blob: d6ccefc8467b421e37e2631bcb59cab448eee297 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000021#include "llvm/Pass.h"
22#include "llvm/PassManager.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Analysis/ConstantsScanner.h"
28#include "llvm/Analysis/FindUsedTypes.h"
29#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000030#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/Transforms/Scalar.h"
33#include "llvm/Target/TargetMachineRegistry.h"
34#include "llvm/Target/TargetAsmInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/Mangler.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Config/config.h"
46#include <algorithm>
47#include <sstream>
48using namespace llvm;
49
50namespace {
51 // Register the target.
52 RegisterTarget<CTargetMachine> X("c", " C backend");
53
54 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
55 /// any unnamed structure types that are used by the program, and merges
56 /// external functions with the same name.
57 ///
58 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
59 public:
60 static char ID;
61 CBackendNameAllUsedStructsAndMergeFunctions()
62 : ModulePass((intptr_t)&ID) {}
63 void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.addRequired<FindUsedTypes>();
65 }
66
67 virtual const char *getPassName() const {
68 return "C backend type canonicalizer";
69 }
70
71 virtual bool runOnModule(Module &M);
72 };
73
74 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
75
76 /// CWriter - This class is the main chunk of code that converts an LLVM
77 /// module to a C translation unit.
78 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
79 std::ostream &Out;
80 IntrinsicLowering *IL;
81 Mangler *Mang;
82 LoopInfo *LI;
83 const Module *TheModule;
84 const TargetAsmInfo* TAsm;
85 const TargetData* TD;
86 std::map<const Type *, std::string> TypeNames;
87 std::map<const ConstantFP *, unsigned> FPConstantMap;
88 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Chris Lattner8bbc8592008-03-02 08:07:24 +000089 std::set<const Argument*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090
91 public:
92 static char ID;
Dan Gohman40bd38e2008-03-25 22:06:05 +000093 explicit CWriter(std::ostream &o)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
95 TheModule(0), TAsm(0), TD(0) {}
96
97 virtual const char *getPassName() const { return "C backend"; }
98
99 void getAnalysisUsage(AnalysisUsage &AU) const {
100 AU.addRequired<LoopInfo>();
101 AU.setPreservesAll();
102 }
103
104 virtual bool doInitialization(Module &M);
105
106 bool runOnFunction(Function &F) {
107 LI = &getAnalysis<LoopInfo>();
108
109 // Get rid of intrinsics we can't handle.
110 lowerIntrinsics(F);
111
112 // Output all floating point constants that cannot be printed accurately.
113 printFloatingPointConstants(F);
114
115 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 return false;
117 }
118
119 virtual bool doFinalization(Module &M) {
120 // Free memory...
121 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000122 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000124 ByValParams.clear();
Chris Lattner8bbc8592008-03-02 08:07:24 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 return false;
127 }
128
129 std::ostream &printType(std::ostream &Out, const Type *Ty,
130 bool isSigned = false,
131 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000132 bool IgnoreName = false,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000133 const PAListPtr &PAL = PAListPtr());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000135 bool isSigned,
136 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000137
138 void printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000139 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140 const PointerType *Ty);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000141
142 /// writeOperandDeref - Print the result of dereferencing the specified
143 /// operand with '*'. This is equivalent to printing '*' then using
144 /// writeOperand, but avoids excess syntax in some cases.
145 void writeOperandDeref(Value *Operand) {
146 if (isAddressExposed(Operand)) {
147 // Already something with an address exposed.
148 writeOperandInternal(Operand);
149 } else {
150 Out << "*(";
151 writeOperand(Operand);
152 Out << ")";
153 }
154 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000155
156 void writeOperand(Value *Operand);
157 void writeOperandRaw(Value *Operand);
158 void writeOperandInternal(Value *Operand);
159 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000160 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000161 bool writeInstructionCast(const Instruction &I);
162
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000163 void writeMemoryAccess(Value *Operand, const Type *OperandType,
164 bool IsVolatile, unsigned Alignment);
165
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000166 private :
167 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
168
169 void lowerIntrinsics(Function &F);
170
171 void printModule(Module *M);
172 void printModuleTypes(const TypeSymbolTable &ST);
173 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
174 void printFloatingPointConstants(Function &F);
175 void printFunctionSignature(const Function *F, bool Prototype);
176
177 void printFunction(Function &);
178 void printBasicBlock(BasicBlock *BB);
179 void printLoop(Loop *L);
180
181 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
182 void printConstant(Constant *CPV);
183 void printConstantWithCast(Constant *CPV, unsigned Opcode);
184 bool printConstExprCast(const ConstantExpr *CE);
185 void printConstantArray(ConstantArray *CPA);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000186 void printConstantVector(ConstantVector *CV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187
Chris Lattner8bbc8592008-03-02 08:07:24 +0000188 /// isAddressExposed - Return true if the specified value's name needs to
189 /// have its address taken in order to get a C value of the correct type.
190 /// This happens for global variables, byval parameters, and direct allocas.
191 bool isAddressExposed(const Value *V) const {
192 if (const Argument *A = dyn_cast<Argument>(V))
193 return ByValParams.count(A);
194 return isa<GlobalVariable>(V) || isDirectAlloca(V);
195 }
196
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000197 // isInlinableInst - Attempt to inline instructions into their uses to build
198 // trees as much as possible. To do this, we have to consistently decide
199 // what is acceptable to inline, so that variable declarations don't get
200 // printed and an extra copy of the expr is not emitted.
201 //
202 static bool isInlinableInst(const Instruction &I) {
203 // Always inline cmp instructions, even if they are shared by multiple
204 // expressions. GCC generates horrible code if we don't.
205 if (isa<CmpInst>(I))
206 return true;
207
208 // Must be an expression, must be used exactly once. If it is dead, we
209 // emit it inline where it would go.
210 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
211 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
Chris Lattnerf41a7942008-03-02 03:52:39 +0000212 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 // Don't inline a load across a store or other bad things!
214 return false;
215
Chris Lattnerf858a042008-03-02 05:41:07 +0000216 // Must not be used in inline asm, extractelement, or shufflevector.
217 if (I.hasOneUse()) {
218 const Instruction &User = cast<Instruction>(*I.use_back());
219 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
220 isa<ShuffleVectorInst>(User))
221 return false;
222 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223
224 // Only inline instruction it if it's use is in the same BB as the inst.
225 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
226 }
227
228 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
229 // variables which are accessed with the & operator. This causes GCC to
230 // generate significantly better code than to emit alloca calls directly.
231 //
232 static const AllocaInst *isDirectAlloca(const Value *V) {
233 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
234 if (!AI) return false;
235 if (AI->isArrayAllocation())
236 return 0; // FIXME: we can also inline fixed size array allocas!
237 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
238 return 0;
239 return AI;
240 }
241
242 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
243 static bool isInlineAsm(const Instruction& I) {
244 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
245 return true;
246 return false;
247 }
248
249 // Instruction visitation functions
250 friend class InstVisitor<CWriter>;
251
252 void visitReturnInst(ReturnInst &I);
253 void visitBranchInst(BranchInst &I);
254 void visitSwitchInst(SwitchInst &I);
255 void visitInvokeInst(InvokeInst &I) {
256 assert(0 && "Lowerinvoke pass didn't work!");
257 }
258
259 void visitUnwindInst(UnwindInst &I) {
260 assert(0 && "Lowerinvoke pass didn't work!");
261 }
262 void visitUnreachableInst(UnreachableInst &I);
263
264 void visitPHINode(PHINode &I);
265 void visitBinaryOperator(Instruction &I);
266 void visitICmpInst(ICmpInst &I);
267 void visitFCmpInst(FCmpInst &I);
268
269 void visitCastInst (CastInst &I);
270 void visitSelectInst(SelectInst &I);
271 void visitCallInst (CallInst &I);
272 void visitInlineAsm(CallInst &I);
Chris Lattnera74b9182008-03-02 08:29:41 +0000273 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274
275 void visitMallocInst(MallocInst &I);
276 void visitAllocaInst(AllocaInst &I);
277 void visitFreeInst (FreeInst &I);
278 void visitLoadInst (LoadInst &I);
279 void visitStoreInst (StoreInst &I);
280 void visitGetElementPtrInst(GetElementPtrInst &I);
281 void visitVAArgInst (VAArgInst &I);
Chris Lattnerf41a7942008-03-02 03:52:39 +0000282
283 void visitInsertElementInst(InsertElementInst &I);
Chris Lattnera5f0bc02008-03-02 03:57:08 +0000284 void visitExtractElementInst(ExtractElementInst &I);
Chris Lattnerf858a042008-03-02 05:41:07 +0000285 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
Dan Gohman93d04582008-04-23 21:49:29 +0000286 void visitGetResultInst(GetResultInst &GRI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000287
288 void visitInstruction(Instruction &I) {
289 cerr << "C Writer does not know about " << I;
290 abort();
291 }
292
293 void outputLValue(Instruction *I) {
294 Out << " " << GetValueName(I) << " = ";
295 }
296
297 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
298 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
299 BasicBlock *Successor, unsigned Indent);
300 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
301 unsigned Indent);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000302 void printGEPExpression(Value *Ptr, gep_type_iterator I,
303 gep_type_iterator E);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000304
305 std::string GetValueName(const Value *Operand);
306 };
307}
308
309char CWriter::ID = 0;
310
311/// This method inserts names for any unnamed structure types that are used by
312/// the program, and removes names from structure types that are not used by the
313/// program.
314///
315bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
316 // Get a set of types that are used by the program...
317 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
318
319 // Loop over the module symbol table, removing types from UT that are
320 // already named, and removing names for types that are not used.
321 //
322 TypeSymbolTable &TST = M.getTypeSymbolTable();
323 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
324 TI != TE; ) {
325 TypeSymbolTable::iterator I = TI++;
326
327 // If this isn't a struct type, remove it from our set of types to name.
328 // This simplifies emission later.
329 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
330 TST.remove(I);
331 } else {
332 // If this is not used, remove it from the symbol table.
333 std::set<const Type *>::iterator UTI = UT.find(I->second);
334 if (UTI == UT.end())
335 TST.remove(I);
336 else
337 UT.erase(UTI); // Only keep one name for this type.
338 }
339 }
340
341 // UT now contains types that are not named. Loop over it, naming
342 // structure types.
343 //
344 bool Changed = false;
345 unsigned RenameCounter = 0;
346 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
347 I != E; ++I)
348 if (const StructType *ST = dyn_cast<StructType>(*I)) {
349 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
350 ++RenameCounter;
351 Changed = true;
352 }
353
354
355 // Loop over all external functions and globals. If we have two with
356 // identical names, merge them.
357 // FIXME: This code should disappear when we don't allow values with the same
358 // names when they have different types!
359 std::map<std::string, GlobalValue*> ExtSymbols;
360 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
361 Function *GV = I++;
362 if (GV->isDeclaration() && GV->hasName()) {
363 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
364 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
365 if (!X.second) {
366 // Found a conflict, replace this global with the previous one.
367 GlobalValue *OldGV = X.first->second;
368 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
369 GV->eraseFromParent();
370 Changed = true;
371 }
372 }
373 }
374 // Do the same for globals.
375 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
376 I != E;) {
377 GlobalVariable *GV = I++;
378 if (GV->isDeclaration() && GV->hasName()) {
379 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
380 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
381 if (!X.second) {
382 // Found a conflict, replace this global with the previous one.
383 GlobalValue *OldGV = X.first->second;
384 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
385 GV->eraseFromParent();
386 Changed = true;
387 }
388 }
389 }
390
391 return Changed;
392}
393
394/// printStructReturnPointerFunctionType - This is like printType for a struct
395/// return type, except, instead of printing the type as void (*)(Struct*, ...)
396/// print it as "Struct (*)(...)", for struct return functions.
397void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000398 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 const PointerType *TheTy) {
400 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
401 std::stringstream FunctionInnards;
402 FunctionInnards << " (*) (";
403 bool PrintedType = false;
404
405 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
406 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
407 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000408 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409 if (PrintedType)
410 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000411 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000412 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +0000413 assert(isa<PointerType>(ArgTy));
414 ArgTy = cast<PointerType>(ArgTy)->getElementType();
415 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000416 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000417 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 PrintedType = true;
419 }
420 if (FTy->isVarArg()) {
421 if (PrintedType)
422 FunctionInnards << ", ...";
423 } else if (!PrintedType) {
424 FunctionInnards << "void";
425 }
426 FunctionInnards << ')';
427 std::string tstr = FunctionInnards.str();
428 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000429 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000430}
431
432std::ostream &
433CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
Chris Lattnerd8090712008-03-02 03:41:23 +0000434 const std::string &NameSoFar) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000435 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000436 "Invalid type for printSimpleType");
437 switch (Ty->getTypeID()) {
438 case Type::VoidTyID: return Out << "void " << NameSoFar;
439 case Type::IntegerTyID: {
440 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
441 if (NumBits == 1)
442 return Out << "bool " << NameSoFar;
443 else if (NumBits <= 8)
444 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
445 else if (NumBits <= 16)
446 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
447 else if (NumBits <= 32)
448 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000449 else if (NumBits <= 64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000450 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000451 else {
452 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
453 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000454 }
455 }
456 case Type::FloatTyID: return Out << "float " << NameSoFar;
457 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000458 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
459 // present matches host 'long double'.
460 case Type::X86_FP80TyID:
461 case Type::PPC_FP128TyID:
462 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000463
464 case Type::VectorTyID: {
465 const VectorType *VTy = cast<VectorType>(Ty);
Chris Lattnerd8090712008-03-02 03:41:23 +0000466 return printSimpleType(Out, VTy->getElementType(), isSigned,
Chris Lattnerfddca552008-03-02 03:39:43 +0000467 " __attribute__((vector_size(" +
468 utostr(TD->getABITypeSize(VTy)) + " ))) " + NameSoFar);
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000469 }
470
471 default:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000472 cerr << "Unknown primitive type: " << *Ty << "\n";
473 abort();
474 }
475}
476
477// Pass the Type* and the variable name and this prints out the variable
478// declaration.
479//
480std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
481 bool isSigned, const std::string &NameSoFar,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000482 bool IgnoreName, const PAListPtr &PAL) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000483 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000484 printSimpleType(Out, Ty, isSigned, NameSoFar);
485 return Out;
486 }
487
488 // Check to see if the type is named.
489 if (!IgnoreName || isa<OpaqueType>(Ty)) {
490 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
491 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
492 }
493
494 switch (Ty->getTypeID()) {
495 case Type::FunctionTyID: {
496 const FunctionType *FTy = cast<FunctionType>(Ty);
497 std::stringstream FunctionInnards;
498 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000499 unsigned Idx = 1;
500 for (FunctionType::param_iterator I = FTy->param_begin(),
501 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000502 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000503 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000504 assert(isa<PointerType>(ArgTy));
505 ArgTy = cast<PointerType>(ArgTy)->getElementType();
506 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000507 if (I != FTy->param_begin())
508 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000509 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000510 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000511 ++Idx;
512 }
513 if (FTy->isVarArg()) {
514 if (FTy->getNumParams())
515 FunctionInnards << ", ...";
516 } else if (!FTy->getNumParams()) {
517 FunctionInnards << "void";
518 }
519 FunctionInnards << ')';
520 std::string tstr = FunctionInnards.str();
521 printType(Out, FTy->getReturnType(),
Chris Lattner1c8733e2008-03-12 17:45:29 +0000522 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000523 return Out;
524 }
525 case Type::StructTyID: {
526 const StructType *STy = cast<StructType>(Ty);
527 Out << NameSoFar + " {\n";
528 unsigned Idx = 0;
529 for (StructType::element_iterator I = STy->element_begin(),
530 E = STy->element_end(); I != E; ++I) {
531 Out << " ";
532 printType(Out, *I, false, "field" + utostr(Idx++));
533 Out << ";\n";
534 }
535 Out << '}';
536 if (STy->isPacked())
537 Out << " __attribute__ ((packed))";
538 return Out;
539 }
540
541 case Type::PointerTyID: {
542 const PointerType *PTy = cast<PointerType>(Ty);
543 std::string ptrName = "*" + NameSoFar;
544
545 if (isa<ArrayType>(PTy->getElementType()) ||
546 isa<VectorType>(PTy->getElementType()))
547 ptrName = "(" + ptrName + ")";
548
Chris Lattner1c8733e2008-03-12 17:45:29 +0000549 if (!PAL.isEmpty())
Evan Chengb8a072c2008-01-12 18:53:07 +0000550 // Must be a function ptr cast!
551 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000552 return printType(Out, PTy->getElementType(), false, ptrName);
553 }
554
555 case Type::ArrayTyID: {
556 const ArrayType *ATy = cast<ArrayType>(Ty);
557 unsigned NumElements = ATy->getNumElements();
558 if (NumElements == 0) NumElements = 1;
559 return printType(Out, ATy->getElementType(), false,
560 NameSoFar + "[" + utostr(NumElements) + "]");
561 }
562
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000563 case Type::OpaqueTyID: {
564 static int Count = 0;
565 std::string TyName = "struct opaque_" + itostr(Count++);
566 assert(TypeNames.find(Ty) == TypeNames.end());
567 TypeNames[Ty] = TyName;
568 return Out << TyName << ' ' << NameSoFar;
569 }
570 default:
571 assert(0 && "Unhandled case in getTypeProps!");
572 abort();
573 }
574
575 return Out;
576}
577
578void CWriter::printConstantArray(ConstantArray *CPA) {
579
580 // As a special case, print the array as a string if it is an array of
581 // ubytes or an array of sbytes with positive values.
582 //
583 const Type *ETy = CPA->getType()->getElementType();
584 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
585
586 // Make sure the last character is a null char, as automatically added by C
587 if (isString && (CPA->getNumOperands() == 0 ||
588 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
589 isString = false;
590
591 if (isString) {
592 Out << '\"';
593 // Keep track of whether the last number was a hexadecimal escape
594 bool LastWasHex = false;
595
596 // Do not include the last character, which we know is null
597 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
598 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
599
600 // Print it out literally if it is a printable character. The only thing
601 // to be careful about is when the last letter output was a hex escape
602 // code, in which case we have to be careful not to print out hex digits
603 // explicitly (the C compiler thinks it is a continuation of the previous
604 // character, sheesh...)
605 //
606 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
607 LastWasHex = false;
608 if (C == '"' || C == '\\')
609 Out << "\\" << C;
610 else
611 Out << C;
612 } else {
613 LastWasHex = false;
614 switch (C) {
615 case '\n': Out << "\\n"; break;
616 case '\t': Out << "\\t"; break;
617 case '\r': Out << "\\r"; break;
618 case '\v': Out << "\\v"; break;
619 case '\a': Out << "\\a"; break;
620 case '\"': Out << "\\\""; break;
621 case '\'': Out << "\\\'"; break;
622 default:
623 Out << "\\x";
624 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
625 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
626 LastWasHex = true;
627 break;
628 }
629 }
630 }
631 Out << '\"';
632 } else {
633 Out << '{';
634 if (CPA->getNumOperands()) {
635 Out << ' ';
636 printConstant(cast<Constant>(CPA->getOperand(0)));
637 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
638 Out << ", ";
639 printConstant(cast<Constant>(CPA->getOperand(i)));
640 }
641 }
642 Out << " }";
643 }
644}
645
646void CWriter::printConstantVector(ConstantVector *CP) {
647 Out << '{';
648 if (CP->getNumOperands()) {
649 Out << ' ';
650 printConstant(cast<Constant>(CP->getOperand(0)));
651 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
652 Out << ", ";
653 printConstant(cast<Constant>(CP->getOperand(i)));
654 }
655 }
656 Out << " }";
657}
658
659// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
660// textually as a double (rather than as a reference to a stack-allocated
661// variable). We decide this by converting CFP to a string and back into a
662// double, and then checking whether the conversion results in a bit-equal
663// double to the original value of CFP. This depends on us and the target C
664// compiler agreeing on the conversion process (which is pretty likely since we
665// only deal in IEEE FP).
666//
667static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000668 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000669 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
670 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000671 APFloat APF = APFloat(CFP->getValueAPF()); // copy
672 if (CFP->getType()==Type::FloatTy)
673 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000674#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
675 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000676 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000677 if (!strncmp(Buffer, "0x", 2) ||
678 !strncmp(Buffer, "-0x", 3) ||
679 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000680 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681 return false;
682#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000683 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000684
685 while (StrVal[0] == ' ')
686 StrVal.erase(StrVal.begin());
687
688 // Check to make sure that the stringized number is not some string like "Inf"
689 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
690 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
691 ((StrVal[0] == '-' || StrVal[0] == '+') &&
692 (StrVal[1] >= '0' && StrVal[1] <= '9')))
693 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000694 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000695 return false;
696#endif
697}
698
699/// Print out the casting for a cast operation. This does the double casting
700/// necessary for conversion to the destination type, if necessary.
701/// @brief Print a cast
702void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
703 // Print the destination type cast
704 switch (opc) {
705 case Instruction::UIToFP:
706 case Instruction::SIToFP:
707 case Instruction::IntToPtr:
708 case Instruction::Trunc:
709 case Instruction::BitCast:
710 case Instruction::FPExt:
711 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
712 Out << '(';
713 printType(Out, DstTy);
714 Out << ')';
715 break;
716 case Instruction::ZExt:
717 case Instruction::PtrToInt:
718 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
719 Out << '(';
720 printSimpleType(Out, DstTy, false);
721 Out << ')';
722 break;
723 case Instruction::SExt:
724 case Instruction::FPToSI: // For these, make sure we get a signed dest
725 Out << '(';
726 printSimpleType(Out, DstTy, true);
727 Out << ')';
728 break;
729 default:
730 assert(0 && "Invalid cast opcode");
731 }
732
733 // Print the source type cast
734 switch (opc) {
735 case Instruction::UIToFP:
736 case Instruction::ZExt:
737 Out << '(';
738 printSimpleType(Out, SrcTy, false);
739 Out << ')';
740 break;
741 case Instruction::SIToFP:
742 case Instruction::SExt:
743 Out << '(';
744 printSimpleType(Out, SrcTy, true);
745 Out << ')';
746 break;
747 case Instruction::IntToPtr:
748 case Instruction::PtrToInt:
749 // Avoid "cast to pointer from integer of different size" warnings
750 Out << "(unsigned long)";
751 break;
752 case Instruction::Trunc:
753 case Instruction::BitCast:
754 case Instruction::FPExt:
755 case Instruction::FPTrunc:
756 case Instruction::FPToSI:
757 case Instruction::FPToUI:
758 break; // These don't need a source cast.
759 default:
760 assert(0 && "Invalid cast opcode");
761 break;
762 }
763}
764
765// printConstant - The LLVM Constant to C Constant converter.
766void CWriter::printConstant(Constant *CPV) {
767 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
768 switch (CE->getOpcode()) {
769 case Instruction::Trunc:
770 case Instruction::ZExt:
771 case Instruction::SExt:
772 case Instruction::FPTrunc:
773 case Instruction::FPExt:
774 case Instruction::UIToFP:
775 case Instruction::SIToFP:
776 case Instruction::FPToUI:
777 case Instruction::FPToSI:
778 case Instruction::PtrToInt:
779 case Instruction::IntToPtr:
780 case Instruction::BitCast:
781 Out << "(";
782 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
783 if (CE->getOpcode() == Instruction::SExt &&
784 CE->getOperand(0)->getType() == Type::Int1Ty) {
785 // Make sure we really sext from bool here by subtracting from 0
786 Out << "0-";
787 }
788 printConstant(CE->getOperand(0));
789 if (CE->getType() == Type::Int1Ty &&
790 (CE->getOpcode() == Instruction::Trunc ||
791 CE->getOpcode() == Instruction::FPToUI ||
792 CE->getOpcode() == Instruction::FPToSI ||
793 CE->getOpcode() == Instruction::PtrToInt)) {
794 // Make sure we really truncate to bool here by anding with 1
795 Out << "&1u";
796 }
797 Out << ')';
798 return;
799
800 case Instruction::GetElementPtr:
Chris Lattner8bbc8592008-03-02 08:07:24 +0000801 Out << "(";
802 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
803 gep_type_end(CPV));
804 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000805 return;
806 case Instruction::Select:
807 Out << '(';
808 printConstant(CE->getOperand(0));
809 Out << '?';
810 printConstant(CE->getOperand(1));
811 Out << ':';
812 printConstant(CE->getOperand(2));
813 Out << ')';
814 return;
815 case Instruction::Add:
816 case Instruction::Sub:
817 case Instruction::Mul:
818 case Instruction::SDiv:
819 case Instruction::UDiv:
820 case Instruction::FDiv:
821 case Instruction::URem:
822 case Instruction::SRem:
823 case Instruction::FRem:
824 case Instruction::And:
825 case Instruction::Or:
826 case Instruction::Xor:
827 case Instruction::ICmp:
828 case Instruction::Shl:
829 case Instruction::LShr:
830 case Instruction::AShr:
831 {
832 Out << '(';
833 bool NeedsClosingParens = printConstExprCast(CE);
834 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
835 switch (CE->getOpcode()) {
836 case Instruction::Add: Out << " + "; break;
837 case Instruction::Sub: Out << " - "; break;
838 case Instruction::Mul: Out << " * "; break;
839 case Instruction::URem:
840 case Instruction::SRem:
841 case Instruction::FRem: Out << " % "; break;
842 case Instruction::UDiv:
843 case Instruction::SDiv:
844 case Instruction::FDiv: Out << " / "; break;
845 case Instruction::And: Out << " & "; break;
846 case Instruction::Or: Out << " | "; break;
847 case Instruction::Xor: Out << " ^ "; break;
848 case Instruction::Shl: Out << " << "; break;
849 case Instruction::LShr:
850 case Instruction::AShr: Out << " >> "; break;
851 case Instruction::ICmp:
852 switch (CE->getPredicate()) {
853 case ICmpInst::ICMP_EQ: Out << " == "; break;
854 case ICmpInst::ICMP_NE: Out << " != "; break;
855 case ICmpInst::ICMP_SLT:
856 case ICmpInst::ICMP_ULT: Out << " < "; break;
857 case ICmpInst::ICMP_SLE:
858 case ICmpInst::ICMP_ULE: Out << " <= "; break;
859 case ICmpInst::ICMP_SGT:
860 case ICmpInst::ICMP_UGT: Out << " > "; break;
861 case ICmpInst::ICMP_SGE:
862 case ICmpInst::ICMP_UGE: Out << " >= "; break;
863 default: assert(0 && "Illegal ICmp predicate");
864 }
865 break;
866 default: assert(0 && "Illegal opcode here!");
867 }
868 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
869 if (NeedsClosingParens)
870 Out << "))";
871 Out << ')';
872 return;
873 }
874 case Instruction::FCmp: {
875 Out << '(';
876 bool NeedsClosingParens = printConstExprCast(CE);
877 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
878 Out << "0";
879 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
880 Out << "1";
881 else {
882 const char* op = 0;
883 switch (CE->getPredicate()) {
884 default: assert(0 && "Illegal FCmp predicate");
885 case FCmpInst::FCMP_ORD: op = "ord"; break;
886 case FCmpInst::FCMP_UNO: op = "uno"; break;
887 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
888 case FCmpInst::FCMP_UNE: op = "une"; break;
889 case FCmpInst::FCMP_ULT: op = "ult"; break;
890 case FCmpInst::FCMP_ULE: op = "ule"; break;
891 case FCmpInst::FCMP_UGT: op = "ugt"; break;
892 case FCmpInst::FCMP_UGE: op = "uge"; break;
893 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
894 case FCmpInst::FCMP_ONE: op = "one"; break;
895 case FCmpInst::FCMP_OLT: op = "olt"; break;
896 case FCmpInst::FCMP_OLE: op = "ole"; break;
897 case FCmpInst::FCMP_OGT: op = "ogt"; break;
898 case FCmpInst::FCMP_OGE: op = "oge"; break;
899 }
900 Out << "llvm_fcmp_" << op << "(";
901 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
902 Out << ", ";
903 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
904 Out << ")";
905 }
906 if (NeedsClosingParens)
907 Out << "))";
908 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000909 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000910 }
911 default:
912 cerr << "CWriter Error: Unhandled constant expression: "
913 << *CE << "\n";
914 abort();
915 }
916 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
917 Out << "((";
918 printType(Out, CPV->getType()); // sign doesn't matter
Chris Lattnerc72d9e32008-03-02 08:14:45 +0000919 Out << ")/*UNDEF*/";
920 if (!isa<VectorType>(CPV->getType())) {
921 Out << "0)";
922 } else {
923 Out << "{})";
924 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000925 return;
926 }
927
928 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
929 const Type* Ty = CI->getType();
930 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000931 Out << (CI->getZExtValue() ? '1' : '0');
932 else if (Ty == Type::Int32Ty)
933 Out << CI->getZExtValue() << 'u';
934 else if (Ty->getPrimitiveSizeInBits() > 32)
935 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000936 else {
937 Out << "((";
938 printSimpleType(Out, Ty, false) << ')';
939 if (CI->isMinValue(true))
940 Out << CI->getZExtValue() << 'u';
941 else
942 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000943 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944 }
945 return;
946 }
947
948 switch (CPV->getType()->getTypeID()) {
949 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000950 case Type::DoubleTyID:
951 case Type::X86_FP80TyID:
952 case Type::PPC_FP128TyID:
953 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 ConstantFP *FPC = cast<ConstantFP>(CPV);
955 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
956 if (I != FPConstantMap.end()) {
957 // Because of FP precision problems we must load from a stack allocated
958 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000959 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
960 FPC->getType() == Type::DoubleTy ? "double" :
961 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000962 << "*)&FPConstant" << I->second << ')';
963 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000964 assert(FPC->getType() == Type::FloatTy ||
965 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000966 double V = FPC->getType() == Type::FloatTy ?
967 FPC->getValueAPF().convertToFloat() :
968 FPC->getValueAPF().convertToDouble();
969 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000970 // The value is NaN
971
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000972 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000973 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
974 // it's 0x7ff4.
975 const unsigned long QuietNaN = 0x7ff8UL;
976 //const unsigned long SignalNaN = 0x7ff4UL;
977
978 // We need to grab the first part of the FP #
979 char Buffer[100];
980
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000981 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
983
984 std::string Num(&Buffer[0], &Buffer[6]);
985 unsigned long Val = strtoul(Num.c_str(), 0, 16);
986
987 if (FPC->getType() == Type::FloatTy)
988 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
989 << Buffer << "\") /*nan*/ ";
990 else
991 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
992 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000993 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000994 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000995 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000996 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
997 << " /*inf*/ ";
998 } else {
999 std::string Num;
1000#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1001 // Print out the constant as a floating point number.
1002 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001003 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001004 Num = Buffer;
1005#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001006 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001007#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001008 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001009 }
1010 }
1011 break;
1012 }
1013
1014 case Type::ArrayTyID:
Chris Lattner8673e322008-03-02 05:46:57 +00001015 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001016 printConstantArray(CA);
Chris Lattner63fb1f02008-03-02 03:16:38 +00001017 } else {
1018 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1020 Out << '{';
1021 if (AT->getNumElements()) {
1022 Out << ' ';
1023 Constant *CZ = Constant::getNullValue(AT->getElementType());
1024 printConstant(CZ);
1025 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1026 Out << ", ";
1027 printConstant(CZ);
1028 }
1029 }
1030 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001031 }
1032 break;
1033
1034 case Type::VectorTyID:
Chris Lattner70f0f672008-03-02 03:29:50 +00001035 // Use C99 compound expression literal initializer syntax.
1036 Out << "(";
1037 printType(Out, CPV->getType());
1038 Out << ")";
Chris Lattner8673e322008-03-02 05:46:57 +00001039 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001040 printConstantVector(CV);
1041 } else {
1042 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1043 const VectorType *VT = cast<VectorType>(CPV->getType());
1044 Out << "{ ";
1045 Constant *CZ = Constant::getNullValue(VT->getElementType());
1046 printConstant(CZ);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001047 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001048 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001049 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001050 }
1051 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001052 }
1053 break;
1054
1055 case Type::StructTyID:
1056 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1057 const StructType *ST = cast<StructType>(CPV->getType());
1058 Out << '{';
1059 if (ST->getNumElements()) {
1060 Out << ' ';
1061 printConstant(Constant::getNullValue(ST->getElementType(0)));
1062 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1063 Out << ", ";
1064 printConstant(Constant::getNullValue(ST->getElementType(i)));
1065 }
1066 }
1067 Out << " }";
1068 } else {
1069 Out << '{';
1070 if (CPV->getNumOperands()) {
1071 Out << ' ';
1072 printConstant(cast<Constant>(CPV->getOperand(0)));
1073 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1074 Out << ", ";
1075 printConstant(cast<Constant>(CPV->getOperand(i)));
1076 }
1077 }
1078 Out << " }";
1079 }
1080 break;
1081
1082 case Type::PointerTyID:
1083 if (isa<ConstantPointerNull>(CPV)) {
1084 Out << "((";
1085 printType(Out, CPV->getType()); // sign doesn't matter
1086 Out << ")/*NULL*/0)";
1087 break;
1088 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1089 writeOperand(GV);
1090 break;
1091 }
1092 // FALL THROUGH
1093 default:
1094 cerr << "Unknown constant type: " << *CPV << "\n";
1095 abort();
1096 }
1097}
1098
1099// Some constant expressions need to be casted back to the original types
1100// because their operands were casted to the expected type. This function takes
1101// care of detecting that case and printing the cast for the ConstantExpr.
1102bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1103 bool NeedsExplicitCast = false;
1104 const Type *Ty = CE->getOperand(0)->getType();
1105 bool TypeIsSigned = false;
1106 switch (CE->getOpcode()) {
1107 case Instruction::LShr:
1108 case Instruction::URem:
1109 case Instruction::UDiv: NeedsExplicitCast = true; break;
1110 case Instruction::AShr:
1111 case Instruction::SRem:
1112 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1113 case Instruction::SExt:
1114 Ty = CE->getType();
1115 NeedsExplicitCast = true;
1116 TypeIsSigned = true;
1117 break;
1118 case Instruction::ZExt:
1119 case Instruction::Trunc:
1120 case Instruction::FPTrunc:
1121 case Instruction::FPExt:
1122 case Instruction::UIToFP:
1123 case Instruction::SIToFP:
1124 case Instruction::FPToUI:
1125 case Instruction::FPToSI:
1126 case Instruction::PtrToInt:
1127 case Instruction::IntToPtr:
1128 case Instruction::BitCast:
1129 Ty = CE->getType();
1130 NeedsExplicitCast = true;
1131 break;
1132 default: break;
1133 }
1134 if (NeedsExplicitCast) {
1135 Out << "((";
1136 if (Ty->isInteger() && Ty != Type::Int1Ty)
1137 printSimpleType(Out, Ty, TypeIsSigned);
1138 else
1139 printType(Out, Ty); // not integer, sign doesn't matter
1140 Out << ")(";
1141 }
1142 return NeedsExplicitCast;
1143}
1144
1145// Print a constant assuming that it is the operand for a given Opcode. The
1146// opcodes that care about sign need to cast their operands to the expected
1147// type before the operation proceeds. This function does the casting.
1148void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1149
1150 // Extract the operand's type, we'll need it.
1151 const Type* OpTy = CPV->getType();
1152
1153 // Indicate whether to do the cast or not.
1154 bool shouldCast = false;
1155 bool typeIsSigned = false;
1156
1157 // Based on the Opcode for which this Constant is being written, determine
1158 // the new type to which the operand should be casted by setting the value
1159 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1160 // casted below.
1161 switch (Opcode) {
1162 default:
1163 // for most instructions, it doesn't matter
1164 break;
1165 case Instruction::LShr:
1166 case Instruction::UDiv:
1167 case Instruction::URem:
1168 shouldCast = true;
1169 break;
1170 case Instruction::AShr:
1171 case Instruction::SDiv:
1172 case Instruction::SRem:
1173 shouldCast = true;
1174 typeIsSigned = true;
1175 break;
1176 }
1177
1178 // Write out the casted constant if we should, otherwise just write the
1179 // operand.
1180 if (shouldCast) {
1181 Out << "((";
1182 printSimpleType(Out, OpTy, typeIsSigned);
1183 Out << ")";
1184 printConstant(CPV);
1185 Out << ")";
1186 } else
1187 printConstant(CPV);
1188}
1189
1190std::string CWriter::GetValueName(const Value *Operand) {
1191 std::string Name;
1192
1193 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1194 std::string VarName;
1195
1196 Name = Operand->getName();
1197 VarName.reserve(Name.capacity());
1198
1199 for (std::string::iterator I = Name.begin(), E = Name.end();
1200 I != E; ++I) {
1201 char ch = *I;
1202
1203 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001204 (ch >= '0' && ch <= '9') || ch == '_')) {
1205 char buffer[5];
1206 sprintf(buffer, "_%x_", ch);
1207 VarName += buffer;
1208 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001209 VarName += ch;
1210 }
1211
1212 Name = "llvm_cbe_" + VarName;
1213 } else {
1214 Name = Mang->getValueName(Operand);
1215 }
1216
1217 return Name;
1218}
1219
1220void CWriter::writeOperandInternal(Value *Operand) {
1221 if (Instruction *I = dyn_cast<Instruction>(Operand))
1222 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1223 // Should we inline this instruction to build a tree?
1224 Out << '(';
1225 visit(*I);
1226 Out << ')';
1227 return;
1228 }
1229
1230 Constant* CPV = dyn_cast<Constant>(Operand);
1231
1232 if (CPV && !isa<GlobalValue>(CPV))
1233 printConstant(CPV);
1234 else
1235 Out << GetValueName(Operand);
1236}
1237
1238void CWriter::writeOperandRaw(Value *Operand) {
1239 Constant* CPV = dyn_cast<Constant>(Operand);
1240 if (CPV && !isa<GlobalValue>(CPV)) {
1241 printConstant(CPV);
1242 } else {
1243 Out << GetValueName(Operand);
1244 }
1245}
1246
1247void CWriter::writeOperand(Value *Operand) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00001248 bool isAddressImplicit = isAddressExposed(Operand);
1249 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001250 Out << "(&"; // Global variables are referenced as their addresses by llvm
1251
1252 writeOperandInternal(Operand);
1253
Chris Lattner8bbc8592008-03-02 08:07:24 +00001254 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001255 Out << ')';
1256}
1257
1258// Some instructions need to have their result value casted back to the
1259// original types because their operands were casted to the expected type.
1260// This function takes care of detecting that case and printing the cast
1261// for the Instruction.
1262bool CWriter::writeInstructionCast(const Instruction &I) {
1263 const Type *Ty = I.getOperand(0)->getType();
1264 switch (I.getOpcode()) {
1265 case Instruction::LShr:
1266 case Instruction::URem:
1267 case Instruction::UDiv:
1268 Out << "((";
1269 printSimpleType(Out, Ty, false);
1270 Out << ")(";
1271 return true;
1272 case Instruction::AShr:
1273 case Instruction::SRem:
1274 case Instruction::SDiv:
1275 Out << "((";
1276 printSimpleType(Out, Ty, true);
1277 Out << ")(";
1278 return true;
1279 default: break;
1280 }
1281 return false;
1282}
1283
1284// Write the operand with a cast to another type based on the Opcode being used.
1285// This will be used in cases where an instruction has specific type
1286// requirements (usually signedness) for its operands.
1287void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1288
1289 // Extract the operand's type, we'll need it.
1290 const Type* OpTy = Operand->getType();
1291
1292 // Indicate whether to do the cast or not.
1293 bool shouldCast = false;
1294
1295 // Indicate whether the cast should be to a signed type or not.
1296 bool castIsSigned = false;
1297
1298 // Based on the Opcode for which this Operand is being written, determine
1299 // the new type to which the operand should be casted by setting the value
1300 // of OpTy. If we change OpTy, also set shouldCast to true.
1301 switch (Opcode) {
1302 default:
1303 // for most instructions, it doesn't matter
1304 break;
1305 case Instruction::LShr:
1306 case Instruction::UDiv:
1307 case Instruction::URem: // Cast to unsigned first
1308 shouldCast = true;
1309 castIsSigned = false;
1310 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001311 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001312 case Instruction::AShr:
1313 case Instruction::SDiv:
1314 case Instruction::SRem: // Cast to signed first
1315 shouldCast = true;
1316 castIsSigned = true;
1317 break;
1318 }
1319
1320 // Write out the casted operand if we should, otherwise just write the
1321 // operand.
1322 if (shouldCast) {
1323 Out << "((";
1324 printSimpleType(Out, OpTy, castIsSigned);
1325 Out << ")";
1326 writeOperand(Operand);
1327 Out << ")";
1328 } else
1329 writeOperand(Operand);
1330}
1331
1332// Write the operand with a cast to another type based on the icmp predicate
1333// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001334void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1335 // This has to do a cast to ensure the operand has the right signedness.
1336 // Also, if the operand is a pointer, we make sure to cast to an integer when
1337 // doing the comparison both for signedness and so that the C compiler doesn't
1338 // optimize things like "p < NULL" to false (p may contain an integer value
1339 // f.e.).
1340 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001341
1342 // Write out the casted operand if we should, otherwise just write the
1343 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001344 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001345 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001346 return;
1347 }
1348
1349 // Should this be a signed comparison? If so, convert to signed.
1350 bool castIsSigned = Cmp.isSignedPredicate();
1351
1352 // If the operand was a pointer, convert to a large integer type.
1353 const Type* OpTy = Operand->getType();
1354 if (isa<PointerType>(OpTy))
1355 OpTy = TD->getIntPtrType();
1356
1357 Out << "((";
1358 printSimpleType(Out, OpTy, castIsSigned);
1359 Out << ")";
1360 writeOperand(Operand);
1361 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001362}
1363
1364// generateCompilerSpecificCode - This is where we add conditional compilation
1365// directives to cater to specific compilers as need be.
1366//
Dan Gohman3f795232008-04-02 23:52:49 +00001367static void generateCompilerSpecificCode(std::ostream& Out,
1368 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001369 // Alloca is hard to get, and we don't want to include stdlib.h here.
1370 Out << "/* get a declaration for alloca */\n"
1371 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1372 << "#define alloca(x) __builtin_alloca((x))\n"
1373 << "#define _alloca(x) __builtin_alloca((x))\n"
1374 << "#elif defined(__APPLE__)\n"
1375 << "extern void *__builtin_alloca(unsigned long);\n"
1376 << "#define alloca(x) __builtin_alloca(x)\n"
1377 << "#define longjmp _longjmp\n"
1378 << "#define setjmp _setjmp\n"
1379 << "#elif defined(__sun__)\n"
1380 << "#if defined(__sparcv9)\n"
1381 << "extern void *__builtin_alloca(unsigned long);\n"
1382 << "#else\n"
1383 << "extern void *__builtin_alloca(unsigned int);\n"
1384 << "#endif\n"
1385 << "#define alloca(x) __builtin_alloca(x)\n"
Chris Lattner9bae27b2008-01-12 06:46:09 +00001386 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001387 << "#define alloca(x) __builtin_alloca(x)\n"
1388 << "#elif defined(_MSC_VER)\n"
1389 << "#define inline _inline\n"
1390 << "#define alloca(x) _alloca(x)\n"
1391 << "#else\n"
1392 << "#include <alloca.h>\n"
1393 << "#endif\n\n";
1394
1395 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1396 // If we aren't being compiled with GCC, just drop these attributes.
1397 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1398 << "#define __attribute__(X)\n"
1399 << "#endif\n\n";
1400
1401 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1402 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1403 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1404 << "#elif defined(__GNUC__)\n"
1405 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1406 << "#else\n"
1407 << "#define __EXTERNAL_WEAK__\n"
1408 << "#endif\n\n";
1409
1410 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1411 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1412 << "#define __ATTRIBUTE_WEAK__\n"
1413 << "#elif defined(__GNUC__)\n"
1414 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1415 << "#else\n"
1416 << "#define __ATTRIBUTE_WEAK__\n"
1417 << "#endif\n\n";
1418
1419 // Add hidden visibility support. FIXME: APPLE_CC?
1420 Out << "#if defined(__GNUC__)\n"
1421 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1422 << "#endif\n\n";
1423
1424 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1425 // From the GCC documentation:
1426 //
1427 // double __builtin_nan (const char *str)
1428 //
1429 // This is an implementation of the ISO C99 function nan.
1430 //
1431 // Since ISO C99 defines this function in terms of strtod, which we do
1432 // not implement, a description of the parsing is in order. The string is
1433 // parsed as by strtol; that is, the base is recognized by leading 0 or
1434 // 0x prefixes. The number parsed is placed in the significand such that
1435 // the least significant bit of the number is at the least significant
1436 // bit of the significand. The number is truncated to fit the significand
1437 // field provided. The significand is forced to be a quiet NaN.
1438 //
1439 // This function, if given a string literal, is evaluated early enough
1440 // that it is considered a compile-time constant.
1441 //
1442 // float __builtin_nanf (const char *str)
1443 //
1444 // Similar to __builtin_nan, except the return type is float.
1445 //
1446 // double __builtin_inf (void)
1447 //
1448 // Similar to __builtin_huge_val, except a warning is generated if the
1449 // target floating-point format does not support infinities. This
1450 // function is suitable for implementing the ISO C99 macro INFINITY.
1451 //
1452 // float __builtin_inff (void)
1453 //
1454 // Similar to __builtin_inf, except the return type is float.
1455 Out << "#ifdef __GNUC__\n"
1456 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1457 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1458 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1459 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1460 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1461 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1462 << "#define LLVM_PREFETCH(addr,rw,locality) "
1463 "__builtin_prefetch(addr,rw,locality)\n"
1464 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1465 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1466 << "#define LLVM_ASM __asm__\n"
1467 << "#else\n"
1468 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1469 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1470 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1471 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1472 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1473 << "#define LLVM_INFF 0.0F /* Float */\n"
1474 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1475 << "#define __ATTRIBUTE_CTOR__\n"
1476 << "#define __ATTRIBUTE_DTOR__\n"
1477 << "#define LLVM_ASM(X)\n"
1478 << "#endif\n\n";
1479
1480 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1481 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1482 << "#define __builtin_stack_restore(X) /* noop */\n"
1483 << "#endif\n\n";
1484
Dan Gohman3f795232008-04-02 23:52:49 +00001485 // Output typedefs for 128-bit integers. If these are needed with a
1486 // 32-bit target or with a C compiler that doesn't support mode(TI),
1487 // more drastic measures will be needed.
1488 if (TD->getPointerSize() >= 8) {
1489 Out << "#ifdef __GNUC__ /* 128-bit integer types */\n"
1490 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1491 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1492 << "#endif\n\n";
1493 }
Dan Gohmana2245af2008-04-02 19:40:14 +00001494
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001495 // Output target-specific code that should be inserted into main.
1496 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001497}
1498
1499/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1500/// the StaticTors set.
1501static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1502 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1503 if (!InitList) return;
1504
1505 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1506 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1507 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1508
1509 if (CS->getOperand(1)->isNullValue())
1510 return; // Found a null terminator, exit printing.
1511 Constant *FP = CS->getOperand(1);
1512 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1513 if (CE->isCast())
1514 FP = CE->getOperand(0);
1515 if (Function *F = dyn_cast<Function>(FP))
1516 StaticTors.insert(F);
1517 }
1518}
1519
1520enum SpecialGlobalClass {
1521 NotSpecial = 0,
1522 GlobalCtors, GlobalDtors,
1523 NotPrinted
1524};
1525
1526/// getGlobalVariableClass - If this is a global that is specially recognized
1527/// by LLVM, return a code that indicates how we should handle it.
1528static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1529 // If this is a global ctors/dtors list, handle it now.
1530 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1531 if (GV->getName() == "llvm.global_ctors")
1532 return GlobalCtors;
1533 else if (GV->getName() == "llvm.global_dtors")
1534 return GlobalDtors;
1535 }
1536
1537 // Otherwise, it it is other metadata, don't print it. This catches things
1538 // like debug information.
1539 if (GV->getSection() == "llvm.metadata")
1540 return NotPrinted;
1541
1542 return NotSpecial;
1543}
1544
1545
1546bool CWriter::doInitialization(Module &M) {
1547 // Initialize
1548 TheModule = &M;
1549
1550 TD = new TargetData(&M);
1551 IL = new IntrinsicLowering(*TD);
1552 IL->AddPrototypes(M);
1553
1554 // Ensure that all structure types have names...
1555 Mang = new Mangler(M);
1556 Mang->markCharUnacceptable('.');
1557
1558 // Keep track of which functions are static ctors/dtors so they can have
1559 // an attribute added to their prototypes.
1560 std::set<Function*> StaticCtors, StaticDtors;
1561 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1562 I != E; ++I) {
1563 switch (getGlobalVariableClass(I)) {
1564 default: break;
1565 case GlobalCtors:
1566 FindStaticTors(I, StaticCtors);
1567 break;
1568 case GlobalDtors:
1569 FindStaticTors(I, StaticDtors);
1570 break;
1571 }
1572 }
1573
1574 // get declaration for alloca
1575 Out << "/* Provide Declarations */\n";
1576 Out << "#include <stdarg.h>\n"; // Varargs support
1577 Out << "#include <setjmp.h>\n"; // Unwind support
Dan Gohman3f795232008-04-02 23:52:49 +00001578 generateCompilerSpecificCode(Out, TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001579
1580 // Provide a definition for `bool' if not compiling with a C++ compiler.
1581 Out << "\n"
1582 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1583
1584 << "\n\n/* Support for floating point constants */\n"
1585 << "typedef unsigned long long ConstantDoubleTy;\n"
1586 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001587 << "typedef struct { unsigned long long f1; unsigned short f2; "
1588 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001589 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001590 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1591 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001592 << "\n\n/* Global Declarations */\n";
1593
1594 // First output all the declarations for the program, because C requires
1595 // Functions & globals to be declared before they are used.
1596 //
1597
1598 // Loop over the symbol table, emitting all named constants...
1599 printModuleTypes(M.getTypeSymbolTable());
1600
1601 // Global variable declarations...
1602 if (!M.global_empty()) {
1603 Out << "\n/* External Global Variable Declarations */\n";
1604 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1605 I != E; ++I) {
1606
1607 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1608 Out << "extern ";
1609 else if (I->hasDLLImportLinkage())
1610 Out << "__declspec(dllimport) ";
1611 else
1612 continue; // Internal Global
1613
1614 // Thread Local Storage
1615 if (I->isThreadLocal())
1616 Out << "__thread ";
1617
1618 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1619
1620 if (I->hasExternalWeakLinkage())
1621 Out << " __EXTERNAL_WEAK__";
1622 Out << ";\n";
1623 }
1624 }
1625
1626 // Function declarations
1627 Out << "\n/* Function Declarations */\n";
1628 Out << "double fmod(double, double);\n"; // Support for FP rem
1629 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001630 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001631
1632 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1633 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001634 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001635 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1636 if (I->hasExternalWeakLinkage())
1637 Out << "extern ";
1638 printFunctionSignature(I, true);
1639 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1640 Out << " __ATTRIBUTE_WEAK__";
1641 if (I->hasExternalWeakLinkage())
1642 Out << " __EXTERNAL_WEAK__";
1643 if (StaticCtors.count(I))
1644 Out << " __ATTRIBUTE_CTOR__";
1645 if (StaticDtors.count(I))
1646 Out << " __ATTRIBUTE_DTOR__";
1647 if (I->hasHiddenVisibility())
1648 Out << " __HIDDEN__";
1649
1650 if (I->hasName() && I->getName()[0] == 1)
1651 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1652
1653 Out << ";\n";
1654 }
1655 }
1656
1657 // Output the global variable declarations
1658 if (!M.global_empty()) {
1659 Out << "\n\n/* Global Variable Declarations */\n";
1660 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1661 I != E; ++I)
1662 if (!I->isDeclaration()) {
1663 // Ignore special globals, such as debug info.
1664 if (getGlobalVariableClass(I))
1665 continue;
1666
1667 if (I->hasInternalLinkage())
1668 Out << "static ";
1669 else
1670 Out << "extern ";
1671
1672 // Thread Local Storage
1673 if (I->isThreadLocal())
1674 Out << "__thread ";
1675
1676 printType(Out, I->getType()->getElementType(), false,
1677 GetValueName(I));
1678
1679 if (I->hasLinkOnceLinkage())
1680 Out << " __attribute__((common))";
1681 else if (I->hasWeakLinkage())
1682 Out << " __ATTRIBUTE_WEAK__";
1683 else if (I->hasExternalWeakLinkage())
1684 Out << " __EXTERNAL_WEAK__";
1685 if (I->hasHiddenVisibility())
1686 Out << " __HIDDEN__";
1687 Out << ";\n";
1688 }
1689 }
1690
1691 // Output the global variable definitions and contents...
1692 if (!M.global_empty()) {
1693 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1694 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1695 I != E; ++I)
1696 if (!I->isDeclaration()) {
1697 // Ignore special globals, such as debug info.
1698 if (getGlobalVariableClass(I))
1699 continue;
1700
1701 if (I->hasInternalLinkage())
1702 Out << "static ";
1703 else if (I->hasDLLImportLinkage())
1704 Out << "__declspec(dllimport) ";
1705 else if (I->hasDLLExportLinkage())
1706 Out << "__declspec(dllexport) ";
1707
1708 // Thread Local Storage
1709 if (I->isThreadLocal())
1710 Out << "__thread ";
1711
1712 printType(Out, I->getType()->getElementType(), false,
1713 GetValueName(I));
1714 if (I->hasLinkOnceLinkage())
1715 Out << " __attribute__((common))";
1716 else if (I->hasWeakLinkage())
1717 Out << " __ATTRIBUTE_WEAK__";
1718
1719 if (I->hasHiddenVisibility())
1720 Out << " __HIDDEN__";
1721
1722 // If the initializer is not null, emit the initializer. If it is null,
1723 // we try to avoid emitting large amounts of zeros. The problem with
1724 // this, however, occurs when the variable has weak linkage. In this
1725 // case, the assembler will complain about the variable being both weak
1726 // and common, so we disable this optimization.
1727 if (!I->getInitializer()->isNullValue()) {
1728 Out << " = " ;
1729 writeOperand(I->getInitializer());
1730 } else if (I->hasWeakLinkage()) {
1731 // We have to specify an initializer, but it doesn't have to be
1732 // complete. If the value is an aggregate, print out { 0 }, and let
1733 // the compiler figure out the rest of the zeros.
1734 Out << " = " ;
1735 if (isa<StructType>(I->getInitializer()->getType()) ||
1736 isa<ArrayType>(I->getInitializer()->getType()) ||
1737 isa<VectorType>(I->getInitializer()->getType())) {
1738 Out << "{ 0 }";
1739 } else {
1740 // Just print it out normally.
1741 writeOperand(I->getInitializer());
1742 }
1743 }
1744 Out << ";\n";
1745 }
1746 }
1747
1748 if (!M.empty())
1749 Out << "\n\n/* Function Bodies */\n";
1750
1751 // Emit some helper functions for dealing with FCMP instruction's
1752 // predicates
1753 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1754 Out << "return X == X && Y == Y; }\n";
1755 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1756 Out << "return X != X || Y != Y; }\n";
1757 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1758 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1759 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1760 Out << "return X != Y; }\n";
1761 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1762 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1763 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1764 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1765 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1766 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1767 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1768 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1769 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1770 Out << "return X == Y ; }\n";
1771 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1772 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1773 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1774 Out << "return X < Y ; }\n";
1775 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1776 Out << "return X > Y ; }\n";
1777 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1778 Out << "return X <= Y ; }\n";
1779 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1780 Out << "return X >= Y ; }\n";
1781 return false;
1782}
1783
1784
1785/// Output all floating point constants that cannot be printed accurately...
1786void CWriter::printFloatingPointConstants(Function &F) {
1787 // Scan the module for floating point constants. If any FP constant is used
1788 // in the function, we want to redirect it here so that we do not depend on
1789 // the precision of the printed form, unless the printed form preserves
1790 // precision.
1791 //
1792 static unsigned FPCounter = 0;
1793 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1794 I != E; ++I)
1795 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1796 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1797 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001798 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1799
1800 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001801 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001802 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001803 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001804 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001805 << "ULL; /* " << Val << " */\n";
1806 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001807 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001808 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1809 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001810 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001811 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001812 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001813 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001814 // api needed to prevent premature destruction
1815 APInt api = FPC->getValueAPF().convertToAPInt();
1816 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001817 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1818 << " = { 0x" << std::hex
1819 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1820 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1821 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001822 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1823 APInt api = FPC->getValueAPF().convertToAPInt();
1824 const uint64_t *p = api.getRawData();
1825 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1826 << " = { 0x" << std::hex
1827 << p[0] << ", 0x" << p[1]
1828 << "}; /* Long double constant */\n" << std::dec;
1829
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001830 } else
1831 assert(0 && "Unknown float type!");
1832 }
1833
1834 Out << '\n';
1835}
1836
1837
1838/// printSymbolTable - Run through symbol table looking for type names. If a
1839/// type name is found, emit its declaration...
1840///
1841void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1842 Out << "/* Helper union for bitcasts */\n";
1843 Out << "typedef union {\n";
1844 Out << " unsigned int Int32;\n";
1845 Out << " unsigned long long Int64;\n";
1846 Out << " float Float;\n";
1847 Out << " double Double;\n";
1848 Out << "} llvmBitCastUnion;\n";
1849
1850 // We are only interested in the type plane of the symbol table.
1851 TypeSymbolTable::const_iterator I = TST.begin();
1852 TypeSymbolTable::const_iterator End = TST.end();
1853
1854 // If there are no type names, exit early.
1855 if (I == End) return;
1856
1857 // Print out forward declarations for structure types before anything else!
1858 Out << "/* Structure forward decls */\n";
1859 for (; I != End; ++I) {
1860 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1861 Out << Name << ";\n";
1862 TypeNames.insert(std::make_pair(I->second, Name));
1863 }
1864
1865 Out << '\n';
1866
1867 // Now we can print out typedefs. Above, we guaranteed that this can only be
1868 // for struct or opaque types.
1869 Out << "/* Typedefs */\n";
1870 for (I = TST.begin(); I != End; ++I) {
1871 std::string Name = "l_" + Mang->makeNameProper(I->first);
1872 Out << "typedef ";
1873 printType(Out, I->second, false, Name);
1874 Out << ";\n";
1875 }
1876
1877 Out << '\n';
1878
1879 // Keep track of which structures have been printed so far...
1880 std::set<const StructType *> StructPrinted;
1881
1882 // Loop over all structures then push them into the stack so they are
1883 // printed in the correct order.
1884 //
1885 Out << "/* Structure contents */\n";
1886 for (I = TST.begin(); I != End; ++I)
1887 if (const StructType *STy = dyn_cast<StructType>(I->second))
1888 // Only print out used types!
1889 printContainedStructs(STy, StructPrinted);
1890}
1891
1892// Push the struct onto the stack and recursively push all structs
1893// this one depends on.
1894//
1895// TODO: Make this work properly with vector types
1896//
1897void CWriter::printContainedStructs(const Type *Ty,
1898 std::set<const StructType*> &StructPrinted){
1899 // Don't walk through pointers.
1900 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1901
1902 // Print all contained types first.
1903 for (Type::subtype_iterator I = Ty->subtype_begin(),
1904 E = Ty->subtype_end(); I != E; ++I)
1905 printContainedStructs(*I, StructPrinted);
1906
1907 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1908 // Check to see if we have already printed this struct.
1909 if (StructPrinted.insert(STy).second) {
1910 // Print structure type out.
1911 std::string Name = TypeNames[STy];
1912 printType(Out, STy, false, Name, true);
1913 Out << ";\n\n";
1914 }
1915 }
1916}
1917
1918void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1919 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00001920 bool isStructReturn = F->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001921
1922 if (F->hasInternalLinkage()) Out << "static ";
1923 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1924 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1925 switch (F->getCallingConv()) {
1926 case CallingConv::X86_StdCall:
1927 Out << "__stdcall ";
1928 break;
1929 case CallingConv::X86_FastCall:
1930 Out << "__fastcall ";
1931 break;
1932 }
1933
1934 // Loop over the arguments, printing them...
1935 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Chris Lattner1c8733e2008-03-12 17:45:29 +00001936 const PAListPtr &PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001937
1938 std::stringstream FunctionInnards;
1939
1940 // Print out the name...
1941 FunctionInnards << GetValueName(F) << '(';
1942
1943 bool PrintedArg = false;
1944 if (!F->isDeclaration()) {
1945 if (!F->arg_empty()) {
1946 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001947 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001948
1949 // If this is a struct-return function, don't print the hidden
1950 // struct-return argument.
1951 if (isStructReturn) {
1952 assert(I != E && "Invalid struct return function!");
1953 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001954 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001955 }
1956
1957 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001958 for (; I != E; ++I) {
1959 if (PrintedArg) FunctionInnards << ", ";
1960 if (I->hasName() || !Prototype)
1961 ArgName = GetValueName(I);
1962 else
1963 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001964 const Type *ArgTy = I->getType();
Chris Lattner1c8733e2008-03-12 17:45:29 +00001965 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +00001966 ArgTy = cast<PointerType>(ArgTy)->getElementType();
Chris Lattner8bbc8592008-03-02 08:07:24 +00001967 ByValParams.insert(I);
Evan Cheng17254e62008-01-11 09:12:49 +00001968 }
Evan Cheng2054cb02008-01-11 03:07:46 +00001969 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00001970 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001971 ArgName);
1972 PrintedArg = true;
1973 ++Idx;
1974 }
1975 }
1976 } else {
1977 // Loop over the arguments, printing them.
1978 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00001979 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001980
1981 // If this is a struct-return function, don't print the hidden
1982 // struct-return argument.
1983 if (isStructReturn) {
1984 assert(I != E && "Invalid struct return function!");
1985 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00001986 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001987 }
1988
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001989 for (; I != E; ++I) {
1990 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00001991 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +00001992 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengf8956382008-01-11 23:10:11 +00001993 assert(isa<PointerType>(ArgTy));
1994 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1995 }
1996 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00001997 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001998 PrintedArg = true;
1999 ++Idx;
2000 }
2001 }
2002
2003 // Finish printing arguments... if this is a vararg function, print the ...,
2004 // unless there are no known types, in which case, we just emit ().
2005 //
2006 if (FT->isVarArg() && PrintedArg) {
2007 if (PrintedArg) FunctionInnards << ", ";
2008 FunctionInnards << "..."; // Output varargs portion of signature!
2009 } else if (!FT->isVarArg() && !PrintedArg) {
2010 FunctionInnards << "void"; // ret() -> ret(void) in C.
2011 }
2012 FunctionInnards << ')';
2013
2014 // Get the return tpe for the function.
2015 const Type *RetTy;
2016 if (!isStructReturn)
2017 RetTy = F->getReturnType();
2018 else {
2019 // If this is a struct-return function, print the struct-return type.
2020 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2021 }
2022
2023 // Print out the return type and the signature built above.
2024 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002025 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002026 FunctionInnards.str());
2027}
2028
2029static inline bool isFPIntBitCast(const Instruction &I) {
2030 if (!isa<BitCastInst>(I))
2031 return false;
2032 const Type *SrcTy = I.getOperand(0)->getType();
2033 const Type *DstTy = I.getType();
2034 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2035 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2036}
2037
2038void CWriter::printFunction(Function &F) {
2039 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00002040 bool isStructReturn = F.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002041
2042 printFunctionSignature(&F, false);
2043 Out << " {\n";
2044
2045 // If this is a struct return function, handle the result with magic.
2046 if (isStructReturn) {
2047 const Type *StructTy =
2048 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2049 Out << " ";
2050 printType(Out, StructTy, false, "StructReturn");
2051 Out << "; /* Struct return temporary */\n";
2052
2053 Out << " ";
2054 printType(Out, F.arg_begin()->getType(), false,
2055 GetValueName(F.arg_begin()));
2056 Out << " = &StructReturn;\n";
2057 }
2058
2059 bool PrintedVar = false;
2060
2061 // print local variable information for the function
2062 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2063 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2064 Out << " ";
2065 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2066 Out << "; /* Address-exposed local */\n";
2067 PrintedVar = true;
2068 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2069 Out << " ";
2070 printType(Out, I->getType(), false, GetValueName(&*I));
2071 Out << ";\n";
2072
2073 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2074 Out << " ";
2075 printType(Out, I->getType(), false,
2076 GetValueName(&*I)+"__PHI_TEMPORARY");
2077 Out << ";\n";
2078 }
2079 PrintedVar = true;
2080 }
2081 // We need a temporary for the BitCast to use so it can pluck a value out
2082 // of a union to do the BitCast. This is separate from the need for a
2083 // variable to hold the result of the BitCast.
2084 if (isFPIntBitCast(*I)) {
2085 Out << " llvmBitCastUnion " << GetValueName(&*I)
2086 << "__BITCAST_TEMPORARY;\n";
2087 PrintedVar = true;
2088 }
2089 }
2090
2091 if (PrintedVar)
2092 Out << '\n';
2093
2094 if (F.hasExternalLinkage() && F.getName() == "main")
2095 Out << " CODE_FOR_MAIN();\n";
2096
2097 // print the basic blocks
2098 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2099 if (Loop *L = LI->getLoopFor(BB)) {
2100 if (L->getHeader() == BB && L->getParentLoop() == 0)
2101 printLoop(L);
2102 } else {
2103 printBasicBlock(BB);
2104 }
2105 }
2106
2107 Out << "}\n\n";
2108}
2109
2110void CWriter::printLoop(Loop *L) {
2111 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2112 << "' to make GCC happy */\n";
2113 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2114 BasicBlock *BB = L->getBlocks()[i];
2115 Loop *BBLoop = LI->getLoopFor(BB);
2116 if (BBLoop == L)
2117 printBasicBlock(BB);
2118 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2119 printLoop(BBLoop);
2120 }
2121 Out << " } while (1); /* end of syntactic loop '"
2122 << L->getHeader()->getName() << "' */\n";
2123}
2124
2125void CWriter::printBasicBlock(BasicBlock *BB) {
2126
2127 // Don't print the label for the basic block if there are no uses, or if
2128 // the only terminator use is the predecessor basic block's terminator.
2129 // We have to scan the use list because PHI nodes use basic blocks too but
2130 // do not require a label to be generated.
2131 //
2132 bool NeedsLabel = false;
2133 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2134 if (isGotoCodeNecessary(*PI, BB)) {
2135 NeedsLabel = true;
2136 break;
2137 }
2138
2139 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2140
2141 // Output all of the instructions in the basic block...
2142 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2143 ++II) {
2144 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2145 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2146 outputLValue(II);
2147 else
2148 Out << " ";
2149 visit(*II);
2150 Out << ";\n";
2151 }
2152 }
2153
2154 // Don't emit prefix or suffix for the terminator...
2155 visit(*BB->getTerminator());
2156}
2157
2158
2159// Specific Instruction type classes... note that all of the casts are
2160// necessary because we use the instruction classes as opaque types...
2161//
2162void CWriter::visitReturnInst(ReturnInst &I) {
2163 // If this is a struct return function, return the temporary struct.
Devang Patel949a4b72008-03-03 21:46:28 +00002164 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002165
2166 if (isStructReturn) {
2167 Out << " return StructReturn;\n";
2168 return;
2169 }
2170
2171 // Don't output a void return if this is the last basic block in the function
2172 if (I.getNumOperands() == 0 &&
2173 &*--I.getParent()->getParent()->end() == I.getParent() &&
2174 !I.getParent()->size() == 1) {
2175 return;
2176 }
2177
Dan Gohman93d04582008-04-23 21:49:29 +00002178 if (I.getNumOperands() > 1) {
2179 Out << " {\n";
2180 Out << " ";
2181 printType(Out, I.getParent()->getParent()->getReturnType());
2182 Out << " llvm_cbe_mrv_temp = {\n";
2183 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2184 Out << " ";
2185 writeOperand(I.getOperand(i));
2186 if (i != e - 1)
2187 Out << ",";
2188 Out << "\n";
2189 }
2190 Out << " };\n";
2191 Out << " return llvm_cbe_mrv_temp;\n";
2192 Out << " }\n";
2193 return;
2194 }
2195
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002196 Out << " return";
2197 if (I.getNumOperands()) {
2198 Out << ' ';
2199 writeOperand(I.getOperand(0));
2200 }
2201 Out << ";\n";
2202}
2203
2204void CWriter::visitSwitchInst(SwitchInst &SI) {
2205
2206 Out << " switch (";
2207 writeOperand(SI.getOperand(0));
2208 Out << ") {\n default:\n";
2209 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2210 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2211 Out << ";\n";
2212 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2213 Out << " case ";
2214 writeOperand(SI.getOperand(i));
2215 Out << ":\n";
2216 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2217 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2218 printBranchToBlock(SI.getParent(), Succ, 2);
2219 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2220 Out << " break;\n";
2221 }
2222 Out << " }\n";
2223}
2224
2225void CWriter::visitUnreachableInst(UnreachableInst &I) {
2226 Out << " /*UNREACHABLE*/;\n";
2227}
2228
2229bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2230 /// FIXME: This should be reenabled, but loop reordering safe!!
2231 return true;
2232
2233 if (next(Function::iterator(From)) != Function::iterator(To))
2234 return true; // Not the direct successor, we need a goto.
2235
2236 //isa<SwitchInst>(From->getTerminator())
2237
2238 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2239 return true;
2240 return false;
2241}
2242
2243void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2244 BasicBlock *Successor,
2245 unsigned Indent) {
2246 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2247 PHINode *PN = cast<PHINode>(I);
2248 // Now we have to do the printing.
2249 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2250 if (!isa<UndefValue>(IV)) {
2251 Out << std::string(Indent, ' ');
2252 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2253 writeOperand(IV);
2254 Out << "; /* for PHI node */\n";
2255 }
2256 }
2257}
2258
2259void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2260 unsigned Indent) {
2261 if (isGotoCodeNecessary(CurBB, Succ)) {
2262 Out << std::string(Indent, ' ') << " goto ";
2263 writeOperand(Succ);
2264 Out << ";\n";
2265 }
2266}
2267
2268// Branch instruction printing - Avoid printing out a branch to a basic block
2269// that immediately succeeds the current one.
2270//
2271void CWriter::visitBranchInst(BranchInst &I) {
2272
2273 if (I.isConditional()) {
2274 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2275 Out << " if (";
2276 writeOperand(I.getCondition());
2277 Out << ") {\n";
2278
2279 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2280 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2281
2282 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2283 Out << " } else {\n";
2284 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2285 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2286 }
2287 } else {
2288 // First goto not necessary, assume second one is...
2289 Out << " if (!";
2290 writeOperand(I.getCondition());
2291 Out << ") {\n";
2292
2293 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2294 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2295 }
2296
2297 Out << " }\n";
2298 } else {
2299 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2300 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2301 }
2302 Out << "\n";
2303}
2304
2305// PHI nodes get copied into temporary values at the end of predecessor basic
2306// blocks. We now need to copy these temporary values into the REAL value for
2307// the PHI.
2308void CWriter::visitPHINode(PHINode &I) {
2309 writeOperand(&I);
2310 Out << "__PHI_TEMPORARY";
2311}
2312
2313
2314void CWriter::visitBinaryOperator(Instruction &I) {
2315 // binary instructions, shift instructions, setCond instructions.
2316 assert(!isa<PointerType>(I.getType()));
2317
2318 // We must cast the results of binary operations which might be promoted.
2319 bool needsCast = false;
2320 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2321 || (I.getType() == Type::FloatTy)) {
2322 needsCast = true;
2323 Out << "((";
2324 printType(Out, I.getType(), false);
2325 Out << ")(";
2326 }
2327
2328 // If this is a negation operation, print it out as such. For FP, we don't
2329 // want to print "-0.0 - X".
2330 if (BinaryOperator::isNeg(&I)) {
2331 Out << "-(";
2332 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2333 Out << ")";
2334 } else if (I.getOpcode() == Instruction::FRem) {
2335 // Output a call to fmod/fmodf instead of emitting a%b
2336 if (I.getType() == Type::FloatTy)
2337 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002338 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002339 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002340 else // all 3 flavors of long double
2341 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002342 writeOperand(I.getOperand(0));
2343 Out << ", ";
2344 writeOperand(I.getOperand(1));
2345 Out << ")";
2346 } else {
2347
2348 // Write out the cast of the instruction's value back to the proper type
2349 // if necessary.
2350 bool NeedsClosingParens = writeInstructionCast(I);
2351
2352 // Certain instructions require the operand to be forced to a specific type
2353 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2354 // below for operand 1
2355 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2356
2357 switch (I.getOpcode()) {
2358 case Instruction::Add: Out << " + "; break;
2359 case Instruction::Sub: Out << " - "; break;
2360 case Instruction::Mul: Out << " * "; break;
2361 case Instruction::URem:
2362 case Instruction::SRem:
2363 case Instruction::FRem: Out << " % "; break;
2364 case Instruction::UDiv:
2365 case Instruction::SDiv:
2366 case Instruction::FDiv: Out << " / "; break;
2367 case Instruction::And: Out << " & "; break;
2368 case Instruction::Or: Out << " | "; break;
2369 case Instruction::Xor: Out << " ^ "; break;
2370 case Instruction::Shl : Out << " << "; break;
2371 case Instruction::LShr:
2372 case Instruction::AShr: Out << " >> "; break;
2373 default: cerr << "Invalid operator type!" << I; abort();
2374 }
2375
2376 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2377 if (NeedsClosingParens)
2378 Out << "))";
2379 }
2380
2381 if (needsCast) {
2382 Out << "))";
2383 }
2384}
2385
2386void CWriter::visitICmpInst(ICmpInst &I) {
2387 // We must cast the results of icmp which might be promoted.
2388 bool needsCast = false;
2389
2390 // Write out the cast of the instruction's value back to the proper type
2391 // if necessary.
2392 bool NeedsClosingParens = writeInstructionCast(I);
2393
2394 // Certain icmp predicate require the operand to be forced to a specific type
2395 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2396 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002397 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002398
2399 switch (I.getPredicate()) {
2400 case ICmpInst::ICMP_EQ: Out << " == "; break;
2401 case ICmpInst::ICMP_NE: Out << " != "; break;
2402 case ICmpInst::ICMP_ULE:
2403 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2404 case ICmpInst::ICMP_UGE:
2405 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2406 case ICmpInst::ICMP_ULT:
2407 case ICmpInst::ICMP_SLT: Out << " < "; break;
2408 case ICmpInst::ICMP_UGT:
2409 case ICmpInst::ICMP_SGT: Out << " > "; break;
2410 default: cerr << "Invalid icmp predicate!" << I; abort();
2411 }
2412
Chris Lattner389c9142007-09-15 06:51:03 +00002413 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002414 if (NeedsClosingParens)
2415 Out << "))";
2416
2417 if (needsCast) {
2418 Out << "))";
2419 }
2420}
2421
2422void CWriter::visitFCmpInst(FCmpInst &I) {
2423 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2424 Out << "0";
2425 return;
2426 }
2427 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2428 Out << "1";
2429 return;
2430 }
2431
2432 const char* op = 0;
2433 switch (I.getPredicate()) {
2434 default: assert(0 && "Illegal FCmp predicate");
2435 case FCmpInst::FCMP_ORD: op = "ord"; break;
2436 case FCmpInst::FCMP_UNO: op = "uno"; break;
2437 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2438 case FCmpInst::FCMP_UNE: op = "une"; break;
2439 case FCmpInst::FCMP_ULT: op = "ult"; break;
2440 case FCmpInst::FCMP_ULE: op = "ule"; break;
2441 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2442 case FCmpInst::FCMP_UGE: op = "uge"; break;
2443 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2444 case FCmpInst::FCMP_ONE: op = "one"; break;
2445 case FCmpInst::FCMP_OLT: op = "olt"; break;
2446 case FCmpInst::FCMP_OLE: op = "ole"; break;
2447 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2448 case FCmpInst::FCMP_OGE: op = "oge"; break;
2449 }
2450
2451 Out << "llvm_fcmp_" << op << "(";
2452 // Write the first operand
2453 writeOperand(I.getOperand(0));
2454 Out << ", ";
2455 // Write the second operand
2456 writeOperand(I.getOperand(1));
2457 Out << ")";
2458}
2459
2460static const char * getFloatBitCastField(const Type *Ty) {
2461 switch (Ty->getTypeID()) {
2462 default: assert(0 && "Invalid Type");
2463 case Type::FloatTyID: return "Float";
2464 case Type::DoubleTyID: return "Double";
2465 case Type::IntegerTyID: {
2466 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2467 if (NumBits <= 32)
2468 return "Int32";
2469 else
2470 return "Int64";
2471 }
2472 }
2473}
2474
2475void CWriter::visitCastInst(CastInst &I) {
2476 const Type *DstTy = I.getType();
2477 const Type *SrcTy = I.getOperand(0)->getType();
2478 Out << '(';
2479 if (isFPIntBitCast(I)) {
2480 // These int<->float and long<->double casts need to be handled specially
2481 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2482 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2483 writeOperand(I.getOperand(0));
2484 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2485 << getFloatBitCastField(I.getType());
2486 } else {
2487 printCast(I.getOpcode(), SrcTy, DstTy);
2488 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2489 // Make sure we really get a sext from bool by subtracing the bool from 0
2490 Out << "0-";
2491 }
2492 writeOperand(I.getOperand(0));
2493 if (DstTy == Type::Int1Ty &&
2494 (I.getOpcode() == Instruction::Trunc ||
2495 I.getOpcode() == Instruction::FPToUI ||
2496 I.getOpcode() == Instruction::FPToSI ||
2497 I.getOpcode() == Instruction::PtrToInt)) {
2498 // Make sure we really get a trunc to bool by anding the operand with 1
2499 Out << "&1u";
2500 }
2501 }
2502 Out << ')';
2503}
2504
2505void CWriter::visitSelectInst(SelectInst &I) {
2506 Out << "((";
2507 writeOperand(I.getCondition());
2508 Out << ") ? (";
2509 writeOperand(I.getTrueValue());
2510 Out << ") : (";
2511 writeOperand(I.getFalseValue());
2512 Out << "))";
2513}
2514
2515
2516void CWriter::lowerIntrinsics(Function &F) {
2517 // This is used to keep track of intrinsics that get generated to a lowered
2518 // function. We must generate the prototypes before the function body which
2519 // will only be expanded on first use (by the loop below).
2520 std::vector<Function*> prototypesToGen;
2521
2522 // Examine all the instructions in this function to find the intrinsics that
2523 // need to be lowered.
2524 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2525 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2526 if (CallInst *CI = dyn_cast<CallInst>(I++))
2527 if (Function *F = CI->getCalledFunction())
2528 switch (F->getIntrinsicID()) {
2529 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002530 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002531 case Intrinsic::vastart:
2532 case Intrinsic::vacopy:
2533 case Intrinsic::vaend:
2534 case Intrinsic::returnaddress:
2535 case Intrinsic::frameaddress:
2536 case Intrinsic::setjmp:
2537 case Intrinsic::longjmp:
2538 case Intrinsic::prefetch:
2539 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002540 case Intrinsic::powi:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002541 case Intrinsic::x86_sse_cmp_ss:
2542 case Intrinsic::x86_sse_cmp_ps:
2543 case Intrinsic::x86_sse2_cmp_sd:
2544 case Intrinsic::x86_sse2_cmp_pd:
Chris Lattner709df322008-03-02 08:54:27 +00002545 case Intrinsic::ppc_altivec_lvsl:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002546 // We directly implement these intrinsics
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002547 break;
2548 default:
2549 // If this is an intrinsic that directly corresponds to a GCC
2550 // builtin, we handle it.
2551 const char *BuiltinName = "";
2552#define GET_GCC_BUILTIN_NAME
2553#include "llvm/Intrinsics.gen"
2554#undef GET_GCC_BUILTIN_NAME
2555 // If we handle it, don't lower it.
2556 if (BuiltinName[0]) break;
2557
2558 // All other intrinsic calls we must lower.
2559 Instruction *Before = 0;
2560 if (CI != &BB->front())
2561 Before = prior(BasicBlock::iterator(CI));
2562
2563 IL->LowerIntrinsicCall(CI);
2564 if (Before) { // Move iterator to instruction after call
2565 I = Before; ++I;
2566 } else {
2567 I = BB->begin();
2568 }
2569 // If the intrinsic got lowered to another call, and that call has
2570 // a definition then we need to make sure its prototype is emitted
2571 // before any calls to it.
2572 if (CallInst *Call = dyn_cast<CallInst>(I))
2573 if (Function *NewF = Call->getCalledFunction())
2574 if (!NewF->isDeclaration())
2575 prototypesToGen.push_back(NewF);
2576
2577 break;
2578 }
2579
2580 // We may have collected some prototypes to emit in the loop above.
2581 // Emit them now, before the function that uses them is emitted. But,
2582 // be careful not to emit them twice.
2583 std::vector<Function*>::iterator I = prototypesToGen.begin();
2584 std::vector<Function*>::iterator E = prototypesToGen.end();
2585 for ( ; I != E; ++I) {
2586 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2587 Out << '\n';
2588 printFunctionSignature(*I, true);
2589 Out << ";\n";
2590 }
2591 }
2592}
2593
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002594void CWriter::visitCallInst(CallInst &I) {
2595 //check if we have inline asm
2596 if (isInlineAsm(I)) {
2597 visitInlineAsm(I);
2598 return;
2599 }
2600
2601 bool WroteCallee = false;
2602
2603 // Handle intrinsic function calls first...
2604 if (Function *F = I.getCalledFunction())
Chris Lattnera74b9182008-03-02 08:29:41 +00002605 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2606 if (visitBuiltinCall(I, ID, WroteCallee))
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002607 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002608
2609 Value *Callee = I.getCalledValue();
2610
2611 const PointerType *PTy = cast<PointerType>(Callee->getType());
2612 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2613
2614 // If this is a call to a struct-return function, assign to the first
2615 // parameter instead of passing it to the call.
Chris Lattner1c8733e2008-03-12 17:45:29 +00002616 const PAListPtr &PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002617 bool hasByVal = I.hasByValArgument();
Devang Patel949a4b72008-03-03 21:46:28 +00002618 bool isStructRet = I.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002619 if (isStructRet) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002620 writeOperandDeref(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002621 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002622 }
2623
2624 if (I.isTailCall()) Out << " /*tail*/ ";
2625
2626 if (!WroteCallee) {
2627 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002628 // the pointer. Ditto for indirect calls with byval arguments.
2629 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002630
2631 // GCC is a real PITA. It does not permit codegening casts of functions to
2632 // function pointers if they are in a call (it generates a trap instruction
2633 // instead!). We work around this by inserting a cast to void* in between
2634 // the function and the function pointer cast. Unfortunately, we can't just
2635 // form the constant expression here, because the folder will immediately
2636 // nuke it.
2637 //
2638 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2639 // that void* and function pointers have the same size. :( To deal with this
2640 // in the common case, we handle casts where the number of arguments passed
2641 // match exactly.
2642 //
2643 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2644 if (CE->isCast())
2645 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2646 NeedsCast = true;
2647 Callee = RF;
2648 }
2649
2650 if (NeedsCast) {
2651 // Ok, just cast the pointer type.
2652 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002653 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002654 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002655 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002656 else if (hasByVal)
2657 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2658 else
2659 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660 Out << ")(void*)";
2661 }
2662 writeOperand(Callee);
2663 if (NeedsCast) Out << ')';
2664 }
2665
2666 Out << '(';
2667
2668 unsigned NumDeclaredParams = FTy->getNumParams();
2669
2670 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2671 unsigned ArgNo = 0;
2672 if (isStructRet) { // Skip struct return argument.
2673 ++AI;
2674 ++ArgNo;
2675 }
2676
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002677 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002678 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002679 if (PrintedArg) Out << ", ";
2680 if (ArgNo < NumDeclaredParams &&
2681 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2682 Out << '(';
2683 printType(Out, FTy->getParamType(ArgNo),
Chris Lattner1c8733e2008-03-12 17:45:29 +00002684 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002685 Out << ')';
2686 }
Evan Chengf8956382008-01-11 23:10:11 +00002687 // Check if the argument is expected to be passed by value.
Chris Lattner8bbc8592008-03-02 08:07:24 +00002688 if (I.paramHasAttr(ArgNo+1, ParamAttr::ByVal))
2689 writeOperandDeref(*AI);
2690 else
2691 writeOperand(*AI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002692 PrintedArg = true;
2693 }
2694 Out << ')';
2695}
2696
Chris Lattnera74b9182008-03-02 08:29:41 +00002697/// visitBuiltinCall - Handle the call to the specified builtin. Returns true
2698/// if the entire call is handled, return false it it wasn't handled, and
2699/// optionally set 'WroteCallee' if the callee has already been printed out.
2700bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
2701 bool &WroteCallee) {
2702 switch (ID) {
2703 default: {
2704 // If this is an intrinsic that directly corresponds to a GCC
2705 // builtin, we emit it here.
2706 const char *BuiltinName = "";
2707 Function *F = I.getCalledFunction();
2708#define GET_GCC_BUILTIN_NAME
2709#include "llvm/Intrinsics.gen"
2710#undef GET_GCC_BUILTIN_NAME
2711 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2712
2713 Out << BuiltinName;
2714 WroteCallee = true;
2715 return false;
2716 }
2717 case Intrinsic::memory_barrier:
Andrew Lenharth5c976182008-03-05 23:41:37 +00002718 Out << "__sync_synchronize()";
Chris Lattnera74b9182008-03-02 08:29:41 +00002719 return true;
2720 case Intrinsic::vastart:
2721 Out << "0; ";
2722
2723 Out << "va_start(*(va_list*)";
2724 writeOperand(I.getOperand(1));
2725 Out << ", ";
2726 // Output the last argument to the enclosing function.
2727 if (I.getParent()->getParent()->arg_empty()) {
2728 cerr << "The C backend does not currently support zero "
2729 << "argument varargs functions, such as '"
2730 << I.getParent()->getParent()->getName() << "'!\n";
2731 abort();
2732 }
2733 writeOperand(--I.getParent()->getParent()->arg_end());
2734 Out << ')';
2735 return true;
2736 case Intrinsic::vaend:
2737 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2738 Out << "0; va_end(*(va_list*)";
2739 writeOperand(I.getOperand(1));
2740 Out << ')';
2741 } else {
2742 Out << "va_end(*(va_list*)0)";
2743 }
2744 return true;
2745 case Intrinsic::vacopy:
2746 Out << "0; ";
2747 Out << "va_copy(*(va_list*)";
2748 writeOperand(I.getOperand(1));
2749 Out << ", *(va_list*)";
2750 writeOperand(I.getOperand(2));
2751 Out << ')';
2752 return true;
2753 case Intrinsic::returnaddress:
2754 Out << "__builtin_return_address(";
2755 writeOperand(I.getOperand(1));
2756 Out << ')';
2757 return true;
2758 case Intrinsic::frameaddress:
2759 Out << "__builtin_frame_address(";
2760 writeOperand(I.getOperand(1));
2761 Out << ')';
2762 return true;
2763 case Intrinsic::powi:
2764 Out << "__builtin_powi(";
2765 writeOperand(I.getOperand(1));
2766 Out << ", ";
2767 writeOperand(I.getOperand(2));
2768 Out << ')';
2769 return true;
2770 case Intrinsic::setjmp:
2771 Out << "setjmp(*(jmp_buf*)";
2772 writeOperand(I.getOperand(1));
2773 Out << ')';
2774 return true;
2775 case Intrinsic::longjmp:
2776 Out << "longjmp(*(jmp_buf*)";
2777 writeOperand(I.getOperand(1));
2778 Out << ", ";
2779 writeOperand(I.getOperand(2));
2780 Out << ')';
2781 return true;
2782 case Intrinsic::prefetch:
2783 Out << "LLVM_PREFETCH((const void *)";
2784 writeOperand(I.getOperand(1));
2785 Out << ", ";
2786 writeOperand(I.getOperand(2));
2787 Out << ", ";
2788 writeOperand(I.getOperand(3));
2789 Out << ")";
2790 return true;
2791 case Intrinsic::stacksave:
2792 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2793 // to work around GCC bugs (see PR1809).
2794 Out << "0; *((void**)&" << GetValueName(&I)
2795 << ") = __builtin_stack_save()";
2796 return true;
2797 case Intrinsic::dbg_stoppoint: {
2798 // If we use writeOperand directly we get a "u" suffix which is rejected
2799 // by gcc.
2800 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2801 Out << "\n#line "
2802 << SPI.getLine()
2803 << " \"" << SPI.getDirectory()
2804 << SPI.getFileName() << "\"\n";
2805 return true;
2806 }
Chris Lattner6a947cb2008-03-02 08:47:13 +00002807 case Intrinsic::x86_sse_cmp_ss:
2808 case Intrinsic::x86_sse_cmp_ps:
2809 case Intrinsic::x86_sse2_cmp_sd:
2810 case Intrinsic::x86_sse2_cmp_pd:
2811 Out << '(';
2812 printType(Out, I.getType());
2813 Out << ')';
2814 // Multiple GCC builtins multiplex onto this intrinsic.
2815 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
2816 default: assert(0 && "Invalid llvm.x86.sse.cmp!");
2817 case 0: Out << "__builtin_ia32_cmpeq"; break;
2818 case 1: Out << "__builtin_ia32_cmplt"; break;
2819 case 2: Out << "__builtin_ia32_cmple"; break;
2820 case 3: Out << "__builtin_ia32_cmpunord"; break;
2821 case 4: Out << "__builtin_ia32_cmpneq"; break;
2822 case 5: Out << "__builtin_ia32_cmpnlt"; break;
2823 case 6: Out << "__builtin_ia32_cmpnle"; break;
2824 case 7: Out << "__builtin_ia32_cmpord"; break;
2825 }
2826 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
2827 Out << 'p';
2828 else
2829 Out << 's';
2830 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
2831 Out << 's';
2832 else
2833 Out << 'd';
2834
2835 Out << "(";
2836 writeOperand(I.getOperand(1));
2837 Out << ", ";
2838 writeOperand(I.getOperand(2));
2839 Out << ")";
2840 return true;
Chris Lattner709df322008-03-02 08:54:27 +00002841 case Intrinsic::ppc_altivec_lvsl:
2842 Out << '(';
2843 printType(Out, I.getType());
2844 Out << ')';
2845 Out << "__builtin_altivec_lvsl(0, (void*)";
2846 writeOperand(I.getOperand(1));
2847 Out << ")";
2848 return true;
Chris Lattnera74b9182008-03-02 08:29:41 +00002849 }
2850}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002851
2852//This converts the llvm constraint string to something gcc is expecting.
2853//TODO: work out platform independent constraints and factor those out
2854// of the per target tables
2855// handle multiple constraint codes
2856std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2857
2858 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2859
Dan Gohman12300e12008-03-25 21:45:14 +00002860 const char *const *table = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002861
2862 //Grab the translation table from TargetAsmInfo if it exists
2863 if (!TAsm) {
2864 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002865 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002866 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2867 if (Match) {
2868 //Per platform Target Machines don't exist, so create it
2869 // this must be done only once
2870 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2871 TAsm = TM->getTargetAsmInfo();
2872 }
2873 }
2874 if (TAsm)
2875 table = TAsm->getAsmCBE();
2876
2877 //Search the translation table if it exists
2878 for (int i = 0; table && table[i]; i += 2)
2879 if (c.Codes[0] == table[i])
2880 return table[i+1];
2881
2882 //default is identity
2883 return c.Codes[0];
2884}
2885
2886//TODO: import logic from AsmPrinter.cpp
2887static std::string gccifyAsm(std::string asmstr) {
2888 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2889 if (asmstr[i] == '\n')
2890 asmstr.replace(i, 1, "\\n");
2891 else if (asmstr[i] == '\t')
2892 asmstr.replace(i, 1, "\\t");
2893 else if (asmstr[i] == '$') {
2894 if (asmstr[i + 1] == '{') {
2895 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2896 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2897 std::string n = "%" +
2898 asmstr.substr(a + 1, b - a - 1) +
2899 asmstr.substr(i + 2, a - i - 2);
2900 asmstr.replace(i, b - i + 1, n);
2901 i += n.size() - 1;
2902 } else
2903 asmstr.replace(i, 1, "%");
2904 }
2905 else if (asmstr[i] == '%')//grr
2906 { asmstr.replace(i, 1, "%%"); ++i;}
2907
2908 return asmstr;
2909}
2910
2911//TODO: assumptions about what consume arguments from the call are likely wrong
2912// handle communitivity
2913void CWriter::visitInlineAsm(CallInst &CI) {
2914 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2915 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2916 std::vector<std::pair<std::string, Value*> > Input;
2917 std::vector<std::pair<std::string, Value*> > Output;
2918 std::string Clobber;
2919 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2920 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2921 E = Constraints.end(); I != E; ++I) {
2922 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2923 std::string c =
2924 InterpretASMConstraint(*I);
2925 switch(I->Type) {
2926 default:
2927 assert(0 && "Unknown asm constraint");
2928 break;
2929 case InlineAsm::isInput: {
2930 if (c.size()) {
2931 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2932 ++count; //consume arg
2933 }
2934 break;
2935 }
2936 case InlineAsm::isOutput: {
2937 if (c.size()) {
2938 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2939 count ? CI.getOperand(count) : &CI));
2940 ++count; //consume arg
2941 }
2942 break;
2943 }
2944 case InlineAsm::isClobber: {
2945 if (c.size())
2946 Clobber += ",\"" + c + "\"";
2947 break;
2948 }
2949 }
2950 }
2951
2952 //fix up the asm string for gcc
2953 std::string asmstr = gccifyAsm(as->getAsmString());
2954
2955 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2956 Out << " :";
Chris Lattner8bbc8592008-03-02 08:07:24 +00002957 for (std::vector<std::pair<std::string, Value*> >::iterator I =Output.begin(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002958 E = Output.end(); I != E; ++I) {
2959 Out << "\"" << I->first << "\"(";
2960 writeOperandRaw(I->second);
2961 Out << ")";
2962 if (I + 1 != E)
2963 Out << ",";
2964 }
2965 Out << "\n :";
2966 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2967 E = Input.end(); I != E; ++I) {
2968 Out << "\"" << I->first << "\"(";
2969 writeOperandRaw(I->second);
2970 Out << ")";
2971 if (I + 1 != E)
2972 Out << ",";
2973 }
2974 if (Clobber.size())
2975 Out << "\n :" << Clobber.substr(1);
2976 Out << ")";
2977}
2978
2979void CWriter::visitMallocInst(MallocInst &I) {
2980 assert(0 && "lowerallocations pass didn't work!");
2981}
2982
2983void CWriter::visitAllocaInst(AllocaInst &I) {
2984 Out << '(';
2985 printType(Out, I.getType());
2986 Out << ") alloca(sizeof(";
2987 printType(Out, I.getType()->getElementType());
2988 Out << ')';
2989 if (I.isArrayAllocation()) {
2990 Out << " * " ;
2991 writeOperand(I.getOperand(0));
2992 }
2993 Out << ')';
2994}
2995
2996void CWriter::visitFreeInst(FreeInst &I) {
2997 assert(0 && "lowerallocations pass didn't work!");
2998}
2999
Chris Lattner8bbc8592008-03-02 08:07:24 +00003000void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
3001 gep_type_iterator E) {
3002
3003 // If there are no indices, just print out the pointer.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003004 if (I == E) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003005 writeOperand(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003006 return;
3007 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003008
3009 // Find out if the last index is into a vector. If so, we have to print this
3010 // specially. Since vectors can't have elements of indexable type, only the
3011 // last index could possibly be of a vector element.
3012 const VectorType *LastIndexIsVector = 0;
3013 {
3014 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
3015 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003016 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003017
3018 Out << "(";
3019
3020 // If the last index is into a vector, we can't print it as &a[i][j] because
3021 // we can't index into a vector with j in GCC. Instead, emit this as
3022 // (((float*)&a[i])+j)
3023 if (LastIndexIsVector) {
3024 Out << "((";
3025 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
3026 Out << ")(";
3027 }
3028
3029 Out << '&';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003030
Chris Lattner8bbc8592008-03-02 08:07:24 +00003031 // If the first index is 0 (very typical) we can do a number of
3032 // simplifications to clean up the code.
3033 Value *FirstOp = I.getOperand();
3034 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3035 // First index isn't simple, print it the hard way.
3036 writeOperand(Ptr);
3037 } else {
3038 ++I; // Skip the zero index.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003039
Chris Lattner8bbc8592008-03-02 08:07:24 +00003040 // Okay, emit the first operand. If Ptr is something that is already address
3041 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3042 if (isAddressExposed(Ptr)) {
3043 writeOperandInternal(Ptr);
3044 } else if (I != E && isa<StructType>(*I)) {
3045 // If we didn't already emit the first operand, see if we can print it as
3046 // P->f instead of "P[0].f"
3047 writeOperand(Ptr);
3048 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3049 ++I; // eat the struct index as well.
3050 } else {
3051 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3052 Out << "(*";
3053 writeOperand(Ptr);
3054 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003055 }
3056 }
3057
Chris Lattner8bbc8592008-03-02 08:07:24 +00003058 for (; I != E; ++I) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003059 if (isa<StructType>(*I)) {
3060 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
Chris Lattner8bbc8592008-03-02 08:07:24 +00003061 } else if (!isa<VectorType>(*I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003062 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00003063 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003064 Out << ']';
Chris Lattner8bbc8592008-03-02 08:07:24 +00003065 } else {
3066 // If the last index is into a vector, then print it out as "+j)". This
3067 // works with the 'LastIndexIsVector' code above.
3068 if (isa<Constant>(I.getOperand()) &&
3069 cast<Constant>(I.getOperand())->isNullValue()) {
3070 Out << "))"; // avoid "+0".
3071 } else {
3072 Out << ")+(";
3073 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3074 Out << "))";
3075 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003076 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003077 }
3078 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003079}
3080
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003081void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3082 bool IsVolatile, unsigned Alignment) {
3083
3084 bool IsUnaligned = Alignment &&
3085 Alignment < TD->getABITypeAlignment(OperandType);
3086
3087 if (!IsUnaligned)
3088 Out << '*';
3089 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003090 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003091 if (IsUnaligned)
3092 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3093 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3094 if (IsUnaligned) {
3095 Out << "; } ";
3096 if (IsVolatile) Out << "volatile ";
3097 Out << "*";
3098 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003099 Out << ")";
3100 }
3101
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003102 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003103
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003104 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003105 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003106 if (IsUnaligned)
3107 Out << "->data";
3108 }
3109}
3110
3111void CWriter::visitLoadInst(LoadInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003112 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3113 I.getAlignment());
3114
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003115}
3116
3117void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003118 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3119 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003120 Out << " = ";
3121 Value *Operand = I.getOperand(0);
3122 Constant *BitMask = 0;
3123 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3124 if (!ITy->isPowerOf2ByteWidth())
3125 // We have a bit width that doesn't match an even power-of-2 byte
3126 // size. Consequently we must & the value with the type's bit mask
3127 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3128 if (BitMask)
3129 Out << "((";
3130 writeOperand(Operand);
3131 if (BitMask) {
3132 Out << ") & ";
3133 printConstant(BitMask);
3134 Out << ")";
3135 }
3136}
3137
3138void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003139 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3140 gep_type_end(I));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003141}
3142
3143void CWriter::visitVAArgInst(VAArgInst &I) {
3144 Out << "va_arg(*(va_list*)";
3145 writeOperand(I.getOperand(0));
3146 Out << ", ";
3147 printType(Out, I.getType());
3148 Out << ");\n ";
3149}
3150
Chris Lattnerf41a7942008-03-02 03:52:39 +00003151void CWriter::visitInsertElementInst(InsertElementInst &I) {
3152 const Type *EltTy = I.getType()->getElementType();
3153 writeOperand(I.getOperand(0));
3154 Out << ";\n ";
3155 Out << "((";
3156 printType(Out, PointerType::getUnqual(EltTy));
3157 Out << ")(&" << GetValueName(&I) << "))[";
Chris Lattnerf41a7942008-03-02 03:52:39 +00003158 writeOperand(I.getOperand(2));
Chris Lattner09418362008-03-02 08:10:16 +00003159 Out << "] = (";
3160 writeOperand(I.getOperand(1));
Chris Lattnerf41a7942008-03-02 03:52:39 +00003161 Out << ")";
3162}
3163
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003164void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3165 // We know that our operand is not inlined.
3166 Out << "((";
3167 const Type *EltTy =
3168 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3169 printType(Out, PointerType::getUnqual(EltTy));
3170 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3171 writeOperand(I.getOperand(1));
3172 Out << "]";
3173}
3174
Chris Lattnerf858a042008-03-02 05:41:07 +00003175void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3176 Out << "(";
3177 printType(Out, SVI.getType());
3178 Out << "){ ";
3179 const VectorType *VT = SVI.getType();
3180 unsigned NumElts = VT->getNumElements();
3181 const Type *EltTy = VT->getElementType();
3182
3183 for (unsigned i = 0; i != NumElts; ++i) {
3184 if (i) Out << ", ";
3185 int SrcVal = SVI.getMaskValue(i);
3186 if ((unsigned)SrcVal >= NumElts*2) {
3187 Out << " 0/*undef*/ ";
3188 } else {
3189 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3190 if (isa<Instruction>(Op)) {
3191 // Do an extractelement of this value from the appropriate input.
3192 Out << "((";
3193 printType(Out, PointerType::getUnqual(EltTy));
3194 Out << ")(&" << GetValueName(Op)
3195 << "))[" << (SrcVal & NumElts-1) << "]";
3196 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3197 Out << "0";
3198 } else {
3199 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal & NumElts-1));
3200 }
3201 }
3202 }
3203 Out << "}";
3204}
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003205
Dan Gohman93d04582008-04-23 21:49:29 +00003206void CWriter::visitGetResultInst(GetResultInst &GRI) {
3207 Out << "(";
3208 if (isa<UndefValue>(GRI.getOperand(0))) {
3209 Out << "(";
3210 printType(Out, GRI.getType());
3211 Out << ") 0/*UNDEF*/";
3212 } else {
3213 Out << GetValueName(GRI.getOperand(0)) << ".field" << GRI.getIndex();
3214 }
3215 Out << ")";
3216}
Chris Lattnerf41a7942008-03-02 03:52:39 +00003217
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003218//===----------------------------------------------------------------------===//
3219// External Interface declaration
3220//===----------------------------------------------------------------------===//
3221
3222bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3223 std::ostream &o,
3224 CodeGenFileType FileType,
3225 bool Fast) {
3226 if (FileType != TargetMachine::AssemblyFile) return true;
3227
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003228 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003229 PM.add(createLowerAllocationsPass(true));
3230 PM.add(createLowerInvokePass());
3231 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3232 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3233 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003234 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003235 return false;
3236}