blob: 161c6be0f9e3cd5d63bf32f3969a579caa2a5e3b [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000021#include "llvm/Pass.h"
22#include "llvm/PassManager.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Analysis/ConstantsScanner.h"
28#include "llvm/Analysis/FindUsedTypes.h"
29#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000030#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/Transforms/Scalar.h"
33#include "llvm/Target/TargetMachineRegistry.h"
34#include "llvm/Target/TargetAsmInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/Mangler.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Config/config.h"
46#include <algorithm>
47#include <sstream>
48using namespace llvm;
49
50namespace {
51 // Register the target.
52 RegisterTarget<CTargetMachine> X("c", " C backend");
53
54 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
55 /// any unnamed structure types that are used by the program, and merges
56 /// external functions with the same name.
57 ///
58 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
59 public:
60 static char ID;
61 CBackendNameAllUsedStructsAndMergeFunctions()
62 : ModulePass((intptr_t)&ID) {}
63 void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.addRequired<FindUsedTypes>();
65 }
66
67 virtual const char *getPassName() const {
68 return "C backend type canonicalizer";
69 }
70
71 virtual bool runOnModule(Module &M);
72 };
73
74 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
75
76 /// CWriter - This class is the main chunk of code that converts an LLVM
77 /// module to a C translation unit.
78 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
79 std::ostream &Out;
80 IntrinsicLowering *IL;
81 Mangler *Mang;
82 LoopInfo *LI;
83 const Module *TheModule;
84 const TargetAsmInfo* TAsm;
85 const TargetData* TD;
86 std::map<const Type *, std::string> TypeNames;
87 std::map<const ConstantFP *, unsigned> FPConstantMap;
88 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Chris Lattner8bbc8592008-03-02 08:07:24 +000089 std::set<const Argument*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090
91 public:
92 static char ID;
Dan Gohman40bd38e2008-03-25 22:06:05 +000093 explicit CWriter(std::ostream &o)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
95 TheModule(0), TAsm(0), TD(0) {}
96
97 virtual const char *getPassName() const { return "C backend"; }
98
99 void getAnalysisUsage(AnalysisUsage &AU) const {
100 AU.addRequired<LoopInfo>();
101 AU.setPreservesAll();
102 }
103
104 virtual bool doInitialization(Module &M);
105
106 bool runOnFunction(Function &F) {
107 LI = &getAnalysis<LoopInfo>();
108
109 // Get rid of intrinsics we can't handle.
110 lowerIntrinsics(F);
111
112 // Output all floating point constants that cannot be printed accurately.
113 printFloatingPointConstants(F);
114
115 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 return false;
117 }
118
119 virtual bool doFinalization(Module &M) {
120 // Free memory...
121 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000122 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000124 ByValParams.clear();
Chris Lattner8bbc8592008-03-02 08:07:24 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 return false;
127 }
128
129 std::ostream &printType(std::ostream &Out, const Type *Ty,
130 bool isSigned = false,
131 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000132 bool IgnoreName = false,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000133 const PAListPtr &PAL = PAListPtr());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000135 bool isSigned,
136 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000137
138 void printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000139 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140 const PointerType *Ty);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000141
142 /// writeOperandDeref - Print the result of dereferencing the specified
143 /// operand with '*'. This is equivalent to printing '*' then using
144 /// writeOperand, but avoids excess syntax in some cases.
145 void writeOperandDeref(Value *Operand) {
146 if (isAddressExposed(Operand)) {
147 // Already something with an address exposed.
148 writeOperandInternal(Operand);
149 } else {
150 Out << "*(";
151 writeOperand(Operand);
152 Out << ")";
153 }
154 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000155
156 void writeOperand(Value *Operand);
157 void writeOperandRaw(Value *Operand);
158 void writeOperandInternal(Value *Operand);
159 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000160 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000161 bool writeInstructionCast(const Instruction &I);
162
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000163 void writeMemoryAccess(Value *Operand, const Type *OperandType,
164 bool IsVolatile, unsigned Alignment);
165
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000166 private :
167 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
168
169 void lowerIntrinsics(Function &F);
170
171 void printModule(Module *M);
172 void printModuleTypes(const TypeSymbolTable &ST);
173 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
174 void printFloatingPointConstants(Function &F);
175 void printFunctionSignature(const Function *F, bool Prototype);
176
177 void printFunction(Function &);
178 void printBasicBlock(BasicBlock *BB);
179 void printLoop(Loop *L);
180
181 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
182 void printConstant(Constant *CPV);
183 void printConstantWithCast(Constant *CPV, unsigned Opcode);
184 bool printConstExprCast(const ConstantExpr *CE);
185 void printConstantArray(ConstantArray *CPA);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000186 void printConstantVector(ConstantVector *CV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187
Chris Lattner8bbc8592008-03-02 08:07:24 +0000188 /// isAddressExposed - Return true if the specified value's name needs to
189 /// have its address taken in order to get a C value of the correct type.
190 /// This happens for global variables, byval parameters, and direct allocas.
191 bool isAddressExposed(const Value *V) const {
192 if (const Argument *A = dyn_cast<Argument>(V))
193 return ByValParams.count(A);
194 return isa<GlobalVariable>(V) || isDirectAlloca(V);
195 }
196
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000197 // isInlinableInst - Attempt to inline instructions into their uses to build
198 // trees as much as possible. To do this, we have to consistently decide
199 // what is acceptable to inline, so that variable declarations don't get
200 // printed and an extra copy of the expr is not emitted.
201 //
202 static bool isInlinableInst(const Instruction &I) {
203 // Always inline cmp instructions, even if they are shared by multiple
204 // expressions. GCC generates horrible code if we don't.
205 if (isa<CmpInst>(I))
206 return true;
207
208 // Must be an expression, must be used exactly once. If it is dead, we
209 // emit it inline where it would go.
210 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
211 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
Chris Lattnerf41a7942008-03-02 03:52:39 +0000212 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 // Don't inline a load across a store or other bad things!
214 return false;
215
Chris Lattnerf858a042008-03-02 05:41:07 +0000216 // Must not be used in inline asm, extractelement, or shufflevector.
217 if (I.hasOneUse()) {
218 const Instruction &User = cast<Instruction>(*I.use_back());
219 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
220 isa<ShuffleVectorInst>(User))
221 return false;
222 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223
224 // Only inline instruction it if it's use is in the same BB as the inst.
225 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
226 }
227
228 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
229 // variables which are accessed with the & operator. This causes GCC to
230 // generate significantly better code than to emit alloca calls directly.
231 //
232 static const AllocaInst *isDirectAlloca(const Value *V) {
233 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
234 if (!AI) return false;
235 if (AI->isArrayAllocation())
236 return 0; // FIXME: we can also inline fixed size array allocas!
237 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
238 return 0;
239 return AI;
240 }
241
242 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
243 static bool isInlineAsm(const Instruction& I) {
244 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
245 return true;
246 return false;
247 }
248
249 // Instruction visitation functions
250 friend class InstVisitor<CWriter>;
251
252 void visitReturnInst(ReturnInst &I);
253 void visitBranchInst(BranchInst &I);
254 void visitSwitchInst(SwitchInst &I);
255 void visitInvokeInst(InvokeInst &I) {
256 assert(0 && "Lowerinvoke pass didn't work!");
257 }
258
259 void visitUnwindInst(UnwindInst &I) {
260 assert(0 && "Lowerinvoke pass didn't work!");
261 }
262 void visitUnreachableInst(UnreachableInst &I);
263
264 void visitPHINode(PHINode &I);
265 void visitBinaryOperator(Instruction &I);
266 void visitICmpInst(ICmpInst &I);
267 void visitFCmpInst(FCmpInst &I);
268
269 void visitCastInst (CastInst &I);
270 void visitSelectInst(SelectInst &I);
271 void visitCallInst (CallInst &I);
272 void visitInlineAsm(CallInst &I);
Chris Lattnera74b9182008-03-02 08:29:41 +0000273 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274
275 void visitMallocInst(MallocInst &I);
276 void visitAllocaInst(AllocaInst &I);
277 void visitFreeInst (FreeInst &I);
278 void visitLoadInst (LoadInst &I);
279 void visitStoreInst (StoreInst &I);
280 void visitGetElementPtrInst(GetElementPtrInst &I);
281 void visitVAArgInst (VAArgInst &I);
Chris Lattnerf41a7942008-03-02 03:52:39 +0000282
283 void visitInsertElementInst(InsertElementInst &I);
Chris Lattnera5f0bc02008-03-02 03:57:08 +0000284 void visitExtractElementInst(ExtractElementInst &I);
Chris Lattnerf858a042008-03-02 05:41:07 +0000285 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286
287 void visitInstruction(Instruction &I) {
288 cerr << "C Writer does not know about " << I;
289 abort();
290 }
291
292 void outputLValue(Instruction *I) {
293 Out << " " << GetValueName(I) << " = ";
294 }
295
296 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
297 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
298 BasicBlock *Successor, unsigned Indent);
299 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
300 unsigned Indent);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000301 void printGEPExpression(Value *Ptr, gep_type_iterator I,
302 gep_type_iterator E);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000303
304 std::string GetValueName(const Value *Operand);
305 };
306}
307
308char CWriter::ID = 0;
309
310/// This method inserts names for any unnamed structure types that are used by
311/// the program, and removes names from structure types that are not used by the
312/// program.
313///
314bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
315 // Get a set of types that are used by the program...
316 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
317
318 // Loop over the module symbol table, removing types from UT that are
319 // already named, and removing names for types that are not used.
320 //
321 TypeSymbolTable &TST = M.getTypeSymbolTable();
322 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
323 TI != TE; ) {
324 TypeSymbolTable::iterator I = TI++;
325
326 // If this isn't a struct type, remove it from our set of types to name.
327 // This simplifies emission later.
328 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
329 TST.remove(I);
330 } else {
331 // If this is not used, remove it from the symbol table.
332 std::set<const Type *>::iterator UTI = UT.find(I->second);
333 if (UTI == UT.end())
334 TST.remove(I);
335 else
336 UT.erase(UTI); // Only keep one name for this type.
337 }
338 }
339
340 // UT now contains types that are not named. Loop over it, naming
341 // structure types.
342 //
343 bool Changed = false;
344 unsigned RenameCounter = 0;
345 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
346 I != E; ++I)
347 if (const StructType *ST = dyn_cast<StructType>(*I)) {
348 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
349 ++RenameCounter;
350 Changed = true;
351 }
352
353
354 // Loop over all external functions and globals. If we have two with
355 // identical names, merge them.
356 // FIXME: This code should disappear when we don't allow values with the same
357 // names when they have different types!
358 std::map<std::string, GlobalValue*> ExtSymbols;
359 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
360 Function *GV = I++;
361 if (GV->isDeclaration() && GV->hasName()) {
362 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
363 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
364 if (!X.second) {
365 // Found a conflict, replace this global with the previous one.
366 GlobalValue *OldGV = X.first->second;
367 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
368 GV->eraseFromParent();
369 Changed = true;
370 }
371 }
372 }
373 // Do the same for globals.
374 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
375 I != E;) {
376 GlobalVariable *GV = I++;
377 if (GV->isDeclaration() && GV->hasName()) {
378 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
379 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
380 if (!X.second) {
381 // Found a conflict, replace this global with the previous one.
382 GlobalValue *OldGV = X.first->second;
383 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
384 GV->eraseFromParent();
385 Changed = true;
386 }
387 }
388 }
389
390 return Changed;
391}
392
393/// printStructReturnPointerFunctionType - This is like printType for a struct
394/// return type, except, instead of printing the type as void (*)(Struct*, ...)
395/// print it as "Struct (*)(...)", for struct return functions.
396void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000397 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398 const PointerType *TheTy) {
399 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
400 std::stringstream FunctionInnards;
401 FunctionInnards << " (*) (";
402 bool PrintedType = false;
403
404 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
405 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
406 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000407 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408 if (PrintedType)
409 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000410 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000411 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +0000412 assert(isa<PointerType>(ArgTy));
413 ArgTy = cast<PointerType>(ArgTy)->getElementType();
414 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000415 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000416 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417 PrintedType = true;
418 }
419 if (FTy->isVarArg()) {
420 if (PrintedType)
421 FunctionInnards << ", ...";
422 } else if (!PrintedType) {
423 FunctionInnards << "void";
424 }
425 FunctionInnards << ')';
426 std::string tstr = FunctionInnards.str();
427 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000428 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000429}
430
431std::ostream &
432CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
Chris Lattnerd8090712008-03-02 03:41:23 +0000433 const std::string &NameSoFar) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000434 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435 "Invalid type for printSimpleType");
436 switch (Ty->getTypeID()) {
437 case Type::VoidTyID: return Out << "void " << NameSoFar;
438 case Type::IntegerTyID: {
439 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
440 if (NumBits == 1)
441 return Out << "bool " << NameSoFar;
442 else if (NumBits <= 8)
443 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
444 else if (NumBits <= 16)
445 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
446 else if (NumBits <= 32)
447 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000448 else if (NumBits <= 64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000450 else {
451 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
452 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 }
454 }
455 case Type::FloatTyID: return Out << "float " << NameSoFar;
456 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000457 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
458 // present matches host 'long double'.
459 case Type::X86_FP80TyID:
460 case Type::PPC_FP128TyID:
461 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000462
463 case Type::VectorTyID: {
464 const VectorType *VTy = cast<VectorType>(Ty);
Chris Lattnerd8090712008-03-02 03:41:23 +0000465 return printSimpleType(Out, VTy->getElementType(), isSigned,
Chris Lattnerfddca552008-03-02 03:39:43 +0000466 " __attribute__((vector_size(" +
467 utostr(TD->getABITypeSize(VTy)) + " ))) " + NameSoFar);
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000468 }
469
470 default:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000471 cerr << "Unknown primitive type: " << *Ty << "\n";
472 abort();
473 }
474}
475
476// Pass the Type* and the variable name and this prints out the variable
477// declaration.
478//
479std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
480 bool isSigned, const std::string &NameSoFar,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000481 bool IgnoreName, const PAListPtr &PAL) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000482 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000483 printSimpleType(Out, Ty, isSigned, NameSoFar);
484 return Out;
485 }
486
487 // Check to see if the type is named.
488 if (!IgnoreName || isa<OpaqueType>(Ty)) {
489 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
490 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
491 }
492
493 switch (Ty->getTypeID()) {
494 case Type::FunctionTyID: {
495 const FunctionType *FTy = cast<FunctionType>(Ty);
496 std::stringstream FunctionInnards;
497 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000498 unsigned Idx = 1;
499 for (FunctionType::param_iterator I = FTy->param_begin(),
500 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000501 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000502 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000503 assert(isa<PointerType>(ArgTy));
504 ArgTy = cast<PointerType>(ArgTy)->getElementType();
505 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000506 if (I != FTy->param_begin())
507 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000508 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000509 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000510 ++Idx;
511 }
512 if (FTy->isVarArg()) {
513 if (FTy->getNumParams())
514 FunctionInnards << ", ...";
515 } else if (!FTy->getNumParams()) {
516 FunctionInnards << "void";
517 }
518 FunctionInnards << ')';
519 std::string tstr = FunctionInnards.str();
520 printType(Out, FTy->getReturnType(),
Chris Lattner1c8733e2008-03-12 17:45:29 +0000521 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000522 return Out;
523 }
524 case Type::StructTyID: {
525 const StructType *STy = cast<StructType>(Ty);
526 Out << NameSoFar + " {\n";
527 unsigned Idx = 0;
528 for (StructType::element_iterator I = STy->element_begin(),
529 E = STy->element_end(); I != E; ++I) {
530 Out << " ";
531 printType(Out, *I, false, "field" + utostr(Idx++));
532 Out << ";\n";
533 }
534 Out << '}';
535 if (STy->isPacked())
536 Out << " __attribute__ ((packed))";
537 return Out;
538 }
539
540 case Type::PointerTyID: {
541 const PointerType *PTy = cast<PointerType>(Ty);
542 std::string ptrName = "*" + NameSoFar;
543
544 if (isa<ArrayType>(PTy->getElementType()) ||
545 isa<VectorType>(PTy->getElementType()))
546 ptrName = "(" + ptrName + ")";
547
Chris Lattner1c8733e2008-03-12 17:45:29 +0000548 if (!PAL.isEmpty())
Evan Chengb8a072c2008-01-12 18:53:07 +0000549 // Must be a function ptr cast!
550 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000551 return printType(Out, PTy->getElementType(), false, ptrName);
552 }
553
554 case Type::ArrayTyID: {
555 const ArrayType *ATy = cast<ArrayType>(Ty);
556 unsigned NumElements = ATy->getNumElements();
557 if (NumElements == 0) NumElements = 1;
558 return printType(Out, ATy->getElementType(), false,
559 NameSoFar + "[" + utostr(NumElements) + "]");
560 }
561
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000562 case Type::OpaqueTyID: {
563 static int Count = 0;
564 std::string TyName = "struct opaque_" + itostr(Count++);
565 assert(TypeNames.find(Ty) == TypeNames.end());
566 TypeNames[Ty] = TyName;
567 return Out << TyName << ' ' << NameSoFar;
568 }
569 default:
570 assert(0 && "Unhandled case in getTypeProps!");
571 abort();
572 }
573
574 return Out;
575}
576
577void CWriter::printConstantArray(ConstantArray *CPA) {
578
579 // As a special case, print the array as a string if it is an array of
580 // ubytes or an array of sbytes with positive values.
581 //
582 const Type *ETy = CPA->getType()->getElementType();
583 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
584
585 // Make sure the last character is a null char, as automatically added by C
586 if (isString && (CPA->getNumOperands() == 0 ||
587 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
588 isString = false;
589
590 if (isString) {
591 Out << '\"';
592 // Keep track of whether the last number was a hexadecimal escape
593 bool LastWasHex = false;
594
595 // Do not include the last character, which we know is null
596 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
597 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
598
599 // Print it out literally if it is a printable character. The only thing
600 // to be careful about is when the last letter output was a hex escape
601 // code, in which case we have to be careful not to print out hex digits
602 // explicitly (the C compiler thinks it is a continuation of the previous
603 // character, sheesh...)
604 //
605 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
606 LastWasHex = false;
607 if (C == '"' || C == '\\')
608 Out << "\\" << C;
609 else
610 Out << C;
611 } else {
612 LastWasHex = false;
613 switch (C) {
614 case '\n': Out << "\\n"; break;
615 case '\t': Out << "\\t"; break;
616 case '\r': Out << "\\r"; break;
617 case '\v': Out << "\\v"; break;
618 case '\a': Out << "\\a"; break;
619 case '\"': Out << "\\\""; break;
620 case '\'': Out << "\\\'"; break;
621 default:
622 Out << "\\x";
623 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
624 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
625 LastWasHex = true;
626 break;
627 }
628 }
629 }
630 Out << '\"';
631 } else {
632 Out << '{';
633 if (CPA->getNumOperands()) {
634 Out << ' ';
635 printConstant(cast<Constant>(CPA->getOperand(0)));
636 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
637 Out << ", ";
638 printConstant(cast<Constant>(CPA->getOperand(i)));
639 }
640 }
641 Out << " }";
642 }
643}
644
645void CWriter::printConstantVector(ConstantVector *CP) {
646 Out << '{';
647 if (CP->getNumOperands()) {
648 Out << ' ';
649 printConstant(cast<Constant>(CP->getOperand(0)));
650 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
651 Out << ", ";
652 printConstant(cast<Constant>(CP->getOperand(i)));
653 }
654 }
655 Out << " }";
656}
657
658// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
659// textually as a double (rather than as a reference to a stack-allocated
660// variable). We decide this by converting CFP to a string and back into a
661// double, and then checking whether the conversion results in a bit-equal
662// double to the original value of CFP. This depends on us and the target C
663// compiler agreeing on the conversion process (which is pretty likely since we
664// only deal in IEEE FP).
665//
666static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000667 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000668 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
669 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000670 APFloat APF = APFloat(CFP->getValueAPF()); // copy
671 if (CFP->getType()==Type::FloatTy)
672 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000673#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
674 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000675 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000676 if (!strncmp(Buffer, "0x", 2) ||
677 !strncmp(Buffer, "-0x", 3) ||
678 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000679 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000680 return false;
681#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000682 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000683
684 while (StrVal[0] == ' ')
685 StrVal.erase(StrVal.begin());
686
687 // Check to make sure that the stringized number is not some string like "Inf"
688 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
689 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
690 ((StrVal[0] == '-' || StrVal[0] == '+') &&
691 (StrVal[1] >= '0' && StrVal[1] <= '9')))
692 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000693 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000694 return false;
695#endif
696}
697
698/// Print out the casting for a cast operation. This does the double casting
699/// necessary for conversion to the destination type, if necessary.
700/// @brief Print a cast
701void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
702 // Print the destination type cast
703 switch (opc) {
704 case Instruction::UIToFP:
705 case Instruction::SIToFP:
706 case Instruction::IntToPtr:
707 case Instruction::Trunc:
708 case Instruction::BitCast:
709 case Instruction::FPExt:
710 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
711 Out << '(';
712 printType(Out, DstTy);
713 Out << ')';
714 break;
715 case Instruction::ZExt:
716 case Instruction::PtrToInt:
717 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
718 Out << '(';
719 printSimpleType(Out, DstTy, false);
720 Out << ')';
721 break;
722 case Instruction::SExt:
723 case Instruction::FPToSI: // For these, make sure we get a signed dest
724 Out << '(';
725 printSimpleType(Out, DstTy, true);
726 Out << ')';
727 break;
728 default:
729 assert(0 && "Invalid cast opcode");
730 }
731
732 // Print the source type cast
733 switch (opc) {
734 case Instruction::UIToFP:
735 case Instruction::ZExt:
736 Out << '(';
737 printSimpleType(Out, SrcTy, false);
738 Out << ')';
739 break;
740 case Instruction::SIToFP:
741 case Instruction::SExt:
742 Out << '(';
743 printSimpleType(Out, SrcTy, true);
744 Out << ')';
745 break;
746 case Instruction::IntToPtr:
747 case Instruction::PtrToInt:
748 // Avoid "cast to pointer from integer of different size" warnings
749 Out << "(unsigned long)";
750 break;
751 case Instruction::Trunc:
752 case Instruction::BitCast:
753 case Instruction::FPExt:
754 case Instruction::FPTrunc:
755 case Instruction::FPToSI:
756 case Instruction::FPToUI:
757 break; // These don't need a source cast.
758 default:
759 assert(0 && "Invalid cast opcode");
760 break;
761 }
762}
763
764// printConstant - The LLVM Constant to C Constant converter.
765void CWriter::printConstant(Constant *CPV) {
766 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
767 switch (CE->getOpcode()) {
768 case Instruction::Trunc:
769 case Instruction::ZExt:
770 case Instruction::SExt:
771 case Instruction::FPTrunc:
772 case Instruction::FPExt:
773 case Instruction::UIToFP:
774 case Instruction::SIToFP:
775 case Instruction::FPToUI:
776 case Instruction::FPToSI:
777 case Instruction::PtrToInt:
778 case Instruction::IntToPtr:
779 case Instruction::BitCast:
780 Out << "(";
781 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
782 if (CE->getOpcode() == Instruction::SExt &&
783 CE->getOperand(0)->getType() == Type::Int1Ty) {
784 // Make sure we really sext from bool here by subtracting from 0
785 Out << "0-";
786 }
787 printConstant(CE->getOperand(0));
788 if (CE->getType() == Type::Int1Ty &&
789 (CE->getOpcode() == Instruction::Trunc ||
790 CE->getOpcode() == Instruction::FPToUI ||
791 CE->getOpcode() == Instruction::FPToSI ||
792 CE->getOpcode() == Instruction::PtrToInt)) {
793 // Make sure we really truncate to bool here by anding with 1
794 Out << "&1u";
795 }
796 Out << ')';
797 return;
798
799 case Instruction::GetElementPtr:
Chris Lattner8bbc8592008-03-02 08:07:24 +0000800 Out << "(";
801 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
802 gep_type_end(CPV));
803 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000804 return;
805 case Instruction::Select:
806 Out << '(';
807 printConstant(CE->getOperand(0));
808 Out << '?';
809 printConstant(CE->getOperand(1));
810 Out << ':';
811 printConstant(CE->getOperand(2));
812 Out << ')';
813 return;
814 case Instruction::Add:
815 case Instruction::Sub:
816 case Instruction::Mul:
817 case Instruction::SDiv:
818 case Instruction::UDiv:
819 case Instruction::FDiv:
820 case Instruction::URem:
821 case Instruction::SRem:
822 case Instruction::FRem:
823 case Instruction::And:
824 case Instruction::Or:
825 case Instruction::Xor:
826 case Instruction::ICmp:
827 case Instruction::Shl:
828 case Instruction::LShr:
829 case Instruction::AShr:
830 {
831 Out << '(';
832 bool NeedsClosingParens = printConstExprCast(CE);
833 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
834 switch (CE->getOpcode()) {
835 case Instruction::Add: Out << " + "; break;
836 case Instruction::Sub: Out << " - "; break;
837 case Instruction::Mul: Out << " * "; break;
838 case Instruction::URem:
839 case Instruction::SRem:
840 case Instruction::FRem: Out << " % "; break;
841 case Instruction::UDiv:
842 case Instruction::SDiv:
843 case Instruction::FDiv: Out << " / "; break;
844 case Instruction::And: Out << " & "; break;
845 case Instruction::Or: Out << " | "; break;
846 case Instruction::Xor: Out << " ^ "; break;
847 case Instruction::Shl: Out << " << "; break;
848 case Instruction::LShr:
849 case Instruction::AShr: Out << " >> "; break;
850 case Instruction::ICmp:
851 switch (CE->getPredicate()) {
852 case ICmpInst::ICMP_EQ: Out << " == "; break;
853 case ICmpInst::ICMP_NE: Out << " != "; break;
854 case ICmpInst::ICMP_SLT:
855 case ICmpInst::ICMP_ULT: Out << " < "; break;
856 case ICmpInst::ICMP_SLE:
857 case ICmpInst::ICMP_ULE: Out << " <= "; break;
858 case ICmpInst::ICMP_SGT:
859 case ICmpInst::ICMP_UGT: Out << " > "; break;
860 case ICmpInst::ICMP_SGE:
861 case ICmpInst::ICMP_UGE: Out << " >= "; break;
862 default: assert(0 && "Illegal ICmp predicate");
863 }
864 break;
865 default: assert(0 && "Illegal opcode here!");
866 }
867 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
868 if (NeedsClosingParens)
869 Out << "))";
870 Out << ')';
871 return;
872 }
873 case Instruction::FCmp: {
874 Out << '(';
875 bool NeedsClosingParens = printConstExprCast(CE);
876 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
877 Out << "0";
878 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
879 Out << "1";
880 else {
881 const char* op = 0;
882 switch (CE->getPredicate()) {
883 default: assert(0 && "Illegal FCmp predicate");
884 case FCmpInst::FCMP_ORD: op = "ord"; break;
885 case FCmpInst::FCMP_UNO: op = "uno"; break;
886 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
887 case FCmpInst::FCMP_UNE: op = "une"; break;
888 case FCmpInst::FCMP_ULT: op = "ult"; break;
889 case FCmpInst::FCMP_ULE: op = "ule"; break;
890 case FCmpInst::FCMP_UGT: op = "ugt"; break;
891 case FCmpInst::FCMP_UGE: op = "uge"; break;
892 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
893 case FCmpInst::FCMP_ONE: op = "one"; break;
894 case FCmpInst::FCMP_OLT: op = "olt"; break;
895 case FCmpInst::FCMP_OLE: op = "ole"; break;
896 case FCmpInst::FCMP_OGT: op = "ogt"; break;
897 case FCmpInst::FCMP_OGE: op = "oge"; break;
898 }
899 Out << "llvm_fcmp_" << op << "(";
900 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
901 Out << ", ";
902 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
903 Out << ")";
904 }
905 if (NeedsClosingParens)
906 Out << "))";
907 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000908 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000909 }
910 default:
911 cerr << "CWriter Error: Unhandled constant expression: "
912 << *CE << "\n";
913 abort();
914 }
915 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
916 Out << "((";
917 printType(Out, CPV->getType()); // sign doesn't matter
Chris Lattnerc72d9e32008-03-02 08:14:45 +0000918 Out << ")/*UNDEF*/";
919 if (!isa<VectorType>(CPV->getType())) {
920 Out << "0)";
921 } else {
922 Out << "{})";
923 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000924 return;
925 }
926
927 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
928 const Type* Ty = CI->getType();
929 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000930 Out << (CI->getZExtValue() ? '1' : '0');
931 else if (Ty == Type::Int32Ty)
932 Out << CI->getZExtValue() << 'u';
933 else if (Ty->getPrimitiveSizeInBits() > 32)
934 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000935 else {
936 Out << "((";
937 printSimpleType(Out, Ty, false) << ')';
938 if (CI->isMinValue(true))
939 Out << CI->getZExtValue() << 'u';
940 else
941 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000942 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 }
944 return;
945 }
946
947 switch (CPV->getType()->getTypeID()) {
948 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000949 case Type::DoubleTyID:
950 case Type::X86_FP80TyID:
951 case Type::PPC_FP128TyID:
952 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953 ConstantFP *FPC = cast<ConstantFP>(CPV);
954 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
955 if (I != FPConstantMap.end()) {
956 // Because of FP precision problems we must load from a stack allocated
957 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000958 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
959 FPC->getType() == Type::DoubleTy ? "double" :
960 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961 << "*)&FPConstant" << I->second << ')';
962 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000963 assert(FPC->getType() == Type::FloatTy ||
964 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000965 double V = FPC->getType() == Type::FloatTy ?
966 FPC->getValueAPF().convertToFloat() :
967 FPC->getValueAPF().convertToDouble();
968 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000969 // The value is NaN
970
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000971 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000972 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
973 // it's 0x7ff4.
974 const unsigned long QuietNaN = 0x7ff8UL;
975 //const unsigned long SignalNaN = 0x7ff4UL;
976
977 // We need to grab the first part of the FP #
978 char Buffer[100];
979
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000980 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000981 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
982
983 std::string Num(&Buffer[0], &Buffer[6]);
984 unsigned long Val = strtoul(Num.c_str(), 0, 16);
985
986 if (FPC->getType() == Type::FloatTy)
987 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
988 << Buffer << "\") /*nan*/ ";
989 else
990 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
991 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000992 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000993 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000994 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000995 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
996 << " /*inf*/ ";
997 } else {
998 std::string Num;
999#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1000 // Print out the constant as a floating point number.
1001 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001002 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003 Num = Buffer;
1004#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001005 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001006#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001007 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008 }
1009 }
1010 break;
1011 }
1012
1013 case Type::ArrayTyID:
Chris Lattner8673e322008-03-02 05:46:57 +00001014 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001015 printConstantArray(CA);
Chris Lattner63fb1f02008-03-02 03:16:38 +00001016 } else {
1017 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1019 Out << '{';
1020 if (AT->getNumElements()) {
1021 Out << ' ';
1022 Constant *CZ = Constant::getNullValue(AT->getElementType());
1023 printConstant(CZ);
1024 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1025 Out << ", ";
1026 printConstant(CZ);
1027 }
1028 }
1029 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001030 }
1031 break;
1032
1033 case Type::VectorTyID:
Chris Lattner70f0f672008-03-02 03:29:50 +00001034 // Use C99 compound expression literal initializer syntax.
1035 Out << "(";
1036 printType(Out, CPV->getType());
1037 Out << ")";
Chris Lattner8673e322008-03-02 05:46:57 +00001038 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001039 printConstantVector(CV);
1040 } else {
1041 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1042 const VectorType *VT = cast<VectorType>(CPV->getType());
1043 Out << "{ ";
1044 Constant *CZ = Constant::getNullValue(VT->getElementType());
1045 printConstant(CZ);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001046 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001047 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001048 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001049 }
1050 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001051 }
1052 break;
1053
1054 case Type::StructTyID:
1055 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1056 const StructType *ST = cast<StructType>(CPV->getType());
1057 Out << '{';
1058 if (ST->getNumElements()) {
1059 Out << ' ';
1060 printConstant(Constant::getNullValue(ST->getElementType(0)));
1061 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1062 Out << ", ";
1063 printConstant(Constant::getNullValue(ST->getElementType(i)));
1064 }
1065 }
1066 Out << " }";
1067 } else {
1068 Out << '{';
1069 if (CPV->getNumOperands()) {
1070 Out << ' ';
1071 printConstant(cast<Constant>(CPV->getOperand(0)));
1072 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1073 Out << ", ";
1074 printConstant(cast<Constant>(CPV->getOperand(i)));
1075 }
1076 }
1077 Out << " }";
1078 }
1079 break;
1080
1081 case Type::PointerTyID:
1082 if (isa<ConstantPointerNull>(CPV)) {
1083 Out << "((";
1084 printType(Out, CPV->getType()); // sign doesn't matter
1085 Out << ")/*NULL*/0)";
1086 break;
1087 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1088 writeOperand(GV);
1089 break;
1090 }
1091 // FALL THROUGH
1092 default:
1093 cerr << "Unknown constant type: " << *CPV << "\n";
1094 abort();
1095 }
1096}
1097
1098// Some constant expressions need to be casted back to the original types
1099// because their operands were casted to the expected type. This function takes
1100// care of detecting that case and printing the cast for the ConstantExpr.
1101bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1102 bool NeedsExplicitCast = false;
1103 const Type *Ty = CE->getOperand(0)->getType();
1104 bool TypeIsSigned = false;
1105 switch (CE->getOpcode()) {
1106 case Instruction::LShr:
1107 case Instruction::URem:
1108 case Instruction::UDiv: NeedsExplicitCast = true; break;
1109 case Instruction::AShr:
1110 case Instruction::SRem:
1111 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1112 case Instruction::SExt:
1113 Ty = CE->getType();
1114 NeedsExplicitCast = true;
1115 TypeIsSigned = true;
1116 break;
1117 case Instruction::ZExt:
1118 case Instruction::Trunc:
1119 case Instruction::FPTrunc:
1120 case Instruction::FPExt:
1121 case Instruction::UIToFP:
1122 case Instruction::SIToFP:
1123 case Instruction::FPToUI:
1124 case Instruction::FPToSI:
1125 case Instruction::PtrToInt:
1126 case Instruction::IntToPtr:
1127 case Instruction::BitCast:
1128 Ty = CE->getType();
1129 NeedsExplicitCast = true;
1130 break;
1131 default: break;
1132 }
1133 if (NeedsExplicitCast) {
1134 Out << "((";
1135 if (Ty->isInteger() && Ty != Type::Int1Ty)
1136 printSimpleType(Out, Ty, TypeIsSigned);
1137 else
1138 printType(Out, Ty); // not integer, sign doesn't matter
1139 Out << ")(";
1140 }
1141 return NeedsExplicitCast;
1142}
1143
1144// Print a constant assuming that it is the operand for a given Opcode. The
1145// opcodes that care about sign need to cast their operands to the expected
1146// type before the operation proceeds. This function does the casting.
1147void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1148
1149 // Extract the operand's type, we'll need it.
1150 const Type* OpTy = CPV->getType();
1151
1152 // Indicate whether to do the cast or not.
1153 bool shouldCast = false;
1154 bool typeIsSigned = false;
1155
1156 // Based on the Opcode for which this Constant is being written, determine
1157 // the new type to which the operand should be casted by setting the value
1158 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1159 // casted below.
1160 switch (Opcode) {
1161 default:
1162 // for most instructions, it doesn't matter
1163 break;
1164 case Instruction::LShr:
1165 case Instruction::UDiv:
1166 case Instruction::URem:
1167 shouldCast = true;
1168 break;
1169 case Instruction::AShr:
1170 case Instruction::SDiv:
1171 case Instruction::SRem:
1172 shouldCast = true;
1173 typeIsSigned = true;
1174 break;
1175 }
1176
1177 // Write out the casted constant if we should, otherwise just write the
1178 // operand.
1179 if (shouldCast) {
1180 Out << "((";
1181 printSimpleType(Out, OpTy, typeIsSigned);
1182 Out << ")";
1183 printConstant(CPV);
1184 Out << ")";
1185 } else
1186 printConstant(CPV);
1187}
1188
1189std::string CWriter::GetValueName(const Value *Operand) {
1190 std::string Name;
1191
1192 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1193 std::string VarName;
1194
1195 Name = Operand->getName();
1196 VarName.reserve(Name.capacity());
1197
1198 for (std::string::iterator I = Name.begin(), E = Name.end();
1199 I != E; ++I) {
1200 char ch = *I;
1201
1202 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001203 (ch >= '0' && ch <= '9') || ch == '_')) {
1204 char buffer[5];
1205 sprintf(buffer, "_%x_", ch);
1206 VarName += buffer;
1207 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001208 VarName += ch;
1209 }
1210
1211 Name = "llvm_cbe_" + VarName;
1212 } else {
1213 Name = Mang->getValueName(Operand);
1214 }
1215
1216 return Name;
1217}
1218
1219void CWriter::writeOperandInternal(Value *Operand) {
1220 if (Instruction *I = dyn_cast<Instruction>(Operand))
1221 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1222 // Should we inline this instruction to build a tree?
1223 Out << '(';
1224 visit(*I);
1225 Out << ')';
1226 return;
1227 }
1228
1229 Constant* CPV = dyn_cast<Constant>(Operand);
1230
1231 if (CPV && !isa<GlobalValue>(CPV))
1232 printConstant(CPV);
1233 else
1234 Out << GetValueName(Operand);
1235}
1236
1237void CWriter::writeOperandRaw(Value *Operand) {
1238 Constant* CPV = dyn_cast<Constant>(Operand);
1239 if (CPV && !isa<GlobalValue>(CPV)) {
1240 printConstant(CPV);
1241 } else {
1242 Out << GetValueName(Operand);
1243 }
1244}
1245
1246void CWriter::writeOperand(Value *Operand) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00001247 bool isAddressImplicit = isAddressExposed(Operand);
1248 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 Out << "(&"; // Global variables are referenced as their addresses by llvm
1250
1251 writeOperandInternal(Operand);
1252
Chris Lattner8bbc8592008-03-02 08:07:24 +00001253 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001254 Out << ')';
1255}
1256
1257// Some instructions need to have their result value casted back to the
1258// original types because their operands were casted to the expected type.
1259// This function takes care of detecting that case and printing the cast
1260// for the Instruction.
1261bool CWriter::writeInstructionCast(const Instruction &I) {
1262 const Type *Ty = I.getOperand(0)->getType();
1263 switch (I.getOpcode()) {
1264 case Instruction::LShr:
1265 case Instruction::URem:
1266 case Instruction::UDiv:
1267 Out << "((";
1268 printSimpleType(Out, Ty, false);
1269 Out << ")(";
1270 return true;
1271 case Instruction::AShr:
1272 case Instruction::SRem:
1273 case Instruction::SDiv:
1274 Out << "((";
1275 printSimpleType(Out, Ty, true);
1276 Out << ")(";
1277 return true;
1278 default: break;
1279 }
1280 return false;
1281}
1282
1283// Write the operand with a cast to another type based on the Opcode being used.
1284// This will be used in cases where an instruction has specific type
1285// requirements (usually signedness) for its operands.
1286void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1287
1288 // Extract the operand's type, we'll need it.
1289 const Type* OpTy = Operand->getType();
1290
1291 // Indicate whether to do the cast or not.
1292 bool shouldCast = false;
1293
1294 // Indicate whether the cast should be to a signed type or not.
1295 bool castIsSigned = false;
1296
1297 // Based on the Opcode for which this Operand is being written, determine
1298 // the new type to which the operand should be casted by setting the value
1299 // of OpTy. If we change OpTy, also set shouldCast to true.
1300 switch (Opcode) {
1301 default:
1302 // for most instructions, it doesn't matter
1303 break;
1304 case Instruction::LShr:
1305 case Instruction::UDiv:
1306 case Instruction::URem: // Cast to unsigned first
1307 shouldCast = true;
1308 castIsSigned = false;
1309 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001310 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001311 case Instruction::AShr:
1312 case Instruction::SDiv:
1313 case Instruction::SRem: // Cast to signed first
1314 shouldCast = true;
1315 castIsSigned = true;
1316 break;
1317 }
1318
1319 // Write out the casted operand if we should, otherwise just write the
1320 // operand.
1321 if (shouldCast) {
1322 Out << "((";
1323 printSimpleType(Out, OpTy, castIsSigned);
1324 Out << ")";
1325 writeOperand(Operand);
1326 Out << ")";
1327 } else
1328 writeOperand(Operand);
1329}
1330
1331// Write the operand with a cast to another type based on the icmp predicate
1332// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001333void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1334 // This has to do a cast to ensure the operand has the right signedness.
1335 // Also, if the operand is a pointer, we make sure to cast to an integer when
1336 // doing the comparison both for signedness and so that the C compiler doesn't
1337 // optimize things like "p < NULL" to false (p may contain an integer value
1338 // f.e.).
1339 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001340
1341 // Write out the casted operand if we should, otherwise just write the
1342 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001343 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001344 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001345 return;
1346 }
1347
1348 // Should this be a signed comparison? If so, convert to signed.
1349 bool castIsSigned = Cmp.isSignedPredicate();
1350
1351 // If the operand was a pointer, convert to a large integer type.
1352 const Type* OpTy = Operand->getType();
1353 if (isa<PointerType>(OpTy))
1354 OpTy = TD->getIntPtrType();
1355
1356 Out << "((";
1357 printSimpleType(Out, OpTy, castIsSigned);
1358 Out << ")";
1359 writeOperand(Operand);
1360 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001361}
1362
1363// generateCompilerSpecificCode - This is where we add conditional compilation
1364// directives to cater to specific compilers as need be.
1365//
1366static void generateCompilerSpecificCode(std::ostream& Out) {
1367 // Alloca is hard to get, and we don't want to include stdlib.h here.
1368 Out << "/* get a declaration for alloca */\n"
1369 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1370 << "#define alloca(x) __builtin_alloca((x))\n"
1371 << "#define _alloca(x) __builtin_alloca((x))\n"
1372 << "#elif defined(__APPLE__)\n"
1373 << "extern void *__builtin_alloca(unsigned long);\n"
1374 << "#define alloca(x) __builtin_alloca(x)\n"
1375 << "#define longjmp _longjmp\n"
1376 << "#define setjmp _setjmp\n"
1377 << "#elif defined(__sun__)\n"
1378 << "#if defined(__sparcv9)\n"
1379 << "extern void *__builtin_alloca(unsigned long);\n"
1380 << "#else\n"
1381 << "extern void *__builtin_alloca(unsigned int);\n"
1382 << "#endif\n"
1383 << "#define alloca(x) __builtin_alloca(x)\n"
Chris Lattner9bae27b2008-01-12 06:46:09 +00001384 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001385 << "#define alloca(x) __builtin_alloca(x)\n"
1386 << "#elif defined(_MSC_VER)\n"
1387 << "#define inline _inline\n"
1388 << "#define alloca(x) _alloca(x)\n"
1389 << "#else\n"
1390 << "#include <alloca.h>\n"
1391 << "#endif\n\n";
1392
1393 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1394 // If we aren't being compiled with GCC, just drop these attributes.
1395 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1396 << "#define __attribute__(X)\n"
1397 << "#endif\n\n";
1398
1399 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1400 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1401 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1402 << "#elif defined(__GNUC__)\n"
1403 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1404 << "#else\n"
1405 << "#define __EXTERNAL_WEAK__\n"
1406 << "#endif\n\n";
1407
1408 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1409 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1410 << "#define __ATTRIBUTE_WEAK__\n"
1411 << "#elif defined(__GNUC__)\n"
1412 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1413 << "#else\n"
1414 << "#define __ATTRIBUTE_WEAK__\n"
1415 << "#endif\n\n";
1416
1417 // Add hidden visibility support. FIXME: APPLE_CC?
1418 Out << "#if defined(__GNUC__)\n"
1419 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1420 << "#endif\n\n";
1421
1422 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1423 // From the GCC documentation:
1424 //
1425 // double __builtin_nan (const char *str)
1426 //
1427 // This is an implementation of the ISO C99 function nan.
1428 //
1429 // Since ISO C99 defines this function in terms of strtod, which we do
1430 // not implement, a description of the parsing is in order. The string is
1431 // parsed as by strtol; that is, the base is recognized by leading 0 or
1432 // 0x prefixes. The number parsed is placed in the significand such that
1433 // the least significant bit of the number is at the least significant
1434 // bit of the significand. The number is truncated to fit the significand
1435 // field provided. The significand is forced to be a quiet NaN.
1436 //
1437 // This function, if given a string literal, is evaluated early enough
1438 // that it is considered a compile-time constant.
1439 //
1440 // float __builtin_nanf (const char *str)
1441 //
1442 // Similar to __builtin_nan, except the return type is float.
1443 //
1444 // double __builtin_inf (void)
1445 //
1446 // Similar to __builtin_huge_val, except a warning is generated if the
1447 // target floating-point format does not support infinities. This
1448 // function is suitable for implementing the ISO C99 macro INFINITY.
1449 //
1450 // float __builtin_inff (void)
1451 //
1452 // Similar to __builtin_inf, except the return type is float.
1453 Out << "#ifdef __GNUC__\n"
1454 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1455 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1456 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1457 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1458 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1459 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1460 << "#define LLVM_PREFETCH(addr,rw,locality) "
1461 "__builtin_prefetch(addr,rw,locality)\n"
1462 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1463 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1464 << "#define LLVM_ASM __asm__\n"
1465 << "#else\n"
1466 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1467 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1468 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1469 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1470 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1471 << "#define LLVM_INFF 0.0F /* Float */\n"
1472 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1473 << "#define __ATTRIBUTE_CTOR__\n"
1474 << "#define __ATTRIBUTE_DTOR__\n"
1475 << "#define LLVM_ASM(X)\n"
1476 << "#endif\n\n";
1477
1478 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1479 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1480 << "#define __builtin_stack_restore(X) /* noop */\n"
1481 << "#endif\n\n";
1482
Dan Gohmana2245af2008-04-02 19:40:14 +00001483 Out << "#ifdef __GNUC__ /* 128-bit integer types */\n"
1484 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1485 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1486 << "#endif\n\n";
1487
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001488 // Output target-specific code that should be inserted into main.
1489 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001490}
1491
1492/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1493/// the StaticTors set.
1494static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1495 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1496 if (!InitList) return;
1497
1498 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1499 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1500 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1501
1502 if (CS->getOperand(1)->isNullValue())
1503 return; // Found a null terminator, exit printing.
1504 Constant *FP = CS->getOperand(1);
1505 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1506 if (CE->isCast())
1507 FP = CE->getOperand(0);
1508 if (Function *F = dyn_cast<Function>(FP))
1509 StaticTors.insert(F);
1510 }
1511}
1512
1513enum SpecialGlobalClass {
1514 NotSpecial = 0,
1515 GlobalCtors, GlobalDtors,
1516 NotPrinted
1517};
1518
1519/// getGlobalVariableClass - If this is a global that is specially recognized
1520/// by LLVM, return a code that indicates how we should handle it.
1521static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1522 // If this is a global ctors/dtors list, handle it now.
1523 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1524 if (GV->getName() == "llvm.global_ctors")
1525 return GlobalCtors;
1526 else if (GV->getName() == "llvm.global_dtors")
1527 return GlobalDtors;
1528 }
1529
1530 // Otherwise, it it is other metadata, don't print it. This catches things
1531 // like debug information.
1532 if (GV->getSection() == "llvm.metadata")
1533 return NotPrinted;
1534
1535 return NotSpecial;
1536}
1537
1538
1539bool CWriter::doInitialization(Module &M) {
1540 // Initialize
1541 TheModule = &M;
1542
1543 TD = new TargetData(&M);
1544 IL = new IntrinsicLowering(*TD);
1545 IL->AddPrototypes(M);
1546
1547 // Ensure that all structure types have names...
1548 Mang = new Mangler(M);
1549 Mang->markCharUnacceptable('.');
1550
1551 // Keep track of which functions are static ctors/dtors so they can have
1552 // an attribute added to their prototypes.
1553 std::set<Function*> StaticCtors, StaticDtors;
1554 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1555 I != E; ++I) {
1556 switch (getGlobalVariableClass(I)) {
1557 default: break;
1558 case GlobalCtors:
1559 FindStaticTors(I, StaticCtors);
1560 break;
1561 case GlobalDtors:
1562 FindStaticTors(I, StaticDtors);
1563 break;
1564 }
1565 }
1566
1567 // get declaration for alloca
1568 Out << "/* Provide Declarations */\n";
1569 Out << "#include <stdarg.h>\n"; // Varargs support
1570 Out << "#include <setjmp.h>\n"; // Unwind support
1571 generateCompilerSpecificCode(Out);
1572
1573 // Provide a definition for `bool' if not compiling with a C++ compiler.
1574 Out << "\n"
1575 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1576
1577 << "\n\n/* Support for floating point constants */\n"
1578 << "typedef unsigned long long ConstantDoubleTy;\n"
1579 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001580 << "typedef struct { unsigned long long f1; unsigned short f2; "
1581 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001582 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001583 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1584 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001585 << "\n\n/* Global Declarations */\n";
1586
1587 // First output all the declarations for the program, because C requires
1588 // Functions & globals to be declared before they are used.
1589 //
1590
1591 // Loop over the symbol table, emitting all named constants...
1592 printModuleTypes(M.getTypeSymbolTable());
1593
1594 // Global variable declarations...
1595 if (!M.global_empty()) {
1596 Out << "\n/* External Global Variable Declarations */\n";
1597 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1598 I != E; ++I) {
1599
1600 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1601 Out << "extern ";
1602 else if (I->hasDLLImportLinkage())
1603 Out << "__declspec(dllimport) ";
1604 else
1605 continue; // Internal Global
1606
1607 // Thread Local Storage
1608 if (I->isThreadLocal())
1609 Out << "__thread ";
1610
1611 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1612
1613 if (I->hasExternalWeakLinkage())
1614 Out << " __EXTERNAL_WEAK__";
1615 Out << ";\n";
1616 }
1617 }
1618
1619 // Function declarations
1620 Out << "\n/* Function Declarations */\n";
1621 Out << "double fmod(double, double);\n"; // Support for FP rem
1622 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001623 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001624
1625 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1626 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001627 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001628 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1629 if (I->hasExternalWeakLinkage())
1630 Out << "extern ";
1631 printFunctionSignature(I, true);
1632 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1633 Out << " __ATTRIBUTE_WEAK__";
1634 if (I->hasExternalWeakLinkage())
1635 Out << " __EXTERNAL_WEAK__";
1636 if (StaticCtors.count(I))
1637 Out << " __ATTRIBUTE_CTOR__";
1638 if (StaticDtors.count(I))
1639 Out << " __ATTRIBUTE_DTOR__";
1640 if (I->hasHiddenVisibility())
1641 Out << " __HIDDEN__";
1642
1643 if (I->hasName() && I->getName()[0] == 1)
1644 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1645
1646 Out << ";\n";
1647 }
1648 }
1649
1650 // Output the global variable declarations
1651 if (!M.global_empty()) {
1652 Out << "\n\n/* Global Variable Declarations */\n";
1653 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1654 I != E; ++I)
1655 if (!I->isDeclaration()) {
1656 // Ignore special globals, such as debug info.
1657 if (getGlobalVariableClass(I))
1658 continue;
1659
1660 if (I->hasInternalLinkage())
1661 Out << "static ";
1662 else
1663 Out << "extern ";
1664
1665 // Thread Local Storage
1666 if (I->isThreadLocal())
1667 Out << "__thread ";
1668
1669 printType(Out, I->getType()->getElementType(), false,
1670 GetValueName(I));
1671
1672 if (I->hasLinkOnceLinkage())
1673 Out << " __attribute__((common))";
1674 else if (I->hasWeakLinkage())
1675 Out << " __ATTRIBUTE_WEAK__";
1676 else if (I->hasExternalWeakLinkage())
1677 Out << " __EXTERNAL_WEAK__";
1678 if (I->hasHiddenVisibility())
1679 Out << " __HIDDEN__";
1680 Out << ";\n";
1681 }
1682 }
1683
1684 // Output the global variable definitions and contents...
1685 if (!M.global_empty()) {
1686 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1687 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1688 I != E; ++I)
1689 if (!I->isDeclaration()) {
1690 // Ignore special globals, such as debug info.
1691 if (getGlobalVariableClass(I))
1692 continue;
1693
1694 if (I->hasInternalLinkage())
1695 Out << "static ";
1696 else if (I->hasDLLImportLinkage())
1697 Out << "__declspec(dllimport) ";
1698 else if (I->hasDLLExportLinkage())
1699 Out << "__declspec(dllexport) ";
1700
1701 // Thread Local Storage
1702 if (I->isThreadLocal())
1703 Out << "__thread ";
1704
1705 printType(Out, I->getType()->getElementType(), false,
1706 GetValueName(I));
1707 if (I->hasLinkOnceLinkage())
1708 Out << " __attribute__((common))";
1709 else if (I->hasWeakLinkage())
1710 Out << " __ATTRIBUTE_WEAK__";
1711
1712 if (I->hasHiddenVisibility())
1713 Out << " __HIDDEN__";
1714
1715 // If the initializer is not null, emit the initializer. If it is null,
1716 // we try to avoid emitting large amounts of zeros. The problem with
1717 // this, however, occurs when the variable has weak linkage. In this
1718 // case, the assembler will complain about the variable being both weak
1719 // and common, so we disable this optimization.
1720 if (!I->getInitializer()->isNullValue()) {
1721 Out << " = " ;
1722 writeOperand(I->getInitializer());
1723 } else if (I->hasWeakLinkage()) {
1724 // We have to specify an initializer, but it doesn't have to be
1725 // complete. If the value is an aggregate, print out { 0 }, and let
1726 // the compiler figure out the rest of the zeros.
1727 Out << " = " ;
1728 if (isa<StructType>(I->getInitializer()->getType()) ||
1729 isa<ArrayType>(I->getInitializer()->getType()) ||
1730 isa<VectorType>(I->getInitializer()->getType())) {
1731 Out << "{ 0 }";
1732 } else {
1733 // Just print it out normally.
1734 writeOperand(I->getInitializer());
1735 }
1736 }
1737 Out << ";\n";
1738 }
1739 }
1740
1741 if (!M.empty())
1742 Out << "\n\n/* Function Bodies */\n";
1743
1744 // Emit some helper functions for dealing with FCMP instruction's
1745 // predicates
1746 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1747 Out << "return X == X && Y == Y; }\n";
1748 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1749 Out << "return X != X || Y != Y; }\n";
1750 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1751 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1752 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1753 Out << "return X != Y; }\n";
1754 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1755 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1756 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1757 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1758 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1759 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1760 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1761 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1762 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1763 Out << "return X == Y ; }\n";
1764 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1765 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1766 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1767 Out << "return X < Y ; }\n";
1768 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1769 Out << "return X > Y ; }\n";
1770 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1771 Out << "return X <= Y ; }\n";
1772 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1773 Out << "return X >= Y ; }\n";
1774 return false;
1775}
1776
1777
1778/// Output all floating point constants that cannot be printed accurately...
1779void CWriter::printFloatingPointConstants(Function &F) {
1780 // Scan the module for floating point constants. If any FP constant is used
1781 // in the function, we want to redirect it here so that we do not depend on
1782 // the precision of the printed form, unless the printed form preserves
1783 // precision.
1784 //
1785 static unsigned FPCounter = 0;
1786 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1787 I != E; ++I)
1788 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1789 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1790 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001791 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1792
1793 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001794 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001795 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001796 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001797 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001798 << "ULL; /* " << Val << " */\n";
1799 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001800 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001801 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1802 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001803 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001804 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001805 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001806 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001807 // api needed to prevent premature destruction
1808 APInt api = FPC->getValueAPF().convertToAPInt();
1809 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001810 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1811 << " = { 0x" << std::hex
1812 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1813 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1814 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001815 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1816 APInt api = FPC->getValueAPF().convertToAPInt();
1817 const uint64_t *p = api.getRawData();
1818 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1819 << " = { 0x" << std::hex
1820 << p[0] << ", 0x" << p[1]
1821 << "}; /* Long double constant */\n" << std::dec;
1822
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001823 } else
1824 assert(0 && "Unknown float type!");
1825 }
1826
1827 Out << '\n';
1828}
1829
1830
1831/// printSymbolTable - Run through symbol table looking for type names. If a
1832/// type name is found, emit its declaration...
1833///
1834void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1835 Out << "/* Helper union for bitcasts */\n";
1836 Out << "typedef union {\n";
1837 Out << " unsigned int Int32;\n";
1838 Out << " unsigned long long Int64;\n";
1839 Out << " float Float;\n";
1840 Out << " double Double;\n";
1841 Out << "} llvmBitCastUnion;\n";
1842
1843 // We are only interested in the type plane of the symbol table.
1844 TypeSymbolTable::const_iterator I = TST.begin();
1845 TypeSymbolTable::const_iterator End = TST.end();
1846
1847 // If there are no type names, exit early.
1848 if (I == End) return;
1849
1850 // Print out forward declarations for structure types before anything else!
1851 Out << "/* Structure forward decls */\n";
1852 for (; I != End; ++I) {
1853 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1854 Out << Name << ";\n";
1855 TypeNames.insert(std::make_pair(I->second, Name));
1856 }
1857
1858 Out << '\n';
1859
1860 // Now we can print out typedefs. Above, we guaranteed that this can only be
1861 // for struct or opaque types.
1862 Out << "/* Typedefs */\n";
1863 for (I = TST.begin(); I != End; ++I) {
1864 std::string Name = "l_" + Mang->makeNameProper(I->first);
1865 Out << "typedef ";
1866 printType(Out, I->second, false, Name);
1867 Out << ";\n";
1868 }
1869
1870 Out << '\n';
1871
1872 // Keep track of which structures have been printed so far...
1873 std::set<const StructType *> StructPrinted;
1874
1875 // Loop over all structures then push them into the stack so they are
1876 // printed in the correct order.
1877 //
1878 Out << "/* Structure contents */\n";
1879 for (I = TST.begin(); I != End; ++I)
1880 if (const StructType *STy = dyn_cast<StructType>(I->second))
1881 // Only print out used types!
1882 printContainedStructs(STy, StructPrinted);
1883}
1884
1885// Push the struct onto the stack and recursively push all structs
1886// this one depends on.
1887//
1888// TODO: Make this work properly with vector types
1889//
1890void CWriter::printContainedStructs(const Type *Ty,
1891 std::set<const StructType*> &StructPrinted){
1892 // Don't walk through pointers.
1893 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1894
1895 // Print all contained types first.
1896 for (Type::subtype_iterator I = Ty->subtype_begin(),
1897 E = Ty->subtype_end(); I != E; ++I)
1898 printContainedStructs(*I, StructPrinted);
1899
1900 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1901 // Check to see if we have already printed this struct.
1902 if (StructPrinted.insert(STy).second) {
1903 // Print structure type out.
1904 std::string Name = TypeNames[STy];
1905 printType(Out, STy, false, Name, true);
1906 Out << ";\n\n";
1907 }
1908 }
1909}
1910
1911void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1912 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00001913 bool isStructReturn = F->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001914
1915 if (F->hasInternalLinkage()) Out << "static ";
1916 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1917 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1918 switch (F->getCallingConv()) {
1919 case CallingConv::X86_StdCall:
1920 Out << "__stdcall ";
1921 break;
1922 case CallingConv::X86_FastCall:
1923 Out << "__fastcall ";
1924 break;
1925 }
1926
1927 // Loop over the arguments, printing them...
1928 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Chris Lattner1c8733e2008-03-12 17:45:29 +00001929 const PAListPtr &PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001930
1931 std::stringstream FunctionInnards;
1932
1933 // Print out the name...
1934 FunctionInnards << GetValueName(F) << '(';
1935
1936 bool PrintedArg = false;
1937 if (!F->isDeclaration()) {
1938 if (!F->arg_empty()) {
1939 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001940 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001941
1942 // If this is a struct-return function, don't print the hidden
1943 // struct-return argument.
1944 if (isStructReturn) {
1945 assert(I != E && "Invalid struct return function!");
1946 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001947 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001948 }
1949
1950 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001951 for (; I != E; ++I) {
1952 if (PrintedArg) FunctionInnards << ", ";
1953 if (I->hasName() || !Prototype)
1954 ArgName = GetValueName(I);
1955 else
1956 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001957 const Type *ArgTy = I->getType();
Chris Lattner1c8733e2008-03-12 17:45:29 +00001958 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +00001959 ArgTy = cast<PointerType>(ArgTy)->getElementType();
Chris Lattner8bbc8592008-03-02 08:07:24 +00001960 ByValParams.insert(I);
Evan Cheng17254e62008-01-11 09:12:49 +00001961 }
Evan Cheng2054cb02008-01-11 03:07:46 +00001962 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00001963 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001964 ArgName);
1965 PrintedArg = true;
1966 ++Idx;
1967 }
1968 }
1969 } else {
1970 // Loop over the arguments, printing them.
1971 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00001972 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001973
1974 // If this is a struct-return function, don't print the hidden
1975 // struct-return argument.
1976 if (isStructReturn) {
1977 assert(I != E && "Invalid struct return function!");
1978 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00001979 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001980 }
1981
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001982 for (; I != E; ++I) {
1983 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00001984 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +00001985 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengf8956382008-01-11 23:10:11 +00001986 assert(isa<PointerType>(ArgTy));
1987 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1988 }
1989 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00001990 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001991 PrintedArg = true;
1992 ++Idx;
1993 }
1994 }
1995
1996 // Finish printing arguments... if this is a vararg function, print the ...,
1997 // unless there are no known types, in which case, we just emit ().
1998 //
1999 if (FT->isVarArg() && PrintedArg) {
2000 if (PrintedArg) FunctionInnards << ", ";
2001 FunctionInnards << "..."; // Output varargs portion of signature!
2002 } else if (!FT->isVarArg() && !PrintedArg) {
2003 FunctionInnards << "void"; // ret() -> ret(void) in C.
2004 }
2005 FunctionInnards << ')';
2006
2007 // Get the return tpe for the function.
2008 const Type *RetTy;
2009 if (!isStructReturn)
2010 RetTy = F->getReturnType();
2011 else {
2012 // If this is a struct-return function, print the struct-return type.
2013 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2014 }
2015
2016 // Print out the return type and the signature built above.
2017 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002018 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002019 FunctionInnards.str());
2020}
2021
2022static inline bool isFPIntBitCast(const Instruction &I) {
2023 if (!isa<BitCastInst>(I))
2024 return false;
2025 const Type *SrcTy = I.getOperand(0)->getType();
2026 const Type *DstTy = I.getType();
2027 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2028 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2029}
2030
2031void CWriter::printFunction(Function &F) {
2032 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00002033 bool isStructReturn = F.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002034
2035 printFunctionSignature(&F, false);
2036 Out << " {\n";
2037
2038 // If this is a struct return function, handle the result with magic.
2039 if (isStructReturn) {
2040 const Type *StructTy =
2041 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2042 Out << " ";
2043 printType(Out, StructTy, false, "StructReturn");
2044 Out << "; /* Struct return temporary */\n";
2045
2046 Out << " ";
2047 printType(Out, F.arg_begin()->getType(), false,
2048 GetValueName(F.arg_begin()));
2049 Out << " = &StructReturn;\n";
2050 }
2051
2052 bool PrintedVar = false;
2053
2054 // print local variable information for the function
2055 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2056 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2057 Out << " ";
2058 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2059 Out << "; /* Address-exposed local */\n";
2060 PrintedVar = true;
2061 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2062 Out << " ";
2063 printType(Out, I->getType(), false, GetValueName(&*I));
2064 Out << ";\n";
2065
2066 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2067 Out << " ";
2068 printType(Out, I->getType(), false,
2069 GetValueName(&*I)+"__PHI_TEMPORARY");
2070 Out << ";\n";
2071 }
2072 PrintedVar = true;
2073 }
2074 // We need a temporary for the BitCast to use so it can pluck a value out
2075 // of a union to do the BitCast. This is separate from the need for a
2076 // variable to hold the result of the BitCast.
2077 if (isFPIntBitCast(*I)) {
2078 Out << " llvmBitCastUnion " << GetValueName(&*I)
2079 << "__BITCAST_TEMPORARY;\n";
2080 PrintedVar = true;
2081 }
2082 }
2083
2084 if (PrintedVar)
2085 Out << '\n';
2086
2087 if (F.hasExternalLinkage() && F.getName() == "main")
2088 Out << " CODE_FOR_MAIN();\n";
2089
2090 // print the basic blocks
2091 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2092 if (Loop *L = LI->getLoopFor(BB)) {
2093 if (L->getHeader() == BB && L->getParentLoop() == 0)
2094 printLoop(L);
2095 } else {
2096 printBasicBlock(BB);
2097 }
2098 }
2099
2100 Out << "}\n\n";
2101}
2102
2103void CWriter::printLoop(Loop *L) {
2104 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2105 << "' to make GCC happy */\n";
2106 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2107 BasicBlock *BB = L->getBlocks()[i];
2108 Loop *BBLoop = LI->getLoopFor(BB);
2109 if (BBLoop == L)
2110 printBasicBlock(BB);
2111 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2112 printLoop(BBLoop);
2113 }
2114 Out << " } while (1); /* end of syntactic loop '"
2115 << L->getHeader()->getName() << "' */\n";
2116}
2117
2118void CWriter::printBasicBlock(BasicBlock *BB) {
2119
2120 // Don't print the label for the basic block if there are no uses, or if
2121 // the only terminator use is the predecessor basic block's terminator.
2122 // We have to scan the use list because PHI nodes use basic blocks too but
2123 // do not require a label to be generated.
2124 //
2125 bool NeedsLabel = false;
2126 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2127 if (isGotoCodeNecessary(*PI, BB)) {
2128 NeedsLabel = true;
2129 break;
2130 }
2131
2132 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2133
2134 // Output all of the instructions in the basic block...
2135 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2136 ++II) {
2137 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2138 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2139 outputLValue(II);
2140 else
2141 Out << " ";
2142 visit(*II);
2143 Out << ";\n";
2144 }
2145 }
2146
2147 // Don't emit prefix or suffix for the terminator...
2148 visit(*BB->getTerminator());
2149}
2150
2151
2152// Specific Instruction type classes... note that all of the casts are
2153// necessary because we use the instruction classes as opaque types...
2154//
2155void CWriter::visitReturnInst(ReturnInst &I) {
2156 // If this is a struct return function, return the temporary struct.
Devang Patel949a4b72008-03-03 21:46:28 +00002157 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002158
2159 if (isStructReturn) {
2160 Out << " return StructReturn;\n";
2161 return;
2162 }
2163
2164 // Don't output a void return if this is the last basic block in the function
2165 if (I.getNumOperands() == 0 &&
2166 &*--I.getParent()->getParent()->end() == I.getParent() &&
2167 !I.getParent()->size() == 1) {
2168 return;
2169 }
2170
2171 Out << " return";
2172 if (I.getNumOperands()) {
2173 Out << ' ';
2174 writeOperand(I.getOperand(0));
2175 }
2176 Out << ";\n";
2177}
2178
2179void CWriter::visitSwitchInst(SwitchInst &SI) {
2180
2181 Out << " switch (";
2182 writeOperand(SI.getOperand(0));
2183 Out << ") {\n default:\n";
2184 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2185 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2186 Out << ";\n";
2187 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2188 Out << " case ";
2189 writeOperand(SI.getOperand(i));
2190 Out << ":\n";
2191 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2192 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2193 printBranchToBlock(SI.getParent(), Succ, 2);
2194 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2195 Out << " break;\n";
2196 }
2197 Out << " }\n";
2198}
2199
2200void CWriter::visitUnreachableInst(UnreachableInst &I) {
2201 Out << " /*UNREACHABLE*/;\n";
2202}
2203
2204bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2205 /// FIXME: This should be reenabled, but loop reordering safe!!
2206 return true;
2207
2208 if (next(Function::iterator(From)) != Function::iterator(To))
2209 return true; // Not the direct successor, we need a goto.
2210
2211 //isa<SwitchInst>(From->getTerminator())
2212
2213 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2214 return true;
2215 return false;
2216}
2217
2218void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2219 BasicBlock *Successor,
2220 unsigned Indent) {
2221 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2222 PHINode *PN = cast<PHINode>(I);
2223 // Now we have to do the printing.
2224 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2225 if (!isa<UndefValue>(IV)) {
2226 Out << std::string(Indent, ' ');
2227 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2228 writeOperand(IV);
2229 Out << "; /* for PHI node */\n";
2230 }
2231 }
2232}
2233
2234void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2235 unsigned Indent) {
2236 if (isGotoCodeNecessary(CurBB, Succ)) {
2237 Out << std::string(Indent, ' ') << " goto ";
2238 writeOperand(Succ);
2239 Out << ";\n";
2240 }
2241}
2242
2243// Branch instruction printing - Avoid printing out a branch to a basic block
2244// that immediately succeeds the current one.
2245//
2246void CWriter::visitBranchInst(BranchInst &I) {
2247
2248 if (I.isConditional()) {
2249 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2250 Out << " if (";
2251 writeOperand(I.getCondition());
2252 Out << ") {\n";
2253
2254 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2255 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2256
2257 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2258 Out << " } else {\n";
2259 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2260 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2261 }
2262 } else {
2263 // First goto not necessary, assume second one is...
2264 Out << " if (!";
2265 writeOperand(I.getCondition());
2266 Out << ") {\n";
2267
2268 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2269 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2270 }
2271
2272 Out << " }\n";
2273 } else {
2274 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2275 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2276 }
2277 Out << "\n";
2278}
2279
2280// PHI nodes get copied into temporary values at the end of predecessor basic
2281// blocks. We now need to copy these temporary values into the REAL value for
2282// the PHI.
2283void CWriter::visitPHINode(PHINode &I) {
2284 writeOperand(&I);
2285 Out << "__PHI_TEMPORARY";
2286}
2287
2288
2289void CWriter::visitBinaryOperator(Instruction &I) {
2290 // binary instructions, shift instructions, setCond instructions.
2291 assert(!isa<PointerType>(I.getType()));
2292
2293 // We must cast the results of binary operations which might be promoted.
2294 bool needsCast = false;
2295 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2296 || (I.getType() == Type::FloatTy)) {
2297 needsCast = true;
2298 Out << "((";
2299 printType(Out, I.getType(), false);
2300 Out << ")(";
2301 }
2302
2303 // If this is a negation operation, print it out as such. For FP, we don't
2304 // want to print "-0.0 - X".
2305 if (BinaryOperator::isNeg(&I)) {
2306 Out << "-(";
2307 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2308 Out << ")";
2309 } else if (I.getOpcode() == Instruction::FRem) {
2310 // Output a call to fmod/fmodf instead of emitting a%b
2311 if (I.getType() == Type::FloatTy)
2312 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002313 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002314 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002315 else // all 3 flavors of long double
2316 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002317 writeOperand(I.getOperand(0));
2318 Out << ", ";
2319 writeOperand(I.getOperand(1));
2320 Out << ")";
2321 } else {
2322
2323 // Write out the cast of the instruction's value back to the proper type
2324 // if necessary.
2325 bool NeedsClosingParens = writeInstructionCast(I);
2326
2327 // Certain instructions require the operand to be forced to a specific type
2328 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2329 // below for operand 1
2330 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2331
2332 switch (I.getOpcode()) {
2333 case Instruction::Add: Out << " + "; break;
2334 case Instruction::Sub: Out << " - "; break;
2335 case Instruction::Mul: Out << " * "; break;
2336 case Instruction::URem:
2337 case Instruction::SRem:
2338 case Instruction::FRem: Out << " % "; break;
2339 case Instruction::UDiv:
2340 case Instruction::SDiv:
2341 case Instruction::FDiv: Out << " / "; break;
2342 case Instruction::And: Out << " & "; break;
2343 case Instruction::Or: Out << " | "; break;
2344 case Instruction::Xor: Out << " ^ "; break;
2345 case Instruction::Shl : Out << " << "; break;
2346 case Instruction::LShr:
2347 case Instruction::AShr: Out << " >> "; break;
2348 default: cerr << "Invalid operator type!" << I; abort();
2349 }
2350
2351 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2352 if (NeedsClosingParens)
2353 Out << "))";
2354 }
2355
2356 if (needsCast) {
2357 Out << "))";
2358 }
2359}
2360
2361void CWriter::visitICmpInst(ICmpInst &I) {
2362 // We must cast the results of icmp which might be promoted.
2363 bool needsCast = false;
2364
2365 // Write out the cast of the instruction's value back to the proper type
2366 // if necessary.
2367 bool NeedsClosingParens = writeInstructionCast(I);
2368
2369 // Certain icmp predicate require the operand to be forced to a specific type
2370 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2371 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002372 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002373
2374 switch (I.getPredicate()) {
2375 case ICmpInst::ICMP_EQ: Out << " == "; break;
2376 case ICmpInst::ICMP_NE: Out << " != "; break;
2377 case ICmpInst::ICMP_ULE:
2378 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2379 case ICmpInst::ICMP_UGE:
2380 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2381 case ICmpInst::ICMP_ULT:
2382 case ICmpInst::ICMP_SLT: Out << " < "; break;
2383 case ICmpInst::ICMP_UGT:
2384 case ICmpInst::ICMP_SGT: Out << " > "; break;
2385 default: cerr << "Invalid icmp predicate!" << I; abort();
2386 }
2387
Chris Lattner389c9142007-09-15 06:51:03 +00002388 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002389 if (NeedsClosingParens)
2390 Out << "))";
2391
2392 if (needsCast) {
2393 Out << "))";
2394 }
2395}
2396
2397void CWriter::visitFCmpInst(FCmpInst &I) {
2398 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2399 Out << "0";
2400 return;
2401 }
2402 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2403 Out << "1";
2404 return;
2405 }
2406
2407 const char* op = 0;
2408 switch (I.getPredicate()) {
2409 default: assert(0 && "Illegal FCmp predicate");
2410 case FCmpInst::FCMP_ORD: op = "ord"; break;
2411 case FCmpInst::FCMP_UNO: op = "uno"; break;
2412 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2413 case FCmpInst::FCMP_UNE: op = "une"; break;
2414 case FCmpInst::FCMP_ULT: op = "ult"; break;
2415 case FCmpInst::FCMP_ULE: op = "ule"; break;
2416 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2417 case FCmpInst::FCMP_UGE: op = "uge"; break;
2418 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2419 case FCmpInst::FCMP_ONE: op = "one"; break;
2420 case FCmpInst::FCMP_OLT: op = "olt"; break;
2421 case FCmpInst::FCMP_OLE: op = "ole"; break;
2422 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2423 case FCmpInst::FCMP_OGE: op = "oge"; break;
2424 }
2425
2426 Out << "llvm_fcmp_" << op << "(";
2427 // Write the first operand
2428 writeOperand(I.getOperand(0));
2429 Out << ", ";
2430 // Write the second operand
2431 writeOperand(I.getOperand(1));
2432 Out << ")";
2433}
2434
2435static const char * getFloatBitCastField(const Type *Ty) {
2436 switch (Ty->getTypeID()) {
2437 default: assert(0 && "Invalid Type");
2438 case Type::FloatTyID: return "Float";
2439 case Type::DoubleTyID: return "Double";
2440 case Type::IntegerTyID: {
2441 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2442 if (NumBits <= 32)
2443 return "Int32";
2444 else
2445 return "Int64";
2446 }
2447 }
2448}
2449
2450void CWriter::visitCastInst(CastInst &I) {
2451 const Type *DstTy = I.getType();
2452 const Type *SrcTy = I.getOperand(0)->getType();
2453 Out << '(';
2454 if (isFPIntBitCast(I)) {
2455 // These int<->float and long<->double casts need to be handled specially
2456 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2457 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2458 writeOperand(I.getOperand(0));
2459 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2460 << getFloatBitCastField(I.getType());
2461 } else {
2462 printCast(I.getOpcode(), SrcTy, DstTy);
2463 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2464 // Make sure we really get a sext from bool by subtracing the bool from 0
2465 Out << "0-";
2466 }
2467 writeOperand(I.getOperand(0));
2468 if (DstTy == Type::Int1Ty &&
2469 (I.getOpcode() == Instruction::Trunc ||
2470 I.getOpcode() == Instruction::FPToUI ||
2471 I.getOpcode() == Instruction::FPToSI ||
2472 I.getOpcode() == Instruction::PtrToInt)) {
2473 // Make sure we really get a trunc to bool by anding the operand with 1
2474 Out << "&1u";
2475 }
2476 }
2477 Out << ')';
2478}
2479
2480void CWriter::visitSelectInst(SelectInst &I) {
2481 Out << "((";
2482 writeOperand(I.getCondition());
2483 Out << ") ? (";
2484 writeOperand(I.getTrueValue());
2485 Out << ") : (";
2486 writeOperand(I.getFalseValue());
2487 Out << "))";
2488}
2489
2490
2491void CWriter::lowerIntrinsics(Function &F) {
2492 // This is used to keep track of intrinsics that get generated to a lowered
2493 // function. We must generate the prototypes before the function body which
2494 // will only be expanded on first use (by the loop below).
2495 std::vector<Function*> prototypesToGen;
2496
2497 // Examine all the instructions in this function to find the intrinsics that
2498 // need to be lowered.
2499 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2500 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2501 if (CallInst *CI = dyn_cast<CallInst>(I++))
2502 if (Function *F = CI->getCalledFunction())
2503 switch (F->getIntrinsicID()) {
2504 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002505 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002506 case Intrinsic::vastart:
2507 case Intrinsic::vacopy:
2508 case Intrinsic::vaend:
2509 case Intrinsic::returnaddress:
2510 case Intrinsic::frameaddress:
2511 case Intrinsic::setjmp:
2512 case Intrinsic::longjmp:
2513 case Intrinsic::prefetch:
2514 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002515 case Intrinsic::powi:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002516 case Intrinsic::x86_sse_cmp_ss:
2517 case Intrinsic::x86_sse_cmp_ps:
2518 case Intrinsic::x86_sse2_cmp_sd:
2519 case Intrinsic::x86_sse2_cmp_pd:
Chris Lattner709df322008-03-02 08:54:27 +00002520 case Intrinsic::ppc_altivec_lvsl:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002521 // We directly implement these intrinsics
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002522 break;
2523 default:
2524 // If this is an intrinsic that directly corresponds to a GCC
2525 // builtin, we handle it.
2526 const char *BuiltinName = "";
2527#define GET_GCC_BUILTIN_NAME
2528#include "llvm/Intrinsics.gen"
2529#undef GET_GCC_BUILTIN_NAME
2530 // If we handle it, don't lower it.
2531 if (BuiltinName[0]) break;
2532
2533 // All other intrinsic calls we must lower.
2534 Instruction *Before = 0;
2535 if (CI != &BB->front())
2536 Before = prior(BasicBlock::iterator(CI));
2537
2538 IL->LowerIntrinsicCall(CI);
2539 if (Before) { // Move iterator to instruction after call
2540 I = Before; ++I;
2541 } else {
2542 I = BB->begin();
2543 }
2544 // If the intrinsic got lowered to another call, and that call has
2545 // a definition then we need to make sure its prototype is emitted
2546 // before any calls to it.
2547 if (CallInst *Call = dyn_cast<CallInst>(I))
2548 if (Function *NewF = Call->getCalledFunction())
2549 if (!NewF->isDeclaration())
2550 prototypesToGen.push_back(NewF);
2551
2552 break;
2553 }
2554
2555 // We may have collected some prototypes to emit in the loop above.
2556 // Emit them now, before the function that uses them is emitted. But,
2557 // be careful not to emit them twice.
2558 std::vector<Function*>::iterator I = prototypesToGen.begin();
2559 std::vector<Function*>::iterator E = prototypesToGen.end();
2560 for ( ; I != E; ++I) {
2561 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2562 Out << '\n';
2563 printFunctionSignature(*I, true);
2564 Out << ";\n";
2565 }
2566 }
2567}
2568
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002569void CWriter::visitCallInst(CallInst &I) {
2570 //check if we have inline asm
2571 if (isInlineAsm(I)) {
2572 visitInlineAsm(I);
2573 return;
2574 }
2575
2576 bool WroteCallee = false;
2577
2578 // Handle intrinsic function calls first...
2579 if (Function *F = I.getCalledFunction())
Chris Lattnera74b9182008-03-02 08:29:41 +00002580 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2581 if (visitBuiltinCall(I, ID, WroteCallee))
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002582 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002583
2584 Value *Callee = I.getCalledValue();
2585
2586 const PointerType *PTy = cast<PointerType>(Callee->getType());
2587 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2588
2589 // If this is a call to a struct-return function, assign to the first
2590 // parameter instead of passing it to the call.
Chris Lattner1c8733e2008-03-12 17:45:29 +00002591 const PAListPtr &PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002592 bool hasByVal = I.hasByValArgument();
Devang Patel949a4b72008-03-03 21:46:28 +00002593 bool isStructRet = I.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002594 if (isStructRet) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002595 writeOperandDeref(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002596 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002597 }
2598
2599 if (I.isTailCall()) Out << " /*tail*/ ";
2600
2601 if (!WroteCallee) {
2602 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002603 // the pointer. Ditto for indirect calls with byval arguments.
2604 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002605
2606 // GCC is a real PITA. It does not permit codegening casts of functions to
2607 // function pointers if they are in a call (it generates a trap instruction
2608 // instead!). We work around this by inserting a cast to void* in between
2609 // the function and the function pointer cast. Unfortunately, we can't just
2610 // form the constant expression here, because the folder will immediately
2611 // nuke it.
2612 //
2613 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2614 // that void* and function pointers have the same size. :( To deal with this
2615 // in the common case, we handle casts where the number of arguments passed
2616 // match exactly.
2617 //
2618 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2619 if (CE->isCast())
2620 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2621 NeedsCast = true;
2622 Callee = RF;
2623 }
2624
2625 if (NeedsCast) {
2626 // Ok, just cast the pointer type.
2627 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002628 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002629 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002630 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002631 else if (hasByVal)
2632 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2633 else
2634 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002635 Out << ")(void*)";
2636 }
2637 writeOperand(Callee);
2638 if (NeedsCast) Out << ')';
2639 }
2640
2641 Out << '(';
2642
2643 unsigned NumDeclaredParams = FTy->getNumParams();
2644
2645 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2646 unsigned ArgNo = 0;
2647 if (isStructRet) { // Skip struct return argument.
2648 ++AI;
2649 ++ArgNo;
2650 }
2651
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002652 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002653 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002654 if (PrintedArg) Out << ", ";
2655 if (ArgNo < NumDeclaredParams &&
2656 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2657 Out << '(';
2658 printType(Out, FTy->getParamType(ArgNo),
Chris Lattner1c8733e2008-03-12 17:45:29 +00002659 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660 Out << ')';
2661 }
Evan Chengf8956382008-01-11 23:10:11 +00002662 // Check if the argument is expected to be passed by value.
Chris Lattner8bbc8592008-03-02 08:07:24 +00002663 if (I.paramHasAttr(ArgNo+1, ParamAttr::ByVal))
2664 writeOperandDeref(*AI);
2665 else
2666 writeOperand(*AI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002667 PrintedArg = true;
2668 }
2669 Out << ')';
2670}
2671
Chris Lattnera74b9182008-03-02 08:29:41 +00002672/// visitBuiltinCall - Handle the call to the specified builtin. Returns true
2673/// if the entire call is handled, return false it it wasn't handled, and
2674/// optionally set 'WroteCallee' if the callee has already been printed out.
2675bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
2676 bool &WroteCallee) {
2677 switch (ID) {
2678 default: {
2679 // If this is an intrinsic that directly corresponds to a GCC
2680 // builtin, we emit it here.
2681 const char *BuiltinName = "";
2682 Function *F = I.getCalledFunction();
2683#define GET_GCC_BUILTIN_NAME
2684#include "llvm/Intrinsics.gen"
2685#undef GET_GCC_BUILTIN_NAME
2686 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2687
2688 Out << BuiltinName;
2689 WroteCallee = true;
2690 return false;
2691 }
2692 case Intrinsic::memory_barrier:
Andrew Lenharth5c976182008-03-05 23:41:37 +00002693 Out << "__sync_synchronize()";
Chris Lattnera74b9182008-03-02 08:29:41 +00002694 return true;
2695 case Intrinsic::vastart:
2696 Out << "0; ";
2697
2698 Out << "va_start(*(va_list*)";
2699 writeOperand(I.getOperand(1));
2700 Out << ", ";
2701 // Output the last argument to the enclosing function.
2702 if (I.getParent()->getParent()->arg_empty()) {
2703 cerr << "The C backend does not currently support zero "
2704 << "argument varargs functions, such as '"
2705 << I.getParent()->getParent()->getName() << "'!\n";
2706 abort();
2707 }
2708 writeOperand(--I.getParent()->getParent()->arg_end());
2709 Out << ')';
2710 return true;
2711 case Intrinsic::vaend:
2712 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2713 Out << "0; va_end(*(va_list*)";
2714 writeOperand(I.getOperand(1));
2715 Out << ')';
2716 } else {
2717 Out << "va_end(*(va_list*)0)";
2718 }
2719 return true;
2720 case Intrinsic::vacopy:
2721 Out << "0; ";
2722 Out << "va_copy(*(va_list*)";
2723 writeOperand(I.getOperand(1));
2724 Out << ", *(va_list*)";
2725 writeOperand(I.getOperand(2));
2726 Out << ')';
2727 return true;
2728 case Intrinsic::returnaddress:
2729 Out << "__builtin_return_address(";
2730 writeOperand(I.getOperand(1));
2731 Out << ')';
2732 return true;
2733 case Intrinsic::frameaddress:
2734 Out << "__builtin_frame_address(";
2735 writeOperand(I.getOperand(1));
2736 Out << ')';
2737 return true;
2738 case Intrinsic::powi:
2739 Out << "__builtin_powi(";
2740 writeOperand(I.getOperand(1));
2741 Out << ", ";
2742 writeOperand(I.getOperand(2));
2743 Out << ')';
2744 return true;
2745 case Intrinsic::setjmp:
2746 Out << "setjmp(*(jmp_buf*)";
2747 writeOperand(I.getOperand(1));
2748 Out << ')';
2749 return true;
2750 case Intrinsic::longjmp:
2751 Out << "longjmp(*(jmp_buf*)";
2752 writeOperand(I.getOperand(1));
2753 Out << ", ";
2754 writeOperand(I.getOperand(2));
2755 Out << ')';
2756 return true;
2757 case Intrinsic::prefetch:
2758 Out << "LLVM_PREFETCH((const void *)";
2759 writeOperand(I.getOperand(1));
2760 Out << ", ";
2761 writeOperand(I.getOperand(2));
2762 Out << ", ";
2763 writeOperand(I.getOperand(3));
2764 Out << ")";
2765 return true;
2766 case Intrinsic::stacksave:
2767 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2768 // to work around GCC bugs (see PR1809).
2769 Out << "0; *((void**)&" << GetValueName(&I)
2770 << ") = __builtin_stack_save()";
2771 return true;
2772 case Intrinsic::dbg_stoppoint: {
2773 // If we use writeOperand directly we get a "u" suffix which is rejected
2774 // by gcc.
2775 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2776 Out << "\n#line "
2777 << SPI.getLine()
2778 << " \"" << SPI.getDirectory()
2779 << SPI.getFileName() << "\"\n";
2780 return true;
2781 }
Chris Lattner6a947cb2008-03-02 08:47:13 +00002782 case Intrinsic::x86_sse_cmp_ss:
2783 case Intrinsic::x86_sse_cmp_ps:
2784 case Intrinsic::x86_sse2_cmp_sd:
2785 case Intrinsic::x86_sse2_cmp_pd:
2786 Out << '(';
2787 printType(Out, I.getType());
2788 Out << ')';
2789 // Multiple GCC builtins multiplex onto this intrinsic.
2790 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
2791 default: assert(0 && "Invalid llvm.x86.sse.cmp!");
2792 case 0: Out << "__builtin_ia32_cmpeq"; break;
2793 case 1: Out << "__builtin_ia32_cmplt"; break;
2794 case 2: Out << "__builtin_ia32_cmple"; break;
2795 case 3: Out << "__builtin_ia32_cmpunord"; break;
2796 case 4: Out << "__builtin_ia32_cmpneq"; break;
2797 case 5: Out << "__builtin_ia32_cmpnlt"; break;
2798 case 6: Out << "__builtin_ia32_cmpnle"; break;
2799 case 7: Out << "__builtin_ia32_cmpord"; break;
2800 }
2801 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
2802 Out << 'p';
2803 else
2804 Out << 's';
2805 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
2806 Out << 's';
2807 else
2808 Out << 'd';
2809
2810 Out << "(";
2811 writeOperand(I.getOperand(1));
2812 Out << ", ";
2813 writeOperand(I.getOperand(2));
2814 Out << ")";
2815 return true;
Chris Lattner709df322008-03-02 08:54:27 +00002816 case Intrinsic::ppc_altivec_lvsl:
2817 Out << '(';
2818 printType(Out, I.getType());
2819 Out << ')';
2820 Out << "__builtin_altivec_lvsl(0, (void*)";
2821 writeOperand(I.getOperand(1));
2822 Out << ")";
2823 return true;
Chris Lattnera74b9182008-03-02 08:29:41 +00002824 }
2825}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002826
2827//This converts the llvm constraint string to something gcc is expecting.
2828//TODO: work out platform independent constraints and factor those out
2829// of the per target tables
2830// handle multiple constraint codes
2831std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2832
2833 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2834
Dan Gohman12300e12008-03-25 21:45:14 +00002835 const char *const *table = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002836
2837 //Grab the translation table from TargetAsmInfo if it exists
2838 if (!TAsm) {
2839 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002840 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002841 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2842 if (Match) {
2843 //Per platform Target Machines don't exist, so create it
2844 // this must be done only once
2845 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2846 TAsm = TM->getTargetAsmInfo();
2847 }
2848 }
2849 if (TAsm)
2850 table = TAsm->getAsmCBE();
2851
2852 //Search the translation table if it exists
2853 for (int i = 0; table && table[i]; i += 2)
2854 if (c.Codes[0] == table[i])
2855 return table[i+1];
2856
2857 //default is identity
2858 return c.Codes[0];
2859}
2860
2861//TODO: import logic from AsmPrinter.cpp
2862static std::string gccifyAsm(std::string asmstr) {
2863 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2864 if (asmstr[i] == '\n')
2865 asmstr.replace(i, 1, "\\n");
2866 else if (asmstr[i] == '\t')
2867 asmstr.replace(i, 1, "\\t");
2868 else if (asmstr[i] == '$') {
2869 if (asmstr[i + 1] == '{') {
2870 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2871 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2872 std::string n = "%" +
2873 asmstr.substr(a + 1, b - a - 1) +
2874 asmstr.substr(i + 2, a - i - 2);
2875 asmstr.replace(i, b - i + 1, n);
2876 i += n.size() - 1;
2877 } else
2878 asmstr.replace(i, 1, "%");
2879 }
2880 else if (asmstr[i] == '%')//grr
2881 { asmstr.replace(i, 1, "%%"); ++i;}
2882
2883 return asmstr;
2884}
2885
2886//TODO: assumptions about what consume arguments from the call are likely wrong
2887// handle communitivity
2888void CWriter::visitInlineAsm(CallInst &CI) {
2889 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2890 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2891 std::vector<std::pair<std::string, Value*> > Input;
2892 std::vector<std::pair<std::string, Value*> > Output;
2893 std::string Clobber;
2894 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2895 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2896 E = Constraints.end(); I != E; ++I) {
2897 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2898 std::string c =
2899 InterpretASMConstraint(*I);
2900 switch(I->Type) {
2901 default:
2902 assert(0 && "Unknown asm constraint");
2903 break;
2904 case InlineAsm::isInput: {
2905 if (c.size()) {
2906 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2907 ++count; //consume arg
2908 }
2909 break;
2910 }
2911 case InlineAsm::isOutput: {
2912 if (c.size()) {
2913 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2914 count ? CI.getOperand(count) : &CI));
2915 ++count; //consume arg
2916 }
2917 break;
2918 }
2919 case InlineAsm::isClobber: {
2920 if (c.size())
2921 Clobber += ",\"" + c + "\"";
2922 break;
2923 }
2924 }
2925 }
2926
2927 //fix up the asm string for gcc
2928 std::string asmstr = gccifyAsm(as->getAsmString());
2929
2930 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2931 Out << " :";
Chris Lattner8bbc8592008-03-02 08:07:24 +00002932 for (std::vector<std::pair<std::string, Value*> >::iterator I =Output.begin(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002933 E = Output.end(); I != E; ++I) {
2934 Out << "\"" << I->first << "\"(";
2935 writeOperandRaw(I->second);
2936 Out << ")";
2937 if (I + 1 != E)
2938 Out << ",";
2939 }
2940 Out << "\n :";
2941 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2942 E = Input.end(); I != E; ++I) {
2943 Out << "\"" << I->first << "\"(";
2944 writeOperandRaw(I->second);
2945 Out << ")";
2946 if (I + 1 != E)
2947 Out << ",";
2948 }
2949 if (Clobber.size())
2950 Out << "\n :" << Clobber.substr(1);
2951 Out << ")";
2952}
2953
2954void CWriter::visitMallocInst(MallocInst &I) {
2955 assert(0 && "lowerallocations pass didn't work!");
2956}
2957
2958void CWriter::visitAllocaInst(AllocaInst &I) {
2959 Out << '(';
2960 printType(Out, I.getType());
2961 Out << ") alloca(sizeof(";
2962 printType(Out, I.getType()->getElementType());
2963 Out << ')';
2964 if (I.isArrayAllocation()) {
2965 Out << " * " ;
2966 writeOperand(I.getOperand(0));
2967 }
2968 Out << ')';
2969}
2970
2971void CWriter::visitFreeInst(FreeInst &I) {
2972 assert(0 && "lowerallocations pass didn't work!");
2973}
2974
Chris Lattner8bbc8592008-03-02 08:07:24 +00002975void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
2976 gep_type_iterator E) {
2977
2978 // If there are no indices, just print out the pointer.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002979 if (I == E) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002980 writeOperand(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002981 return;
2982 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00002983
2984 // Find out if the last index is into a vector. If so, we have to print this
2985 // specially. Since vectors can't have elements of indexable type, only the
2986 // last index could possibly be of a vector element.
2987 const VectorType *LastIndexIsVector = 0;
2988 {
2989 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
2990 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002991 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00002992
2993 Out << "(";
2994
2995 // If the last index is into a vector, we can't print it as &a[i][j] because
2996 // we can't index into a vector with j in GCC. Instead, emit this as
2997 // (((float*)&a[i])+j)
2998 if (LastIndexIsVector) {
2999 Out << "((";
3000 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
3001 Out << ")(";
3002 }
3003
3004 Out << '&';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003005
Chris Lattner8bbc8592008-03-02 08:07:24 +00003006 // If the first index is 0 (very typical) we can do a number of
3007 // simplifications to clean up the code.
3008 Value *FirstOp = I.getOperand();
3009 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3010 // First index isn't simple, print it the hard way.
3011 writeOperand(Ptr);
3012 } else {
3013 ++I; // Skip the zero index.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003014
Chris Lattner8bbc8592008-03-02 08:07:24 +00003015 // Okay, emit the first operand. If Ptr is something that is already address
3016 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3017 if (isAddressExposed(Ptr)) {
3018 writeOperandInternal(Ptr);
3019 } else if (I != E && isa<StructType>(*I)) {
3020 // If we didn't already emit the first operand, see if we can print it as
3021 // P->f instead of "P[0].f"
3022 writeOperand(Ptr);
3023 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3024 ++I; // eat the struct index as well.
3025 } else {
3026 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3027 Out << "(*";
3028 writeOperand(Ptr);
3029 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003030 }
3031 }
3032
Chris Lattner8bbc8592008-03-02 08:07:24 +00003033 for (; I != E; ++I) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003034 if (isa<StructType>(*I)) {
3035 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
Chris Lattner8bbc8592008-03-02 08:07:24 +00003036 } else if (!isa<VectorType>(*I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003037 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00003038 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003039 Out << ']';
Chris Lattner8bbc8592008-03-02 08:07:24 +00003040 } else {
3041 // If the last index is into a vector, then print it out as "+j)". This
3042 // works with the 'LastIndexIsVector' code above.
3043 if (isa<Constant>(I.getOperand()) &&
3044 cast<Constant>(I.getOperand())->isNullValue()) {
3045 Out << "))"; // avoid "+0".
3046 } else {
3047 Out << ")+(";
3048 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3049 Out << "))";
3050 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003051 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003052 }
3053 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003054}
3055
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003056void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3057 bool IsVolatile, unsigned Alignment) {
3058
3059 bool IsUnaligned = Alignment &&
3060 Alignment < TD->getABITypeAlignment(OperandType);
3061
3062 if (!IsUnaligned)
3063 Out << '*';
3064 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003065 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003066 if (IsUnaligned)
3067 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3068 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3069 if (IsUnaligned) {
3070 Out << "; } ";
3071 if (IsVolatile) Out << "volatile ";
3072 Out << "*";
3073 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003074 Out << ")";
3075 }
3076
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003077 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003078
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003079 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003080 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003081 if (IsUnaligned)
3082 Out << "->data";
3083 }
3084}
3085
3086void CWriter::visitLoadInst(LoadInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003087 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3088 I.getAlignment());
3089
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003090}
3091
3092void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003093 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3094 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003095 Out << " = ";
3096 Value *Operand = I.getOperand(0);
3097 Constant *BitMask = 0;
3098 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3099 if (!ITy->isPowerOf2ByteWidth())
3100 // We have a bit width that doesn't match an even power-of-2 byte
3101 // size. Consequently we must & the value with the type's bit mask
3102 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3103 if (BitMask)
3104 Out << "((";
3105 writeOperand(Operand);
3106 if (BitMask) {
3107 Out << ") & ";
3108 printConstant(BitMask);
3109 Out << ")";
3110 }
3111}
3112
3113void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003114 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3115 gep_type_end(I));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003116}
3117
3118void CWriter::visitVAArgInst(VAArgInst &I) {
3119 Out << "va_arg(*(va_list*)";
3120 writeOperand(I.getOperand(0));
3121 Out << ", ";
3122 printType(Out, I.getType());
3123 Out << ");\n ";
3124}
3125
Chris Lattnerf41a7942008-03-02 03:52:39 +00003126void CWriter::visitInsertElementInst(InsertElementInst &I) {
3127 const Type *EltTy = I.getType()->getElementType();
3128 writeOperand(I.getOperand(0));
3129 Out << ";\n ";
3130 Out << "((";
3131 printType(Out, PointerType::getUnqual(EltTy));
3132 Out << ")(&" << GetValueName(&I) << "))[";
Chris Lattnerf41a7942008-03-02 03:52:39 +00003133 writeOperand(I.getOperand(2));
Chris Lattner09418362008-03-02 08:10:16 +00003134 Out << "] = (";
3135 writeOperand(I.getOperand(1));
Chris Lattnerf41a7942008-03-02 03:52:39 +00003136 Out << ")";
3137}
3138
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003139void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3140 // We know that our operand is not inlined.
3141 Out << "((";
3142 const Type *EltTy =
3143 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3144 printType(Out, PointerType::getUnqual(EltTy));
3145 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3146 writeOperand(I.getOperand(1));
3147 Out << "]";
3148}
3149
Chris Lattnerf858a042008-03-02 05:41:07 +00003150void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3151 Out << "(";
3152 printType(Out, SVI.getType());
3153 Out << "){ ";
3154 const VectorType *VT = SVI.getType();
3155 unsigned NumElts = VT->getNumElements();
3156 const Type *EltTy = VT->getElementType();
3157
3158 for (unsigned i = 0; i != NumElts; ++i) {
3159 if (i) Out << ", ";
3160 int SrcVal = SVI.getMaskValue(i);
3161 if ((unsigned)SrcVal >= NumElts*2) {
3162 Out << " 0/*undef*/ ";
3163 } else {
3164 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3165 if (isa<Instruction>(Op)) {
3166 // Do an extractelement of this value from the appropriate input.
3167 Out << "((";
3168 printType(Out, PointerType::getUnqual(EltTy));
3169 Out << ")(&" << GetValueName(Op)
3170 << "))[" << (SrcVal & NumElts-1) << "]";
3171 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3172 Out << "0";
3173 } else {
3174 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal & NumElts-1));
3175 }
3176 }
3177 }
3178 Out << "}";
3179}
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003180
Chris Lattnerf41a7942008-03-02 03:52:39 +00003181
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003182//===----------------------------------------------------------------------===//
3183// External Interface declaration
3184//===----------------------------------------------------------------------===//
3185
3186bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3187 std::ostream &o,
3188 CodeGenFileType FileType,
3189 bool Fast) {
3190 if (FileType != TargetMachine::AssemblyFile) return true;
3191
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003192 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003193 PM.add(createLowerAllocationsPass(true));
3194 PM.add(createLowerInvokePass());
3195 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3196 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3197 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003198 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003199 return false;
3200}