blob: a938bae3fc71e6e931275131861cd381bded7c80 [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86ISelSimple.cpp - A simple instruction selector for x86 ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000021#include "llvm/Pass.h"
Chris Lattner30483732004-06-20 07:49:54 +000022#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000023#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner94af4142002-12-25 05:13:53 +000026#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000028#include "llvm/Target/TargetMachine.h"
Chris Lattner3f1e8e72004-02-22 07:04:00 +000029#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000031#include "llvm/ADT/Statistic.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattner986618e2004-02-22 19:47:26 +000034namespace {
35 Statistic<>
36 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
Chris Lattner427aeb42004-04-11 19:21:59 +000037
38 /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
39 /// Representation.
40 ///
41 enum TypeClass {
42 cByte, cShort, cInt, cFP, cLong
43 };
44}
45
46/// getClass - Turn a primitive type into a "class" number which is based on the
47/// size of the type, and whether or not it is floating point.
48///
49static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerf70c22b2004-06-17 18:19:28 +000050 switch (Ty->getTypeID()) {
Chris Lattner427aeb42004-04-11 19:21:59 +000051 case Type::SByteTyID:
52 case Type::UByteTyID: return cByte; // Byte operands are class #0
53 case Type::ShortTyID:
54 case Type::UShortTyID: return cShort; // Short operands are class #1
55 case Type::IntTyID:
56 case Type::UIntTyID:
57 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
58
59 case Type::FloatTyID:
60 case Type::DoubleTyID: return cFP; // Floating Point is #3
61
62 case Type::LongTyID:
63 case Type::ULongTyID: return cLong; // Longs are class #4
64 default:
65 assert(0 && "Invalid type to getClass!");
66 return cByte; // not reached
67 }
68}
69
70// getClassB - Just like getClass, but treat boolean values as bytes.
71static inline TypeClass getClassB(const Type *Ty) {
72 if (Ty == Type::BoolTy) return cByte;
73 return getClass(Ty);
Chris Lattner986618e2004-02-22 19:47:26 +000074}
Chris Lattnercf93cdd2004-01-30 22:13:44 +000075
Chris Lattner72614082002-10-25 22:55:53 +000076namespace {
Misha Brukmaneae1bf12004-09-21 18:21:21 +000077 struct X86ISel : public FunctionPass, InstVisitor<X86ISel> {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000078 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000079 MachineFunction *F; // The function we are compiling into
80 MachineBasicBlock *BB; // The current MBB we are compiling
81 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner0e5b79c2004-02-15 01:04:03 +000082 int ReturnAddressIndex; // FrameIndex for the return address
Chris Lattner72614082002-10-25 22:55:53 +000083
Chris Lattner72614082002-10-25 22:55:53 +000084 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
85
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
Chris Lattnercb2fd552004-05-13 07:40:27 +000089 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
92
Misha Brukmaneae1bf12004-09-21 18:21:21 +000093 X86ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000094
95 /// runOnFunction - Top level implementation of instruction selection for
96 /// the entire function.
97 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000098 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000099 // First pass over the function, lower any unknown intrinsic functions
100 // with the IntrinsicLowering class.
101 LowerUnknownIntrinsicFunctionCalls(Fn);
102
Chris Lattner36b36032002-10-29 23:40:58 +0000103 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000104
Chris Lattner065faeb2002-12-28 20:24:02 +0000105 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +0000106 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
107 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
108
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000109 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +0000110
Chris Lattner0e5b79c2004-02-15 01:04:03 +0000111 // Set up a frame object for the return address. This is used by the
112 // llvm.returnaddress & llvm.frameaddress intrinisics.
113 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
114
Chris Lattnerdbd73722003-05-06 21:32:22 +0000115 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000116 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000117
Chris Lattner333b2fa2002-12-13 10:09:43 +0000118 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000119 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000120
121 // Select the PHI nodes
122 SelectPHINodes();
123
Chris Lattner986618e2004-02-22 19:47:26 +0000124 // Insert the FP_REG_KILL instructions into blocks that need them.
125 InsertFPRegKills();
126
Chris Lattner72614082002-10-25 22:55:53 +0000127 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000128 MBBMap.clear();
Chris Lattnercb2fd552004-05-13 07:40:27 +0000129 AllocaMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000130 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000131 // We always build a machine code representation for the function
132 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000133 }
134
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000135 virtual const char *getPassName() const {
136 return "X86 Simple Instruction Selection";
137 }
138
Chris Lattner72614082002-10-25 22:55:53 +0000139 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000140 /// block. This simply creates a new MachineBasicBlock to emit code into
141 /// and adds it to the current MachineFunction. Subsequent visit* for
142 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000143 ///
144 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000145 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000146 }
147
Chris Lattner44827152003-12-28 09:47:19 +0000148 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
149 /// function, lowering any calls to unknown intrinsic functions into the
150 /// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +0000151 ///
Chris Lattner44827152003-12-28 09:47:19 +0000152 void LowerUnknownIntrinsicFunctionCalls(Function &F);
153
Chris Lattner065faeb2002-12-28 20:24:02 +0000154 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
155 /// from the stack into virtual registers.
156 ///
157 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000158
159 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
160 /// because we have to generate our sources into the source basic blocks,
161 /// not the current one.
162 ///
163 void SelectPHINodes();
164
Chris Lattner986618e2004-02-22 19:47:26 +0000165 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
166 /// that need them. This only occurs due to the floating point stackifier
167 /// not being aggressive enough to handle arbitrary global stackification.
168 ///
169 void InsertFPRegKills();
170
Chris Lattner72614082002-10-25 22:55:53 +0000171 // Visitation methods for various instructions. These methods simply emit
172 // fixed X86 code for each instruction.
173 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000174
175 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000176 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000177 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000178
179 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000180 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000181 unsigned Reg;
182 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000183 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
184 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000185 };
186 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000187 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000188 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000189 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000190
191 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000192 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000193 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
194 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +0000195 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000196
Chris Lattnerf01729e2002-11-02 20:54:46 +0000197 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
198 void visitRem(BinaryOperator &B) { visitDivRem(B); }
199 void visitDivRem(BinaryOperator &B);
200
Chris Lattnere2954c82002-11-02 20:04:26 +0000201 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000202 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
203 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
204 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000205
Chris Lattner6d40c192003-01-16 16:43:00 +0000206 // Comparison operators...
207 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000208 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
209 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000210 MachineBasicBlock::iterator MBBI);
Chris Lattner12d96a02004-03-30 21:22:00 +0000211 void visitSelectInst(SelectInst &SI);
212
Chris Lattnerb2acc512003-10-19 21:09:10 +0000213
Chris Lattner6fc3c522002-11-17 21:11:55 +0000214 // Memory Instructions
215 void visitLoadInst(LoadInst &I);
216 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000217 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000218 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000219 void visitMallocInst(MallocInst &I);
220 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000221
Chris Lattnere2954c82002-11-02 20:04:26 +0000222 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000223 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000224 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000225 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000226 void visitVANextInst(VANextInst &I);
227 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000228
229 void visitInstruction(Instruction &I) {
230 std::cerr << "Cannot instruction select: " << I;
231 abort();
232 }
233
Brian Gaeke95780cc2002-12-13 07:56:18 +0000234 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000235 ///
236 void promote32(unsigned targetReg, const ValueRecord &VR);
237
Chris Lattner721d2d42004-03-08 01:18:36 +0000238 /// getAddressingMode - Get the addressing mode to use to address the
239 /// specified value. The returned value should be used with addFullAddress.
Reid Spencerfc989e12004-08-30 00:13:26 +0000240 void getAddressingMode(Value *Addr, X86AddressMode &AM);
Chris Lattner721d2d42004-03-08 01:18:36 +0000241
242
243 /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
244 /// expressions.
Chris Lattnerb6bac512004-02-25 06:13:04 +0000245 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
246 std::vector<Value*> &GEPOps,
Reid Spencerfc989e12004-08-30 00:13:26 +0000247 std::vector<const Type*> &GEPTypes,
248 X86AddressMode &AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +0000249
250 /// isGEPFoldable - Return true if the specified GEP can be completely
251 /// folded into the addressing mode of a load/store or lea instruction.
252 bool isGEPFoldable(MachineBasicBlock *MBB,
253 Value *Src, User::op_iterator IdxBegin,
Reid Spencerfc989e12004-08-30 00:13:26 +0000254 User::op_iterator IdxEnd, X86AddressMode &AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +0000255
Chris Lattner3e130a22003-01-13 00:32:26 +0000256 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
257 /// constant expression GEP support.
258 ///
Chris Lattner827832c2004-02-22 17:05:38 +0000259 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000260 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000261 User::op_iterator IdxEnd, unsigned TargetReg);
262
Chris Lattner548f61d2003-04-23 17:22:12 +0000263 /// emitCastOperation - Common code shared between visitCastInst and
264 /// constant expression cast support.
Misha Brukman538607f2004-03-01 23:53:11 +0000265 ///
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000266 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +0000267 Value *Src, const Type *DestTy, unsigned TargetReg);
268
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000269 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
270 /// and constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000271 ///
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000272 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000273 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000274 Value *Op0, Value *Op1,
275 unsigned OperatorClass, unsigned TargetReg);
276
Chris Lattner6621ed92004-04-11 21:23:56 +0000277 /// emitBinaryFPOperation - This method handles emission of floating point
278 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
279 void emitBinaryFPOperation(MachineBasicBlock *BB,
280 MachineBasicBlock::iterator IP,
281 Value *Op0, Value *Op1,
282 unsigned OperatorClass, unsigned TargetReg);
283
Chris Lattner462fa822004-04-11 20:56:28 +0000284 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
285 Value *Op0, Value *Op1, unsigned TargetReg);
286
287 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
288 unsigned DestReg, const Type *DestTy,
289 unsigned Op0Reg, unsigned Op1Reg);
290 void doMultiplyConst(MachineBasicBlock *MBB,
291 MachineBasicBlock::iterator MBBI,
292 unsigned DestReg, const Type *DestTy,
293 unsigned Op0Reg, unsigned Op1Val);
294
Chris Lattnercadff442003-10-23 17:21:43 +0000295 void emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000296 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +0000297 Value *Op0, Value *Op1, bool isDiv,
298 unsigned TargetReg);
Chris Lattnercadff442003-10-23 17:21:43 +0000299
Chris Lattner58c41fe2003-08-24 19:19:47 +0000300 /// emitSetCCOperation - Common code shared between visitSetCondInst and
301 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000302 ///
Chris Lattner58c41fe2003-08-24 19:19:47 +0000303 void emitSetCCOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000304 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +0000305 Value *Op0, Value *Op1, unsigned Opcode,
306 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000307
308 /// emitShiftOperation - Common code shared between visitShiftInst and
309 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000310 ///
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000311 void emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000312 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000313 Value *Op, Value *ShiftAmount, bool isLeftShift,
314 const Type *ResultTy, unsigned DestReg);
315
Chris Lattner12d96a02004-03-30 21:22:00 +0000316 /// emitSelectOperation - Common code shared between visitSelectInst and the
317 /// constant expression support.
318 void emitSelectOperation(MachineBasicBlock *MBB,
319 MachineBasicBlock::iterator IP,
320 Value *Cond, Value *TrueVal, Value *FalseVal,
321 unsigned DestReg);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000322
Chris Lattnerc5291f52002-10-27 21:16:59 +0000323 /// copyConstantToRegister - Output the instructions required to put the
324 /// specified constant into the specified register.
325 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000326 void copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000327 MachineBasicBlock::iterator MBBI,
Chris Lattner8a307e82002-12-16 19:32:50 +0000328 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000329
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000330 void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
331 unsigned LHS, unsigned RHS);
332
Chris Lattner3e130a22003-01-13 00:32:26 +0000333 /// makeAnotherReg - This method returns the next register number we haven't
334 /// yet used.
335 ///
336 /// Long values are handled somewhat specially. They are always allocated
337 /// as pairs of 32 bit integer values. The register number returned is the
338 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
339 /// of the long value.
340 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000341 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000342 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
343 "Current target doesn't have X86 reg info??");
344 const X86RegisterInfo *MRI =
345 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000346 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000347 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
348 // Create the lower part
349 F->getSSARegMap()->createVirtualRegister(RC);
350 // Create the upper part.
351 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000352 }
353
Chris Lattnerc0812d82002-12-13 06:56:29 +0000354 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000355 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000356 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000357 }
358
Chris Lattnercb2fd552004-05-13 07:40:27 +0000359 /// getReg - This method turns an LLVM value into a register number.
Chris Lattner72614082002-10-25 22:55:53 +0000360 ///
361 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000362 unsigned getReg(Value *V) {
363 // Just append to the end of the current bb.
364 MachineBasicBlock::iterator It = BB->end();
365 return getReg(V, BB, It);
366 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000367 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnercb2fd552004-05-13 07:40:27 +0000368 MachineBasicBlock::iterator IPt);
Chris Lattner427aeb42004-04-11 19:21:59 +0000369
Chris Lattnercb2fd552004-05-13 07:40:27 +0000370 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
371 /// that is to be statically allocated with the initial stack frame
372 /// adjustment.
373 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
Chris Lattner72614082002-10-25 22:55:53 +0000374 };
375}
376
Chris Lattnercb2fd552004-05-13 07:40:27 +0000377/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
378/// instruction in the entry block, return it. Otherwise, return a null
379/// pointer.
380static AllocaInst *dyn_castFixedAlloca(Value *V) {
381 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
382 BasicBlock *BB = AI->getParent();
383 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
384 return AI;
385 }
386 return 0;
387}
388
389/// getReg - This method turns an LLVM value into a register number.
390///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000391unsigned X86ISel::getReg(Value *V, MachineBasicBlock *MBB,
392 MachineBasicBlock::iterator IPt) {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000393 // If this operand is a constant, emit the code to copy the constant into
394 // the register here...
Chris Lattnercb2fd552004-05-13 07:40:27 +0000395 if (Constant *C = dyn_cast<Constant>(V)) {
396 unsigned Reg = makeAnotherReg(V->getType());
397 copyConstantToRegister(MBB, IPt, C, Reg);
398 return Reg;
Chris Lattnercb2fd552004-05-13 07:40:27 +0000399 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
Chris Lattner8b486a12004-06-29 00:14:38 +0000400 // Do not emit noop casts at all, unless it's a double -> float cast.
401 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) &&
402 (CI->getType() != Type::FloatTy ||
403 CI->getOperand(0)->getType() != Type::DoubleTy))
Chris Lattnercb2fd552004-05-13 07:40:27 +0000404 return getReg(CI->getOperand(0), MBB, IPt);
405 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
406 // If the alloca address couldn't be folded into the instruction addressing,
407 // emit an explicit LEA as appropriate.
408 unsigned Reg = makeAnotherReg(V->getType());
409 unsigned FI = getFixedSizedAllocaFI(AI);
410 addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
411 return Reg;
412 }
413
414 unsigned &Reg = RegMap[V];
415 if (Reg == 0) {
416 Reg = makeAnotherReg(V->getType());
417 RegMap[V] = Reg;
418 }
419
420 return Reg;
421}
422
423/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
424/// that is to be statically allocated with the initial stack frame
425/// adjustment.
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000426unsigned X86ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000427 // Already computed this?
428 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
429 if (I != AllocaMap.end() && I->first == AI) return I->second;
430
431 const Type *Ty = AI->getAllocatedType();
432 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
433 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
434 TySize *= CUI->getValue(); // Get total allocated size...
435 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
436
437 // Create a new stack object using the frame manager...
438 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
439 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
440 return FrameIdx;
441}
442
443
Chris Lattnerc5291f52002-10-27 21:16:59 +0000444/// copyConstantToRegister - Output the instructions required to put the
445/// specified constant into the specified register.
446///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000447void X86ISel::copyConstantToRegister(MachineBasicBlock *MBB,
448 MachineBasicBlock::iterator IP,
449 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000450 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000451 unsigned Class = 0;
452 switch (CE->getOpcode()) {
453 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000454 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000455 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000456 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000457 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000458 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000459 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000460
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000461 case Instruction::Xor: ++Class; // FALL THROUGH
462 case Instruction::Or: ++Class; // FALL THROUGH
463 case Instruction::And: ++Class; // FALL THROUGH
464 case Instruction::Sub: ++Class; // FALL THROUGH
465 case Instruction::Add:
466 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
467 Class, R);
468 return;
469
Chris Lattner462fa822004-04-11 20:56:28 +0000470 case Instruction::Mul:
471 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
Chris Lattnercadff442003-10-23 17:21:43 +0000472 return;
Chris Lattner462fa822004-04-11 20:56:28 +0000473
Chris Lattnercadff442003-10-23 17:21:43 +0000474 case Instruction::Div:
Chris Lattner462fa822004-04-11 20:56:28 +0000475 case Instruction::Rem:
476 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
477 CE->getOpcode() == Instruction::Div, R);
Chris Lattnercadff442003-10-23 17:21:43 +0000478 return;
Chris Lattnercadff442003-10-23 17:21:43 +0000479
Chris Lattner58c41fe2003-08-24 19:19:47 +0000480 case Instruction::SetNE:
481 case Instruction::SetEQ:
482 case Instruction::SetLT:
483 case Instruction::SetGT:
484 case Instruction::SetLE:
485 case Instruction::SetGE:
486 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
487 CE->getOpcode(), R);
488 return;
489
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000490 case Instruction::Shl:
491 case Instruction::Shr:
492 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000493 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
494 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000495
Chris Lattner12d96a02004-03-30 21:22:00 +0000496 case Instruction::Select:
497 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
498 CE->getOperand(2), R);
499 return;
500
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000501 default:
Chris Lattner76e2df22004-07-15 02:14:30 +0000502 std::cerr << "Offending expr: " << *C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000503 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000504 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000505 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000506
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000507 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000508 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000509
510 if (Class == cLong) {
511 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000512 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000513 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
514 BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
Chris Lattner3e130a22003-01-13 00:32:26 +0000515 return;
516 }
517
Chris Lattner94af4142002-12-25 05:13:53 +0000518 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000519
520 static const unsigned IntegralOpcodeTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000521 X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000522 };
523
Chris Lattner6b993cc2002-12-15 08:02:15 +0000524 if (C->getType() == Type::BoolTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000525 BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000526 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000527 ConstantInt *CI = cast<ConstantInt>(C);
Chris Lattneree352852004-02-29 07:22:16 +0000528 BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000529 }
Chris Lattner94af4142002-12-25 05:13:53 +0000530 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000531 if (CFP->isExactlyValue(+0.0))
Chris Lattneree352852004-02-29 07:22:16 +0000532 BuildMI(*MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000533 else if (CFP->isExactlyValue(+1.0))
Chris Lattneree352852004-02-29 07:22:16 +0000534 BuildMI(*MBB, IP, X86::FLD1, 0, R);
Chris Lattner94af4142002-12-25 05:13:53 +0000535 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000536 // Otherwise we need to spill the constant to memory...
537 MachineConstantPool *CP = F->getConstantPool();
538 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000539 const Type *Ty = CFP->getType();
540
541 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000542 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
Chris Lattneree352852004-02-29 07:22:16 +0000543 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000544 }
545
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000546 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000547 // Copy zero (null pointer) to the register.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000548 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
Reid Spencer8863f182004-07-18 00:38:32 +0000549 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
550 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000551 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000552 std::cerr << "Offending constant: " << *C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000553 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000554 }
555}
556
Chris Lattner065faeb2002-12-28 20:24:02 +0000557/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
558/// the stack into virtual registers.
559///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000560void X86ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000561 // Emit instructions to load the arguments... On entry to a function on the
562 // X86, the stack frame looks like this:
563 //
564 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000565 // [ESP + 4] -- first argument (leftmost lexically)
566 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000567 // ...
568 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000569 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000570 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000571
572 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
Chris Lattner427aeb42004-04-11 19:21:59 +0000573 bool ArgLive = !I->use_empty();
574 unsigned Reg = ArgLive ? getReg(*I) : 0;
Chris Lattner065faeb2002-12-28 20:24:02 +0000575 int FI; // Frame object index
Chris Lattner427aeb42004-04-11 19:21:59 +0000576
Chris Lattner065faeb2002-12-28 20:24:02 +0000577 switch (getClassB(I->getType())) {
578 case cByte:
Chris Lattner427aeb42004-04-11 19:21:59 +0000579 if (ArgLive) {
580 FI = MFI->CreateFixedObject(1, ArgOffset);
581 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
582 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000583 break;
584 case cShort:
Chris Lattner427aeb42004-04-11 19:21:59 +0000585 if (ArgLive) {
586 FI = MFI->CreateFixedObject(2, ArgOffset);
587 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
588 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000589 break;
590 case cInt:
Chris Lattner427aeb42004-04-11 19:21:59 +0000591 if (ArgLive) {
592 FI = MFI->CreateFixedObject(4, ArgOffset);
593 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
594 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000595 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000596 case cLong:
Chris Lattner427aeb42004-04-11 19:21:59 +0000597 if (ArgLive) {
598 FI = MFI->CreateFixedObject(8, ArgOffset);
599 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
600 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
601 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000602 ArgOffset += 4; // longs require 4 additional bytes
603 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000604 case cFP:
Chris Lattner427aeb42004-04-11 19:21:59 +0000605 if (ArgLive) {
606 unsigned Opcode;
607 if (I->getType() == Type::FloatTy) {
608 Opcode = X86::FLD32m;
609 FI = MFI->CreateFixedObject(4, ArgOffset);
610 } else {
611 Opcode = X86::FLD64m;
612 FI = MFI->CreateFixedObject(8, ArgOffset);
613 }
614 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000615 }
Chris Lattner427aeb42004-04-11 19:21:59 +0000616 if (I->getType() == Type::DoubleTy)
617 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000618 break;
619 default:
620 assert(0 && "Unhandled argument type!");
621 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000622 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000623 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000624
625 // If the function takes variable number of arguments, add a frame offset for
626 // the start of the first vararg value... this is used to expand
627 // llvm.va_start.
628 if (Fn.getFunctionType()->isVarArg())
629 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000630}
631
632
Chris Lattner333b2fa2002-12-13 10:09:43 +0000633/// SelectPHINodes - Insert machine code to generate phis. This is tricky
634/// because we have to generate our sources into the source basic blocks, not
635/// the current one.
636///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000637void X86ISel::SelectPHINodes() {
Chris Lattnerd029cd22004-06-02 05:55:25 +0000638 const TargetInstrInfo &TII = *TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000639 const Function &LF = *F->getFunction(); // The LLVM function...
640 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
641 const BasicBlock *BB = I;
Chris Lattner168aa902004-02-29 07:10:16 +0000642 MachineBasicBlock &MBB = *MBBMap[I];
Chris Lattner333b2fa2002-12-13 10:09:43 +0000643
644 // Loop over all of the PHI nodes in the LLVM basic block...
Chris Lattner168aa902004-02-29 07:10:16 +0000645 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
Reid Spencer2da5c3d2004-09-15 17:06:42 +0000646 for (BasicBlock::const_iterator I = BB->begin(); isa<PHINode>(I); ++I) {
647 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I));
Chris Lattner3e130a22003-01-13 00:32:26 +0000648
Chris Lattner333b2fa2002-12-13 10:09:43 +0000649 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000650 unsigned PHIReg = getReg(*PN);
Chris Lattner168aa902004-02-29 07:10:16 +0000651 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
652 X86::PHI, PN->getNumOperands(), PHIReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000653
654 MachineInstr *LongPhiMI = 0;
Chris Lattner168aa902004-02-29 07:10:16 +0000655 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
656 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
657 X86::PHI, PN->getNumOperands(), PHIReg+1);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000658
Chris Lattnera6e73f12003-05-12 14:22:21 +0000659 // PHIValues - Map of blocks to incoming virtual registers. We use this
660 // so that we only initialize one incoming value for a particular block,
661 // even if the block has multiple entries in the PHI node.
662 //
663 std::map<MachineBasicBlock*, unsigned> PHIValues;
664
Chris Lattner333b2fa2002-12-13 10:09:43 +0000665 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
666 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000667 unsigned ValReg;
668 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
669 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000670
Chris Lattnera6e73f12003-05-12 14:22:21 +0000671 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
672 // We already inserted an initialization of the register for this
673 // predecessor. Recycle it.
674 ValReg = EntryIt->second;
675
676 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000677 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000678 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000679 Value *Val = PN->getIncomingValue(i);
680
681 // If this is a constant or GlobalValue, we may have to insert code
682 // into the basic block to compute it into a virtual register.
Reid Spencer8863f182004-07-18 00:38:32 +0000683 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val))) {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000684 // Simple constants get emitted at the end of the basic block,
685 // before any terminator instructions. We "know" that the code to
686 // move a constant into a register will never clobber any flags.
687 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
Chris Lattnera81fc682003-10-19 00:26:11 +0000688 } else {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000689 // Because we don't want to clobber any values which might be in
690 // physical registers with the computation of this constant (which
691 // might be arbitrarily complex if it is a constant expression),
692 // just insert the computation at the top of the basic block.
693 MachineBasicBlock::iterator PI = PredMBB->begin();
694
695 // Skip over any PHI nodes though!
696 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
697 ++PI;
698
699 ValReg = getReg(Val, PredMBB, PI);
Chris Lattnera81fc682003-10-19 00:26:11 +0000700 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000701
702 // Remember that we inserted a value for this PHI for this predecessor
703 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
704 }
705
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000706 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000707 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000708 if (LongPhiMI) {
709 LongPhiMI->addRegOperand(ValReg+1);
710 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
711 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000712 }
Chris Lattner168aa902004-02-29 07:10:16 +0000713
714 // Now that we emitted all of the incoming values for the PHI node, make
715 // sure to reposition the InsertPoint after the PHI that we just added.
716 // This is needed because we might have inserted a constant into this
717 // block, right after the PHI's which is before the old insert point!
718 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
719 ++PHIInsertPoint;
Chris Lattner333b2fa2002-12-13 10:09:43 +0000720 }
721 }
722}
723
Chris Lattner986618e2004-02-22 19:47:26 +0000724/// RequiresFPRegKill - The floating point stackifier pass cannot insert
725/// compensation code on critical edges. As such, it requires that we kill all
726/// FP registers on the exit from any blocks that either ARE critical edges, or
727/// branch to a block that has incoming critical edges.
728///
729/// Note that this kill instruction will eventually be eliminated when
730/// restrictions in the stackifier are relaxed.
731///
Brian Gaeke1afe7732004-04-28 04:45:55 +0000732static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000733#if 0
Brian Gaeke1afe7732004-04-28 04:45:55 +0000734 const BasicBlock *BB = MBB->getBasicBlock ();
Chris Lattner986618e2004-02-22 19:47:26 +0000735 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
736 const BasicBlock *Succ = *SI;
737 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
738 ++PI; // Block have at least one predecessory
739 if (PI != PE) { // If it has exactly one, this isn't crit edge
740 // If this block has more than one predecessor, check all of the
741 // predecessors to see if they have multiple successors. If so, then the
742 // block we are analyzing needs an FPRegKill.
743 for (PI = pred_begin(Succ); PI != PE; ++PI) {
744 const BasicBlock *Pred = *PI;
745 succ_const_iterator SI2 = succ_begin(Pred);
746 ++SI2; // There must be at least one successor of this block.
747 if (SI2 != succ_end(Pred))
748 return true; // Yes, we must insert the kill on this edge.
749 }
750 }
751 }
752 // If we got this far, there is no need to insert the kill instruction.
753 return false;
754#else
755 return true;
756#endif
757}
758
759// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
760// need them. This only occurs due to the floating point stackifier not being
761// aggressive enough to handle arbitrary global stackification.
762//
763// Currently we insert an FP_REG_KILL instruction into each block that uses or
764// defines a floating point virtual register.
765//
766// When the global register allocators (like linear scan) finally update live
767// variable analysis, we can keep floating point values in registers across
768// portions of the CFG that do not involve critical edges. This will be a big
769// win, but we are waiting on the global allocators before we can do this.
770//
771// With a bit of work, the floating point stackifier pass can be enhanced to
772// break critical edges as needed (to make a place to put compensation code),
773// but this will require some infrastructure improvements as well.
774//
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000775void X86ISel::InsertFPRegKills() {
Chris Lattner986618e2004-02-22 19:47:26 +0000776 SSARegMap &RegMap = *F->getSSARegMap();
Chris Lattner986618e2004-02-22 19:47:26 +0000777
778 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000779 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000780 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
781 MachineOperand& MO = I->getOperand(i);
782 if (MO.isRegister() && MO.getReg()) {
783 unsigned Reg = MO.getReg();
Chris Lattner986618e2004-02-22 19:47:26 +0000784 if (MRegisterInfo::isVirtualRegister(Reg))
Chris Lattner65cf42d2004-02-23 07:29:45 +0000785 if (RegMap.getRegClass(Reg)->getSize() == 10)
786 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000787 }
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000788 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000789 // If we haven't found an FP register use or def in this basic block, check
790 // to see if any of our successors has an FP PHI node, which will cause a
791 // copy to be inserted into this block.
Brian Gaeke235aa5e2004-04-28 04:34:16 +0000792 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
793 SE = BB->succ_end(); SI != SE; ++SI) {
794 MachineBasicBlock *SBB = *SI;
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000795 for (MachineBasicBlock::iterator I = SBB->begin();
796 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
797 if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
798 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000799 }
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000800 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000801 continue;
802 UsesFPReg:
803 // Okay, this block uses an FP register. If the block has successors (ie,
804 // it's not an unwind/return), insert the FP_REG_KILL instruction.
Brian Gaeke1afe7732004-04-28 04:45:55 +0000805 if (BB->succ_size () && RequiresFPRegKill(BB)) {
Chris Lattneree352852004-02-29 07:22:16 +0000806 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
Chris Lattner65cf42d2004-02-23 07:29:45 +0000807 ++NumFPKill;
Chris Lattner986618e2004-02-22 19:47:26 +0000808 }
809 }
810}
811
812
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000813void X86ISel::getAddressingMode(Value *Addr, X86AddressMode &AM) {
Reid Spencerfc989e12004-08-30 00:13:26 +0000814 AM.BaseType = X86AddressMode::RegBase;
815 AM.Base.Reg = 0; AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
Chris Lattner9f1b5312004-05-13 15:12:43 +0000816 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
817 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
Reid Spencerfc989e12004-08-30 00:13:26 +0000818 AM))
Chris Lattner9f1b5312004-05-13 15:12:43 +0000819 return;
820 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
821 if (CE->getOpcode() == Instruction::GetElementPtr)
822 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
Reid Spencerfc989e12004-08-30 00:13:26 +0000823 AM))
Chris Lattner9f1b5312004-05-13 15:12:43 +0000824 return;
Reid Spencerfc989e12004-08-30 00:13:26 +0000825 } else if (AllocaInst *AI = dyn_castFixedAlloca(Addr)) {
826 AM.BaseType = X86AddressMode::FrameIndexBase;
827 AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
828 return;
Chris Lattner358a9022004-10-15 05:05:29 +0000829 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
830 AM.GV = GV;
831 return;
Chris Lattner9f1b5312004-05-13 15:12:43 +0000832 }
833
834 // If it's not foldable, reset addr mode.
Reid Spencerfc989e12004-08-30 00:13:26 +0000835 AM.BaseType = X86AddressMode::RegBase;
836 AM.Base.Reg = getReg(Addr);
837 AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
Chris Lattner9f1b5312004-05-13 15:12:43 +0000838}
839
Chris Lattner307ecba2004-03-30 22:39:09 +0000840// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
841// it into the conditional branch or select instruction which is the only user
842// of the cc instruction. This is the case if the conditional branch is the
Chris Lattnera6f9fe62004-06-18 00:29:22 +0000843// only user of the setcc. We also don't handle long arguments below, so we
844// reject them here as well.
Chris Lattner6d40c192003-01-16 16:43:00 +0000845//
Chris Lattner307ecba2004-03-30 22:39:09 +0000846static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000847 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattner307ecba2004-03-30 22:39:09 +0000848 if (SCI->hasOneUse()) {
849 Instruction *User = cast<Instruction>(SCI->use_back());
850 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Chris Lattner48c937e2004-04-06 17:34:50 +0000851 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
852 SCI->getOpcode() == Instruction::SetEQ ||
Chris Lattnerd04cd552004-10-08 16:34:13 +0000853 SCI->getOpcode() == Instruction::SetNE) &&
Chris Lattnerb0f4e382004-10-08 22:24:31 +0000854 (isa<BranchInst>(User) || User->getOperand(0) == V))
Chris Lattner6d40c192003-01-16 16:43:00 +0000855 return SCI;
856 }
857 return 0;
858}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000859
Chris Lattner6d40c192003-01-16 16:43:00 +0000860// Return a fixed numbering for setcc instructions which does not depend on the
861// order of the opcodes.
862//
863static unsigned getSetCCNumber(unsigned Opcode) {
864 switch(Opcode) {
865 default: assert(0 && "Unknown setcc instruction!");
866 case Instruction::SetEQ: return 0;
867 case Instruction::SetNE: return 1;
868 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000869 case Instruction::SetGE: return 3;
870 case Instruction::SetGT: return 4;
871 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000872 }
873}
Chris Lattner06925362002-11-17 21:56:38 +0000874
Chris Lattner6d40c192003-01-16 16:43:00 +0000875// LLVM -> X86 signed X86 unsigned
876// ----- ---------- ------------
877// seteq -> sete sete
878// setne -> setne setne
879// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000880// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000881// setgt -> setg seta
882// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000883// ----
884// sets // Used by comparison with 0 optimization
885// setns
886static const unsigned SetCCOpcodeTab[2][8] = {
887 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
888 0, 0 },
889 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
890 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000891};
892
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000893/// emitUCOMr - In the future when we support processors before the P6, this
894/// wraps the logic for emitting an FUCOMr vs FUCOMIr.
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000895void X86ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
896 unsigned LHS, unsigned RHS) {
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000897 if (0) { // for processors prior to the P6
898 BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS);
899 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
900 BuildMI(*MBB, IP, X86::SAHF, 1);
901 } else {
902 BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS);
903 }
904}
905
Chris Lattnerb2acc512003-10-19 21:09:10 +0000906// EmitComparison - This function emits a comparison of the two operands,
907// returning the extended setcc code to use.
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000908unsigned X86ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
909 MachineBasicBlock *MBB,
910 MachineBasicBlock::iterator IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000911 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000912 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000913 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000914 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000915
916 // Special case handling of: cmp R, i
Chris Lattner260195d2004-05-07 19:55:55 +0000917 if (isa<ConstantPointerNull>(Op1)) {
918 if (OpNum < 2) // seteq/setne -> test
919 BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
920 else
921 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
922 return OpNum;
923
924 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere80e6372004-04-06 16:02:27 +0000925 if (Class == cByte || Class == cShort || Class == cInt) {
926 unsigned Op1v = CI->getRawValue();
Chris Lattnerc07736a2003-07-23 15:22:26 +0000927
Chris Lattner333864d2003-06-05 19:30:30 +0000928 // Mask off any upper bits of the constant, if there are any...
929 Op1v &= (1ULL << (8 << Class)) - 1;
930
Chris Lattnerb2acc512003-10-19 21:09:10 +0000931 // If this is a comparison against zero, emit more efficient code. We
932 // can't handle unsigned comparisons against zero unless they are == or
933 // !=. These should have been strength reduced already anyway.
934 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
935 static const unsigned TESTTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000936 X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
Chris Lattnerb2acc512003-10-19 21:09:10 +0000937 };
Chris Lattneree352852004-02-29 07:22:16 +0000938 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000939
940 if (OpNum == 2) return 6; // Map jl -> js
941 if (OpNum == 3) return 7; // Map jg -> jns
942 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000943 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000944
945 static const unsigned CMPTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000946 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
Chris Lattnerb2acc512003-10-19 21:09:10 +0000947 };
948
Chris Lattneree352852004-02-29 07:22:16 +0000949 BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000950 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000951 } else {
952 assert(Class == cLong && "Unknown integer class!");
953 unsigned LowCst = CI->getRawValue();
954 unsigned HiCst = CI->getRawValue() >> 32;
955 if (OpNum < 2) { // seteq, setne
956 unsigned LoTmp = Op0r;
957 if (LowCst != 0) {
958 LoTmp = makeAnotherReg(Type::IntTy);
959 BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
960 }
961 unsigned HiTmp = Op0r+1;
962 if (HiCst != 0) {
963 HiTmp = makeAnotherReg(Type::IntTy);
Chris Lattner48c937e2004-04-06 17:34:50 +0000964 BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
Chris Lattnere80e6372004-04-06 16:02:27 +0000965 }
966 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
967 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
968 return OpNum;
Chris Lattner48c937e2004-04-06 17:34:50 +0000969 } else {
970 // Emit a sequence of code which compares the high and low parts once
971 // each, then uses a conditional move to handle the overflow case. For
972 // example, a setlt for long would generate code like this:
973 //
Chris Lattner9984fd02004-05-09 23:16:33 +0000974 // AL = lo(op1) < lo(op2) // Always unsigned comparison
975 // BL = hi(op1) < hi(op2) // Signedness depends on operands
976 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner48c937e2004-04-06 17:34:50 +0000977 //
978
979 // FIXME: This would be much better if we had hierarchical register
980 // classes! Until then, hardcode registers so that we can deal with
981 // their aliases (because we don't have conditional byte moves).
982 //
983 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
984 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
985 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
986 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
987 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
988 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
989 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
990 .addReg(X86::AX);
991 // NOTE: visitSetCondInst knows that the value is dumped into the BL
992 // register at this point for long values...
993 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000994 }
Chris Lattner333864d2003-06-05 19:30:30 +0000995 }
Chris Lattnere80e6372004-04-06 16:02:27 +0000996 }
Chris Lattner333864d2003-06-05 19:30:30 +0000997
Chris Lattner9f08a922004-02-03 18:54:04 +0000998 // Special case handling of comparison against +/- 0.0
999 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
1000 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
Chris Lattneree352852004-02-29 07:22:16 +00001001 BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001002 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00001003 BuildMI(*MBB, IP, X86::SAHF, 1);
Chris Lattner9f08a922004-02-03 18:54:04 +00001004 return OpNum;
1005 }
1006
Chris Lattner58c41fe2003-08-24 19:19:47 +00001007 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001008 switch (Class) {
1009 default: assert(0 && "Unknown type class!");
1010 // Emit: cmp <var1>, <var2> (do the comparison). We can
1011 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
1012 // 32-bit.
1013 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001014 BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001015 break;
1016 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001017 BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001018 break;
1019 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001020 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001021 break;
1022 case cFP:
Chris Lattner01cdb1b2004-06-11 05:33:49 +00001023 emitUCOMr(MBB, IP, Op0r, Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001024 break;
1025
1026 case cLong:
1027 if (OpNum < 2) { // seteq, setne
1028 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1029 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1030 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001031 BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
1032 BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
1033 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +00001034 break; // Allow the sete or setne to be generated from flags set by OR
1035 } else {
1036 // Emit a sequence of code which compares the high and low parts once
1037 // each, then uses a conditional move to handle the overflow case. For
1038 // example, a setlt for long would generate code like this:
1039 //
1040 // AL = lo(op1) < lo(op2) // Signedness depends on operands
1041 // BL = hi(op1) < hi(op2) // Always unsigned comparison
Chris Lattner9984fd02004-05-09 23:16:33 +00001042 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner3e130a22003-01-13 00:32:26 +00001043 //
1044
Chris Lattner6d40c192003-01-16 16:43:00 +00001045 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +00001046 // classes! Until then, hardcode registers so that we can deal with their
1047 // aliases (because we don't have conditional byte moves).
1048 //
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001049 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattneree352852004-02-29 07:22:16 +00001050 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001051 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattneree352852004-02-29 07:22:16 +00001052 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
1053 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1054 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001055 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
Chris Lattneree352852004-02-29 07:22:16 +00001056 .addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +00001057 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1058 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +00001059 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +00001060 }
1061 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001062 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +00001063}
Chris Lattner3e130a22003-01-13 00:32:26 +00001064
Chris Lattner6d40c192003-01-16 16:43:00 +00001065/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
1066/// register, then move it to wherever the result should be.
1067///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001068void X86ISel::visitSetCondInst(SetCondInst &I) {
Chris Lattner307ecba2004-03-30 22:39:09 +00001069 if (canFoldSetCCIntoBranchOrSelect(&I))
1070 return; // Fold this into a branch or select.
Chris Lattner6d40c192003-01-16 16:43:00 +00001071
Chris Lattner6d40c192003-01-16 16:43:00 +00001072 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001073 MachineBasicBlock::iterator MII = BB->end();
1074 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
1075 DestReg);
1076}
Chris Lattner6d40c192003-01-16 16:43:00 +00001077
Chris Lattner58c41fe2003-08-24 19:19:47 +00001078/// emitSetCCOperation - Common code shared between visitSetCondInst and
1079/// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +00001080///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001081void X86ISel::emitSetCCOperation(MachineBasicBlock *MBB,
1082 MachineBasicBlock::iterator IP,
1083 Value *Op0, Value *Op1, unsigned Opcode,
1084 unsigned TargetReg) {
Chris Lattner58c41fe2003-08-24 19:19:47 +00001085 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001086 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001087
Chris Lattnerb2acc512003-10-19 21:09:10 +00001088 const Type *CompTy = Op0->getType();
1089 unsigned CompClass = getClassB(CompTy);
1090 bool isSigned = CompTy->isSigned() && CompClass != cFP;
1091
1092 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +00001093 // Handle normal comparisons with a setcc instruction...
Chris Lattneree352852004-02-29 07:22:16 +00001094 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +00001095 } else {
1096 // Handle long comparisons by copying the value which is already in BL into
1097 // the register we want...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001098 BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +00001099 }
Brian Gaeke1749d632002-11-07 17:59:21 +00001100}
Chris Lattner51b49a92002-11-02 19:45:49 +00001101
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001102void X86ISel::visitSelectInst(SelectInst &SI) {
Chris Lattner12d96a02004-03-30 21:22:00 +00001103 unsigned DestReg = getReg(SI);
1104 MachineBasicBlock::iterator MII = BB->end();
1105 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1106 SI.getFalseValue(), DestReg);
1107}
1108
1109/// emitSelect - Common code shared between visitSelectInst and the constant
1110/// expression support.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001111void X86ISel::emitSelectOperation(MachineBasicBlock *MBB,
1112 MachineBasicBlock::iterator IP,
1113 Value *Cond, Value *TrueVal, Value *FalseVal,
1114 unsigned DestReg) {
Chris Lattner12d96a02004-03-30 21:22:00 +00001115 unsigned SelectClass = getClassB(TrueVal->getType());
1116
1117 // We don't support 8-bit conditional moves. If we have incoming constants,
1118 // transform them into 16-bit constants to avoid having a run-time conversion.
1119 if (SelectClass == cByte) {
1120 if (Constant *T = dyn_cast<Constant>(TrueVal))
1121 TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
1122 if (Constant *F = dyn_cast<Constant>(FalseVal))
1123 FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
1124 }
1125
Chris Lattner82c5a992004-04-13 21:56:09 +00001126 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1127 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1128 if (TrueReg == FalseReg) {
1129 static const unsigned Opcode[] = {
1130 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
1131 };
1132 BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
1133 if (SelectClass == cLong)
1134 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
1135 return;
1136 }
1137
Chris Lattner307ecba2004-03-30 22:39:09 +00001138 unsigned Opcode;
1139 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1140 // We successfully folded the setcc into the select instruction.
1141
1142 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1143 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1144 IP);
1145
1146 const Type *CompTy = SCI->getOperand(0)->getType();
1147 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1148
1149 // LLVM -> X86 signed X86 unsigned
1150 // ----- ---------- ------------
1151 // seteq -> cmovNE cmovNE
1152 // setne -> cmovE cmovE
1153 // setlt -> cmovGE cmovAE
1154 // setge -> cmovL cmovB
1155 // setgt -> cmovLE cmovBE
1156 // setle -> cmovG cmovA
1157 // ----
1158 // cmovNS // Used by comparison with 0 optimization
1159 // cmovS
1160
1161 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001162 default: assert(0 && "Unknown value class!");
1163 case cFP: {
1164 // Annoyingly, we don't have a full set of floating point conditional
1165 // moves. :(
1166 static const unsigned OpcodeTab[2][8] = {
1167 { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
1168 X86::FCMOVBE, X86::FCMOVA, 0, 0 },
1169 { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
1170 };
1171 Opcode = OpcodeTab[isSigned][OpNum];
1172
1173 // If opcode == 0, we hit a case that we don't support. Output a setcc
1174 // and compare the result against zero.
1175 if (Opcode == 0) {
1176 unsigned CompClass = getClassB(CompTy);
1177 unsigned CondReg;
1178 if (CompClass != cLong || OpNum < 2) {
1179 CondReg = makeAnotherReg(Type::BoolTy);
1180 // Handle normal comparisons with a setcc instruction...
1181 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
1182 } else {
1183 // Long comparisons end up in the BL register.
1184 CondReg = X86::BL;
1185 }
1186
Chris Lattner68626c22004-03-31 22:22:36 +00001187 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner352eb482004-03-31 22:03:35 +00001188 Opcode = X86::FCMOVE;
1189 }
1190 break;
1191 }
Chris Lattner307ecba2004-03-30 22:39:09 +00001192 case cByte:
1193 case cShort: {
1194 static const unsigned OpcodeTab[2][8] = {
1195 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
1196 X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
1197 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
1198 X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
1199 };
1200 Opcode = OpcodeTab[isSigned][OpNum];
1201 break;
1202 }
1203 case cInt:
1204 case cLong: {
1205 static const unsigned OpcodeTab[2][8] = {
1206 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
1207 X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
1208 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
1209 X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
1210 };
1211 Opcode = OpcodeTab[isSigned][OpNum];
1212 break;
1213 }
1214 }
1215 } else {
1216 // Get the value being branched on, and use it to set the condition codes.
1217 unsigned CondReg = getReg(Cond, MBB, IP);
Chris Lattner68626c22004-03-31 22:22:36 +00001218 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner307ecba2004-03-30 22:39:09 +00001219 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001220 default: assert(0 && "Unknown value class!");
1221 case cFP: Opcode = X86::FCMOVE; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001222 case cByte:
Chris Lattner352eb482004-03-31 22:03:35 +00001223 case cShort: Opcode = X86::CMOVE16rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001224 case cInt:
Chris Lattner352eb482004-03-31 22:03:35 +00001225 case cLong: Opcode = X86::CMOVE32rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001226 }
1227 }
Chris Lattner12d96a02004-03-30 21:22:00 +00001228
Chris Lattner12d96a02004-03-30 21:22:00 +00001229 unsigned RealDestReg = DestReg;
Chris Lattner12d96a02004-03-30 21:22:00 +00001230
Chris Lattner12d96a02004-03-30 21:22:00 +00001231
1232 // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
1233 // this, we have to promote the incoming values to 16 bits, perform a 16-bit
1234 // cmove, then truncate the result.
1235 if (SelectClass == cByte) {
1236 DestReg = makeAnotherReg(Type::ShortTy);
1237 if (getClassB(TrueVal->getType()) == cByte) {
1238 // Promote the true value, by storing it into AL, and reading from AX.
1239 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
1240 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
1241 TrueReg = makeAnotherReg(Type::ShortTy);
1242 BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
1243 }
1244 if (getClassB(FalseVal->getType()) == cByte) {
1245 // Promote the true value, by storing it into CL, and reading from CX.
1246 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
1247 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
1248 FalseReg = makeAnotherReg(Type::ShortTy);
1249 BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
1250 }
1251 }
1252
1253 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
1254
1255 switch (SelectClass) {
1256 case cByte:
1257 // We did the computation with 16-bit registers. Truncate back to our
1258 // result by copying into AX then copying out AL.
1259 BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
1260 BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
1261 break;
1262 case cLong:
1263 // Move the upper half of the value as well.
1264 BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
1265 break;
1266 }
1267}
Chris Lattner58c41fe2003-08-24 19:19:47 +00001268
1269
1270
Brian Gaekec2505982002-11-30 11:57:28 +00001271/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1272/// operand, in the specified target register.
Misha Brukman538607f2004-03-01 23:53:11 +00001273///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001274void X86ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
Chris Lattner9984fd02004-05-09 23:16:33 +00001275 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001276
Chris Lattner29bf0622004-04-06 01:21:00 +00001277 Value *Val = VR.Val;
1278 const Type *Ty = VR.Ty;
Chris Lattner502e36c2004-04-06 01:25:33 +00001279 if (Val) {
Chris Lattner29bf0622004-04-06 01:21:00 +00001280 if (Constant *C = dyn_cast<Constant>(Val)) {
1281 Val = ConstantExpr::getCast(C, Type::IntTy);
1282 Ty = Type::IntTy;
1283 }
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001284
Chris Lattner502e36c2004-04-06 01:25:33 +00001285 // If this is a simple constant, just emit a MOVri directly to avoid the
1286 // copy.
1287 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1288 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
Chris Lattner2b10b082004-05-12 16:35:04 +00001289 BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
Chris Lattner502e36c2004-04-06 01:25:33 +00001290 return;
1291 }
1292 }
1293
Chris Lattner29bf0622004-04-06 01:21:00 +00001294 // Make sure we have the register number for this value...
1295 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1296
1297 switch (getClassB(Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +00001298 case cByte:
1299 // Extend value into target register (8->32)
1300 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001301 BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001302 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001303 BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001304 break;
1305 case cShort:
1306 // Extend value into target register (16->32)
1307 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001308 BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001309 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001310 BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001311 break;
1312 case cInt:
1313 // Move value into target register (32->32)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001314 BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001315 break;
1316 default:
1317 assert(0 && "Unpromotable operand class in promote32");
1318 }
Brian Gaekec2505982002-11-30 11:57:28 +00001319}
Chris Lattnerc5291f52002-10-27 21:16:59 +00001320
Chris Lattner72614082002-10-25 22:55:53 +00001321/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
1322/// we have the following possibilities:
1323///
1324/// ret void: No return value, simply emit a 'ret' instruction
1325/// ret sbyte, ubyte : Extend value into EAX and return
1326/// ret short, ushort: Extend value into EAX and return
1327/// ret int, uint : Move value into EAX and return
1328/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +00001329/// ret long, ulong : Move value into EAX/EDX and return
1330/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +00001331///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001332void X86ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001333 if (I.getNumOperands() == 0) {
1334 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1335 return;
1336 }
1337
1338 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001339 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +00001340 case cByte: // integral return values: extend or move into EAX and return
1341 case cShort:
1342 case cInt:
Chris Lattner29bf0622004-04-06 01:21:00 +00001343 promote32(X86::EAX, ValueRecord(RetVal));
Chris Lattnerdbd73722003-05-06 21:32:22 +00001344 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001345 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001346 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001347 case cFP: { // Floats & Doubles: Return in ST(0)
1348 unsigned RetReg = getReg(RetVal);
Chris Lattner3e130a22003-01-13 00:32:26 +00001349 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001350 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001351 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001352 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001353 }
1354 case cLong: {
1355 unsigned RetReg = getReg(RetVal);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001356 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
1357 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001358 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001359 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1360 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001361 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001362 }
Chris Lattner94af4142002-12-25 05:13:53 +00001363 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001364 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001365 }
Chris Lattner43189d12002-11-17 20:07:45 +00001366 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +00001367 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +00001368}
1369
Chris Lattner55f6fab2003-01-16 18:07:23 +00001370// getBlockAfter - Return the basic block which occurs lexically after the
1371// specified one.
1372static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1373 Function::iterator I = BB; ++I; // Get iterator to next block
1374 return I != BB->getParent()->end() ? &*I : 0;
1375}
1376
Chris Lattner51b49a92002-11-02 19:45:49 +00001377/// visitBranchInst - Handle conditional and unconditional branches here. Note
1378/// that since code layout is frozen at this point, that if we are trying to
1379/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +00001380/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +00001381///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001382void X86ISel::visitBranchInst(BranchInst &BI) {
Brian Gaekeea9ca672004-04-28 04:19:37 +00001383 // Update machine-CFG edges
1384 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1385 if (BI.isConditional())
1386 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1387
Chris Lattner55f6fab2003-01-16 18:07:23 +00001388 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1389
1390 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001391 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001392 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner6d40c192003-01-16 16:43:00 +00001393 return;
1394 }
1395
1396 // See if we can fold the setcc into the branch itself...
Chris Lattner307ecba2004-03-30 22:39:09 +00001397 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
Chris Lattner6d40c192003-01-16 16:43:00 +00001398 if (SCI == 0) {
1399 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1400 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +00001401 unsigned condReg = getReg(BI.getCondition());
Chris Lattner68626c22004-03-31 22:22:36 +00001402 BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001403 if (BI.getSuccessor(1) == NextBB) {
1404 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001405 BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001406 } else {
Brian Gaeke9f088e42004-05-14 06:54:56 +00001407 BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001408
1409 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001410 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001411 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001412 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001413 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001414
1415 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +00001416 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001417 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001418
1419 const Type *CompTy = SCI->getOperand(0)->getType();
1420 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +00001421
Chris Lattnerb2acc512003-10-19 21:09:10 +00001422
Chris Lattner6d40c192003-01-16 16:43:00 +00001423 // LLVM -> X86 signed X86 unsigned
1424 // ----- ---------- ------------
1425 // seteq -> je je
1426 // setne -> jne jne
1427 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +00001428 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +00001429 // setgt -> jg ja
1430 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +00001431 // ----
1432 // js // Used by comparison with 0 optimization
1433 // jns
1434
1435 static const unsigned OpcodeTab[2][8] = {
1436 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1437 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1438 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +00001439 };
1440
Chris Lattner55f6fab2003-01-16 18:07:23 +00001441 if (BI.getSuccessor(0) != NextBB) {
Brian Gaeke9f088e42004-05-14 06:54:56 +00001442 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1443 .addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001444 if (BI.getSuccessor(1) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001445 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001446 } else {
1447 // Change to the inverse condition...
1448 if (BI.getSuccessor(1) != NextBB) {
1449 OpNum ^= 1;
Brian Gaeke9f088e42004-05-14 06:54:56 +00001450 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1451 .addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001452 }
1453 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001454}
1455
Chris Lattner3e130a22003-01-13 00:32:26 +00001456
1457/// doCall - This emits an abstract call instruction, setting up the arguments
1458/// and the return value as appropriate. For the actual function call itself,
1459/// it inserts the specified CallMI instruction into the stream.
1460///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001461void X86ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1462 const std::vector<ValueRecord> &Args) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001463 // Count how many bytes are to be pushed on the stack...
1464 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001465
Chris Lattner3e130a22003-01-13 00:32:26 +00001466 if (!Args.empty()) {
1467 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1468 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001469 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001470 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001471 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001472 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001473 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001474 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1475 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001476 default: assert(0 && "Unknown class!");
1477 }
1478
1479 // Adjust the stack pointer for the new arguments...
Chris Lattneree352852004-02-29 07:22:16 +00001480 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
Chris Lattner065faeb2002-12-28 20:24:02 +00001481
1482 // Arguments go on the stack in reverse order, as specified by the ABI.
1483 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001484 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattnerce6096f2004-03-01 02:34:08 +00001485 unsigned ArgReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001486 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001487 case cByte:
Chris Lattner2b10b082004-05-12 16:35:04 +00001488 if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
1489 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1490 .addImm(Args[i].Val == ConstantBool::True);
1491 break;
1492 }
1493 // FALL THROUGH
Chris Lattner21585222004-03-01 02:42:43 +00001494 case cShort:
1495 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1496 // Zero/Sign extend constant, then stuff into memory.
1497 ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
1498 Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
1499 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1500 .addImm(Val->getRawValue() & 0xFFFFFFFF);
1501 } else {
1502 // Promote arg to 32 bits wide into a temporary register...
1503 ArgReg = makeAnotherReg(Type::UIntTy);
1504 promote32(ArgReg, Args[i]);
1505 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1506 X86::ESP, ArgOffset).addReg(ArgReg);
1507 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001508 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001509 case cInt:
Chris Lattner21585222004-03-01 02:42:43 +00001510 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1511 unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1512 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1513 X86::ESP, ArgOffset).addImm(Val);
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00001514 } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
1515 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1516 X86::ESP, ArgOffset).addImm(0);
Chris Lattner21585222004-03-01 02:42:43 +00001517 } else {
1518 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1519 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1520 X86::ESP, ArgOffset).addReg(ArgReg);
1521 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001522 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001523 case cLong:
Chris Lattner92900a62004-04-06 03:23:00 +00001524 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1525 uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1526 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1527 X86::ESP, ArgOffset).addImm(Val & ~0U);
1528 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1529 X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
1530 } else {
1531 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1532 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1533 X86::ESP, ArgOffset).addReg(ArgReg);
1534 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1535 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1536 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001537 ArgOffset += 4; // 8 byte entry, not 4.
1538 break;
1539
Chris Lattner065faeb2002-12-28 20:24:02 +00001540 case cFP:
Chris Lattnerce6096f2004-03-01 02:34:08 +00001541 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001542 if (Args[i].Ty == Type::FloatTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001543 addRegOffset(BuildMI(BB, X86::FST32m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001544 X86::ESP, ArgOffset).addReg(ArgReg);
1545 } else {
1546 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001547 addRegOffset(BuildMI(BB, X86::FST64m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001548 X86::ESP, ArgOffset).addReg(ArgReg);
1549 ArgOffset += 4; // 8 byte entry, not 4.
1550 }
1551 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001552
Chris Lattner3e130a22003-01-13 00:32:26 +00001553 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001554 }
1555 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001556 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001557 } else {
Chris Lattneree352852004-02-29 07:22:16 +00001558 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001559 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001560
Chris Lattner3e130a22003-01-13 00:32:26 +00001561 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001562
Chris Lattneree352852004-02-29 07:22:16 +00001563 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001564
1565 // If there is a return value, scavenge the result from the location the call
1566 // leaves it in...
1567 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001568 if (Ret.Ty != Type::VoidTy) {
1569 unsigned DestClass = getClassB(Ret.Ty);
1570 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001571 case cByte:
1572 case cShort:
1573 case cInt: {
1574 // Integral results are in %eax, or the appropriate portion
1575 // thereof.
1576 static const unsigned regRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001577 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
Brian Gaeke20244b72002-12-12 15:33:40 +00001578 };
1579 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001580 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001581 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001582 }
Chris Lattner94af4142002-12-25 05:13:53 +00001583 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001584 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001585 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001586 case cLong: // Long values are left in EDX:EAX
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001587 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
1588 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
Chris Lattner3e130a22003-01-13 00:32:26 +00001589 break;
1590 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001591 }
Chris Lattnera3243642002-12-04 23:45:28 +00001592 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001593}
Chris Lattner2df035b2002-11-02 19:27:56 +00001594
Chris Lattner3e130a22003-01-13 00:32:26 +00001595
1596/// visitCallInst - Push args on stack and do a procedure call instruction.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001597void X86ISel::visitCallInst(CallInst &CI) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001598 MachineInstr *TheCall;
1599 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001600 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001601 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001602 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1603 return;
1604 }
1605
Chris Lattner3e130a22003-01-13 00:32:26 +00001606 // Emit a CALL instruction with PC-relative displacement.
1607 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1608 } else { // Emit an indirect call...
1609 unsigned Reg = getReg(CI.getCalledValue());
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001610 TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001611 }
1612
1613 std::vector<ValueRecord> Args;
1614 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001615 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001616
1617 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1618 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001619}
Chris Lattner3e130a22003-01-13 00:32:26 +00001620
Chris Lattner44827152003-12-28 09:47:19 +00001621/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1622/// function, lowering any calls to unknown intrinsic functions into the
1623/// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +00001624///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001625void X86ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
Chris Lattner44827152003-12-28 09:47:19 +00001626 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1627 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1628 if (CallInst *CI = dyn_cast<CallInst>(I++))
1629 if (Function *F = CI->getCalledFunction())
1630 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001631 case Intrinsic::not_intrinsic:
Chris Lattner317201d2004-03-13 00:24:00 +00001632 case Intrinsic::vastart:
1633 case Intrinsic::vacopy:
1634 case Intrinsic::vaend:
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001635 case Intrinsic::returnaddress:
1636 case Intrinsic::frameaddress:
Chris Lattner915e5e52004-02-12 17:53:22 +00001637 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001638 case Intrinsic::memset:
Chris Lattnerdc572442004-06-15 21:36:44 +00001639 case Intrinsic::isunordered:
John Criswell4ffff9e2004-04-08 20:31:47 +00001640 case Intrinsic::readport:
1641 case Intrinsic::writeport:
Chris Lattner44827152003-12-28 09:47:19 +00001642 // We directly implement these intrinsics
1643 break;
John Criswelle5a4c152004-04-13 22:13:14 +00001644 case Intrinsic::readio: {
1645 // On X86, memory operations are in-order. Lower this intrinsic
1646 // into a volatile load.
1647 Instruction *Before = CI->getPrev();
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001648 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1649 CI->replaceAllUsesWith(LI);
1650 BB->getInstList().erase(CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001651 break;
1652 }
1653 case Intrinsic::writeio: {
1654 // On X86, memory operations are in-order. Lower this intrinsic
1655 // into a volatile store.
1656 Instruction *Before = CI->getPrev();
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001657 StoreInst *LI = new StoreInst(CI->getOperand(1),
1658 CI->getOperand(2), true, CI);
1659 CI->replaceAllUsesWith(LI);
1660 BB->getInstList().erase(CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001661 break;
1662 }
Chris Lattner44827152003-12-28 09:47:19 +00001663 default:
1664 // All other intrinsic calls we must lower.
1665 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001666 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001667 if (Before) { // Move iterator to instruction after call
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001668 I = Before; ++I;
Chris Lattner44827152003-12-28 09:47:19 +00001669 } else {
1670 I = BB->begin();
1671 }
1672 }
Chris Lattner44827152003-12-28 09:47:19 +00001673}
1674
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001675void X86ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001676 unsigned TmpReg1, TmpReg2;
1677 switch (ID) {
Chris Lattner5634b9f2004-03-13 00:24:52 +00001678 case Intrinsic::vastart:
Chris Lattnereca195e2003-05-08 19:44:13 +00001679 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001680 TmpReg1 = getReg(CI);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001681 addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001682 return;
1683
Chris Lattner5634b9f2004-03-13 00:24:52 +00001684 case Intrinsic::vacopy:
Chris Lattner73815062003-10-18 05:56:40 +00001685 TmpReg1 = getReg(CI);
1686 TmpReg2 = getReg(CI.getOperand(1));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001687 BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001688 return;
Chris Lattner5634b9f2004-03-13 00:24:52 +00001689 case Intrinsic::vaend: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001690
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001691 case Intrinsic::returnaddress:
1692 case Intrinsic::frameaddress:
1693 TmpReg1 = getReg(CI);
1694 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1695 if (ID == Intrinsic::returnaddress) {
1696 // Just load the return address
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001697 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001698 ReturnAddressIndex);
1699 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001700 addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001701 ReturnAddressIndex, -4);
1702 }
1703 } else {
1704 // Values other than zero are not implemented yet.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001705 BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001706 }
1707 return;
1708
Chris Lattnerdc572442004-06-15 21:36:44 +00001709 case Intrinsic::isunordered:
1710 TmpReg1 = getReg(CI.getOperand(1));
1711 TmpReg2 = getReg(CI.getOperand(2));
1712 emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1);
1713 TmpReg2 = getReg(CI);
1714 BuildMI(BB, X86::SETPr, 0, TmpReg2);
1715 return;
1716
Chris Lattner915e5e52004-02-12 17:53:22 +00001717 case Intrinsic::memcpy: {
1718 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1719 unsigned Align = 1;
1720 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1721 Align = AlignC->getRawValue();
1722 if (Align == 0) Align = 1;
1723 }
1724
1725 // Turn the byte code into # iterations
Chris Lattner915e5e52004-02-12 17:53:22 +00001726 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001727 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001728 switch (Align & 3) {
1729 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001730 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1731 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1732 } else {
1733 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001734 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001735 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner07122832004-02-13 23:36:47 +00001736 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001737 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001738 break;
1739 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001740 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1741 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1742 } else {
1743 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001744 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001745 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner07122832004-02-13 23:36:47 +00001746 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001747 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001748 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001749 default: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001750 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001751 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001752 break;
1753 }
1754
1755 // No matter what the alignment is, we put the source in ESI, the
1756 // destination in EDI, and the count in ECX.
1757 TmpReg1 = getReg(CI.getOperand(1));
1758 TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001759 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1760 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1761 BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001762 BuildMI(BB, Opcode, 0);
1763 return;
1764 }
1765 case Intrinsic::memset: {
1766 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1767 unsigned Align = 1;
1768 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1769 Align = AlignC->getRawValue();
1770 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001771 }
1772
Chris Lattner2a0f2242004-02-14 04:46:05 +00001773 // Turn the byte code into # iterations
Chris Lattner2a0f2242004-02-14 04:46:05 +00001774 unsigned CountReg;
1775 unsigned Opcode;
1776 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1777 unsigned Val = ValC->getRawValue() & 255;
1778
1779 // If the value is a constant, then we can potentially use larger copies.
1780 switch (Align & 3) {
1781 case 2: // WORD aligned
1782 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001783 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001784 } else {
1785 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001786 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001787 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001788 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001789 BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001790 Opcode = X86::REP_STOSW;
1791 break;
1792 case 0: // DWORD aligned
1793 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001794 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001795 } else {
1796 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001797 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001798 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001799 }
1800 Val = (Val << 8) | Val;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001801 BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001802 Opcode = X86::REP_STOSD;
1803 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001804 default: // BYTE aligned
Chris Lattner2a0f2242004-02-14 04:46:05 +00001805 CountReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001806 BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001807 Opcode = X86::REP_STOSB;
1808 break;
1809 }
1810 } else {
1811 // If it's not a constant value we are storing, just fall back. We could
1812 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1813 unsigned ValReg = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001814 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001815 CountReg = getReg(CI.getOperand(3));
1816 Opcode = X86::REP_STOSB;
1817 }
1818
1819 // No matter what the alignment is, we put the source in ESI, the
1820 // destination in EDI, and the count in ECX.
1821 TmpReg1 = getReg(CI.getOperand(1));
1822 //TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001823 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1824 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001825 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001826 return;
1827 }
1828
Chris Lattner87e18de2004-04-13 17:20:37 +00001829 case Intrinsic::readport: {
1830 // First, determine that the size of the operand falls within the acceptable
1831 // range for this architecture.
John Criswell4ffff9e2004-04-08 20:31:47 +00001832 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001833 if (getClassB(CI.getOperand(1)->getType()) != cShort) {
John Criswellca6ea0f2004-04-08 22:39:13 +00001834 std::cerr << "llvm.readport: Address size is not 16 bits\n";
Chris Lattner87e18de2004-04-13 17:20:37 +00001835 exit(1);
John Criswellca6ea0f2004-04-08 22:39:13 +00001836 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001837
John Criswell4ffff9e2004-04-08 20:31:47 +00001838 // Now, move the I/O port address into the DX register and use the IN
1839 // instruction to get the input data.
1840 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001841 unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
1842 unsigned DestReg = getReg(CI);
John Criswell4ffff9e2004-04-08 20:31:47 +00001843
Chris Lattner87e18de2004-04-13 17:20:37 +00001844 // If the port is a single-byte constant, use the immediate form.
1845 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
1846 if ((C->getRawValue() & 255) == C->getRawValue()) {
1847 switch (Class) {
1848 case cByte:
1849 BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
1850 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1851 return;
1852 case cShort:
1853 BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
1854 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1855 return;
1856 case cInt:
1857 BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
1858 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1859 return;
1860 }
1861 }
1862
1863 unsigned Reg = getReg(CI.getOperand(1));
1864 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1865 switch (Class) {
1866 case cByte:
1867 BuildMI(BB, X86::IN8rr, 0);
1868 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1869 break;
1870 case cShort:
1871 BuildMI(BB, X86::IN16rr, 0);
1872 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1873 break;
1874 case cInt:
1875 BuildMI(BB, X86::IN32rr, 0);
1876 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1877 break;
1878 default:
1879 std::cerr << "Cannot do input on this data type";
John Criswellca6ea0f2004-04-08 22:39:13 +00001880 exit (1);
1881 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001882 return;
Chris Lattner87e18de2004-04-13 17:20:37 +00001883 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001884
Chris Lattner87e18de2004-04-13 17:20:37 +00001885 case Intrinsic::writeport: {
1886 // First, determine that the size of the operand falls within the
1887 // acceptable range for this architecture.
1888 if (getClass(CI.getOperand(2)->getType()) != cShort) {
1889 std::cerr << "llvm.writeport: Address size is not 16 bits\n";
1890 exit(1);
1891 }
1892
1893 unsigned Class = getClassB(CI.getOperand(1)->getType());
1894 unsigned ValReg = getReg(CI.getOperand(1));
1895 switch (Class) {
1896 case cByte:
1897 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1898 break;
1899 case cShort:
1900 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
1901 break;
1902 case cInt:
1903 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
1904 break;
1905 default:
1906 std::cerr << "llvm.writeport: invalid data type for X86 target";
1907 exit(1);
1908 }
1909
1910
1911 // If the port is a single-byte constant, use the immediate form.
1912 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
1913 if ((C->getRawValue() & 255) == C->getRawValue()) {
1914 static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
1915 BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
1916 return;
1917 }
1918
1919 // Otherwise, move the I/O port address into the DX register and the value
1920 // to write into the AL/AX/EAX register.
1921 static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
1922 unsigned Reg = getReg(CI.getOperand(2));
1923 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1924 BuildMI(BB, Opc[Class], 0);
1925 return;
1926 }
1927
Chris Lattner44827152003-12-28 09:47:19 +00001928 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001929 }
1930}
1931
Chris Lattner7dee5da2004-03-08 01:58:35 +00001932static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
1933 if (LI.getParent() != User.getParent())
1934 return false;
1935 BasicBlock::iterator It = &LI;
1936 // Check all of the instructions between the load and the user. We should
1937 // really use alias analysis here, but for now we just do something simple.
1938 for (++It; It != BasicBlock::iterator(&User); ++It) {
1939 switch (It->getOpcode()) {
Chris Lattner85c84e72004-03-18 06:29:54 +00001940 case Instruction::Free:
Chris Lattner7dee5da2004-03-08 01:58:35 +00001941 case Instruction::Store:
1942 case Instruction::Call:
1943 case Instruction::Invoke:
1944 return false;
Chris Lattner133dbb12004-04-12 03:02:48 +00001945 case Instruction::Load:
1946 if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
1947 return false;
1948 break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00001949 }
1950 }
1951 return true;
1952}
1953
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001954/// visitSimpleBinary - Implement simple binary operators for integral types...
1955/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1956/// Xor.
Misha Brukman538607f2004-03-01 23:53:11 +00001957///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001958void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001959 unsigned DestReg = getReg(B);
1960 MachineBasicBlock::iterator MI = BB->end();
Chris Lattner721d2d42004-03-08 01:18:36 +00001961 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00001962 unsigned Class = getClassB(B.getType());
Chris Lattner721d2d42004-03-08 01:18:36 +00001963
Chris Lattner7dee5da2004-03-08 01:58:35 +00001964 // Special case: op Reg, load [mem]
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00001965 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
Chris Lattnerccd97962004-06-17 22:15:25 +00001966 Op0->hasOneUse() &&
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00001967 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
Chris Lattner7dee5da2004-03-08 01:58:35 +00001968 if (!B.swapOperands())
1969 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
1970
Chris Lattnerccd97962004-06-17 22:15:25 +00001971 if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() &&
Chris Lattner7dee5da2004-03-08 01:58:35 +00001972 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
1973
Chris Lattner95157f72004-04-11 22:05:45 +00001974 unsigned Opcode;
1975 if (Class != cFP) {
1976 static const unsigned OpcodeTab[][3] = {
1977 // Arithmetic operators
1978 { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
1979 { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
1980
1981 // Bitwise operators
1982 { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
1983 { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
1984 { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
1985 };
1986 Opcode = OpcodeTab[OperatorClass][Class];
1987 } else {
1988 static const unsigned OpcodeTab[][2] = {
1989 { X86::FADD32m, X86::FADD64m }, // ADD
1990 { X86::FSUB32m, X86::FSUB64m }, // SUB
1991 };
1992 const Type *Ty = Op0->getType();
1993 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1994 Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
1995 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00001996
Chris Lattner7dee5da2004-03-08 01:58:35 +00001997 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00001998 if (AllocaInst *AI =
1999 dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
2000 unsigned FI = getFixedSizedAllocaFI(AI);
2001 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);
2002
2003 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002004 X86AddressMode AM;
2005 getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002006
Reid Spencerfc989e12004-08-30 00:13:26 +00002007 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002008 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00002009 return;
2010 }
2011
Chris Lattner95157f72004-04-11 22:05:45 +00002012 // If this is a floating point subtract, check to see if we can fold the first
2013 // operand in.
2014 if (Class == cFP && OperatorClass == 1 &&
2015 isa<LoadInst>(Op0) &&
2016 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
2017 const Type *Ty = Op0->getType();
2018 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2019 unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
2020
Chris Lattner95157f72004-04-11 22:05:45 +00002021 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002022 if (AllocaInst *AI =
2023 dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
2024 unsigned FI = getFixedSizedAllocaFI(AI);
2025 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
2026 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002027 X86AddressMode AM;
2028 getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002029
Reid Spencerfc989e12004-08-30 00:13:26 +00002030 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002031 }
Chris Lattner95157f72004-04-11 22:05:45 +00002032 return;
2033 }
2034
Chris Lattner721d2d42004-03-08 01:18:36 +00002035 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002036}
Chris Lattner3e130a22003-01-13 00:32:26 +00002037
Chris Lattner6621ed92004-04-11 21:23:56 +00002038
2039/// emitBinaryFPOperation - This method handles emission of floating point
2040/// Add (0), Sub (1), Mul (2), and Div (3) operations.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002041void X86ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
2042 MachineBasicBlock::iterator IP,
2043 Value *Op0, Value *Op1,
2044 unsigned OperatorClass, unsigned DestReg) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002045 // Special case: op Reg, <const fp>
2046 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
2047 if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
2048 // Create a constant pool entry for this constant.
2049 MachineConstantPool *CP = F->getConstantPool();
2050 unsigned CPI = CP->getConstantPoolIndex(Op1C);
2051 const Type *Ty = Op1->getType();
2052
2053 static const unsigned OpcodeTab[][4] = {
2054 { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
2055 { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
2056 };
2057
2058 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2059 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2060 unsigned Op0r = getReg(Op0, BB, IP);
2061 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2062 DestReg).addReg(Op0r), CPI);
2063 return;
2064 }
2065
Chris Lattner13c07fe2004-04-12 00:12:04 +00002066 // Special case: R1 = op <const fp>, R2
Chris Lattner6621ed92004-04-11 21:23:56 +00002067 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
2068 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
2069 // -0.0 - X === -X
2070 unsigned op1Reg = getReg(Op1, BB, IP);
2071 BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
2072 return;
2073 } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
Chris Lattner13c07fe2004-04-12 00:12:04 +00002074 // R1 = op CST, R2 --> R1 = opr R2, CST
Chris Lattner6621ed92004-04-11 21:23:56 +00002075
2076 // Create a constant pool entry for this constant.
2077 MachineConstantPool *CP = F->getConstantPool();
2078 unsigned CPI = CP->getConstantPoolIndex(CFP);
2079 const Type *Ty = CFP->getType();
2080
2081 static const unsigned OpcodeTab[][4] = {
2082 { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
2083 { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
2084 };
2085
2086 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2087 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2088 unsigned Op1r = getReg(Op1, BB, IP);
2089 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2090 DestReg).addReg(Op1r), CPI);
2091 return;
2092 }
2093
2094 // General case.
2095 static const unsigned OpcodeTab[4] = {
2096 X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
2097 };
2098
2099 unsigned Opcode = OpcodeTab[OperatorClass];
2100 unsigned Op0r = getReg(Op0, BB, IP);
2101 unsigned Op1r = getReg(Op1, BB, IP);
2102 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2103}
2104
Chris Lattnerb2acc512003-10-19 21:09:10 +00002105/// emitSimpleBinaryOperation - Implement simple binary operators for integral
2106/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
2107/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00002108///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002109/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
2110/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002111///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002112void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
2113 MachineBasicBlock::iterator IP,
2114 Value *Op0, Value *Op1,
2115 unsigned OperatorClass,
2116 unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002117 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00002118
Chris Lattner6621ed92004-04-11 21:23:56 +00002119 if (Class == cFP) {
2120 assert(OperatorClass < 2 && "No logical ops for FP!");
2121 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
2122 return;
2123 }
2124
Chris Lattner48b0c972004-04-11 20:26:20 +00002125 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
Chris Lattner667ea022004-06-18 00:50:37 +00002126 if (OperatorClass == 1) {
Chris Lattner48b0c972004-04-11 20:26:20 +00002127 static unsigned const NEGTab[] = {
2128 X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
2129 };
Chris Lattner667ea022004-06-18 00:50:37 +00002130
2131 // sub 0, X -> neg X
2132 if (CI->isNullValue()) {
2133 unsigned op1Reg = getReg(Op1, MBB, IP);
2134 BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
Chris Lattner48b0c972004-04-11 20:26:20 +00002135
Chris Lattner667ea022004-06-18 00:50:37 +00002136 if (Class == cLong) {
2137 // We just emitted: Dl = neg Sl
2138 // Now emit : T = addc Sh, 0
2139 // : Dh = neg T
2140 unsigned T = makeAnotherReg(Type::IntTy);
2141 BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
2142 BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
2143 }
2144 return;
2145 } else if (Op1->hasOneUse() && Class != cLong) {
2146 // sub C, X -> tmp = neg X; DestReg = add tmp, C. This is better
2147 // than copying C into a temporary register, because of register
2148 // pressure (tmp and destreg can share a register.
2149 static unsigned const ADDRITab[] = {
2150 X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri
2151 };
2152 unsigned op1Reg = getReg(Op1, MBB, IP);
2153 unsigned Tmp = makeAnotherReg(Op0->getType());
2154 BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg);
Chris Lattner30483732004-06-20 07:49:54 +00002155 BuildMI(*MBB, IP, ADDRITab[Class], 2,
2156 DestReg).addReg(Tmp).addImm(CI->getRawValue());
Chris Lattner667ea022004-06-18 00:50:37 +00002157 return;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002158 }
Chris Lattner48b0c972004-04-11 20:26:20 +00002159 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002160
Chris Lattner48b0c972004-04-11 20:26:20 +00002161 // Special case: op Reg, <const int>
2162 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner721d2d42004-03-08 01:18:36 +00002163 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002164
Chris Lattner721d2d42004-03-08 01:18:36 +00002165 // xor X, -1 -> not X
2166 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002167 static unsigned const NOTTab[] = {
2168 X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
2169 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002170 BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002171 if (Class == cLong) // Invert the top part too
2172 BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
Chris Lattner721d2d42004-03-08 01:18:36 +00002173 return;
2174 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002175
Chris Lattner721d2d42004-03-08 01:18:36 +00002176 // add X, -1 -> dec X
Chris Lattner06521672004-04-06 03:36:57 +00002177 if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
2178 // Note that we can't use dec for 64-bit decrements, because it does not
2179 // set the carry flag!
2180 static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
Chris Lattner721d2d42004-03-08 01:18:36 +00002181 BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
2182 return;
2183 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002184
Chris Lattner721d2d42004-03-08 01:18:36 +00002185 // add X, 1 -> inc X
Chris Lattner06521672004-04-06 03:36:57 +00002186 if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
2187 // Note that we can't use inc for 64-bit increments, because it does not
2188 // set the carry flag!
2189 static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
Alkis Evlogimenosbee8a092004-04-02 18:11:32 +00002190 BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattner721d2d42004-03-08 01:18:36 +00002191 return;
2192 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002193
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002194 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002195 // Arithmetic operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002196 { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
2197 { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
Chris Lattnerb2acc512003-10-19 21:09:10 +00002198
Chris Lattner721d2d42004-03-08 01:18:36 +00002199 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002200 { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
2201 { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
2202 { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
Chris Lattner721d2d42004-03-08 01:18:36 +00002203 };
2204
Chris Lattner721d2d42004-03-08 01:18:36 +00002205 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner33f7fa32004-04-06 03:15:53 +00002206 unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner721d2d42004-03-08 01:18:36 +00002207
Chris Lattner33f7fa32004-04-06 03:15:53 +00002208 if (Class != cLong) {
2209 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2210 return;
Chris Lattner6621ed92004-04-11 21:23:56 +00002211 }
2212
2213 // If this is a long value and the high or low bits have a special
2214 // property, emit some special cases.
2215 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
2216
2217 // If the constant is zero in the low 32-bits, just copy the low part
2218 // across and apply the normal 32-bit operation to the high parts. There
2219 // will be no carry or borrow into the top.
2220 if (Op1l == 0) {
2221 if (OperatorClass != 2) // All but and...
2222 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
2223 else
2224 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2225 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
2226 .addReg(Op0r+1).addImm(Op1h);
Chris Lattner33f7fa32004-04-06 03:15:53 +00002227 return;
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002228 }
Chris Lattner6621ed92004-04-11 21:23:56 +00002229
2230 // If this is a logical operation and the top 32-bits are zero, just
2231 // operate on the lower 32.
2232 if (Op1h == 0 && OperatorClass > 1) {
2233 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
2234 .addReg(Op0r).addImm(Op1l);
2235 if (OperatorClass != 2) // All but and
2236 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
2237 else
2238 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2239 return;
2240 }
2241
2242 // TODO: We could handle lots of other special cases here, such as AND'ing
2243 // with 0xFFFFFFFF00000000 -> noop, etc.
2244
2245 // Otherwise, code generate the full operation with a constant.
2246 static const unsigned TopTab[] = {
2247 X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
2248 };
2249
2250 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2251 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
2252 .addReg(Op0r+1).addImm(Op1h);
2253 return;
Chris Lattner721d2d42004-03-08 01:18:36 +00002254 }
2255
2256 // Finally, handle the general case now.
Chris Lattner7ba92302004-04-06 02:13:25 +00002257 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002258 // Arithmetic operators
Chris Lattner6621ed92004-04-11 21:23:56 +00002259 { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
2260 { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
Chris Lattner721d2d42004-03-08 01:18:36 +00002261
Chris Lattnerb2acc512003-10-19 21:09:10 +00002262 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002263 { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
2264 { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
2265 { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
Chris Lattnerb2acc512003-10-19 21:09:10 +00002266 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002267
Chris Lattnerb2acc512003-10-19 21:09:10 +00002268 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner721d2d42004-03-08 01:18:36 +00002269 unsigned Op0r = getReg(Op0, MBB, IP);
2270 unsigned Op1r = getReg(Op1, MBB, IP);
2271 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2272
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002273 if (Class == cLong) { // Handle the upper 32 bits of long values...
Chris Lattner721d2d42004-03-08 01:18:36 +00002274 static const unsigned TopTab[] = {
2275 X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
2276 };
2277 BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
2278 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2279 }
Chris Lattnere2954c82002-11-02 20:04:26 +00002280}
2281
Chris Lattner3e130a22003-01-13 00:32:26 +00002282/// doMultiply - Emit appropriate instructions to multiply together the
2283/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
2284/// result should be given as DestTy.
2285///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002286void X86ISel::doMultiply(MachineBasicBlock *MBB,
2287 MachineBasicBlock::iterator MBBI,
2288 unsigned DestReg, const Type *DestTy,
2289 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002290 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00002291 switch (Class) {
Chris Lattner0f1c4612003-06-21 17:16:58 +00002292 case cInt:
2293 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002294 BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00002295 .addReg(op0Reg).addReg(op1Reg);
2296 return;
2297 case cByte:
2298 // Must use the MUL instruction, which forces use of AL...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002299 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
2300 BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
2301 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
Chris Lattner0f1c4612003-06-21 17:16:58 +00002302 return;
Chris Lattner94af4142002-12-25 05:13:53 +00002303 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00002304 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00002305 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002306}
2307
Chris Lattnerb2acc512003-10-19 21:09:10 +00002308// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2309// returns zero when the input is not exactly a power of two.
2310static unsigned ExactLog2(unsigned Val) {
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002311 if (Val == 0 || (Val & (Val-1))) return 0;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002312 unsigned Count = 0;
2313 while (Val != 1) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00002314 Val >>= 1;
2315 ++Count;
2316 }
2317 return Count+1;
2318}
2319
Chris Lattner462fa822004-04-11 20:56:28 +00002320
2321/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
2322/// 16, or 32-bit integer multiply by a constant.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002323void X86ISel::doMultiplyConst(MachineBasicBlock *MBB,
2324 MachineBasicBlock::iterator IP,
2325 unsigned DestReg, const Type *DestTy,
2326 unsigned op0Reg, unsigned ConstRHS) {
Chris Lattner6ab06d52004-04-06 04:55:43 +00002327 static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
2328 static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002329 static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
Chris Lattner596b97f2004-07-19 23:47:21 +00002330 static const unsigned NEGrTab[] = {X86::NEG8r , X86::NEG16r , X86::NEG32r };
Chris Lattner6ab06d52004-04-06 04:55:43 +00002331
Chris Lattnerb2acc512003-10-19 21:09:10 +00002332 unsigned Class = getClass(DestTy);
Chris Lattner596b97f2004-07-19 23:47:21 +00002333 unsigned TmpReg;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002334
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002335 // Handle special cases here.
2336 switch (ConstRHS) {
Chris Lattner596b97f2004-07-19 23:47:21 +00002337 case -2:
2338 TmpReg = makeAnotherReg(DestTy);
2339 BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
2340 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(TmpReg).addReg(TmpReg);
2341 return;
2342 case -1:
2343 BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(op0Reg);
2344 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002345 case 0:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002346 BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
2347 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002348 case 1:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002349 BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
2350 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002351 case 2:
2352 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
2353 return;
2354 case 3:
2355 case 5:
2356 case 9:
2357 if (Class == cInt) {
Reid Spencerfc989e12004-08-30 00:13:26 +00002358 X86AddressMode AM;
2359 AM.BaseType = X86AddressMode::RegBase;
2360 AM.Base.Reg = op0Reg;
2361 AM.Scale = ConstRHS-1;
2362 AM.IndexReg = op0Reg;
2363 AM.Disp = 0;
2364 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), AM);
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002365 return;
2366 }
Chris Lattner596b97f2004-07-19 23:47:21 +00002367 case -3:
2368 case -5:
2369 case -9:
2370 if (Class == cInt) {
2371 TmpReg = makeAnotherReg(DestTy);
Reid Spencerfc989e12004-08-30 00:13:26 +00002372 X86AddressMode AM;
2373 AM.BaseType = X86AddressMode::RegBase;
2374 AM.Base.Reg = op0Reg;
2375 AM.Scale = -ConstRHS-1;
2376 AM.IndexReg = op0Reg;
2377 AM.Disp = 0;
2378 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TmpReg), AM);
Chris Lattner596b97f2004-07-19 23:47:21 +00002379 BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(TmpReg);
2380 return;
2381 }
Chris Lattner6ab06d52004-04-06 04:55:43 +00002382 }
2383
Chris Lattnerb2acc512003-10-19 21:09:10 +00002384 // If the element size is exactly a power of 2, use a shift to get it.
2385 if (unsigned Shift = ExactLog2(ConstRHS)) {
2386 switch (Class) {
2387 default: assert(0 && "Unknown class for this function!");
2388 case cByte:
Chris Lattner596b97f2004-07-19 23:47:21 +00002389 BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002390 return;
2391 case cShort:
Chris Lattner596b97f2004-07-19 23:47:21 +00002392 BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002393 return;
2394 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002395 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002396 return;
2397 }
2398 }
Chris Lattner596b97f2004-07-19 23:47:21 +00002399
2400 // If the element size is a negative power of 2, use a shift/neg to get it.
2401 if (unsigned Shift = ExactLog2(-ConstRHS)) {
2402 TmpReg = makeAnotherReg(DestTy);
2403 BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
2404 switch (Class) {
2405 default: assert(0 && "Unknown class for this function!");
2406 case cByte:
2407 BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2408 return;
2409 case cShort:
2410 BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2411 return;
2412 case cInt:
2413 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2414 return;
2415 }
2416 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00002417
2418 if (Class == cShort) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002419 BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002420 return;
2421 } else if (Class == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002422 BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002423 return;
2424 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002425
2426 // Most general case, emit a normal multiply...
Chris Lattner596b97f2004-07-19 23:47:21 +00002427 TmpReg = makeAnotherReg(DestTy);
Chris Lattneree352852004-02-29 07:22:16 +00002428 BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002429
2430 // Emit a MUL to multiply the register holding the index by
2431 // elementSize, putting the result in OffsetReg.
2432 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
2433}
2434
Chris Lattnerca9671d2002-11-02 20:28:58 +00002435/// visitMul - Multiplies are not simple binary operators because they must deal
2436/// with the EAX register explicitly.
2437///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002438void X86ISel::visitMul(BinaryOperator &I) {
Chris Lattner462fa822004-04-11 20:56:28 +00002439 unsigned ResultReg = getReg(I);
2440
Chris Lattner95157f72004-04-11 22:05:45 +00002441 Value *Op0 = I.getOperand(0);
2442 Value *Op1 = I.getOperand(1);
2443
2444 // Fold loads into floating point multiplies.
2445 if (getClass(Op0->getType()) == cFP) {
2446 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
2447 if (!I.swapOperands())
2448 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2449 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2450 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2451 const Type *Ty = Op0->getType();
2452 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2453 unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
2454
Chris Lattner95157f72004-04-11 22:05:45 +00002455 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002456 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2457 unsigned FI = getFixedSizedAllocaFI(AI);
2458 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2459 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002460 X86AddressMode AM;
2461 getAddressingMode(LI->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002462
Reid Spencerfc989e12004-08-30 00:13:26 +00002463 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002464 }
Chris Lattner95157f72004-04-11 22:05:45 +00002465 return;
2466 }
2467 }
2468
Chris Lattner462fa822004-04-11 20:56:28 +00002469 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002470 emitMultiply(BB, IP, Op0, Op1, ResultReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002471}
2472
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002473void X86ISel::emitMultiply(MachineBasicBlock *MBB,
2474 MachineBasicBlock::iterator IP,
2475 Value *Op0, Value *Op1, unsigned DestReg) {
Chris Lattner462fa822004-04-11 20:56:28 +00002476 MachineBasicBlock &BB = *MBB;
2477 TypeClass Class = getClass(Op0->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +00002478
2479 // Simple scalar multiply?
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002480 unsigned Op0Reg = getReg(Op0, &BB, IP);
Chris Lattner462fa822004-04-11 20:56:28 +00002481 switch (Class) {
2482 case cByte:
2483 case cShort:
2484 case cInt:
2485 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner462fa822004-04-11 20:56:28 +00002486 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
2487 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002488 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002489 unsigned Op1Reg = getReg(Op1, &BB, IP);
2490 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002491 }
Chris Lattner462fa822004-04-11 20:56:28 +00002492 return;
2493 case cFP:
Chris Lattner6621ed92004-04-11 21:23:56 +00002494 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2495 return;
Chris Lattner462fa822004-04-11 20:56:28 +00002496 case cLong:
2497 break;
2498 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002499
Chris Lattner462fa822004-04-11 20:56:28 +00002500 // Long value. We have to do things the hard way...
2501 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2502 unsigned CLow = CI->getRawValue();
2503 unsigned CHi = CI->getRawValue() >> 32;
2504
2505 if (CLow == 0) {
2506 // If the low part of the constant is all zeros, things are simple.
2507 BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2508 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2509 return;
2510 }
2511
2512 // Multiply the two low parts... capturing carry into EDX
2513 unsigned OverflowReg = 0;
2514 if (CLow == 1) {
2515 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
Chris Lattner028adc42004-04-06 04:29:36 +00002516 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002517 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2518 OverflowReg = makeAnotherReg(Type::UIntTy);
2519 BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
2520 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2521 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
Chris Lattner028adc42004-04-06 04:29:36 +00002522
Chris Lattner462fa822004-04-11 20:56:28 +00002523 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2524 BuildMI(BB, IP, X86::MOV32rr, 1,
2525 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2526 }
2527
2528 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2529 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2530
2531 unsigned AHBLplusOverflowReg;
2532 if (OverflowReg) {
2533 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2534 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002535 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002536 } else {
2537 AHBLplusOverflowReg = AHBLReg;
2538 }
2539
2540 if (CHi == 0) {
2541 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
2542 } else {
Chris Lattner028adc42004-04-06 04:29:36 +00002543 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattner462fa822004-04-11 20:56:28 +00002544 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
Chris Lattner028adc42004-04-06 04:29:36 +00002545
Chris Lattner462fa822004-04-11 20:56:28 +00002546 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002547 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2548 }
Chris Lattner462fa822004-04-11 20:56:28 +00002549 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002550 }
Chris Lattner462fa822004-04-11 20:56:28 +00002551
2552 // General 64x64 multiply
2553
2554 unsigned Op1Reg = getReg(Op1, &BB, IP);
2555 // Multiply the two low parts... capturing carry into EDX
2556 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2557 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
2558
2559 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
2560 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2561 BuildMI(BB, IP, X86::MOV32rr, 1,
2562 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2563
2564 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2565 BuildMI(BB, IP, X86::IMUL32rr, 2,
2566 AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2567
2568 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2569 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2570 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2571
2572 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2573 BuildMI(BB, IP, X86::IMUL32rr, 2,
2574 ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2575
2576 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2577 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002578}
Chris Lattnerca9671d2002-11-02 20:28:58 +00002579
Chris Lattner06925362002-11-17 21:56:38 +00002580
Chris Lattnerf01729e2002-11-02 20:54:46 +00002581/// visitDivRem - Handle division and remainder instructions... these
2582/// instruction both require the same instructions to be generated, they just
2583/// select the result from a different register. Note that both of these
2584/// instructions work differently for signed and unsigned operands.
2585///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002586void X86ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00002587 unsigned ResultReg = getReg(I);
Chris Lattner95157f72004-04-11 22:05:45 +00002588 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2589
2590 // Fold loads into floating point divides.
2591 if (getClass(Op0->getType()) == cFP) {
2592 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2593 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2594 const Type *Ty = Op0->getType();
2595 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2596 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
2597
Chris Lattner95157f72004-04-11 22:05:45 +00002598 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002599 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2600 unsigned FI = getFixedSizedAllocaFI(AI);
2601 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2602 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002603 X86AddressMode AM;
2604 getAddressingMode(LI->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002605
Reid Spencerfc989e12004-08-30 00:13:26 +00002606 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002607 }
Chris Lattner95157f72004-04-11 22:05:45 +00002608 return;
2609 }
2610
2611 if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
2612 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2613 const Type *Ty = Op0->getType();
2614 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2615 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
2616
Chris Lattner95157f72004-04-11 22:05:45 +00002617 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002618 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2619 unsigned FI = getFixedSizedAllocaFI(AI);
2620 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
2621 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002622 X86AddressMode AM;
2623 getAddressingMode(LI->getOperand(0), AM);
2624 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002625 }
Chris Lattner95157f72004-04-11 22:05:45 +00002626 return;
2627 }
2628 }
2629
Chris Lattner94af4142002-12-25 05:13:53 +00002630
Chris Lattnercadff442003-10-23 17:21:43 +00002631 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002632 emitDivRemOperation(BB, IP, Op0, Op1,
Chris Lattner462fa822004-04-11 20:56:28 +00002633 I.getOpcode() == Instruction::Div, ResultReg);
Chris Lattnercadff442003-10-23 17:21:43 +00002634}
2635
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002636void X86ISel::emitDivRemOperation(MachineBasicBlock *BB,
2637 MachineBasicBlock::iterator IP,
2638 Value *Op0, Value *Op1, bool isDiv,
2639 unsigned ResultReg) {
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002640 const Type *Ty = Op0->getType();
2641 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00002642 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002643 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00002644 if (isDiv) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002645 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2646 return;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002647 } else { // Floating point remainder...
Chris Lattner462fa822004-04-11 20:56:28 +00002648 unsigned Op0Reg = getReg(Op0, BB, IP);
2649 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002650 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002651 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002652 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002653 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2654 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002655 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
2656 }
Chris Lattner94af4142002-12-25 05:13:53 +00002657 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002658 case cLong: {
2659 static const char *FnName[] =
2660 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
Chris Lattner462fa822004-04-11 20:56:28 +00002661 unsigned Op0Reg = getReg(Op0, BB, IP);
2662 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002663 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00002664 MachineInstr *TheCall =
2665 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
2666
2667 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002668 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2669 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002670 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
2671 return;
2672 }
2673 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00002674 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00002675 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00002676 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00002677
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002678 static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
Chris Lattner2483f672004-10-06 05:01:07 +00002679 static const unsigned NEGOpcode[]={ X86::NEG8r, X86::NEG16r, X86::NEG32r };
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002680 static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
2681 static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
2682 static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
2683
2684 // Special case signed division by power of 2.
Chris Lattner2483f672004-10-06 05:01:07 +00002685 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1))
2686 if (isDiv) {
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002687 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2688 int V = CI->getValue();
2689
2690 if (V == 1) { // X /s 1 => X
2691 unsigned Op0Reg = getReg(Op0, BB, IP);
2692 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2693 return;
2694 }
2695
2696 if (V == -1) { // X /s -1 => -X
2697 unsigned Op0Reg = getReg(Op0, BB, IP);
2698 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2699 return;
2700 }
2701
Chris Lattner610f1e22004-10-06 04:02:39 +00002702 if (V == 2 || V == -2) { // X /s 2
2703 static const unsigned CMPOpcode[] = {
2704 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
2705 };
2706 static const unsigned SBBOpcode[] = {
2707 X86::SBB8ri, X86::SBB16ri, X86::SBB32ri
2708 };
2709 unsigned Op0Reg = getReg(Op0, BB, IP);
2710 unsigned SignBit = 1 << (CI->getType()->getPrimitiveSize()*8-1);
2711 BuildMI(*BB, IP, CMPOpcode[Class], 2).addReg(Op0Reg).addImm(SignBit);
2712
2713 unsigned TmpReg = makeAnotherReg(Op0->getType());
2714 BuildMI(*BB, IP, SBBOpcode[Class], 2, TmpReg).addReg(Op0Reg).addImm(-1);
2715
2716 unsigned TmpReg2 = V == 2 ? ResultReg : makeAnotherReg(Op0->getType());
2717 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg2).addReg(TmpReg).addImm(1);
2718 if (V == -2) {
2719 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg2);
2720 }
2721 return;
2722 }
2723
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002724 bool isNeg = false;
2725 if (V < 0) { // Not a positive power of 2?
2726 V = -V;
2727 isNeg = true; // Maybe it's a negative power of 2.
2728 }
2729 if (unsigned Log = ExactLog2(V)) {
2730 --Log;
2731 unsigned Op0Reg = getReg(Op0, BB, IP);
2732 unsigned TmpReg = makeAnotherReg(Op0->getType());
Chris Lattner3ffdff62004-10-06 04:19:43 +00002733 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
2734 .addReg(Op0Reg).addImm(Log-1);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002735 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2736 BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
2737 .addReg(TmpReg).addImm(32-Log);
2738 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2739 BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
2740 .addReg(Op0Reg).addReg(TmpReg2);
2741
2742 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2743 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
Chris Lattner3ffdff62004-10-06 04:19:43 +00002744 .addReg(TmpReg3).addImm(Log);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002745 if (isNeg)
2746 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
2747 return;
2748 }
Chris Lattner2483f672004-10-06 05:01:07 +00002749 } else { // X % C
2750 assert(Class != cLong && "This doesn't handle 64-bit remainder!");
2751 int V = CI->getValue();
2752
2753 if (V == 2 || V == -2) { // X % 2, X % -2
Chris Lattner2483f672004-10-06 05:01:07 +00002754 static const unsigned SExtOpcode[] = { X86::CBW, X86::CWD, X86::CDQ };
2755 static const unsigned BaseReg[] = { X86::AL , X86::AX , X86::EAX };
2756 static const unsigned SExtReg[] = { X86::AH , X86::DX , X86::EDX };
2757 static const unsigned ANDOpcode[] = {
2758 X86::AND8ri, X86::AND16ri, X86::AND32ri
2759 };
2760 static const unsigned XOROpcode[] = {
2761 X86::XOR8rr, X86::XOR16rr, X86::XOR32rr
2762 };
2763 static const unsigned SUBOpcode[] = {
2764 X86::SUB8rr, X86::SUB16rr, X86::SUB32rr
2765 };
2766
2767 // Sign extend result into reg of -1 or 0.
2768 unsigned Op0Reg = getReg(Op0, BB, IP);
2769 BuildMI(*BB, IP, MovOpcode[Class], 1, BaseReg[Class]).addReg(Op0Reg);
2770 BuildMI(*BB, IP, SExtOpcode[Class], 0);
2771 unsigned TmpReg0 = makeAnotherReg(Op0->getType());
2772 BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg0).addReg(SExtReg[Class]);
2773
2774 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2775 BuildMI(*BB, IP, ANDOpcode[Class], 2, TmpReg1).addReg(Op0Reg).addImm(1);
2776
2777 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2778 BuildMI(*BB, IP, XOROpcode[Class], 2,
2779 TmpReg2).addReg(TmpReg1).addReg(TmpReg0);
2780 BuildMI(*BB, IP, SUBOpcode[Class], 2,
2781 ResultReg).addReg(TmpReg2).addReg(TmpReg0);
2782 return;
2783 }
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002784 }
2785
2786 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002787 static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
Chris Lattnerf01729e2002-11-02 20:54:46 +00002788 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
2789
2790 static const unsigned DivOpcode[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002791 { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
2792 { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00002793 };
2794
Chris Lattnerf01729e2002-11-02 20:54:46 +00002795 unsigned Reg = Regs[Class];
2796 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00002797
2798 // Put the first operand into one of the A registers...
Chris Lattner462fa822004-04-11 20:56:28 +00002799 unsigned Op0Reg = getReg(Op0, BB, IP);
2800 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattneree352852004-02-29 07:22:16 +00002801 BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002802
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002803 if (Ty->isSigned()) {
Chris Lattnerf01729e2002-11-02 20:54:46 +00002804 // Emit a sign extension instruction...
Chris Lattner462fa822004-04-11 20:56:28 +00002805 unsigned ShiftResult = makeAnotherReg(Op0->getType());
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002806 BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
Chris Lattneree352852004-02-29 07:22:16 +00002807 BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002808
2809 // Emit the appropriate divide or remainder instruction...
2810 BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002811 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00002812 // If unsigned, emit a zeroing instruction... (reg = 0)
Chris Lattneree352852004-02-29 07:22:16 +00002813 BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002814
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002815 // Emit the appropriate divide or remainder instruction...
2816 BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
2817 }
Chris Lattner06925362002-11-17 21:56:38 +00002818
Chris Lattnerf01729e2002-11-02 20:54:46 +00002819 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00002820 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00002821
Chris Lattnerf01729e2002-11-02 20:54:46 +00002822 // Put the result into the destination register...
Chris Lattneree352852004-02-29 07:22:16 +00002823 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00002824}
Chris Lattnere2954c82002-11-02 20:04:26 +00002825
Chris Lattner06925362002-11-17 21:56:38 +00002826
Brian Gaekea1719c92002-10-31 23:03:59 +00002827/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2828/// for constant immediate shift values, and for constant immediate
2829/// shift values equal to 1. Even the general case is sort of special,
2830/// because the shift amount has to be in CL, not just any old register.
2831///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002832void X86ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002833 MachineBasicBlock::iterator IP = BB->end ();
2834 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
2835 I.getOpcode () == Instruction::Shl, I.getType (),
2836 getReg (I));
2837}
2838
2839/// emitShiftOperation - Common code shared between visitShiftInst and
2840/// constant expression support.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002841void X86ISel::emitShiftOperation(MachineBasicBlock *MBB,
2842 MachineBasicBlock::iterator IP,
2843 Value *Op, Value *ShiftAmount,
2844 bool isLeftShift, const Type *ResultTy,
2845 unsigned DestReg) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002846 unsigned SrcReg = getReg (Op, MBB, IP);
2847 bool isSigned = ResultTy->isSigned ();
2848 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002849
2850 static const unsigned ConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002851 { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR
2852 { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR
2853 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL
2854 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002855 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002856
Chris Lattner3e130a22003-01-13 00:32:26 +00002857 static const unsigned NonConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002858 { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
2859 { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
2860 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
2861 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002862 };
Chris Lattner796df732002-11-02 00:44:25 +00002863
Chris Lattner3e130a22003-01-13 00:32:26 +00002864 // Longs, as usual, are handled specially...
2865 if (Class == cLong) {
2866 // If we have a constant shift, we can generate much more efficient code
2867 // than otherwise...
2868 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002869 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002870 unsigned Amount = CUI->getValue();
2871 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002872 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
2873 if (isLeftShift) {
Chris Lattneree352852004-02-29 07:22:16 +00002874 BuildMI(*MBB, IP, Opc[3], 3,
2875 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
2876 BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002877 } else {
Chris Lattneree352852004-02-29 07:22:16 +00002878 BuildMI(*MBB, IP, Opc[3], 3,
2879 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
2880 BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002881 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002882 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002883 Amount -= 32;
2884 if (isLeftShift) {
Chris Lattner722070e2004-04-06 03:42:38 +00002885 if (Amount != 0) {
2886 BuildMI(*MBB, IP, X86::SHL32ri, 2,
2887 DestReg + 1).addReg(SrcReg).addImm(Amount);
2888 } else {
2889 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
2890 }
2891 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002892 } else {
Chris Lattner722070e2004-04-06 03:42:38 +00002893 if (Amount != 0) {
2894 BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
2895 DestReg).addReg(SrcReg+1).addImm(Amount);
2896 } else {
2897 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
2898 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002899 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002900 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002901 }
2902 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00002903 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2904
2905 if (!isLeftShift && isSigned) {
2906 // If this is a SHR of a Long, then we need to do funny sign extension
2907 // stuff. TmpReg gets the value to use as the high-part if we are
2908 // shifting more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002909 BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00002910 } else {
2911 // Other shifts use a fixed zero value if the shift is more than 32
2912 // bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002913 BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00002914 }
2915
2916 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002917 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002918 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002919
2920 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
2921 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2922 if (isLeftShift) {
2923 // TmpReg2 = shld inHi, inLo
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002924 BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
Chris Lattneree352852004-02-29 07:22:16 +00002925 .addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002926 // TmpReg3 = shl inLo, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002927 BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002928
2929 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002930 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002931
2932 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002933 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002934 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
2935 // DestLo = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002936 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002937 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002938 } else {
2939 // TmpReg2 = shrd inLo, inHi
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002940 BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
Chris Lattneree352852004-02-29 07:22:16 +00002941 .addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00002942 // TmpReg3 = s[ah]r inHi, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002943 BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00002944 .addReg(SrcReg+1);
2945
2946 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002947 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002948
2949 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002950 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002951 DestReg).addReg(TmpReg2).addReg(TmpReg3);
2952
2953 // DestHi = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002954 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002955 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
2956 }
Brian Gaekea1719c92002-10-31 23:03:59 +00002957 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002958 return;
2959 }
Chris Lattnere9913f22002-11-02 01:41:55 +00002960
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002961 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002962 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2963 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002964
Chris Lattner3e130a22003-01-13 00:32:26 +00002965 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00002966 BuildMI(*MBB, IP, Opc[Class], 2,
2967 DestReg).addReg(SrcReg).addImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00002968 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002969 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002970 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002971
Chris Lattner3e130a22003-01-13 00:32:26 +00002972 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00002973 BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002974 }
2975}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002976
Chris Lattner3e130a22003-01-13 00:32:26 +00002977
Chris Lattner6fc3c522002-11-17 21:11:55 +00002978/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00002979/// instruction. The load and store instructions are the only place where we
2980/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00002981///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002982void X86ISel::visitLoadInst(LoadInst &I) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00002983 // Check to see if this load instruction is going to be folded into a binary
2984 // instruction, like add. If so, we don't want to emit it. Wouldn't a real
2985 // pattern matching instruction selector be nice?
Chris Lattner95157f72004-04-11 22:05:45 +00002986 unsigned Class = getClassB(I.getType());
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002987 if (I.hasOneUse()) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00002988 Instruction *User = cast<Instruction>(I.use_back());
2989 switch (User->getOpcode()) {
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002990 case Instruction::Cast:
2991 // If this is a cast from a signed-integer type to a floating point type,
2992 // fold the cast here.
John Criswell6b5bd582004-06-09 15:18:51 +00002993 if (getClassB(User->getType()) == cFP &&
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002994 (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
2995 I.getType() == Type::LongTy)) {
2996 unsigned DestReg = getReg(User);
2997 static const unsigned Opcode[] = {
2998 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
2999 };
Chris Lattner9f1b5312004-05-13 15:12:43 +00003000
3001 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
3002 unsigned FI = getFixedSizedAllocaFI(AI);
3003 addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
3004 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00003005 X86AddressMode AM;
3006 getAddressingMode(I.getOperand(0), AM);
3007 addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003008 }
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003009 return;
3010 } else {
3011 User = 0;
3012 }
3013 break;
Chris Lattner13c07fe2004-04-12 00:12:04 +00003014
Chris Lattner7dee5da2004-03-08 01:58:35 +00003015 case Instruction::Add:
3016 case Instruction::Sub:
3017 case Instruction::And:
3018 case Instruction::Or:
3019 case Instruction::Xor:
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003020 if (Class == cLong) User = 0;
Chris Lattner7dee5da2004-03-08 01:58:35 +00003021 break;
Chris Lattner95157f72004-04-11 22:05:45 +00003022 case Instruction::Mul:
3023 case Instruction::Div:
Chris Lattner13c07fe2004-04-12 00:12:04 +00003024 if (Class != cFP) User = 0;
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003025 break; // Folding only implemented for floating point.
Chris Lattner95157f72004-04-11 22:05:45 +00003026 default: User = 0; break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00003027 }
3028
3029 if (User) {
3030 // Okay, we found a user. If the load is the first operand and there is
3031 // no second operand load, reverse the operand ordering. Note that this
3032 // can fail for a subtract (ie, no change will be made).
Chris Lattner3dbb5042004-07-21 21:28:26 +00003033 bool Swapped = false;
Chris Lattner7dee5da2004-03-08 01:58:35 +00003034 if (!isa<LoadInst>(User->getOperand(1)))
Chris Lattner3dbb5042004-07-21 21:28:26 +00003035 Swapped = !cast<BinaryOperator>(User)->swapOperands();
Chris Lattner7dee5da2004-03-08 01:58:35 +00003036
3037 // Okay, now that everything is set up, if this load is used by the second
3038 // operand, and if there are no instructions that invalidate the load
3039 // before the binary operator, eliminate the load.
3040 if (User->getOperand(1) == &I &&
3041 isSafeToFoldLoadIntoInstruction(I, *User))
3042 return; // Eliminate the load!
Chris Lattner95157f72004-04-11 22:05:45 +00003043
3044 // If this is a floating point sub or div, we won't be able to swap the
3045 // operands, but we will still be able to eliminate the load.
3046 if (Class == cFP && User->getOperand(0) == &I &&
3047 !isa<LoadInst>(User->getOperand(1)) &&
3048 (User->getOpcode() == Instruction::Sub ||
3049 User->getOpcode() == Instruction::Div) &&
3050 isSafeToFoldLoadIntoInstruction(I, *User))
3051 return; // Eliminate the load!
Chris Lattner3dbb5042004-07-21 21:28:26 +00003052
3053 // If we swapped the operands to the instruction, but couldn't fold the
3054 // load anyway, swap them back. We don't want to break add X, int
3055 // folding.
3056 if (Swapped) cast<BinaryOperator>(User)->swapOperands();
Chris Lattner7dee5da2004-03-08 01:58:35 +00003057 }
3058 }
3059
Chris Lattner6ac1d712003-10-20 04:48:06 +00003060 static const unsigned Opcodes[] = {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003061 X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
Chris Lattner3e130a22003-01-13 00:32:26 +00003062 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00003063 unsigned Opcode = Opcodes[Class];
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003064 if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003065
3066 unsigned DestReg = getReg(I);
3067
3068 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
3069 unsigned FI = getFixedSizedAllocaFI(AI);
3070 if (Class == cLong) {
3071 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
3072 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
3073 } else {
3074 addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
3075 }
3076 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00003077 X86AddressMode AM;
3078 getAddressingMode(I.getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003079
3080 if (Class == cLong) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003081 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), AM);
3082 AM.Disp += 4;
3083 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003084 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00003085 addFullAddress(BuildMI(BB, Opcode, 4, DestReg), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003086 }
3087 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003088}
3089
Chris Lattner6fc3c522002-11-17 21:11:55 +00003090/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
3091/// instruction.
3092///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003093void X86ISel::visitStoreInst(StoreInst &I) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003094 X86AddressMode AM;
3095 getAddressingMode(I.getOperand(1), AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003096
Chris Lattner6c09db22003-10-20 04:11:23 +00003097 const Type *ValTy = I.getOperand(0)->getType();
3098 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00003099
Chris Lattner5a830962004-02-25 02:56:58 +00003100 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
3101 uint64_t Val = CI->getRawValue();
3102 if (Class == cLong) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003103 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val & ~0U);
3104 AM.Disp += 4;
3105 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val>>32);
Chris Lattner5a830962004-02-25 02:56:58 +00003106 } else {
3107 static const unsigned Opcodes[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003108 X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
Chris Lattner5a830962004-02-25 02:56:58 +00003109 };
3110 unsigned Opcode = Opcodes[Class];
Reid Spencerfc989e12004-08-30 00:13:26 +00003111 addFullAddress(BuildMI(BB, Opcode, 5), AM).addImm(Val);
Chris Lattner5a830962004-02-25 02:56:58 +00003112 }
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00003113 } else if (isa<ConstantPointerNull>(I.getOperand(0))) {
Chris Lattner358a9022004-10-15 05:05:29 +00003114 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(0);
Chris Lattner5a830962004-02-25 02:56:58 +00003115 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003116 addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CB->getValue());
Chris Lattnere7a31c92004-05-07 21:18:15 +00003117 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
3118 // Store constant FP values with integer instructions to avoid having to
3119 // load the constants from the constant pool then do a store.
3120 if (CFP->getType() == Type::FloatTy) {
3121 union {
3122 unsigned I;
3123 float F;
3124 } V;
3125 V.F = CFP->getValue();
Reid Spencerfc989e12004-08-30 00:13:26 +00003126 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(V.I);
Chris Lattner5a830962004-02-25 02:56:58 +00003127 } else {
Chris Lattnere7a31c92004-05-07 21:18:15 +00003128 union {
3129 uint64_t I;
3130 double F;
3131 } V;
3132 V.F = CFP->getValue();
Reid Spencerfc989e12004-08-30 00:13:26 +00003133 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm((unsigned)V.I);
3134 AM.Disp += 4;
3135 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(
Chris Lattnere7a31c92004-05-07 21:18:15 +00003136 unsigned(V.I >> 32));
Chris Lattner5a830962004-02-25 02:56:58 +00003137 }
Chris Lattnere7a31c92004-05-07 21:18:15 +00003138
3139 } else if (Class == cLong) {
3140 unsigned ValReg = getReg(I.getOperand(0));
Reid Spencerfc989e12004-08-30 00:13:26 +00003141 addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg);
3142 AM.Disp += 4;
3143 addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg+1);
Chris Lattnere7a31c92004-05-07 21:18:15 +00003144 } else {
Chris Lattner358a9022004-10-15 05:05:29 +00003145 // FIXME: stop emitting these two instructions:
3146 // movl $global,%eax
3147 // movl %eax,(%ebx)
3148 // when one instruction will suffice. That includes when the global
3149 // has an offset applied to it.
Chris Lattnere7a31c92004-05-07 21:18:15 +00003150 unsigned ValReg = getReg(I.getOperand(0));
3151 static const unsigned Opcodes[] = {
3152 X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
3153 };
3154 unsigned Opcode = Opcodes[Class];
3155 if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003156
Reid Spencerfc989e12004-08-30 00:13:26 +00003157 addFullAddress(BuildMI(BB, Opcode, 1+4), AM).addReg(ValReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003158 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00003159}
3160
3161
Misha Brukman538607f2004-03-01 23:53:11 +00003162/// visitCastInst - Here we have various kinds of copying with or without sign
3163/// extension going on.
3164///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003165void X86ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003166 Value *Op = CI.getOperand(0);
Chris Lattner427aeb42004-04-11 19:21:59 +00003167
Chris Lattner99382862004-04-12 00:23:04 +00003168 unsigned SrcClass = getClassB(Op->getType());
3169 unsigned DestClass = getClassB(CI.getType());
3170 // Noop casts are not emitted: getReg will return the source operand as the
3171 // register to use for any uses of the noop cast.
Chris Lattner8b486a12004-06-29 00:14:38 +00003172 if (DestClass == SrcClass) {
3173 // The only detail in this plan is that casts from double -> float are
3174 // truncating operations that we have to codegen through memory (despite
3175 // the fact that the source/dest registers are the same class).
3176 if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy)
3177 return;
3178 }
Chris Lattner427aeb42004-04-11 19:21:59 +00003179
Chris Lattnerf5854472003-06-21 16:01:24 +00003180 // If this is a cast from a 32-bit integer to a Long type, and the only uses
3181 // of the case are GEP instructions, then the cast does not need to be
3182 // generated explicitly, it will be folded into the GEP.
Chris Lattner99382862004-04-12 00:23:04 +00003183 if (DestClass == cLong && SrcClass == cInt) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003184 bool AllUsesAreGEPs = true;
3185 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
3186 if (!isa<GetElementPtrInst>(*I)) {
3187 AllUsesAreGEPs = false;
3188 break;
3189 }
3190
3191 // No need to codegen this cast if all users are getelementptr instrs...
3192 if (AllUsesAreGEPs) return;
3193 }
3194
Chris Lattner99382862004-04-12 00:23:04 +00003195 // If this cast converts a load from a short,int, or long integer to a FP
3196 // value, we will have folded this cast away.
3197 if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
3198 (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
3199 Op->getType() == Type::LongTy))
3200 return;
3201
3202
Chris Lattner548f61d2003-04-23 17:22:12 +00003203 unsigned DestReg = getReg(CI);
3204 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00003205 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00003206}
3207
Misha Brukman538607f2004-03-01 23:53:11 +00003208/// emitCastOperation - Common code shared between visitCastInst and constant
3209/// expression cast support.
3210///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003211void X86ISel::emitCastOperation(MachineBasicBlock *BB,
3212 MachineBasicBlock::iterator IP,
3213 Value *Src, const Type *DestTy,
3214 unsigned DestReg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003215 const Type *SrcTy = Src->getType();
3216 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00003217 unsigned DestClass = getClassB(DestTy);
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003218 unsigned SrcReg = getReg(Src, BB, IP);
3219
Chris Lattner3e130a22003-01-13 00:32:26 +00003220 // Implement casts to bool by using compare on the operand followed by set if
3221 // not zero on the result.
3222 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00003223 switch (SrcClass) {
3224 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003225 BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003226 break;
3227 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003228 BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003229 break;
3230 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003231 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003232 break;
3233 case cLong: {
3234 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003235 BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner20772542003-06-01 03:38:24 +00003236 break;
3237 }
3238 case cFP:
Chris Lattneree352852004-02-29 07:22:16 +00003239 BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003240 BuildMI(*BB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00003241 BuildMI(*BB, IP, X86::SAHF, 1);
Chris Lattner311ca2e2004-02-23 03:21:41 +00003242 break;
Chris Lattner20772542003-06-01 03:38:24 +00003243 }
3244
3245 // If the zero flag is not set, then the value is true, set the byte to
3246 // true.
Chris Lattneree352852004-02-29 07:22:16 +00003247 BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003248 return;
3249 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003250
3251 static const unsigned RegRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003252 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
Chris Lattner3e130a22003-01-13 00:32:26 +00003253 };
3254
3255 // Implement casts between values of the same type class (as determined by
3256 // getClass) by using a register-to-register move.
3257 if (SrcClass == DestClass) {
3258 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattneree352852004-02-29 07:22:16 +00003259 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003260 } else if (SrcClass == cFP) {
3261 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003262 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattneree352852004-02-29 07:22:16 +00003263 BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003264 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003265 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
3266 "Unknown cFP member!");
3267 // Truncate from double to float by storing to memory as short, then
3268 // reading it back.
3269 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00003270 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003271 addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
3272 addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003273 }
3274 } else if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003275 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3276 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003277 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00003278 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003279 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00003280 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003281 return;
3282 }
3283
3284 // Handle cast of SMALLER int to LARGER int using a move with sign extension
3285 // or zero extension, depending on whether the source type was signed.
3286 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
3287 SrcClass < DestClass) {
3288 bool isLong = DestClass == cLong;
3289 if (isLong) DestClass = cInt;
3290
3291 static const unsigned Opc[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003292 { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
3293 { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
Chris Lattner3e130a22003-01-13 00:32:26 +00003294 };
3295
Chris Lattner96e3b422004-05-09 22:28:45 +00003296 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Chris Lattneree352852004-02-29 07:22:16 +00003297 BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
Chris Lattner548f61d2003-04-23 17:22:12 +00003298 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003299
3300 if (isLong) { // Handle upper 32 bits as appropriate...
3301 if (isUnsigned) // Zero out top bits...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003302 BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00003303 else // Sign extend bottom half...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003304 BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00003305 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003306 return;
3307 }
3308
3309 // Special case long -> int ...
3310 if (SrcClass == cLong && DestClass == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003311 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003312 return;
3313 }
3314
3315 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
3316 // move out of AX or AL.
3317 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
3318 && SrcClass > DestClass) {
3319 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattneree352852004-02-29 07:22:16 +00003320 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
3321 BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00003322 return;
3323 }
3324
3325 // Handle casts from integer to floating point now...
3326 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003327 // Promote the integer to a type supported by FLD. We do this because there
3328 // are no unsigned FLD instructions, so we must promote an unsigned value to
3329 // a larger signed value, then use FLD on the larger value.
3330 //
3331 const Type *PromoteType = 0;
Chris Lattner85aa7092004-04-10 18:32:01 +00003332 unsigned PromoteOpcode = 0;
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003333 unsigned RealDestReg = DestReg;
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003334 switch (SrcTy->getTypeID()) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003335 case Type::BoolTyID:
3336 case Type::SByteTyID:
3337 // We don't have the facilities for directly loading byte sized data from
3338 // memory (even signed). Promote it to 16 bits.
3339 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003340 PromoteOpcode = X86::MOVSX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003341 break;
3342 case Type::UByteTyID:
3343 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003344 PromoteOpcode = X86::MOVZX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003345 break;
3346 case Type::UShortTyID:
3347 PromoteType = Type::IntTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003348 PromoteOpcode = X86::MOVZX32rr16;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003349 break;
3350 case Type::UIntTyID: {
3351 // Make a 64 bit temporary... and zero out the top of it...
3352 unsigned TmpReg = makeAnotherReg(Type::LongTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003353 BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
3354 BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003355 SrcTy = Type::LongTy;
3356 SrcClass = cLong;
3357 SrcReg = TmpReg;
3358 break;
3359 }
3360 case Type::ULongTyID:
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003361 // Don't fild into the read destination.
3362 DestReg = makeAnotherReg(Type::DoubleTy);
3363 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003364 default: // No promotion needed...
3365 break;
3366 }
3367
3368 if (PromoteType) {
3369 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner7b92de1e2004-04-06 19:29:36 +00003370 BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003371 SrcTy = PromoteType;
3372 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00003373 SrcReg = TmpReg;
3374 }
3375
3376 // Spill the integer to memory and reload it from there...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003377 int FrameIdx =
3378 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Chris Lattner3e130a22003-01-13 00:32:26 +00003379
3380 if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003381 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003382 FrameIdx).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003383 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003384 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003385 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003386 static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
Chris Lattneree352852004-02-29 07:22:16 +00003387 addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
3388 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003389 }
3390
3391 static const unsigned Op2[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003392 { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
Chris Lattneree352852004-02-29 07:22:16 +00003393 addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003394
3395 // We need special handling for unsigned 64-bit integer sources. If the
3396 // input number has the "sign bit" set, then we loaded it incorrectly as a
3397 // negative 64-bit number. In this case, add an offset value.
3398 if (SrcTy == Type::ULongTy) {
3399 // Emit a test instruction to see if the dynamic input value was signed.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003400 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003401
Chris Lattnerb6bac512004-02-25 06:13:04 +00003402 // If the sign bit is set, get a pointer to an offset, otherwise get a
3403 // pointer to a zero.
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003404 MachineConstantPool *CP = F->getConstantPool();
3405 unsigned Zero = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003406 Constant *Null = Constant::getNullValue(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003407 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003408 CP->getConstantPoolIndex(Null));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003409 unsigned Offset = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003410 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
3411
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003412 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003413 CP->getConstantPoolIndex(OffsetCst));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003414 unsigned Addr = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003415 BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003416
3417 // Load the constant for an add. FIXME: this could make an 'fadd' that
3418 // reads directly from memory, but we don't support these yet.
3419 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003420 addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003421
Chris Lattneree352852004-02-29 07:22:16 +00003422 BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
3423 .addReg(ConstReg).addReg(DestReg);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003424 }
3425
Chris Lattner3e130a22003-01-13 00:32:26 +00003426 return;
3427 }
3428
3429 // Handle casts from floating point to integer now...
3430 if (SrcClass == cFP) {
3431 // Change the floating point control register to use "round towards zero"
3432 // mode when truncating to an integer value.
3433 //
3434 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003435 addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003436
3437 // Load the old value of the high byte of the control word...
3438 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003439 addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
Chris Lattneree352852004-02-29 07:22:16 +00003440 CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003441
3442 // Set the high part to be round to zero...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003443 addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003444 CWFrameIdx, 1).addImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00003445
3446 // Reload the modified control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003447 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003448
3449 // Restore the memory image of control word to original value
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003450 addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003451 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00003452
3453 // We don't have the facilities for directly storing byte sized data to
3454 // memory. Promote it to 16 bits. We also must promote unsigned values to
3455 // larger classes because we only have signed FP stores.
3456 unsigned StoreClass = DestClass;
3457 const Type *StoreTy = DestTy;
3458 if (StoreClass == cByte || DestTy->isUnsigned())
3459 switch (StoreClass) {
3460 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
3461 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
3462 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00003463 // The following treatment of cLong may not be perfectly right,
3464 // but it survives chains of casts of the form
3465 // double->ulong->double.
3466 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00003467 default: assert(0 && "Unknown store class!");
3468 }
3469
3470 // Spill the integer to memory and reload it from there...
3471 int FrameIdx =
3472 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
3473
3474 static const unsigned Op1[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003475 { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
Chris Lattneree352852004-02-29 07:22:16 +00003476 addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
3477 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003478
3479 if (DestClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003480 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
3481 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
Chris Lattneree352852004-02-29 07:22:16 +00003482 FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00003483 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003484 static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
Chris Lattneree352852004-02-29 07:22:16 +00003485 addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003486 }
3487
3488 // Reload the original control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003489 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003490 return;
3491 }
3492
Brian Gaeked474e9c2002-12-06 10:49:33 +00003493 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00003494 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003495 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00003496}
Brian Gaekea1719c92002-10-31 23:03:59 +00003497
Chris Lattner73815062003-10-18 05:56:40 +00003498/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00003499///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003500void X86ISel::visitVANextInst(VANextInst &I) {
Chris Lattner73815062003-10-18 05:56:40 +00003501 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00003502 unsigned DestReg = getReg(I);
3503
Chris Lattnereca195e2003-05-08 19:44:13 +00003504 unsigned Size;
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003505 switch (I.getArgType()->getTypeID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00003506 default:
3507 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00003508 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00003509 return;
3510 case Type::PointerTyID:
3511 case Type::UIntTyID:
3512 case Type::IntTyID:
3513 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00003514 break;
3515 case Type::ULongTyID:
3516 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00003517 case Type::DoubleTyID:
3518 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00003519 break;
3520 }
3521
3522 // Increment the VAList pointer...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003523 BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
Chris Lattner73815062003-10-18 05:56:40 +00003524}
Chris Lattnereca195e2003-05-08 19:44:13 +00003525
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003526void X86ISel::visitVAArgInst(VAArgInst &I) {
Chris Lattner73815062003-10-18 05:56:40 +00003527 unsigned VAList = getReg(I.getOperand(0));
3528 unsigned DestReg = getReg(I);
3529
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003530 switch (I.getType()->getTypeID()) {
Chris Lattner73815062003-10-18 05:56:40 +00003531 default:
3532 std::cerr << I;
3533 assert(0 && "Error: bad type for va_next instruction!");
3534 return;
3535 case Type::PointerTyID:
3536 case Type::UIntTyID:
3537 case Type::IntTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003538 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003539 break;
3540 case Type::ULongTyID:
3541 case Type::LongTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003542 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3543 addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
Chris Lattner73815062003-10-18 05:56:40 +00003544 break;
3545 case Type::DoubleTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003546 addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003547 break;
3548 }
Chris Lattnereca195e2003-05-08 19:44:13 +00003549}
3550
Misha Brukman538607f2004-03-01 23:53:11 +00003551/// visitGetElementPtrInst - instruction-select GEP instructions
3552///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003553void X86ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003554 // If this GEP instruction will be folded into all of its users, we don't need
3555 // to explicitly calculate it!
Reid Spencerfc989e12004-08-30 00:13:26 +00003556 X86AddressMode AM;
3557 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), AM)) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003558 // Check all of the users of the instruction to see if they are loads and
3559 // stores.
3560 bool AllWillFold = true;
3561 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
3562 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
3563 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
3564 cast<Instruction>(*UI)->getOperand(0) == &I) {
3565 AllWillFold = false;
3566 break;
3567 }
3568
3569 // If the instruction is foldable, and will be folded into all users, don't
3570 // emit it!
3571 if (AllWillFold) return;
3572 }
3573
Chris Lattner3e130a22003-01-13 00:32:26 +00003574 unsigned outputReg = getReg(I);
Chris Lattner827832c2004-02-22 17:05:38 +00003575 emitGEPOperation(BB, BB->end(), I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00003576 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00003577}
3578
Chris Lattner985fe3d2004-02-25 03:45:50 +00003579/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
3580/// GEPTypes (the derived types being stepped through at each level). On return
3581/// from this function, if some indexes of the instruction are representable as
3582/// an X86 lea instruction, the machine operands are put into the Ops
3583/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
3584/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
3585/// addressing mode that only partially consumes the input, the BaseReg input of
3586/// the addressing mode must be left free.
3587///
3588/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
3589///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003590void X86ISel::getGEPIndex(MachineBasicBlock *MBB,
3591 MachineBasicBlock::iterator IP,
3592 std::vector<Value*> &GEPOps,
3593 std::vector<const Type*> &GEPTypes,
3594 X86AddressMode &AM) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003595 const TargetData &TD = TM.getTargetData();
3596
Chris Lattner985fe3d2004-02-25 03:45:50 +00003597 // Clear out the state we are working with...
Reid Spencerfc989e12004-08-30 00:13:26 +00003598 AM.BaseType = X86AddressMode::RegBase;
3599 AM.Base.Reg = 0; // No base register
3600 AM.Scale = 1; // Unit scale
3601 AM.IndexReg = 0; // No index register
3602 AM.Disp = 0; // No displacement
Chris Lattnerb6bac512004-02-25 06:13:04 +00003603
Chris Lattner985fe3d2004-02-25 03:45:50 +00003604 // While there are GEP indexes that can be folded into the current address,
3605 // keep processing them.
3606 while (!GEPTypes.empty()) {
3607 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
3608 // It's a struct access. CUI is the index into the structure,
3609 // which names the field. This index must have unsigned type.
3610 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
3611
3612 // Use the TargetData structure to pick out what the layout of the
3613 // structure is in memory. Since the structure index must be constant, we
3614 // can get its value and use it to find the right byte offset from the
3615 // StructLayout class's list of structure member offsets.
Reid Spencerfc989e12004-08-30 00:13:26 +00003616 AM.Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
Chris Lattner985fe3d2004-02-25 03:45:50 +00003617 GEPOps.pop_back(); // Consume a GEP operand
3618 GEPTypes.pop_back();
3619 } else {
3620 // It's an array or pointer access: [ArraySize x ElementType].
3621 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3622 Value *idx = GEPOps.back();
3623
3624 // idx is the index into the array. Unlike with structure
3625 // indices, we may not know its actual value at code-generation
3626 // time.
Chris Lattner985fe3d2004-02-25 03:45:50 +00003627
3628 // If idx is a constant, fold it into the offset.
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003629 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
Chris Lattner985fe3d2004-02-25 03:45:50 +00003630 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003631 AM.Disp += TypeSize*CSI->getValue();
Chris Lattner28977af2004-04-05 01:30:19 +00003632 } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003633 AM.Disp += TypeSize*CUI->getValue();
Chris Lattner985fe3d2004-02-25 03:45:50 +00003634 } else {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003635 // If the index reg is already taken, we can't handle this index.
Reid Spencerfc989e12004-08-30 00:13:26 +00003636 if (AM.IndexReg) return;
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003637
3638 // If this is a size that we can handle, then add the index as
3639 switch (TypeSize) {
3640 case 1: case 2: case 4: case 8:
3641 // These are all acceptable scales on X86.
Reid Spencerfc989e12004-08-30 00:13:26 +00003642 AM.Scale = TypeSize;
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003643 break;
3644 default:
3645 // Otherwise, we can't handle this scale
3646 return;
3647 }
3648
3649 if (CastInst *CI = dyn_cast<CastInst>(idx))
3650 if (CI->getOperand(0)->getType() == Type::IntTy ||
3651 CI->getOperand(0)->getType() == Type::UIntTy)
3652 idx = CI->getOperand(0);
3653
Reid Spencerfc989e12004-08-30 00:13:26 +00003654 AM.IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003655 }
3656
3657 GEPOps.pop_back(); // Consume a GEP operand
3658 GEPTypes.pop_back();
3659 }
3660 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003661
Chris Lattnerdf040972004-05-23 21:23:12 +00003662 // GEPTypes is empty, which means we have a single operand left. Set it as
3663 // the base register.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003664 //
Reid Spencerfc989e12004-08-30 00:13:26 +00003665 assert(AM.Base.Reg == 0);
Chris Lattnerdf040972004-05-23 21:23:12 +00003666
Reid Spencerfc989e12004-08-30 00:13:26 +00003667 if (AllocaInst *AI = dyn_castFixedAlloca(GEPOps.back())) {
3668 AM.BaseType = X86AddressMode::FrameIndexBase;
3669 AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
Chris Lattnerdf040972004-05-23 21:23:12 +00003670 GEPOps.pop_back();
3671 return;
Reid Spencerfc989e12004-08-30 00:13:26 +00003672 }
3673
Chris Lattner358a9022004-10-15 05:05:29 +00003674 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps.back())) {
3675 AM.GV = GV;
3676 GEPOps.pop_back();
3677 return;
Chris Lattnerdf040972004-05-23 21:23:12 +00003678 }
Chris Lattnerdf040972004-05-23 21:23:12 +00003679
Reid Spencerfc989e12004-08-30 00:13:26 +00003680 AM.Base.Reg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
Chris Lattnerb6bac512004-02-25 06:13:04 +00003681 GEPOps.pop_back(); // Consume the last GEP operand
Chris Lattner985fe3d2004-02-25 03:45:50 +00003682}
3683
3684
Chris Lattnerb6bac512004-02-25 06:13:04 +00003685/// isGEPFoldable - Return true if the specified GEP can be completely
3686/// folded into the addressing mode of a load/store or lea instruction.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003687bool X86ISel::isGEPFoldable(MachineBasicBlock *MBB,
3688 Value *Src, User::op_iterator IdxBegin,
3689 User::op_iterator IdxEnd, X86AddressMode &AM) {
Chris Lattner7ca04092004-02-22 17:35:42 +00003690
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003691 std::vector<Value*> GEPOps;
3692 GEPOps.resize(IdxEnd-IdxBegin+1);
3693 GEPOps[0] = Src;
3694 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3695
Chris Lattnerdf040972004-05-23 21:23:12 +00003696 std::vector<const Type*>
3697 GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3698 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003699
Chris Lattnerb6bac512004-02-25 06:13:04 +00003700 MachineBasicBlock::iterator IP;
3701 if (MBB) IP = MBB->end();
Reid Spencerfc989e12004-08-30 00:13:26 +00003702 getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003703
3704 // We can fold it away iff the getGEPIndex call eliminated all operands.
3705 return GEPOps.empty();
3706}
3707
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003708void X86ISel::emitGEPOperation(MachineBasicBlock *MBB,
3709 MachineBasicBlock::iterator IP,
3710 Value *Src, User::op_iterator IdxBegin,
3711 User::op_iterator IdxEnd, unsigned TargetReg) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003712 const TargetData &TD = TM.getTargetData();
Chris Lattnerb6bac512004-02-25 06:13:04 +00003713
Chris Lattnerd2995df2004-07-15 00:58:53 +00003714 // If this is a getelementptr null, with all constant integer indices, just
3715 // replace it with TargetReg = 42.
3716 if (isa<ConstantPointerNull>(Src)) {
3717 User::op_iterator I = IdxBegin;
3718 for (; I != IdxEnd; ++I)
3719 if (!isa<ConstantInt>(*I))
3720 break;
3721 if (I == IdxEnd) { // All constant indices
3722 unsigned Offset = TD.getIndexedOffset(Src->getType(),
3723 std::vector<Value*>(IdxBegin, IdxEnd));
3724 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addImm(Offset);
3725 return;
3726 }
3727 }
3728
Chris Lattnerb6bac512004-02-25 06:13:04 +00003729 std::vector<Value*> GEPOps;
3730 GEPOps.resize(IdxEnd-IdxBegin+1);
3731 GEPOps[0] = Src;
3732 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3733
3734 std::vector<const Type*> GEPTypes;
3735 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3736 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner985fe3d2004-02-25 03:45:50 +00003737
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003738 // Keep emitting instructions until we consume the entire GEP instruction.
3739 while (!GEPOps.empty()) {
3740 unsigned OldSize = GEPOps.size();
Reid Spencerfc989e12004-08-30 00:13:26 +00003741 X86AddressMode AM;
3742 getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003743
Chris Lattner985fe3d2004-02-25 03:45:50 +00003744 if (GEPOps.size() != OldSize) {
3745 // getGEPIndex consumed some of the input. Build an LEA instruction here.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003746 unsigned NextTarget = 0;
3747 if (!GEPOps.empty()) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003748 assert(AM.Base.Reg == 0 &&
Chris Lattnerb6bac512004-02-25 06:13:04 +00003749 "getGEPIndex should have left the base register open for chaining!");
Reid Spencerfc989e12004-08-30 00:13:26 +00003750 NextTarget = AM.Base.Reg = makeAnotherReg(Type::UIntTy);
Chris Lattner985fe3d2004-02-25 03:45:50 +00003751 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003752
Reid Spencerfc989e12004-08-30 00:13:26 +00003753 if (AM.BaseType == X86AddressMode::RegBase &&
Chris Lattner358a9022004-10-15 05:05:29 +00003754 AM.IndexReg == 0 && AM.Disp == 0 && !AM.GV)
Reid Spencerfc989e12004-08-30 00:13:26 +00003755 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(AM.Base.Reg);
Chris Lattner358a9022004-10-15 05:05:29 +00003756 else if (AM.BaseType == X86AddressMode::RegBase && AM.Base.Reg == 0 &&
3757 AM.IndexReg == 0 && AM.Disp == 0)
3758 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(AM.GV);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003759 else
Reid Spencerfc989e12004-08-30 00:13:26 +00003760 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003761 --IP;
3762 TargetReg = NextTarget;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003763 } else if (GEPTypes.empty()) {
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003764 // The getGEPIndex operation didn't want to build an LEA. Check to see if
3765 // all operands are consumed but the base pointer. If so, just load it
3766 // into the register.
Chris Lattner7ca04092004-02-22 17:35:42 +00003767 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003768 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
Chris Lattner7ca04092004-02-22 17:35:42 +00003769 } else {
3770 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003771 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattner7ca04092004-02-22 17:35:42 +00003772 }
3773 break; // we are now done
Chris Lattnerb6bac512004-02-25 06:13:04 +00003774
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003775 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +00003776 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003777 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3778 Value *idx = GEPOps.back();
3779 GEPOps.pop_back(); // Consume a GEP operand
3780 GEPTypes.pop_back();
Chris Lattner8a307e82002-12-16 19:32:50 +00003781
Chris Lattner28977af2004-04-05 01:30:19 +00003782 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Chris Lattnerf5854472003-06-21 16:01:24 +00003783 // operand on X86. Handle this case directly now...
3784 if (CastInst *CI = dyn_cast<CastInst>(idx))
3785 if (CI->getOperand(0)->getType() == Type::IntTy ||
3786 CI->getOperand(0)->getType() == Type::UIntTy)
3787 idx = CI->getOperand(0);
3788
Chris Lattner3e130a22003-01-13 00:32:26 +00003789 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00003790 // must find the size of the pointed-to type (Not coincidentally, the next
3791 // type is the type of the elements in the array).
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003792 const Type *ElTy = SqTy->getElementType();
3793 unsigned elementSize = TD.getTypeSize(ElTy);
Chris Lattner8a307e82002-12-16 19:32:50 +00003794
3795 // If idxReg is a constant, we don't need to perform the multiply!
Chris Lattner28977af2004-04-05 01:30:19 +00003796 if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003797 if (!CSI->isNullValue()) {
Chris Lattner28977af2004-04-05 01:30:19 +00003798 unsigned Offset = elementSize*CSI->getRawValue();
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003799 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003800 BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003801 .addReg(Reg).addImm(Offset);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003802 --IP; // Insert the next instruction before this one.
3803 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003804 }
3805 } else if (elementSize == 1) {
3806 // If the element size is 1, we don't have to multiply, just add
3807 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003808 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003809 BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003810 --IP; // Insert the next instruction before this one.
3811 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003812 } else {
3813 unsigned idxReg = getReg(idx, MBB, IP);
3814 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003815
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003816 // Make sure we can back the iterator up to point to the first
3817 // instruction emitted.
3818 MachineBasicBlock::iterator BeforeIt = IP;
3819 if (IP == MBB->begin())
3820 BeforeIt = MBB->end();
3821 else
3822 --BeforeIt;
Chris Lattnerb2acc512003-10-19 21:09:10 +00003823 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
3824
Chris Lattner8a307e82002-12-16 19:32:50 +00003825 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003826 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003827 BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003828 .addReg(Reg).addReg(OffsetReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003829
3830 // Step to the first instruction of the multiply.
3831 if (BeforeIt == MBB->end())
3832 IP = MBB->begin();
3833 else
3834 IP = ++BeforeIt;
3835
3836 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003837 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003838 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003839 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003840}
3841
Chris Lattner065faeb2002-12-28 20:24:02 +00003842/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3843/// frame manager, otherwise do it the hard way.
3844///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003845void X86ISel::visitAllocaInst(AllocaInst &I) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003846 // If this is a fixed size alloca in the entry block for the function, we
3847 // statically stack allocate the space, so we don't need to do anything here.
3848 //
Chris Lattnercb2fd552004-05-13 07:40:27 +00003849 if (dyn_castFixedAlloca(&I)) return;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003850
Brian Gaekee48ec012002-12-13 06:46:31 +00003851 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00003852 const Type *Ty = I.getAllocatedType();
3853 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3854
Chris Lattner065faeb2002-12-28 20:24:02 +00003855 // Create a register to hold the temporary result of multiplying the type size
3856 // constant by the variable amount.
3857 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
3858 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00003859
3860 // TotalSizeReg = mul <numelements>, <TypeSize>
3861 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003862 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003863
3864 // AddedSize = add <TotalSizeReg>, 15
3865 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003866 BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003867
3868 // AlignedSize = and <AddedSize>, ~15
3869 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003870 BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003871
Brian Gaekee48ec012002-12-13 06:46:31 +00003872 // Subtract size from stack pointer, thereby allocating some space.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003873 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003874
Brian Gaekee48ec012002-12-13 06:46:31 +00003875 // Put a pointer to the space into the result register, by copying
3876 // the stack pointer.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003877 BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
Chris Lattner065faeb2002-12-28 20:24:02 +00003878
Misha Brukman48196b32003-05-03 02:18:17 +00003879 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00003880 // object.
3881 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00003882}
Chris Lattner3e130a22003-01-13 00:32:26 +00003883
3884/// visitMallocInst - Malloc instructions are code generated into direct calls
3885/// to the library malloc.
3886///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003887void X86ISel::visitMallocInst(MallocInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003888 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3889 unsigned Arg;
3890
3891 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3892 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3893 } else {
3894 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003895 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00003896 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003897 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00003898 }
3899
3900 std::vector<ValueRecord> Args;
3901 Args.push_back(ValueRecord(Arg, Type::UIntTy));
3902 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003903 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003904 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
3905}
3906
3907
3908/// visitFreeInst - Free instructions are code gen'd to call the free libc
3909/// function.
3910///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003911void X86ISel::visitFreeInst(FreeInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003912 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00003913 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00003914 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003915 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003916 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
3917}
3918
Chris Lattnerd281de22003-07-26 23:49:58 +00003919/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00003920/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00003921/// generated code sucks but the implementation is nice and simple.
3922///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00003923FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003924 return new X86ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00003925}