blob: 2877035674707154ddfd1ecf1605068e31f415bd [file] [log] [blame]
Chris Lattner1e60a912003-12-20 01:22:19 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswell856ba762003-10-21 15:17:13 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswell856ba762003-10-21 15:17:13 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
Chris Lattner3501fea2003-01-14 22:00:31 +000017#include "llvm/Target/TargetInstrInfo.h"
Chris Lattner72614082002-10-25 22:55:53 +000018#include "X86RegisterInfo.h"
19
Brian Gaeked0fde302003-11-11 22:41:34 +000020namespace llvm {
Evan Cheng25ab6902006-09-08 06:48:29 +000021 class X86RegisterInfo;
Evan Chengaa3c1412006-05-30 21:45:53 +000022 class X86TargetMachine;
Brian Gaeked0fde302003-11-11 22:41:34 +000023
Chris Lattner7fbe9722006-10-20 17:42:20 +000024namespace X86 {
25 // X86 specific condition code. These correspond to X86_*_COND in
26 // X86InstrInfo.td. They must be kept in synch.
27 enum CondCode {
28 COND_A = 0,
29 COND_AE = 1,
30 COND_B = 2,
31 COND_BE = 3,
32 COND_E = 4,
33 COND_G = 5,
34 COND_GE = 6,
35 COND_L = 7,
36 COND_LE = 8,
37 COND_NE = 9,
38 COND_NO = 10,
39 COND_NP = 11,
40 COND_NS = 12,
41 COND_O = 13,
42 COND_P = 14,
43 COND_S = 15,
44 COND_INVALID
45 };
46
47 // Turn condition code into conditional branch opcode.
48 unsigned GetCondBranchFromCond(CondCode CC);
49}
50
Chris Lattner9d177402002-10-30 01:09:34 +000051/// X86II - This namespace holds all of the target specific flags that
52/// instruction info tracks.
53///
54namespace X86II {
55 enum {
Chris Lattner6aab9cf2002-11-18 05:37:11 +000056 //===------------------------------------------------------------------===//
57 // Instruction types. These are the standard/most common forms for X86
58 // instructions.
59 //
60
Chris Lattner4c299f52002-12-25 05:09:59 +000061 // PseudoFrm - This represents an instruction that is a pseudo instruction
62 // or one that has not been implemented yet. It is illegal to code generate
63 // it, but tolerated for intermediate implementation stages.
64 Pseudo = 0,
65
Chris Lattner6aab9cf2002-11-18 05:37:11 +000066 /// Raw - This form is for instructions that don't have any operands, so
67 /// they are just a fixed opcode value, like 'leave'.
Chris Lattner4c299f52002-12-25 05:09:59 +000068 RawFrm = 1,
Misha Brukman0e0a7a452005-04-21 23:38:14 +000069
Chris Lattner6aab9cf2002-11-18 05:37:11 +000070 /// AddRegFrm - This form is used for instructions like 'push r32' that have
71 /// their one register operand added to their opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +000072 AddRegFrm = 2,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000073
74 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
75 /// to specify a destination, which in this case is a register.
76 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000077 MRMDestReg = 3,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000078
79 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
80 /// to specify a destination, which in this case is memory.
81 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000082 MRMDestMem = 4,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000083
84 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
85 /// to specify a source, which in this case is a register.
86 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000087 MRMSrcReg = 5,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000088
89 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
90 /// to specify a source, which in this case is memory.
91 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000092 MRMSrcMem = 6,
Misha Brukman0e0a7a452005-04-21 23:38:14 +000093
Alkis Evlogimenos169584e2004-02-27 18:55:12 +000094 /// MRM[0-7][rm] - These forms are used to represent instructions that use
Chris Lattner85b39f22002-11-21 17:08:49 +000095 /// a Mod/RM byte, and use the middle field to hold extended opcode
96 /// information. In the intel manual these are represented as /0, /1, ...
97 ///
Chris Lattner6aab9cf2002-11-18 05:37:11 +000098
Chris Lattner85b39f22002-11-21 17:08:49 +000099 // First, instructions that operate on a register r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000100 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
101 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000102
103 // Next, instructions that operate on a memory r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000104 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
105 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000106
Evan Cheng3c55c542006-02-01 06:13:50 +0000107 // MRMInitReg - This form is used for instructions whose source and
108 // destinations are the same register.
109 MRMInitReg = 32,
110
111 FormMask = 63,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000112
113 //===------------------------------------------------------------------===//
114 // Actual flags...
115
Chris Lattner11e53e32002-11-21 01:32:55 +0000116 // OpSize - Set if this instruction requires an operand size prefix (0x66),
117 // which most often indicates that the instruction operates on 16 bit data
118 // instead of 32 bit data.
Evan Cheng3c55c542006-02-01 06:13:50 +0000119 OpSize = 1 << 6,
Brian Gaeke86764d72002-12-05 08:30:40 +0000120
Evan Cheng25ab6902006-09-08 06:48:29 +0000121 // AsSize - Set if this instruction requires an operand size prefix (0x67),
122 // which most often indicates that the instruction address 16 bit address
123 // instead of 32 bit address (or 32 bit address in 64 bit mode).
124 AdSize = 1 << 7,
125
126 //===------------------------------------------------------------------===//
Chris Lattner4c299f52002-12-25 05:09:59 +0000127 // Op0Mask - There are several prefix bytes that are used to form two byte
Chris Lattner915e5e52004-02-12 17:53:22 +0000128 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
129 // used to obtain the setting of this field. If no bits in this field is
130 // set, there is no prefix byte for obtaining a multibyte opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000131 //
Evan Cheng25ab6902006-09-08 06:48:29 +0000132 Op0Shift = 8,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000133 Op0Mask = 0xF << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000134
135 // TB - TwoByte - Set if this instruction has a two byte opcode, which
136 // starts with a 0x0F byte before the real opcode.
Chris Lattner2959b6e2003-08-06 15:32:20 +0000137 TB = 1 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000138
Chris Lattner915e5e52004-02-12 17:53:22 +0000139 // REP - The 0xF3 prefix byte indicating repetition of the following
140 // instruction.
141 REP = 2 << Op0Shift,
142
Chris Lattner4c299f52002-12-25 05:09:59 +0000143 // D8-DF - These escape opcodes are used by the floating point unit. These
144 // values must remain sequential.
Chris Lattner915e5e52004-02-12 17:53:22 +0000145 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
146 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
147 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
148 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
Jeff Cohen9eb59ec2005-07-27 05:53:44 +0000149
Nate Begemanf63be7d2005-07-06 18:59:04 +0000150 // XS, XD - These prefix codes are for single and double precision scalar
151 // floating point operations performed in the SSE registers.
152 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000153
Chris Lattner0c514f42003-01-13 00:49:24 +0000154 //===------------------------------------------------------------------===//
Evan Cheng25ab6902006-09-08 06:48:29 +0000155 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
156 // They are used to specify GPRs and SSE registers, 64-bit operand size,
157 // etc. We only cares about REX.W and REX.R bits and only the former is
158 // statically determined.
159 //
160 REXShift = 12,
161 REX_W = 1 << REXShift,
162
163 //===------------------------------------------------------------------===//
164 // This three-bit field describes the size of an immediate operand. Zero is
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000165 // unused so that we can tell if we forgot to set a value.
Evan Cheng25ab6902006-09-08 06:48:29 +0000166 ImmShift = 13,
167 ImmMask = 7 << ImmShift,
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000168 Imm8 = 1 << ImmShift,
169 Imm16 = 2 << ImmShift,
170 Imm32 = 3 << ImmShift,
Evan Cheng25ab6902006-09-08 06:48:29 +0000171 Imm64 = 4 << ImmShift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000172
Chris Lattner0c514f42003-01-13 00:49:24 +0000173 //===------------------------------------------------------------------===//
174 // FP Instruction Classification... Zero is non-fp instruction.
175
Chris Lattner2959b6e2003-08-06 15:32:20 +0000176 // FPTypeMask - Mask for all of the FP types...
Evan Cheng25ab6902006-09-08 06:48:29 +0000177 FPTypeShift = 16,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000178 FPTypeMask = 7 << FPTypeShift,
179
Chris Lattner79b13732004-01-30 22:24:18 +0000180 // NotFP - The default, set for instructions that do not use FP registers.
181 NotFP = 0 << FPTypeShift,
182
Chris Lattner0c514f42003-01-13 00:49:24 +0000183 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
Chris Lattner2959b6e2003-08-06 15:32:20 +0000184 ZeroArgFP = 1 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000185
186 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
Chris Lattner2959b6e2003-08-06 15:32:20 +0000187 OneArgFP = 2 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000188
189 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
190 // result back to ST(0). For example, fcos, fsqrt, etc.
191 //
Chris Lattner2959b6e2003-08-06 15:32:20 +0000192 OneArgFPRW = 3 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000193
194 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
195 // explicit argument, storing the result to either ST(0) or the implicit
196 // argument. For example: fadd, fsub, fmul, etc...
Chris Lattner2959b6e2003-08-06 15:32:20 +0000197 TwoArgFP = 4 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000198
Chris Lattnerab8decc2004-06-11 04:41:24 +0000199 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
200 // explicit argument, but have no destination. Example: fucom, fucomi, ...
201 CompareFP = 5 << FPTypeShift,
202
Chris Lattner1c54a852004-03-31 22:02:13 +0000203 // CondMovFP - "2 operand" floating point conditional move instructions.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000204 CondMovFP = 6 << FPTypeShift,
Chris Lattner1c54a852004-03-31 22:02:13 +0000205
Chris Lattner0c514f42003-01-13 00:49:24 +0000206 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000207 SpecialFP = 7 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000208
Evan Cheng25ab6902006-09-08 06:48:29 +0000209 // Bits 19 -> 23 are unused
210 OpcodeShift = 24,
Chris Lattnerd74ea2b2006-05-24 17:04:05 +0000211 OpcodeMask = 0xFF << OpcodeShift
Chris Lattner9d177402002-10-30 01:09:34 +0000212 };
213}
214
Chris Lattner3501fea2003-01-14 22:00:31 +0000215class X86InstrInfo : public TargetInstrInfo {
Evan Chengaa3c1412006-05-30 21:45:53 +0000216 X86TargetMachine &TM;
Chris Lattner72614082002-10-25 22:55:53 +0000217 const X86RegisterInfo RI;
218public:
Evan Chengaa3c1412006-05-30 21:45:53 +0000219 X86InstrInfo(X86TargetMachine &tm);
Chris Lattner72614082002-10-25 22:55:53 +0000220
Chris Lattner3501fea2003-01-14 22:00:31 +0000221 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
Chris Lattner72614082002-10-25 22:55:53 +0000222 /// such, whenever a client has an instance of instruction info, it should
223 /// always be able to get register info as well (through this method).
224 ///
225 virtual const MRegisterInfo &getRegisterInfo() const { return RI; }
226
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000227 // Return true if the instruction is a register to register move and
228 // leave the source and dest operands in the passed parameters.
229 //
Chris Lattner40839602006-02-02 20:12:32 +0000230 bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
231 unsigned& destReg) const;
232 unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
233 unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
234
Chris Lattnerae1dc402006-10-17 22:41:45 +0000235 /// getDWARF_LABELOpcode - Return the opcode of the target's DWARF_LABEL
236 /// instruction if it has one. This is used by codegen passes that update
237 /// DWARF line number info as they modify the code.
238 virtual unsigned getDWARF_LABELOpcode() const;
239
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000240 /// convertToThreeAddress - This method must be implemented by targets that
241 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
242 /// may be able to convert a two-address instruction into a true
243 /// three-address instruction on demand. This allows the X86 target (for
244 /// example) to convert ADD and SHL instructions into LEA instructions if they
245 /// would require register copies due to two-addressness.
246 ///
247 /// This method returns a null pointer if the transformation cannot be
248 /// performed, otherwise it returns the new instruction.
249 ///
250 virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const;
251
Chris Lattner41e431b2005-01-19 07:11:01 +0000252 /// commuteInstruction - We have a few instructions that must be hacked on to
253 /// commute them.
254 ///
255 virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
256
Chris Lattner7fbe9722006-10-20 17:42:20 +0000257 // Branch analysis.
258 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
259 MachineBasicBlock *&FBB,
260 std::vector<MachineOperand> &Cond) const;
261 virtual void RemoveBranch(MachineBasicBlock &MBB) const;
262 virtual void InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
263 MachineBasicBlock *FBB,
264 const std::vector<MachineOperand> &Cond) const;
265 virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000266
Evan Cheng25ab6902006-09-08 06:48:29 +0000267 const TargetRegisterClass *getPointerRegClass() const;
268
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000269 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
270 // specified opcode number.
271 //
Chris Lattner4d18d5c2003-08-03 21:56:22 +0000272 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
273 return get(Opcode).TSFlags >> X86II::OpcodeShift;
274 }
Chris Lattner72614082002-10-25 22:55:53 +0000275};
276
Brian Gaeked0fde302003-11-11 22:41:34 +0000277} // End llvm namespace
278
Chris Lattner72614082002-10-25 22:55:53 +0000279#endif