blob: d27041faa97f5c5c7ff5ed13bd9df60e52005864 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
3// This file defines a simple peephole instruction selector for the x86 platform
4//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000017#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000018#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000019#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000020#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000023#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000024#include "llvm/Target/MRegisterInfo.h"
25#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000026
Chris Lattner06925362002-11-17 21:56:38 +000027using namespace MOTy; // Get Use, Def, UseAndDef
28
Chris Lattner333b2fa2002-12-13 10:09:43 +000029
30/// BMI - A special BuildMI variant that takes an iterator to insert the
31/// instruction at as well as a basic block.
32inline static MachineInstrBuilder BMI(MachineBasicBlock *BB,
33 MachineBasicBlock::iterator &I,
34 MachineOpCode Opcode,
35 unsigned NumOperands,
36 unsigned DestReg) {
37 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
38 I = ++BB->insert(I, MI);
39 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
40}
41
42
Chris Lattner72614082002-10-25 22:55:53 +000043namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000044 struct ISel : public FunctionPass, InstVisitor<ISel> {
45 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000046 MachineFunction *F; // The function we are compiling into
47 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000048
49 unsigned CurReg;
50 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
51
Chris Lattner333b2fa2002-12-13 10:09:43 +000052 // MBBMap - Mapping between LLVM BB -> Machine BB
53 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
54
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000055 ISel(TargetMachine &tm)
56 : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
Chris Lattner72614082002-10-25 22:55:53 +000057
58 /// runOnFunction - Top level implementation of instruction selection for
59 /// the entire function.
60 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000061 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000062 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000063
64 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
65 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
66
67 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000068 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000069
70 // Select the PHI nodes
71 SelectPHINodes();
72
Chris Lattner72614082002-10-25 22:55:53 +000073 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000074 MBBMap.clear();
Chris Lattner94e8ee22002-11-21 17:26:58 +000075 CurReg = MRegisterInfo::FirstVirtualRegister;
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000076 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000077 return false; // We never modify the LLVM itself.
78 }
79
80 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000081 /// block. This simply creates a new MachineBasicBlock to emit code into
82 /// and adds it to the current MachineFunction. Subsequent visit* for
83 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000084 ///
85 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +000087 }
88
Chris Lattner333b2fa2002-12-13 10:09:43 +000089
90 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
91 /// because we have to generate our sources into the source basic blocks,
92 /// not the current one.
93 ///
94 void SelectPHINodes();
95
Chris Lattner72614082002-10-25 22:55:53 +000096 // Visitation methods for various instructions. These methods simply emit
97 // fixed X86 code for each instruction.
98 //
Brian Gaekefa8d5712002-11-22 11:07:01 +000099
100 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000101 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000102 void visitBranchInst(BranchInst &BI);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000103 void visitCallInst(CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000104
105 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000106 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000107 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
108 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Brian Gaeke20244b72002-12-12 15:33:40 +0000109 void doMultiply(unsigned destReg, const Type *resultType,
110 unsigned op0Reg, unsigned op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000111 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000112
Chris Lattnerf01729e2002-11-02 20:54:46 +0000113 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
114 void visitRem(BinaryOperator &B) { visitDivRem(B); }
115 void visitDivRem(BinaryOperator &B);
116
Chris Lattnere2954c82002-11-02 20:04:26 +0000117 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000118 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
119 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
120 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000121
122 // Binary comparison operators
Chris Lattner05093a52002-11-21 15:52:38 +0000123 void visitSetCCInst(SetCondInst &I, unsigned OpNum);
124 void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); }
125 void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); }
126 void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); }
127 void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); }
128 void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); }
129 void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); }
Chris Lattner6fc3c522002-11-17 21:11:55 +0000130
131 // Memory Instructions
132 void visitLoadInst(LoadInst &I);
133 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000134 void visitGetElementPtrInst(GetElementPtrInst &I);
135 void visitMallocInst(MallocInst &I);
Brian Gaekee48ec012002-12-13 06:46:31 +0000136 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000137 void visitAllocaInst(AllocaInst &I);
138
Chris Lattnere2954c82002-11-02 20:04:26 +0000139 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000140 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000141 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000142 void visitCastInst(CastInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000143
144 void visitInstruction(Instruction &I) {
145 std::cerr << "Cannot instruction select: " << I;
146 abort();
147 }
148
Brian Gaeke95780cc2002-12-13 07:56:18 +0000149 /// promote32 - Make a value 32-bits wide, and put it somewhere.
150 void promote32 (const unsigned targetReg, Value *v);
151
152 // emitGEPOperation - Common code shared between visitGetElementPtrInst and
Chris Lattnerc0812d82002-12-13 06:56:29 +0000153 // constant expression GEP support.
154 //
Chris Lattner333b2fa2002-12-13 10:09:43 +0000155 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
156 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000157 User::op_iterator IdxEnd, unsigned TargetReg);
158
Chris Lattnerc5291f52002-10-27 21:16:59 +0000159 /// copyConstantToRegister - Output the instructions required to put the
160 /// specified constant into the specified register.
161 ///
Chris Lattner333b2fa2002-12-13 10:09:43 +0000162 void copyConstantToRegister(Constant *C, unsigned Reg,
163 MachineBasicBlock *MBB,
164 MachineBasicBlock::iterator MBBI);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000165
Brian Gaeke20244b72002-12-12 15:33:40 +0000166 /// makeAnotherReg - This method returns the next register number
167 /// we haven't yet used.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000168 unsigned makeAnotherReg(const Type *Ty) {
169 // Add the mapping of regnumber => reg class to MachineFunction
170 F->addRegMap(CurReg, TM.getRegisterInfo()->getRegClassForType(Ty));
171 return CurReg++;
Brian Gaeke20244b72002-12-12 15:33:40 +0000172 }
173
Chris Lattner72614082002-10-25 22:55:53 +0000174 /// getReg - This method turns an LLVM value into a register number. This
175 /// is guaranteed to produce the same register number for a particular value
176 /// every time it is queried.
177 ///
178 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattner333b2fa2002-12-13 10:09:43 +0000179 unsigned getReg(Value *V, MachineBasicBlock *BB = 0) {
180 MachineBasicBlock::iterator IPt;
181 if (BB == 0) { // Should we just append to the end of the current bb?
182 BB = this->BB;
183 IPt = BB->end();
184 } else { // Otherwise, insert before the branch or ret instr...
185 IPt = BB->end()-1;
186 }
187
Chris Lattner72614082002-10-25 22:55:53 +0000188 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000189 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000190 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000191 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000192 }
Chris Lattner72614082002-10-25 22:55:53 +0000193
Chris Lattner6f8fd252002-10-27 21:23:43 +0000194 // If this operand is a constant, emit the code to copy the constant into
195 // the register here...
196 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000197 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000198 copyConstantToRegister(C, Reg, BB, IPt);
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000199 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
200 // Move the address of the global into the register
Chris Lattner333b2fa2002-12-13 10:09:43 +0000201 BMI(BB, IPt, X86::MOVir32, 1, Reg).addReg(GV);
Chris Lattnerd6c4cfa2002-12-04 17:15:34 +0000202 } else if (Argument *A = dyn_cast<Argument>(V)) {
Brian Gaeke95780cc2002-12-13 07:56:18 +0000203 // Find the position of the argument in the argument list.
204 const Function *f = F->getFunction ();
Brian Gaekeed6902c2002-12-13 09:28:50 +0000205 // The function's arguments look like this:
206 // [EBP] -- copy of old EBP
207 // [EBP + 4] -- return address
208 // [EBP + 8] -- first argument (leftmost lexically)
209 // So we want to start with counter = 2.
Chris Lattner333b2fa2002-12-13 10:09:43 +0000210 int counter = 2, argPos = -1;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000211 for (Function::const_aiterator ai = f->abegin (), ae = f->aend ();
212 ai != ae; ++ai) {
Brian Gaeke95780cc2002-12-13 07:56:18 +0000213 if (&(*ai) == A) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000214 argPos = counter;
Brian Gaekeed6902c2002-12-13 09:28:50 +0000215 break; // Only need to find it once. ;-)
Brian Gaeke95780cc2002-12-13 07:56:18 +0000216 }
Brian Gaekeed6902c2002-12-13 09:28:50 +0000217 ++counter;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000218 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000219 assert (argPos != -1
Brian Gaeke95780cc2002-12-13 07:56:18 +0000220 && "Argument not found in current function's argument list");
Chris Lattner333b2fa2002-12-13 10:09:43 +0000221 // Load it out of the stack frame at EBP + 4*argPos.
222 addRegOffset(BMI(BB, IPt, X86::MOVmr32, 4, Reg), X86::EBP, 4*argPos);
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000223 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000224
Chris Lattner72614082002-10-25 22:55:53 +0000225 return Reg;
226 }
Chris Lattner72614082002-10-25 22:55:53 +0000227 };
228}
229
Chris Lattner43189d12002-11-17 20:07:45 +0000230/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
231/// Representation.
232///
233enum TypeClass {
234 cByte, cShort, cInt, cLong, cFloat, cDouble
235};
236
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000237/// getClass - Turn a primitive type into a "class" number which is based on the
238/// size of the type, and whether or not it is floating point.
239///
Chris Lattner43189d12002-11-17 20:07:45 +0000240static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000241 switch (Ty->getPrimitiveID()) {
242 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000243 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000244 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000245 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000246 case Type::IntTyID:
247 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000248 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000249
250 case Type::LongTyID:
Chris Lattnerc0812d82002-12-13 06:56:29 +0000251 case Type::ULongTyID: //return cLong; // Longs are class #3
252 return cInt; // FIXME: LONGS ARE TREATED AS INTS!
253
Chris Lattner43189d12002-11-17 20:07:45 +0000254 case Type::FloatTyID: return cFloat; // Float is class #4
255 case Type::DoubleTyID: return cDouble; // Doubles are class #5
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000256 default:
257 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000258 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000259 }
260}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000261
Chris Lattner06925362002-11-17 21:56:38 +0000262
Chris Lattnerc5291f52002-10-27 21:16:59 +0000263/// copyConstantToRegister - Output the instructions required to put the
264/// specified constant into the specified register.
265///
Chris Lattner333b2fa2002-12-13 10:09:43 +0000266void ISel::copyConstantToRegister(Constant *C, unsigned R,
267 MachineBasicBlock *BB,
268 MachineBasicBlock::iterator IP) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000269 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
270 if (CE->getOpcode() == Instruction::GetElementPtr) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000271 emitGEPOperation(BB, IP, CE->getOperand(0),
272 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000273 return;
274 }
275
Brian Gaeke20244b72002-12-12 15:33:40 +0000276 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerc0812d82002-12-13 06:56:29 +0000277 assert (0 && "Constant expressions not yet handled!\n");
Brian Gaeke20244b72002-12-12 15:33:40 +0000278 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000279
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000280 if (C->getType()->isIntegral()) {
281 unsigned Class = getClass(C->getType());
282 assert(Class != 3 && "Type not handled yet!");
283
284 static const unsigned IntegralOpcodeTab[] = {
285 X86::MOVir8, X86::MOVir16, X86::MOVir32
286 };
287
288 if (C->getType()->isSigned()) {
289 ConstantSInt *CSI = cast<ConstantSInt>(C);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000290 BMI(BB, IP, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000291 } else {
292 ConstantUInt *CUI = cast<ConstantUInt>(C);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000293 BMI(BB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000294 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000295 } else if (isa <ConstantPointerNull> (C)) {
296 // Copy zero (null pointer) to the register.
Chris Lattner333b2fa2002-12-13 10:09:43 +0000297 BMI(BB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000298 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
299 unsigned SrcReg = getReg(CPR->getValue());
Chris Lattner333b2fa2002-12-13 10:09:43 +0000300 BMI(BB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000301 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000302 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000303 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000304 }
305}
306
Chris Lattner333b2fa2002-12-13 10:09:43 +0000307/// SelectPHINodes - Insert machine code to generate phis. This is tricky
308/// because we have to generate our sources into the source basic blocks, not
309/// the current one.
310///
311void ISel::SelectPHINodes() {
312 const Function &LF = *F->getFunction(); // The LLVM function...
313 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
314 const BasicBlock *BB = I;
315 MachineBasicBlock *MBB = MBBMap[I];
316
317 // Loop over all of the PHI nodes in the LLVM basic block...
318 unsigned NumPHIs = 0;
319 for (BasicBlock::const_iterator I = BB->begin();
320 PHINode *PN = (PHINode*)dyn_cast<PHINode>(&*I); ++I) {
321 // Create a new machine instr PHI node, and insert it.
322 MachineInstr *MI = BuildMI(X86::PHI, PN->getNumOperands(), getReg(*PN));
323 MBB->insert(MBB->begin()+NumPHIs++, MI); // Insert it at the top of the BB
324
325 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
326 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
327
328 // Get the incoming value into a virtual register. If it is not already
329 // available in a virtual register, insert the computation code into
330 // PredMBB
331 MI->addRegOperand(getReg(PN->getIncomingValue(i), PredMBB));
332
333 // FIXME: Pass in the MachineBasicBlocks instead of the basic blocks...
334 MI->addPCDispOperand(PN->getIncomingBlock(i)); // PredMBB
335 }
336 }
337 }
338}
339
340
Chris Lattner06925362002-11-17 21:56:38 +0000341
Brian Gaeke1749d632002-11-07 17:59:21 +0000342/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
343/// register, then move it to wherever the result should be.
344/// We handle FP setcc instructions by pushing them, doing a
345/// compare-and-pop-twice, and then copying the concodes to the main
346/// processor's concodes (I didn't make this up, it's in the Intel manual)
347///
Chris Lattner05093a52002-11-21 15:52:38 +0000348void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000349 // The arguments are already supposed to be of the same type.
Chris Lattner05093a52002-11-21 15:52:38 +0000350 const Type *CompTy = I.getOperand(0)->getType();
351 unsigned reg1 = getReg(I.getOperand(0));
352 unsigned reg2 = getReg(I.getOperand(1));
353
354 unsigned Class = getClass(CompTy);
355 switch (Class) {
356 // Emit: cmp <var1>, <var2> (do the comparison). We can
357 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
358 // 32-bit.
359 case cByte:
360 BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2);
361 break;
362 case cShort:
363 BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2);
364 break;
365 case cInt:
366 BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2);
367 break;
368
369 // Push the variables on the stack with fldl opcodes.
370 // FIXME: assuming var1, var2 are in memory, if not, spill to
371 // stack first
372 case cFloat: // Floats
Brian Gaeke20244b72002-12-12 15:33:40 +0000373 BuildMI (BB, X86::FLDr32, 1).addReg (reg1);
374 BuildMI (BB, X86::FLDr32, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000375 break;
376 case cDouble: // Doubles
Brian Gaeke20244b72002-12-12 15:33:40 +0000377 BuildMI (BB, X86::FLDr64, 1).addReg (reg1);
378 BuildMI (BB, X86::FLDr64, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000379 break;
380 case cLong:
381 default:
382 visitInstruction(I);
383 }
384
385 if (CompTy->isFloatingPoint()) {
386 // (Non-trapping) compare and pop twice.
387 BuildMI (BB, X86::FUCOMPP, 0);
388 // Move fp status word (concodes) to ax.
389 BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
390 // Load real concodes from ax.
391 BuildMI (BB, X86::SAHF, 1).addReg(X86::AH);
392 }
393
Brian Gaeke1749d632002-11-07 17:59:21 +0000394 // Emit setOp instruction (extract concode; clobbers ax),
395 // using the following mapping:
396 // LLVM -> X86 signed X86 unsigned
397 // ----- ----- -----
398 // seteq -> sete sete
399 // setne -> setne setne
400 // setlt -> setl setb
401 // setgt -> setg seta
402 // setle -> setle setbe
403 // setge -> setge setae
Chris Lattner05093a52002-11-21 15:52:38 +0000404
405 static const unsigned OpcodeTab[2][6] = {
Chris Lattner4b4e9dd2002-11-21 16:19:42 +0000406 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr},
407 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr},
Chris Lattner05093a52002-11-21 15:52:38 +0000408 };
409
410 BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, X86::AL);
411
Brian Gaeke1749d632002-11-07 17:59:21 +0000412 // Put it in the result using a move.
Chris Lattner05093a52002-11-21 15:52:38 +0000413 BuildMI (BB, X86::MOVrr8, 1, getReg(I)).addReg(X86::AL);
Brian Gaeke1749d632002-11-07 17:59:21 +0000414}
Chris Lattner51b49a92002-11-02 19:45:49 +0000415
Brian Gaekec2505982002-11-30 11:57:28 +0000416/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
417/// operand, in the specified target register.
418void
Chris Lattnerc0812d82002-12-13 06:56:29 +0000419ISel::promote32 (unsigned targetReg, Value *v)
Brian Gaekec2505982002-11-30 11:57:28 +0000420{
421 unsigned vReg = getReg (v);
422 unsigned Class = getClass (v->getType ());
423 bool isUnsigned = v->getType ()->isUnsigned ();
424 assert (((Class == cByte) || (Class == cShort) || (Class == cInt))
425 && "Unpromotable operand class in promote32");
426 switch (Class)
427 {
428 case cByte:
429 // Extend value into target register (8->32)
430 if (isUnsigned)
431 BuildMI (BB, X86::MOVZXr32r8, 1, targetReg).addReg (vReg);
432 else
433 BuildMI (BB, X86::MOVSXr32r8, 1, targetReg).addReg (vReg);
434 break;
435 case cShort:
436 // Extend value into target register (16->32)
437 if (isUnsigned)
438 BuildMI (BB, X86::MOVZXr32r16, 1, targetReg).addReg (vReg);
439 else
440 BuildMI (BB, X86::MOVSXr32r16, 1, targetReg).addReg (vReg);
441 break;
442 case cInt:
443 // Move value into target register (32->32)
444 BuildMI (BB, X86::MOVrr32, 1, targetReg).addReg (vReg);
445 break;
446 }
447}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000448
Chris Lattner72614082002-10-25 22:55:53 +0000449/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
450/// we have the following possibilities:
451///
452/// ret void: No return value, simply emit a 'ret' instruction
453/// ret sbyte, ubyte : Extend value into EAX and return
454/// ret short, ushort: Extend value into EAX and return
455/// ret int, uint : Move value into EAX and return
456/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000457/// ret long, ulong : Move value into EAX/EDX and return
458/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000459///
Brian Gaekec2505982002-11-30 11:57:28 +0000460void
461ISel::visitReturnInst (ReturnInst &I)
462{
463 if (I.getNumOperands () == 0)
464 {
465 // Emit a 'ret' instruction
466 BuildMI (BB, X86::RET, 0);
467 return;
468 }
469 Value *rv = I.getOperand (0);
470 unsigned Class = getClass (rv->getType ());
471 switch (Class)
472 {
473 // integral return values: extend or move into EAX and return.
474 case cByte:
475 case cShort:
476 case cInt:
477 promote32 (X86::EAX, rv);
478 break;
479 // ret float/double: top of FP stack
480 // FLD <val>
481 case cFloat: // Floats
Brian Gaeke20244b72002-12-12 15:33:40 +0000482 BuildMI (BB, X86::FLDr32, 1).addReg (getReg (rv));
Brian Gaekec2505982002-11-30 11:57:28 +0000483 break;
484 case cDouble: // Doubles
Brian Gaeke20244b72002-12-12 15:33:40 +0000485 BuildMI (BB, X86::FLDr64, 1).addReg (getReg (rv));
Brian Gaekec2505982002-11-30 11:57:28 +0000486 break;
487 case cLong:
488 // ret long: use EAX(least significant 32 bits)/EDX (most
489 // significant 32)...uh, I think so Brain, but how do i call
490 // up the two parts of the value from inside this mouse
491 // cage? *zort*
492 default:
493 visitInstruction (I);
494 }
Chris Lattner43189d12002-11-17 20:07:45 +0000495 // Emit a 'ret' instruction
Brian Gaekec2505982002-11-30 11:57:28 +0000496 BuildMI (BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000497}
498
Chris Lattner51b49a92002-11-02 19:45:49 +0000499/// visitBranchInst - Handle conditional and unconditional branches here. Note
500/// that since code layout is frozen at this point, that if we are trying to
501/// jump to a block that is the immediate successor of the current block, we can
502/// just make a fall-through. (but we don't currently).
503///
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000504void
505ISel::visitBranchInst (BranchInst & BI)
506{
507 if (BI.isConditional ())
508 {
509 BasicBlock *ifTrue = BI.getSuccessor (0);
510 BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious
Chris Lattner2df035b2002-11-02 19:27:56 +0000511
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000512 // simplest thing I can think of: compare condition with zero,
513 // followed by jump-if-equal to ifFalse, and jump-if-nonequal to
514 // ifTrue
515 unsigned int condReg = getReg (BI.getCondition ());
Chris Lattner97ad9e12002-11-21 01:59:50 +0000516 BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0);
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000517 BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0));
518 BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1));
519 }
520 else // unconditional branch
521 {
522 BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0));
523 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000524}
525
Brian Gaeke18a20212002-11-29 12:01:58 +0000526/// visitCallInst - Push args on stack and do a procedure call instruction.
527void
528ISel::visitCallInst (CallInst & CI)
529{
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000530 // keep a counter of how many bytes we pushed on the stack
531 unsigned bytesPushed = 0;
532
Brian Gaeke18a20212002-11-29 12:01:58 +0000533 // Push the arguments on the stack in reverse order, as specified by
534 // the ABI.
Chris Lattnerd852c152002-12-03 20:30:12 +0000535 for (unsigned i = CI.getNumOperands()-1; i >= 1; --i)
Brian Gaeke18a20212002-11-29 12:01:58 +0000536 {
537 Value *v = CI.getOperand (i);
Brian Gaeke18a20212002-11-29 12:01:58 +0000538 switch (getClass (v->getType ()))
539 {
Brian Gaekec2505982002-11-30 11:57:28 +0000540 case cByte:
541 case cShort:
Brian Gaekebb25f2f2002-12-03 00:51:09 +0000542 // Promote V to 32 bits wide, and move the result into EAX,
543 // then push EAX.
Brian Gaekec2505982002-11-30 11:57:28 +0000544 promote32 (X86::EAX, v);
545 BuildMI (BB, X86::PUSHr32, 1).addReg (X86::EAX);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000546 bytesPushed += 4;
Brian Gaekec2505982002-11-30 11:57:28 +0000547 break;
Brian Gaeke18a20212002-11-29 12:01:58 +0000548 case cInt:
Chris Lattner33ced562002-12-04 06:56:56 +0000549 case cFloat: {
550 unsigned Reg = getReg(v);
551 BuildMI (BB, X86::PUSHr32, 1).addReg(Reg);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000552 bytesPushed += 4;
Brian Gaeke18a20212002-11-29 12:01:58 +0000553 break;
Chris Lattner33ced562002-12-04 06:56:56 +0000554 }
Brian Gaeke18a20212002-11-29 12:01:58 +0000555 default:
Brian Gaekebb25f2f2002-12-03 00:51:09 +0000556 // FIXME: long/ulong/double args not handled.
Brian Gaeke18a20212002-11-29 12:01:58 +0000557 visitInstruction (CI);
558 break;
559 }
560 }
561 // Emit a CALL instruction with PC-relative displacement.
562 BuildMI (BB, X86::CALLpcrel32, 1).addPCDisp (CI.getCalledValue ());
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000563
564 // Adjust the stack by `bytesPushed' amount if non-zero
565 if (bytesPushed > 0)
566 BuildMI (BB, X86::ADDri32, 2).addReg(X86::ESP).addZImm(bytesPushed);
Chris Lattnera3243642002-12-04 23:45:28 +0000567
568 // If there is a return value, scavenge the result from the location the call
569 // leaves it in...
570 //
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000571 if (CI.getType() != Type::VoidTy) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000572 unsigned resultTypeClass = getClass (CI.getType ());
573 switch (resultTypeClass) {
574 case cByte:
575 case cShort:
576 case cInt: {
577 // Integral results are in %eax, or the appropriate portion
578 // thereof.
579 static const unsigned regRegMove[] = {
580 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
581 };
582 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
583 BuildMI (BB, regRegMove[resultTypeClass], 1,
584 getReg (CI)).addReg (AReg[resultTypeClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000585 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000586 }
587 case cFloat:
588 // Floating-point return values live in %st(0) (i.e., the top of
589 // the FP stack.) The general way to approach this is to do a
590 // FSTP to save the top of the FP stack on the real stack, then
591 // do a MOV to load the top of the real stack into the target
592 // register.
593 visitInstruction (CI); // FIXME: add the right args for the calls below
594 // BuildMI (BB, X86::FSTPm32, 0);
595 // BuildMI (BB, X86::MOVmr32, 0);
596 break;
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000597 default:
598 std::cerr << "Cannot get return value for call of type '"
599 << *CI.getType() << "'\n";
600 visitInstruction(CI);
601 }
Chris Lattnera3243642002-12-04 23:45:28 +0000602 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000603}
Chris Lattner2df035b2002-11-02 19:27:56 +0000604
Chris Lattner68aad932002-11-02 20:13:22 +0000605/// visitSimpleBinary - Implement simple binary operators for integral types...
606/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
607/// 4 for Xor.
608///
609void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
610 if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
Chris Lattnere2954c82002-11-02 20:04:26 +0000611 visitInstruction(B);
612
613 unsigned Class = getClass(B.getType());
614 if (Class > 2) // FIXME: Handle longs
615 visitInstruction(B);
616
617 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000618 // Arithmetic operators
619 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
620 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
621
622 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000623 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
624 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
625 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
626 };
627
628 unsigned Opcode = OpcodeTab[OperatorClass][Class];
629 unsigned Op0r = getReg(B.getOperand(0));
630 unsigned Op1r = getReg(B.getOperand(1));
631 BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
632}
633
Brian Gaeke20244b72002-12-12 15:33:40 +0000634/// doMultiply - Emit appropriate instructions to multiply together
635/// the registers op0Reg and op1Reg, and put the result in destReg.
636/// The type of the result should be given as resultType.
637void
638ISel::doMultiply(unsigned destReg, const Type *resultType,
639 unsigned op0Reg, unsigned op1Reg)
640{
641 unsigned Class = getClass (resultType);
642
643 // FIXME:
644 assert (Class <= 2 && "Someday, we will learn how to multiply"
645 "longs and floating-point numbers. This is not that day.");
646
647 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
648 static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
649 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
650 unsigned Reg = Regs[Class];
651
652 // Emit a MOV to put the first operand into the appropriately-sized
653 // subreg of EAX.
654 BuildMI (BB, MovOpcode[Class], 1, Reg).addReg (op0Reg);
655
656 // Emit the appropriate multiply instruction.
657 BuildMI (BB, MulOpcode[Class], 1).addReg (op1Reg);
658
659 // Emit another MOV to put the result into the destination register.
660 BuildMI (BB, MovOpcode[Class], 1, destReg).addReg (Reg);
661}
662
Chris Lattnerca9671d2002-11-02 20:28:58 +0000663/// visitMul - Multiplies are not simple binary operators because they must deal
664/// with the EAX register explicitly.
665///
666void ISel::visitMul(BinaryOperator &I) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000667 doMultiply (getReg (I), I.getType (),
668 getReg (I.getOperand (0)), getReg (I.getOperand (1)));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000669}
Chris Lattnerca9671d2002-11-02 20:28:58 +0000670
Chris Lattner06925362002-11-17 21:56:38 +0000671
Chris Lattnerf01729e2002-11-02 20:54:46 +0000672/// visitDivRem - Handle division and remainder instructions... these
673/// instruction both require the same instructions to be generated, they just
674/// select the result from a different register. Note that both of these
675/// instructions work differently for signed and unsigned operands.
676///
677void ISel::visitDivRem(BinaryOperator &I) {
678 unsigned Class = getClass(I.getType());
679 if (Class > 2) // FIXME: Handle longs
680 visitInstruction(I);
681
682 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
683 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +0000684 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +0000685 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
686 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
687
688 static const unsigned DivOpcode[][4] = {
689 { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
690 { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
691 };
692
693 bool isSigned = I.getType()->isSigned();
694 unsigned Reg = Regs[Class];
695 unsigned ExtReg = ExtRegs[Class];
Chris Lattner6fc3c522002-11-17 21:11:55 +0000696 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000697 unsigned Op1Reg = getReg(I.getOperand(1));
698
699 // Put the first operand into one of the A registers...
700 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
701
702 if (isSigned) {
703 // Emit a sign extension instruction...
Chris Lattnera4978cc2002-12-01 23:24:58 +0000704 BuildMI(BB, ExtOpcode[Class], 0);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000705 } else {
706 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
707 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
708 }
709
Chris Lattner06925362002-11-17 21:56:38 +0000710 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +0000711 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +0000712
Chris Lattnerf01729e2002-11-02 20:54:46 +0000713 // Figure out which register we want to pick the result out of...
714 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
715
Chris Lattnerf01729e2002-11-02 20:54:46 +0000716 // Put the result into the destination register...
717 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000718}
Chris Lattnere2954c82002-11-02 20:04:26 +0000719
Chris Lattner06925362002-11-17 21:56:38 +0000720
Brian Gaekea1719c92002-10-31 23:03:59 +0000721/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
722/// for constant immediate shift values, and for constant immediate
723/// shift values equal to 1. Even the general case is sort of special,
724/// because the shift amount has to be in CL, not just any old register.
725///
Chris Lattnerf01729e2002-11-02 20:54:46 +0000726void ISel::visitShiftInst (ShiftInst &I) {
727 unsigned Op0r = getReg (I.getOperand(0));
728 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000729 bool isLeftShift = I.getOpcode() == Instruction::Shl;
730 bool isOperandSigned = I.getType()->isUnsigned();
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000731 unsigned OperandClass = getClass(I.getType());
732
733 if (OperandClass > 2)
734 visitInstruction(I); // Can't handle longs yet!
Chris Lattner796df732002-11-02 00:44:25 +0000735
Brian Gaekea1719c92002-10-31 23:03:59 +0000736 if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
737 {
Chris Lattner796df732002-11-02 00:44:25 +0000738 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
739 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
740 unsigned char shAmt = CUI->getValue();
741
Chris Lattnere9913f22002-11-02 01:41:55 +0000742 static const unsigned ConstantOperand[][4] = {
743 { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
744 { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
745 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
746 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000747 };
748
Chris Lattnere9913f22002-11-02 01:41:55 +0000749 const unsigned *OpTab = // Figure out the operand table to use
750 ConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000751
Brian Gaekea1719c92002-10-31 23:03:59 +0000752 // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000753 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
Brian Gaekea1719c92002-10-31 23:03:59 +0000754 }
755 else
756 {
757 // The shift amount is non-constant.
758 //
759 // In fact, you can only shift with a variable shift amount if
760 // that amount is already in the CL register, so we have to put it
761 // there first.
762 //
Chris Lattnere9913f22002-11-02 01:41:55 +0000763
Brian Gaekea1719c92002-10-31 23:03:59 +0000764 // Emit: move cl, shiftAmount (put the shift amount in CL.)
Chris Lattnerca9671d2002-11-02 20:28:58 +0000765 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000766
767 // This is a shift right (SHR).
Chris Lattnere9913f22002-11-02 01:41:55 +0000768 static const unsigned NonConstantOperand[][4] = {
769 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
770 { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
771 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
772 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000773 };
774
Chris Lattnere9913f22002-11-02 01:41:55 +0000775 const unsigned *OpTab = // Figure out the operand table to use
776 NonConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000777
Chris Lattner3a9a6932002-11-21 22:49:20 +0000778 BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r);
Brian Gaekea1719c92002-10-31 23:03:59 +0000779 }
780}
781
Chris Lattner06925362002-11-17 21:56:38 +0000782
Chris Lattner6fc3c522002-11-17 21:11:55 +0000783/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
784/// instruction.
785///
786void ISel::visitLoadInst(LoadInst &I) {
787 unsigned Class = getClass(I.getType());
788 if (Class > 2) // FIXME: Handle longs and others...
789 visitInstruction(I);
790
791 static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
792
793 unsigned AddressReg = getReg(I.getOperand(0));
794 addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg);
795}
796
Chris Lattner06925362002-11-17 21:56:38 +0000797
Chris Lattner6fc3c522002-11-17 21:11:55 +0000798/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
799/// instruction.
800///
801void ISel::visitStoreInst(StoreInst &I) {
802 unsigned Class = getClass(I.getOperand(0)->getType());
803 if (Class > 2) // FIXME: Handle longs and others...
804 visitInstruction(I);
805
806 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
807
808 unsigned ValReg = getReg(I.getOperand(0));
809 unsigned AddressReg = getReg(I.getOperand(1));
810 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
811}
812
813
Brian Gaekec11232a2002-11-26 10:43:30 +0000814/// visitCastInst - Here we have various kinds of copying with or without
815/// sign extension going on.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000816void
817ISel::visitCastInst (CastInst &CI)
818{
Chris Lattnerf18a36e2002-12-03 18:15:59 +0000819 const Type *targetType = CI.getType ();
Brian Gaeke07f02612002-12-03 07:36:03 +0000820 Value *operand = CI.getOperand (0);
821 unsigned int operandReg = getReg (operand);
Chris Lattnerf18a36e2002-12-03 18:15:59 +0000822 const Type *sourceType = operand->getType ();
Brian Gaeke07f02612002-12-03 07:36:03 +0000823 unsigned int destReg = getReg (CI);
Brian Gaeked474e9c2002-12-06 10:49:33 +0000824 //
825 // Currently we handle:
826 //
827 // 1) cast * to bool
828 //
829 // 2) cast {sbyte, ubyte} to {sbyte, ubyte}
830 // cast {short, ushort} to {ushort, short}
831 // cast {int, uint, ptr} to {int, uint, ptr}
832 //
833 // 3) cast {sbyte, ubyte} to {ushort, short}
834 // cast {sbyte, ubyte} to {int, uint, ptr}
835 // cast {short, ushort} to {int, uint, ptr}
836 //
837 // 4) cast {int, uint, ptr} to {short, ushort}
838 // cast {int, uint, ptr} to {sbyte, ubyte}
839 // cast {short, ushort} to {sbyte, ubyte}
840 //
841 // 1) Implement casts to bool by using compare on the operand followed
842 // by set if not zero on the result.
843 if (targetType == Type::BoolTy)
844 {
845 BuildMI (BB, X86::CMPri8, 2).addReg (operandReg).addZImm (0);
846 BuildMI (BB, X86::SETNEr, 1, destReg);
847 return;
848 }
849 // 2) Implement casts between values of the same type class (as determined
850 // by getClass) by using a register-to-register move.
851 unsigned int srcClass = getClass (sourceType);
852 unsigned int targClass = getClass (targetType);
853 static const unsigned regRegMove[] = {
854 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
855 };
856 if ((srcClass < 3) && (targClass < 3) && (srcClass == targClass))
857 {
858 BuildMI (BB, regRegMove[srcClass], 1, destReg).addReg (operandReg);
859 return;
860 }
861 // 3) Handle cast of SMALLER int to LARGER int using a move with sign
862 // extension or zero extension, depending on whether the source type
863 // was signed.
864 if ((srcClass < 3) && (targClass < 3) && (srcClass < targClass))
865 {
866 static const unsigned ops[] = {
867 X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16,
868 X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16
869 };
870 unsigned srcSigned = sourceType->isSigned ();
871 BuildMI (BB, ops[3 * srcSigned + srcClass + targClass - 1], 1,
872 destReg).addReg (operandReg);
873 return;
874 }
875 // 4) Handle cast of LARGER int to SMALLER int using a move to EAX
876 // followed by a move out of AX or AL.
877 if ((srcClass < 3) && (targClass < 3) && (srcClass > targClass))
878 {
879 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
880 BuildMI (BB, regRegMove[srcClass], 1,
881 AReg[srcClass]).addReg (operandReg);
882 BuildMI (BB, regRegMove[targClass], 1, destReg).addReg (AReg[srcClass]);
883 return;
884 }
885 // Anything we haven't handled already, we can't (yet) handle at all.
Brian Gaeke20244b72002-12-12 15:33:40 +0000886 //
887 // FP to integral casts can be handled with FISTP to store onto the
888 // stack while converting to integer, followed by a MOV to load from
889 // the stack into the result register. Integral to FP casts can be
890 // handled with MOV to store onto the stack, followed by a FILD to
891 // load from the stack while converting to FP. For the moment, I
892 // can't quite get straight in my head how to borrow myself some
893 // stack space and write on it. Otherwise, this would be trivial.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000894 visitInstruction (CI);
895}
Brian Gaekea1719c92002-10-31 23:03:59 +0000896
Brian Gaeke20244b72002-12-12 15:33:40 +0000897/// visitGetElementPtrInst - I don't know, most programs don't have
898/// getelementptr instructions, right? That means we can put off
899/// implementing this, right? Right. This method emits machine
900/// instructions to perform type-safe pointer arithmetic. I am
901/// guessing this could be cleaned up somewhat to use fewer temporary
902/// registers.
903void
904ISel::visitGetElementPtrInst (GetElementPtrInst &I)
905{
Chris Lattner333b2fa2002-12-13 10:09:43 +0000906 emitGEPOperation(BB, BB->end(), I.getOperand(0),
907 I.op_begin()+1, I.op_end(), getReg(I));
Chris Lattnerc0812d82002-12-13 06:56:29 +0000908}
909
Chris Lattner333b2fa2002-12-13 10:09:43 +0000910void ISel::emitGEPOperation(MachineBasicBlock *BB,
911 MachineBasicBlock::iterator IP,
912 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000913 User::op_iterator IdxEnd, unsigned TargetReg) {
914 const TargetData &TD = TM.getTargetData();
915 const Type *Ty = Src->getType();
916 unsigned basePtrReg = getReg(Src);
917
Brian Gaeke20244b72002-12-12 15:33:40 +0000918 // GEPs have zero or more indices; we must perform a struct access
919 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000920 for (GetElementPtrInst::op_iterator oi = IdxBegin,
921 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000922 Value *idx = *oi;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000923 unsigned nextBasePtrReg = makeAnotherReg(Type::UIntTy);
Brian Gaeke20244b72002-12-12 15:33:40 +0000924 if (const StructType *StTy = dyn_cast <StructType> (Ty)) {
925 // It's a struct access. idx is the index into the structure,
926 // which names the field. This index must have ubyte type.
927 const ConstantUInt *CUI = cast <ConstantUInt> (idx);
928 assert (CUI->getType () == Type::UByteTy
929 && "Funny-looking structure index in GEP");
930 // Use the TargetData structure to pick out what the layout of
931 // the structure is in memory. Since the structure index must
932 // be constant, we can get its value and use it to find the
933 // right byte offset from the StructLayout class's list of
934 // structure member offsets.
935 unsigned idxValue = CUI->getValue ();
936 unsigned memberOffset =
937 TD.getStructLayout (StTy)->MemberOffsets[idxValue];
938 // Emit an ADD to add memberOffset to the basePtr.
939 BuildMI (BB, X86::ADDri32, 2,
940 nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset);
941 // The next type is the member of the structure selected by the
942 // index.
943 Ty = StTy->getElementTypes ()[idxValue];
944 } else if (const SequentialType *SqTy = cast <SequentialType> (Ty)) {
945 // It's an array or pointer access: [ArraySize x ElementType].
Brian Gaeke20244b72002-12-12 15:33:40 +0000946 const Type *typeOfSequentialTypeIndex = SqTy->getIndexType ();
947 // idx is the index into the array. Unlike with structure
948 // indices, we may not know its actual value at code-generation
949 // time.
950 assert (idx->getType () == typeOfSequentialTypeIndex
951 && "Funny-looking array index in GEP");
952 // We want to add basePtrReg to (idxReg * sizeof
953 // ElementType). First, we must find the size of the pointed-to
954 // type. (Not coincidentally, the next type is the type of the
955 // elements in the array.)
956 Ty = SqTy->getElementType ();
957 unsigned elementSize = TD.getTypeSize (Ty);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000958 unsigned elementSizeReg = makeAnotherReg(Type::UIntTy);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000959 copyConstantToRegister(ConstantInt::get(typeOfSequentialTypeIndex,
960 elementSize), elementSizeReg,
961 BB, BB->end());
962
Brian Gaeke20244b72002-12-12 15:33:40 +0000963 unsigned idxReg = getReg (idx);
964 // Emit a MUL to multiply the register holding the index by
965 // elementSize, putting the result in memberOffsetReg.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000966 unsigned memberOffsetReg = makeAnotherReg(Type::UIntTy);
Brian Gaeke20244b72002-12-12 15:33:40 +0000967 doMultiply (memberOffsetReg, typeOfSequentialTypeIndex,
968 elementSizeReg, idxReg);
969 // Emit an ADD to add memberOffsetReg to the basePtr.
970 BuildMI (BB, X86::ADDrr32, 2,
971 nextBasePtrReg).addReg (basePtrReg).addReg (memberOffsetReg);
972 }
973 // Now that we are here, further indices refer to subtypes of this
974 // one, so we don't need to worry about basePtrReg itself, anymore.
975 basePtrReg = nextBasePtrReg;
976 }
977 // After we have processed all the indices, the result is left in
978 // basePtrReg. Move it to the register where we were expected to
979 // put the answer. A 32-bit move should do it, because we are in
980 // ILP32 land.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000981 BuildMI (BB, X86::MOVrr32, 1, TargetReg).addReg (basePtrReg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000982}
983
984
985/// visitMallocInst - I know that personally, whenever I want to remember
986/// something, I have to clear off some space in my brain.
987void
988ISel::visitMallocInst (MallocInst &I)
989{
Brian Gaekee48ec012002-12-13 06:46:31 +0000990 // We assume that by this point, malloc instructions have been
991 // lowered to calls, and dlsym will magically find malloc for us.
992 // So we do not want to see malloc instructions here.
993 visitInstruction (I);
994}
995
996
997/// visitFreeInst - same story as MallocInst
998void
999ISel::visitFreeInst (FreeInst &I)
1000{
1001 // We assume that by this point, free instructions have been
1002 // lowered to calls, and dlsym will magically find free for us.
1003 // So we do not want to see free instructions here.
Brian Gaeke20244b72002-12-12 15:33:40 +00001004 visitInstruction (I);
1005}
1006
1007
1008/// visitAllocaInst - I want some stack space. Come on, man, I said I
1009/// want some freakin' stack space.
1010void
1011ISel::visitAllocaInst (AllocaInst &I)
1012{
Brian Gaekee48ec012002-12-13 06:46:31 +00001013 // Find the data size of the alloca inst's getAllocatedType.
1014 const Type *allocatedType = I.getAllocatedType ();
1015 const TargetData &TD = TM.DataLayout;
1016 unsigned allocatedTypeSize = TD.getTypeSize (allocatedType);
1017 // Keep stack 32-bit aligned.
1018 unsigned int allocatedTypeWords = allocatedTypeSize / 4;
1019 if (allocatedTypeSize % 4 != 0) { allocatedTypeWords++; }
1020 // Subtract size from stack pointer, thereby allocating some space.
1021 BuildMI (BB, X86::SUBri32, 1, X86::ESP).addZImm (allocatedTypeWords * 4);
1022 // Put a pointer to the space into the result register, by copying
1023 // the stack pointer.
1024 BuildMI (BB, X86::MOVrr32, 1, getReg (I)).addReg (X86::ESP);
Brian Gaeke20244b72002-12-12 15:33:40 +00001025}
1026
1027
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001028/// createSimpleX86InstructionSelector - This pass converts an LLVM function
1029/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00001030/// generated code sucks but the implementation is nice and simple.
1031///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001032Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
1033 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00001034}