587 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002588 myexponent = exponent+1023; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002589 mysignificand = *significandParts();
2590 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2591 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00002592 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002593 myexponent = 0;
2594 mysignificand = 0;
2595 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002596 myexponent = 0x7ff;
2597 mysignificand = 0;
Chris Lattnera11ef822007-10-06 06:13:42 +00002598 } else {
2599 assert(category == fcNaN && "Unknown category!");
Dale Johannesen343e7702007-08-24 00:56:33 +00002600 myexponent = 0x7ff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002601 mysignificand = *significandParts();
Chris Lattnera11ef822007-10-06 06:13:42 +00002602 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002603
Evan Cheng48e8c802008-05-02 21:15:08 +00002604 return APInt(64, ((((uint64_t)(sign & 1) << 63) |
Chris Lattnera11ef822007-10-06 06:13:42 +00002605 ((myexponent & 0x7ff) << 52) |
2606 (mysignificand & 0xfffffffffffffLL))));
Dale Johannesen343e7702007-08-24 00:56:33 +00002607}
2608
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002609APInt
Neil Booth4f881702007-09-26 21:33:42 +00002610APFloat::convertFloatAPFloatToAPInt() const
2611{
Dan Gohmancb648f92007-09-14 20:08:19 +00002612 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00002613 assert (partCount()==1);
Neil Booth4f881702007-09-26 21:33:42 +00002614
Dale Johanneseneaf08942007-08-31 04:03:46 +00002615 uint32_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002616
2617 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002618 myexponent = exponent+127; //bias
Evan Cheng48e8c802008-05-02 21:15:08 +00002619 mysignificand = (uint32_t)*significandParts();
Dale Johannesend0763b92007-11-17 01:02:27 +00002620 if (myexponent == 1 && !(mysignificand & 0x800000))
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002621 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00002622 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002623 myexponent = 0;
2624 mysignificand = 0;
2625 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002626 myexponent = 0xff;
2627 mysignificand = 0;
Chris Lattnera11ef822007-10-06 06:13:42 +00002628 } else {
2629 assert(category == fcNaN && "Unknown category!");
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002630 myexponent = 0xff;
Evan Cheng48e8c802008-05-02 21:15:08 +00002631 mysignificand = (uint32_t)*significandParts();
Chris Lattnera11ef822007-10-06 06:13:42 +00002632 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002633
Chris Lattnera11ef822007-10-06 06:13:42 +00002634 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
2635 (mysignificand & 0x7fffff)));
Dale Johannesen343e7702007-08-24 00:56:33 +00002636}
2637
Dale Johannesena471c2e2007-10-11 18:07:22 +00002638// This function creates an APInt that is just a bit map of the floating
2639// point constant as it would appear in memory. It is not a conversion,
2640// and treating the result as a normal integer is unlikely to be useful.
2641
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002642APInt
Dale Johannesen7111b022008-10-09 18:53:47 +00002643APFloat::bitcastToAPInt() const
Neil Booth4f881702007-09-26 21:33:42 +00002644{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002645 if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002646 return convertFloatAPFloatToAPInt();
Chris Lattnera11ef822007-10-06 06:13:42 +00002647
Dan Gohmanb10abe12008-01-29 12:08:20 +00002648 if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002649 return convertDoubleAPFloatToAPInt();
Neil Booth4f881702007-09-26 21:33:42 +00002650
Dan Gohmanb10abe12008-01-29 12:08:20 +00002651 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
Dale Johannesena471c2e2007-10-11 18:07:22 +00002652 return convertPPCDoubleDoubleAPFloatToAPInt();
2653
Dan Gohmanb10abe12008-01-29 12:08:20 +00002654 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
Chris Lattnera11ef822007-10-06 06:13:42 +00002655 "unknown format!");
2656 return convertF80LongDoubleAPFloatToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002657}
2658
Neil Booth4f881702007-09-26 21:33:42 +00002659float
2660APFloat::convertToFloat() const
2661{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002662 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Dale Johannesen7111b022008-10-09 18:53:47 +00002663 APInt api = bitcastToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002664 return api.bitsToFloat();
2665}
2666
Neil Booth4f881702007-09-26 21:33:42 +00002667double
2668APFloat::convertToDouble() const
2669{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002670 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Dale Johannesen7111b022008-10-09 18:53:47 +00002671 APInt api = bitcastToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002672 return api.bitsToDouble();
2673}
2674
Dale Johannesend3d8ce32008-10-06 18:22:29 +00002675/// Integer bit is explicit in this format. Intel hardware (387 and later)
2676/// does not support these bit patterns:
2677/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
2678/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
2679/// exponent = 0, integer bit 1 ("pseudodenormal")
2680/// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
2681/// At the moment, the first two are treated as NaNs, the second two as Normal.
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002682void
Neil Booth4f881702007-09-26 21:33:42 +00002683APFloat::initFromF80LongDoubleAPInt(const APInt &api)
2684{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002685 assert(api.getBitWidth()==80);
2686 uint64_t i1 = api.getRawData()[0];
2687 uint64_t i2 = api.getRawData()[1];
2688 uint64_t myexponent = (i1 >> 48) & 0x7fff;
2689 uint64_t mysignificand = ((i1 << 16) & 0xffffffffffff0000ULL) |
2690 (i2 & 0xffff);
2691
2692 initialize(&APFloat::x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00002693 assert(partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002694
Evan Cheng48e8c802008-05-02 21:15:08 +00002695 sign = static_cast<unsigned int>(i1>>63);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002696 if (myexponent==0 && mysignificand==0) {
2697 // exponent, significand meaningless
2698 category = fcZero;
2699 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
2700 // exponent, significand meaningless
2701 category = fcInfinity;
2702 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
2703 // exponent meaningless
2704 category = fcNaN;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002705 significandParts()[0] = mysignificand;
2706 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002707 } else {
2708 category = fcNormal;
2709 exponent = myexponent - 16383;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002710 significandParts()[0] = mysignificand;
2711 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002712 if (myexponent==0) // denormal
2713 exponent = -16382;
Neil Booth4f881702007-09-26 21:33:42 +00002714 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002715}
2716
2717void
Dale Johannesena471c2e2007-10-11 18:07:22 +00002718APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
2719{
2720 assert(api.getBitWidth()==128);
2721 uint64_t i1 = api.getRawData()[0];
2722 uint64_t i2 = api.getRawData()[1];
2723 uint64_t myexponent = (i1 >> 52) & 0x7ff;
2724 uint64_t mysignificand = i1 & 0xfffffffffffffLL;
2725 uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
2726 uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
2727
2728 initialize(&APFloat::PPCDoubleDouble);
2729 assert(partCount()==2);
2730
Evan Cheng48e8c802008-05-02 21:15:08 +00002731 sign = static_cast<unsigned int>(i1>>63);
2732 sign2 = static_cast<unsigned int>(i2>>63);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002733 if (myexponent==0 && mysignificand==0) {
2734 // exponent, significand meaningless
2735 // exponent2 and significand2 are required to be 0; we don't check
2736 category = fcZero;
2737 } else if (myexponent==0x7ff && mysignificand==0) {
2738 // exponent, significand meaningless
2739 // exponent2 and significand2 are required to be 0; we don't check
2740 category = fcInfinity;
2741 } else if (myexponent==0x7ff && mysignificand!=0) {
2742 // exponent meaningless. So is the whole second word, but keep it
2743 // for determinism.
2744 category = fcNaN;
2745 exponent2 = myexponent2;
2746 significandParts()[0] = mysignificand;
2747 significandParts()[1] = mysignificand2;
2748 } else {
2749 category = fcNormal;
2750 // Note there is no category2; the second word is treated as if it is
2751 // fcNormal, although it might be something else considered by itself.
2752 exponent = myexponent - 1023;
2753 exponent2 = myexponent2 - 1023;
2754 significandParts()[0] = mysignificand;
2755 significandParts()[1] = mysignificand2;
2756 if (myexponent==0) // denormal
2757 exponent = -1022;
2758 else
2759 significandParts()[0] |= 0x10000000000000LL; // integer bit
2760 if (myexponent2==0)
2761 exponent2 = -1022;
2762 else
2763 significandParts()[1] |= 0x10000000000000LL; // integer bit
2764 }
2765}
2766
2767void
Neil Booth4f881702007-09-26 21:33:42 +00002768APFloat::initFromDoubleAPInt(const APInt &api)
2769{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002770 assert(api.getBitWidth()==64);
2771 uint64_t i = *api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00002772 uint64_t myexponent = (i >> 52) & 0x7ff;
2773 uint64_t mysignificand = i & 0xfffffffffffffLL;
2774
Dale Johannesen343e7702007-08-24 00:56:33 +00002775 initialize(&APFloat::IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00002776 assert(partCount()==1);
2777
Evan Cheng48e8c802008-05-02 21:15:08 +00002778 sign = static_cast<unsigned int>(i>>63);
Dale Johannesen343e7702007-08-24 00:56:33 +00002779 if (myexponent==0 && mysignificand==0) {
2780 // exponent, significand meaningless
2781 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00002782 } else if (myexponent==0x7ff && mysignificand==0) {
2783 // exponent, significand meaningless
2784 category = fcInfinity;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002785 } else if (myexponent==0x7ff && mysignificand!=0) {
2786 // exponent meaningless
2787 category = fcNaN;
2788 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002789 } else {
Dale Johannesen343e7702007-08-24 00:56:33 +00002790 category = fcNormal;
2791 exponent = myexponent - 1023;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002792 *significandParts() = mysignificand;
2793 if (myexponent==0) // denormal
2794 exponent = -1022;
2795 else
2796 *significandParts() |= 0x10000000000000LL; // integer bit
Neil Booth4f881702007-09-26 21:33:42 +00002797 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002798}
2799
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002800void
Neil Booth4f881702007-09-26 21:33:42 +00002801APFloat::initFromFloatAPInt(const APInt & api)
2802{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002803 assert(api.getBitWidth()==32);
2804 uint32_t i = (uint32_t)*api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00002805 uint32_t myexponent = (i >> 23) & 0xff;
2806 uint32_t mysignificand = i & 0x7fffff;
2807
Dale Johannesen343e7702007-08-24 00:56:33 +00002808 initialize(&APFloat::IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00002809 assert(partCount()==1);
2810
Dale Johanneseneaf08942007-08-31 04:03:46 +00002811 sign = i >> 31;
Dale Johannesen343e7702007-08-24 00:56:33 +00002812 if (myexponent==0 && mysignificand==0) {
2813 // exponent, significand meaningless
2814 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00002815 } else if (myexponent==0xff && mysignificand==0) {
2816 // exponent, significand meaningless
2817 category = fcInfinity;
Dale Johannesen902ff942007-09-25 17:25:00 +00002818 } else if (myexponent==0xff && mysignificand!=0) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002819 // sign, exponent, significand meaningless
Dale Johanneseneaf08942007-08-31 04:03:46 +00002820 category = fcNaN;
2821 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002822 } else {
2823 category = fcNormal;
Dale Johannesen343e7702007-08-24 00:56:33 +00002824 exponent = myexponent - 127; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002825 *significandParts() = mysignificand;
2826 if (myexponent==0) // denormal
2827 exponent = -126;
2828 else
2829 *significandParts() |= 0x800000; // integer bit
Dale Johannesen343e7702007-08-24 00:56:33 +00002830 }
2831}
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002832
2833/// Treat api as containing the bits of a floating point number. Currently
Dale Johannesena471c2e2007-10-11 18:07:22 +00002834/// we infer the floating point type from the size of the APInt. The
2835/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
2836/// when the size is anything else).
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002837void
Dale Johannesena471c2e2007-10-11 18:07:22 +00002838APFloat::initFromAPInt(const APInt& api, bool isIEEE)
Neil Booth4f881702007-09-26 21:33:42 +00002839{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002840 if (api.getBitWidth() == 32)
2841 return initFromFloatAPInt(api);
2842 else if (api.getBitWidth()==64)
2843 return initFromDoubleAPInt(api);
2844 else if (api.getBitWidth()==80)
2845 return initFromF80LongDoubleAPInt(api);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002846 else if (api.getBitWidth()==128 && !isIEEE)
2847 return initFromPPCDoubleDoubleAPInt(api);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002848 else
2849 assert(0);
2850}
2851
Dale Johannesena471c2e2007-10-11 18:07:22 +00002852APFloat::APFloat(const APInt& api, bool isIEEE)
Neil Booth4f881702007-09-26 21:33:42 +00002853{
Dale Johannesena471c2e2007-10-11 18:07:22 +00002854 initFromAPInt(api, isIEEE);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002855}
2856
Neil Booth4f881702007-09-26 21:33:42 +00002857APFloat::APFloat(float f)
2858{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002859 APInt api = APInt(32, 0);
2860 initFromAPInt(api.floatToBits(f));
2861}
2862
Neil Booth4f881702007-09-26 21:33:42 +00002863APFloat::APFloat(double d)
2864{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002865 APInt api = APInt(64, 0);
2866 initFromAPInt(api.doubleToBits(d));
2867}