blob: 251b9f98c0440a78ec7b2f3801fccf7ec60e4120 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000021#include "llvm/Pass.h"
22#include "llvm/PassManager.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Analysis/ConstantsScanner.h"
28#include "llvm/Analysis/FindUsedTypes.h"
29#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000030#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/Transforms/Scalar.h"
33#include "llvm/Target/TargetMachineRegistry.h"
34#include "llvm/Target/TargetAsmInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/Mangler.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Config/config.h"
46#include <algorithm>
47#include <sstream>
48using namespace llvm;
49
Dan Gohman089efff2008-05-13 00:00:25 +000050// Register the target.
51static RegisterTarget<CTargetMachine> X("c", " C backend");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000052
Dan Gohman089efff2008-05-13 00:00:25 +000053namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000054 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
55 /// any unnamed structure types that are used by the program, and merges
56 /// external functions with the same name.
57 ///
58 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
59 public:
60 static char ID;
61 CBackendNameAllUsedStructsAndMergeFunctions()
62 : ModulePass((intptr_t)&ID) {}
63 void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.addRequired<FindUsedTypes>();
65 }
66
67 virtual const char *getPassName() const {
68 return "C backend type canonicalizer";
69 }
70
71 virtual bool runOnModule(Module &M);
72 };
73
74 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
75
76 /// CWriter - This class is the main chunk of code that converts an LLVM
77 /// module to a C translation unit.
78 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
79 std::ostream &Out;
80 IntrinsicLowering *IL;
81 Mangler *Mang;
82 LoopInfo *LI;
83 const Module *TheModule;
84 const TargetAsmInfo* TAsm;
85 const TargetData* TD;
86 std::map<const Type *, std::string> TypeNames;
87 std::map<const ConstantFP *, unsigned> FPConstantMap;
88 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Chris Lattner8bbc8592008-03-02 08:07:24 +000089 std::set<const Argument*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090
91 public:
92 static char ID;
Dan Gohman40bd38e2008-03-25 22:06:05 +000093 explicit CWriter(std::ostream &o)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
95 TheModule(0), TAsm(0), TD(0) {}
96
97 virtual const char *getPassName() const { return "C backend"; }
98
99 void getAnalysisUsage(AnalysisUsage &AU) const {
100 AU.addRequired<LoopInfo>();
101 AU.setPreservesAll();
102 }
103
104 virtual bool doInitialization(Module &M);
105
106 bool runOnFunction(Function &F) {
107 LI = &getAnalysis<LoopInfo>();
108
109 // Get rid of intrinsics we can't handle.
110 lowerIntrinsics(F);
111
112 // Output all floating point constants that cannot be printed accurately.
113 printFloatingPointConstants(F);
114
115 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 return false;
117 }
118
119 virtual bool doFinalization(Module &M) {
120 // Free memory...
121 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000122 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000124 ByValParams.clear();
Chris Lattner8bbc8592008-03-02 08:07:24 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 return false;
127 }
128
129 std::ostream &printType(std::ostream &Out, const Type *Ty,
130 bool isSigned = false,
131 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000132 bool IgnoreName = false,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000133 const PAListPtr &PAL = PAListPtr());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000135 bool isSigned,
136 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000137
138 void printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000139 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140 const PointerType *Ty);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000141
142 /// writeOperandDeref - Print the result of dereferencing the specified
143 /// operand with '*'. This is equivalent to printing '*' then using
144 /// writeOperand, but avoids excess syntax in some cases.
145 void writeOperandDeref(Value *Operand) {
146 if (isAddressExposed(Operand)) {
147 // Already something with an address exposed.
148 writeOperandInternal(Operand);
149 } else {
150 Out << "*(";
151 writeOperand(Operand);
152 Out << ")";
153 }
154 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000155
156 void writeOperand(Value *Operand);
157 void writeOperandRaw(Value *Operand);
158 void writeOperandInternal(Value *Operand);
159 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000160 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000161 bool writeInstructionCast(const Instruction &I);
162
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000163 void writeMemoryAccess(Value *Operand, const Type *OperandType,
164 bool IsVolatile, unsigned Alignment);
165
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000166 private :
167 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
168
169 void lowerIntrinsics(Function &F);
170
171 void printModule(Module *M);
172 void printModuleTypes(const TypeSymbolTable &ST);
173 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
174 void printFloatingPointConstants(Function &F);
175 void printFunctionSignature(const Function *F, bool Prototype);
176
177 void printFunction(Function &);
178 void printBasicBlock(BasicBlock *BB);
179 void printLoop(Loop *L);
180
181 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
182 void printConstant(Constant *CPV);
183 void printConstantWithCast(Constant *CPV, unsigned Opcode);
184 bool printConstExprCast(const ConstantExpr *CE);
185 void printConstantArray(ConstantArray *CPA);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000186 void printConstantVector(ConstantVector *CV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187
Chris Lattner8bbc8592008-03-02 08:07:24 +0000188 /// isAddressExposed - Return true if the specified value's name needs to
189 /// have its address taken in order to get a C value of the correct type.
190 /// This happens for global variables, byval parameters, and direct allocas.
191 bool isAddressExposed(const Value *V) const {
192 if (const Argument *A = dyn_cast<Argument>(V))
193 return ByValParams.count(A);
194 return isa<GlobalVariable>(V) || isDirectAlloca(V);
195 }
196
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000197 // isInlinableInst - Attempt to inline instructions into their uses to build
198 // trees as much as possible. To do this, we have to consistently decide
199 // what is acceptable to inline, so that variable declarations don't get
200 // printed and an extra copy of the expr is not emitted.
201 //
202 static bool isInlinableInst(const Instruction &I) {
203 // Always inline cmp instructions, even if they are shared by multiple
204 // expressions. GCC generates horrible code if we don't.
205 if (isa<CmpInst>(I))
206 return true;
207
208 // Must be an expression, must be used exactly once. If it is dead, we
209 // emit it inline where it would go.
210 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
211 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
Chris Lattnerf41a7942008-03-02 03:52:39 +0000212 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 // Don't inline a load across a store or other bad things!
214 return false;
215
Chris Lattnerf858a042008-03-02 05:41:07 +0000216 // Must not be used in inline asm, extractelement, or shufflevector.
217 if (I.hasOneUse()) {
218 const Instruction &User = cast<Instruction>(*I.use_back());
219 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
220 isa<ShuffleVectorInst>(User))
221 return false;
222 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223
224 // Only inline instruction it if it's use is in the same BB as the inst.
225 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
226 }
227
228 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
229 // variables which are accessed with the & operator. This causes GCC to
230 // generate significantly better code than to emit alloca calls directly.
231 //
232 static const AllocaInst *isDirectAlloca(const Value *V) {
233 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
234 if (!AI) return false;
235 if (AI->isArrayAllocation())
236 return 0; // FIXME: we can also inline fixed size array allocas!
237 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
238 return 0;
239 return AI;
240 }
241
242 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
243 static bool isInlineAsm(const Instruction& I) {
244 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
245 return true;
246 return false;
247 }
248
249 // Instruction visitation functions
250 friend class InstVisitor<CWriter>;
251
252 void visitReturnInst(ReturnInst &I);
253 void visitBranchInst(BranchInst &I);
254 void visitSwitchInst(SwitchInst &I);
255 void visitInvokeInst(InvokeInst &I) {
256 assert(0 && "Lowerinvoke pass didn't work!");
257 }
258
259 void visitUnwindInst(UnwindInst &I) {
260 assert(0 && "Lowerinvoke pass didn't work!");
261 }
262 void visitUnreachableInst(UnreachableInst &I);
263
264 void visitPHINode(PHINode &I);
265 void visitBinaryOperator(Instruction &I);
266 void visitICmpInst(ICmpInst &I);
267 void visitFCmpInst(FCmpInst &I);
268
269 void visitCastInst (CastInst &I);
270 void visitSelectInst(SelectInst &I);
271 void visitCallInst (CallInst &I);
272 void visitInlineAsm(CallInst &I);
Chris Lattnera74b9182008-03-02 08:29:41 +0000273 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274
275 void visitMallocInst(MallocInst &I);
276 void visitAllocaInst(AllocaInst &I);
277 void visitFreeInst (FreeInst &I);
278 void visitLoadInst (LoadInst &I);
279 void visitStoreInst (StoreInst &I);
280 void visitGetElementPtrInst(GetElementPtrInst &I);
281 void visitVAArgInst (VAArgInst &I);
Chris Lattnerf41a7942008-03-02 03:52:39 +0000282
283 void visitInsertElementInst(InsertElementInst &I);
Chris Lattnera5f0bc02008-03-02 03:57:08 +0000284 void visitExtractElementInst(ExtractElementInst &I);
Chris Lattnerf858a042008-03-02 05:41:07 +0000285 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
Dan Gohman93d04582008-04-23 21:49:29 +0000286 void visitGetResultInst(GetResultInst &GRI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000287
288 void visitInstruction(Instruction &I) {
289 cerr << "C Writer does not know about " << I;
290 abort();
291 }
292
293 void outputLValue(Instruction *I) {
294 Out << " " << GetValueName(I) << " = ";
295 }
296
297 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
298 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
299 BasicBlock *Successor, unsigned Indent);
300 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
301 unsigned Indent);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000302 void printGEPExpression(Value *Ptr, gep_type_iterator I,
303 gep_type_iterator E);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000304
305 std::string GetValueName(const Value *Operand);
306 };
307}
308
309char CWriter::ID = 0;
310
311/// This method inserts names for any unnamed structure types that are used by
312/// the program, and removes names from structure types that are not used by the
313/// program.
314///
315bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
316 // Get a set of types that are used by the program...
317 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
318
319 // Loop over the module symbol table, removing types from UT that are
320 // already named, and removing names for types that are not used.
321 //
322 TypeSymbolTable &TST = M.getTypeSymbolTable();
323 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
324 TI != TE; ) {
325 TypeSymbolTable::iterator I = TI++;
326
327 // If this isn't a struct type, remove it from our set of types to name.
328 // This simplifies emission later.
329 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
330 TST.remove(I);
331 } else {
332 // If this is not used, remove it from the symbol table.
333 std::set<const Type *>::iterator UTI = UT.find(I->second);
334 if (UTI == UT.end())
335 TST.remove(I);
336 else
337 UT.erase(UTI); // Only keep one name for this type.
338 }
339 }
340
341 // UT now contains types that are not named. Loop over it, naming
342 // structure types.
343 //
344 bool Changed = false;
345 unsigned RenameCounter = 0;
346 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
347 I != E; ++I)
348 if (const StructType *ST = dyn_cast<StructType>(*I)) {
349 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
350 ++RenameCounter;
351 Changed = true;
352 }
353
354
355 // Loop over all external functions and globals. If we have two with
356 // identical names, merge them.
357 // FIXME: This code should disappear when we don't allow values with the same
358 // names when they have different types!
359 std::map<std::string, GlobalValue*> ExtSymbols;
360 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
361 Function *GV = I++;
362 if (GV->isDeclaration() && GV->hasName()) {
363 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
364 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
365 if (!X.second) {
366 // Found a conflict, replace this global with the previous one.
367 GlobalValue *OldGV = X.first->second;
368 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
369 GV->eraseFromParent();
370 Changed = true;
371 }
372 }
373 }
374 // Do the same for globals.
375 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
376 I != E;) {
377 GlobalVariable *GV = I++;
378 if (GV->isDeclaration() && GV->hasName()) {
379 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
380 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
381 if (!X.second) {
382 // Found a conflict, replace this global with the previous one.
383 GlobalValue *OldGV = X.first->second;
384 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
385 GV->eraseFromParent();
386 Changed = true;
387 }
388 }
389 }
390
391 return Changed;
392}
393
394/// printStructReturnPointerFunctionType - This is like printType for a struct
395/// return type, except, instead of printing the type as void (*)(Struct*, ...)
396/// print it as "Struct (*)(...)", for struct return functions.
397void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000398 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 const PointerType *TheTy) {
400 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
401 std::stringstream FunctionInnards;
402 FunctionInnards << " (*) (";
403 bool PrintedType = false;
404
405 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
406 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
407 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000408 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409 if (PrintedType)
410 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000411 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000412 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +0000413 assert(isa<PointerType>(ArgTy));
414 ArgTy = cast<PointerType>(ArgTy)->getElementType();
415 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000416 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000417 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 PrintedType = true;
419 }
420 if (FTy->isVarArg()) {
421 if (PrintedType)
422 FunctionInnards << ", ...";
423 } else if (!PrintedType) {
424 FunctionInnards << "void";
425 }
426 FunctionInnards << ')';
427 std::string tstr = FunctionInnards.str();
428 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000429 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000430}
431
432std::ostream &
433CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
Chris Lattnerd8090712008-03-02 03:41:23 +0000434 const std::string &NameSoFar) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000435 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000436 "Invalid type for printSimpleType");
437 switch (Ty->getTypeID()) {
438 case Type::VoidTyID: return Out << "void " << NameSoFar;
439 case Type::IntegerTyID: {
440 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
441 if (NumBits == 1)
442 return Out << "bool " << NameSoFar;
443 else if (NumBits <= 8)
444 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
445 else if (NumBits <= 16)
446 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
447 else if (NumBits <= 32)
448 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000449 else if (NumBits <= 64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000450 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000451 else {
452 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
453 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000454 }
455 }
456 case Type::FloatTyID: return Out << "float " << NameSoFar;
457 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000458 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
459 // present matches host 'long double'.
460 case Type::X86_FP80TyID:
461 case Type::PPC_FP128TyID:
462 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000463
464 case Type::VectorTyID: {
465 const VectorType *VTy = cast<VectorType>(Ty);
Chris Lattnerd8090712008-03-02 03:41:23 +0000466 return printSimpleType(Out, VTy->getElementType(), isSigned,
Chris Lattnerfddca552008-03-02 03:39:43 +0000467 " __attribute__((vector_size(" +
468 utostr(TD->getABITypeSize(VTy)) + " ))) " + NameSoFar);
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000469 }
470
471 default:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000472 cerr << "Unknown primitive type: " << *Ty << "\n";
473 abort();
474 }
475}
476
477// Pass the Type* and the variable name and this prints out the variable
478// declaration.
479//
480std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
481 bool isSigned, const std::string &NameSoFar,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000482 bool IgnoreName, const PAListPtr &PAL) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000483 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000484 printSimpleType(Out, Ty, isSigned, NameSoFar);
485 return Out;
486 }
487
488 // Check to see if the type is named.
489 if (!IgnoreName || isa<OpaqueType>(Ty)) {
490 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
491 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
492 }
493
494 switch (Ty->getTypeID()) {
495 case Type::FunctionTyID: {
496 const FunctionType *FTy = cast<FunctionType>(Ty);
497 std::stringstream FunctionInnards;
498 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000499 unsigned Idx = 1;
500 for (FunctionType::param_iterator I = FTy->param_begin(),
501 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000502 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000503 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000504 assert(isa<PointerType>(ArgTy));
505 ArgTy = cast<PointerType>(ArgTy)->getElementType();
506 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000507 if (I != FTy->param_begin())
508 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000509 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000510 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000511 ++Idx;
512 }
513 if (FTy->isVarArg()) {
514 if (FTy->getNumParams())
515 FunctionInnards << ", ...";
516 } else if (!FTy->getNumParams()) {
517 FunctionInnards << "void";
518 }
519 FunctionInnards << ')';
520 std::string tstr = FunctionInnards.str();
521 printType(Out, FTy->getReturnType(),
Chris Lattner1c8733e2008-03-12 17:45:29 +0000522 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000523 return Out;
524 }
525 case Type::StructTyID: {
526 const StructType *STy = cast<StructType>(Ty);
527 Out << NameSoFar + " {\n";
528 unsigned Idx = 0;
529 for (StructType::element_iterator I = STy->element_begin(),
530 E = STy->element_end(); I != E; ++I) {
531 Out << " ";
532 printType(Out, *I, false, "field" + utostr(Idx++));
533 Out << ";\n";
534 }
535 Out << '}';
536 if (STy->isPacked())
537 Out << " __attribute__ ((packed))";
538 return Out;
539 }
540
541 case Type::PointerTyID: {
542 const PointerType *PTy = cast<PointerType>(Ty);
543 std::string ptrName = "*" + NameSoFar;
544
545 if (isa<ArrayType>(PTy->getElementType()) ||
546 isa<VectorType>(PTy->getElementType()))
547 ptrName = "(" + ptrName + ")";
548
Chris Lattner1c8733e2008-03-12 17:45:29 +0000549 if (!PAL.isEmpty())
Evan Chengb8a072c2008-01-12 18:53:07 +0000550 // Must be a function ptr cast!
551 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000552 return printType(Out, PTy->getElementType(), false, ptrName);
553 }
554
555 case Type::ArrayTyID: {
556 const ArrayType *ATy = cast<ArrayType>(Ty);
557 unsigned NumElements = ATy->getNumElements();
558 if (NumElements == 0) NumElements = 1;
559 return printType(Out, ATy->getElementType(), false,
560 NameSoFar + "[" + utostr(NumElements) + "]");
561 }
562
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000563 case Type::OpaqueTyID: {
564 static int Count = 0;
565 std::string TyName = "struct opaque_" + itostr(Count++);
566 assert(TypeNames.find(Ty) == TypeNames.end());
567 TypeNames[Ty] = TyName;
568 return Out << TyName << ' ' << NameSoFar;
569 }
570 default:
571 assert(0 && "Unhandled case in getTypeProps!");
572 abort();
573 }
574
575 return Out;
576}
577
578void CWriter::printConstantArray(ConstantArray *CPA) {
579
580 // As a special case, print the array as a string if it is an array of
581 // ubytes or an array of sbytes with positive values.
582 //
583 const Type *ETy = CPA->getType()->getElementType();
584 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
585
586 // Make sure the last character is a null char, as automatically added by C
587 if (isString && (CPA->getNumOperands() == 0 ||
588 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
589 isString = false;
590
591 if (isString) {
592 Out << '\"';
593 // Keep track of whether the last number was a hexadecimal escape
594 bool LastWasHex = false;
595
596 // Do not include the last character, which we know is null
597 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
598 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
599
600 // Print it out literally if it is a printable character. The only thing
601 // to be careful about is when the last letter output was a hex escape
602 // code, in which case we have to be careful not to print out hex digits
603 // explicitly (the C compiler thinks it is a continuation of the previous
604 // character, sheesh...)
605 //
606 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
607 LastWasHex = false;
608 if (C == '"' || C == '\\')
609 Out << "\\" << C;
610 else
611 Out << C;
612 } else {
613 LastWasHex = false;
614 switch (C) {
615 case '\n': Out << "\\n"; break;
616 case '\t': Out << "\\t"; break;
617 case '\r': Out << "\\r"; break;
618 case '\v': Out << "\\v"; break;
619 case '\a': Out << "\\a"; break;
620 case '\"': Out << "\\\""; break;
621 case '\'': Out << "\\\'"; break;
622 default:
623 Out << "\\x";
624 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
625 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
626 LastWasHex = true;
627 break;
628 }
629 }
630 }
631 Out << '\"';
632 } else {
633 Out << '{';
634 if (CPA->getNumOperands()) {
635 Out << ' ';
636 printConstant(cast<Constant>(CPA->getOperand(0)));
637 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
638 Out << ", ";
639 printConstant(cast<Constant>(CPA->getOperand(i)));
640 }
641 }
642 Out << " }";
643 }
644}
645
646void CWriter::printConstantVector(ConstantVector *CP) {
647 Out << '{';
648 if (CP->getNumOperands()) {
649 Out << ' ';
650 printConstant(cast<Constant>(CP->getOperand(0)));
651 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
652 Out << ", ";
653 printConstant(cast<Constant>(CP->getOperand(i)));
654 }
655 }
656 Out << " }";
657}
658
659// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
660// textually as a double (rather than as a reference to a stack-allocated
661// variable). We decide this by converting CFP to a string and back into a
662// double, and then checking whether the conversion results in a bit-equal
663// double to the original value of CFP. This depends on us and the target C
664// compiler agreeing on the conversion process (which is pretty likely since we
665// only deal in IEEE FP).
666//
667static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000668 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000669 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
670 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000671 APFloat APF = APFloat(CFP->getValueAPF()); // copy
672 if (CFP->getType()==Type::FloatTy)
673 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000674#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
675 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000676 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000677 if (!strncmp(Buffer, "0x", 2) ||
678 !strncmp(Buffer, "-0x", 3) ||
679 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000680 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681 return false;
682#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000683 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000684
685 while (StrVal[0] == ' ')
686 StrVal.erase(StrVal.begin());
687
688 // Check to make sure that the stringized number is not some string like "Inf"
689 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
690 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
691 ((StrVal[0] == '-' || StrVal[0] == '+') &&
692 (StrVal[1] >= '0' && StrVal[1] <= '9')))
693 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000694 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000695 return false;
696#endif
697}
698
699/// Print out the casting for a cast operation. This does the double casting
700/// necessary for conversion to the destination type, if necessary.
701/// @brief Print a cast
702void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
703 // Print the destination type cast
704 switch (opc) {
705 case Instruction::UIToFP:
706 case Instruction::SIToFP:
707 case Instruction::IntToPtr:
708 case Instruction::Trunc:
709 case Instruction::BitCast:
710 case Instruction::FPExt:
711 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
712 Out << '(';
713 printType(Out, DstTy);
714 Out << ')';
715 break;
716 case Instruction::ZExt:
717 case Instruction::PtrToInt:
718 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
719 Out << '(';
720 printSimpleType(Out, DstTy, false);
721 Out << ')';
722 break;
723 case Instruction::SExt:
724 case Instruction::FPToSI: // For these, make sure we get a signed dest
725 Out << '(';
726 printSimpleType(Out, DstTy, true);
727 Out << ')';
728 break;
729 default:
730 assert(0 && "Invalid cast opcode");
731 }
732
733 // Print the source type cast
734 switch (opc) {
735 case Instruction::UIToFP:
736 case Instruction::ZExt:
737 Out << '(';
738 printSimpleType(Out, SrcTy, false);
739 Out << ')';
740 break;
741 case Instruction::SIToFP:
742 case Instruction::SExt:
743 Out << '(';
744 printSimpleType(Out, SrcTy, true);
745 Out << ')';
746 break;
747 case Instruction::IntToPtr:
748 case Instruction::PtrToInt:
749 // Avoid "cast to pointer from integer of different size" warnings
750 Out << "(unsigned long)";
751 break;
752 case Instruction::Trunc:
753 case Instruction::BitCast:
754 case Instruction::FPExt:
755 case Instruction::FPTrunc:
756 case Instruction::FPToSI:
757 case Instruction::FPToUI:
758 break; // These don't need a source cast.
759 default:
760 assert(0 && "Invalid cast opcode");
761 break;
762 }
763}
764
765// printConstant - The LLVM Constant to C Constant converter.
766void CWriter::printConstant(Constant *CPV) {
767 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
768 switch (CE->getOpcode()) {
769 case Instruction::Trunc:
770 case Instruction::ZExt:
771 case Instruction::SExt:
772 case Instruction::FPTrunc:
773 case Instruction::FPExt:
774 case Instruction::UIToFP:
775 case Instruction::SIToFP:
776 case Instruction::FPToUI:
777 case Instruction::FPToSI:
778 case Instruction::PtrToInt:
779 case Instruction::IntToPtr:
780 case Instruction::BitCast:
781 Out << "(";
782 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
783 if (CE->getOpcode() == Instruction::SExt &&
784 CE->getOperand(0)->getType() == Type::Int1Ty) {
785 // Make sure we really sext from bool here by subtracting from 0
786 Out << "0-";
787 }
788 printConstant(CE->getOperand(0));
789 if (CE->getType() == Type::Int1Ty &&
790 (CE->getOpcode() == Instruction::Trunc ||
791 CE->getOpcode() == Instruction::FPToUI ||
792 CE->getOpcode() == Instruction::FPToSI ||
793 CE->getOpcode() == Instruction::PtrToInt)) {
794 // Make sure we really truncate to bool here by anding with 1
795 Out << "&1u";
796 }
797 Out << ')';
798 return;
799
800 case Instruction::GetElementPtr:
Chris Lattner8bbc8592008-03-02 08:07:24 +0000801 Out << "(";
802 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
803 gep_type_end(CPV));
804 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000805 return;
806 case Instruction::Select:
807 Out << '(';
808 printConstant(CE->getOperand(0));
809 Out << '?';
810 printConstant(CE->getOperand(1));
811 Out << ':';
812 printConstant(CE->getOperand(2));
813 Out << ')';
814 return;
815 case Instruction::Add:
816 case Instruction::Sub:
817 case Instruction::Mul:
818 case Instruction::SDiv:
819 case Instruction::UDiv:
820 case Instruction::FDiv:
821 case Instruction::URem:
822 case Instruction::SRem:
823 case Instruction::FRem:
824 case Instruction::And:
825 case Instruction::Or:
826 case Instruction::Xor:
827 case Instruction::ICmp:
828 case Instruction::Shl:
829 case Instruction::LShr:
830 case Instruction::AShr:
831 {
832 Out << '(';
833 bool NeedsClosingParens = printConstExprCast(CE);
834 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
835 switch (CE->getOpcode()) {
836 case Instruction::Add: Out << " + "; break;
837 case Instruction::Sub: Out << " - "; break;
838 case Instruction::Mul: Out << " * "; break;
839 case Instruction::URem:
840 case Instruction::SRem:
841 case Instruction::FRem: Out << " % "; break;
842 case Instruction::UDiv:
843 case Instruction::SDiv:
844 case Instruction::FDiv: Out << " / "; break;
845 case Instruction::And: Out << " & "; break;
846 case Instruction::Or: Out << " | "; break;
847 case Instruction::Xor: Out << " ^ "; break;
848 case Instruction::Shl: Out << " << "; break;
849 case Instruction::LShr:
850 case Instruction::AShr: Out << " >> "; break;
851 case Instruction::ICmp:
852 switch (CE->getPredicate()) {
853 case ICmpInst::ICMP_EQ: Out << " == "; break;
854 case ICmpInst::ICMP_NE: Out << " != "; break;
855 case ICmpInst::ICMP_SLT:
856 case ICmpInst::ICMP_ULT: Out << " < "; break;
857 case ICmpInst::ICMP_SLE:
858 case ICmpInst::ICMP_ULE: Out << " <= "; break;
859 case ICmpInst::ICMP_SGT:
860 case ICmpInst::ICMP_UGT: Out << " > "; break;
861 case ICmpInst::ICMP_SGE:
862 case ICmpInst::ICMP_UGE: Out << " >= "; break;
863 default: assert(0 && "Illegal ICmp predicate");
864 }
865 break;
866 default: assert(0 && "Illegal opcode here!");
867 }
868 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
869 if (NeedsClosingParens)
870 Out << "))";
871 Out << ')';
872 return;
873 }
874 case Instruction::FCmp: {
875 Out << '(';
876 bool NeedsClosingParens = printConstExprCast(CE);
877 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
878 Out << "0";
879 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
880 Out << "1";
881 else {
882 const char* op = 0;
883 switch (CE->getPredicate()) {
884 default: assert(0 && "Illegal FCmp predicate");
885 case FCmpInst::FCMP_ORD: op = "ord"; break;
886 case FCmpInst::FCMP_UNO: op = "uno"; break;
887 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
888 case FCmpInst::FCMP_UNE: op = "une"; break;
889 case FCmpInst::FCMP_ULT: op = "ult"; break;
890 case FCmpInst::FCMP_ULE: op = "ule"; break;
891 case FCmpInst::FCMP_UGT: op = "ugt"; break;
892 case FCmpInst::FCMP_UGE: op = "uge"; break;
893 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
894 case FCmpInst::FCMP_ONE: op = "one"; break;
895 case FCmpInst::FCMP_OLT: op = "olt"; break;
896 case FCmpInst::FCMP_OLE: op = "ole"; break;
897 case FCmpInst::FCMP_OGT: op = "ogt"; break;
898 case FCmpInst::FCMP_OGE: op = "oge"; break;
899 }
900 Out << "llvm_fcmp_" << op << "(";
901 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
902 Out << ", ";
903 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
904 Out << ")";
905 }
906 if (NeedsClosingParens)
907 Out << "))";
908 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000909 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000910 }
911 default:
912 cerr << "CWriter Error: Unhandled constant expression: "
913 << *CE << "\n";
914 abort();
915 }
Dan Gohman76c2cb42008-05-23 16:57:00 +0000916 } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000917 Out << "((";
918 printType(Out, CPV->getType()); // sign doesn't matter
Chris Lattnerc72d9e32008-03-02 08:14:45 +0000919 Out << ")/*UNDEF*/";
920 if (!isa<VectorType>(CPV->getType())) {
921 Out << "0)";
922 } else {
923 Out << "{})";
924 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000925 return;
926 }
927
928 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
929 const Type* Ty = CI->getType();
930 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000931 Out << (CI->getZExtValue() ? '1' : '0');
932 else if (Ty == Type::Int32Ty)
933 Out << CI->getZExtValue() << 'u';
934 else if (Ty->getPrimitiveSizeInBits() > 32)
935 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000936 else {
937 Out << "((";
938 printSimpleType(Out, Ty, false) << ')';
939 if (CI->isMinValue(true))
940 Out << CI->getZExtValue() << 'u';
941 else
942 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000943 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944 }
945 return;
946 }
947
948 switch (CPV->getType()->getTypeID()) {
949 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000950 case Type::DoubleTyID:
951 case Type::X86_FP80TyID:
952 case Type::PPC_FP128TyID:
953 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 ConstantFP *FPC = cast<ConstantFP>(CPV);
955 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
956 if (I != FPConstantMap.end()) {
957 // Because of FP precision problems we must load from a stack allocated
958 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000959 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
960 FPC->getType() == Type::DoubleTy ? "double" :
961 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000962 << "*)&FPConstant" << I->second << ')';
963 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000964 assert(FPC->getType() == Type::FloatTy ||
965 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000966 double V = FPC->getType() == Type::FloatTy ?
967 FPC->getValueAPF().convertToFloat() :
968 FPC->getValueAPF().convertToDouble();
969 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000970 // The value is NaN
971
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000972 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000973 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
974 // it's 0x7ff4.
975 const unsigned long QuietNaN = 0x7ff8UL;
976 //const unsigned long SignalNaN = 0x7ff4UL;
977
978 // We need to grab the first part of the FP #
979 char Buffer[100];
980
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000981 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
983
984 std::string Num(&Buffer[0], &Buffer[6]);
985 unsigned long Val = strtoul(Num.c_str(), 0, 16);
986
987 if (FPC->getType() == Type::FloatTy)
988 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
989 << Buffer << "\") /*nan*/ ";
990 else
991 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
992 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000993 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000994 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000995 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000996 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
997 << " /*inf*/ ";
998 } else {
999 std::string Num;
1000#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1001 // Print out the constant as a floating point number.
1002 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001003 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001004 Num = Buffer;
1005#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001006 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001007#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001008 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001009 }
1010 }
1011 break;
1012 }
1013
1014 case Type::ArrayTyID:
Chris Lattner8673e322008-03-02 05:46:57 +00001015 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001016 printConstantArray(CA);
Chris Lattner63fb1f02008-03-02 03:16:38 +00001017 } else {
1018 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1020 Out << '{';
1021 if (AT->getNumElements()) {
1022 Out << ' ';
1023 Constant *CZ = Constant::getNullValue(AT->getElementType());
1024 printConstant(CZ);
1025 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1026 Out << ", ";
1027 printConstant(CZ);
1028 }
1029 }
1030 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001031 }
1032 break;
1033
1034 case Type::VectorTyID:
Chris Lattner70f0f672008-03-02 03:29:50 +00001035 // Use C99 compound expression literal initializer syntax.
1036 Out << "(";
1037 printType(Out, CPV->getType());
1038 Out << ")";
Chris Lattner8673e322008-03-02 05:46:57 +00001039 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001040 printConstantVector(CV);
1041 } else {
1042 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1043 const VectorType *VT = cast<VectorType>(CPV->getType());
1044 Out << "{ ";
1045 Constant *CZ = Constant::getNullValue(VT->getElementType());
1046 printConstant(CZ);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001047 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001048 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001049 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001050 }
1051 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001052 }
1053 break;
1054
1055 case Type::StructTyID:
1056 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1057 const StructType *ST = cast<StructType>(CPV->getType());
1058 Out << '{';
1059 if (ST->getNumElements()) {
1060 Out << ' ';
1061 printConstant(Constant::getNullValue(ST->getElementType(0)));
1062 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1063 Out << ", ";
1064 printConstant(Constant::getNullValue(ST->getElementType(i)));
1065 }
1066 }
1067 Out << " }";
1068 } else {
1069 Out << '{';
1070 if (CPV->getNumOperands()) {
1071 Out << ' ';
1072 printConstant(cast<Constant>(CPV->getOperand(0)));
1073 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1074 Out << ", ";
1075 printConstant(cast<Constant>(CPV->getOperand(i)));
1076 }
1077 }
1078 Out << " }";
1079 }
1080 break;
1081
1082 case Type::PointerTyID:
1083 if (isa<ConstantPointerNull>(CPV)) {
1084 Out << "((";
1085 printType(Out, CPV->getType()); // sign doesn't matter
1086 Out << ")/*NULL*/0)";
1087 break;
1088 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1089 writeOperand(GV);
1090 break;
1091 }
1092 // FALL THROUGH
1093 default:
1094 cerr << "Unknown constant type: " << *CPV << "\n";
1095 abort();
1096 }
1097}
1098
1099// Some constant expressions need to be casted back to the original types
1100// because their operands were casted to the expected type. This function takes
1101// care of detecting that case and printing the cast for the ConstantExpr.
1102bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1103 bool NeedsExplicitCast = false;
1104 const Type *Ty = CE->getOperand(0)->getType();
1105 bool TypeIsSigned = false;
1106 switch (CE->getOpcode()) {
1107 case Instruction::LShr:
1108 case Instruction::URem:
1109 case Instruction::UDiv: NeedsExplicitCast = true; break;
1110 case Instruction::AShr:
1111 case Instruction::SRem:
1112 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1113 case Instruction::SExt:
1114 Ty = CE->getType();
1115 NeedsExplicitCast = true;
1116 TypeIsSigned = true;
1117 break;
1118 case Instruction::ZExt:
1119 case Instruction::Trunc:
1120 case Instruction::FPTrunc:
1121 case Instruction::FPExt:
1122 case Instruction::UIToFP:
1123 case Instruction::SIToFP:
1124 case Instruction::FPToUI:
1125 case Instruction::FPToSI:
1126 case Instruction::PtrToInt:
1127 case Instruction::IntToPtr:
1128 case Instruction::BitCast:
1129 Ty = CE->getType();
1130 NeedsExplicitCast = true;
1131 break;
1132 default: break;
1133 }
1134 if (NeedsExplicitCast) {
1135 Out << "((";
1136 if (Ty->isInteger() && Ty != Type::Int1Ty)
1137 printSimpleType(Out, Ty, TypeIsSigned);
1138 else
1139 printType(Out, Ty); // not integer, sign doesn't matter
1140 Out << ")(";
1141 }
1142 return NeedsExplicitCast;
1143}
1144
1145// Print a constant assuming that it is the operand for a given Opcode. The
1146// opcodes that care about sign need to cast their operands to the expected
1147// type before the operation proceeds. This function does the casting.
1148void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1149
1150 // Extract the operand's type, we'll need it.
1151 const Type* OpTy = CPV->getType();
1152
1153 // Indicate whether to do the cast or not.
1154 bool shouldCast = false;
1155 bool typeIsSigned = false;
1156
1157 // Based on the Opcode for which this Constant is being written, determine
1158 // the new type to which the operand should be casted by setting the value
1159 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1160 // casted below.
1161 switch (Opcode) {
1162 default:
1163 // for most instructions, it doesn't matter
1164 break;
1165 case Instruction::LShr:
1166 case Instruction::UDiv:
1167 case Instruction::URem:
1168 shouldCast = true;
1169 break;
1170 case Instruction::AShr:
1171 case Instruction::SDiv:
1172 case Instruction::SRem:
1173 shouldCast = true;
1174 typeIsSigned = true;
1175 break;
1176 }
1177
1178 // Write out the casted constant if we should, otherwise just write the
1179 // operand.
1180 if (shouldCast) {
1181 Out << "((";
1182 printSimpleType(Out, OpTy, typeIsSigned);
1183 Out << ")";
1184 printConstant(CPV);
1185 Out << ")";
1186 } else
1187 printConstant(CPV);
1188}
1189
1190std::string CWriter::GetValueName(const Value *Operand) {
1191 std::string Name;
1192
1193 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1194 std::string VarName;
1195
1196 Name = Operand->getName();
1197 VarName.reserve(Name.capacity());
1198
1199 for (std::string::iterator I = Name.begin(), E = Name.end();
1200 I != E; ++I) {
1201 char ch = *I;
1202
1203 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001204 (ch >= '0' && ch <= '9') || ch == '_')) {
1205 char buffer[5];
1206 sprintf(buffer, "_%x_", ch);
1207 VarName += buffer;
1208 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001209 VarName += ch;
1210 }
1211
1212 Name = "llvm_cbe_" + VarName;
1213 } else {
1214 Name = Mang->getValueName(Operand);
1215 }
1216
1217 return Name;
1218}
1219
1220void CWriter::writeOperandInternal(Value *Operand) {
1221 if (Instruction *I = dyn_cast<Instruction>(Operand))
1222 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1223 // Should we inline this instruction to build a tree?
1224 Out << '(';
1225 visit(*I);
1226 Out << ')';
1227 return;
1228 }
1229
1230 Constant* CPV = dyn_cast<Constant>(Operand);
1231
1232 if (CPV && !isa<GlobalValue>(CPV))
1233 printConstant(CPV);
1234 else
1235 Out << GetValueName(Operand);
1236}
1237
1238void CWriter::writeOperandRaw(Value *Operand) {
1239 Constant* CPV = dyn_cast<Constant>(Operand);
1240 if (CPV && !isa<GlobalValue>(CPV)) {
1241 printConstant(CPV);
1242 } else {
1243 Out << GetValueName(Operand);
1244 }
1245}
1246
1247void CWriter::writeOperand(Value *Operand) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00001248 bool isAddressImplicit = isAddressExposed(Operand);
1249 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001250 Out << "(&"; // Global variables are referenced as their addresses by llvm
1251
1252 writeOperandInternal(Operand);
1253
Chris Lattner8bbc8592008-03-02 08:07:24 +00001254 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001255 Out << ')';
1256}
1257
1258// Some instructions need to have their result value casted back to the
1259// original types because their operands were casted to the expected type.
1260// This function takes care of detecting that case and printing the cast
1261// for the Instruction.
1262bool CWriter::writeInstructionCast(const Instruction &I) {
1263 const Type *Ty = I.getOperand(0)->getType();
1264 switch (I.getOpcode()) {
1265 case Instruction::LShr:
1266 case Instruction::URem:
1267 case Instruction::UDiv:
1268 Out << "((";
1269 printSimpleType(Out, Ty, false);
1270 Out << ")(";
1271 return true;
1272 case Instruction::AShr:
1273 case Instruction::SRem:
1274 case Instruction::SDiv:
1275 Out << "((";
1276 printSimpleType(Out, Ty, true);
1277 Out << ")(";
1278 return true;
1279 default: break;
1280 }
1281 return false;
1282}
1283
1284// Write the operand with a cast to another type based on the Opcode being used.
1285// This will be used in cases where an instruction has specific type
1286// requirements (usually signedness) for its operands.
1287void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1288
1289 // Extract the operand's type, we'll need it.
1290 const Type* OpTy = Operand->getType();
1291
1292 // Indicate whether to do the cast or not.
1293 bool shouldCast = false;
1294
1295 // Indicate whether the cast should be to a signed type or not.
1296 bool castIsSigned = false;
1297
1298 // Based on the Opcode for which this Operand is being written, determine
1299 // the new type to which the operand should be casted by setting the value
1300 // of OpTy. If we change OpTy, also set shouldCast to true.
1301 switch (Opcode) {
1302 default:
1303 // for most instructions, it doesn't matter
1304 break;
1305 case Instruction::LShr:
1306 case Instruction::UDiv:
1307 case Instruction::URem: // Cast to unsigned first
1308 shouldCast = true;
1309 castIsSigned = false;
1310 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001311 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001312 case Instruction::AShr:
1313 case Instruction::SDiv:
1314 case Instruction::SRem: // Cast to signed first
1315 shouldCast = true;
1316 castIsSigned = true;
1317 break;
1318 }
1319
1320 // Write out the casted operand if we should, otherwise just write the
1321 // operand.
1322 if (shouldCast) {
1323 Out << "((";
1324 printSimpleType(Out, OpTy, castIsSigned);
1325 Out << ")";
1326 writeOperand(Operand);
1327 Out << ")";
1328 } else
1329 writeOperand(Operand);
1330}
1331
1332// Write the operand with a cast to another type based on the icmp predicate
1333// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001334void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1335 // This has to do a cast to ensure the operand has the right signedness.
1336 // Also, if the operand is a pointer, we make sure to cast to an integer when
1337 // doing the comparison both for signedness and so that the C compiler doesn't
1338 // optimize things like "p < NULL" to false (p may contain an integer value
1339 // f.e.).
1340 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001341
1342 // Write out the casted operand if we should, otherwise just write the
1343 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001344 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001345 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001346 return;
1347 }
1348
1349 // Should this be a signed comparison? If so, convert to signed.
1350 bool castIsSigned = Cmp.isSignedPredicate();
1351
1352 // If the operand was a pointer, convert to a large integer type.
1353 const Type* OpTy = Operand->getType();
1354 if (isa<PointerType>(OpTy))
1355 OpTy = TD->getIntPtrType();
1356
1357 Out << "((";
1358 printSimpleType(Out, OpTy, castIsSigned);
1359 Out << ")";
1360 writeOperand(Operand);
1361 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001362}
1363
1364// generateCompilerSpecificCode - This is where we add conditional compilation
1365// directives to cater to specific compilers as need be.
1366//
Dan Gohman3f795232008-04-02 23:52:49 +00001367static void generateCompilerSpecificCode(std::ostream& Out,
1368 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001369 // Alloca is hard to get, and we don't want to include stdlib.h here.
1370 Out << "/* get a declaration for alloca */\n"
1371 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1372 << "#define alloca(x) __builtin_alloca((x))\n"
1373 << "#define _alloca(x) __builtin_alloca((x))\n"
1374 << "#elif defined(__APPLE__)\n"
1375 << "extern void *__builtin_alloca(unsigned long);\n"
1376 << "#define alloca(x) __builtin_alloca(x)\n"
1377 << "#define longjmp _longjmp\n"
1378 << "#define setjmp _setjmp\n"
1379 << "#elif defined(__sun__)\n"
1380 << "#if defined(__sparcv9)\n"
1381 << "extern void *__builtin_alloca(unsigned long);\n"
1382 << "#else\n"
1383 << "extern void *__builtin_alloca(unsigned int);\n"
1384 << "#endif\n"
1385 << "#define alloca(x) __builtin_alloca(x)\n"
Chris Lattner9bae27b2008-01-12 06:46:09 +00001386 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001387 << "#define alloca(x) __builtin_alloca(x)\n"
1388 << "#elif defined(_MSC_VER)\n"
1389 << "#define inline _inline\n"
1390 << "#define alloca(x) _alloca(x)\n"
1391 << "#else\n"
1392 << "#include <alloca.h>\n"
1393 << "#endif\n\n";
1394
1395 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1396 // If we aren't being compiled with GCC, just drop these attributes.
1397 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1398 << "#define __attribute__(X)\n"
1399 << "#endif\n\n";
1400
1401 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1402 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1403 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1404 << "#elif defined(__GNUC__)\n"
1405 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1406 << "#else\n"
1407 << "#define __EXTERNAL_WEAK__\n"
1408 << "#endif\n\n";
1409
1410 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1411 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1412 << "#define __ATTRIBUTE_WEAK__\n"
1413 << "#elif defined(__GNUC__)\n"
1414 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1415 << "#else\n"
1416 << "#define __ATTRIBUTE_WEAK__\n"
1417 << "#endif\n\n";
1418
1419 // Add hidden visibility support. FIXME: APPLE_CC?
1420 Out << "#if defined(__GNUC__)\n"
1421 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1422 << "#endif\n\n";
1423
1424 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1425 // From the GCC documentation:
1426 //
1427 // double __builtin_nan (const char *str)
1428 //
1429 // This is an implementation of the ISO C99 function nan.
1430 //
1431 // Since ISO C99 defines this function in terms of strtod, which we do
1432 // not implement, a description of the parsing is in order. The string is
1433 // parsed as by strtol; that is, the base is recognized by leading 0 or
1434 // 0x prefixes. The number parsed is placed in the significand such that
1435 // the least significant bit of the number is at the least significant
1436 // bit of the significand. The number is truncated to fit the significand
1437 // field provided. The significand is forced to be a quiet NaN.
1438 //
1439 // This function, if given a string literal, is evaluated early enough
1440 // that it is considered a compile-time constant.
1441 //
1442 // float __builtin_nanf (const char *str)
1443 //
1444 // Similar to __builtin_nan, except the return type is float.
1445 //
1446 // double __builtin_inf (void)
1447 //
1448 // Similar to __builtin_huge_val, except a warning is generated if the
1449 // target floating-point format does not support infinities. This
1450 // function is suitable for implementing the ISO C99 macro INFINITY.
1451 //
1452 // float __builtin_inff (void)
1453 //
1454 // Similar to __builtin_inf, except the return type is float.
1455 Out << "#ifdef __GNUC__\n"
1456 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1457 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1458 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1459 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1460 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1461 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1462 << "#define LLVM_PREFETCH(addr,rw,locality) "
1463 "__builtin_prefetch(addr,rw,locality)\n"
1464 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1465 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1466 << "#define LLVM_ASM __asm__\n"
1467 << "#else\n"
1468 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1469 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1470 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1471 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1472 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1473 << "#define LLVM_INFF 0.0F /* Float */\n"
1474 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1475 << "#define __ATTRIBUTE_CTOR__\n"
1476 << "#define __ATTRIBUTE_DTOR__\n"
1477 << "#define LLVM_ASM(X)\n"
1478 << "#endif\n\n";
1479
1480 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1481 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1482 << "#define __builtin_stack_restore(X) /* noop */\n"
1483 << "#endif\n\n";
1484
Dan Gohman3f795232008-04-02 23:52:49 +00001485 // Output typedefs for 128-bit integers. If these are needed with a
1486 // 32-bit target or with a C compiler that doesn't support mode(TI),
1487 // more drastic measures will be needed.
1488 if (TD->getPointerSize() >= 8) {
1489 Out << "#ifdef __GNUC__ /* 128-bit integer types */\n"
1490 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1491 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1492 << "#endif\n\n";
1493 }
Dan Gohmana2245af2008-04-02 19:40:14 +00001494
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001495 // Output target-specific code that should be inserted into main.
1496 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001497}
1498
1499/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1500/// the StaticTors set.
1501static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1502 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1503 if (!InitList) return;
1504
1505 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1506 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1507 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1508
1509 if (CS->getOperand(1)->isNullValue())
1510 return; // Found a null terminator, exit printing.
1511 Constant *FP = CS->getOperand(1);
1512 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1513 if (CE->isCast())
1514 FP = CE->getOperand(0);
1515 if (Function *F = dyn_cast<Function>(FP))
1516 StaticTors.insert(F);
1517 }
1518}
1519
1520enum SpecialGlobalClass {
1521 NotSpecial = 0,
1522 GlobalCtors, GlobalDtors,
1523 NotPrinted
1524};
1525
1526/// getGlobalVariableClass - If this is a global that is specially recognized
1527/// by LLVM, return a code that indicates how we should handle it.
1528static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1529 // If this is a global ctors/dtors list, handle it now.
1530 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1531 if (GV->getName() == "llvm.global_ctors")
1532 return GlobalCtors;
1533 else if (GV->getName() == "llvm.global_dtors")
1534 return GlobalDtors;
1535 }
1536
1537 // Otherwise, it it is other metadata, don't print it. This catches things
1538 // like debug information.
1539 if (GV->getSection() == "llvm.metadata")
1540 return NotPrinted;
1541
1542 return NotSpecial;
1543}
1544
1545
1546bool CWriter::doInitialization(Module &M) {
1547 // Initialize
1548 TheModule = &M;
1549
1550 TD = new TargetData(&M);
1551 IL = new IntrinsicLowering(*TD);
1552 IL->AddPrototypes(M);
1553
1554 // Ensure that all structure types have names...
1555 Mang = new Mangler(M);
1556 Mang->markCharUnacceptable('.');
1557
1558 // Keep track of which functions are static ctors/dtors so they can have
1559 // an attribute added to their prototypes.
1560 std::set<Function*> StaticCtors, StaticDtors;
1561 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1562 I != E; ++I) {
1563 switch (getGlobalVariableClass(I)) {
1564 default: break;
1565 case GlobalCtors:
1566 FindStaticTors(I, StaticCtors);
1567 break;
1568 case GlobalDtors:
1569 FindStaticTors(I, StaticDtors);
1570 break;
1571 }
1572 }
1573
1574 // get declaration for alloca
1575 Out << "/* Provide Declarations */\n";
1576 Out << "#include <stdarg.h>\n"; // Varargs support
1577 Out << "#include <setjmp.h>\n"; // Unwind support
Dan Gohman3f795232008-04-02 23:52:49 +00001578 generateCompilerSpecificCode(Out, TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001579
1580 // Provide a definition for `bool' if not compiling with a C++ compiler.
1581 Out << "\n"
1582 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1583
1584 << "\n\n/* Support for floating point constants */\n"
1585 << "typedef unsigned long long ConstantDoubleTy;\n"
1586 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001587 << "typedef struct { unsigned long long f1; unsigned short f2; "
1588 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001589 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001590 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1591 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001592 << "\n\n/* Global Declarations */\n";
1593
1594 // First output all the declarations for the program, because C requires
1595 // Functions & globals to be declared before they are used.
1596 //
1597
1598 // Loop over the symbol table, emitting all named constants...
1599 printModuleTypes(M.getTypeSymbolTable());
1600
1601 // Global variable declarations...
1602 if (!M.global_empty()) {
1603 Out << "\n/* External Global Variable Declarations */\n";
1604 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1605 I != E; ++I) {
1606
Dale Johannesen49c44122008-05-14 20:12:51 +00001607 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
1608 I->hasCommonLinkage())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001609 Out << "extern ";
1610 else if (I->hasDLLImportLinkage())
1611 Out << "__declspec(dllimport) ";
1612 else
1613 continue; // Internal Global
1614
1615 // Thread Local Storage
1616 if (I->isThreadLocal())
1617 Out << "__thread ";
1618
1619 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1620
1621 if (I->hasExternalWeakLinkage())
1622 Out << " __EXTERNAL_WEAK__";
1623 Out << ";\n";
1624 }
1625 }
1626
1627 // Function declarations
1628 Out << "\n/* Function Declarations */\n";
1629 Out << "double fmod(double, double);\n"; // Support for FP rem
1630 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001631 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001632
1633 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1634 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001635 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001636 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1637 if (I->hasExternalWeakLinkage())
1638 Out << "extern ";
1639 printFunctionSignature(I, true);
1640 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1641 Out << " __ATTRIBUTE_WEAK__";
1642 if (I->hasExternalWeakLinkage())
1643 Out << " __EXTERNAL_WEAK__";
1644 if (StaticCtors.count(I))
1645 Out << " __ATTRIBUTE_CTOR__";
1646 if (StaticDtors.count(I))
1647 Out << " __ATTRIBUTE_DTOR__";
1648 if (I->hasHiddenVisibility())
1649 Out << " __HIDDEN__";
1650
1651 if (I->hasName() && I->getName()[0] == 1)
1652 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1653
1654 Out << ";\n";
1655 }
1656 }
1657
1658 // Output the global variable declarations
1659 if (!M.global_empty()) {
1660 Out << "\n\n/* Global Variable Declarations */\n";
1661 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1662 I != E; ++I)
1663 if (!I->isDeclaration()) {
1664 // Ignore special globals, such as debug info.
1665 if (getGlobalVariableClass(I))
1666 continue;
1667
1668 if (I->hasInternalLinkage())
1669 Out << "static ";
1670 else
1671 Out << "extern ";
1672
1673 // Thread Local Storage
1674 if (I->isThreadLocal())
1675 Out << "__thread ";
1676
1677 printType(Out, I->getType()->getElementType(), false,
1678 GetValueName(I));
1679
1680 if (I->hasLinkOnceLinkage())
1681 Out << " __attribute__((common))";
Dale Johannesen49c44122008-05-14 20:12:51 +00001682 else if (I->hasCommonLinkage()) // FIXME is this right?
1683 Out << " __ATTRIBUTE_WEAK__";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001684 else if (I->hasWeakLinkage())
1685 Out << " __ATTRIBUTE_WEAK__";
1686 else if (I->hasExternalWeakLinkage())
1687 Out << " __EXTERNAL_WEAK__";
1688 if (I->hasHiddenVisibility())
1689 Out << " __HIDDEN__";
1690 Out << ";\n";
1691 }
1692 }
1693
1694 // Output the global variable definitions and contents...
1695 if (!M.global_empty()) {
1696 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1697 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1698 I != E; ++I)
1699 if (!I->isDeclaration()) {
1700 // Ignore special globals, such as debug info.
1701 if (getGlobalVariableClass(I))
1702 continue;
1703
1704 if (I->hasInternalLinkage())
1705 Out << "static ";
1706 else if (I->hasDLLImportLinkage())
1707 Out << "__declspec(dllimport) ";
1708 else if (I->hasDLLExportLinkage())
1709 Out << "__declspec(dllexport) ";
1710
1711 // Thread Local Storage
1712 if (I->isThreadLocal())
1713 Out << "__thread ";
1714
1715 printType(Out, I->getType()->getElementType(), false,
1716 GetValueName(I));
1717 if (I->hasLinkOnceLinkage())
1718 Out << " __attribute__((common))";
1719 else if (I->hasWeakLinkage())
1720 Out << " __ATTRIBUTE_WEAK__";
Dale Johannesen49c44122008-05-14 20:12:51 +00001721 else if (I->hasCommonLinkage())
1722 Out << " __ATTRIBUTE_WEAK__";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001723
1724 if (I->hasHiddenVisibility())
1725 Out << " __HIDDEN__";
1726
1727 // If the initializer is not null, emit the initializer. If it is null,
1728 // we try to avoid emitting large amounts of zeros. The problem with
1729 // this, however, occurs when the variable has weak linkage. In this
1730 // case, the assembler will complain about the variable being both weak
1731 // and common, so we disable this optimization.
Dale Johannesen49c44122008-05-14 20:12:51 +00001732 // FIXME common linkage should avoid this problem.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001733 if (!I->getInitializer()->isNullValue()) {
1734 Out << " = " ;
1735 writeOperand(I->getInitializer());
1736 } else if (I->hasWeakLinkage()) {
1737 // We have to specify an initializer, but it doesn't have to be
1738 // complete. If the value is an aggregate, print out { 0 }, and let
1739 // the compiler figure out the rest of the zeros.
1740 Out << " = " ;
1741 if (isa<StructType>(I->getInitializer()->getType()) ||
1742 isa<ArrayType>(I->getInitializer()->getType()) ||
1743 isa<VectorType>(I->getInitializer()->getType())) {
1744 Out << "{ 0 }";
1745 } else {
1746 // Just print it out normally.
1747 writeOperand(I->getInitializer());
1748 }
1749 }
1750 Out << ";\n";
1751 }
1752 }
1753
1754 if (!M.empty())
1755 Out << "\n\n/* Function Bodies */\n";
1756
1757 // Emit some helper functions for dealing with FCMP instruction's
1758 // predicates
1759 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1760 Out << "return X == X && Y == Y; }\n";
1761 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1762 Out << "return X != X || Y != Y; }\n";
1763 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1764 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1765 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1766 Out << "return X != Y; }\n";
1767 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1768 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1769 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1770 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1771 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1772 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1773 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1774 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1775 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1776 Out << "return X == Y ; }\n";
1777 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1778 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1779 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1780 Out << "return X < Y ; }\n";
1781 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1782 Out << "return X > Y ; }\n";
1783 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1784 Out << "return X <= Y ; }\n";
1785 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1786 Out << "return X >= Y ; }\n";
1787 return false;
1788}
1789
1790
1791/// Output all floating point constants that cannot be printed accurately...
1792void CWriter::printFloatingPointConstants(Function &F) {
1793 // Scan the module for floating point constants. If any FP constant is used
1794 // in the function, we want to redirect it here so that we do not depend on
1795 // the precision of the printed form, unless the printed form preserves
1796 // precision.
1797 //
1798 static unsigned FPCounter = 0;
1799 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1800 I != E; ++I)
1801 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1802 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1803 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001804 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1805
1806 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001807 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001808 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001809 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001810 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001811 << "ULL; /* " << Val << " */\n";
1812 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001813 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001814 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1815 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001816 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001817 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001818 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001819 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001820 // api needed to prevent premature destruction
1821 APInt api = FPC->getValueAPF().convertToAPInt();
1822 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001823 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1824 << " = { 0x" << std::hex
1825 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1826 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1827 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001828 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1829 APInt api = FPC->getValueAPF().convertToAPInt();
1830 const uint64_t *p = api.getRawData();
1831 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1832 << " = { 0x" << std::hex
1833 << p[0] << ", 0x" << p[1]
1834 << "}; /* Long double constant */\n" << std::dec;
1835
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001836 } else
1837 assert(0 && "Unknown float type!");
1838 }
1839
1840 Out << '\n';
1841}
1842
1843
1844/// printSymbolTable - Run through symbol table looking for type names. If a
1845/// type name is found, emit its declaration...
1846///
1847void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1848 Out << "/* Helper union for bitcasts */\n";
1849 Out << "typedef union {\n";
1850 Out << " unsigned int Int32;\n";
1851 Out << " unsigned long long Int64;\n";
1852 Out << " float Float;\n";
1853 Out << " double Double;\n";
1854 Out << "} llvmBitCastUnion;\n";
1855
1856 // We are only interested in the type plane of the symbol table.
1857 TypeSymbolTable::const_iterator I = TST.begin();
1858 TypeSymbolTable::const_iterator End = TST.end();
1859
1860 // If there are no type names, exit early.
1861 if (I == End) return;
1862
1863 // Print out forward declarations for structure types before anything else!
1864 Out << "/* Structure forward decls */\n";
1865 for (; I != End; ++I) {
1866 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1867 Out << Name << ";\n";
1868 TypeNames.insert(std::make_pair(I->second, Name));
1869 }
1870
1871 Out << '\n';
1872
1873 // Now we can print out typedefs. Above, we guaranteed that this can only be
1874 // for struct or opaque types.
1875 Out << "/* Typedefs */\n";
1876 for (I = TST.begin(); I != End; ++I) {
1877 std::string Name = "l_" + Mang->makeNameProper(I->first);
1878 Out << "typedef ";
1879 printType(Out, I->second, false, Name);
1880 Out << ";\n";
1881 }
1882
1883 Out << '\n';
1884
1885 // Keep track of which structures have been printed so far...
1886 std::set<const StructType *> StructPrinted;
1887
1888 // Loop over all structures then push them into the stack so they are
1889 // printed in the correct order.
1890 //
1891 Out << "/* Structure contents */\n";
1892 for (I = TST.begin(); I != End; ++I)
1893 if (const StructType *STy = dyn_cast<StructType>(I->second))
1894 // Only print out used types!
1895 printContainedStructs(STy, StructPrinted);
1896}
1897
1898// Push the struct onto the stack and recursively push all structs
1899// this one depends on.
1900//
1901// TODO: Make this work properly with vector types
1902//
1903void CWriter::printContainedStructs(const Type *Ty,
1904 std::set<const StructType*> &StructPrinted){
1905 // Don't walk through pointers.
1906 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1907
1908 // Print all contained types first.
1909 for (Type::subtype_iterator I = Ty->subtype_begin(),
1910 E = Ty->subtype_end(); I != E; ++I)
1911 printContainedStructs(*I, StructPrinted);
1912
1913 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1914 // Check to see if we have already printed this struct.
1915 if (StructPrinted.insert(STy).second) {
1916 // Print structure type out.
1917 std::string Name = TypeNames[STy];
1918 printType(Out, STy, false, Name, true);
1919 Out << ";\n\n";
1920 }
1921 }
1922}
1923
1924void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1925 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00001926 bool isStructReturn = F->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001927
1928 if (F->hasInternalLinkage()) Out << "static ";
1929 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1930 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1931 switch (F->getCallingConv()) {
1932 case CallingConv::X86_StdCall:
1933 Out << "__stdcall ";
1934 break;
1935 case CallingConv::X86_FastCall:
1936 Out << "__fastcall ";
1937 break;
1938 }
1939
1940 // Loop over the arguments, printing them...
1941 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Chris Lattner1c8733e2008-03-12 17:45:29 +00001942 const PAListPtr &PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001943
1944 std::stringstream FunctionInnards;
1945
1946 // Print out the name...
1947 FunctionInnards << GetValueName(F) << '(';
1948
1949 bool PrintedArg = false;
1950 if (!F->isDeclaration()) {
1951 if (!F->arg_empty()) {
1952 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001953 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001954
1955 // If this is a struct-return function, don't print the hidden
1956 // struct-return argument.
1957 if (isStructReturn) {
1958 assert(I != E && "Invalid struct return function!");
1959 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001960 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001961 }
1962
1963 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001964 for (; I != E; ++I) {
1965 if (PrintedArg) FunctionInnards << ", ";
1966 if (I->hasName() || !Prototype)
1967 ArgName = GetValueName(I);
1968 else
1969 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001970 const Type *ArgTy = I->getType();
Chris Lattner1c8733e2008-03-12 17:45:29 +00001971 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +00001972 ArgTy = cast<PointerType>(ArgTy)->getElementType();
Chris Lattner8bbc8592008-03-02 08:07:24 +00001973 ByValParams.insert(I);
Evan Cheng17254e62008-01-11 09:12:49 +00001974 }
Evan Cheng2054cb02008-01-11 03:07:46 +00001975 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00001976 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001977 ArgName);
1978 PrintedArg = true;
1979 ++Idx;
1980 }
1981 }
1982 } else {
1983 // Loop over the arguments, printing them.
1984 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00001985 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001986
1987 // If this is a struct-return function, don't print the hidden
1988 // struct-return argument.
1989 if (isStructReturn) {
1990 assert(I != E && "Invalid struct return function!");
1991 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00001992 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001993 }
1994
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001995 for (; I != E; ++I) {
1996 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00001997 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +00001998 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengf8956382008-01-11 23:10:11 +00001999 assert(isa<PointerType>(ArgTy));
2000 ArgTy = cast<PointerType>(ArgTy)->getElementType();
2001 }
2002 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002003 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002004 PrintedArg = true;
2005 ++Idx;
2006 }
2007 }
2008
2009 // Finish printing arguments... if this is a vararg function, print the ...,
2010 // unless there are no known types, in which case, we just emit ().
2011 //
2012 if (FT->isVarArg() && PrintedArg) {
2013 if (PrintedArg) FunctionInnards << ", ";
2014 FunctionInnards << "..."; // Output varargs portion of signature!
2015 } else if (!FT->isVarArg() && !PrintedArg) {
2016 FunctionInnards << "void"; // ret() -> ret(void) in C.
2017 }
2018 FunctionInnards << ')';
2019
2020 // Get the return tpe for the function.
2021 const Type *RetTy;
2022 if (!isStructReturn)
2023 RetTy = F->getReturnType();
2024 else {
2025 // If this is a struct-return function, print the struct-return type.
2026 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2027 }
2028
2029 // Print out the return type and the signature built above.
2030 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002031 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002032 FunctionInnards.str());
2033}
2034
2035static inline bool isFPIntBitCast(const Instruction &I) {
2036 if (!isa<BitCastInst>(I))
2037 return false;
2038 const Type *SrcTy = I.getOperand(0)->getType();
2039 const Type *DstTy = I.getType();
2040 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2041 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2042}
2043
2044void CWriter::printFunction(Function &F) {
2045 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00002046 bool isStructReturn = F.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002047
2048 printFunctionSignature(&F, false);
2049 Out << " {\n";
2050
2051 // If this is a struct return function, handle the result with magic.
2052 if (isStructReturn) {
2053 const Type *StructTy =
2054 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2055 Out << " ";
2056 printType(Out, StructTy, false, "StructReturn");
2057 Out << "; /* Struct return temporary */\n";
2058
2059 Out << " ";
2060 printType(Out, F.arg_begin()->getType(), false,
2061 GetValueName(F.arg_begin()));
2062 Out << " = &StructReturn;\n";
2063 }
2064
2065 bool PrintedVar = false;
2066
2067 // print local variable information for the function
2068 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2069 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2070 Out << " ";
2071 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2072 Out << "; /* Address-exposed local */\n";
2073 PrintedVar = true;
2074 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2075 Out << " ";
2076 printType(Out, I->getType(), false, GetValueName(&*I));
2077 Out << ";\n";
2078
2079 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2080 Out << " ";
2081 printType(Out, I->getType(), false,
2082 GetValueName(&*I)+"__PHI_TEMPORARY");
2083 Out << ";\n";
2084 }
2085 PrintedVar = true;
2086 }
2087 // We need a temporary for the BitCast to use so it can pluck a value out
2088 // of a union to do the BitCast. This is separate from the need for a
2089 // variable to hold the result of the BitCast.
2090 if (isFPIntBitCast(*I)) {
2091 Out << " llvmBitCastUnion " << GetValueName(&*I)
2092 << "__BITCAST_TEMPORARY;\n";
2093 PrintedVar = true;
2094 }
2095 }
2096
2097 if (PrintedVar)
2098 Out << '\n';
2099
2100 if (F.hasExternalLinkage() && F.getName() == "main")
2101 Out << " CODE_FOR_MAIN();\n";
2102
2103 // print the basic blocks
2104 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2105 if (Loop *L = LI->getLoopFor(BB)) {
2106 if (L->getHeader() == BB && L->getParentLoop() == 0)
2107 printLoop(L);
2108 } else {
2109 printBasicBlock(BB);
2110 }
2111 }
2112
2113 Out << "}\n\n";
2114}
2115
2116void CWriter::printLoop(Loop *L) {
2117 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2118 << "' to make GCC happy */\n";
2119 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2120 BasicBlock *BB = L->getBlocks()[i];
2121 Loop *BBLoop = LI->getLoopFor(BB);
2122 if (BBLoop == L)
2123 printBasicBlock(BB);
2124 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2125 printLoop(BBLoop);
2126 }
2127 Out << " } while (1); /* end of syntactic loop '"
2128 << L->getHeader()->getName() << "' */\n";
2129}
2130
2131void CWriter::printBasicBlock(BasicBlock *BB) {
2132
2133 // Don't print the label for the basic block if there are no uses, or if
2134 // the only terminator use is the predecessor basic block's terminator.
2135 // We have to scan the use list because PHI nodes use basic blocks too but
2136 // do not require a label to be generated.
2137 //
2138 bool NeedsLabel = false;
2139 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2140 if (isGotoCodeNecessary(*PI, BB)) {
2141 NeedsLabel = true;
2142 break;
2143 }
2144
2145 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2146
2147 // Output all of the instructions in the basic block...
2148 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2149 ++II) {
2150 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2151 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2152 outputLValue(II);
2153 else
2154 Out << " ";
2155 visit(*II);
2156 Out << ";\n";
2157 }
2158 }
2159
2160 // Don't emit prefix or suffix for the terminator...
2161 visit(*BB->getTerminator());
2162}
2163
2164
2165// Specific Instruction type classes... note that all of the casts are
2166// necessary because we use the instruction classes as opaque types...
2167//
2168void CWriter::visitReturnInst(ReturnInst &I) {
2169 // If this is a struct return function, return the temporary struct.
Devang Patel949a4b72008-03-03 21:46:28 +00002170 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002171
2172 if (isStructReturn) {
2173 Out << " return StructReturn;\n";
2174 return;
2175 }
2176
2177 // Don't output a void return if this is the last basic block in the function
2178 if (I.getNumOperands() == 0 &&
2179 &*--I.getParent()->getParent()->end() == I.getParent() &&
2180 !I.getParent()->size() == 1) {
2181 return;
2182 }
2183
Dan Gohman93d04582008-04-23 21:49:29 +00002184 if (I.getNumOperands() > 1) {
2185 Out << " {\n";
2186 Out << " ";
2187 printType(Out, I.getParent()->getParent()->getReturnType());
2188 Out << " llvm_cbe_mrv_temp = {\n";
2189 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2190 Out << " ";
2191 writeOperand(I.getOperand(i));
2192 if (i != e - 1)
2193 Out << ",";
2194 Out << "\n";
2195 }
2196 Out << " };\n";
2197 Out << " return llvm_cbe_mrv_temp;\n";
2198 Out << " }\n";
2199 return;
2200 }
2201
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002202 Out << " return";
2203 if (I.getNumOperands()) {
2204 Out << ' ';
2205 writeOperand(I.getOperand(0));
2206 }
2207 Out << ";\n";
2208}
2209
2210void CWriter::visitSwitchInst(SwitchInst &SI) {
2211
2212 Out << " switch (";
2213 writeOperand(SI.getOperand(0));
2214 Out << ") {\n default:\n";
2215 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2216 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2217 Out << ";\n";
2218 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2219 Out << " case ";
2220 writeOperand(SI.getOperand(i));
2221 Out << ":\n";
2222 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2223 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2224 printBranchToBlock(SI.getParent(), Succ, 2);
2225 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2226 Out << " break;\n";
2227 }
2228 Out << " }\n";
2229}
2230
2231void CWriter::visitUnreachableInst(UnreachableInst &I) {
2232 Out << " /*UNREACHABLE*/;\n";
2233}
2234
2235bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2236 /// FIXME: This should be reenabled, but loop reordering safe!!
2237 return true;
2238
2239 if (next(Function::iterator(From)) != Function::iterator(To))
2240 return true; // Not the direct successor, we need a goto.
2241
2242 //isa<SwitchInst>(From->getTerminator())
2243
2244 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2245 return true;
2246 return false;
2247}
2248
2249void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2250 BasicBlock *Successor,
2251 unsigned Indent) {
2252 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2253 PHINode *PN = cast<PHINode>(I);
2254 // Now we have to do the printing.
2255 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2256 if (!isa<UndefValue>(IV)) {
2257 Out << std::string(Indent, ' ');
2258 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2259 writeOperand(IV);
2260 Out << "; /* for PHI node */\n";
2261 }
2262 }
2263}
2264
2265void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2266 unsigned Indent) {
2267 if (isGotoCodeNecessary(CurBB, Succ)) {
2268 Out << std::string(Indent, ' ') << " goto ";
2269 writeOperand(Succ);
2270 Out << ";\n";
2271 }
2272}
2273
2274// Branch instruction printing - Avoid printing out a branch to a basic block
2275// that immediately succeeds the current one.
2276//
2277void CWriter::visitBranchInst(BranchInst &I) {
2278
2279 if (I.isConditional()) {
2280 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2281 Out << " if (";
2282 writeOperand(I.getCondition());
2283 Out << ") {\n";
2284
2285 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2286 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2287
2288 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2289 Out << " } else {\n";
2290 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2291 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2292 }
2293 } else {
2294 // First goto not necessary, assume second one is...
2295 Out << " if (!";
2296 writeOperand(I.getCondition());
2297 Out << ") {\n";
2298
2299 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2300 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2301 }
2302
2303 Out << " }\n";
2304 } else {
2305 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2306 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2307 }
2308 Out << "\n";
2309}
2310
2311// PHI nodes get copied into temporary values at the end of predecessor basic
2312// blocks. We now need to copy these temporary values into the REAL value for
2313// the PHI.
2314void CWriter::visitPHINode(PHINode &I) {
2315 writeOperand(&I);
2316 Out << "__PHI_TEMPORARY";
2317}
2318
2319
2320void CWriter::visitBinaryOperator(Instruction &I) {
2321 // binary instructions, shift instructions, setCond instructions.
2322 assert(!isa<PointerType>(I.getType()));
2323
2324 // We must cast the results of binary operations which might be promoted.
2325 bool needsCast = false;
2326 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2327 || (I.getType() == Type::FloatTy)) {
2328 needsCast = true;
2329 Out << "((";
2330 printType(Out, I.getType(), false);
2331 Out << ")(";
2332 }
2333
2334 // If this is a negation operation, print it out as such. For FP, we don't
2335 // want to print "-0.0 - X".
2336 if (BinaryOperator::isNeg(&I)) {
2337 Out << "-(";
2338 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2339 Out << ")";
2340 } else if (I.getOpcode() == Instruction::FRem) {
2341 // Output a call to fmod/fmodf instead of emitting a%b
2342 if (I.getType() == Type::FloatTy)
2343 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002344 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002345 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002346 else // all 3 flavors of long double
2347 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002348 writeOperand(I.getOperand(0));
2349 Out << ", ";
2350 writeOperand(I.getOperand(1));
2351 Out << ")";
2352 } else {
2353
2354 // Write out the cast of the instruction's value back to the proper type
2355 // if necessary.
2356 bool NeedsClosingParens = writeInstructionCast(I);
2357
2358 // Certain instructions require the operand to be forced to a specific type
2359 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2360 // below for operand 1
2361 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2362
2363 switch (I.getOpcode()) {
2364 case Instruction::Add: Out << " + "; break;
2365 case Instruction::Sub: Out << " - "; break;
2366 case Instruction::Mul: Out << " * "; break;
2367 case Instruction::URem:
2368 case Instruction::SRem:
2369 case Instruction::FRem: Out << " % "; break;
2370 case Instruction::UDiv:
2371 case Instruction::SDiv:
2372 case Instruction::FDiv: Out << " / "; break;
2373 case Instruction::And: Out << " & "; break;
2374 case Instruction::Or: Out << " | "; break;
2375 case Instruction::Xor: Out << " ^ "; break;
2376 case Instruction::Shl : Out << " << "; break;
2377 case Instruction::LShr:
2378 case Instruction::AShr: Out << " >> "; break;
2379 default: cerr << "Invalid operator type!" << I; abort();
2380 }
2381
2382 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2383 if (NeedsClosingParens)
2384 Out << "))";
2385 }
2386
2387 if (needsCast) {
2388 Out << "))";
2389 }
2390}
2391
2392void CWriter::visitICmpInst(ICmpInst &I) {
2393 // We must cast the results of icmp which might be promoted.
2394 bool needsCast = false;
2395
2396 // Write out the cast of the instruction's value back to the proper type
2397 // if necessary.
2398 bool NeedsClosingParens = writeInstructionCast(I);
2399
2400 // Certain icmp predicate require the operand to be forced to a specific type
2401 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2402 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002403 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404
2405 switch (I.getPredicate()) {
2406 case ICmpInst::ICMP_EQ: Out << " == "; break;
2407 case ICmpInst::ICMP_NE: Out << " != "; break;
2408 case ICmpInst::ICMP_ULE:
2409 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2410 case ICmpInst::ICMP_UGE:
2411 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2412 case ICmpInst::ICMP_ULT:
2413 case ICmpInst::ICMP_SLT: Out << " < "; break;
2414 case ICmpInst::ICMP_UGT:
2415 case ICmpInst::ICMP_SGT: Out << " > "; break;
2416 default: cerr << "Invalid icmp predicate!" << I; abort();
2417 }
2418
Chris Lattner389c9142007-09-15 06:51:03 +00002419 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002420 if (NeedsClosingParens)
2421 Out << "))";
2422
2423 if (needsCast) {
2424 Out << "))";
2425 }
2426}
2427
2428void CWriter::visitFCmpInst(FCmpInst &I) {
2429 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2430 Out << "0";
2431 return;
2432 }
2433 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2434 Out << "1";
2435 return;
2436 }
2437
2438 const char* op = 0;
2439 switch (I.getPredicate()) {
2440 default: assert(0 && "Illegal FCmp predicate");
2441 case FCmpInst::FCMP_ORD: op = "ord"; break;
2442 case FCmpInst::FCMP_UNO: op = "uno"; break;
2443 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2444 case FCmpInst::FCMP_UNE: op = "une"; break;
2445 case FCmpInst::FCMP_ULT: op = "ult"; break;
2446 case FCmpInst::FCMP_ULE: op = "ule"; break;
2447 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2448 case FCmpInst::FCMP_UGE: op = "uge"; break;
2449 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2450 case FCmpInst::FCMP_ONE: op = "one"; break;
2451 case FCmpInst::FCMP_OLT: op = "olt"; break;
2452 case FCmpInst::FCMP_OLE: op = "ole"; break;
2453 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2454 case FCmpInst::FCMP_OGE: op = "oge"; break;
2455 }
2456
2457 Out << "llvm_fcmp_" << op << "(";
2458 // Write the first operand
2459 writeOperand(I.getOperand(0));
2460 Out << ", ";
2461 // Write the second operand
2462 writeOperand(I.getOperand(1));
2463 Out << ")";
2464}
2465
2466static const char * getFloatBitCastField(const Type *Ty) {
2467 switch (Ty->getTypeID()) {
2468 default: assert(0 && "Invalid Type");
2469 case Type::FloatTyID: return "Float";
2470 case Type::DoubleTyID: return "Double";
2471 case Type::IntegerTyID: {
2472 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2473 if (NumBits <= 32)
2474 return "Int32";
2475 else
2476 return "Int64";
2477 }
2478 }
2479}
2480
2481void CWriter::visitCastInst(CastInst &I) {
2482 const Type *DstTy = I.getType();
2483 const Type *SrcTy = I.getOperand(0)->getType();
2484 Out << '(';
2485 if (isFPIntBitCast(I)) {
2486 // These int<->float and long<->double casts need to be handled specially
2487 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2488 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2489 writeOperand(I.getOperand(0));
2490 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2491 << getFloatBitCastField(I.getType());
2492 } else {
2493 printCast(I.getOpcode(), SrcTy, DstTy);
2494 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2495 // Make sure we really get a sext from bool by subtracing the bool from 0
2496 Out << "0-";
2497 }
2498 writeOperand(I.getOperand(0));
2499 if (DstTy == Type::Int1Ty &&
2500 (I.getOpcode() == Instruction::Trunc ||
2501 I.getOpcode() == Instruction::FPToUI ||
2502 I.getOpcode() == Instruction::FPToSI ||
2503 I.getOpcode() == Instruction::PtrToInt)) {
2504 // Make sure we really get a trunc to bool by anding the operand with 1
2505 Out << "&1u";
2506 }
2507 }
2508 Out << ')';
2509}
2510
2511void CWriter::visitSelectInst(SelectInst &I) {
2512 Out << "((";
2513 writeOperand(I.getCondition());
2514 Out << ") ? (";
2515 writeOperand(I.getTrueValue());
2516 Out << ") : (";
2517 writeOperand(I.getFalseValue());
2518 Out << "))";
2519}
2520
2521
2522void CWriter::lowerIntrinsics(Function &F) {
2523 // This is used to keep track of intrinsics that get generated to a lowered
2524 // function. We must generate the prototypes before the function body which
2525 // will only be expanded on first use (by the loop below).
2526 std::vector<Function*> prototypesToGen;
2527
2528 // Examine all the instructions in this function to find the intrinsics that
2529 // need to be lowered.
2530 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2531 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2532 if (CallInst *CI = dyn_cast<CallInst>(I++))
2533 if (Function *F = CI->getCalledFunction())
2534 switch (F->getIntrinsicID()) {
2535 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002536 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002537 case Intrinsic::vastart:
2538 case Intrinsic::vacopy:
2539 case Intrinsic::vaend:
2540 case Intrinsic::returnaddress:
2541 case Intrinsic::frameaddress:
2542 case Intrinsic::setjmp:
2543 case Intrinsic::longjmp:
2544 case Intrinsic::prefetch:
2545 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002546 case Intrinsic::powi:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002547 case Intrinsic::x86_sse_cmp_ss:
2548 case Intrinsic::x86_sse_cmp_ps:
2549 case Intrinsic::x86_sse2_cmp_sd:
2550 case Intrinsic::x86_sse2_cmp_pd:
Chris Lattner709df322008-03-02 08:54:27 +00002551 case Intrinsic::ppc_altivec_lvsl:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002552 // We directly implement these intrinsics
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002553 break;
2554 default:
2555 // If this is an intrinsic that directly corresponds to a GCC
2556 // builtin, we handle it.
2557 const char *BuiltinName = "";
2558#define GET_GCC_BUILTIN_NAME
2559#include "llvm/Intrinsics.gen"
2560#undef GET_GCC_BUILTIN_NAME
2561 // If we handle it, don't lower it.
2562 if (BuiltinName[0]) break;
2563
2564 // All other intrinsic calls we must lower.
2565 Instruction *Before = 0;
2566 if (CI != &BB->front())
2567 Before = prior(BasicBlock::iterator(CI));
2568
2569 IL->LowerIntrinsicCall(CI);
2570 if (Before) { // Move iterator to instruction after call
2571 I = Before; ++I;
2572 } else {
2573 I = BB->begin();
2574 }
2575 // If the intrinsic got lowered to another call, and that call has
2576 // a definition then we need to make sure its prototype is emitted
2577 // before any calls to it.
2578 if (CallInst *Call = dyn_cast<CallInst>(I))
2579 if (Function *NewF = Call->getCalledFunction())
2580 if (!NewF->isDeclaration())
2581 prototypesToGen.push_back(NewF);
2582
2583 break;
2584 }
2585
2586 // We may have collected some prototypes to emit in the loop above.
2587 // Emit them now, before the function that uses them is emitted. But,
2588 // be careful not to emit them twice.
2589 std::vector<Function*>::iterator I = prototypesToGen.begin();
2590 std::vector<Function*>::iterator E = prototypesToGen.end();
2591 for ( ; I != E; ++I) {
2592 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2593 Out << '\n';
2594 printFunctionSignature(*I, true);
2595 Out << ";\n";
2596 }
2597 }
2598}
2599
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002600void CWriter::visitCallInst(CallInst &I) {
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002601 if (isa<InlineAsm>(I.getOperand(0)))
2602 return visitInlineAsm(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002603
2604 bool WroteCallee = false;
2605
2606 // Handle intrinsic function calls first...
2607 if (Function *F = I.getCalledFunction())
Chris Lattnera74b9182008-03-02 08:29:41 +00002608 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2609 if (visitBuiltinCall(I, ID, WroteCallee))
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002610 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002611
2612 Value *Callee = I.getCalledValue();
2613
2614 const PointerType *PTy = cast<PointerType>(Callee->getType());
2615 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2616
2617 // If this is a call to a struct-return function, assign to the first
2618 // parameter instead of passing it to the call.
Chris Lattner1c8733e2008-03-12 17:45:29 +00002619 const PAListPtr &PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002620 bool hasByVal = I.hasByValArgument();
Devang Patel949a4b72008-03-03 21:46:28 +00002621 bool isStructRet = I.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002622 if (isStructRet) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002623 writeOperandDeref(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002624 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002625 }
2626
2627 if (I.isTailCall()) Out << " /*tail*/ ";
2628
2629 if (!WroteCallee) {
2630 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002631 // the pointer. Ditto for indirect calls with byval arguments.
2632 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002633
2634 // GCC is a real PITA. It does not permit codegening casts of functions to
2635 // function pointers if they are in a call (it generates a trap instruction
2636 // instead!). We work around this by inserting a cast to void* in between
2637 // the function and the function pointer cast. Unfortunately, we can't just
2638 // form the constant expression here, because the folder will immediately
2639 // nuke it.
2640 //
2641 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2642 // that void* and function pointers have the same size. :( To deal with this
2643 // in the common case, we handle casts where the number of arguments passed
2644 // match exactly.
2645 //
2646 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2647 if (CE->isCast())
2648 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2649 NeedsCast = true;
2650 Callee = RF;
2651 }
2652
2653 if (NeedsCast) {
2654 // Ok, just cast the pointer type.
2655 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002656 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002657 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002658 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002659 else if (hasByVal)
2660 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2661 else
2662 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002663 Out << ")(void*)";
2664 }
2665 writeOperand(Callee);
2666 if (NeedsCast) Out << ')';
2667 }
2668
2669 Out << '(';
2670
2671 unsigned NumDeclaredParams = FTy->getNumParams();
2672
2673 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2674 unsigned ArgNo = 0;
2675 if (isStructRet) { // Skip struct return argument.
2676 ++AI;
2677 ++ArgNo;
2678 }
2679
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002680 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002681 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002682 if (PrintedArg) Out << ", ";
2683 if (ArgNo < NumDeclaredParams &&
2684 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2685 Out << '(';
2686 printType(Out, FTy->getParamType(ArgNo),
Chris Lattner1c8733e2008-03-12 17:45:29 +00002687 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002688 Out << ')';
2689 }
Evan Chengf8956382008-01-11 23:10:11 +00002690 // Check if the argument is expected to be passed by value.
Chris Lattner8bbc8592008-03-02 08:07:24 +00002691 if (I.paramHasAttr(ArgNo+1, ParamAttr::ByVal))
2692 writeOperandDeref(*AI);
2693 else
2694 writeOperand(*AI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002695 PrintedArg = true;
2696 }
2697 Out << ')';
2698}
2699
Chris Lattnera74b9182008-03-02 08:29:41 +00002700/// visitBuiltinCall - Handle the call to the specified builtin. Returns true
2701/// if the entire call is handled, return false it it wasn't handled, and
2702/// optionally set 'WroteCallee' if the callee has already been printed out.
2703bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
2704 bool &WroteCallee) {
2705 switch (ID) {
2706 default: {
2707 // If this is an intrinsic that directly corresponds to a GCC
2708 // builtin, we emit it here.
2709 const char *BuiltinName = "";
2710 Function *F = I.getCalledFunction();
2711#define GET_GCC_BUILTIN_NAME
2712#include "llvm/Intrinsics.gen"
2713#undef GET_GCC_BUILTIN_NAME
2714 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2715
2716 Out << BuiltinName;
2717 WroteCallee = true;
2718 return false;
2719 }
2720 case Intrinsic::memory_barrier:
Andrew Lenharth5c976182008-03-05 23:41:37 +00002721 Out << "__sync_synchronize()";
Chris Lattnera74b9182008-03-02 08:29:41 +00002722 return true;
2723 case Intrinsic::vastart:
2724 Out << "0; ";
2725
2726 Out << "va_start(*(va_list*)";
2727 writeOperand(I.getOperand(1));
2728 Out << ", ";
2729 // Output the last argument to the enclosing function.
2730 if (I.getParent()->getParent()->arg_empty()) {
2731 cerr << "The C backend does not currently support zero "
2732 << "argument varargs functions, such as '"
2733 << I.getParent()->getParent()->getName() << "'!\n";
2734 abort();
2735 }
2736 writeOperand(--I.getParent()->getParent()->arg_end());
2737 Out << ')';
2738 return true;
2739 case Intrinsic::vaend:
2740 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2741 Out << "0; va_end(*(va_list*)";
2742 writeOperand(I.getOperand(1));
2743 Out << ')';
2744 } else {
2745 Out << "va_end(*(va_list*)0)";
2746 }
2747 return true;
2748 case Intrinsic::vacopy:
2749 Out << "0; ";
2750 Out << "va_copy(*(va_list*)";
2751 writeOperand(I.getOperand(1));
2752 Out << ", *(va_list*)";
2753 writeOperand(I.getOperand(2));
2754 Out << ')';
2755 return true;
2756 case Intrinsic::returnaddress:
2757 Out << "__builtin_return_address(";
2758 writeOperand(I.getOperand(1));
2759 Out << ')';
2760 return true;
2761 case Intrinsic::frameaddress:
2762 Out << "__builtin_frame_address(";
2763 writeOperand(I.getOperand(1));
2764 Out << ')';
2765 return true;
2766 case Intrinsic::powi:
2767 Out << "__builtin_powi(";
2768 writeOperand(I.getOperand(1));
2769 Out << ", ";
2770 writeOperand(I.getOperand(2));
2771 Out << ')';
2772 return true;
2773 case Intrinsic::setjmp:
2774 Out << "setjmp(*(jmp_buf*)";
2775 writeOperand(I.getOperand(1));
2776 Out << ')';
2777 return true;
2778 case Intrinsic::longjmp:
2779 Out << "longjmp(*(jmp_buf*)";
2780 writeOperand(I.getOperand(1));
2781 Out << ", ";
2782 writeOperand(I.getOperand(2));
2783 Out << ')';
2784 return true;
2785 case Intrinsic::prefetch:
2786 Out << "LLVM_PREFETCH((const void *)";
2787 writeOperand(I.getOperand(1));
2788 Out << ", ";
2789 writeOperand(I.getOperand(2));
2790 Out << ", ";
2791 writeOperand(I.getOperand(3));
2792 Out << ")";
2793 return true;
2794 case Intrinsic::stacksave:
2795 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2796 // to work around GCC bugs (see PR1809).
2797 Out << "0; *((void**)&" << GetValueName(&I)
2798 << ") = __builtin_stack_save()";
2799 return true;
2800 case Intrinsic::dbg_stoppoint: {
2801 // If we use writeOperand directly we get a "u" suffix which is rejected
2802 // by gcc.
2803 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2804 Out << "\n#line "
2805 << SPI.getLine()
2806 << " \"" << SPI.getDirectory()
2807 << SPI.getFileName() << "\"\n";
2808 return true;
2809 }
Chris Lattner6a947cb2008-03-02 08:47:13 +00002810 case Intrinsic::x86_sse_cmp_ss:
2811 case Intrinsic::x86_sse_cmp_ps:
2812 case Intrinsic::x86_sse2_cmp_sd:
2813 case Intrinsic::x86_sse2_cmp_pd:
2814 Out << '(';
2815 printType(Out, I.getType());
2816 Out << ')';
2817 // Multiple GCC builtins multiplex onto this intrinsic.
2818 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
2819 default: assert(0 && "Invalid llvm.x86.sse.cmp!");
2820 case 0: Out << "__builtin_ia32_cmpeq"; break;
2821 case 1: Out << "__builtin_ia32_cmplt"; break;
2822 case 2: Out << "__builtin_ia32_cmple"; break;
2823 case 3: Out << "__builtin_ia32_cmpunord"; break;
2824 case 4: Out << "__builtin_ia32_cmpneq"; break;
2825 case 5: Out << "__builtin_ia32_cmpnlt"; break;
2826 case 6: Out << "__builtin_ia32_cmpnle"; break;
2827 case 7: Out << "__builtin_ia32_cmpord"; break;
2828 }
2829 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
2830 Out << 'p';
2831 else
2832 Out << 's';
2833 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
2834 Out << 's';
2835 else
2836 Out << 'd';
2837
2838 Out << "(";
2839 writeOperand(I.getOperand(1));
2840 Out << ", ";
2841 writeOperand(I.getOperand(2));
2842 Out << ")";
2843 return true;
Chris Lattner709df322008-03-02 08:54:27 +00002844 case Intrinsic::ppc_altivec_lvsl:
2845 Out << '(';
2846 printType(Out, I.getType());
2847 Out << ')';
2848 Out << "__builtin_altivec_lvsl(0, (void*)";
2849 writeOperand(I.getOperand(1));
2850 Out << ")";
2851 return true;
Chris Lattnera74b9182008-03-02 08:29:41 +00002852 }
2853}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002854
2855//This converts the llvm constraint string to something gcc is expecting.
2856//TODO: work out platform independent constraints and factor those out
2857// of the per target tables
2858// handle multiple constraint codes
2859std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2860
2861 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2862
Dan Gohman12300e12008-03-25 21:45:14 +00002863 const char *const *table = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002864
2865 //Grab the translation table from TargetAsmInfo if it exists
2866 if (!TAsm) {
2867 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002868 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002869 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2870 if (Match) {
2871 //Per platform Target Machines don't exist, so create it
2872 // this must be done only once
2873 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2874 TAsm = TM->getTargetAsmInfo();
2875 }
2876 }
2877 if (TAsm)
2878 table = TAsm->getAsmCBE();
2879
2880 //Search the translation table if it exists
2881 for (int i = 0; table && table[i]; i += 2)
2882 if (c.Codes[0] == table[i])
2883 return table[i+1];
2884
2885 //default is identity
2886 return c.Codes[0];
2887}
2888
2889//TODO: import logic from AsmPrinter.cpp
2890static std::string gccifyAsm(std::string asmstr) {
2891 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2892 if (asmstr[i] == '\n')
2893 asmstr.replace(i, 1, "\\n");
2894 else if (asmstr[i] == '\t')
2895 asmstr.replace(i, 1, "\\t");
2896 else if (asmstr[i] == '$') {
2897 if (asmstr[i + 1] == '{') {
2898 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2899 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2900 std::string n = "%" +
2901 asmstr.substr(a + 1, b - a - 1) +
2902 asmstr.substr(i + 2, a - i - 2);
2903 asmstr.replace(i, b - i + 1, n);
2904 i += n.size() - 1;
2905 } else
2906 asmstr.replace(i, 1, "%");
2907 }
2908 else if (asmstr[i] == '%')//grr
2909 { asmstr.replace(i, 1, "%%"); ++i;}
2910
2911 return asmstr;
2912}
2913
2914//TODO: assumptions about what consume arguments from the call are likely wrong
2915// handle communitivity
2916void CWriter::visitInlineAsm(CallInst &CI) {
2917 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2918 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2919 std::vector<std::pair<std::string, Value*> > Input;
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002920 std::vector<std::pair<std::string, std::pair<Value*, int> > > Output;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002921 std::string Clobber;
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002922 unsigned ValueCount = 0;
2923
2924 std::vector<std::pair<Value*, int> > ResultVals;
2925 if (CI.getType() == Type::VoidTy)
2926 ;
2927 else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
2928 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
2929 ResultVals.push_back(std::make_pair(&CI, (int)i));
2930 } else {
2931 ResultVals.push_back(std::make_pair(&CI, -1));
2932 }
2933
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002934 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2935 E = Constraints.end(); I != E; ++I) {
2936 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002937 std::string C = InterpretASMConstraint(*I);
2938 if (C.empty()) continue;
2939
2940 switch (I->Type) {
2941 default: assert(0 && "Unknown asm constraint");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002942 case InlineAsm::isInput: {
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002943 assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
Chris Lattner5fee1202008-05-22 06:29:38 +00002944 Value *V = CI.getOperand(ValueCount-ResultVals.size()+1);
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002945 Input.push_back(std::make_pair(C, V));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002946 break;
2947 }
2948 case InlineAsm::isOutput: {
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002949 std::pair<Value*, int> V;
2950 if (ValueCount < ResultVals.size())
2951 V = ResultVals[ValueCount];
2952 else
Chris Lattner5fee1202008-05-22 06:29:38 +00002953 V = std::make_pair(CI.getOperand(ValueCount-ResultVals.size()+1), -1);
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002954 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+C),
2955 V));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002956 break;
2957 }
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002958 case InlineAsm::isClobber:
2959 Clobber += ",\"" + C + "\"";
2960 continue; // Not an actual argument.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002961 }
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002962 ++ValueCount; // Consumes an argument.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002963 }
2964
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002965 // Fix up the asm string for gcc.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002966 std::string asmstr = gccifyAsm(as->getAsmString());
2967
2968 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2969 Out << " :";
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002970 for (unsigned i = 0, e = Output.size(); i != e; ++i) {
2971 if (i)
2972 Out << ", ";
Chris Lattner5fee1202008-05-22 06:29:38 +00002973 Out << "\"" << Output[i].first << "\"("
2974 << GetValueName(Output[i].second.first);
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002975 if (Output[i].second.second != -1)
2976 Out << ".field" << Output[i].second.second; // Multiple retvals.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002977 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002978 }
2979 Out << "\n :";
Chris Lattner5fee1202008-05-22 06:29:38 +00002980 for (unsigned i = 0, e = Input.size(); i != e; ++i) {
2981 if (i)
2982 Out << ", ";
2983 Out << "\"" << Input[i].first << "\"(";
2984 writeOperand(Input[i].second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002985 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002986 }
2987 if (Clobber.size())
2988 Out << "\n :" << Clobber.substr(1);
2989 Out << ")";
2990}
2991
2992void CWriter::visitMallocInst(MallocInst &I) {
2993 assert(0 && "lowerallocations pass didn't work!");
2994}
2995
2996void CWriter::visitAllocaInst(AllocaInst &I) {
2997 Out << '(';
2998 printType(Out, I.getType());
2999 Out << ") alloca(sizeof(";
3000 printType(Out, I.getType()->getElementType());
3001 Out << ')';
3002 if (I.isArrayAllocation()) {
3003 Out << " * " ;
3004 writeOperand(I.getOperand(0));
3005 }
3006 Out << ')';
3007}
3008
3009void CWriter::visitFreeInst(FreeInst &I) {
3010 assert(0 && "lowerallocations pass didn't work!");
3011}
3012
Chris Lattner8bbc8592008-03-02 08:07:24 +00003013void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
3014 gep_type_iterator E) {
3015
3016 // If there are no indices, just print out the pointer.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003017 if (I == E) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003018 writeOperand(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003019 return;
3020 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003021
3022 // Find out if the last index is into a vector. If so, we have to print this
3023 // specially. Since vectors can't have elements of indexable type, only the
3024 // last index could possibly be of a vector element.
3025 const VectorType *LastIndexIsVector = 0;
3026 {
3027 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
3028 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003029 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003030
3031 Out << "(";
3032
3033 // If the last index is into a vector, we can't print it as &a[i][j] because
3034 // we can't index into a vector with j in GCC. Instead, emit this as
3035 // (((float*)&a[i])+j)
3036 if (LastIndexIsVector) {
3037 Out << "((";
3038 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
3039 Out << ")(";
3040 }
3041
3042 Out << '&';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003043
Chris Lattner8bbc8592008-03-02 08:07:24 +00003044 // If the first index is 0 (very typical) we can do a number of
3045 // simplifications to clean up the code.
3046 Value *FirstOp = I.getOperand();
3047 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3048 // First index isn't simple, print it the hard way.
3049 writeOperand(Ptr);
3050 } else {
3051 ++I; // Skip the zero index.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003052
Chris Lattner8bbc8592008-03-02 08:07:24 +00003053 // Okay, emit the first operand. If Ptr is something that is already address
3054 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3055 if (isAddressExposed(Ptr)) {
3056 writeOperandInternal(Ptr);
3057 } else if (I != E && isa<StructType>(*I)) {
3058 // If we didn't already emit the first operand, see if we can print it as
3059 // P->f instead of "P[0].f"
3060 writeOperand(Ptr);
3061 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3062 ++I; // eat the struct index as well.
3063 } else {
3064 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3065 Out << "(*";
3066 writeOperand(Ptr);
3067 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003068 }
3069 }
3070
Chris Lattner8bbc8592008-03-02 08:07:24 +00003071 for (; I != E; ++I) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003072 if (isa<StructType>(*I)) {
3073 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
Chris Lattner8bbc8592008-03-02 08:07:24 +00003074 } else if (!isa<VectorType>(*I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003075 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00003076 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003077 Out << ']';
Chris Lattner8bbc8592008-03-02 08:07:24 +00003078 } else {
3079 // If the last index is into a vector, then print it out as "+j)". This
3080 // works with the 'LastIndexIsVector' code above.
3081 if (isa<Constant>(I.getOperand()) &&
3082 cast<Constant>(I.getOperand())->isNullValue()) {
3083 Out << "))"; // avoid "+0".
3084 } else {
3085 Out << ")+(";
3086 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3087 Out << "))";
3088 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003089 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003090 }
3091 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003092}
3093
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003094void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3095 bool IsVolatile, unsigned Alignment) {
3096
3097 bool IsUnaligned = Alignment &&
3098 Alignment < TD->getABITypeAlignment(OperandType);
3099
3100 if (!IsUnaligned)
3101 Out << '*';
3102 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003103 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003104 if (IsUnaligned)
3105 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3106 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3107 if (IsUnaligned) {
3108 Out << "; } ";
3109 if (IsVolatile) Out << "volatile ";
3110 Out << "*";
3111 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003112 Out << ")";
3113 }
3114
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003115 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003116
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003117 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003118 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003119 if (IsUnaligned)
3120 Out << "->data";
3121 }
3122}
3123
3124void CWriter::visitLoadInst(LoadInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003125 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3126 I.getAlignment());
3127
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003128}
3129
3130void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003131 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3132 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003133 Out << " = ";
3134 Value *Operand = I.getOperand(0);
3135 Constant *BitMask = 0;
3136 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3137 if (!ITy->isPowerOf2ByteWidth())
3138 // We have a bit width that doesn't match an even power-of-2 byte
3139 // size. Consequently we must & the value with the type's bit mask
3140 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3141 if (BitMask)
3142 Out << "((";
3143 writeOperand(Operand);
3144 if (BitMask) {
3145 Out << ") & ";
3146 printConstant(BitMask);
3147 Out << ")";
3148 }
3149}
3150
3151void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003152 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3153 gep_type_end(I));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003154}
3155
3156void CWriter::visitVAArgInst(VAArgInst &I) {
3157 Out << "va_arg(*(va_list*)";
3158 writeOperand(I.getOperand(0));
3159 Out << ", ";
3160 printType(Out, I.getType());
3161 Out << ");\n ";
3162}
3163
Chris Lattnerf41a7942008-03-02 03:52:39 +00003164void CWriter::visitInsertElementInst(InsertElementInst &I) {
3165 const Type *EltTy = I.getType()->getElementType();
3166 writeOperand(I.getOperand(0));
3167 Out << ";\n ";
3168 Out << "((";
3169 printType(Out, PointerType::getUnqual(EltTy));
3170 Out << ")(&" << GetValueName(&I) << "))[";
Chris Lattnerf41a7942008-03-02 03:52:39 +00003171 writeOperand(I.getOperand(2));
Chris Lattner09418362008-03-02 08:10:16 +00003172 Out << "] = (";
3173 writeOperand(I.getOperand(1));
Chris Lattnerf41a7942008-03-02 03:52:39 +00003174 Out << ")";
3175}
3176
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003177void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3178 // We know that our operand is not inlined.
3179 Out << "((";
3180 const Type *EltTy =
3181 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3182 printType(Out, PointerType::getUnqual(EltTy));
3183 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3184 writeOperand(I.getOperand(1));
3185 Out << "]";
3186}
3187
Chris Lattnerf858a042008-03-02 05:41:07 +00003188void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3189 Out << "(";
3190 printType(Out, SVI.getType());
3191 Out << "){ ";
3192 const VectorType *VT = SVI.getType();
3193 unsigned NumElts = VT->getNumElements();
3194 const Type *EltTy = VT->getElementType();
3195
3196 for (unsigned i = 0; i != NumElts; ++i) {
3197 if (i) Out << ", ";
3198 int SrcVal = SVI.getMaskValue(i);
3199 if ((unsigned)SrcVal >= NumElts*2) {
3200 Out << " 0/*undef*/ ";
3201 } else {
3202 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3203 if (isa<Instruction>(Op)) {
3204 // Do an extractelement of this value from the appropriate input.
3205 Out << "((";
3206 printType(Out, PointerType::getUnqual(EltTy));
3207 Out << ")(&" << GetValueName(Op)
3208 << "))[" << (SrcVal & NumElts-1) << "]";
3209 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3210 Out << "0";
3211 } else {
3212 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal & NumElts-1));
3213 }
3214 }
3215 }
3216 Out << "}";
3217}
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003218
Dan Gohman93d04582008-04-23 21:49:29 +00003219void CWriter::visitGetResultInst(GetResultInst &GRI) {
3220 Out << "(";
3221 if (isa<UndefValue>(GRI.getOperand(0))) {
3222 Out << "(";
3223 printType(Out, GRI.getType());
3224 Out << ") 0/*UNDEF*/";
3225 } else {
3226 Out << GetValueName(GRI.getOperand(0)) << ".field" << GRI.getIndex();
3227 }
3228 Out << ")";
3229}
Chris Lattnerf41a7942008-03-02 03:52:39 +00003230
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003231//===----------------------------------------------------------------------===//
3232// External Interface declaration
3233//===----------------------------------------------------------------------===//
3234
3235bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3236 std::ostream &o,
3237 CodeGenFileType FileType,
3238 bool Fast) {
3239 if (FileType != TargetMachine::AssemblyFile) return true;
3240
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003241 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003242 PM.add(createLowerAllocationsPass(true));
3243 PM.add(createLowerInvokePass());
3244 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3245 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3246 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003247 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003248 return false;
3249}