blob: fb64e17632cec91e634bc6d65fa785e135da3f30 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
3// This file defines a simple peephole instruction selector for the x86 platform
4//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000017#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000018#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000019#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000020#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000023#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000024#include "llvm/Target/MRegisterInfo.h"
25#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000026
Chris Lattner06925362002-11-17 21:56:38 +000027using namespace MOTy; // Get Use, Def, UseAndDef
28
Chris Lattner333b2fa2002-12-13 10:09:43 +000029
30/// BMI - A special BuildMI variant that takes an iterator to insert the
31/// instruction at as well as a basic block.
32inline static MachineInstrBuilder BMI(MachineBasicBlock *BB,
33 MachineBasicBlock::iterator &I,
34 MachineOpCode Opcode,
35 unsigned NumOperands,
36 unsigned DestReg) {
37 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
38 I = ++BB->insert(I, MI);
39 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
40}
41
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000042/// BMI - A special BuildMI variant that takes an iterator to insert the
43/// instruction at as well as a basic block.
44inline static MachineInstrBuilder BMI(MachineBasicBlock *BB,
45 MachineBasicBlock::iterator &I,
46 MachineOpCode Opcode,
47 unsigned NumOperands) {
48 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
49 I = ++BB->insert(I, MI);
50 return MachineInstrBuilder(MI);
51}
52
Chris Lattner333b2fa2002-12-13 10:09:43 +000053
Chris Lattner72614082002-10-25 22:55:53 +000054namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000055 struct ISel : public FunctionPass, InstVisitor<ISel> {
56 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000057 MachineFunction *F; // The function we are compiling into
58 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000059
60 unsigned CurReg;
61 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
62
Chris Lattner333b2fa2002-12-13 10:09:43 +000063 // MBBMap - Mapping between LLVM BB -> Machine BB
64 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
65
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000066 ISel(TargetMachine &tm)
67 : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
Chris Lattner72614082002-10-25 22:55:53 +000068
69 /// runOnFunction - Top level implementation of instruction selection for
70 /// the entire function.
71 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000072 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000073 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000074
75 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
76 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
77
78 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000079 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000080
81 // Select the PHI nodes
82 SelectPHINodes();
83
Chris Lattner72614082002-10-25 22:55:53 +000084 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000085 MBBMap.clear();
Chris Lattner94e8ee22002-11-21 17:26:58 +000086 CurReg = MRegisterInfo::FirstVirtualRegister;
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000087 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000088 return false; // We never modify the LLVM itself.
89 }
90
91 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000092 /// block. This simply creates a new MachineBasicBlock to emit code into
93 /// and adds it to the current MachineFunction. Subsequent visit* for
94 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000095 ///
96 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +000097 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +000098 }
99
Chris Lattner333b2fa2002-12-13 10:09:43 +0000100
101 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
102 /// because we have to generate our sources into the source basic blocks,
103 /// not the current one.
104 ///
105 void SelectPHINodes();
106
Chris Lattner72614082002-10-25 22:55:53 +0000107 // Visitation methods for various instructions. These methods simply emit
108 // fixed X86 code for each instruction.
109 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000110
111 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000112 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000113 void visitBranchInst(BranchInst &BI);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000114 void visitCallInst(CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000115
116 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000117 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000118 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
119 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Brian Gaeke20244b72002-12-12 15:33:40 +0000120 void doMultiply(unsigned destReg, const Type *resultType,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000121 unsigned op0Reg, unsigned op1Reg,
122 MachineBasicBlock *MBB,
123 MachineBasicBlock::iterator &MBBI);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000124 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000125
Chris Lattnerf01729e2002-11-02 20:54:46 +0000126 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
127 void visitRem(BinaryOperator &B) { visitDivRem(B); }
128 void visitDivRem(BinaryOperator &B);
129
Chris Lattnere2954c82002-11-02 20:04:26 +0000130 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000131 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
132 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
133 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000134
135 // Binary comparison operators
Chris Lattner05093a52002-11-21 15:52:38 +0000136 void visitSetCCInst(SetCondInst &I, unsigned OpNum);
137 void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); }
138 void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); }
139 void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); }
140 void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); }
141 void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); }
142 void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); }
Chris Lattner6fc3c522002-11-17 21:11:55 +0000143
144 // Memory Instructions
145 void visitLoadInst(LoadInst &I);
146 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000147 void visitGetElementPtrInst(GetElementPtrInst &I);
148 void visitMallocInst(MallocInst &I);
Brian Gaekee48ec012002-12-13 06:46:31 +0000149 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000150 void visitAllocaInst(AllocaInst &I);
151
Chris Lattnere2954c82002-11-02 20:04:26 +0000152 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000153 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000154 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000155 void visitCastInst(CastInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000156
157 void visitInstruction(Instruction &I) {
158 std::cerr << "Cannot instruction select: " << I;
159 abort();
160 }
161
Brian Gaeke95780cc2002-12-13 07:56:18 +0000162 /// promote32 - Make a value 32-bits wide, and put it somewhere.
163 void promote32 (const unsigned targetReg, Value *v);
164
165 // emitGEPOperation - Common code shared between visitGetElementPtrInst and
Chris Lattnerc0812d82002-12-13 06:56:29 +0000166 // constant expression GEP support.
167 //
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000168 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000169 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000170 User::op_iterator IdxEnd, unsigned TargetReg);
171
Chris Lattnerc5291f52002-10-27 21:16:59 +0000172 /// copyConstantToRegister - Output the instructions required to put the
173 /// specified constant into the specified register.
174 ///
Chris Lattner333b2fa2002-12-13 10:09:43 +0000175 void copyConstantToRegister(Constant *C, unsigned Reg,
176 MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000177 MachineBasicBlock::iterator &MBBI);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000178
Brian Gaeke20244b72002-12-12 15:33:40 +0000179 /// makeAnotherReg - This method returns the next register number
180 /// we haven't yet used.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000181 unsigned makeAnotherReg(const Type *Ty) {
182 // Add the mapping of regnumber => reg class to MachineFunction
183 F->addRegMap(CurReg, TM.getRegisterInfo()->getRegClassForType(Ty));
184 return CurReg++;
Brian Gaeke20244b72002-12-12 15:33:40 +0000185 }
186
Chris Lattner72614082002-10-25 22:55:53 +0000187 /// getReg - This method turns an LLVM value into a register number. This
188 /// is guaranteed to produce the same register number for a particular value
189 /// every time it is queried.
190 ///
191 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000192 unsigned getReg(Value *V) {
193 // Just append to the end of the current bb.
194 MachineBasicBlock::iterator It = BB->end();
195 return getReg(V, BB, It);
196 }
197 unsigned getReg(Value *V, MachineBasicBlock *BB,
198 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000199 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000200 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000201 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000202 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000203 }
Chris Lattner72614082002-10-25 22:55:53 +0000204
Chris Lattner6f8fd252002-10-27 21:23:43 +0000205 // If this operand is a constant, emit the code to copy the constant into
206 // the register here...
207 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000208 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000209 copyConstantToRegister(C, Reg, BB, IPt);
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000210 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
211 // Move the address of the global into the register
Chris Lattner333b2fa2002-12-13 10:09:43 +0000212 BMI(BB, IPt, X86::MOVir32, 1, Reg).addReg(GV);
Chris Lattnerd6c4cfa2002-12-04 17:15:34 +0000213 } else if (Argument *A = dyn_cast<Argument>(V)) {
Brian Gaeke95780cc2002-12-13 07:56:18 +0000214 // Find the position of the argument in the argument list.
215 const Function *f = F->getFunction ();
Brian Gaekeed6902c2002-12-13 09:28:50 +0000216 // The function's arguments look like this:
217 // [EBP] -- copy of old EBP
218 // [EBP + 4] -- return address
219 // [EBP + 8] -- first argument (leftmost lexically)
220 // So we want to start with counter = 2.
Chris Lattner333b2fa2002-12-13 10:09:43 +0000221 int counter = 2, argPos = -1;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000222 for (Function::const_aiterator ai = f->abegin (), ae = f->aend ();
223 ai != ae; ++ai) {
Brian Gaeke95780cc2002-12-13 07:56:18 +0000224 if (&(*ai) == A) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000225 argPos = counter;
Brian Gaekeed6902c2002-12-13 09:28:50 +0000226 break; // Only need to find it once. ;-)
Brian Gaeke95780cc2002-12-13 07:56:18 +0000227 }
Brian Gaekeed6902c2002-12-13 09:28:50 +0000228 ++counter;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000229 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000230 assert (argPos != -1
Brian Gaeke95780cc2002-12-13 07:56:18 +0000231 && "Argument not found in current function's argument list");
Chris Lattner333b2fa2002-12-13 10:09:43 +0000232 // Load it out of the stack frame at EBP + 4*argPos.
233 addRegOffset(BMI(BB, IPt, X86::MOVmr32, 4, Reg), X86::EBP, 4*argPos);
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000234 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000235
Chris Lattner72614082002-10-25 22:55:53 +0000236 return Reg;
237 }
Chris Lattner72614082002-10-25 22:55:53 +0000238 };
239}
240
Chris Lattner43189d12002-11-17 20:07:45 +0000241/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
242/// Representation.
243///
244enum TypeClass {
245 cByte, cShort, cInt, cLong, cFloat, cDouble
246};
247
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000248/// getClass - Turn a primitive type into a "class" number which is based on the
249/// size of the type, and whether or not it is floating point.
250///
Chris Lattner43189d12002-11-17 20:07:45 +0000251static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000252 switch (Ty->getPrimitiveID()) {
253 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000254 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000255 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000256 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000257 case Type::IntTyID:
258 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000259 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000260
261 case Type::LongTyID:
Chris Lattnerc0812d82002-12-13 06:56:29 +0000262 case Type::ULongTyID: //return cLong; // Longs are class #3
263 return cInt; // FIXME: LONGS ARE TREATED AS INTS!
264
Chris Lattner43189d12002-11-17 20:07:45 +0000265 case Type::FloatTyID: return cFloat; // Float is class #4
266 case Type::DoubleTyID: return cDouble; // Doubles are class #5
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000267 default:
268 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000269 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000270 }
271}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000272
Chris Lattner06925362002-11-17 21:56:38 +0000273
Chris Lattnerc5291f52002-10-27 21:16:59 +0000274/// copyConstantToRegister - Output the instructions required to put the
275/// specified constant into the specified register.
276///
Chris Lattner333b2fa2002-12-13 10:09:43 +0000277void ISel::copyConstantToRegister(Constant *C, unsigned R,
278 MachineBasicBlock *BB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000279 MachineBasicBlock::iterator &IP) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000280 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
281 if (CE->getOpcode() == Instruction::GetElementPtr) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000282 emitGEPOperation(BB, IP, CE->getOperand(0),
283 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000284 return;
285 }
286
Brian Gaeke20244b72002-12-12 15:33:40 +0000287 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerc0812d82002-12-13 06:56:29 +0000288 assert (0 && "Constant expressions not yet handled!\n");
Brian Gaeke20244b72002-12-12 15:33:40 +0000289 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000290
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000291 if (C->getType()->isIntegral()) {
292 unsigned Class = getClass(C->getType());
293 assert(Class != 3 && "Type not handled yet!");
294
295 static const unsigned IntegralOpcodeTab[] = {
296 X86::MOVir8, X86::MOVir16, X86::MOVir32
297 };
298
299 if (C->getType()->isSigned()) {
300 ConstantSInt *CSI = cast<ConstantSInt>(C);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000301 BMI(BB, IP, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000302 } else {
303 ConstantUInt *CUI = cast<ConstantUInt>(C);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000304 BMI(BB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000305 }
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000306 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000307 // Copy zero (null pointer) to the register.
Chris Lattner333b2fa2002-12-13 10:09:43 +0000308 BMI(BB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000309 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000310 unsigned SrcReg = getReg(CPR->getValue(), BB, IP);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000311 BMI(BB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000312 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000313 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000314 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000315 }
316}
317
Chris Lattner333b2fa2002-12-13 10:09:43 +0000318/// SelectPHINodes - Insert machine code to generate phis. This is tricky
319/// because we have to generate our sources into the source basic blocks, not
320/// the current one.
321///
322void ISel::SelectPHINodes() {
323 const Function &LF = *F->getFunction(); // The LLVM function...
324 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
325 const BasicBlock *BB = I;
326 MachineBasicBlock *MBB = MBBMap[I];
327
328 // Loop over all of the PHI nodes in the LLVM basic block...
329 unsigned NumPHIs = 0;
330 for (BasicBlock::const_iterator I = BB->begin();
331 PHINode *PN = (PHINode*)dyn_cast<PHINode>(&*I); ++I) {
332 // Create a new machine instr PHI node, and insert it.
333 MachineInstr *MI = BuildMI(X86::PHI, PN->getNumOperands(), getReg(*PN));
334 MBB->insert(MBB->begin()+NumPHIs++, MI); // Insert it at the top of the BB
335
336 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
337 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
338
339 // Get the incoming value into a virtual register. If it is not already
340 // available in a virtual register, insert the computation code into
341 // PredMBB
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000342 MachineBasicBlock::iterator PI = PredMBB->end()-1;
343 MI->addRegOperand(getReg(PN->getIncomingValue(i), PredMBB, PI));
344
Chris Lattner333b2fa2002-12-13 10:09:43 +0000345
346 // FIXME: Pass in the MachineBasicBlocks instead of the basic blocks...
347 MI->addPCDispOperand(PN->getIncomingBlock(i)); // PredMBB
348 }
349 }
350 }
351}
352
353
Chris Lattner06925362002-11-17 21:56:38 +0000354
Brian Gaeke1749d632002-11-07 17:59:21 +0000355/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
356/// register, then move it to wherever the result should be.
357/// We handle FP setcc instructions by pushing them, doing a
358/// compare-and-pop-twice, and then copying the concodes to the main
359/// processor's concodes (I didn't make this up, it's in the Intel manual)
360///
Chris Lattner05093a52002-11-21 15:52:38 +0000361void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000362 // The arguments are already supposed to be of the same type.
Chris Lattner05093a52002-11-21 15:52:38 +0000363 const Type *CompTy = I.getOperand(0)->getType();
364 unsigned reg1 = getReg(I.getOperand(0));
365 unsigned reg2 = getReg(I.getOperand(1));
366
367 unsigned Class = getClass(CompTy);
368 switch (Class) {
369 // Emit: cmp <var1>, <var2> (do the comparison). We can
370 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
371 // 32-bit.
372 case cByte:
373 BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2);
374 break;
375 case cShort:
376 BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2);
377 break;
378 case cInt:
379 BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2);
380 break;
381
382 // Push the variables on the stack with fldl opcodes.
383 // FIXME: assuming var1, var2 are in memory, if not, spill to
384 // stack first
385 case cFloat: // Floats
Brian Gaeke20244b72002-12-12 15:33:40 +0000386 BuildMI (BB, X86::FLDr32, 1).addReg (reg1);
387 BuildMI (BB, X86::FLDr32, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000388 break;
389 case cDouble: // Doubles
Brian Gaeke20244b72002-12-12 15:33:40 +0000390 BuildMI (BB, X86::FLDr64, 1).addReg (reg1);
391 BuildMI (BB, X86::FLDr64, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000392 break;
393 case cLong:
394 default:
395 visitInstruction(I);
396 }
397
398 if (CompTy->isFloatingPoint()) {
399 // (Non-trapping) compare and pop twice.
400 BuildMI (BB, X86::FUCOMPP, 0);
401 // Move fp status word (concodes) to ax.
402 BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
403 // Load real concodes from ax.
404 BuildMI (BB, X86::SAHF, 1).addReg(X86::AH);
405 }
406
Brian Gaeke1749d632002-11-07 17:59:21 +0000407 // Emit setOp instruction (extract concode; clobbers ax),
408 // using the following mapping:
409 // LLVM -> X86 signed X86 unsigned
410 // ----- ----- -----
411 // seteq -> sete sete
412 // setne -> setne setne
413 // setlt -> setl setb
414 // setgt -> setg seta
415 // setle -> setle setbe
416 // setge -> setge setae
Chris Lattner05093a52002-11-21 15:52:38 +0000417
418 static const unsigned OpcodeTab[2][6] = {
Chris Lattner4b4e9dd2002-11-21 16:19:42 +0000419 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr},
420 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr},
Chris Lattner05093a52002-11-21 15:52:38 +0000421 };
422
423 BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, X86::AL);
424
Brian Gaeke1749d632002-11-07 17:59:21 +0000425 // Put it in the result using a move.
Chris Lattner05093a52002-11-21 15:52:38 +0000426 BuildMI (BB, X86::MOVrr8, 1, getReg(I)).addReg(X86::AL);
Brian Gaeke1749d632002-11-07 17:59:21 +0000427}
Chris Lattner51b49a92002-11-02 19:45:49 +0000428
Brian Gaekec2505982002-11-30 11:57:28 +0000429/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
430/// operand, in the specified target register.
431void
Chris Lattnerc0812d82002-12-13 06:56:29 +0000432ISel::promote32 (unsigned targetReg, Value *v)
Brian Gaekec2505982002-11-30 11:57:28 +0000433{
434 unsigned vReg = getReg (v);
435 unsigned Class = getClass (v->getType ());
436 bool isUnsigned = v->getType ()->isUnsigned ();
437 assert (((Class == cByte) || (Class == cShort) || (Class == cInt))
438 && "Unpromotable operand class in promote32");
439 switch (Class)
440 {
441 case cByte:
442 // Extend value into target register (8->32)
443 if (isUnsigned)
444 BuildMI (BB, X86::MOVZXr32r8, 1, targetReg).addReg (vReg);
445 else
446 BuildMI (BB, X86::MOVSXr32r8, 1, targetReg).addReg (vReg);
447 break;
448 case cShort:
449 // Extend value into target register (16->32)
450 if (isUnsigned)
451 BuildMI (BB, X86::MOVZXr32r16, 1, targetReg).addReg (vReg);
452 else
453 BuildMI (BB, X86::MOVSXr32r16, 1, targetReg).addReg (vReg);
454 break;
455 case cInt:
456 // Move value into target register (32->32)
457 BuildMI (BB, X86::MOVrr32, 1, targetReg).addReg (vReg);
458 break;
459 }
460}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000461
Chris Lattner72614082002-10-25 22:55:53 +0000462/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
463/// we have the following possibilities:
464///
465/// ret void: No return value, simply emit a 'ret' instruction
466/// ret sbyte, ubyte : Extend value into EAX and return
467/// ret short, ushort: Extend value into EAX and return
468/// ret int, uint : Move value into EAX and return
469/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000470/// ret long, ulong : Move value into EAX/EDX and return
471/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000472///
Brian Gaekec2505982002-11-30 11:57:28 +0000473void
474ISel::visitReturnInst (ReturnInst &I)
475{
476 if (I.getNumOperands () == 0)
477 {
478 // Emit a 'ret' instruction
479 BuildMI (BB, X86::RET, 0);
480 return;
481 }
482 Value *rv = I.getOperand (0);
483 unsigned Class = getClass (rv->getType ());
484 switch (Class)
485 {
486 // integral return values: extend or move into EAX and return.
487 case cByte:
488 case cShort:
489 case cInt:
490 promote32 (X86::EAX, rv);
491 break;
492 // ret float/double: top of FP stack
493 // FLD <val>
494 case cFloat: // Floats
Brian Gaeke20244b72002-12-12 15:33:40 +0000495 BuildMI (BB, X86::FLDr32, 1).addReg (getReg (rv));
Brian Gaekec2505982002-11-30 11:57:28 +0000496 break;
497 case cDouble: // Doubles
Brian Gaeke20244b72002-12-12 15:33:40 +0000498 BuildMI (BB, X86::FLDr64, 1).addReg (getReg (rv));
Brian Gaekec2505982002-11-30 11:57:28 +0000499 break;
500 case cLong:
501 // ret long: use EAX(least significant 32 bits)/EDX (most
502 // significant 32)...uh, I think so Brain, but how do i call
503 // up the two parts of the value from inside this mouse
504 // cage? *zort*
505 default:
506 visitInstruction (I);
507 }
Chris Lattner43189d12002-11-17 20:07:45 +0000508 // Emit a 'ret' instruction
Brian Gaekec2505982002-11-30 11:57:28 +0000509 BuildMI (BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000510}
511
Chris Lattner51b49a92002-11-02 19:45:49 +0000512/// visitBranchInst - Handle conditional and unconditional branches here. Note
513/// that since code layout is frozen at this point, that if we are trying to
514/// jump to a block that is the immediate successor of the current block, we can
515/// just make a fall-through. (but we don't currently).
516///
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000517void
518ISel::visitBranchInst (BranchInst & BI)
519{
520 if (BI.isConditional ())
521 {
522 BasicBlock *ifTrue = BI.getSuccessor (0);
523 BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious
Chris Lattner2df035b2002-11-02 19:27:56 +0000524
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000525 // simplest thing I can think of: compare condition with zero,
526 // followed by jump-if-equal to ifFalse, and jump-if-nonequal to
527 // ifTrue
528 unsigned int condReg = getReg (BI.getCondition ());
Chris Lattner97ad9e12002-11-21 01:59:50 +0000529 BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0);
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000530 BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0));
531 BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1));
532 }
533 else // unconditional branch
534 {
535 BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0));
536 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000537}
538
Brian Gaeke18a20212002-11-29 12:01:58 +0000539/// visitCallInst - Push args on stack and do a procedure call instruction.
540void
541ISel::visitCallInst (CallInst & CI)
542{
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000543 // keep a counter of how many bytes we pushed on the stack
544 unsigned bytesPushed = 0;
545
Brian Gaeke18a20212002-11-29 12:01:58 +0000546 // Push the arguments on the stack in reverse order, as specified by
547 // the ABI.
Chris Lattnerd852c152002-12-03 20:30:12 +0000548 for (unsigned i = CI.getNumOperands()-1; i >= 1; --i)
Brian Gaeke18a20212002-11-29 12:01:58 +0000549 {
550 Value *v = CI.getOperand (i);
Brian Gaeke18a20212002-11-29 12:01:58 +0000551 switch (getClass (v->getType ()))
552 {
Brian Gaekec2505982002-11-30 11:57:28 +0000553 case cByte:
554 case cShort:
Brian Gaekebb25f2f2002-12-03 00:51:09 +0000555 // Promote V to 32 bits wide, and move the result into EAX,
556 // then push EAX.
Brian Gaekec2505982002-11-30 11:57:28 +0000557 promote32 (X86::EAX, v);
558 BuildMI (BB, X86::PUSHr32, 1).addReg (X86::EAX);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000559 bytesPushed += 4;
Brian Gaekec2505982002-11-30 11:57:28 +0000560 break;
Brian Gaeke18a20212002-11-29 12:01:58 +0000561 case cInt:
Chris Lattner33ced562002-12-04 06:56:56 +0000562 case cFloat: {
563 unsigned Reg = getReg(v);
564 BuildMI (BB, X86::PUSHr32, 1).addReg(Reg);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000565 bytesPushed += 4;
Brian Gaeke18a20212002-11-29 12:01:58 +0000566 break;
Chris Lattner33ced562002-12-04 06:56:56 +0000567 }
Brian Gaeke18a20212002-11-29 12:01:58 +0000568 default:
Brian Gaekebb25f2f2002-12-03 00:51:09 +0000569 // FIXME: long/ulong/double args not handled.
Brian Gaeke18a20212002-11-29 12:01:58 +0000570 visitInstruction (CI);
571 break;
572 }
573 }
574 // Emit a CALL instruction with PC-relative displacement.
575 BuildMI (BB, X86::CALLpcrel32, 1).addPCDisp (CI.getCalledValue ());
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000576
577 // Adjust the stack by `bytesPushed' amount if non-zero
578 if (bytesPushed > 0)
579 BuildMI (BB, X86::ADDri32, 2).addReg(X86::ESP).addZImm(bytesPushed);
Chris Lattnera3243642002-12-04 23:45:28 +0000580
581 // If there is a return value, scavenge the result from the location the call
582 // leaves it in...
583 //
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000584 if (CI.getType() != Type::VoidTy) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000585 unsigned resultTypeClass = getClass (CI.getType ());
586 switch (resultTypeClass) {
587 case cByte:
588 case cShort:
589 case cInt: {
590 // Integral results are in %eax, or the appropriate portion
591 // thereof.
592 static const unsigned regRegMove[] = {
593 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
594 };
595 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
596 BuildMI (BB, regRegMove[resultTypeClass], 1,
597 getReg (CI)).addReg (AReg[resultTypeClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000598 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000599 }
600 case cFloat:
601 // Floating-point return values live in %st(0) (i.e., the top of
602 // the FP stack.) The general way to approach this is to do a
603 // FSTP to save the top of the FP stack on the real stack, then
604 // do a MOV to load the top of the real stack into the target
605 // register.
606 visitInstruction (CI); // FIXME: add the right args for the calls below
607 // BuildMI (BB, X86::FSTPm32, 0);
608 // BuildMI (BB, X86::MOVmr32, 0);
609 break;
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000610 default:
611 std::cerr << "Cannot get return value for call of type '"
612 << *CI.getType() << "'\n";
613 visitInstruction(CI);
614 }
Chris Lattnera3243642002-12-04 23:45:28 +0000615 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000616}
Chris Lattner2df035b2002-11-02 19:27:56 +0000617
Chris Lattner68aad932002-11-02 20:13:22 +0000618/// visitSimpleBinary - Implement simple binary operators for integral types...
619/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
620/// 4 for Xor.
621///
622void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
623 if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
Chris Lattnere2954c82002-11-02 20:04:26 +0000624 visitInstruction(B);
625
626 unsigned Class = getClass(B.getType());
627 if (Class > 2) // FIXME: Handle longs
628 visitInstruction(B);
629
630 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000631 // Arithmetic operators
632 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
633 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
634
635 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000636 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
637 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
638 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
639 };
640
641 unsigned Opcode = OpcodeTab[OperatorClass][Class];
642 unsigned Op0r = getReg(B.getOperand(0));
643 unsigned Op1r = getReg(B.getOperand(1));
644 BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
645}
646
Brian Gaeke20244b72002-12-12 15:33:40 +0000647/// doMultiply - Emit appropriate instructions to multiply together
648/// the registers op0Reg and op1Reg, and put the result in destReg.
649/// The type of the result should be given as resultType.
650void
651ISel::doMultiply(unsigned destReg, const Type *resultType,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000652 unsigned op0Reg, unsigned op1Reg,
653 MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI)
Brian Gaeke20244b72002-12-12 15:33:40 +0000654{
655 unsigned Class = getClass (resultType);
656
657 // FIXME:
658 assert (Class <= 2 && "Someday, we will learn how to multiply"
659 "longs and floating-point numbers. This is not that day.");
660
661 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
662 static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
663 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
664 unsigned Reg = Regs[Class];
665
666 // Emit a MOV to put the first operand into the appropriately-sized
667 // subreg of EAX.
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000668 BMI(BB, MBBI, MovOpcode[Class], 1, Reg).addReg (op0Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000669
670 // Emit the appropriate multiply instruction.
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000671 BMI(BB, MBBI, MulOpcode[Class], 1).addReg (op1Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000672
673 // Emit another MOV to put the result into the destination register.
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000674 BMI(BB, MBBI, MovOpcode[Class], 1, destReg).addReg (Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000675}
676
Chris Lattnerca9671d2002-11-02 20:28:58 +0000677/// visitMul - Multiplies are not simple binary operators because they must deal
678/// with the EAX register explicitly.
679///
680void ISel::visitMul(BinaryOperator &I) {
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000681 MachineBasicBlock::iterator MBBI = BB->end();
Brian Gaeke20244b72002-12-12 15:33:40 +0000682 doMultiply (getReg (I), I.getType (),
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000683 getReg (I.getOperand (0)), getReg (I.getOperand (1)),
684 BB, MBBI);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000685}
Chris Lattnerca9671d2002-11-02 20:28:58 +0000686
Chris Lattner06925362002-11-17 21:56:38 +0000687
Chris Lattnerf01729e2002-11-02 20:54:46 +0000688/// visitDivRem - Handle division and remainder instructions... these
689/// instruction both require the same instructions to be generated, they just
690/// select the result from a different register. Note that both of these
691/// instructions work differently for signed and unsigned operands.
692///
693void ISel::visitDivRem(BinaryOperator &I) {
694 unsigned Class = getClass(I.getType());
695 if (Class > 2) // FIXME: Handle longs
696 visitInstruction(I);
697
698 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
699 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +0000700 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +0000701 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
702 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
703
704 static const unsigned DivOpcode[][4] = {
705 { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
706 { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
707 };
708
709 bool isSigned = I.getType()->isSigned();
710 unsigned Reg = Regs[Class];
711 unsigned ExtReg = ExtRegs[Class];
Chris Lattner6fc3c522002-11-17 21:11:55 +0000712 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000713 unsigned Op1Reg = getReg(I.getOperand(1));
714
715 // Put the first operand into one of the A registers...
716 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
717
718 if (isSigned) {
719 // Emit a sign extension instruction...
Chris Lattnera4978cc2002-12-01 23:24:58 +0000720 BuildMI(BB, ExtOpcode[Class], 0);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000721 } else {
722 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
723 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
724 }
725
Chris Lattner06925362002-11-17 21:56:38 +0000726 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +0000727 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +0000728
Chris Lattnerf01729e2002-11-02 20:54:46 +0000729 // Figure out which register we want to pick the result out of...
730 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
731
Chris Lattnerf01729e2002-11-02 20:54:46 +0000732 // Put the result into the destination register...
733 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000734}
Chris Lattnere2954c82002-11-02 20:04:26 +0000735
Chris Lattner06925362002-11-17 21:56:38 +0000736
Brian Gaekea1719c92002-10-31 23:03:59 +0000737/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
738/// for constant immediate shift values, and for constant immediate
739/// shift values equal to 1. Even the general case is sort of special,
740/// because the shift amount has to be in CL, not just any old register.
741///
Chris Lattnerf01729e2002-11-02 20:54:46 +0000742void ISel::visitShiftInst (ShiftInst &I) {
743 unsigned Op0r = getReg (I.getOperand(0));
744 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000745 bool isLeftShift = I.getOpcode() == Instruction::Shl;
746 bool isOperandSigned = I.getType()->isUnsigned();
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000747 unsigned OperandClass = getClass(I.getType());
748
749 if (OperandClass > 2)
750 visitInstruction(I); // Can't handle longs yet!
Chris Lattner796df732002-11-02 00:44:25 +0000751
Brian Gaekea1719c92002-10-31 23:03:59 +0000752 if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
753 {
Chris Lattner796df732002-11-02 00:44:25 +0000754 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
755 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
756 unsigned char shAmt = CUI->getValue();
757
Chris Lattnere9913f22002-11-02 01:41:55 +0000758 static const unsigned ConstantOperand[][4] = {
759 { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
760 { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
761 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
762 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000763 };
764
Chris Lattnere9913f22002-11-02 01:41:55 +0000765 const unsigned *OpTab = // Figure out the operand table to use
766 ConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000767
Brian Gaekea1719c92002-10-31 23:03:59 +0000768 // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000769 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
Brian Gaekea1719c92002-10-31 23:03:59 +0000770 }
771 else
772 {
773 // The shift amount is non-constant.
774 //
775 // In fact, you can only shift with a variable shift amount if
776 // that amount is already in the CL register, so we have to put it
777 // there first.
778 //
Chris Lattnere9913f22002-11-02 01:41:55 +0000779
Brian Gaekea1719c92002-10-31 23:03:59 +0000780 // Emit: move cl, shiftAmount (put the shift amount in CL.)
Chris Lattnerca9671d2002-11-02 20:28:58 +0000781 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000782
783 // This is a shift right (SHR).
Chris Lattnere9913f22002-11-02 01:41:55 +0000784 static const unsigned NonConstantOperand[][4] = {
785 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
786 { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
787 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
788 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000789 };
790
Chris Lattnere9913f22002-11-02 01:41:55 +0000791 const unsigned *OpTab = // Figure out the operand table to use
792 NonConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000793
Chris Lattner3a9a6932002-11-21 22:49:20 +0000794 BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r);
Brian Gaekea1719c92002-10-31 23:03:59 +0000795 }
796}
797
Chris Lattner06925362002-11-17 21:56:38 +0000798
Chris Lattner6fc3c522002-11-17 21:11:55 +0000799/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
800/// instruction.
801///
802void ISel::visitLoadInst(LoadInst &I) {
803 unsigned Class = getClass(I.getType());
804 if (Class > 2) // FIXME: Handle longs and others...
805 visitInstruction(I);
806
807 static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
808
809 unsigned AddressReg = getReg(I.getOperand(0));
810 addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg);
811}
812
Chris Lattner06925362002-11-17 21:56:38 +0000813
Chris Lattner6fc3c522002-11-17 21:11:55 +0000814/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
815/// instruction.
816///
817void ISel::visitStoreInst(StoreInst &I) {
818 unsigned Class = getClass(I.getOperand(0)->getType());
819 if (Class > 2) // FIXME: Handle longs and others...
820 visitInstruction(I);
821
822 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
823
824 unsigned ValReg = getReg(I.getOperand(0));
825 unsigned AddressReg = getReg(I.getOperand(1));
826 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
827}
828
829
Brian Gaekec11232a2002-11-26 10:43:30 +0000830/// visitCastInst - Here we have various kinds of copying with or without
831/// sign extension going on.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000832void
833ISel::visitCastInst (CastInst &CI)
834{
Chris Lattnerf18a36e2002-12-03 18:15:59 +0000835 const Type *targetType = CI.getType ();
Brian Gaeke07f02612002-12-03 07:36:03 +0000836 Value *operand = CI.getOperand (0);
837 unsigned int operandReg = getReg (operand);
Chris Lattnerf18a36e2002-12-03 18:15:59 +0000838 const Type *sourceType = operand->getType ();
Brian Gaeke07f02612002-12-03 07:36:03 +0000839 unsigned int destReg = getReg (CI);
Brian Gaeked474e9c2002-12-06 10:49:33 +0000840 //
841 // Currently we handle:
842 //
843 // 1) cast * to bool
844 //
845 // 2) cast {sbyte, ubyte} to {sbyte, ubyte}
846 // cast {short, ushort} to {ushort, short}
847 // cast {int, uint, ptr} to {int, uint, ptr}
848 //
849 // 3) cast {sbyte, ubyte} to {ushort, short}
850 // cast {sbyte, ubyte} to {int, uint, ptr}
851 // cast {short, ushort} to {int, uint, ptr}
852 //
853 // 4) cast {int, uint, ptr} to {short, ushort}
854 // cast {int, uint, ptr} to {sbyte, ubyte}
855 // cast {short, ushort} to {sbyte, ubyte}
856 //
857 // 1) Implement casts to bool by using compare on the operand followed
858 // by set if not zero on the result.
859 if (targetType == Type::BoolTy)
860 {
861 BuildMI (BB, X86::CMPri8, 2).addReg (operandReg).addZImm (0);
862 BuildMI (BB, X86::SETNEr, 1, destReg);
863 return;
864 }
865 // 2) Implement casts between values of the same type class (as determined
866 // by getClass) by using a register-to-register move.
867 unsigned int srcClass = getClass (sourceType);
868 unsigned int targClass = getClass (targetType);
869 static const unsigned regRegMove[] = {
870 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
871 };
872 if ((srcClass < 3) && (targClass < 3) && (srcClass == targClass))
873 {
874 BuildMI (BB, regRegMove[srcClass], 1, destReg).addReg (operandReg);
875 return;
876 }
877 // 3) Handle cast of SMALLER int to LARGER int using a move with sign
878 // extension or zero extension, depending on whether the source type
879 // was signed.
880 if ((srcClass < 3) && (targClass < 3) && (srcClass < targClass))
881 {
882 static const unsigned ops[] = {
883 X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16,
884 X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16
885 };
886 unsigned srcSigned = sourceType->isSigned ();
887 BuildMI (BB, ops[3 * srcSigned + srcClass + targClass - 1], 1,
888 destReg).addReg (operandReg);
889 return;
890 }
891 // 4) Handle cast of LARGER int to SMALLER int using a move to EAX
892 // followed by a move out of AX or AL.
893 if ((srcClass < 3) && (targClass < 3) && (srcClass > targClass))
894 {
895 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
896 BuildMI (BB, regRegMove[srcClass], 1,
897 AReg[srcClass]).addReg (operandReg);
898 BuildMI (BB, regRegMove[targClass], 1, destReg).addReg (AReg[srcClass]);
899 return;
900 }
901 // Anything we haven't handled already, we can't (yet) handle at all.
Brian Gaeke20244b72002-12-12 15:33:40 +0000902 //
903 // FP to integral casts can be handled with FISTP to store onto the
904 // stack while converting to integer, followed by a MOV to load from
905 // the stack into the result register. Integral to FP casts can be
906 // handled with MOV to store onto the stack, followed by a FILD to
907 // load from the stack while converting to FP. For the moment, I
908 // can't quite get straight in my head how to borrow myself some
909 // stack space and write on it. Otherwise, this would be trivial.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000910 visitInstruction (CI);
911}
Brian Gaekea1719c92002-10-31 23:03:59 +0000912
Brian Gaeke20244b72002-12-12 15:33:40 +0000913/// visitGetElementPtrInst - I don't know, most programs don't have
914/// getelementptr instructions, right? That means we can put off
915/// implementing this, right? Right. This method emits machine
916/// instructions to perform type-safe pointer arithmetic. I am
917/// guessing this could be cleaned up somewhat to use fewer temporary
918/// registers.
919void
920ISel::visitGetElementPtrInst (GetElementPtrInst &I)
921{
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000922 MachineBasicBlock::iterator MI = BB->end();
923 emitGEPOperation(BB, MI, I.getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000924 I.op_begin()+1, I.op_end(), getReg(I));
Chris Lattnerc0812d82002-12-13 06:56:29 +0000925}
926
Chris Lattner333b2fa2002-12-13 10:09:43 +0000927void ISel::emitGEPOperation(MachineBasicBlock *BB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000928 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000929 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000930 User::op_iterator IdxEnd, unsigned TargetReg) {
931 const TargetData &TD = TM.getTargetData();
932 const Type *Ty = Src->getType();
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000933 unsigned basePtrReg = getReg(Src, BB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000934
Brian Gaeke20244b72002-12-12 15:33:40 +0000935 // GEPs have zero or more indices; we must perform a struct access
936 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000937 for (GetElementPtrInst::op_iterator oi = IdxBegin,
938 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000939 Value *idx = *oi;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000940 unsigned nextBasePtrReg = makeAnotherReg(Type::UIntTy);
Brian Gaeke20244b72002-12-12 15:33:40 +0000941 if (const StructType *StTy = dyn_cast <StructType> (Ty)) {
942 // It's a struct access. idx is the index into the structure,
943 // which names the field. This index must have ubyte type.
944 const ConstantUInt *CUI = cast <ConstantUInt> (idx);
945 assert (CUI->getType () == Type::UByteTy
946 && "Funny-looking structure index in GEP");
947 // Use the TargetData structure to pick out what the layout of
948 // the structure is in memory. Since the structure index must
949 // be constant, we can get its value and use it to find the
950 // right byte offset from the StructLayout class's list of
951 // structure member offsets.
952 unsigned idxValue = CUI->getValue ();
953 unsigned memberOffset =
954 TD.getStructLayout (StTy)->MemberOffsets[idxValue];
955 // Emit an ADD to add memberOffset to the basePtr.
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000956 BMI(BB, IP, X86::ADDri32, 2,
957 nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset);
Brian Gaeke20244b72002-12-12 15:33:40 +0000958 // The next type is the member of the structure selected by the
959 // index.
960 Ty = StTy->getElementTypes ()[idxValue];
961 } else if (const SequentialType *SqTy = cast <SequentialType> (Ty)) {
962 // It's an array or pointer access: [ArraySize x ElementType].
Brian Gaeke20244b72002-12-12 15:33:40 +0000963 const Type *typeOfSequentialTypeIndex = SqTy->getIndexType ();
964 // idx is the index into the array. Unlike with structure
965 // indices, we may not know its actual value at code-generation
966 // time.
967 assert (idx->getType () == typeOfSequentialTypeIndex
968 && "Funny-looking array index in GEP");
969 // We want to add basePtrReg to (idxReg * sizeof
970 // ElementType). First, we must find the size of the pointed-to
971 // type. (Not coincidentally, the next type is the type of the
972 // elements in the array.)
973 Ty = SqTy->getElementType ();
974 unsigned elementSize = TD.getTypeSize (Ty);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000975 unsigned elementSizeReg = makeAnotherReg(Type::UIntTy);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000976 copyConstantToRegister(ConstantInt::get(typeOfSequentialTypeIndex,
977 elementSize), elementSizeReg,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000978 BB, IP);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000979
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000980 unsigned idxReg = getReg(idx, BB, IP);
Brian Gaeke20244b72002-12-12 15:33:40 +0000981 // Emit a MUL to multiply the register holding the index by
982 // elementSize, putting the result in memberOffsetReg.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000983 unsigned memberOffsetReg = makeAnotherReg(Type::UIntTy);
Brian Gaeke20244b72002-12-12 15:33:40 +0000984 doMultiply (memberOffsetReg, typeOfSequentialTypeIndex,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000985 elementSizeReg, idxReg, BB, IP);
Brian Gaeke20244b72002-12-12 15:33:40 +0000986 // Emit an ADD to add memberOffsetReg to the basePtr.
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000987 BMI(BB, IP, X86::ADDrr32, 2,
988 nextBasePtrReg).addReg (basePtrReg).addReg (memberOffsetReg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000989 }
990 // Now that we are here, further indices refer to subtypes of this
991 // one, so we don't need to worry about basePtrReg itself, anymore.
992 basePtrReg = nextBasePtrReg;
993 }
994 // After we have processed all the indices, the result is left in
995 // basePtrReg. Move it to the register where we were expected to
996 // put the answer. A 32-bit move should do it, because we are in
997 // ILP32 land.
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000998 BMI(BB, IP, X86::MOVrr32, 1, TargetReg).addReg (basePtrReg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000999}
1000
1001
1002/// visitMallocInst - I know that personally, whenever I want to remember
1003/// something, I have to clear off some space in my brain.
1004void
1005ISel::visitMallocInst (MallocInst &I)
1006{
Brian Gaekee48ec012002-12-13 06:46:31 +00001007 // We assume that by this point, malloc instructions have been
1008 // lowered to calls, and dlsym will magically find malloc for us.
1009 // So we do not want to see malloc instructions here.
1010 visitInstruction (I);
1011}
1012
1013
1014/// visitFreeInst - same story as MallocInst
1015void
1016ISel::visitFreeInst (FreeInst &I)
1017{
1018 // We assume that by this point, free instructions have been
1019 // lowered to calls, and dlsym will magically find free for us.
1020 // So we do not want to see free instructions here.
Brian Gaeke20244b72002-12-12 15:33:40 +00001021 visitInstruction (I);
1022}
1023
1024
1025/// visitAllocaInst - I want some stack space. Come on, man, I said I
1026/// want some freakin' stack space.
1027void
1028ISel::visitAllocaInst (AllocaInst &I)
1029{
Brian Gaekee48ec012002-12-13 06:46:31 +00001030 // Find the data size of the alloca inst's getAllocatedType.
1031 const Type *allocatedType = I.getAllocatedType ();
1032 const TargetData &TD = TM.DataLayout;
1033 unsigned allocatedTypeSize = TD.getTypeSize (allocatedType);
1034 // Keep stack 32-bit aligned.
1035 unsigned int allocatedTypeWords = allocatedTypeSize / 4;
1036 if (allocatedTypeSize % 4 != 0) { allocatedTypeWords++; }
1037 // Subtract size from stack pointer, thereby allocating some space.
1038 BuildMI (BB, X86::SUBri32, 1, X86::ESP).addZImm (allocatedTypeWords * 4);
1039 // Put a pointer to the space into the result register, by copying
1040 // the stack pointer.
1041 BuildMI (BB, X86::MOVrr32, 1, getReg (I)).addReg (X86::ESP);
Brian Gaeke20244b72002-12-12 15:33:40 +00001042}
1043
1044
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001045/// createSimpleX86InstructionSelector - This pass converts an LLVM function
1046/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00001047/// generated code sucks but the implementation is nice and simple.
1048///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001049Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
1050 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00001051}