blob: f307184561342034c83fceaf4dcd893de53583a2 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
Owen Anderson1636de92007-09-07 04:06:50 +000019#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohman12a9c082008-02-06 22:27:42 +000027#include "llvm/CodeGen/PseudoSourceValue.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028#include "llvm/CodeGen/SelectionDAG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39 cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44 setPow2DivIsCheap();
45
46 // Use _setjmp/_longjmp instead of setjmp/longjmp.
47 setUseUnderscoreSetJmp(true);
48 setUseUnderscoreLongJmp(true);
49
50 // Set up the register classes.
51 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
Duncan Sands082524c2008-01-23 20:39:46 +000056 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000057 setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
Duncan Sands082524c2008-01-23 20:39:46 +000058
Chris Lattner3bc08502008-01-17 19:59:44 +000059 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
Dan Gohmanf17a25c2007-07-18 16:29:46 +000061 // PowerPC has pre-inc load and store's.
62 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
Dale Johannesen472d15d2007-10-06 01:24:11 +000073 // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74 setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75 setConvertAction(MVT::ppcf128, MVT::f32, Expand);
Dale Johannesen3d8578b2007-10-10 01:01:31 +000076 // This is used in the ppcf128->int sequence. Note it has different semantics
77 // from FP_ROUND: that rounds to nearest, this rounds to zero.
78 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
Dale Johannesen472d15d2007-10-06 01:24:11 +000079
Dan Gohmanf17a25c2007-07-18 16:29:46 +000080 // PowerPC has no intrinsics for these particular operations
81 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
82 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
83 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
Andrew Lenharth0531ec52008-02-16 14:46:26 +000084 setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
85
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086 // PowerPC has no SREM/UREM instructions
87 setOperationAction(ISD::SREM, MVT::i32, Expand);
88 setOperationAction(ISD::UREM, MVT::i32, Expand);
89 setOperationAction(ISD::SREM, MVT::i64, Expand);
90 setOperationAction(ISD::UREM, MVT::i64, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +000091
92 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
93 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
94 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
95 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
96 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
97 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
98 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
99 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
100 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000101
Dan Gohman2f7b1982007-10-11 23:21:31 +0000102 // We don't support sin/cos/sqrt/fmod/pow
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 setOperationAction(ISD::FSIN , MVT::f64, Expand);
104 setOperationAction(ISD::FCOS , MVT::f64, Expand);
105 setOperationAction(ISD::FREM , MVT::f64, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000106 setOperationAction(ISD::FPOW , MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107 setOperationAction(ISD::FSIN , MVT::f32, Expand);
108 setOperationAction(ISD::FCOS , MVT::f32, Expand);
109 setOperationAction(ISD::FREM , MVT::f32, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000110 setOperationAction(ISD::FPOW , MVT::f32, Expand);
Dale Johannesen436e3802008-01-18 19:55:37 +0000111
Dan Gohman819574c2008-01-31 00:41:03 +0000112 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000113
114 // If we're enabling GP optimizations, use hardware square root
115 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
116 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
117 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
118 }
119
120 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
121 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
122
123 // PowerPC does not have BSWAP, CTPOP or CTTZ
124 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
125 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
126 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
127 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
128 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
129 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
130
131 // PowerPC does not have ROTR
132 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
133
134 // PowerPC does not have Select
135 setOperationAction(ISD::SELECT, MVT::i32, Expand);
136 setOperationAction(ISD::SELECT, MVT::i64, Expand);
137 setOperationAction(ISD::SELECT, MVT::f32, Expand);
138 setOperationAction(ISD::SELECT, MVT::f64, Expand);
139
140 // PowerPC wants to turn select_cc of FP into fsel when possible.
141 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
142 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
143
144 // PowerPC wants to optimize integer setcc a bit
145 setOperationAction(ISD::SETCC, MVT::i32, Custom);
146
147 // PowerPC does not have BRCOND which requires SetCC
148 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
149
150 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
151
152 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
153 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
154
155 // PowerPC does not have [U|S]INT_TO_FP
156 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
157 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
158
159 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
160 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
161 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
162 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
163
164 // We cannot sextinreg(i1). Expand to shifts.
165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
166
167 // Support label based line numbers.
168 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
169 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Nicolas Geoffray61864762007-12-21 12:19:44 +0000170
171 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
172 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
173 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
174 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
175
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176
177 // We want to legalize GlobalAddress and ConstantPool nodes into the
178 // appropriate instructions to materialize the address.
179 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
181 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
182 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
183 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
184 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
185 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
186 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
187
188 // RET must be custom lowered, to meet ABI requirements
189 setOperationAction(ISD::RET , MVT::Other, Custom);
Duncan Sands38947cd2007-07-27 12:58:54 +0000190
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
192 setOperationAction(ISD::VASTART , MVT::Other, Custom);
193
194 // VAARG is custom lowered with ELF 32 ABI
195 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
196 setOperationAction(ISD::VAARG, MVT::Other, Custom);
197 else
198 setOperationAction(ISD::VAARG, MVT::Other, Expand);
199
200 // Use the default implementation.
201 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
202 setOperationAction(ISD::VAEND , MVT::Other, Expand);
203 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
204 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
205 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
206 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
207
208 // We want to custom lower some of our intrinsics.
209 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
210
211 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
212 // They also have instructions for converting between i64 and fp.
213 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
214 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
215 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
216 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
217 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
218
219 // FIXME: disable this lowered code. This generates 64-bit register values,
220 // and we don't model the fact that the top part is clobbered by calls. We
221 // need to flag these together so that the value isn't live across a call.
222 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
223
224 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
225 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
226 } else {
227 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
228 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
229 }
230
231 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000232 // 64-bit PowerPC implementations can support i64 types directly
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000233 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
234 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
235 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
Dan Gohman71619ec2008-03-07 20:36:53 +0000236 // 64-bit PowerPC wants to expand i128 shifts itself.
237 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
238 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
239 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240 } else {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000241 // 32-bit PowerPC wants to expand i64 shifts itself.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
243 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
244 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
245 }
246
247 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
248 // First set operation action for all vector types to expand. Then we
249 // will selectively turn on ones that can be effectively codegen'd.
250 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
251 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
252 // add/sub are legal for all supported vector VT's.
253 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
254 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
255
256 // We promote all shuffles to v16i8.
257 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
258 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
259
260 // We promote all non-typed operations to v4i32.
261 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
262 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
263 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
264 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
265 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
266 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
267 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
268 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
269 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
270 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
271 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
272 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
273
274 // No other operations are legal.
275 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
276 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
277 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
278 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
279 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
280 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
Evan Chengc5912e32007-07-30 07:51:22 +0000281 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000282 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
283 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
284 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +0000285 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
286 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
287 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
288 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohman4e22ac42007-10-12 14:08:57 +0000290 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
291 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
292 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
293 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000294 }
295
296 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
297 // with merges, splats, etc.
298 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
299
300 setOperationAction(ISD::AND , MVT::v4i32, Legal);
301 setOperationAction(ISD::OR , MVT::v4i32, Legal);
302 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
303 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
304 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
305 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
306
307 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
308 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
309 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
310 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
311
312 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
313 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
314 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
315 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
316
317 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
318 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
319
320 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
321 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
322 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
323 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
324 }
325
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000326 setShiftAmountType(MVT::i32);
327 setSetCCResultContents(ZeroOrOneSetCCResult);
328
329 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
330 setStackPointerRegisterToSaveRestore(PPC::X1);
331 setExceptionPointerRegister(PPC::X3);
332 setExceptionSelectorRegister(PPC::X4);
333 } else {
334 setStackPointerRegisterToSaveRestore(PPC::R1);
335 setExceptionPointerRegister(PPC::R3);
336 setExceptionSelectorRegister(PPC::R4);
337 }
338
339 // We have target-specific dag combine patterns for the following nodes:
340 setTargetDAGCombine(ISD::SINT_TO_FP);
341 setTargetDAGCombine(ISD::STORE);
342 setTargetDAGCombine(ISD::BR_CC);
343 setTargetDAGCombine(ISD::BSWAP);
344
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000345 // Darwin long double math library functions have $LDBL128 appended.
346 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
Duncan Sands37a3f472008-01-10 10:28:30 +0000347 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000348 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
349 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
Duncan Sands37a3f472008-01-10 10:28:30 +0000350 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
351 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000352 }
353
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000354 computeRegisterProperties();
355}
356
Dale Johannesen88945f82008-02-28 22:31:51 +0000357/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
358/// function arguments in the caller parameter area.
359unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
360 TargetMachine &TM = getTargetMachine();
361 // Darwin passes everything on 4 byte boundary.
362 if (TM.getSubtarget<PPCSubtarget>().isDarwin())
363 return 4;
364 // FIXME Elf TBD
365 return 4;
366}
367
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
369 switch (Opcode) {
370 default: return 0;
371 case PPCISD::FSEL: return "PPCISD::FSEL";
372 case PPCISD::FCFID: return "PPCISD::FCFID";
373 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
374 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
375 case PPCISD::STFIWX: return "PPCISD::STFIWX";
376 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
377 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
378 case PPCISD::VPERM: return "PPCISD::VPERM";
379 case PPCISD::Hi: return "PPCISD::Hi";
380 case PPCISD::Lo: return "PPCISD::Lo";
381 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
382 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
383 case PPCISD::SRL: return "PPCISD::SRL";
384 case PPCISD::SRA: return "PPCISD::SRA";
385 case PPCISD::SHL: return "PPCISD::SHL";
386 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
387 case PPCISD::STD_32: return "PPCISD::STD_32";
388 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
389 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
390 case PPCISD::MTCTR: return "PPCISD::MTCTR";
391 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
392 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
393 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
394 case PPCISD::MFCR: return "PPCISD::MFCR";
395 case PPCISD::VCMP: return "PPCISD::VCMP";
396 case PPCISD::VCMPo: return "PPCISD::VCMPo";
397 case PPCISD::LBRX: return "PPCISD::LBRX";
398 case PPCISD::STBRX: return "PPCISD::STBRX";
399 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
Chris Lattnere2a6e9f2008-01-18 18:51:16 +0000400 case PPCISD::MFFS: return "PPCISD::MFFS";
401 case PPCISD::MTFSB0: return "PPCISD::MTFSB0";
402 case PPCISD::MTFSB1: return "PPCISD::MTFSB1";
403 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
404 case PPCISD::MTFSF: return "PPCISD::MTFSF";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 }
406}
407
Scott Michel502151f2008-03-10 15:42:14 +0000408
409MVT::ValueType
410PPCTargetLowering::getSetCCResultType(const SDOperand &) const {
411 return MVT::i32;
412}
413
414
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415//===----------------------------------------------------------------------===//
416// Node matching predicates, for use by the tblgen matching code.
417//===----------------------------------------------------------------------===//
418
419/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
420static bool isFloatingPointZero(SDOperand Op) {
421 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000422 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
424 // Maybe this has already been legalized into the constant pool?
425 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
426 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000427 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000428 }
429 return false;
430}
431
432/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
433/// true if Op is undef or if it matches the specified value.
434static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
435 return Op.getOpcode() == ISD::UNDEF ||
436 cast<ConstantSDNode>(Op)->getValue() == Val;
437}
438
439/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
440/// VPKUHUM instruction.
441bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
442 if (!isUnary) {
443 for (unsigned i = 0; i != 16; ++i)
444 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
445 return false;
446 } else {
447 for (unsigned i = 0; i != 8; ++i)
448 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
449 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
450 return false;
451 }
452 return true;
453}
454
455/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
456/// VPKUWUM instruction.
457bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
458 if (!isUnary) {
459 for (unsigned i = 0; i != 16; i += 2)
460 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
461 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
462 return false;
463 } else {
464 for (unsigned i = 0; i != 8; i += 2)
465 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
466 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
467 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
468 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
469 return false;
470 }
471 return true;
472}
473
474/// isVMerge - Common function, used to match vmrg* shuffles.
475///
476static bool isVMerge(SDNode *N, unsigned UnitSize,
477 unsigned LHSStart, unsigned RHSStart) {
478 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
479 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
480 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
481 "Unsupported merge size!");
482
483 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
484 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
485 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
486 LHSStart+j+i*UnitSize) ||
487 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
488 RHSStart+j+i*UnitSize))
489 return false;
490 }
491 return true;
492}
493
494/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
495/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
496bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
497 if (!isUnary)
498 return isVMerge(N, UnitSize, 8, 24);
499 return isVMerge(N, UnitSize, 8, 8);
500}
501
502/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
503/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
504bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
505 if (!isUnary)
506 return isVMerge(N, UnitSize, 0, 16);
507 return isVMerge(N, UnitSize, 0, 0);
508}
509
510
511/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
512/// amount, otherwise return -1.
513int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
514 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
515 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
516 // Find the first non-undef value in the shuffle mask.
517 unsigned i;
518 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
519 /*search*/;
520
521 if (i == 16) return -1; // all undef.
522
523 // Otherwise, check to see if the rest of the elements are consequtively
524 // numbered from this value.
525 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
526 if (ShiftAmt < i) return -1;
527 ShiftAmt -= i;
528
529 if (!isUnary) {
530 // Check the rest of the elements to see if they are consequtive.
531 for (++i; i != 16; ++i)
532 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
533 return -1;
534 } else {
535 // Check the rest of the elements to see if they are consequtive.
536 for (++i; i != 16; ++i)
537 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
538 return -1;
539 }
540
541 return ShiftAmt;
542}
543
544/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
545/// specifies a splat of a single element that is suitable for input to
546/// VSPLTB/VSPLTH/VSPLTW.
547bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
548 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
549 N->getNumOperands() == 16 &&
550 (EltSize == 1 || EltSize == 2 || EltSize == 4));
551
552 // This is a splat operation if each element of the permute is the same, and
553 // if the value doesn't reference the second vector.
554 unsigned ElementBase = 0;
555 SDOperand Elt = N->getOperand(0);
556 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
557 ElementBase = EltV->getValue();
558 else
559 return false; // FIXME: Handle UNDEF elements too!
560
561 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
562 return false;
563
564 // Check that they are consequtive.
565 for (unsigned i = 1; i != EltSize; ++i) {
566 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
567 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
568 return false;
569 }
570
571 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
572 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
573 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
574 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
575 "Invalid VECTOR_SHUFFLE mask!");
576 for (unsigned j = 0; j != EltSize; ++j)
577 if (N->getOperand(i+j) != N->getOperand(j))
578 return false;
579 }
580
581 return true;
582}
583
Evan Chengc5912e32007-07-30 07:51:22 +0000584/// isAllNegativeZeroVector - Returns true if all elements of build_vector
585/// are -0.0.
586bool PPC::isAllNegativeZeroVector(SDNode *N) {
587 assert(N->getOpcode() == ISD::BUILD_VECTOR);
588 if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
589 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000590 return CFP->getValueAPF().isNegZero();
Evan Chengc5912e32007-07-30 07:51:22 +0000591 return false;
592}
593
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000594/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
595/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
596unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
597 assert(isSplatShuffleMask(N, EltSize));
598 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
599}
600
601/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
602/// by using a vspltis[bhw] instruction of the specified element size, return
603/// the constant being splatted. The ByteSize field indicates the number of
604/// bytes of each element [124] -> [bhw].
605SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
606 SDOperand OpVal(0, 0);
607
608 // If ByteSize of the splat is bigger than the element size of the
609 // build_vector, then we have a case where we are checking for a splat where
610 // multiple elements of the buildvector are folded together into a single
611 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
612 unsigned EltSize = 16/N->getNumOperands();
613 if (EltSize < ByteSize) {
614 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
615 SDOperand UniquedVals[4];
616 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
617
618 // See if all of the elements in the buildvector agree across.
619 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
620 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
621 // If the element isn't a constant, bail fully out.
622 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
623
624
625 if (UniquedVals[i&(Multiple-1)].Val == 0)
626 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
627 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
628 return SDOperand(); // no match.
629 }
630
631 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
632 // either constant or undef values that are identical for each chunk. See
633 // if these chunks can form into a larger vspltis*.
634
635 // Check to see if all of the leading entries are either 0 or -1. If
636 // neither, then this won't fit into the immediate field.
637 bool LeadingZero = true;
638 bool LeadingOnes = true;
639 for (unsigned i = 0; i != Multiple-1; ++i) {
640 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
641
642 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
643 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
644 }
645 // Finally, check the least significant entry.
646 if (LeadingZero) {
647 if (UniquedVals[Multiple-1].Val == 0)
648 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
649 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
650 if (Val < 16)
651 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
652 }
653 if (LeadingOnes) {
654 if (UniquedVals[Multiple-1].Val == 0)
655 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
656 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
657 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
658 return DAG.getTargetConstant(Val, MVT::i32);
659 }
660
661 return SDOperand();
662 }
663
664 // Check to see if this buildvec has a single non-undef value in its elements.
665 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
666 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
667 if (OpVal.Val == 0)
668 OpVal = N->getOperand(i);
669 else if (OpVal != N->getOperand(i))
670 return SDOperand();
671 }
672
673 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
674
675 unsigned ValSizeInBytes = 0;
676 uint64_t Value = 0;
677 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
678 Value = CN->getValue();
679 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
680 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
681 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +0000682 Value = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000683 ValSizeInBytes = 4;
684 }
685
686 // If the splat value is larger than the element value, then we can never do
687 // this splat. The only case that we could fit the replicated bits into our
688 // immediate field for would be zero, and we prefer to use vxor for it.
689 if (ValSizeInBytes < ByteSize) return SDOperand();
690
691 // If the element value is larger than the splat value, cut it in half and
692 // check to see if the two halves are equal. Continue doing this until we
693 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
694 while (ValSizeInBytes > ByteSize) {
695 ValSizeInBytes >>= 1;
696
697 // If the top half equals the bottom half, we're still ok.
698 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
699 (Value & ((1 << (8*ValSizeInBytes))-1)))
700 return SDOperand();
701 }
702
703 // Properly sign extend the value.
704 int ShAmt = (4-ByteSize)*8;
705 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
706
707 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
708 if (MaskVal == 0) return SDOperand();
709
710 // Finally, if this value fits in a 5 bit sext field, return it
711 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
712 return DAG.getTargetConstant(MaskVal, MVT::i32);
713 return SDOperand();
714}
715
716//===----------------------------------------------------------------------===//
717// Addressing Mode Selection
718//===----------------------------------------------------------------------===//
719
720/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
721/// or 64-bit immediate, and if the value can be accurately represented as a
722/// sign extension from a 16-bit value. If so, this returns true and the
723/// immediate.
724static bool isIntS16Immediate(SDNode *N, short &Imm) {
725 if (N->getOpcode() != ISD::Constant)
726 return false;
727
728 Imm = (short)cast<ConstantSDNode>(N)->getValue();
729 if (N->getValueType(0) == MVT::i32)
730 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
731 else
732 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
733}
734static bool isIntS16Immediate(SDOperand Op, short &Imm) {
735 return isIntS16Immediate(Op.Val, Imm);
736}
737
738
739/// SelectAddressRegReg - Given the specified addressed, check to see if it
740/// can be represented as an indexed [r+r] operation. Returns false if it
741/// can be more efficiently represented with [r+imm].
742bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
743 SDOperand &Index,
744 SelectionDAG &DAG) {
745 short imm = 0;
746 if (N.getOpcode() == ISD::ADD) {
747 if (isIntS16Immediate(N.getOperand(1), imm))
748 return false; // r+i
749 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
750 return false; // r+i
751
752 Base = N.getOperand(0);
753 Index = N.getOperand(1);
754 return true;
755 } else if (N.getOpcode() == ISD::OR) {
756 if (isIntS16Immediate(N.getOperand(1), imm))
757 return false; // r+i can fold it if we can.
758
759 // If this is an or of disjoint bitfields, we can codegen this as an add
760 // (for better address arithmetic) if the LHS and RHS of the OR are provably
761 // disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000762 APInt LHSKnownZero, LHSKnownOne;
763 APInt RHSKnownZero, RHSKnownOne;
764 DAG.ComputeMaskedBits(N.getOperand(0),
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000765 APInt::getAllOnesValue(N.getOperand(0)
766 .getValueSizeInBits()),
Dan Gohman63f4e462008-02-27 01:23:58 +0000767 LHSKnownZero, LHSKnownOne);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000768
Dan Gohman63f4e462008-02-27 01:23:58 +0000769 if (LHSKnownZero.getBoolValue()) {
770 DAG.ComputeMaskedBits(N.getOperand(1),
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000771 APInt::getAllOnesValue(N.getOperand(1)
772 .getValueSizeInBits()),
Dan Gohman63f4e462008-02-27 01:23:58 +0000773 RHSKnownZero, RHSKnownOne);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000774 // If all of the bits are known zero on the LHS or RHS, the add won't
775 // carry.
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000776 if (~(LHSKnownZero | RHSKnownZero) == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000777 Base = N.getOperand(0);
778 Index = N.getOperand(1);
779 return true;
780 }
781 }
782 }
783
784 return false;
785}
786
787/// Returns true if the address N can be represented by a base register plus
788/// a signed 16-bit displacement [r+imm], and if it is not better
789/// represented as reg+reg.
790bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
791 SDOperand &Base, SelectionDAG &DAG){
792 // If this can be more profitably realized as r+r, fail.
793 if (SelectAddressRegReg(N, Disp, Base, DAG))
794 return false;
795
796 if (N.getOpcode() == ISD::ADD) {
797 short imm = 0;
798 if (isIntS16Immediate(N.getOperand(1), imm)) {
799 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
800 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
801 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
802 } else {
803 Base = N.getOperand(0);
804 }
805 return true; // [r+i]
806 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
807 // Match LOAD (ADD (X, Lo(G))).
808 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
809 && "Cannot handle constant offsets yet!");
810 Disp = N.getOperand(1).getOperand(0); // The global address.
811 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
812 Disp.getOpcode() == ISD::TargetConstantPool ||
813 Disp.getOpcode() == ISD::TargetJumpTable);
814 Base = N.getOperand(0);
815 return true; // [&g+r]
816 }
817 } else if (N.getOpcode() == ISD::OR) {
818 short imm = 0;
819 if (isIntS16Immediate(N.getOperand(1), imm)) {
820 // If this is an or of disjoint bitfields, we can codegen this as an add
821 // (for better address arithmetic) if the LHS and RHS of the OR are
822 // provably disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000823 APInt LHSKnownZero, LHSKnownOne;
824 DAG.ComputeMaskedBits(N.getOperand(0),
Bill Wendlinga77e9f02008-03-24 23:16:37 +0000825 APInt::getAllOnesValue(N.getOperand(0)
826 .getValueSizeInBits()),
Dan Gohman63f4e462008-02-27 01:23:58 +0000827 LHSKnownZero, LHSKnownOne);
Bill Wendlinga77e9f02008-03-24 23:16:37 +0000828
Dan Gohman63f4e462008-02-27 01:23:58 +0000829 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000830 // If all of the bits are known zero on the LHS or RHS, the add won't
831 // carry.
832 Base = N.getOperand(0);
833 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
834 return true;
835 }
836 }
837 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
838 // Loading from a constant address.
839
840 // If this address fits entirely in a 16-bit sext immediate field, codegen
841 // this as "d, 0"
842 short Imm;
843 if (isIntS16Immediate(CN, Imm)) {
844 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
845 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
846 return true;
847 }
848
849 // Handle 32-bit sext immediates with LIS + addr mode.
850 if (CN->getValueType(0) == MVT::i32 ||
851 (int64_t)CN->getValue() == (int)CN->getValue()) {
852 int Addr = (int)CN->getValue();
853
854 // Otherwise, break this down into an LIS + disp.
855 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
856
857 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
858 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
859 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
860 return true;
861 }
862 }
863
864 Disp = DAG.getTargetConstant(0, getPointerTy());
865 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
866 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
867 else
868 Base = N;
869 return true; // [r+0]
870}
871
872/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
873/// represented as an indexed [r+r] operation.
874bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
875 SDOperand &Index,
876 SelectionDAG &DAG) {
877 // Check to see if we can easily represent this as an [r+r] address. This
878 // will fail if it thinks that the address is more profitably represented as
879 // reg+imm, e.g. where imm = 0.
880 if (SelectAddressRegReg(N, Base, Index, DAG))
881 return true;
882
883 // If the operand is an addition, always emit this as [r+r], since this is
884 // better (for code size, and execution, as the memop does the add for free)
885 // than emitting an explicit add.
886 if (N.getOpcode() == ISD::ADD) {
887 Base = N.getOperand(0);
888 Index = N.getOperand(1);
889 return true;
890 }
891
892 // Otherwise, do it the hard way, using R0 as the base register.
893 Base = DAG.getRegister(PPC::R0, N.getValueType());
894 Index = N;
895 return true;
896}
897
898/// SelectAddressRegImmShift - Returns true if the address N can be
899/// represented by a base register plus a signed 14-bit displacement
900/// [r+imm*4]. Suitable for use by STD and friends.
901bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
902 SDOperand &Base,
903 SelectionDAG &DAG) {
904 // If this can be more profitably realized as r+r, fail.
905 if (SelectAddressRegReg(N, Disp, Base, DAG))
906 return false;
907
908 if (N.getOpcode() == ISD::ADD) {
909 short imm = 0;
910 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
911 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
912 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
913 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
914 } else {
915 Base = N.getOperand(0);
916 }
917 return true; // [r+i]
918 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
919 // Match LOAD (ADD (X, Lo(G))).
920 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
921 && "Cannot handle constant offsets yet!");
922 Disp = N.getOperand(1).getOperand(0); // The global address.
923 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
924 Disp.getOpcode() == ISD::TargetConstantPool ||
925 Disp.getOpcode() == ISD::TargetJumpTable);
926 Base = N.getOperand(0);
927 return true; // [&g+r]
928 }
929 } else if (N.getOpcode() == ISD::OR) {
930 short imm = 0;
931 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
932 // If this is an or of disjoint bitfields, we can codegen this as an add
933 // (for better address arithmetic) if the LHS and RHS of the OR are
934 // provably disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000935 APInt LHSKnownZero, LHSKnownOne;
936 DAG.ComputeMaskedBits(N.getOperand(0),
Bill Wendlinga77e9f02008-03-24 23:16:37 +0000937 APInt::getAllOnesValue(N.getOperand(0)
938 .getValueSizeInBits()),
Dan Gohman63f4e462008-02-27 01:23:58 +0000939 LHSKnownZero, LHSKnownOne);
940 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000941 // If all of the bits are known zero on the LHS or RHS, the add won't
942 // carry.
943 Base = N.getOperand(0);
944 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
945 return true;
946 }
947 }
948 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
949 // Loading from a constant address. Verify low two bits are clear.
950 if ((CN->getValue() & 3) == 0) {
951 // If this address fits entirely in a 14-bit sext immediate field, codegen
952 // this as "d, 0"
953 short Imm;
954 if (isIntS16Immediate(CN, Imm)) {
955 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
956 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
957 return true;
958 }
959
960 // Fold the low-part of 32-bit absolute addresses into addr mode.
961 if (CN->getValueType(0) == MVT::i32 ||
962 (int64_t)CN->getValue() == (int)CN->getValue()) {
963 int Addr = (int)CN->getValue();
964
965 // Otherwise, break this down into an LIS + disp.
966 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
967
968 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
969 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
970 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
971 return true;
972 }
973 }
974 }
975
976 Disp = DAG.getTargetConstant(0, getPointerTy());
977 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
978 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
979 else
980 Base = N;
981 return true; // [r+0]
982}
983
984
985/// getPreIndexedAddressParts - returns true by value, base pointer and
986/// offset pointer and addressing mode by reference if the node's address
987/// can be legally represented as pre-indexed load / store address.
988bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
989 SDOperand &Offset,
990 ISD::MemIndexedMode &AM,
991 SelectionDAG &DAG) {
992 // Disabled by default for now.
993 if (!EnablePPCPreinc) return false;
994
995 SDOperand Ptr;
996 MVT::ValueType VT;
997 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
998 Ptr = LD->getBasePtr();
Dan Gohman9a4c92c2008-01-30 00:15:11 +0000999 VT = LD->getMemoryVT();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001000
1001 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1002 ST = ST;
1003 Ptr = ST->getBasePtr();
Dan Gohman9a4c92c2008-01-30 00:15:11 +00001004 VT = ST->getMemoryVT();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005 } else
1006 return false;
1007
1008 // PowerPC doesn't have preinc load/store instructions for vectors.
1009 if (MVT::isVector(VT))
1010 return false;
1011
1012 // TODO: Check reg+reg first.
1013
1014 // LDU/STU use reg+imm*4, others use reg+imm.
1015 if (VT != MVT::i64) {
1016 // reg + imm
1017 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1018 return false;
1019 } else {
1020 // reg + imm * 4.
1021 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1022 return false;
1023 }
1024
1025 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1026 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1027 // sext i32 to i64 when addr mode is r+i.
Dan Gohman9a4c92c2008-01-30 00:15:11 +00001028 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 LD->getExtensionType() == ISD::SEXTLOAD &&
1030 isa<ConstantSDNode>(Offset))
1031 return false;
1032 }
1033
1034 AM = ISD::PRE_INC;
1035 return true;
1036}
1037
1038//===----------------------------------------------------------------------===//
1039// LowerOperation implementation
1040//===----------------------------------------------------------------------===//
1041
Dale Johannesen8be83a72008-03-04 23:17:14 +00001042SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op,
1043 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001044 MVT::ValueType PtrVT = Op.getValueType();
1045 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1046 Constant *C = CP->getConstVal();
1047 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1048 SDOperand Zero = DAG.getConstant(0, PtrVT);
1049
1050 const TargetMachine &TM = DAG.getTarget();
1051
1052 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1053 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1054
1055 // If this is a non-darwin platform, we don't support non-static relo models
1056 // yet.
1057 if (TM.getRelocationModel() == Reloc::Static ||
1058 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1059 // Generate non-pic code that has direct accesses to the constant pool.
1060 // The address of the global is just (hi(&g)+lo(&g)).
1061 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1062 }
1063
1064 if (TM.getRelocationModel() == Reloc::PIC_) {
1065 // With PIC, the first instruction is actually "GR+hi(&G)".
1066 Hi = DAG.getNode(ISD::ADD, PtrVT,
1067 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1068 }
1069
1070 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1071 return Lo;
1072}
1073
Dale Johannesen8be83a72008-03-04 23:17:14 +00001074SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001075 MVT::ValueType PtrVT = Op.getValueType();
1076 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1077 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1078 SDOperand Zero = DAG.getConstant(0, PtrVT);
1079
1080 const TargetMachine &TM = DAG.getTarget();
1081
1082 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1083 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1084
1085 // If this is a non-darwin platform, we don't support non-static relo models
1086 // yet.
1087 if (TM.getRelocationModel() == Reloc::Static ||
1088 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1089 // Generate non-pic code that has direct accesses to the constant pool.
1090 // The address of the global is just (hi(&g)+lo(&g)).
1091 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1092 }
1093
1094 if (TM.getRelocationModel() == Reloc::PIC_) {
1095 // With PIC, the first instruction is actually "GR+hi(&G)".
1096 Hi = DAG.getNode(ISD::ADD, PtrVT,
1097 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1098 }
1099
1100 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1101 return Lo;
1102}
1103
Dale Johannesen8be83a72008-03-04 23:17:14 +00001104SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op,
1105 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001106 assert(0 && "TLS not implemented for PPC.");
Chris Lattner2b06cd32008-03-30 18:22:13 +00001107 return SDOperand(); // Not reached
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001108}
1109
Dale Johannesen8be83a72008-03-04 23:17:14 +00001110SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op,
1111 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001112 MVT::ValueType PtrVT = Op.getValueType();
1113 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1114 GlobalValue *GV = GSDN->getGlobal();
1115 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
Evan Chenga5a257d2008-02-02 05:06:29 +00001116 // If it's a debug information descriptor, don't mess with it.
1117 if (DAG.isVerifiedDebugInfoDesc(Op))
1118 return GA;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001119 SDOperand Zero = DAG.getConstant(0, PtrVT);
1120
1121 const TargetMachine &TM = DAG.getTarget();
1122
1123 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1124 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1125
1126 // If this is a non-darwin platform, we don't support non-static relo models
1127 // yet.
1128 if (TM.getRelocationModel() == Reloc::Static ||
1129 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1130 // Generate non-pic code that has direct accesses to globals.
1131 // The address of the global is just (hi(&g)+lo(&g)).
1132 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1133 }
1134
1135 if (TM.getRelocationModel() == Reloc::PIC_) {
1136 // With PIC, the first instruction is actually "GR+hi(&G)".
1137 Hi = DAG.getNode(ISD::ADD, PtrVT,
1138 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1139 }
1140
1141 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1142
1143 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1144 return Lo;
1145
1146 // If the global is weak or external, we have to go through the lazy
1147 // resolution stub.
1148 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1149}
1150
Dale Johannesen8be83a72008-03-04 23:17:14 +00001151SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001152 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1153
1154 // If we're comparing for equality to zero, expose the fact that this is
1155 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1156 // fold the new nodes.
1157 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1158 if (C->isNullValue() && CC == ISD::SETEQ) {
1159 MVT::ValueType VT = Op.getOperand(0).getValueType();
1160 SDOperand Zext = Op.getOperand(0);
1161 if (VT < MVT::i32) {
1162 VT = MVT::i32;
1163 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1164 }
1165 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1166 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1167 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1168 DAG.getConstant(Log2b, MVT::i32));
1169 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1170 }
1171 // Leave comparisons against 0 and -1 alone for now, since they're usually
1172 // optimized. FIXME: revisit this when we can custom lower all setcc
1173 // optimizations.
1174 if (C->isAllOnesValue() || C->isNullValue())
1175 return SDOperand();
1176 }
1177
1178 // If we have an integer seteq/setne, turn it into a compare against zero
1179 // by xor'ing the rhs with the lhs, which is faster than setting a
1180 // condition register, reading it back out, and masking the correct bit. The
1181 // normal approach here uses sub to do this instead of xor. Using xor exposes
1182 // the result to other bit-twiddling opportunities.
1183 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1184 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1185 MVT::ValueType VT = Op.getValueType();
1186 SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1187 Op.getOperand(1));
1188 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1189 }
1190 return SDOperand();
1191}
1192
Dale Johannesen8be83a72008-03-04 23:17:14 +00001193SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001194 int VarArgsFrameIndex,
1195 int VarArgsStackOffset,
1196 unsigned VarArgsNumGPR,
1197 unsigned VarArgsNumFPR,
1198 const PPCSubtarget &Subtarget) {
1199
1200 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
Chris Lattner2b06cd32008-03-30 18:22:13 +00001201 return SDOperand(); // Not reached
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001202}
1203
Dale Johannesen8be83a72008-03-04 23:17:14 +00001204SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001205 int VarArgsFrameIndex,
1206 int VarArgsStackOffset,
1207 unsigned VarArgsNumGPR,
1208 unsigned VarArgsNumFPR,
1209 const PPCSubtarget &Subtarget) {
1210
1211 if (Subtarget.isMachoABI()) {
1212 // vastart just stores the address of the VarArgsFrameIndex slot into the
1213 // memory location argument.
1214 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1215 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
Dan Gohman12a9c082008-02-06 22:27:42 +00001216 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1217 return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001218 }
1219
1220 // For ELF 32 ABI we follow the layout of the va_list struct.
1221 // We suppose the given va_list is already allocated.
1222 //
1223 // typedef struct {
1224 // char gpr; /* index into the array of 8 GPRs
1225 // * stored in the register save area
1226 // * gpr=0 corresponds to r3,
1227 // * gpr=1 to r4, etc.
1228 // */
1229 // char fpr; /* index into the array of 8 FPRs
1230 // * stored in the register save area
1231 // * fpr=0 corresponds to f1,
1232 // * fpr=1 to f2, etc.
1233 // */
1234 // char *overflow_arg_area;
1235 // /* location on stack that holds
1236 // * the next overflow argument
1237 // */
1238 // char *reg_save_area;
1239 // /* where r3:r10 and f1:f8 (if saved)
1240 // * are stored
1241 // */
1242 // } va_list[1];
1243
1244
1245 SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1246 SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1247
1248
1249 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1250
Dan Gohman12a9c082008-02-06 22:27:42 +00001251 SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001252 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1253
Dan Gohman12a9c082008-02-06 22:27:42 +00001254 uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1255 SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1256
1257 uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1258 SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1259
1260 uint64_t FPROffset = 1;
1261 SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001262
Dan Gohman12a9c082008-02-06 22:27:42 +00001263 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001264
1265 // Store first byte : number of int regs
1266 SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
Dan Gohman12a9c082008-02-06 22:27:42 +00001267 Op.getOperand(1), SV, 0);
1268 uint64_t nextOffset = FPROffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001269 SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1270 ConstFPROffset);
1271
1272 // Store second byte : number of float regs
Dan Gohman12a9c082008-02-06 22:27:42 +00001273 SDOperand secondStore =
1274 DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1275 nextOffset += StackOffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001276 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1277
1278 // Store second word : arguments given on stack
Dan Gohman12a9c082008-02-06 22:27:42 +00001279 SDOperand thirdStore =
1280 DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1281 nextOffset += FrameOffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001282 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1283
1284 // Store third word : arguments given in registers
Dan Gohman12a9c082008-02-06 22:27:42 +00001285 return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001286
1287}
1288
1289#include "PPCGenCallingConv.inc"
1290
1291/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1292/// depending on which subtarget is selected.
1293static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1294 if (Subtarget.isMachoABI()) {
1295 static const unsigned FPR[] = {
1296 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1297 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1298 };
1299 return FPR;
1300 }
1301
1302
1303 static const unsigned FPR[] = {
1304 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1305 PPC::F8
1306 };
1307 return FPR;
1308}
1309
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001310SDOperand
1311PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op,
1312 SelectionDAG &DAG,
1313 int &VarArgsFrameIndex,
1314 int &VarArgsStackOffset,
1315 unsigned &VarArgsNumGPR,
1316 unsigned &VarArgsNumFPR,
1317 const PPCSubtarget &Subtarget) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001318 // TODO: add description of PPC stack frame format, or at least some docs.
1319 //
1320 MachineFunction &MF = DAG.getMachineFunction();
1321 MachineFrameInfo *MFI = MF.getFrameInfo();
Chris Lattner1b989192007-12-31 04:13:23 +00001322 MachineRegisterInfo &RegInfo = MF.getRegInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001323 SmallVector<SDOperand, 8> ArgValues;
1324 SDOperand Root = Op.getOperand(0);
Dale Johannesen946b9cc2008-03-12 00:22:17 +00001325 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001326
1327 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1328 bool isPPC64 = PtrVT == MVT::i64;
1329 bool isMachoABI = Subtarget.isMachoABI();
1330 bool isELF32_ABI = Subtarget.isELF32_ABI();
1331 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1332
1333 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1334
1335 static const unsigned GPR_32[] = { // 32-bit registers.
1336 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1337 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1338 };
1339 static const unsigned GPR_64[] = { // 64-bit registers.
1340 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1341 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1342 };
1343
1344 static const unsigned *FPR = GetFPR(Subtarget);
1345
1346 static const unsigned VR[] = {
1347 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1348 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1349 };
1350
Owen Anderson1636de92007-09-07 04:06:50 +00001351 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001352 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001353 const unsigned Num_VR_Regs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001354
1355 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1356
1357 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1358
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001359 // In 32-bit non-varargs functions, the stack space for vectors is after the
1360 // stack space for non-vectors. We do not use this space unless we have
1361 // too many vectors to fit in registers, something that only occurs in
1362 // constructed examples:), but we have to walk the arglist to figure
1363 // that out...for the pathological case, compute VecArgOffset as the
1364 // start of the vector parameter area. Computing VecArgOffset is the
1365 // entire point of the following loop.
1366 // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1367 // to handle Elf here.
1368 unsigned VecArgOffset = ArgOffset;
1369 if (!isVarArg && !isPPC64) {
1370 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e;
1371 ++ArgNo) {
1372 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1373 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
Duncan Sandsc93fae32008-03-21 09:14:45 +00001374 ISD::ArgFlagsTy Flags =
1375 cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001376
Duncan Sandsc93fae32008-03-21 09:14:45 +00001377 if (Flags.isByVal()) {
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001378 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
Duncan Sandsc93fae32008-03-21 09:14:45 +00001379 ObjSize = Flags.getByValSize();
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001380 unsigned ArgSize =
1381 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1382 VecArgOffset += ArgSize;
1383 continue;
1384 }
1385
1386 switch(ObjectVT) {
1387 default: assert(0 && "Unhandled argument type!");
1388 case MVT::i32:
1389 case MVT::f32:
1390 VecArgOffset += isPPC64 ? 8 : 4;
1391 break;
1392 case MVT::i64: // PPC64
1393 case MVT::f64:
1394 VecArgOffset += 8;
1395 break;
1396 case MVT::v4f32:
1397 case MVT::v4i32:
1398 case MVT::v8i16:
1399 case MVT::v16i8:
1400 // Nothing to do, we're only looking at Nonvector args here.
1401 break;
1402 }
1403 }
1404 }
1405 // We've found where the vector parameter area in memory is. Skip the
1406 // first 12 parameters; these don't use that memory.
1407 VecArgOffset = ((VecArgOffset+15)/16)*16;
1408 VecArgOffset += 12*16;
1409
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001410 // Add DAG nodes to load the arguments or copy them out of registers. On
1411 // entry to a function on PPC, the arguments start after the linkage area,
1412 // although the first ones are often in registers.
1413 //
1414 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1415 // represented with two words (long long or double) must be copied to an
Duncan Sandsc93fae32008-03-21 09:14:45 +00001416 // even GPR_idx value or to an even ArgOffset value. TODO: implement this.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001417
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001418 SmallVector<SDOperand, 8> MemOps;
1419
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001420 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1421 SDOperand ArgVal;
1422 bool needsLoad = false;
1423 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1424 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1425 unsigned ArgSize = ObjSize;
Duncan Sandsc93fae32008-03-21 09:14:45 +00001426 ISD::ArgFlagsTy Flags =
1427 cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001428 // See if next argument requires stack alignment in ELF
Duncan Sandsc93fae32008-03-21 09:14:45 +00001429 bool Expand = false; // TODO: implement this.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001430
1431 unsigned CurArgOffset = ArgOffset;
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001432
1433 // FIXME alignment for ELF may not be right
1434 // FIXME the codegen can be much improved in some cases.
1435 // We do not have to keep everything in memory.
Duncan Sandsc93fae32008-03-21 09:14:45 +00001436 if (Flags.isByVal()) {
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001437 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
Duncan Sandsc93fae32008-03-21 09:14:45 +00001438 ObjSize = Flags.getByValSize();
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001439 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
Dale Johannesen05b4dbc2008-03-08 01:41:42 +00001440 // Double word align in ELF
1441 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1442 // Objects of size 1 and 2 are right justified, everything else is
1443 // left justified. This means the memory address is adjusted forwards.
1444 if (ObjSize==1 || ObjSize==2) {
1445 CurArgOffset = CurArgOffset + (4 - ObjSize);
1446 }
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001447 // The value of the object is its address.
1448 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1449 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1450 ArgValues.push_back(FIN);
Dale Johannesen05b4dbc2008-03-08 01:41:42 +00001451 if (ObjSize==1 || ObjSize==2) {
1452 if (GPR_idx != Num_GPR_Regs) {
1453 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1454 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1455 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1456 SDOperand Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1457 NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1458 MemOps.push_back(Store);
1459 ++GPR_idx;
1460 if (isMachoABI) ArgOffset += PtrByteSize;
1461 } else {
1462 ArgOffset += PtrByteSize;
1463 }
1464 continue;
1465 }
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001466 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1467 // Store whatever pieces of the object are in registers
1468 // to memory. ArgVal will be address of the beginning of
1469 // the object.
1470 if (GPR_idx != Num_GPR_Regs) {
1471 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1472 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1473 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1474 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1475 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1476 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1477 MemOps.push_back(Store);
1478 ++GPR_idx;
1479 if (isMachoABI) ArgOffset += PtrByteSize;
1480 } else {
1481 ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1482 break;
1483 }
1484 }
1485 continue;
1486 }
1487
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001488 switch (ObjectVT) {
1489 default: assert(0 && "Unhandled argument type!");
1490 case MVT::i32:
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001491 if (!isPPC64) {
1492 // Double word align in ELF
1493 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1494
1495 if (GPR_idx != Num_GPR_Regs) {
1496 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1497 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1498 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1499 ++GPR_idx;
1500 } else {
1501 needsLoad = true;
1502 ArgSize = PtrByteSize;
1503 }
1504 // Stack align in ELF
1505 if (needsLoad && Expand && isELF32_ABI)
1506 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1507 // All int arguments reserve stack space in Macho ABI.
1508 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1509 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001510 }
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001511 // FALLTHROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001512 case MVT::i64: // PPC64
1513 if (GPR_idx != Num_GPR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001514 unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1515 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001516 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001517
1518 if (ObjectVT == MVT::i32) {
1519 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1520 // value to MVT::i64 and then truncate to the correct register size.
Duncan Sandsc93fae32008-03-21 09:14:45 +00001521 if (Flags.isSExt())
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001522 ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1523 DAG.getValueType(ObjectVT));
Duncan Sandsc93fae32008-03-21 09:14:45 +00001524 else if (Flags.isZExt())
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001525 ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1526 DAG.getValueType(ObjectVT));
1527
1528 ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1529 }
1530
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001531 ++GPR_idx;
1532 } else {
1533 needsLoad = true;
1534 }
1535 // All int arguments reserve stack space in Macho ABI.
1536 if (isMachoABI || needsLoad) ArgOffset += 8;
1537 break;
1538
1539 case MVT::f32:
1540 case MVT::f64:
1541 // Every 4 bytes of argument space consumes one of the GPRs available for
1542 // argument passing.
1543 if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1544 ++GPR_idx;
1545 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1546 ++GPR_idx;
1547 }
1548 if (FPR_idx != Num_FPR_Regs) {
1549 unsigned VReg;
1550 if (ObjectVT == MVT::f32)
Chris Lattner1b989192007-12-31 04:13:23 +00001551 VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001552 else
Chris Lattner1b989192007-12-31 04:13:23 +00001553 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1554 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001555 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1556 ++FPR_idx;
1557 } else {
1558 needsLoad = true;
1559 }
1560
1561 // Stack align in ELF
1562 if (needsLoad && Expand && isELF32_ABI)
1563 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1564 // All FP arguments reserve stack space in Macho ABI.
1565 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1566 break;
1567 case MVT::v4f32:
1568 case MVT::v4i32:
1569 case MVT::v8i16:
1570 case MVT::v16i8:
Dale Johannesen946b9cc2008-03-12 00:22:17 +00001571 // Note that vector arguments in registers don't reserve stack space,
1572 // except in varargs functions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001573 if (VR_idx != Num_VR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001574 unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1575 RegInfo.addLiveIn(VR[VR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001576 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
Dale Johannesen946b9cc2008-03-12 00:22:17 +00001577 if (isVarArg) {
1578 while ((ArgOffset % 16) != 0) {
1579 ArgOffset += PtrByteSize;
1580 if (GPR_idx != Num_GPR_Regs)
1581 GPR_idx++;
1582 }
1583 ArgOffset += 16;
1584 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1585 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001586 ++VR_idx;
1587 } else {
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001588 if (!isVarArg && !isPPC64) {
1589 // Vectors go after all the nonvectors.
1590 CurArgOffset = VecArgOffset;
1591 VecArgOffset += 16;
1592 } else {
1593 // Vectors are aligned.
1594 ArgOffset = ((ArgOffset+15)/16)*16;
1595 CurArgOffset = ArgOffset;
1596 ArgOffset += 16;
Dale Johannesen896870b2008-03-12 00:49:20 +00001597 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001598 needsLoad = true;
1599 }
1600 break;
1601 }
1602
1603 // We need to load the argument to a virtual register if we determined above
Chris Lattner60069452008-02-13 07:35:30 +00001604 // that we ran out of physical registers of the appropriate type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001605 if (needsLoad) {
Chris Lattner60069452008-02-13 07:35:30 +00001606 int FI = MFI->CreateFixedObject(ObjSize,
1607 CurArgOffset + (ArgSize - ObjSize));
1608 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1609 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001610 }
1611
1612 ArgValues.push_back(ArgVal);
1613 }
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001614
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001615 // If the function takes variable number of arguments, make a frame index for
1616 // the start of the first vararg value... for expansion of llvm.va_start.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001617 if (isVarArg) {
1618
1619 int depth;
1620 if (isELF32_ABI) {
1621 VarArgsNumGPR = GPR_idx;
1622 VarArgsNumFPR = FPR_idx;
1623
1624 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1625 // pointer.
1626 depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1627 Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1628 MVT::getSizeInBits(PtrVT)/8);
1629
1630 VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1631 ArgOffset);
1632
1633 }
1634 else
1635 depth = ArgOffset;
1636
1637 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1638 depth);
1639 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1640
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001641 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1642 // stored to the VarArgsFrameIndex on the stack.
1643 if (isELF32_ABI) {
1644 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1645 SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1646 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1647 MemOps.push_back(Store);
1648 // Increment the address by four for the next argument to store
1649 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1650 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1651 }
1652 }
1653
1654 // If this function is vararg, store any remaining integer argument regs
1655 // to their spots on the stack so that they may be loaded by deferencing the
1656 // result of va_next.
1657 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1658 unsigned VReg;
1659 if (isPPC64)
Chris Lattner1b989192007-12-31 04:13:23 +00001660 VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001661 else
Chris Lattner1b989192007-12-31 04:13:23 +00001662 VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001663
Chris Lattner1b989192007-12-31 04:13:23 +00001664 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001665 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1666 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1667 MemOps.push_back(Store);
1668 // Increment the address by four for the next argument to store
1669 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1670 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1671 }
1672
1673 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1674 // on the stack.
1675 if (isELF32_ABI) {
1676 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1677 SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1678 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1679 MemOps.push_back(Store);
1680 // Increment the address by eight for the next argument to store
1681 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1682 PtrVT);
1683 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1684 }
1685
1686 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1687 unsigned VReg;
Chris Lattner1b989192007-12-31 04:13:23 +00001688 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001689
Chris Lattner1b989192007-12-31 04:13:23 +00001690 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001691 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1692 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1693 MemOps.push_back(Store);
1694 // Increment the address by eight for the next argument to store
1695 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1696 PtrVT);
1697 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1698 }
1699 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001700 }
1701
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001702 if (!MemOps.empty())
1703 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1704
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001705 ArgValues.push_back(Root);
1706
1707 // Return the new list of results.
1708 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1709 Op.Val->value_end());
1710 return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1711}
1712
1713/// isCallCompatibleAddress - Return the immediate to use if the specified
1714/// 32-bit value is representable in the immediate field of a BxA instruction.
1715static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1716 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1717 if (!C) return 0;
1718
1719 int Addr = C->getValue();
1720 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
1721 (Addr << 6 >> 6) != Addr)
1722 return 0; // Top 6 bits have to be sext of immediate.
1723
Evan Cheng282c6462007-10-22 19:46:19 +00001724 return DAG.getConstant((int)C->getValue() >> 2,
1725 DAG.getTargetLoweringInfo().getPointerTy()).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001726}
1727
Dale Johannesen8be83a72008-03-04 23:17:14 +00001728/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1729/// by "Src" to address "Dst" of size "Size". Alignment information is
1730/// specified by the specific parameter attribute. The copy will be passed as
1731/// a byval function parameter.
1732/// Sometimes what we are copying is the end of a larger object, the part that
1733/// does not fit in registers.
1734static SDOperand
1735CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
Duncan Sandsc93fae32008-03-21 09:14:45 +00001736 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1737 unsigned Size) {
1738 SDOperand AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
Dale Johannesen8be83a72008-03-04 23:17:14 +00001739 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001740 SDOperand AlwaysInline = DAG.getConstant(0, MVT::i32);
Dale Johannesen8be83a72008-03-04 23:17:14 +00001741 return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1742}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001743
Dale Johannesen8be83a72008-03-04 23:17:14 +00001744SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG,
Dan Gohman9f153572008-03-19 21:39:28 +00001745 const PPCSubtarget &Subtarget,
1746 TargetMachine &TM) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001747 SDOperand Chain = Op.getOperand(0);
1748 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1749 SDOperand Callee = Op.getOperand(4);
1750 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1751
1752 bool isMachoABI = Subtarget.isMachoABI();
1753 bool isELF32_ABI = Subtarget.isELF32_ABI();
1754
1755 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1756 bool isPPC64 = PtrVT == MVT::i64;
1757 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1758
1759 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1760 // SelectExpr to use to put the arguments in the appropriate registers.
1761 std::vector<SDOperand> args_to_use;
1762
1763 // Count how many bytes are to be pushed on the stack, including the linkage
1764 // area, and parameter passing area. We start with 24/48 bytes, which is
1765 // prereserved space for [SP][CR][LR][3 x unused].
1766 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
Dale Johannesen946b9cc2008-03-12 00:22:17 +00001767
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768 // Add up all the space actually used.
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001769 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1770 // they all go in registers, but we must reserve stack space for them for
1771 // possible use by the caller. In varargs or 64-bit calls, parameters are
1772 // assigned stack space in order, with padding so Altivec parameters are
1773 // 16-byte aligned.
1774 unsigned nAltivecParamsAtEnd = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001775 for (unsigned i = 0; i != NumOps; ++i) {
Dale Johannesen946b9cc2008-03-12 00:22:17 +00001776 SDOperand Arg = Op.getOperand(5+2*i);
1777 MVT::ValueType ArgVT = Arg.getValueType();
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001778 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1779 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1780 if (!isVarArg && !isPPC64) {
1781 // Non-varargs Altivec parameters go after all the non-Altivec parameters;
1782 // do those last so we know how much padding we need.
1783 nAltivecParamsAtEnd++;
1784 continue;
1785 } else {
1786 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1787 NumBytes = ((NumBytes+15)/16)*16;
1788 }
1789 }
Duncan Sandsc93fae32008-03-21 09:14:45 +00001790 ISD::ArgFlagsTy Flags =
1791 cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001792 unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
Duncan Sandsc93fae32008-03-21 09:14:45 +00001793 if (Flags.isByVal())
1794 ArgSize = Flags.getByValSize();
Dale Johannesen05b4dbc2008-03-08 01:41:42 +00001795 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001796 NumBytes += ArgSize;
1797 }
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001798 // Allow for Altivec parameters at the end, if needed.
1799 if (nAltivecParamsAtEnd) {
1800 NumBytes = ((NumBytes+15)/16)*16;
1801 NumBytes += 16*nAltivecParamsAtEnd;
1802 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001803
1804 // The prolog code of the callee may store up to 8 GPR argument registers to
1805 // the stack, allowing va_start to index over them in memory if its varargs.
1806 // Because we cannot tell if this is needed on the caller side, we have to
1807 // conservatively assume that it is needed. As such, make sure we have at
1808 // least enough stack space for the caller to store the 8 GPRs.
1809 NumBytes = std::max(NumBytes,
1810 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1811
1812 // Adjust the stack pointer for the new arguments...
1813 // These operations are automatically eliminated by the prolog/epilog pass
1814 Chain = DAG.getCALLSEQ_START(Chain,
1815 DAG.getConstant(NumBytes, PtrVT));
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001816 SDOperand CallSeqStart = Chain;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001817
1818 // Set up a copy of the stack pointer for use loading and storing any
1819 // arguments that may not fit in the registers available for argument
1820 // passing.
1821 SDOperand StackPtr;
1822 if (isPPC64)
1823 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1824 else
1825 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1826
1827 // Figure out which arguments are going to go in registers, and which in
1828 // memory. Also, if this is a vararg function, floating point operations
1829 // must be stored to our stack, and loaded into integer regs as well, if
1830 // any integer regs are available for argument passing.
1831 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1832 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1833
1834 static const unsigned GPR_32[] = { // 32-bit registers.
1835 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1836 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1837 };
1838 static const unsigned GPR_64[] = { // 64-bit registers.
1839 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1840 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1841 };
1842 static const unsigned *FPR = GetFPR(Subtarget);
1843
1844 static const unsigned VR[] = {
1845 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1846 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1847 };
Owen Anderson1636de92007-09-07 04:06:50 +00001848 const unsigned NumGPRs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001849 const unsigned NumFPRs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001850 const unsigned NumVRs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001851
1852 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1853
1854 std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1855 SmallVector<SDOperand, 8> MemOpChains;
1856 for (unsigned i = 0; i != NumOps; ++i) {
1857 bool inMem = false;
1858 SDOperand Arg = Op.getOperand(5+2*i);
Duncan Sandsc93fae32008-03-21 09:14:45 +00001859 ISD::ArgFlagsTy Flags =
1860 cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001861 // See if next argument requires stack alignment in ELF
Duncan Sandsc93fae32008-03-21 09:14:45 +00001862 bool Expand = false; // TODO: implement this.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001863
1864 // PtrOff will be used to store the current argument to the stack if a
1865 // register cannot be found for it.
1866 SDOperand PtrOff;
1867
1868 // Stack align in ELF 32
1869 if (isELF32_ABI && Expand)
1870 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1871 StackPtr.getValueType());
1872 else
1873 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1874
1875 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1876
1877 // On PPC64, promote integers to 64-bit values.
1878 if (isPPC64 && Arg.getValueType() == MVT::i32) {
Duncan Sandsc93fae32008-03-21 09:14:45 +00001879 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
1880 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001881 Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1882 }
Dale Johannesen8be83a72008-03-04 23:17:14 +00001883
1884 // FIXME Elf untested, what are alignment rules?
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001885 // FIXME memcpy is used way more than necessary. Correctness first.
Duncan Sandsc93fae32008-03-21 09:14:45 +00001886 if (Flags.isByVal()) {
1887 unsigned Size = Flags.getByValSize();
Dale Johannesen8be83a72008-03-04 23:17:14 +00001888 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001889 if (Size==1 || Size==2) {
1890 // Very small objects are passed right-justified.
1891 // Everything else is passed left-justified.
1892 MVT::ValueType VT = (Size==1) ? MVT::i8 : MVT::i16;
1893 if (GPR_idx != NumGPRs) {
1894 SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
1895 NULL, 0, VT);
1896 MemOpChains.push_back(Load.getValue(1));
1897 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1898 if (isMachoABI)
1899 ArgOffset += PtrByteSize;
1900 } else {
1901 SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
1902 SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
1903 SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
1904 CallSeqStart.Val->getOperand(0),
1905 Flags, DAG, Size);
1906 // This must go outside the CALLSEQ_START..END.
1907 SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1908 CallSeqStart.Val->getOperand(1));
1909 DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1910 Chain = CallSeqStart = NewCallSeqStart;
1911 ArgOffset += PtrByteSize;
1912 }
1913 continue;
1914 }
Dale Johannesenbfadf4b2008-03-17 02:13:43 +00001915 // Copy entire object into memory. There are cases where gcc-generated
1916 // code assumes it is there, even if it could be put entirely into
1917 // registers. (This is not what the doc says.)
1918 SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
1919 CallSeqStart.Val->getOperand(0),
1920 Flags, DAG, Size);
1921 // This must go outside the CALLSEQ_START..END.
1922 SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1923 CallSeqStart.Val->getOperand(1));
1924 DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1925 Chain = CallSeqStart = NewCallSeqStart;
1926 // And copy the pieces of it that fit into registers.
Dale Johannesen8be83a72008-03-04 23:17:14 +00001927 for (unsigned j=0; j<Size; j+=PtrByteSize) {
1928 SDOperand Const = DAG.getConstant(j, PtrOff.getValueType());
1929 SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
1930 if (GPR_idx != NumGPRs) {
1931 SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001932 MemOpChains.push_back(Load.getValue(1));
Dale Johannesen8be83a72008-03-04 23:17:14 +00001933 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1934 if (isMachoABI)
1935 ArgOffset += PtrByteSize;
1936 } else {
Dale Johannesenbfadf4b2008-03-17 02:13:43 +00001937 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001938 break;
Dale Johannesen8be83a72008-03-04 23:17:14 +00001939 }
1940 }
1941 continue;
1942 }
1943
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001944 switch (Arg.getValueType()) {
1945 default: assert(0 && "Unexpected ValueType for argument!");
1946 case MVT::i32:
1947 case MVT::i64:
1948 // Double word align in ELF
1949 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1950 if (GPR_idx != NumGPRs) {
1951 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1952 } else {
1953 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1954 inMem = true;
1955 }
1956 if (inMem || isMachoABI) {
1957 // Stack align in ELF
1958 if (isELF32_ABI && Expand)
1959 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1960
1961 ArgOffset += PtrByteSize;
1962 }
1963 break;
1964 case MVT::f32:
1965 case MVT::f64:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001966 if (FPR_idx != NumFPRs) {
1967 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1968
1969 if (isVarArg) {
1970 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1971 MemOpChains.push_back(Store);
1972
1973 // Float varargs are always shadowed in available integer registers
1974 if (GPR_idx != NumGPRs) {
1975 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1976 MemOpChains.push_back(Load.getValue(1));
1977 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1978 Load));
1979 }
1980 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1981 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1982 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1983 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1984 MemOpChains.push_back(Load.getValue(1));
1985 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1986 Load));
1987 }
1988 } else {
1989 // If we have any FPRs remaining, we may also have GPRs remaining.
1990 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1991 // GPRs.
1992 if (isMachoABI) {
1993 if (GPR_idx != NumGPRs)
1994 ++GPR_idx;
1995 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1996 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
1997 ++GPR_idx;
1998 }
1999 }
2000 } else {
2001 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2002 inMem = true;
2003 }
2004 if (inMem || isMachoABI) {
2005 // Stack align in ELF
2006 if (isELF32_ABI && Expand)
2007 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2008 if (isPPC64)
2009 ArgOffset += 8;
2010 else
2011 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2012 }
2013 break;
2014 case MVT::v4f32:
2015 case MVT::v4i32:
2016 case MVT::v8i16:
2017 case MVT::v16i8:
Dale Johannesen946b9cc2008-03-12 00:22:17 +00002018 if (isVarArg) {
2019 // These go aligned on the stack, or in the corresponding R registers
2020 // when within range. The Darwin PPC ABI doc claims they also go in
2021 // V registers; in fact gcc does this only for arguments that are
2022 // prototyped, not for those that match the ... We do it for all
2023 // arguments, seems to work.
2024 while (ArgOffset % 16 !=0) {
2025 ArgOffset += PtrByteSize;
2026 if (GPR_idx != NumGPRs)
2027 GPR_idx++;
2028 }
2029 // We could elide this store in the case where the object fits
2030 // entirely in R registers. Maybe later.
2031 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2032 DAG.getConstant(ArgOffset, PtrVT));
2033 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2034 MemOpChains.push_back(Store);
2035 if (VR_idx != NumVRs) {
2036 SDOperand Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2037 MemOpChains.push_back(Load.getValue(1));
2038 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2039 }
2040 ArgOffset += 16;
2041 for (unsigned i=0; i<16; i+=PtrByteSize) {
2042 if (GPR_idx == NumGPRs)
2043 break;
2044 SDOperand Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2045 DAG.getConstant(i, PtrVT));
2046 SDOperand Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2047 MemOpChains.push_back(Load.getValue(1));
2048 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2049 }
2050 break;
2051 }
Dale Johannesenf6a394b2008-03-14 17:41:26 +00002052 // Non-varargs Altivec params generally go in registers, but have
2053 // stack space allocated at the end.
2054 if (VR_idx != NumVRs) {
2055 // Doesn't have GPR space allocated.
2056 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2057 } else if (nAltivecParamsAtEnd==0) {
2058 // We are emitting Altivec params in order.
Dale Johannesen946b9cc2008-03-12 00:22:17 +00002059 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2060 DAG.getConstant(ArgOffset, PtrVT));
2061 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2062 MemOpChains.push_back(Store);
2063 ArgOffset += 16;
Dale Johannesen946b9cc2008-03-12 00:22:17 +00002064 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002065 break;
2066 }
2067 }
Dale Johannesenf6a394b2008-03-14 17:41:26 +00002068 // If all Altivec parameters fit in registers, as they usually do,
2069 // they get stack space following the non-Altivec parameters. We
2070 // don't track this here because nobody below needs it.
2071 // If there are more Altivec parameters than fit in registers emit
2072 // the stores here.
2073 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2074 unsigned j = 0;
2075 // Offset is aligned; skip 1st 12 params which go in V registers.
2076 ArgOffset = ((ArgOffset+15)/16)*16;
2077 ArgOffset += 12*16;
2078 for (unsigned i = 0; i != NumOps; ++i) {
2079 SDOperand Arg = Op.getOperand(5+2*i);
2080 MVT::ValueType ArgType = Arg.getValueType();
2081 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2082 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2083 if (++j > NumVRs) {
2084 SDOperand PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2085 DAG.getConstant(ArgOffset, PtrVT));
2086 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2087 MemOpChains.push_back(Store);
2088 ArgOffset += 16;
2089 }
2090 }
2091 }
2092 }
2093
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002094 if (!MemOpChains.empty())
2095 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2096 &MemOpChains[0], MemOpChains.size());
2097
2098 // Build a sequence of copy-to-reg nodes chained together with token chain
2099 // and flag operands which copy the outgoing args into the appropriate regs.
2100 SDOperand InFlag;
2101 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2102 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2103 InFlag);
2104 InFlag = Chain.getValue(1);
2105 }
2106
2107 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2108 if (isVarArg && isELF32_ABI) {
Nicolas Geoffrayd01feb22008-03-10 14:12:10 +00002109 SDOperand SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2110 Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002111 InFlag = Chain.getValue(1);
2112 }
2113
2114 std::vector<MVT::ValueType> NodeTys;
2115 NodeTys.push_back(MVT::Other); // Returns a chain
2116 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
2117
2118 SmallVector<SDOperand, 8> Ops;
2119 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2120
2121 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2122 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2123 // node so that legalize doesn't hack it.
Nicolas Geoffray455a2e02007-12-21 12:22:29 +00002124 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2125 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2126 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002127 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2128 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2129 // If this is an absolute destination address, use the munged value.
2130 Callee = SDOperand(Dest, 0);
2131 else {
2132 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
2133 // to do the call, we can't use PPCISD::CALL.
2134 SDOperand MTCTROps[] = {Chain, Callee, InFlag};
2135 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
2136 InFlag = Chain.getValue(1);
2137
Chris Lattner6eae8c62008-03-09 20:49:33 +00002138 // Copy the callee address into R12/X12 on darwin.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002139 if (isMachoABI) {
Chris Lattner6eae8c62008-03-09 20:49:33 +00002140 unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2141 Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002142 InFlag = Chain.getValue(1);
2143 }
2144
2145 NodeTys.clear();
2146 NodeTys.push_back(MVT::Other);
2147 NodeTys.push_back(MVT::Flag);
2148 Ops.push_back(Chain);
2149 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2150 Callee.Val = 0;
2151 }
2152
2153 // If this is a direct call, pass the chain and the callee.
2154 if (Callee.Val) {
2155 Ops.push_back(Chain);
2156 Ops.push_back(Callee);
2157 }
2158
2159 // Add argument registers to the end of the list so that they are known live
2160 // into the call.
2161 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2162 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2163 RegsToPass[i].second.getValueType()));
2164
2165 if (InFlag.Val)
2166 Ops.push_back(InFlag);
2167 Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2168 InFlag = Chain.getValue(1);
2169
Bill Wendling22f8deb2007-11-13 00:44:25 +00002170 Chain = DAG.getCALLSEQ_END(Chain,
2171 DAG.getConstant(NumBytes, PtrVT),
2172 DAG.getConstant(0, PtrVT),
2173 InFlag);
2174 if (Op.Val->getValueType(0) != MVT::Other)
2175 InFlag = Chain.getValue(1);
2176
Dan Gohman9f153572008-03-19 21:39:28 +00002177 SmallVector<SDOperand, 16> ResultVals;
2178 SmallVector<CCValAssign, 16> RVLocs;
2179 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2180 CCState CCInfo(CC, isVarArg, TM, RVLocs);
2181 CCInfo.AnalyzeCallResult(Op.Val, RetCC_PPC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002182
Dan Gohman9f153572008-03-19 21:39:28 +00002183 // Copy all of the result registers out of their specified physreg.
2184 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2185 CCValAssign &VA = RVLocs[i];
2186 MVT::ValueType VT = VA.getValVT();
2187 assert(VA.isRegLoc() && "Can only return in registers!");
2188 Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2189 ResultVals.push_back(Chain.getValue(0));
2190 InFlag = Chain.getValue(2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002191 }
Dan Gohman9f153572008-03-19 21:39:28 +00002192
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002193 // If the function returns void, just return the chain.
Dan Gohman9f153572008-03-19 21:39:28 +00002194 if (RVLocs.empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002195 return Chain;
2196
2197 // Otherwise, merge everything together with a MERGE_VALUES node.
Dan Gohman9f153572008-03-19 21:39:28 +00002198 ResultVals.push_back(Chain);
2199 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
2200 &ResultVals[0], ResultVals.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002201 return Res.getValue(Op.ResNo);
2202}
2203
Dale Johannesen8be83a72008-03-04 23:17:14 +00002204SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG,
2205 TargetMachine &TM) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002206 SmallVector<CCValAssign, 16> RVLocs;
2207 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2208 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2209 CCState CCInfo(CC, isVarArg, TM, RVLocs);
2210 CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2211
2212 // If this is the first return lowered for this function, add the regs to the
2213 // liveout set for the function.
Chris Lattner1b989192007-12-31 04:13:23 +00002214 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002215 for (unsigned i = 0; i != RVLocs.size(); ++i)
Chris Lattner1b989192007-12-31 04:13:23 +00002216 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002217 }
2218
2219 SDOperand Chain = Op.getOperand(0);
2220 SDOperand Flag;
2221
2222 // Copy the result values into the output registers.
2223 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2224 CCValAssign &VA = RVLocs[i];
2225 assert(VA.isRegLoc() && "Can only return in registers!");
2226 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2227 Flag = Chain.getValue(1);
2228 }
2229
2230 if (Flag.Val)
2231 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2232 else
2233 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2234}
2235
Dale Johannesen8be83a72008-03-04 23:17:14 +00002236SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002237 const PPCSubtarget &Subtarget) {
2238 // When we pop the dynamic allocation we need to restore the SP link.
2239
2240 // Get the corect type for pointers.
2241 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2242
2243 // Construct the stack pointer operand.
2244 bool IsPPC64 = Subtarget.isPPC64();
2245 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2246 SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
2247
2248 // Get the operands for the STACKRESTORE.
2249 SDOperand Chain = Op.getOperand(0);
2250 SDOperand SaveSP = Op.getOperand(1);
2251
2252 // Load the old link SP.
2253 SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2254
2255 // Restore the stack pointer.
2256 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2257
2258 // Store the old link SP.
2259 return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2260}
2261
Dale Johannesen8be83a72008-03-04 23:17:14 +00002262SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
2263 SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002264 const PPCSubtarget &Subtarget) {
2265 MachineFunction &MF = DAG.getMachineFunction();
2266 bool IsPPC64 = Subtarget.isPPC64();
2267 bool isMachoABI = Subtarget.isMachoABI();
2268
2269 // Get current frame pointer save index. The users of this index will be
2270 // primarily DYNALLOC instructions.
2271 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2272 int FPSI = FI->getFramePointerSaveIndex();
2273
2274 // If the frame pointer save index hasn't been defined yet.
2275 if (!FPSI) {
2276 // Find out what the fix offset of the frame pointer save area.
2277 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2278
2279 // Allocate the frame index for frame pointer save area.
2280 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2281 // Save the result.
2282 FI->setFramePointerSaveIndex(FPSI);
2283 }
2284
2285 // Get the inputs.
2286 SDOperand Chain = Op.getOperand(0);
2287 SDOperand Size = Op.getOperand(1);
2288
2289 // Get the corect type for pointers.
2290 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2291 // Negate the size.
2292 SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2293 DAG.getConstant(0, PtrVT), Size);
2294 // Construct a node for the frame pointer save index.
2295 SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2296 // Build a DYNALLOC node.
2297 SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2298 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2299 return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2300}
2301
2302
2303/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2304/// possible.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002305SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002306 // Not FP? Not a fsel.
2307 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2308 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2309 return SDOperand();
2310
2311 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2312
2313 // Cannot handle SETEQ/SETNE.
2314 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2315
2316 MVT::ValueType ResVT = Op.getValueType();
2317 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2318 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2319 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
2320
2321 // If the RHS of the comparison is a 0.0, we don't need to do the
2322 // subtraction at all.
2323 if (isFloatingPointZero(RHS))
2324 switch (CC) {
2325 default: break; // SETUO etc aren't handled by fsel.
2326 case ISD::SETULT:
2327 case ISD::SETOLT:
2328 case ISD::SETLT:
2329 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2330 case ISD::SETUGE:
2331 case ISD::SETOGE:
2332 case ISD::SETGE:
2333 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2334 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2335 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2336 case ISD::SETUGT:
2337 case ISD::SETOGT:
2338 case ISD::SETGT:
2339 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2340 case ISD::SETULE:
2341 case ISD::SETOLE:
2342 case ISD::SETLE:
2343 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2344 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2345 return DAG.getNode(PPCISD::FSEL, ResVT,
2346 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2347 }
2348
Chris Lattnera216bee2007-10-15 20:14:52 +00002349 SDOperand Cmp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002350 switch (CC) {
2351 default: break; // SETUO etc aren't handled by fsel.
2352 case ISD::SETULT:
2353 case ISD::SETOLT:
2354 case ISD::SETLT:
2355 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2356 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2357 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2358 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2359 case ISD::SETUGE:
2360 case ISD::SETOGE:
2361 case ISD::SETGE:
2362 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2363 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2364 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2365 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2366 case ISD::SETUGT:
2367 case ISD::SETOGT:
2368 case ISD::SETGT:
2369 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2370 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2371 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2372 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2373 case ISD::SETULE:
2374 case ISD::SETOLE:
2375 case ISD::SETLE:
2376 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2377 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2378 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2379 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2380 }
2381 return SDOperand();
2382}
2383
Chris Lattner28771092007-11-28 18:44:47 +00002384// FIXME: Split this code up when LegalizeDAGTypes lands.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002385SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002386 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2387 SDOperand Src = Op.getOperand(0);
2388 if (Src.getValueType() == MVT::f32)
2389 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2390
2391 SDOperand Tmp;
2392 switch (Op.getValueType()) {
2393 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2394 case MVT::i32:
2395 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2396 break;
2397 case MVT::i64:
2398 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2399 break;
2400 }
2401
2402 // Convert the FP value to an int value through memory.
Chris Lattnera216bee2007-10-15 20:14:52 +00002403 SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2404
2405 // Emit a store to the stack slot.
2406 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2407
2408 // Result is a load from the stack slot. If loading 4 bytes, make sure to
2409 // add in a bias.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002410 if (Op.getValueType() == MVT::i32)
Chris Lattnera216bee2007-10-15 20:14:52 +00002411 FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2412 DAG.getConstant(4, FIPtr.getValueType()));
2413 return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002414}
2415
Dale Johannesen8be83a72008-03-04 23:17:14 +00002416SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op,
2417 SelectionDAG &DAG) {
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002418 assert(Op.getValueType() == MVT::ppcf128);
2419 SDNode *Node = Op.Val;
2420 assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
Chris Lattnerc882caf2007-10-19 04:08:28 +00002421 assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002422 SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2423 SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2424
2425 // This sequence changes FPSCR to do round-to-zero, adds the two halves
2426 // of the long double, and puts FPSCR back the way it was. We do not
2427 // actually model FPSCR.
2428 std::vector<MVT::ValueType> NodeTys;
2429 SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2430
2431 NodeTys.push_back(MVT::f64); // Return register
2432 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
2433 Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2434 MFFSreg = Result.getValue(0);
2435 InFlag = Result.getValue(1);
2436
2437 NodeTys.clear();
2438 NodeTys.push_back(MVT::Flag); // Returns a flag
2439 Ops[0] = DAG.getConstant(31, MVT::i32);
2440 Ops[1] = InFlag;
2441 Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2442 InFlag = Result.getValue(0);
2443
2444 NodeTys.clear();
2445 NodeTys.push_back(MVT::Flag); // Returns a flag
2446 Ops[0] = DAG.getConstant(30, MVT::i32);
2447 Ops[1] = InFlag;
2448 Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2449 InFlag = Result.getValue(0);
2450
2451 NodeTys.clear();
2452 NodeTys.push_back(MVT::f64); // result of add
2453 NodeTys.push_back(MVT::Flag); // Returns a flag
2454 Ops[0] = Lo;
2455 Ops[1] = Hi;
2456 Ops[2] = InFlag;
2457 Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2458 FPreg = Result.getValue(0);
2459 InFlag = Result.getValue(1);
2460
2461 NodeTys.clear();
2462 NodeTys.push_back(MVT::f64);
2463 Ops[0] = DAG.getConstant(1, MVT::i32);
2464 Ops[1] = MFFSreg;
2465 Ops[2] = FPreg;
2466 Ops[3] = InFlag;
2467 Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2468 FPreg = Result.getValue(0);
2469
2470 // We know the low half is about to be thrown away, so just use something
2471 // convenient.
2472 return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2473}
2474
Dale Johannesen8be83a72008-03-04 23:17:14 +00002475SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman8b232ff2008-03-11 01:59:03 +00002476 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2477 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2478 return SDOperand();
2479
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002480 if (Op.getOperand(0).getValueType() == MVT::i64) {
2481 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2482 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2483 if (Op.getValueType() == MVT::f32)
Chris Lattner5872a362008-01-17 07:00:52 +00002484 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002485 return FP;
2486 }
2487
2488 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2489 "Unhandled SINT_TO_FP type in custom expander!");
2490 // Since we only generate this in 64-bit mode, we can take advantage of
2491 // 64-bit registers. In particular, sign extend the input value into the
2492 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2493 // then lfd it and fcfid it.
2494 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2495 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2496 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2497 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2498
2499 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2500 Op.getOperand(0));
2501
2502 // STD the extended value into the stack slot.
Dan Gohmanfb020b62008-02-07 18:41:25 +00002503 MemOperand MO(PseudoSourceValue::getFixedStack(),
Dan Gohman12a9c082008-02-06 22:27:42 +00002504 MemOperand::MOStore, FrameIdx, 8, 8);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002505 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2506 DAG.getEntryNode(), Ext64, FIdx,
Dan Gohman12a9c082008-02-06 22:27:42 +00002507 DAG.getMemOperand(MO));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002508 // Load the value as a double.
2509 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2510
2511 // FCFID it and return it.
2512 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2513 if (Op.getValueType() == MVT::f32)
Chris Lattner5872a362008-01-17 07:00:52 +00002514 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002515 return FP;
2516}
2517
Dale Johannesen8be83a72008-03-04 23:17:14 +00002518SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
Dale Johannesen436e3802008-01-18 19:55:37 +00002519 /*
2520 The rounding mode is in bits 30:31 of FPSR, and has the following
2521 settings:
2522 00 Round to nearest
2523 01 Round to 0
2524 10 Round to +inf
2525 11 Round to -inf
2526
2527 FLT_ROUNDS, on the other hand, expects the following:
2528 -1 Undefined
2529 0 Round to 0
2530 1 Round to nearest
2531 2 Round to +inf
2532 3 Round to -inf
2533
2534 To perform the conversion, we do:
2535 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2536 */
2537
2538 MachineFunction &MF = DAG.getMachineFunction();
2539 MVT::ValueType VT = Op.getValueType();
2540 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2541 std::vector<MVT::ValueType> NodeTys;
2542 SDOperand MFFSreg, InFlag;
2543
2544 // Save FP Control Word to register
2545 NodeTys.push_back(MVT::f64); // return register
2546 NodeTys.push_back(MVT::Flag); // unused in this context
2547 SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2548
2549 // Save FP register to stack slot
2550 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2551 SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2552 SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2553 StackSlot, NULL, 0);
2554
2555 // Load FP Control Word from low 32 bits of stack slot.
2556 SDOperand Four = DAG.getConstant(4, PtrVT);
2557 SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2558 SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2559
2560 // Transform as necessary
2561 SDOperand CWD1 =
2562 DAG.getNode(ISD::AND, MVT::i32,
2563 CWD, DAG.getConstant(3, MVT::i32));
2564 SDOperand CWD2 =
2565 DAG.getNode(ISD::SRL, MVT::i32,
2566 DAG.getNode(ISD::AND, MVT::i32,
2567 DAG.getNode(ISD::XOR, MVT::i32,
2568 CWD, DAG.getConstant(3, MVT::i32)),
2569 DAG.getConstant(3, MVT::i32)),
2570 DAG.getConstant(1, MVT::i8));
2571
2572 SDOperand RetVal =
2573 DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2574
2575 return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2576 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2577}
2578
Dale Johannesen8be83a72008-03-04 23:17:14 +00002579SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman71619ec2008-03-07 20:36:53 +00002580 MVT::ValueType VT = Op.getValueType();
2581 unsigned BitWidth = MVT::getSizeInBits(VT);
2582 assert(Op.getNumOperands() == 3 &&
2583 VT == Op.getOperand(1).getValueType() &&
2584 "Unexpected SHL!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002585
2586 // Expand into a bunch of logical ops. Note that these ops
2587 // depend on the PPC behavior for oversized shift amounts.
2588 SDOperand Lo = Op.getOperand(0);
2589 SDOperand Hi = Op.getOperand(1);
2590 SDOperand Amt = Op.getOperand(2);
Dan Gohman71619ec2008-03-07 20:36:53 +00002591 MVT::ValueType AmtVT = Amt.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002592
Dan Gohman71619ec2008-03-07 20:36:53 +00002593 SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2594 DAG.getConstant(BitWidth, AmtVT), Amt);
2595 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
2596 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
2597 SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2598 SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2599 DAG.getConstant(-BitWidth, AmtVT));
2600 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
2601 SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2602 SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002603 SDOperand OutOps[] = { OutLo, OutHi };
Dan Gohman71619ec2008-03-07 20:36:53 +00002604 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002605 OutOps, 2);
2606}
2607
Dale Johannesen8be83a72008-03-04 23:17:14 +00002608SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman71619ec2008-03-07 20:36:53 +00002609 MVT::ValueType VT = Op.getValueType();
2610 unsigned BitWidth = MVT::getSizeInBits(VT);
2611 assert(Op.getNumOperands() == 3 &&
2612 VT == Op.getOperand(1).getValueType() &&
2613 "Unexpected SRL!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002614
Dan Gohman71619ec2008-03-07 20:36:53 +00002615 // Expand into a bunch of logical ops. Note that these ops
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002616 // depend on the PPC behavior for oversized shift amounts.
2617 SDOperand Lo = Op.getOperand(0);
2618 SDOperand Hi = Op.getOperand(1);
2619 SDOperand Amt = Op.getOperand(2);
Dan Gohman71619ec2008-03-07 20:36:53 +00002620 MVT::ValueType AmtVT = Amt.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002621
Dan Gohman71619ec2008-03-07 20:36:53 +00002622 SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2623 DAG.getConstant(BitWidth, AmtVT), Amt);
2624 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2625 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2626 SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2627 SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2628 DAG.getConstant(-BitWidth, AmtVT));
2629 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
2630 SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2631 SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002632 SDOperand OutOps[] = { OutLo, OutHi };
Dan Gohman71619ec2008-03-07 20:36:53 +00002633 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002634 OutOps, 2);
2635}
2636
Dale Johannesen8be83a72008-03-04 23:17:14 +00002637SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman71619ec2008-03-07 20:36:53 +00002638 MVT::ValueType VT = Op.getValueType();
2639 unsigned BitWidth = MVT::getSizeInBits(VT);
2640 assert(Op.getNumOperands() == 3 &&
2641 VT == Op.getOperand(1).getValueType() &&
2642 "Unexpected SRA!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002643
Dan Gohman71619ec2008-03-07 20:36:53 +00002644 // Expand into a bunch of logical ops, followed by a select_cc.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002645 SDOperand Lo = Op.getOperand(0);
2646 SDOperand Hi = Op.getOperand(1);
2647 SDOperand Amt = Op.getOperand(2);
Dan Gohman71619ec2008-03-07 20:36:53 +00002648 MVT::ValueType AmtVT = Amt.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002649
Dan Gohman71619ec2008-03-07 20:36:53 +00002650 SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2651 DAG.getConstant(BitWidth, AmtVT), Amt);
2652 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2653 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2654 SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2655 SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2656 DAG.getConstant(-BitWidth, AmtVT));
2657 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
2658 SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
2659 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660 Tmp4, Tmp6, ISD::SETLE);
2661 SDOperand OutOps[] = { OutLo, OutHi };
Dan Gohman71619ec2008-03-07 20:36:53 +00002662 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002663 OutOps, 2);
2664}
2665
2666//===----------------------------------------------------------------------===//
2667// Vector related lowering.
2668//
2669
2670// If this is a vector of constants or undefs, get the bits. A bit in
2671// UndefBits is set if the corresponding element of the vector is an
2672// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2673// zero. Return true if this is not an array of constants, false if it is.
2674//
2675static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2676 uint64_t UndefBits[2]) {
2677 // Start with zero'd results.
2678 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2679
2680 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2681 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2682 SDOperand OpVal = BV->getOperand(i);
2683
2684 unsigned PartNo = i >= e/2; // In the upper 128 bits?
2685 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
2686
2687 uint64_t EltBits = 0;
2688 if (OpVal.getOpcode() == ISD::UNDEF) {
2689 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2690 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2691 continue;
2692 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2693 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2694 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2695 assert(CN->getValueType(0) == MVT::f32 &&
2696 "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +00002697 EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002698 } else {
2699 // Nonconstant element.
2700 return true;
2701 }
2702
2703 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2704 }
2705
2706 //printf("%llx %llx %llx %llx\n",
2707 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2708 return false;
2709}
2710
2711// If this is a splat (repetition) of a value across the whole vector, return
2712// the smallest size that splats it. For example, "0x01010101010101..." is a
2713// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2714// SplatSize = 1 byte.
2715static bool isConstantSplat(const uint64_t Bits128[2],
2716 const uint64_t Undef128[2],
2717 unsigned &SplatBits, unsigned &SplatUndef,
2718 unsigned &SplatSize) {
2719
2720 // Don't let undefs prevent splats from matching. See if the top 64-bits are
2721 // the same as the lower 64-bits, ignoring undefs.
2722 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2723 return false; // Can't be a splat if two pieces don't match.
2724
2725 uint64_t Bits64 = Bits128[0] | Bits128[1];
2726 uint64_t Undef64 = Undef128[0] & Undef128[1];
2727
2728 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2729 // undefs.
2730 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2731 return false; // Can't be a splat if two pieces don't match.
2732
2733 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2734 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2735
2736 // If the top 16-bits are different than the lower 16-bits, ignoring
2737 // undefs, we have an i32 splat.
2738 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2739 SplatBits = Bits32;
2740 SplatUndef = Undef32;
2741 SplatSize = 4;
2742 return true;
2743 }
2744
2745 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
2746 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2747
2748 // If the top 8-bits are different than the lower 8-bits, ignoring
2749 // undefs, we have an i16 splat.
2750 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2751 SplatBits = Bits16;
2752 SplatUndef = Undef16;
2753 SplatSize = 2;
2754 return true;
2755 }
2756
2757 // Otherwise, we have an 8-bit splat.
2758 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
2759 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2760 SplatSize = 1;
2761 return true;
2762}
2763
2764/// BuildSplatI - Build a canonical splati of Val with an element size of
2765/// SplatSize. Cast the result to VT.
2766static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2767 SelectionDAG &DAG) {
2768 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2769
2770 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2771 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2772 };
2773
2774 MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2775
2776 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2777 if (Val == -1)
2778 SplatSize = 1;
2779
2780 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2781
2782 // Build a canonical splat for this value.
2783 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2784 SmallVector<SDOperand, 8> Ops;
2785 Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2786 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2787 &Ops[0], Ops.size());
2788 return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2789}
2790
2791/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2792/// specified intrinsic ID.
2793static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2794 SelectionDAG &DAG,
2795 MVT::ValueType DestVT = MVT::Other) {
2796 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2797 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2798 DAG.getConstant(IID, MVT::i32), LHS, RHS);
2799}
2800
2801/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2802/// specified intrinsic ID.
2803static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2804 SDOperand Op2, SelectionDAG &DAG,
2805 MVT::ValueType DestVT = MVT::Other) {
2806 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2807 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2808 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2809}
2810
2811
2812/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2813/// amount. The result has the specified value type.
2814static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2815 MVT::ValueType VT, SelectionDAG &DAG) {
2816 // Force LHS/RHS to be the right type.
2817 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2818 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2819
2820 SDOperand Ops[16];
2821 for (unsigned i = 0; i != 16; ++i)
2822 Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2823 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2824 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2825 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2826}
2827
2828// If this is a case we can't handle, return null and let the default
2829// expansion code take care of it. If we CAN select this case, and if it
2830// selects to a single instruction, return Op. Otherwise, if we can codegen
2831// this case more efficiently than a constant pool load, lower it to the
2832// sequence of ops that should be used.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002833SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op,
2834 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002835 // If this is a vector of constants or undefs, get the bits. A bit in
2836 // UndefBits is set if the corresponding element of the vector is an
2837 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2838 // zero.
2839 uint64_t VectorBits[2];
2840 uint64_t UndefBits[2];
2841 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2842 return SDOperand(); // Not a constant vector.
2843
2844 // If this is a splat (repetition) of a value across the whole vector, return
2845 // the smallest size that splats it. For example, "0x01010101010101..." is a
2846 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2847 // SplatSize = 1 byte.
2848 unsigned SplatBits, SplatUndef, SplatSize;
2849 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2850 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2851
2852 // First, handle single instruction cases.
2853
2854 // All zeros?
2855 if (SplatBits == 0) {
2856 // Canonicalize all zero vectors to be v4i32.
2857 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2858 SDOperand Z = DAG.getConstant(0, MVT::i32);
2859 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2860 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2861 }
2862 return Op;
2863 }
2864
2865 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2866 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2867 if (SextVal >= -16 && SextVal <= 15)
2868 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2869
2870
2871 // Two instruction sequences.
2872
2873 // If this value is in the range [-32,30] and is even, use:
2874 // tmp = VSPLTI[bhw], result = add tmp, tmp
2875 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2876 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2877 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2878 }
2879
2880 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
2881 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
2882 // for fneg/fabs.
2883 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2884 // Make -1 and vspltisw -1:
2885 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2886
2887 // Make the VSLW intrinsic, computing 0x8000_0000.
2888 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2889 OnesV, DAG);
2890
2891 // xor by OnesV to invert it.
2892 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2893 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2894 }
2895
2896 // Check to see if this is a wide variety of vsplti*, binop self cases.
2897 unsigned SplatBitSize = SplatSize*8;
2898 static const signed char SplatCsts[] = {
2899 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2900 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2901 };
2902
Owen Anderson1636de92007-09-07 04:06:50 +00002903 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002904 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2905 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
2906 int i = SplatCsts[idx];
2907
2908 // Figure out what shift amount will be used by altivec if shifted by i in
2909 // this splat size.
2910 unsigned TypeShiftAmt = i & (SplatBitSize-1);
2911
2912 // vsplti + shl self.
2913 if (SextVal == (i << (int)TypeShiftAmt)) {
2914 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2915 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2916 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2917 Intrinsic::ppc_altivec_vslw
2918 };
2919 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2920 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2921 }
2922
2923 // vsplti + srl self.
2924 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2925 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2926 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2927 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2928 Intrinsic::ppc_altivec_vsrw
2929 };
2930 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2931 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2932 }
2933
2934 // vsplti + sra self.
2935 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2936 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2937 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2938 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2939 Intrinsic::ppc_altivec_vsraw
2940 };
2941 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2942 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2943 }
2944
2945 // vsplti + rol self.
2946 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2947 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2948 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2949 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2950 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2951 Intrinsic::ppc_altivec_vrlw
2952 };
2953 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2954 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2955 }
2956
2957 // t = vsplti c, result = vsldoi t, t, 1
2958 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2959 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2960 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2961 }
2962 // t = vsplti c, result = vsldoi t, t, 2
2963 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2964 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2965 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2966 }
2967 // t = vsplti c, result = vsldoi t, t, 3
2968 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2969 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2970 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2971 }
2972 }
2973
2974 // Three instruction sequences.
2975
2976 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
2977 if (SextVal >= 0 && SextVal <= 31) {
2978 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2979 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002980 LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002981 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2982 }
2983 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
2984 if (SextVal >= -31 && SextVal <= 0) {
2985 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2986 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002987 LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002988 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2989 }
2990 }
2991
2992 return SDOperand();
2993}
2994
2995/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2996/// the specified operations to build the shuffle.
2997static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2998 SDOperand RHS, SelectionDAG &DAG) {
2999 unsigned OpNum = (PFEntry >> 26) & 0x0F;
3000 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3001 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
3002
3003 enum {
3004 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3005 OP_VMRGHW,
3006 OP_VMRGLW,
3007 OP_VSPLTISW0,
3008 OP_VSPLTISW1,
3009 OP_VSPLTISW2,
3010 OP_VSPLTISW3,
3011 OP_VSLDOI4,
3012 OP_VSLDOI8,
3013 OP_VSLDOI12
3014 };
3015
3016 if (OpNum == OP_COPY) {
3017 if (LHSID == (1*9+2)*9+3) return LHS;
3018 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3019 return RHS;
3020 }
3021
3022 SDOperand OpLHS, OpRHS;
3023 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3024 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3025
3026 unsigned ShufIdxs[16];
3027 switch (OpNum) {
3028 default: assert(0 && "Unknown i32 permute!");
3029 case OP_VMRGHW:
3030 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
3031 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3032 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
3033 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3034 break;
3035 case OP_VMRGLW:
3036 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3037 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3038 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3039 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3040 break;
3041 case OP_VSPLTISW0:
3042 for (unsigned i = 0; i != 16; ++i)
3043 ShufIdxs[i] = (i&3)+0;
3044 break;
3045 case OP_VSPLTISW1:
3046 for (unsigned i = 0; i != 16; ++i)
3047 ShufIdxs[i] = (i&3)+4;
3048 break;
3049 case OP_VSPLTISW2:
3050 for (unsigned i = 0; i != 16; ++i)
3051 ShufIdxs[i] = (i&3)+8;
3052 break;
3053 case OP_VSPLTISW3:
3054 for (unsigned i = 0; i != 16; ++i)
3055 ShufIdxs[i] = (i&3)+12;
3056 break;
3057 case OP_VSLDOI4:
3058 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3059 case OP_VSLDOI8:
3060 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3061 case OP_VSLDOI12:
3062 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3063 }
3064 SDOperand Ops[16];
3065 for (unsigned i = 0; i != 16; ++i)
3066 Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
3067
3068 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3069 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3070}
3071
3072/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
3073/// is a shuffle we can handle in a single instruction, return it. Otherwise,
3074/// return the code it can be lowered into. Worst case, it can always be
3075/// lowered into a vperm.
Dale Johannesen8be83a72008-03-04 23:17:14 +00003076SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op,
3077 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003078 SDOperand V1 = Op.getOperand(0);
3079 SDOperand V2 = Op.getOperand(1);
3080 SDOperand PermMask = Op.getOperand(2);
3081
3082 // Cases that are handled by instructions that take permute immediates
3083 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3084 // selected by the instruction selector.
3085 if (V2.getOpcode() == ISD::UNDEF) {
3086 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
3087 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
3088 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
3089 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
3090 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
3091 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
3092 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
3093 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
3094 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
3095 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
3096 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
3097 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
3098 return Op;
3099 }
3100 }
3101
3102 // Altivec has a variety of "shuffle immediates" that take two vector inputs
3103 // and produce a fixed permutation. If any of these match, do not lower to
3104 // VPERM.
3105 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
3106 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
3107 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
3108 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3109 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3110 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3111 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3112 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3113 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3114 return Op;
3115
3116 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
3117 // perfect shuffle table to emit an optimal matching sequence.
3118 unsigned PFIndexes[4];
3119 bool isFourElementShuffle = true;
3120 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3121 unsigned EltNo = 8; // Start out undef.
3122 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
3123 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3124 continue; // Undef, ignore it.
3125
3126 unsigned ByteSource =
3127 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3128 if ((ByteSource & 3) != j) {
3129 isFourElementShuffle = false;
3130 break;
3131 }
3132
3133 if (EltNo == 8) {
3134 EltNo = ByteSource/4;
3135 } else if (EltNo != ByteSource/4) {
3136 isFourElementShuffle = false;
3137 break;
3138 }
3139 }
3140 PFIndexes[i] = EltNo;
3141 }
3142
3143 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3144 // perfect shuffle vector to determine if it is cost effective to do this as
3145 // discrete instructions, or whether we should use a vperm.
3146 if (isFourElementShuffle) {
3147 // Compute the index in the perfect shuffle table.
3148 unsigned PFTableIndex =
3149 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3150
3151 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3152 unsigned Cost = (PFEntry >> 30);
3153
3154 // Determining when to avoid vperm is tricky. Many things affect the cost
3155 // of vperm, particularly how many times the perm mask needs to be computed.
3156 // For example, if the perm mask can be hoisted out of a loop or is already
3157 // used (perhaps because there are multiple permutes with the same shuffle
3158 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
3159 // the loop requires an extra register.
3160 //
3161 // As a compromise, we only emit discrete instructions if the shuffle can be
3162 // generated in 3 or fewer operations. When we have loop information
3163 // available, if this block is within a loop, we should avoid using vperm
3164 // for 3-operation perms and use a constant pool load instead.
3165 if (Cost < 3)
3166 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3167 }
3168
3169 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3170 // vector that will get spilled to the constant pool.
3171 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3172
3173 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3174 // that it is in input element units, not in bytes. Convert now.
3175 MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
3176 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
3177
3178 SmallVector<SDOperand, 16> ResultMask;
3179 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3180 unsigned SrcElt;
3181 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3182 SrcElt = 0;
3183 else
3184 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3185
3186 for (unsigned j = 0; j != BytesPerElement; ++j)
3187 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3188 MVT::i8));
3189 }
3190
3191 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3192 &ResultMask[0], ResultMask.size());
3193 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3194}
3195
3196/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3197/// altivec comparison. If it is, return true and fill in Opc/isDot with
3198/// information about the intrinsic.
3199static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
3200 bool &isDot) {
3201 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3202 CompareOpc = -1;
3203 isDot = false;
3204 switch (IntrinsicID) {
3205 default: return false;
3206 // Comparison predicates.
3207 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
3208 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3209 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
3210 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
3211 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3212 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3213 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3214 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3215 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3216 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3217 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3218 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3219 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3220
3221 // Normal Comparisons.
3222 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
3223 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
3224 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
3225 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
3226 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
3227 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
3228 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
3229 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
3230 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
3231 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
3232 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
3233 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
3234 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
3235 }
3236 return true;
3237}
3238
3239/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3240/// lower, do it, otherwise return null.
Dale Johannesen8be83a72008-03-04 23:17:14 +00003241SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op,
3242 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003243 // If this is a lowered altivec predicate compare, CompareOpc is set to the
3244 // opcode number of the comparison.
3245 int CompareOpc;
3246 bool isDot;
3247 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3248 return SDOperand(); // Don't custom lower most intrinsics.
3249
3250 // If this is a non-dot comparison, make the VCMP node and we are done.
3251 if (!isDot) {
3252 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3253 Op.getOperand(1), Op.getOperand(2),
3254 DAG.getConstant(CompareOpc, MVT::i32));
3255 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3256 }
3257
3258 // Create the PPCISD altivec 'dot' comparison node.
3259 SDOperand Ops[] = {
3260 Op.getOperand(2), // LHS
3261 Op.getOperand(3), // RHS
3262 DAG.getConstant(CompareOpc, MVT::i32)
3263 };
3264 std::vector<MVT::ValueType> VTs;
3265 VTs.push_back(Op.getOperand(2).getValueType());
3266 VTs.push_back(MVT::Flag);
3267 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3268
3269 // Now that we have the comparison, emit a copy from the CR to a GPR.
3270 // This is flagged to the above dot comparison.
3271 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3272 DAG.getRegister(PPC::CR6, MVT::i32),
3273 CompNode.getValue(1));
3274
3275 // Unpack the result based on how the target uses it.
3276 unsigned BitNo; // Bit # of CR6.
3277 bool InvertBit; // Invert result?
3278 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3279 default: // Can't happen, don't crash on invalid number though.
3280 case 0: // Return the value of the EQ bit of CR6.
3281 BitNo = 0; InvertBit = false;
3282 break;
3283 case 1: // Return the inverted value of the EQ bit of CR6.
3284 BitNo = 0; InvertBit = true;
3285 break;
3286 case 2: // Return the value of the LT bit of CR6.
3287 BitNo = 2; InvertBit = false;
3288 break;
3289 case 3: // Return the inverted value of the LT bit of CR6.
3290 BitNo = 2; InvertBit = true;
3291 break;
3292 }
3293
3294 // Shift the bit into the low position.
3295 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3296 DAG.getConstant(8-(3-BitNo), MVT::i32));
3297 // Isolate the bit.
3298 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3299 DAG.getConstant(1, MVT::i32));
3300
3301 // If we are supposed to, toggle the bit.
3302 if (InvertBit)
3303 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3304 DAG.getConstant(1, MVT::i32));
3305 return Flags;
3306}
3307
Dale Johannesen8be83a72008-03-04 23:17:14 +00003308SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op,
3309 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003310 // Create a stack slot that is 16-byte aligned.
3311 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3312 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3313 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3314 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3315
3316 // Store the input value into Value#0 of the stack slot.
3317 SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3318 Op.getOperand(0), FIdx, NULL, 0);
3319 // Load it out.
3320 return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3321}
3322
Dale Johannesen8be83a72008-03-04 23:17:14 +00003323SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003324 if (Op.getValueType() == MVT::v4i32) {
3325 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3326
3327 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
3328 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3329
3330 SDOperand RHSSwap = // = vrlw RHS, 16
3331 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3332
3333 // Shrinkify inputs to v8i16.
3334 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3335 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3336 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3337
3338 // Low parts multiplied together, generating 32-bit results (we ignore the
3339 // top parts).
3340 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3341 LHS, RHS, DAG, MVT::v4i32);
3342
3343 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3344 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3345 // Shift the high parts up 16 bits.
3346 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3347 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3348 } else if (Op.getValueType() == MVT::v8i16) {
3349 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3350
3351 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3352
3353 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3354 LHS, RHS, Zero, DAG);
3355 } else if (Op.getValueType() == MVT::v16i8) {
3356 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3357
3358 // Multiply the even 8-bit parts, producing 16-bit sums.
3359 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3360 LHS, RHS, DAG, MVT::v8i16);
3361 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3362
3363 // Multiply the odd 8-bit parts, producing 16-bit sums.
3364 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3365 LHS, RHS, DAG, MVT::v8i16);
3366 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3367
3368 // Merge the results together.
3369 SDOperand Ops[16];
3370 for (unsigned i = 0; i != 8; ++i) {
3371 Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
3372 Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3373 }
3374 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3375 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3376 } else {
3377 assert(0 && "Unknown mul to lower!");
3378 abort();
3379 }
3380}
3381
3382/// LowerOperation - Provide custom lowering hooks for some operations.
3383///
3384SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3385 switch (Op.getOpcode()) {
3386 default: assert(0 && "Wasn't expecting to be able to lower this!");
3387 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
3388 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
3389 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3390 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
3391 case ISD::SETCC: return LowerSETCC(Op, DAG);
3392 case ISD::VASTART:
3393 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3394 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3395
3396 case ISD::VAARG:
3397 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3398 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3399
3400 case ISD::FORMAL_ARGUMENTS:
3401 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3402 VarArgsStackOffset, VarArgsNumGPR,
3403 VarArgsNumFPR, PPCSubTarget);
3404
Dan Gohman9f153572008-03-19 21:39:28 +00003405 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget,
3406 getTargetMachine());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003407 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
3408 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3409 case ISD::DYNAMIC_STACKALLOC:
3410 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3411
3412 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
3413 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
3414 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00003415 case ISD::FP_ROUND_INREG: return LowerFP_ROUND_INREG(Op, DAG);
Dan Gohman819574c2008-01-31 00:41:03 +00003416 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003417
3418 // Lower 64-bit shifts.
3419 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
3420 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
3421 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
3422
3423 // Vector-related lowering.
3424 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3425 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3426 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3427 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
3428 case ISD::MUL: return LowerMUL(Op, DAG);
3429
Chris Lattnerf8b93372007-12-08 06:59:59 +00003430 // Frame & Return address.
3431 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003432 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3433 }
3434 return SDOperand();
3435}
3436
Chris Lattner28771092007-11-28 18:44:47 +00003437SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3438 switch (N->getOpcode()) {
3439 default: assert(0 && "Wasn't expecting to be able to lower this!");
3440 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3441 }
3442}
3443
3444
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003445//===----------------------------------------------------------------------===//
3446// Other Lowering Code
3447//===----------------------------------------------------------------------===//
3448
3449MachineBasicBlock *
Evan Chenge637db12008-01-30 18:18:23 +00003450PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3451 MachineBasicBlock *BB) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003452 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3453 assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3454 MI->getOpcode() == PPC::SELECT_CC_I8 ||
3455 MI->getOpcode() == PPC::SELECT_CC_F4 ||
3456 MI->getOpcode() == PPC::SELECT_CC_F8 ||
3457 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3458 "Unexpected instr type to insert");
3459
3460 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3461 // control-flow pattern. The incoming instruction knows the destination vreg
3462 // to set, the condition code register to branch on, the true/false values to
3463 // select between, and a branch opcode to use.
3464 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3465 ilist<MachineBasicBlock>::iterator It = BB;
3466 ++It;
3467
3468 // thisMBB:
3469 // ...
3470 // TrueVal = ...
3471 // cmpTY ccX, r1, r2
3472 // bCC copy1MBB
3473 // fallthrough --> copy0MBB
3474 MachineBasicBlock *thisMBB = BB;
3475 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3476 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3477 unsigned SelectPred = MI->getOperand(4).getImm();
3478 BuildMI(BB, TII->get(PPC::BCC))
3479 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3480 MachineFunction *F = BB->getParent();
3481 F->getBasicBlockList().insert(It, copy0MBB);
3482 F->getBasicBlockList().insert(It, sinkMBB);
3483 // Update machine-CFG edges by first adding all successors of the current
3484 // block to the new block which will contain the Phi node for the select.
3485 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3486 e = BB->succ_end(); i != e; ++i)
3487 sinkMBB->addSuccessor(*i);
3488 // Next, remove all successors of the current block, and add the true
3489 // and fallthrough blocks as its successors.
3490 while(!BB->succ_empty())
3491 BB->removeSuccessor(BB->succ_begin());
3492 BB->addSuccessor(copy0MBB);
3493 BB->addSuccessor(sinkMBB);
3494
3495 // copy0MBB:
3496 // %FalseValue = ...
3497 // # fallthrough to sinkMBB
3498 BB = copy0MBB;
3499
3500 // Update machine-CFG edges
3501 BB->addSuccessor(sinkMBB);
3502
3503 // sinkMBB:
3504 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3505 // ...
3506 BB = sinkMBB;
3507 BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3508 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3509 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3510
3511 delete MI; // The pseudo instruction is gone now.
3512 return BB;
3513}
3514
3515//===----------------------------------------------------------------------===//
3516// Target Optimization Hooks
3517//===----------------------------------------------------------------------===//
3518
3519SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3520 DAGCombinerInfo &DCI) const {
3521 TargetMachine &TM = getTargetMachine();
3522 SelectionDAG &DAG = DCI.DAG;
3523 switch (N->getOpcode()) {
3524 default: break;
3525 case PPCISD::SHL:
3526 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3527 if (C->getValue() == 0) // 0 << V -> 0.
3528 return N->getOperand(0);
3529 }
3530 break;
3531 case PPCISD::SRL:
3532 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3533 if (C->getValue() == 0) // 0 >>u V -> 0.
3534 return N->getOperand(0);
3535 }
3536 break;
3537 case PPCISD::SRA:
3538 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3539 if (C->getValue() == 0 || // 0 >>s V -> 0.
3540 C->isAllOnesValue()) // -1 >>s V -> -1.
3541 return N->getOperand(0);
3542 }
3543 break;
3544
3545 case ISD::SINT_TO_FP:
3546 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3547 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3548 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3549 // We allow the src/dst to be either f32/f64, but the intermediate
3550 // type must be i64.
Dale Johannesencbc03512007-10-23 23:20:14 +00003551 if (N->getOperand(0).getValueType() == MVT::i64 &&
3552 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003553 SDOperand Val = N->getOperand(0).getOperand(0);
3554 if (Val.getValueType() == MVT::f32) {
3555 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3556 DCI.AddToWorklist(Val.Val);
3557 }
3558
3559 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3560 DCI.AddToWorklist(Val.Val);
3561 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3562 DCI.AddToWorklist(Val.Val);
3563 if (N->getValueType(0) == MVT::f32) {
Chris Lattner5872a362008-01-17 07:00:52 +00003564 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3565 DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003566 DCI.AddToWorklist(Val.Val);
3567 }
3568 return Val;
3569 } else if (N->getOperand(0).getValueType() == MVT::i32) {
3570 // If the intermediate type is i32, we can avoid the load/store here
3571 // too.
3572 }
3573 }
3574 }
3575 break;
3576 case ISD::STORE:
3577 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3578 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
Chris Lattnerdf7a4ae2008-01-18 16:54:56 +00003579 !cast<StoreSDNode>(N)->isTruncatingStore() &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003580 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
Dale Johannesencbc03512007-10-23 23:20:14 +00003581 N->getOperand(1).getValueType() == MVT::i32 &&
3582 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003583 SDOperand Val = N->getOperand(1).getOperand(0);
3584 if (Val.getValueType() == MVT::f32) {
3585 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3586 DCI.AddToWorklist(Val.Val);
3587 }
3588 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3589 DCI.AddToWorklist(Val.Val);
3590
3591 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3592 N->getOperand(2), N->getOperand(3));
3593 DCI.AddToWorklist(Val.Val);
3594 return Val;
3595 }
3596
3597 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3598 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3599 N->getOperand(1).Val->hasOneUse() &&
3600 (N->getOperand(1).getValueType() == MVT::i32 ||
3601 N->getOperand(1).getValueType() == MVT::i16)) {
3602 SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3603 // Do an any-extend to 32-bits if this is a half-word input.
3604 if (BSwapOp.getValueType() == MVT::i16)
3605 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3606
3607 return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3608 N->getOperand(2), N->getOperand(3),
3609 DAG.getValueType(N->getOperand(1).getValueType()));
3610 }
3611 break;
3612 case ISD::BSWAP:
3613 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3614 if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3615 N->getOperand(0).hasOneUse() &&
3616 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3617 SDOperand Load = N->getOperand(0);
3618 LoadSDNode *LD = cast<LoadSDNode>(Load);
3619 // Create the byte-swapping load.
3620 std::vector<MVT::ValueType> VTs;
3621 VTs.push_back(MVT::i32);
3622 VTs.push_back(MVT::Other);
Dan Gohman12a9c082008-02-06 22:27:42 +00003623 SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003624 SDOperand Ops[] = {
3625 LD->getChain(), // Chain
3626 LD->getBasePtr(), // Ptr
Dan Gohman12a9c082008-02-06 22:27:42 +00003627 MO, // MemOperand
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003628 DAG.getValueType(N->getValueType(0)) // VT
3629 };
3630 SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3631
3632 // If this is an i16 load, insert the truncate.
3633 SDOperand ResVal = BSLoad;
3634 if (N->getValueType(0) == MVT::i16)
3635 ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3636
3637 // First, combine the bswap away. This makes the value produced by the
3638 // load dead.
3639 DCI.CombineTo(N, ResVal);
3640
3641 // Next, combine the load away, we give it a bogus result value but a real
3642 // chain result. The result value is dead because the bswap is dead.
3643 DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3644
3645 // Return N so it doesn't get rechecked!
3646 return SDOperand(N, 0);
3647 }
3648
3649 break;
3650 case PPCISD::VCMP: {
3651 // If a VCMPo node already exists with exactly the same operands as this
3652 // node, use its result instead of this node (VCMPo computes both a CR6 and
3653 // a normal output).
3654 //
3655 if (!N->getOperand(0).hasOneUse() &&
3656 !N->getOperand(1).hasOneUse() &&
3657 !N->getOperand(2).hasOneUse()) {
3658
3659 // Scan all of the users of the LHS, looking for VCMPo's that match.
3660 SDNode *VCMPoNode = 0;
3661
3662 SDNode *LHSN = N->getOperand(0).Val;
3663 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3664 UI != E; ++UI)
Roman Levenstein0664ef92008-03-26 12:39:26 +00003665 if ((*UI).getUser()->getOpcode() == PPCISD::VCMPo &&
3666 (*UI).getUser()->getOperand(1) == N->getOperand(1) &&
3667 (*UI).getUser()->getOperand(2) == N->getOperand(2) &&
3668 (*UI).getUser()->getOperand(0) == N->getOperand(0)) {
3669 VCMPoNode = UI->getUser();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003670 break;
3671 }
3672
3673 // If there is no VCMPo node, or if the flag value has a single use, don't
3674 // transform this.
3675 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3676 break;
3677
3678 // Look at the (necessarily single) use of the flag value. If it has a
3679 // chain, this transformation is more complex. Note that multiple things
3680 // could use the value result, which we should ignore.
3681 SDNode *FlagUser = 0;
3682 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3683 FlagUser == 0; ++UI) {
3684 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
Roman Levenstein0664ef92008-03-26 12:39:26 +00003685 SDNode *User = UI->getUser();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003686 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3687 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3688 FlagUser = User;
3689 break;
3690 }
3691 }
3692 }
3693
3694 // If the user is a MFCR instruction, we know this is safe. Otherwise we
3695 // give up for right now.
3696 if (FlagUser->getOpcode() == PPCISD::MFCR)
3697 return SDOperand(VCMPoNode, 0);
3698 }
3699 break;
3700 }
3701 case ISD::BR_CC: {
3702 // If this is a branch on an altivec predicate comparison, lower this so
3703 // that we don't have to do a MFCR: instead, branch directly on CR6. This
3704 // lowering is done pre-legalize, because the legalizer lowers the predicate
3705 // compare down to code that is difficult to reassemble.
3706 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3707 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3708 int CompareOpc;
3709 bool isDot;
3710
3711 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3712 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3713 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3714 assert(isDot && "Can't compare against a vector result!");
3715
3716 // If this is a comparison against something other than 0/1, then we know
3717 // that the condition is never/always true.
3718 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3719 if (Val != 0 && Val != 1) {
3720 if (CC == ISD::SETEQ) // Cond never true, remove branch.
3721 return N->getOperand(0);
3722 // Always !=, turn it into an unconditional branch.
3723 return DAG.getNode(ISD::BR, MVT::Other,
3724 N->getOperand(0), N->getOperand(4));
3725 }
3726
3727 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3728
3729 // Create the PPCISD altivec 'dot' comparison node.
3730 std::vector<MVT::ValueType> VTs;
3731 SDOperand Ops[] = {
3732 LHS.getOperand(2), // LHS of compare
3733 LHS.getOperand(3), // RHS of compare
3734 DAG.getConstant(CompareOpc, MVT::i32)
3735 };
3736 VTs.push_back(LHS.getOperand(2).getValueType());
3737 VTs.push_back(MVT::Flag);
3738 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3739
3740 // Unpack the result based on how the target uses it.
3741 PPC::Predicate CompOpc;
3742 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3743 default: // Can't happen, don't crash on invalid number though.
3744 case 0: // Branch on the value of the EQ bit of CR6.
3745 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3746 break;
3747 case 1: // Branch on the inverted value of the EQ bit of CR6.
3748 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3749 break;
3750 case 2: // Branch on the value of the LT bit of CR6.
3751 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3752 break;
3753 case 3: // Branch on the inverted value of the LT bit of CR6.
3754 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3755 break;
3756 }
3757
3758 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3759 DAG.getConstant(CompOpc, MVT::i32),
3760 DAG.getRegister(PPC::CR6, MVT::i32),
3761 N->getOperand(4), CompNode.getValue(1));
3762 }
3763 break;
3764 }
3765 }
3766
3767 return SDOperand();
3768}
3769
3770//===----------------------------------------------------------------------===//
3771// Inline Assembly Support
3772//===----------------------------------------------------------------------===//
3773
3774void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
Dan Gohmand0dfc772008-02-13 22:28:48 +00003775 const APInt &Mask,
Dan Gohman229fa052008-02-13 00:35:47 +00003776 APInt &KnownZero,
3777 APInt &KnownOne,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003778 const SelectionDAG &DAG,
3779 unsigned Depth) const {
Dan Gohman229fa052008-02-13 00:35:47 +00003780 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003781 switch (Op.getOpcode()) {
3782 default: break;
3783 case PPCISD::LBRX: {
3784 // lhbrx is known to have the top bits cleared out.
3785 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3786 KnownZero = 0xFFFF0000;
3787 break;
3788 }
3789 case ISD::INTRINSIC_WO_CHAIN: {
3790 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3791 default: break;
3792 case Intrinsic::ppc_altivec_vcmpbfp_p:
3793 case Intrinsic::ppc_altivec_vcmpeqfp_p:
3794 case Intrinsic::ppc_altivec_vcmpequb_p:
3795 case Intrinsic::ppc_altivec_vcmpequh_p:
3796 case Intrinsic::ppc_altivec_vcmpequw_p:
3797 case Intrinsic::ppc_altivec_vcmpgefp_p:
3798 case Intrinsic::ppc_altivec_vcmpgtfp_p:
3799 case Intrinsic::ppc_altivec_vcmpgtsb_p:
3800 case Intrinsic::ppc_altivec_vcmpgtsh_p:
3801 case Intrinsic::ppc_altivec_vcmpgtsw_p:
3802 case Intrinsic::ppc_altivec_vcmpgtub_p:
3803 case Intrinsic::ppc_altivec_vcmpgtuh_p:
3804 case Intrinsic::ppc_altivec_vcmpgtuw_p:
3805 KnownZero = ~1U; // All bits but the low one are known to be zero.
3806 break;
3807 }
3808 }
3809 }
3810}
3811
3812
3813/// getConstraintType - Given a constraint, return the type of
3814/// constraint it is for this target.
3815PPCTargetLowering::ConstraintType
3816PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3817 if (Constraint.size() == 1) {
3818 switch (Constraint[0]) {
3819 default: break;
3820 case 'b':
3821 case 'r':
3822 case 'f':
3823 case 'v':
3824 case 'y':
3825 return C_RegisterClass;
3826 }
3827 }
3828 return TargetLowering::getConstraintType(Constraint);
3829}
3830
3831std::pair<unsigned, const TargetRegisterClass*>
3832PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3833 MVT::ValueType VT) const {
3834 if (Constraint.size() == 1) {
3835 // GCC RS6000 Constraint Letters
3836 switch (Constraint[0]) {
3837 case 'b': // R1-R31
3838 case 'r': // R0-R31
3839 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3840 return std::make_pair(0U, PPC::G8RCRegisterClass);
3841 return std::make_pair(0U, PPC::GPRCRegisterClass);
3842 case 'f':
3843 if (VT == MVT::f32)
3844 return std::make_pair(0U, PPC::F4RCRegisterClass);
3845 else if (VT == MVT::f64)
3846 return std::make_pair(0U, PPC::F8RCRegisterClass);
3847 break;
3848 case 'v':
3849 return std::make_pair(0U, PPC::VRRCRegisterClass);
3850 case 'y': // crrc
3851 return std::make_pair(0U, PPC::CRRCRegisterClass);
3852 }
3853 }
3854
3855 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3856}
3857
3858
Chris Lattnera531abc2007-08-25 00:47:38 +00003859/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3860/// vector. If it is invalid, don't add anything to Ops.
3861void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3862 std::vector<SDOperand>&Ops,
3863 SelectionDAG &DAG) {
3864 SDOperand Result(0,0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003865 switch (Letter) {
3866 default: break;
3867 case 'I':
3868 case 'J':
3869 case 'K':
3870 case 'L':
3871 case 'M':
3872 case 'N':
3873 case 'O':
3874 case 'P': {
3875 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
Chris Lattnera531abc2007-08-25 00:47:38 +00003876 if (!CST) return; // Must be an immediate to match.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003877 unsigned Value = CST->getValue();
3878 switch (Letter) {
3879 default: assert(0 && "Unknown constraint letter!");
3880 case 'I': // "I" is a signed 16-bit constant.
3881 if ((short)Value == (int)Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003882 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003883 break;
3884 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
3885 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
3886 if ((short)Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003887 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003888 break;
3889 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
3890 if ((Value >> 16) == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003891 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003892 break;
3893 case 'M': // "M" is a constant that is greater than 31.
3894 if (Value > 31)
Chris Lattnera531abc2007-08-25 00:47:38 +00003895 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003896 break;
3897 case 'N': // "N" is a positive constant that is an exact power of two.
3898 if ((int)Value > 0 && isPowerOf2_32(Value))
Chris Lattnera531abc2007-08-25 00:47:38 +00003899 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003900 break;
3901 case 'O': // "O" is the constant zero.
3902 if (Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003903 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003904 break;
3905 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
3906 if ((short)-Value == (int)-Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003907 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003908 break;
3909 }
3910 break;
3911 }
3912 }
3913
Chris Lattnera531abc2007-08-25 00:47:38 +00003914 if (Result.Val) {
3915 Ops.push_back(Result);
3916 return;
3917 }
3918
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003919 // Handle standard constraint letters.
Chris Lattnera531abc2007-08-25 00:47:38 +00003920 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003921}
3922
3923// isLegalAddressingMode - Return true if the addressing mode represented
3924// by AM is legal for this target, for a load/store of the specified type.
3925bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3926 const Type *Ty) const {
3927 // FIXME: PPC does not allow r+i addressing modes for vectors!
3928
3929 // PPC allows a sign-extended 16-bit immediate field.
3930 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3931 return false;
3932
3933 // No global is ever allowed as a base.
3934 if (AM.BaseGV)
3935 return false;
3936
3937 // PPC only support r+r,
3938 switch (AM.Scale) {
3939 case 0: // "r+i" or just "i", depending on HasBaseReg.
3940 break;
3941 case 1:
3942 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3943 return false;
3944 // Otherwise we have r+r or r+i.
3945 break;
3946 case 2:
3947 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3948 return false;
3949 // Allow 2*r as r+r.
3950 break;
3951 default:
3952 // No other scales are supported.
3953 return false;
3954 }
3955
3956 return true;
3957}
3958
3959/// isLegalAddressImmediate - Return true if the integer value can be used
3960/// as the offset of the target addressing mode for load / store of the
3961/// given type.
3962bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3963 // PPC allows a sign-extended 16-bit immediate field.
3964 return (V > -(1 << 16) && V < (1 << 16)-1);
3965}
3966
3967bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3968 return false;
3969}
3970
Chris Lattnerf8b93372007-12-08 06:59:59 +00003971SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3972 // Depths > 0 not supported yet!
3973 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3974 return SDOperand();
3975
3976 MachineFunction &MF = DAG.getMachineFunction();
3977 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3978 int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3979 if (RAIdx == 0) {
3980 bool isPPC64 = PPCSubTarget.isPPC64();
3981 int Offset =
3982 PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3983
3984 // Set up a frame object for the return address.
3985 RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3986
3987 // Remember it for next time.
3988 FuncInfo->setReturnAddrSaveIndex(RAIdx);
3989
3990 // Make sure the function really does not optimize away the store of the RA
3991 // to the stack.
3992 FuncInfo->setLRStoreRequired();
3993 }
3994
3995 // Just load the return address off the stack.
3996 SDOperand RetAddrFI = DAG.getFrameIndex(RAIdx, getPointerTy());
3997 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3998}
3999
4000SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004001 // Depths > 0 not supported yet!
4002 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4003 return SDOperand();
4004
4005 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4006 bool isPPC64 = PtrVT == MVT::i64;
4007
4008 MachineFunction &MF = DAG.getMachineFunction();
4009 MachineFrameInfo *MFI = MF.getFrameInfo();
4010 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4011 && MFI->getStackSize();
4012
4013 if (isPPC64)
4014 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
Bill Wendling5e28ab12007-08-30 00:59:19 +00004015 MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004016 else
4017 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4018 MVT::i32);
4019}