blob: 6c970e7175d69cc8a97c2280bf85c3d5fb2b4958 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng98c073b2009-02-17 00:13:06 +000069#include "llvm/Analysis/Dominators.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000072#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000076#include "llvm/Support/GetElementPtrTypeIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000077#include "llvm/Support/InstIterator.h"
78#include "llvm/Support/ManagedStatic.h"
79#include "llvm/Support/MathExtras.h"
Dan Gohman13058cc2009-04-21 00:47:46 +000080#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081#include "llvm/ADT/Statistic.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000082#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083#include <ostream>
84#include <algorithm>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085using namespace llvm;
86
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087STATISTIC(NumArrayLenItCounts,
88 "Number of trip counts computed with array length");
89STATISTIC(NumTripCountsComputed,
90 "Number of loops with predictable loop counts");
91STATISTIC(NumTripCountsNotComputed,
92 "Number of loops without predictable loop counts");
93STATISTIC(NumBruteForceTripCountsComputed,
94 "Number of loops with trip counts computed by force");
95
Dan Gohman089efff2008-05-13 00:00:25 +000096static cl::opt<unsigned>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000097MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98 cl::desc("Maximum number of iterations SCEV will "
99 "symbolically execute a constant derived loop"),
100 cl::init(100));
101
Dan Gohman089efff2008-05-13 00:00:25 +0000102static RegisterPass<ScalarEvolution>
103R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104char ScalarEvolution::ID = 0;
105
106//===----------------------------------------------------------------------===//
107// SCEV class definitions
108//===----------------------------------------------------------------------===//
109
110//===----------------------------------------------------------------------===//
111// Implementation of the SCEV class.
112//
113SCEV::~SCEV() {}
114void SCEV::dump() const {
Dan Gohman13058cc2009-04-21 00:47:46 +0000115 print(errs());
116 errs() << '\n';
117}
118
119void SCEV::print(std::ostream &o) const {
120 raw_os_ostream OS(o);
121 print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000122}
123
Dan Gohman7b560c42008-06-18 16:23:07 +0000124bool SCEV::isZero() const {
125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126 return SC->getValue()->isZero();
127 return false;
128}
129
Dan Gohmanf8bc8e82009-05-18 15:22:39 +0000130bool SCEV::isOne() const {
131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132 return SC->getValue()->isOne();
133 return false;
134}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135
136SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
Dan Gohmanffd36ba2009-04-21 23:15:49 +0000137SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138
139bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
140 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141 return false;
142}
143
144const Type *SCEVCouldNotCompute::getType() const {
145 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146 return 0;
147}
148
149bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
150 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151 return false;
152}
153
154SCEVHandle SCEVCouldNotCompute::
155replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000156 const SCEVHandle &Conc,
157 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000158 return this;
159}
160
Dan Gohman13058cc2009-04-21 00:47:46 +0000161void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 OS << "***COULDNOTCOMPUTE***";
163}
164
165bool SCEVCouldNotCompute::classof(const SCEV *S) {
166 return S->getSCEVType() == scCouldNotCompute;
167}
168
169
170// SCEVConstants - Only allow the creation of one SCEVConstant for any
171// particular value. Don't use a SCEVHandle here, or else the object will
172// never be deleted!
173static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
174
175
176SCEVConstant::~SCEVConstant() {
177 SCEVConstants->erase(V);
178}
179
Dan Gohman89f85052007-10-22 18:31:58 +0000180SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000181 SCEVConstant *&R = (*SCEVConstants)[V];
182 if (R == 0) R = new SCEVConstant(V);
183 return R;
184}
185
Dan Gohman89f85052007-10-22 18:31:58 +0000186SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
187 return getConstant(ConstantInt::get(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188}
189
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000190const Type *SCEVConstant::getType() const { return V->getType(); }
191
Dan Gohman13058cc2009-04-21 00:47:46 +0000192void SCEVConstant::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000193 WriteAsOperand(OS, V, false);
194}
195
Dan Gohman2a381532009-04-21 01:25:57 +0000196SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
197 const SCEVHandle &op, const Type *ty)
198 : SCEV(SCEVTy), Op(op), Ty(ty) {}
199
200SCEVCastExpr::~SCEVCastExpr() {}
201
202bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
203 return Op->dominates(BB, DT);
204}
205
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
207// particular input. Don't use a SCEVHandle here, or else the object will
208// never be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000209static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000210 SCEVTruncateExpr*> > SCEVTruncates;
211
212SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000213 : SCEVCastExpr(scTruncate, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000214 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
215 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 "Cannot truncate non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217}
218
219SCEVTruncateExpr::~SCEVTruncateExpr() {
220 SCEVTruncates->erase(std::make_pair(Op, Ty));
221}
222
Dan Gohman13058cc2009-04-21 00:47:46 +0000223void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000224 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000225}
226
227// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
228// particular input. Don't use a SCEVHandle here, or else the object will never
229// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000230static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000231 SCEVZeroExtendExpr*> > SCEVZeroExtends;
232
233SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000234 : SCEVCastExpr(scZeroExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000235 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
236 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000237 "Cannot zero extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238}
239
240SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
241 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
242}
243
Dan Gohman13058cc2009-04-21 00:47:46 +0000244void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000245 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000246}
247
248// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
249// particular input. Don't use a SCEVHandle here, or else the object will never
250// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000251static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000252 SCEVSignExtendExpr*> > SCEVSignExtends;
253
254SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000255 : SCEVCastExpr(scSignExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000256 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
257 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000258 "Cannot sign extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000259}
260
261SCEVSignExtendExpr::~SCEVSignExtendExpr() {
262 SCEVSignExtends->erase(std::make_pair(Op, Ty));
263}
264
Dan Gohman13058cc2009-04-21 00:47:46 +0000265void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000266 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267}
268
269// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
270// particular input. Don't use a SCEVHandle here, or else the object will never
271// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000272static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 SCEVCommutativeExpr*> > SCEVCommExprs;
274
275SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000276 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
277 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278}
279
Dan Gohman13058cc2009-04-21 00:47:46 +0000280void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000281 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
282 const char *OpStr = getOperationStr();
283 OS << "(" << *Operands[0];
284 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
285 OS << OpStr << *Operands[i];
286 OS << ")";
287}
288
289SCEVHandle SCEVCommutativeExpr::
290replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000291 const SCEVHandle &Conc,
292 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000293 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000294 SCEVHandle H =
295 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000296 if (H != getOperand(i)) {
297 std::vector<SCEVHandle> NewOps;
298 NewOps.reserve(getNumOperands());
299 for (unsigned j = 0; j != i; ++j)
300 NewOps.push_back(getOperand(j));
301 NewOps.push_back(H);
302 for (++i; i != e; ++i)
303 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000304 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305
306 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000307 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000309 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000310 else if (isa<SCEVSMaxExpr>(this))
311 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000312 else if (isa<SCEVUMaxExpr>(this))
313 return SE.getUMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000314 else
315 assert(0 && "Unknown commutative expr!");
316 }
317 }
318 return this;
319}
320
Dan Gohman72a8a022009-05-07 14:00:19 +0000321bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng98c073b2009-02-17 00:13:06 +0000322 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
323 if (!getOperand(i)->dominates(BB, DT))
324 return false;
325 }
326 return true;
327}
328
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000329
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000330// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331// input. Don't use a SCEVHandle here, or else the object will never be
332// deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000333static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000334 SCEVUDivExpr*> > SCEVUDivs;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000336SCEVUDivExpr::~SCEVUDivExpr() {
337 SCEVUDivs->erase(std::make_pair(LHS, RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338}
339
Evan Cheng98c073b2009-02-17 00:13:06 +0000340bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
341 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
342}
343
Dan Gohman13058cc2009-04-21 00:47:46 +0000344void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000345 OS << "(" << *LHS << " /u " << *RHS << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000346}
347
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000348const Type *SCEVUDivExpr::getType() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349 return LHS->getType();
350}
351
352// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
353// particular input. Don't use a SCEVHandle here, or else the object will never
354// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000355static ManagedStatic<std::map<std::pair<const Loop *,
356 std::vector<const SCEV*> >,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000357 SCEVAddRecExpr*> > SCEVAddRecExprs;
358
359SCEVAddRecExpr::~SCEVAddRecExpr() {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000360 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
361 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362}
363
364SCEVHandle SCEVAddRecExpr::
365replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000366 const SCEVHandle &Conc,
367 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000369 SCEVHandle H =
370 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000371 if (H != getOperand(i)) {
372 std::vector<SCEVHandle> NewOps;
373 NewOps.reserve(getNumOperands());
374 for (unsigned j = 0; j != i; ++j)
375 NewOps.push_back(getOperand(j));
376 NewOps.push_back(H);
377 for (++i; i != e; ++i)
378 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000379 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000380
Dan Gohman89f85052007-10-22 18:31:58 +0000381 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000382 }
383 }
384 return this;
385}
386
387
388bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
389 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
390 // contain L and if the start is invariant.
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000391 // Add recurrences are never invariant in the function-body (null loop).
392 return QueryLoop &&
393 !QueryLoop->contains(L->getHeader()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000394 getOperand(0)->isLoopInvariant(QueryLoop);
395}
396
397
Dan Gohman13058cc2009-04-21 00:47:46 +0000398void SCEVAddRecExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 OS << "{" << *Operands[0];
400 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
401 OS << ",+," << *Operands[i];
402 OS << "}<" << L->getHeader()->getName() + ">";
403}
404
405// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
406// value. Don't use a SCEVHandle here, or else the object will never be
407// deleted!
408static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
409
410SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
411
412bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
413 // All non-instruction values are loop invariant. All instructions are loop
414 // invariant if they are not contained in the specified loop.
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000415 // Instructions are never considered invariant in the function body
416 // (null loop) because they are defined within the "loop".
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000418 return L && !L->contains(I->getParent());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000419 return true;
420}
421
Evan Cheng98c073b2009-02-17 00:13:06 +0000422bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
423 if (Instruction *I = dyn_cast<Instruction>(getValue()))
424 return DT->dominates(I->getParent(), BB);
425 return true;
426}
427
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000428const Type *SCEVUnknown::getType() const {
429 return V->getType();
430}
431
Dan Gohman13058cc2009-04-21 00:47:46 +0000432void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000433 WriteAsOperand(OS, V, false);
434}
435
436//===----------------------------------------------------------------------===//
437// SCEV Utilities
438//===----------------------------------------------------------------------===//
439
440namespace {
441 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
442 /// than the complexity of the RHS. This comparator is used to canonicalize
443 /// expressions.
Dan Gohman5d486452009-05-07 14:39:04 +0000444 class VISIBILITY_HIDDEN SCEVComplexityCompare {
445 LoopInfo *LI;
446 public:
447 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
448
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000449 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman5d486452009-05-07 14:39:04 +0000450 // Primarily, sort the SCEVs by their getSCEVType().
451 if (LHS->getSCEVType() != RHS->getSCEVType())
452 return LHS->getSCEVType() < RHS->getSCEVType();
453
454 // Aside from the getSCEVType() ordering, the particular ordering
455 // isn't very important except that it's beneficial to be consistent,
456 // so that (a + b) and (b + a) don't end up as different expressions.
457
458 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
459 // not as complete as it could be.
460 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
461 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
462
Dan Gohmand0c01232009-05-19 02:15:55 +0000463 // Order pointer values after integer values. This helps SCEVExpander
464 // form GEPs.
465 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
466 return false;
467 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
468 return true;
469
Dan Gohman5d486452009-05-07 14:39:04 +0000470 // Compare getValueID values.
471 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
472 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
473
474 // Sort arguments by their position.
475 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
476 const Argument *RA = cast<Argument>(RU->getValue());
477 return LA->getArgNo() < RA->getArgNo();
478 }
479
480 // For instructions, compare their loop depth, and their opcode.
481 // This is pretty loose.
482 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
483 Instruction *RV = cast<Instruction>(RU->getValue());
484
485 // Compare loop depths.
486 if (LI->getLoopDepth(LV->getParent()) !=
487 LI->getLoopDepth(RV->getParent()))
488 return LI->getLoopDepth(LV->getParent()) <
489 LI->getLoopDepth(RV->getParent());
490
491 // Compare opcodes.
492 if (LV->getOpcode() != RV->getOpcode())
493 return LV->getOpcode() < RV->getOpcode();
494
495 // Compare the number of operands.
496 if (LV->getNumOperands() != RV->getNumOperands())
497 return LV->getNumOperands() < RV->getNumOperands();
498 }
499
500 return false;
501 }
502
503 // Constant sorting doesn't matter since they'll be folded.
504 if (isa<SCEVConstant>(LHS))
505 return false;
506
507 // Lexicographically compare n-ary expressions.
508 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
509 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
510 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
511 if (i >= RC->getNumOperands())
512 return false;
513 if (operator()(LC->getOperand(i), RC->getOperand(i)))
514 return true;
515 if (operator()(RC->getOperand(i), LC->getOperand(i)))
516 return false;
517 }
518 return LC->getNumOperands() < RC->getNumOperands();
519 }
520
Dan Gohman6e10db12009-05-07 19:23:21 +0000521 // Lexicographically compare udiv expressions.
522 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
523 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
524 if (operator()(LC->getLHS(), RC->getLHS()))
525 return true;
526 if (operator()(RC->getLHS(), LC->getLHS()))
527 return false;
528 if (operator()(LC->getRHS(), RC->getRHS()))
529 return true;
530 if (operator()(RC->getRHS(), LC->getRHS()))
531 return false;
532 return false;
533 }
534
Dan Gohman5d486452009-05-07 14:39:04 +0000535 // Compare cast expressions by operand.
536 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
537 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
538 return operator()(LC->getOperand(), RC->getOperand());
539 }
540
541 assert(0 && "Unknown SCEV kind!");
542 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543 }
544 };
545}
546
547/// GroupByComplexity - Given a list of SCEV objects, order them by their
548/// complexity, and group objects of the same complexity together by value.
549/// When this routine is finished, we know that any duplicates in the vector are
550/// consecutive and that complexity is monotonically increasing.
551///
552/// Note that we go take special precautions to ensure that we get determinstic
553/// results from this routine. In other words, we don't want the results of
554/// this to depend on where the addresses of various SCEV objects happened to
555/// land in memory.
556///
Dan Gohman5d486452009-05-07 14:39:04 +0000557static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
558 LoopInfo *LI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000559 if (Ops.size() < 2) return; // Noop
560 if (Ops.size() == 2) {
561 // This is the common case, which also happens to be trivially simple.
562 // Special case it.
Dan Gohman5d486452009-05-07 14:39:04 +0000563 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000564 std::swap(Ops[0], Ops[1]);
565 return;
566 }
567
568 // Do the rough sort by complexity.
Dan Gohman5d486452009-05-07 14:39:04 +0000569 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000570
571 // Now that we are sorted by complexity, group elements of the same
572 // complexity. Note that this is, at worst, N^2, but the vector is likely to
573 // be extremely short in practice. Note that we take this approach because we
574 // do not want to depend on the addresses of the objects we are grouping.
575 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000576 const SCEV *S = Ops[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000577 unsigned Complexity = S->getSCEVType();
578
579 // If there are any objects of the same complexity and same value as this
580 // one, group them.
581 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
582 if (Ops[j] == S) { // Found a duplicate.
583 // Move it to immediately after i'th element.
584 std::swap(Ops[i+1], Ops[j]);
585 ++i; // no need to rescan it.
586 if (i == e-2) return; // Done!
587 }
588 }
589 }
590}
591
592
593
594//===----------------------------------------------------------------------===//
595// Simple SCEV method implementations
596//===----------------------------------------------------------------------===//
597
Eli Friedman7489ec92008-08-04 23:49:06 +0000598/// BinomialCoefficient - Compute BC(It, K). The result has width W.
599// Assume, K > 0.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000600static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
Eli Friedman7489ec92008-08-04 23:49:06 +0000601 ScalarEvolution &SE,
Dan Gohman01c2ee72009-04-16 03:18:22 +0000602 const Type* ResultTy) {
Eli Friedman7489ec92008-08-04 23:49:06 +0000603 // Handle the simplest case efficiently.
604 if (K == 1)
605 return SE.getTruncateOrZeroExtend(It, ResultTy);
606
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000607 // We are using the following formula for BC(It, K):
608 //
609 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
610 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000611 // Suppose, W is the bitwidth of the return value. We must be prepared for
612 // overflow. Hence, we must assure that the result of our computation is
613 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
614 // safe in modular arithmetic.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000615 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000616 // However, this code doesn't use exactly that formula; the formula it uses
617 // is something like the following, where T is the number of factors of 2 in
618 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
619 // exponentiation:
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000620 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000621 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000622 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000623 // This formula is trivially equivalent to the previous formula. However,
624 // this formula can be implemented much more efficiently. The trick is that
625 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
626 // arithmetic. To do exact division in modular arithmetic, all we have
627 // to do is multiply by the inverse. Therefore, this step can be done at
628 // width W.
629 //
630 // The next issue is how to safely do the division by 2^T. The way this
631 // is done is by doing the multiplication step at a width of at least W + T
632 // bits. This way, the bottom W+T bits of the product are accurate. Then,
633 // when we perform the division by 2^T (which is equivalent to a right shift
634 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
635 // truncated out after the division by 2^T.
636 //
637 // In comparison to just directly using the first formula, this technique
638 // is much more efficient; using the first formula requires W * K bits,
639 // but this formula less than W + K bits. Also, the first formula requires
640 // a division step, whereas this formula only requires multiplies and shifts.
641 //
642 // It doesn't matter whether the subtraction step is done in the calculation
643 // width or the input iteration count's width; if the subtraction overflows,
644 // the result must be zero anyway. We prefer here to do it in the width of
645 // the induction variable because it helps a lot for certain cases; CodeGen
646 // isn't smart enough to ignore the overflow, which leads to much less
647 // efficient code if the width of the subtraction is wider than the native
648 // register width.
649 //
650 // (It's possible to not widen at all by pulling out factors of 2 before
651 // the multiplication; for example, K=2 can be calculated as
652 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
653 // extra arithmetic, so it's not an obvious win, and it gets
654 // much more complicated for K > 3.)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000655
Eli Friedman7489ec92008-08-04 23:49:06 +0000656 // Protection from insane SCEVs; this bound is conservative,
657 // but it probably doesn't matter.
658 if (K > 1000)
Dan Gohman0ad08b02009-04-18 17:58:19 +0000659 return SE.getCouldNotCompute();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000660
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000661 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000662
Eli Friedman7489ec92008-08-04 23:49:06 +0000663 // Calculate K! / 2^T and T; we divide out the factors of two before
664 // multiplying for calculating K! / 2^T to avoid overflow.
665 // Other overflow doesn't matter because we only care about the bottom
666 // W bits of the result.
667 APInt OddFactorial(W, 1);
668 unsigned T = 1;
669 for (unsigned i = 3; i <= K; ++i) {
670 APInt Mult(W, i);
671 unsigned TwoFactors = Mult.countTrailingZeros();
672 T += TwoFactors;
673 Mult = Mult.lshr(TwoFactors);
674 OddFactorial *= Mult;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000675 }
Nick Lewyckydbaa60a2008-06-13 04:38:55 +0000676
Eli Friedman7489ec92008-08-04 23:49:06 +0000677 // We need at least W + T bits for the multiplication step
nicholas9e3e5fd2009-01-25 08:16:27 +0000678 unsigned CalculationBits = W + T;
Eli Friedman7489ec92008-08-04 23:49:06 +0000679
680 // Calcuate 2^T, at width T+W.
681 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
682
683 // Calculate the multiplicative inverse of K! / 2^T;
684 // this multiplication factor will perform the exact division by
685 // K! / 2^T.
686 APInt Mod = APInt::getSignedMinValue(W+1);
687 APInt MultiplyFactor = OddFactorial.zext(W+1);
688 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
689 MultiplyFactor = MultiplyFactor.trunc(W);
690
691 // Calculate the product, at width T+W
692 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
693 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
694 for (unsigned i = 1; i != K; ++i) {
695 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
696 Dividend = SE.getMulExpr(Dividend,
697 SE.getTruncateOrZeroExtend(S, CalculationTy));
698 }
699
700 // Divide by 2^T
701 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
702
703 // Truncate the result, and divide by K! / 2^T.
704
705 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
706 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707}
708
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000709/// evaluateAtIteration - Return the value of this chain of recurrences at
710/// the specified iteration number. We can evaluate this recurrence by
711/// multiplying each element in the chain by the binomial coefficient
712/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
713///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000714/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000716/// where BC(It, k) stands for binomial coefficient.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000717///
Dan Gohman89f85052007-10-22 18:31:58 +0000718SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
719 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000720 SCEVHandle Result = getStart();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000721 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000722 // The computation is correct in the face of overflow provided that the
723 // multiplication is performed _after_ the evaluation of the binomial
724 // coefficient.
Dan Gohman01c2ee72009-04-16 03:18:22 +0000725 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckyb6218e02008-10-13 03:58:02 +0000726 if (isa<SCEVCouldNotCompute>(Coeff))
727 return Coeff;
728
729 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000730 }
731 return Result;
732}
733
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734//===----------------------------------------------------------------------===//
735// SCEV Expression folder implementations
736//===----------------------------------------------------------------------===//
737
Dan Gohman9c8abcc2009-05-01 16:44:56 +0000738SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
739 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000740 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000741 "This is not a truncating conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000742 assert(isSCEVable(Ty) &&
743 "This is not a conversion to a SCEVable type!");
744 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000745
Dan Gohmanc76b5452009-05-04 22:02:23 +0000746 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000747 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000748 ConstantExpr::getTrunc(SC->getValue(), Ty));
749
Dan Gohman1a5c4992009-04-22 16:20:48 +0000750 // trunc(trunc(x)) --> trunc(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000751 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000752 return getTruncateExpr(ST->getOperand(), Ty);
753
Nick Lewycky37d04642009-04-23 05:15:08 +0000754 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000755 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000756 return getTruncateOrSignExtend(SS->getOperand(), Ty);
757
758 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000759 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000760 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
761
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000762 // If the input value is a chrec scev made out of constants, truncate
763 // all of the constants.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000764 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000765 std::vector<SCEVHandle> Operands;
766 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman45b3b542009-05-08 21:03:19 +0000767 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
768 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000769 }
770
771 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
772 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
773 return Result;
774}
775
Dan Gohman36d40922009-04-16 19:25:55 +0000776SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
777 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000778 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman36d40922009-04-16 19:25:55 +0000779 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000780 assert(isSCEVable(Ty) &&
781 "This is not a conversion to a SCEVable type!");
782 Ty = getEffectiveSCEVType(Ty);
Dan Gohman36d40922009-04-16 19:25:55 +0000783
Dan Gohmanc76b5452009-05-04 22:02:23 +0000784 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000785 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000786 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
787 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
788 return getUnknown(C);
789 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790
Dan Gohman1a5c4992009-04-22 16:20:48 +0000791 // zext(zext(x)) --> zext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000792 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000793 return getZeroExtendExpr(SZ->getOperand(), Ty);
794
Dan Gohmana9dba962009-04-27 20:16:15 +0000795 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000796 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000797 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000798 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000799 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000800 if (AR->isAffine()) {
801 // Check whether the backedge-taken count is SCEVCouldNotCompute.
802 // Note that this serves two purposes: It filters out loops that are
803 // simply not analyzable, and it covers the case where this code is
804 // being called from within backedge-taken count analysis, such that
805 // attempting to ask for the backedge-taken count would likely result
806 // in infinite recursion. In the later case, the analysis code will
807 // cope with a conservative value, and it will take care to purge
808 // that value once it has finished.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000809 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
810 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000811 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000812 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000813 SCEVHandle Start = AR->getStart();
814 SCEVHandle Step = AR->getStepRecurrence(*this);
815
816 // Check whether the backedge-taken count can be losslessly casted to
817 // the addrec's type. The count is always unsigned.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000818 SCEVHandle CastedMaxBECount =
819 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman3bb37f52009-05-18 15:58:39 +0000820 SCEVHandle RecastedMaxBECount =
821 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
822 if (MaxBECount == RecastedMaxBECount) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000823 const Type *WideTy =
824 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000825 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000826 SCEVHandle ZMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000827 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000828 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000829 SCEVHandle Add = getAddExpr(Start, ZMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000830 SCEVHandle OperandExtendedAdd =
831 getAddExpr(getZeroExtendExpr(Start, WideTy),
832 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
833 getZeroExtendExpr(Step, WideTy)));
834 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000835 // Return the expression with the addrec on the outside.
836 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
837 getZeroExtendExpr(Step, Ty),
838 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000839
840 // Similar to above, only this time treat the step value as signed.
841 // This covers loops that count down.
842 SCEVHandle SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000843 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000844 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000845 Add = getAddExpr(Start, SMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000846 OperandExtendedAdd =
847 getAddExpr(getZeroExtendExpr(Start, WideTy),
848 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
849 getSignExtendExpr(Step, WideTy)));
850 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000851 // Return the expression with the addrec on the outside.
852 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
853 getSignExtendExpr(Step, Ty),
854 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000855 }
856 }
857 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000858
859 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
860 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
861 return Result;
862}
863
Dan Gohmana9dba962009-04-27 20:16:15 +0000864SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
865 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000866 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000867 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000868 assert(isSCEVable(Ty) &&
869 "This is not a conversion to a SCEVable type!");
870 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000871
Dan Gohmanc76b5452009-05-04 22:02:23 +0000872 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000873 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000874 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
875 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
876 return getUnknown(C);
877 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000878
Dan Gohman1a5c4992009-04-22 16:20:48 +0000879 // sext(sext(x)) --> sext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000880 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000881 return getSignExtendExpr(SS->getOperand(), Ty);
882
Dan Gohmana9dba962009-04-27 20:16:15 +0000883 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000884 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000885 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000886 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000887 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000888 if (AR->isAffine()) {
889 // Check whether the backedge-taken count is SCEVCouldNotCompute.
890 // Note that this serves two purposes: It filters out loops that are
891 // simply not analyzable, and it covers the case where this code is
892 // being called from within backedge-taken count analysis, such that
893 // attempting to ask for the backedge-taken count would likely result
894 // in infinite recursion. In the later case, the analysis code will
895 // cope with a conservative value, and it will take care to purge
896 // that value once it has finished.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000897 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
898 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000899 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000900 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000901 SCEVHandle Start = AR->getStart();
902 SCEVHandle Step = AR->getStepRecurrence(*this);
903
904 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman3ded5b22009-04-29 22:28:28 +0000905 // the addrec's type. The count is always unsigned.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000906 SCEVHandle CastedMaxBECount =
907 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman3bb37f52009-05-18 15:58:39 +0000908 SCEVHandle RecastedMaxBECount =
909 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
910 if (MaxBECount == RecastedMaxBECount) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000911 const Type *WideTy =
912 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000913 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000914 SCEVHandle SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000915 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000916 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000917 SCEVHandle Add = getAddExpr(Start, SMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000918 SCEVHandle OperandExtendedAdd =
919 getAddExpr(getSignExtendExpr(Start, WideTy),
920 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
921 getSignExtendExpr(Step, WideTy)));
922 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000923 // Return the expression with the addrec on the outside.
924 return getAddRecExpr(getSignExtendExpr(Start, Ty),
925 getSignExtendExpr(Step, Ty),
926 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000927 }
928 }
929 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000930
931 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
932 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
933 return Result;
934}
935
936// get - Get a canonical add expression, or something simpler if possible.
Dan Gohman89f85052007-10-22 18:31:58 +0000937SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000938 assert(!Ops.empty() && "Cannot get empty add!");
939 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +0000940#ifndef NDEBUG
941 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
942 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
943 getEffectiveSCEVType(Ops[0]->getType()) &&
944 "SCEVAddExpr operand types don't match!");
945#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000946
947 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +0000948 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000949
950 // If there are any constants, fold them together.
951 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +0000952 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953 ++Idx;
954 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +0000955 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000956 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000957 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
958 RHSC->getValue()->getValue());
959 Ops[0] = getConstant(Fold);
960 Ops.erase(Ops.begin()+1); // Erase the folded element
961 if (Ops.size() == 1) return Ops[0];
962 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000963 }
964
965 // If we are left with a constant zero being added, strip it off.
966 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
967 Ops.erase(Ops.begin());
968 --Idx;
969 }
970 }
971
972 if (Ops.size() == 1) return Ops[0];
973
974 // Okay, check to see if the same value occurs in the operand list twice. If
975 // so, merge them together into an multiply expression. Since we sorted the
976 // list, these values are required to be adjacent.
977 const Type *Ty = Ops[0]->getType();
978 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
979 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
980 // Found a match, merge the two values into a multiply, and add any
981 // remaining values to the result.
Dan Gohman89f85052007-10-22 18:31:58 +0000982 SCEVHandle Two = getIntegerSCEV(2, Ty);
983 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000984 if (Ops.size() == 2)
985 return Mul;
986 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
987 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +0000988 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000989 }
990
Dan Gohman45b3b542009-05-08 21:03:19 +0000991 // Check for truncates. If all the operands are truncated from the same
992 // type, see if factoring out the truncate would permit the result to be
993 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
994 // if the contents of the resulting outer trunc fold to something simple.
995 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
996 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
997 const Type *DstType = Trunc->getType();
998 const Type *SrcType = Trunc->getOperand()->getType();
999 std::vector<SCEVHandle> LargeOps;
1000 bool Ok = true;
1001 // Check all the operands to see if they can be represented in the
1002 // source type of the truncate.
1003 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1004 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1005 if (T->getOperand()->getType() != SrcType) {
1006 Ok = false;
1007 break;
1008 }
1009 LargeOps.push_back(T->getOperand());
1010 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1011 // This could be either sign or zero extension, but sign extension
1012 // is much more likely to be foldable here.
1013 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1014 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1015 std::vector<SCEVHandle> LargeMulOps;
1016 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1017 if (const SCEVTruncateExpr *T =
1018 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1019 if (T->getOperand()->getType() != SrcType) {
1020 Ok = false;
1021 break;
1022 }
1023 LargeMulOps.push_back(T->getOperand());
1024 } else if (const SCEVConstant *C =
1025 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1026 // This could be either sign or zero extension, but sign extension
1027 // is much more likely to be foldable here.
1028 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1029 } else {
1030 Ok = false;
1031 break;
1032 }
1033 }
1034 if (Ok)
1035 LargeOps.push_back(getMulExpr(LargeMulOps));
1036 } else {
1037 Ok = false;
1038 break;
1039 }
1040 }
1041 if (Ok) {
1042 // Evaluate the expression in the larger type.
1043 SCEVHandle Fold = getAddExpr(LargeOps);
1044 // If it folds to something simple, use it. Otherwise, don't.
1045 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1046 return getTruncateExpr(Fold, DstType);
1047 }
1048 }
1049
1050 // Skip past any other cast SCEVs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001051 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1052 ++Idx;
1053
1054 // If there are add operands they would be next.
1055 if (Idx < Ops.size()) {
1056 bool DeletedAdd = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001057 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001058 // If we have an add, expand the add operands onto the end of the operands
1059 // list.
1060 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1061 Ops.erase(Ops.begin()+Idx);
1062 DeletedAdd = true;
1063 }
1064
1065 // If we deleted at least one add, we added operands to the end of the list,
1066 // and they are not necessarily sorted. Recurse to resort and resimplify
1067 // any operands we just aquired.
1068 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +00001069 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001070 }
1071
1072 // Skip over the add expression until we get to a multiply.
1073 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1074 ++Idx;
1075
1076 // If we are adding something to a multiply expression, make sure the
1077 // something is not already an operand of the multiply. If so, merge it into
1078 // the multiply.
1079 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001080 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001081 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001082 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001083 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1084 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
1085 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1086 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1087 if (Mul->getNumOperands() != 2) {
1088 // If the multiply has more than two operands, we must get the
1089 // Y*Z term.
1090 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1091 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001092 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001093 }
Dan Gohman89f85052007-10-22 18:31:58 +00001094 SCEVHandle One = getIntegerSCEV(1, Ty);
1095 SCEVHandle AddOne = getAddExpr(InnerMul, One);
1096 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001097 if (Ops.size() == 2) return OuterMul;
1098 if (AddOp < Idx) {
1099 Ops.erase(Ops.begin()+AddOp);
1100 Ops.erase(Ops.begin()+Idx-1);
1101 } else {
1102 Ops.erase(Ops.begin()+Idx);
1103 Ops.erase(Ops.begin()+AddOp-1);
1104 }
1105 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001106 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001107 }
1108
1109 // Check this multiply against other multiplies being added together.
1110 for (unsigned OtherMulIdx = Idx+1;
1111 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1112 ++OtherMulIdx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001113 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001114 // If MulOp occurs in OtherMul, we can fold the two multiplies
1115 // together.
1116 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1117 OMulOp != e; ++OMulOp)
1118 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1119 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1120 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1121 if (Mul->getNumOperands() != 2) {
1122 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1123 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001124 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001125 }
1126 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1127 if (OtherMul->getNumOperands() != 2) {
1128 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1129 OtherMul->op_end());
1130 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001131 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001132 }
Dan Gohman89f85052007-10-22 18:31:58 +00001133 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1134 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001135 if (Ops.size() == 2) return OuterMul;
1136 Ops.erase(Ops.begin()+Idx);
1137 Ops.erase(Ops.begin()+OtherMulIdx-1);
1138 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001139 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001140 }
1141 }
1142 }
1143 }
1144
1145 // If there are any add recurrences in the operands list, see if any other
1146 // added values are loop invariant. If so, we can fold them into the
1147 // recurrence.
1148 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1149 ++Idx;
1150
1151 // Scan over all recurrences, trying to fold loop invariants into them.
1152 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1153 // Scan all of the other operands to this add and add them to the vector if
1154 // they are loop invariant w.r.t. the recurrence.
1155 std::vector<SCEVHandle> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001156 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001157 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1158 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1159 LIOps.push_back(Ops[i]);
1160 Ops.erase(Ops.begin()+i);
1161 --i; --e;
1162 }
1163
1164 // If we found some loop invariants, fold them into the recurrence.
1165 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001166 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001167 LIOps.push_back(AddRec->getStart());
1168
1169 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001170 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001171
Dan Gohman89f85052007-10-22 18:31:58 +00001172 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001173 // If all of the other operands were loop invariant, we are done.
1174 if (Ops.size() == 1) return NewRec;
1175
1176 // Otherwise, add the folded AddRec by the non-liv parts.
1177 for (unsigned i = 0;; ++i)
1178 if (Ops[i] == AddRec) {
1179 Ops[i] = NewRec;
1180 break;
1181 }
Dan Gohman89f85052007-10-22 18:31:58 +00001182 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001183 }
1184
1185 // Okay, if there weren't any loop invariants to be folded, check to see if
1186 // there are multiple AddRec's with the same loop induction variable being
1187 // added together. If so, we can fold them.
1188 for (unsigned OtherIdx = Idx+1;
1189 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1190 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001191 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001192 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1193 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1194 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1195 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1196 if (i >= NewOps.size()) {
1197 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1198 OtherAddRec->op_end());
1199 break;
1200 }
Dan Gohman89f85052007-10-22 18:31:58 +00001201 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001202 }
Dan Gohman89f85052007-10-22 18:31:58 +00001203 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001204
1205 if (Ops.size() == 2) return NewAddRec;
1206
1207 Ops.erase(Ops.begin()+Idx);
1208 Ops.erase(Ops.begin()+OtherIdx-1);
1209 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001210 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001211 }
1212 }
1213
1214 // Otherwise couldn't fold anything into this recurrence. Move onto the
1215 // next one.
1216 }
1217
1218 // Okay, it looks like we really DO need an add expr. Check to see if we
1219 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001220 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001221 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1222 SCEVOps)];
1223 if (Result == 0) Result = new SCEVAddExpr(Ops);
1224 return Result;
1225}
1226
1227
Dan Gohman89f85052007-10-22 18:31:58 +00001228SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001229 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana77b3d42009-05-18 15:44:58 +00001230#ifndef NDEBUG
1231 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1232 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1233 getEffectiveSCEVType(Ops[0]->getType()) &&
1234 "SCEVMulExpr operand types don't match!");
1235#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001236
1237 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001238 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001239
1240 // If there are any constants, fold them together.
1241 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001242 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001243
1244 // C1*(C2+V) -> C1*C2 + C1*V
1245 if (Ops.size() == 2)
Dan Gohmanc76b5452009-05-04 22:02:23 +00001246 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001247 if (Add->getNumOperands() == 2 &&
1248 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +00001249 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1250 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001251
1252
1253 ++Idx;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001254 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001255 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001256 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1257 RHSC->getValue()->getValue());
1258 Ops[0] = getConstant(Fold);
1259 Ops.erase(Ops.begin()+1); // Erase the folded element
1260 if (Ops.size() == 1) return Ops[0];
1261 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001262 }
1263
1264 // If we are left with a constant one being multiplied, strip it off.
1265 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1266 Ops.erase(Ops.begin());
1267 --Idx;
1268 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1269 // If we have a multiply of zero, it will always be zero.
1270 return Ops[0];
1271 }
1272 }
1273
1274 // Skip over the add expression until we get to a multiply.
1275 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1276 ++Idx;
1277
1278 if (Ops.size() == 1)
1279 return Ops[0];
1280
1281 // If there are mul operands inline them all into this expression.
1282 if (Idx < Ops.size()) {
1283 bool DeletedMul = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001284 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001285 // If we have an mul, expand the mul operands onto the end of the operands
1286 // list.
1287 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1288 Ops.erase(Ops.begin()+Idx);
1289 DeletedMul = true;
1290 }
1291
1292 // If we deleted at least one mul, we added operands to the end of the list,
1293 // and they are not necessarily sorted. Recurse to resort and resimplify
1294 // any operands we just aquired.
1295 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +00001296 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001297 }
1298
1299 // If there are any add recurrences in the operands list, see if any other
1300 // added values are loop invariant. If so, we can fold them into the
1301 // recurrence.
1302 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1303 ++Idx;
1304
1305 // Scan over all recurrences, trying to fold loop invariants into them.
1306 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1307 // Scan all of the other operands to this mul and add them to the vector if
1308 // they are loop invariant w.r.t. the recurrence.
1309 std::vector<SCEVHandle> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001310 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001311 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1312 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1313 LIOps.push_back(Ops[i]);
1314 Ops.erase(Ops.begin()+i);
1315 --i; --e;
1316 }
1317
1318 // If we found some loop invariants, fold them into the recurrence.
1319 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001320 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001321 std::vector<SCEVHandle> NewOps;
1322 NewOps.reserve(AddRec->getNumOperands());
1323 if (LIOps.size() == 1) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001324 const SCEV *Scale = LIOps[0];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001325 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +00001326 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001327 } else {
1328 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1329 std::vector<SCEVHandle> MulOps(LIOps);
1330 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001331 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001332 }
1333 }
1334
Dan Gohman89f85052007-10-22 18:31:58 +00001335 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001336
1337 // If all of the other operands were loop invariant, we are done.
1338 if (Ops.size() == 1) return NewRec;
1339
1340 // Otherwise, multiply the folded AddRec by the non-liv parts.
1341 for (unsigned i = 0;; ++i)
1342 if (Ops[i] == AddRec) {
1343 Ops[i] = NewRec;
1344 break;
1345 }
Dan Gohman89f85052007-10-22 18:31:58 +00001346 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001347 }
1348
1349 // Okay, if there weren't any loop invariants to be folded, check to see if
1350 // there are multiple AddRec's with the same loop induction variable being
1351 // multiplied together. If so, we can fold them.
1352 for (unsigned OtherIdx = Idx+1;
1353 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1354 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001355 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001356 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1357 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohmanbff6b582009-05-04 22:30:44 +00001358 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman89f85052007-10-22 18:31:58 +00001359 SCEVHandle NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001360 G->getStart());
Dan Gohman89f85052007-10-22 18:31:58 +00001361 SCEVHandle B = F->getStepRecurrence(*this);
1362 SCEVHandle D = G->getStepRecurrence(*this);
1363 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1364 getMulExpr(G, B),
1365 getMulExpr(B, D));
1366 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1367 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001368 if (Ops.size() == 2) return NewAddRec;
1369
1370 Ops.erase(Ops.begin()+Idx);
1371 Ops.erase(Ops.begin()+OtherIdx-1);
1372 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001373 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001374 }
1375 }
1376
1377 // Otherwise couldn't fold anything into this recurrence. Move onto the
1378 // next one.
1379 }
1380
1381 // Okay, it looks like we really DO need an mul expr. Check to see if we
1382 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001383 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001384 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1385 SCEVOps)];
1386 if (Result == 0)
1387 Result = new SCEVMulExpr(Ops);
1388 return Result;
1389}
1390
Dan Gohman77841cd2009-05-04 22:23:18 +00001391SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1392 const SCEVHandle &RHS) {
Dan Gohmana77b3d42009-05-18 15:44:58 +00001393 assert(getEffectiveSCEVType(LHS->getType()) ==
1394 getEffectiveSCEVType(RHS->getType()) &&
1395 "SCEVUDivExpr operand types don't match!");
1396
Dan Gohmanc76b5452009-05-04 22:02:23 +00001397 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001398 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky35b56022009-01-13 09:18:58 +00001399 return LHS; // X udiv 1 --> x
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001400 if (RHSC->isZero())
1401 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001402
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001403 // Determine if the division can be folded into the operands of
1404 // its operands.
1405 // TODO: Generalize this to non-constants by using known-bits information.
1406 const Type *Ty = LHS->getType();
1407 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1408 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1409 // For non-power-of-two values, effectively round the value up to the
1410 // nearest power of two.
1411 if (!RHSC->getValue()->getValue().isPowerOf2())
1412 ++MaxShiftAmt;
1413 const IntegerType *ExtTy =
1414 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1415 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1416 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1417 if (const SCEVConstant *Step =
1418 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1419 if (!Step->getValue()->getValue()
1420 .urem(RHSC->getValue()->getValue()) &&
Dan Gohman14374d32009-05-08 23:11:16 +00001421 getZeroExtendExpr(AR, ExtTy) ==
1422 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1423 getZeroExtendExpr(Step, ExtTy),
1424 AR->getLoop())) {
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001425 std::vector<SCEVHandle> Operands;
1426 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1427 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1428 return getAddRecExpr(Operands, AR->getLoop());
1429 }
1430 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001431 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1432 std::vector<SCEVHandle> Operands;
1433 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1434 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1435 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001436 // Find an operand that's safely divisible.
1437 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1438 SCEVHandle Op = M->getOperand(i);
1439 SCEVHandle Div = getUDivExpr(Op, RHSC);
1440 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohman14374d32009-05-08 23:11:16 +00001441 Operands = M->getOperands();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001442 Operands[i] = Div;
1443 return getMulExpr(Operands);
1444 }
1445 }
Dan Gohman14374d32009-05-08 23:11:16 +00001446 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001447 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001448 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1449 std::vector<SCEVHandle> Operands;
1450 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1451 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1452 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1453 Operands.clear();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001454 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1455 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1456 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1457 break;
1458 Operands.push_back(Op);
1459 }
1460 if (Operands.size() == A->getNumOperands())
1461 return getAddExpr(Operands);
1462 }
Dan Gohman14374d32009-05-08 23:11:16 +00001463 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001464
1465 // Fold if both operands are constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001466 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001467 Constant *LHSCV = LHSC->getValue();
1468 Constant *RHSCV = RHSC->getValue();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001469 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001470 }
1471 }
1472
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001473 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1474 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001475 return Result;
1476}
1477
1478
1479/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1480/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001481SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001482 const SCEVHandle &Step, const Loop *L) {
1483 std::vector<SCEVHandle> Operands;
1484 Operands.push_back(Start);
Dan Gohmanc76b5452009-05-04 22:02:23 +00001485 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001486 if (StepChrec->getLoop() == L) {
1487 Operands.insert(Operands.end(), StepChrec->op_begin(),
1488 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001489 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001490 }
1491
1492 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001493 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494}
1495
1496/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1497/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001498SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
Nick Lewycky37d04642009-04-23 05:15:08 +00001499 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001500 if (Operands.size() == 1) return Operands[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001501#ifndef NDEBUG
1502 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1503 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1504 getEffectiveSCEVType(Operands[0]->getType()) &&
1505 "SCEVAddRecExpr operand types don't match!");
1506#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001507
Dan Gohman7b560c42008-06-18 16:23:07 +00001508 if (Operands.back()->isZero()) {
1509 Operands.pop_back();
Dan Gohmanabe991f2008-09-14 17:21:12 +00001510 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohman7b560c42008-06-18 16:23:07 +00001511 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001512
Dan Gohman42936882008-08-08 18:33:12 +00001513 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001514 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman42936882008-08-08 18:33:12 +00001515 const Loop* NestedLoop = NestedAR->getLoop();
1516 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1517 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1518 NestedAR->op_end());
1519 SCEVHandle NestedARHandle(NestedAR);
1520 Operands[0] = NestedAR->getStart();
1521 NestedOperands[0] = getAddRecExpr(Operands, L);
1522 return getAddRecExpr(NestedOperands, NestedLoop);
1523 }
1524 }
1525
Dan Gohmanbff6b582009-05-04 22:30:44 +00001526 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1527 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001528 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1529 return Result;
1530}
1531
Nick Lewycky711640a2007-11-25 22:41:31 +00001532SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1533 const SCEVHandle &RHS) {
1534 std::vector<SCEVHandle> Ops;
1535 Ops.push_back(LHS);
1536 Ops.push_back(RHS);
1537 return getSMaxExpr(Ops);
1538}
1539
1540SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1541 assert(!Ops.empty() && "Cannot get empty smax!");
1542 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001543#ifndef NDEBUG
1544 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1545 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1546 getEffectiveSCEVType(Ops[0]->getType()) &&
1547 "SCEVSMaxExpr operand types don't match!");
1548#endif
Nick Lewycky711640a2007-11-25 22:41:31 +00001549
1550 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001551 GroupByComplexity(Ops, LI);
Nick Lewycky711640a2007-11-25 22:41:31 +00001552
1553 // If there are any constants, fold them together.
1554 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001555 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001556 ++Idx;
1557 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001558 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001559 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001560 ConstantInt *Fold = ConstantInt::get(
Nick Lewycky711640a2007-11-25 22:41:31 +00001561 APIntOps::smax(LHSC->getValue()->getValue(),
1562 RHSC->getValue()->getValue()));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001563 Ops[0] = getConstant(Fold);
1564 Ops.erase(Ops.begin()+1); // Erase the folded element
1565 if (Ops.size() == 1) return Ops[0];
1566 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewycky711640a2007-11-25 22:41:31 +00001567 }
1568
1569 // If we are left with a constant -inf, strip it off.
1570 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1571 Ops.erase(Ops.begin());
1572 --Idx;
1573 }
1574 }
1575
1576 if (Ops.size() == 1) return Ops[0];
1577
1578 // Find the first SMax
1579 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1580 ++Idx;
1581
1582 // Check to see if one of the operands is an SMax. If so, expand its operands
1583 // onto our operand list, and recurse to simplify.
1584 if (Idx < Ops.size()) {
1585 bool DeletedSMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001586 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001587 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1588 Ops.erase(Ops.begin()+Idx);
1589 DeletedSMax = true;
1590 }
1591
1592 if (DeletedSMax)
1593 return getSMaxExpr(Ops);
1594 }
1595
1596 // Okay, check to see if the same value occurs in the operand list twice. If
1597 // so, delete one. Since we sorted the list, these values are required to
1598 // be adjacent.
1599 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1600 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1601 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1602 --i; --e;
1603 }
1604
1605 if (Ops.size() == 1) return Ops[0];
1606
1607 assert(!Ops.empty() && "Reduced smax down to nothing!");
1608
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001609 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewycky711640a2007-11-25 22:41:31 +00001610 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001611 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewycky711640a2007-11-25 22:41:31 +00001612 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1613 SCEVOps)];
1614 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1615 return Result;
1616}
1617
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001618SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1619 const SCEVHandle &RHS) {
1620 std::vector<SCEVHandle> Ops;
1621 Ops.push_back(LHS);
1622 Ops.push_back(RHS);
1623 return getUMaxExpr(Ops);
1624}
1625
1626SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1627 assert(!Ops.empty() && "Cannot get empty umax!");
1628 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001629#ifndef NDEBUG
1630 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1631 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1632 getEffectiveSCEVType(Ops[0]->getType()) &&
1633 "SCEVUMaxExpr operand types don't match!");
1634#endif
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001635
1636 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001637 GroupByComplexity(Ops, LI);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001638
1639 // If there are any constants, fold them together.
1640 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001641 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001642 ++Idx;
1643 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001644 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001645 // We found two constants, fold them together!
1646 ConstantInt *Fold = ConstantInt::get(
1647 APIntOps::umax(LHSC->getValue()->getValue(),
1648 RHSC->getValue()->getValue()));
1649 Ops[0] = getConstant(Fold);
1650 Ops.erase(Ops.begin()+1); // Erase the folded element
1651 if (Ops.size() == 1) return Ops[0];
1652 LHSC = cast<SCEVConstant>(Ops[0]);
1653 }
1654
1655 // If we are left with a constant zero, strip it off.
1656 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1657 Ops.erase(Ops.begin());
1658 --Idx;
1659 }
1660 }
1661
1662 if (Ops.size() == 1) return Ops[0];
1663
1664 // Find the first UMax
1665 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1666 ++Idx;
1667
1668 // Check to see if one of the operands is a UMax. If so, expand its operands
1669 // onto our operand list, and recurse to simplify.
1670 if (Idx < Ops.size()) {
1671 bool DeletedUMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001672 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001673 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1674 Ops.erase(Ops.begin()+Idx);
1675 DeletedUMax = true;
1676 }
1677
1678 if (DeletedUMax)
1679 return getUMaxExpr(Ops);
1680 }
1681
1682 // Okay, check to see if the same value occurs in the operand list twice. If
1683 // so, delete one. Since we sorted the list, these values are required to
1684 // be adjacent.
1685 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1686 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1687 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1688 --i; --e;
1689 }
1690
1691 if (Ops.size() == 1) return Ops[0];
1692
1693 assert(!Ops.empty() && "Reduced umax down to nothing!");
1694
1695 // Okay, it looks like we really DO need a umax expr. Check to see if we
1696 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001697 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001698 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1699 SCEVOps)];
1700 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1701 return Result;
1702}
1703
Dan Gohman89f85052007-10-22 18:31:58 +00001704SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001705 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman89f85052007-10-22 18:31:58 +00001706 return getConstant(CI);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001707 if (isa<ConstantPointerNull>(V))
1708 return getIntegerSCEV(0, V->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001709 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1710 if (Result == 0) Result = new SCEVUnknown(V);
1711 return Result;
1712}
1713
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001714//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001715// Basic SCEV Analysis and PHI Idiom Recognition Code
1716//
1717
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001718/// isSCEVable - Test if values of the given type are analyzable within
1719/// the SCEV framework. This primarily includes integer types, and it
1720/// can optionally include pointer types if the ScalarEvolution class
1721/// has access to target-specific information.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001722bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001723 // Integers are always SCEVable.
1724 if (Ty->isInteger())
1725 return true;
1726
1727 // Pointers are SCEVable if TargetData information is available
1728 // to provide pointer size information.
1729 if (isa<PointerType>(Ty))
1730 return TD != NULL;
1731
1732 // Otherwise it's not SCEVable.
1733 return false;
1734}
1735
1736/// getTypeSizeInBits - Return the size in bits of the specified type,
1737/// for which isSCEVable must return true.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001738uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001739 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1740
1741 // If we have a TargetData, use it!
1742 if (TD)
1743 return TD->getTypeSizeInBits(Ty);
1744
1745 // Otherwise, we support only integer types.
1746 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1747 return Ty->getPrimitiveSizeInBits();
1748}
1749
1750/// getEffectiveSCEVType - Return a type with the same bitwidth as
1751/// the given type and which represents how SCEV will treat the given
1752/// type, for which isSCEVable must return true. For pointer types,
1753/// this is the pointer-sized integer type.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001754const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001755 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1756
1757 if (Ty->isInteger())
1758 return Ty;
1759
1760 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1761 return TD->getIntPtrType();
Dan Gohman01c2ee72009-04-16 03:18:22 +00001762}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001763
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001764SCEVHandle ScalarEvolution::getCouldNotCompute() {
Dan Gohman0ad08b02009-04-18 17:58:19 +00001765 return UnknownValue;
1766}
1767
Dan Gohmand83d4af2009-05-04 22:20:30 +00001768/// hasSCEV - Return true if the SCEV for this value has already been
Edwin Török0e828d62009-05-01 08:33:47 +00001769/// computed.
1770bool ScalarEvolution::hasSCEV(Value *V) const {
1771 return Scalars.count(V);
1772}
1773
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001774/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1775/// expression and create a new one.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001776SCEVHandle ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001777 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001778
Dan Gohmanbff6b582009-05-04 22:30:44 +00001779 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001780 if (I != Scalars.end()) return I->second;
1781 SCEVHandle S = createSCEV(V);
Dan Gohmanbff6b582009-05-04 22:30:44 +00001782 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001783 return S;
1784}
1785
Dan Gohman01c2ee72009-04-16 03:18:22 +00001786/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1787/// specified signed integer value and return a SCEV for the constant.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001788SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1789 Ty = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001790 Constant *C;
1791 if (Val == 0)
1792 C = Constant::getNullValue(Ty);
1793 else if (Ty->isFloatingPoint())
1794 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1795 APFloat::IEEEdouble, Val));
1796 else
1797 C = ConstantInt::get(Ty, Val);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001798 return getUnknown(C);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001799}
1800
1801/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1802///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001803SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001804 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001805 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001806
1807 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001808 Ty = getEffectiveSCEVType(Ty);
1809 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001810}
1811
1812/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001813SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001814 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001815 return getUnknown(ConstantExpr::getNot(VC->getValue()));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001816
1817 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001818 Ty = getEffectiveSCEVType(Ty);
1819 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001820 return getMinusSCEV(AllOnes, V);
1821}
1822
1823/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1824///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001825SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
Nick Lewycky37d04642009-04-23 05:15:08 +00001826 const SCEVHandle &RHS) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001827 // X - Y --> X + -Y
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001828 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001829}
1830
1831/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1832/// input value to the specified type. If the type must be extended, it is zero
1833/// extended.
1834SCEVHandle
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001835ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001836 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001837 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001838 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1839 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001840 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001841 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001842 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001843 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001844 return getTruncateExpr(V, Ty);
1845 return getZeroExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001846}
1847
1848/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1849/// input value to the specified type. If the type must be extended, it is sign
1850/// extended.
1851SCEVHandle
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001852ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001853 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001854 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001855 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1856 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001857 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001858 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001859 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001860 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001861 return getTruncateExpr(V, Ty);
1862 return getSignExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001863}
1864
Dan Gohmanac959332009-05-13 03:46:30 +00001865/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
1866/// input value to the specified type. If the type must be extended, it is zero
1867/// extended. The conversion must not be narrowing.
1868SCEVHandle
1869ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
1870 const Type *SrcTy = V->getType();
1871 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1872 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1873 "Cannot noop or zero extend with non-integer arguments!");
1874 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1875 "getNoopOrZeroExtend cannot truncate!");
1876 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1877 return V; // No conversion
1878 return getZeroExtendExpr(V, Ty);
1879}
1880
1881/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
1882/// input value to the specified type. If the type must be extended, it is sign
1883/// extended. The conversion must not be narrowing.
1884SCEVHandle
1885ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) {
1886 const Type *SrcTy = V->getType();
1887 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1888 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1889 "Cannot noop or sign extend with non-integer arguments!");
1890 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1891 "getNoopOrSignExtend cannot truncate!");
1892 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1893 return V; // No conversion
1894 return getSignExtendExpr(V, Ty);
1895}
1896
1897/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
1898/// input value to the specified type. The conversion must not be widening.
1899SCEVHandle
1900ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) {
1901 const Type *SrcTy = V->getType();
1902 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1903 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1904 "Cannot truncate or noop with non-integer arguments!");
1905 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
1906 "getTruncateOrNoop cannot extend!");
1907 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1908 return V; // No conversion
1909 return getTruncateExpr(V, Ty);
1910}
1911
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001912/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1913/// the specified instruction and replaces any references to the symbolic value
1914/// SymName with the specified value. This is used during PHI resolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001915void ScalarEvolution::
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001916ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1917 const SCEVHandle &NewVal) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001918 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1919 Scalars.find(SCEVCallbackVH(I, this));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001920 if (SI == Scalars.end()) return;
1921
1922 SCEVHandle NV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001923 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001924 if (NV == SI->second) return; // No change.
1925
1926 SI->second = NV; // Update the scalars map!
1927
1928 // Any instruction values that use this instruction might also need to be
1929 // updated!
1930 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1931 UI != E; ++UI)
1932 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1933}
1934
1935/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1936/// a loop header, making it a potential recurrence, or it doesn't.
1937///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001938SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001939 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001940 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001941 if (L->getHeader() == PN->getParent()) {
1942 // If it lives in the loop header, it has two incoming values, one
1943 // from outside the loop, and one from inside.
1944 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1945 unsigned BackEdge = IncomingEdge^1;
1946
1947 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001948 SCEVHandle SymbolicName = getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001949 assert(Scalars.find(PN) == Scalars.end() &&
1950 "PHI node already processed?");
Dan Gohmanbff6b582009-05-04 22:30:44 +00001951 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001952
1953 // Using this symbolic name for the PHI, analyze the value coming around
1954 // the back-edge.
1955 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1956
1957 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1958 // has a special value for the first iteration of the loop.
1959
1960 // If the value coming around the backedge is an add with the symbolic
1961 // value we just inserted, then we found a simple induction variable!
Dan Gohmanc76b5452009-05-04 22:02:23 +00001962 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001963 // If there is a single occurrence of the symbolic value, replace it
1964 // with a recurrence.
1965 unsigned FoundIndex = Add->getNumOperands();
1966 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1967 if (Add->getOperand(i) == SymbolicName)
1968 if (FoundIndex == e) {
1969 FoundIndex = i;
1970 break;
1971 }
1972
1973 if (FoundIndex != Add->getNumOperands()) {
1974 // Create an add with everything but the specified operand.
1975 std::vector<SCEVHandle> Ops;
1976 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1977 if (i != FoundIndex)
1978 Ops.push_back(Add->getOperand(i));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001979 SCEVHandle Accum = getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001980
1981 // This is not a valid addrec if the step amount is varying each
1982 // loop iteration, but is not itself an addrec in this loop.
1983 if (Accum->isLoopInvariant(L) ||
1984 (isa<SCEVAddRecExpr>(Accum) &&
1985 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1986 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001987 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001988
1989 // Okay, for the entire analysis of this edge we assumed the PHI
1990 // to be symbolic. We now need to go back and update all of the
1991 // entries for the scalars that use the PHI (except for the PHI
1992 // itself) to use the new analyzed value instead of the "symbolic"
1993 // value.
1994 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1995 return PHISCEV;
1996 }
1997 }
Dan Gohmanc76b5452009-05-04 22:02:23 +00001998 } else if (const SCEVAddRecExpr *AddRec =
1999 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002000 // Otherwise, this could be a loop like this:
2001 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2002 // In this case, j = {1,+,1} and BEValue is j.
2003 // Because the other in-value of i (0) fits the evolution of BEValue
2004 // i really is an addrec evolution.
2005 if (AddRec->getLoop() == L && AddRec->isAffine()) {
2006 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2007
2008 // If StartVal = j.start - j.stride, we can use StartVal as the
2009 // initial step of the addrec evolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002010 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman89f85052007-10-22 18:31:58 +00002011 AddRec->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002012 SCEVHandle PHISCEV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002013 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002014
2015 // Okay, for the entire analysis of this edge we assumed the PHI
2016 // to be symbolic. We now need to go back and update all of the
2017 // entries for the scalars that use the PHI (except for the PHI
2018 // itself) to use the new analyzed value instead of the "symbolic"
2019 // value.
2020 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2021 return PHISCEV;
2022 }
2023 }
2024 }
2025
2026 return SymbolicName;
2027 }
2028
2029 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002030 return getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002031}
2032
Dan Gohman509cf4d2009-05-08 20:26:55 +00002033/// createNodeForGEP - Expand GEP instructions into add and multiply
2034/// operations. This allows them to be analyzed by regular SCEV code.
2035///
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002036SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
Dan Gohman509cf4d2009-05-08 20:26:55 +00002037
2038 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002039 Value *Base = GEP->getOperand(0);
Dan Gohmand586a4f2009-05-09 00:14:52 +00002040 // Don't attempt to analyze GEPs over unsized objects.
2041 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2042 return getUnknown(GEP);
Dan Gohman509cf4d2009-05-08 20:26:55 +00002043 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002044 gep_type_iterator GTI = gep_type_begin(GEP);
2045 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2046 E = GEP->op_end();
Dan Gohman509cf4d2009-05-08 20:26:55 +00002047 I != E; ++I) {
2048 Value *Index = *I;
2049 // Compute the (potentially symbolic) offset in bytes for this index.
2050 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2051 // For a struct, add the member offset.
2052 const StructLayout &SL = *TD->getStructLayout(STy);
2053 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2054 uint64_t Offset = SL.getElementOffset(FieldNo);
2055 TotalOffset = getAddExpr(TotalOffset,
2056 getIntegerSCEV(Offset, IntPtrTy));
2057 } else {
2058 // For an array, add the element offset, explicitly scaled.
2059 SCEVHandle LocalOffset = getSCEV(Index);
2060 if (!isa<PointerType>(LocalOffset->getType()))
2061 // Getelementptr indicies are signed.
2062 LocalOffset = getTruncateOrSignExtend(LocalOffset,
2063 IntPtrTy);
2064 LocalOffset =
2065 getMulExpr(LocalOffset,
Duncan Sandsec4f97d2009-05-09 07:06:46 +00002066 getIntegerSCEV(TD->getTypeAllocSize(*GTI),
Dan Gohman509cf4d2009-05-08 20:26:55 +00002067 IntPtrTy));
2068 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2069 }
2070 }
2071 return getAddExpr(getSCEV(Base), TotalOffset);
2072}
2073
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002074/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2075/// guaranteed to end in (at every loop iteration). It is, at the same time,
2076/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2077/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002078static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002079 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00002080 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002081
Dan Gohmanc76b5452009-05-04 22:02:23 +00002082 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002083 return std::min(GetMinTrailingZeros(T->getOperand(), SE),
2084 (uint32_t)SE.getTypeSizeInBits(T->getType()));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002085
Dan Gohmanc76b5452009-05-04 22:02:23 +00002086 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002087 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2088 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
Dan Gohmanbfd51da2009-05-12 01:23:18 +00002089 SE.getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002090 }
2091
Dan Gohmanc76b5452009-05-04 22:02:23 +00002092 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002093 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2094 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
Dan Gohmanbfd51da2009-05-12 01:23:18 +00002095 SE.getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002096 }
2097
Dan Gohmanc76b5452009-05-04 22:02:23 +00002098 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002099 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002100 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002101 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002102 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002103 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002104 }
2105
Dan Gohmanc76b5452009-05-04 22:02:23 +00002106 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002107 // The result is the sum of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002108 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2109 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002110 for (unsigned i = 1, e = M->getNumOperands();
2111 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002112 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002113 BitWidth);
2114 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002115 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002116
Dan Gohmanc76b5452009-05-04 22:02:23 +00002117 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002118 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002119 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002120 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002121 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002122 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002123 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002124
Dan Gohmanc76b5452009-05-04 22:02:23 +00002125 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewycky711640a2007-11-25 22:41:31 +00002126 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002127 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewycky711640a2007-11-25 22:41:31 +00002128 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002129 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewycky711640a2007-11-25 22:41:31 +00002130 return MinOpRes;
2131 }
2132
Dan Gohmanc76b5452009-05-04 22:02:23 +00002133 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002134 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002135 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002136 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002137 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002138 return MinOpRes;
2139 }
2140
Nick Lewycky35b56022009-01-13 09:18:58 +00002141 // SCEVUDivExpr, SCEVUnknown
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002142 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002143}
2144
2145/// createSCEV - We know that there is no SCEV for the specified value.
2146/// Analyze the expression.
2147///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002148SCEVHandle ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002149 if (!isSCEVable(V->getType()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002150 return getUnknown(V);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002151
Dan Gohman3996f472008-06-22 19:56:46 +00002152 unsigned Opcode = Instruction::UserOp1;
2153 if (Instruction *I = dyn_cast<Instruction>(V))
2154 Opcode = I->getOpcode();
2155 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2156 Opcode = CE->getOpcode();
2157 else
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002158 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002159
Dan Gohman3996f472008-06-22 19:56:46 +00002160 User *U = cast<User>(V);
2161 switch (Opcode) {
2162 case Instruction::Add:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002163 return getAddExpr(getSCEV(U->getOperand(0)),
2164 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002165 case Instruction::Mul:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002166 return getMulExpr(getSCEV(U->getOperand(0)),
2167 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002168 case Instruction::UDiv:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002169 return getUDivExpr(getSCEV(U->getOperand(0)),
2170 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002171 case Instruction::Sub:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002172 return getMinusSCEV(getSCEV(U->getOperand(0)),
2173 getSCEV(U->getOperand(1)));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002174 case Instruction::And:
2175 // For an expression like x&255 that merely masks off the high bits,
2176 // use zext(trunc(x)) as the SCEV expression.
2177 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002178 if (CI->isNullValue())
2179 return getSCEV(U->getOperand(1));
Dan Gohmanc7ebba12009-04-27 01:41:10 +00002180 if (CI->isAllOnesValue())
2181 return getSCEV(U->getOperand(0));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002182 const APInt &A = CI->getValue();
2183 unsigned Ones = A.countTrailingOnes();
2184 if (APIntOps::isMask(Ones, A))
2185 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002186 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2187 IntegerType::get(Ones)),
2188 U->getType());
Dan Gohman53bf64a2009-04-21 02:26:00 +00002189 }
2190 break;
Dan Gohman3996f472008-06-22 19:56:46 +00002191 case Instruction::Or:
2192 // If the RHS of the Or is a constant, we may have something like:
2193 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2194 // optimizations will transparently handle this case.
2195 //
2196 // In order for this transformation to be safe, the LHS must be of the
2197 // form X*(2^n) and the Or constant must be less than 2^n.
2198 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2199 SCEVHandle LHS = getSCEV(U->getOperand(0));
2200 const APInt &CIVal = CI->getValue();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002201 if (GetMinTrailingZeros(LHS, *this) >=
Dan Gohman3996f472008-06-22 19:56:46 +00002202 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002203 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002204 }
Dan Gohman3996f472008-06-22 19:56:46 +00002205 break;
2206 case Instruction::Xor:
Dan Gohman3996f472008-06-22 19:56:46 +00002207 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky7fd27892008-07-07 06:15:49 +00002208 // If the RHS of the xor is a signbit, then this is just an add.
2209 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman3996f472008-06-22 19:56:46 +00002210 if (CI->getValue().isSignBit())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002211 return getAddExpr(getSCEV(U->getOperand(0)),
2212 getSCEV(U->getOperand(1)));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002213
2214 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmanc897f752009-05-18 16:17:44 +00002215 if (CI->isAllOnesValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002216 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohmanfc78cff2009-05-18 16:29:04 +00002217
2218 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2219 // This is a variant of the check for xor with -1, and it handles
2220 // the case where instcombine has trimmed non-demanded bits out
2221 // of an xor with -1.
2222 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2223 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2224 if (BO->getOpcode() == Instruction::And &&
2225 LCI->getValue() == CI->getValue())
2226 if (const SCEVZeroExtendExpr *Z =
2227 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0))))
2228 return getZeroExtendExpr(getNotSCEV(Z->getOperand()),
2229 U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002230 }
2231 break;
2232
2233 case Instruction::Shl:
2234 // Turn shift left of a constant amount into a multiply.
2235 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2236 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2237 Constant *X = ConstantInt::get(
2238 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002239 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman3996f472008-06-22 19:56:46 +00002240 }
2241 break;
2242
Nick Lewycky7fd27892008-07-07 06:15:49 +00002243 case Instruction::LShr:
Nick Lewycky35b56022009-01-13 09:18:58 +00002244 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky7fd27892008-07-07 06:15:49 +00002245 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2246 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2247 Constant *X = ConstantInt::get(
2248 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002249 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002250 }
2251 break;
2252
Dan Gohman53bf64a2009-04-21 02:26:00 +00002253 case Instruction::AShr:
2254 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2255 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2256 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2257 if (L->getOpcode() == Instruction::Shl &&
2258 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002259 unsigned BitWidth = getTypeSizeInBits(U->getType());
2260 uint64_t Amt = BitWidth - CI->getZExtValue();
2261 if (Amt == BitWidth)
2262 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2263 if (Amt > BitWidth)
2264 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman53bf64a2009-04-21 02:26:00 +00002265 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002266 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman91ae1e72009-04-25 17:05:40 +00002267 IntegerType::get(Amt)),
Dan Gohman53bf64a2009-04-21 02:26:00 +00002268 U->getType());
2269 }
2270 break;
2271
Dan Gohman3996f472008-06-22 19:56:46 +00002272 case Instruction::Trunc:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002273 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002274
2275 case Instruction::ZExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002276 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002277
2278 case Instruction::SExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002279 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002280
2281 case Instruction::BitCast:
2282 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002283 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman3996f472008-06-22 19:56:46 +00002284 return getSCEV(U->getOperand(0));
2285 break;
2286
Dan Gohman01c2ee72009-04-16 03:18:22 +00002287 case Instruction::IntToPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002288 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002289 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002290 TD->getIntPtrType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00002291
2292 case Instruction::PtrToInt:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002293 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002294 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2295 U->getType());
2296
Dan Gohman509cf4d2009-05-08 20:26:55 +00002297 case Instruction::GetElementPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002298 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002299 return createNodeForGEP(U);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002300
Dan Gohman3996f472008-06-22 19:56:46 +00002301 case Instruction::PHI:
2302 return createNodeForPHI(cast<PHINode>(U));
2303
2304 case Instruction::Select:
2305 // This could be a smax or umax that was lowered earlier.
2306 // Try to recover it.
2307 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2308 Value *LHS = ICI->getOperand(0);
2309 Value *RHS = ICI->getOperand(1);
2310 switch (ICI->getPredicate()) {
2311 case ICmpInst::ICMP_SLT:
2312 case ICmpInst::ICMP_SLE:
2313 std::swap(LHS, RHS);
2314 // fall through
2315 case ICmpInst::ICMP_SGT:
2316 case ICmpInst::ICMP_SGE:
2317 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002318 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002319 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Eli Friedman8e2fd032008-07-30 04:36:32 +00002320 // ~smax(~x, ~y) == smin(x, y).
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002321 return getNotSCEV(getSMaxExpr(
2322 getNotSCEV(getSCEV(LHS)),
2323 getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002324 break;
2325 case ICmpInst::ICMP_ULT:
2326 case ICmpInst::ICMP_ULE:
2327 std::swap(LHS, RHS);
2328 // fall through
2329 case ICmpInst::ICMP_UGT:
2330 case ICmpInst::ICMP_UGE:
2331 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002332 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002333 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2334 // ~umax(~x, ~y) == umin(x, y)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002335 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2336 getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002337 break;
2338 default:
2339 break;
2340 }
2341 }
2342
2343 default: // We cannot analyze this expression.
2344 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002345 }
2346
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002347 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002348}
2349
2350
2351
2352//===----------------------------------------------------------------------===//
2353// Iteration Count Computation Code
2354//
2355
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002356/// getBackedgeTakenCount - If the specified loop has a predictable
2357/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2358/// object. The backedge-taken count is the number of times the loop header
2359/// will be branched to from within the loop. This is one less than the
2360/// trip count of the loop, since it doesn't count the first iteration,
2361/// when the header is branched to from outside the loop.
2362///
2363/// Note that it is not valid to call this method on a loop without a
2364/// loop-invariant backedge-taken count (see
2365/// hasLoopInvariantBackedgeTakenCount).
2366///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002367SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002368 return getBackedgeTakenInfo(L).Exact;
2369}
2370
2371/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2372/// return the least SCEV value that is known never to be less than the
2373/// actual backedge taken count.
2374SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2375 return getBackedgeTakenInfo(L).Max;
2376}
2377
2378const ScalarEvolution::BackedgeTakenInfo &
2379ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohmana9dba962009-04-27 20:16:15 +00002380 // Initially insert a CouldNotCompute for this loop. If the insertion
2381 // succeeds, procede to actually compute a backedge-taken count and
2382 // update the value. The temporary CouldNotCompute value tells SCEV
2383 // code elsewhere that it shouldn't attempt to request a new
2384 // backedge-taken count, which could result in infinite recursion.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002385 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohmana9dba962009-04-27 20:16:15 +00002386 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2387 if (Pair.second) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002388 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2389 if (ItCount.Exact != UnknownValue) {
2390 assert(ItCount.Exact->isLoopInvariant(L) &&
2391 ItCount.Max->isLoopInvariant(L) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002392 "Computed trip count isn't loop invariant for loop!");
2393 ++NumTripCountsComputed;
Dan Gohmana9dba962009-04-27 20:16:15 +00002394
Dan Gohmana9dba962009-04-27 20:16:15 +00002395 // Update the value in the map.
2396 Pair.first->second = ItCount;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002397 } else if (isa<PHINode>(L->getHeader()->begin())) {
2398 // Only count loops that have phi nodes as not being computable.
2399 ++NumTripCountsNotComputed;
2400 }
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002401
2402 // Now that we know more about the trip count for this loop, forget any
2403 // existing SCEV values for PHI nodes in this loop since they are only
2404 // conservative estimates made without the benefit
2405 // of trip count information.
2406 if (ItCount.hasAnyInfo())
Dan Gohman94623022009-05-02 17:43:35 +00002407 forgetLoopPHIs(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002408 }
Dan Gohmana9dba962009-04-27 20:16:15 +00002409 return Pair.first->second;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002410}
2411
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002412/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002413/// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002414/// ScalarEvolution's ability to compute a trip count, or if the loop
2415/// is deleted.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002416void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002417 BackedgeTakenCounts.erase(L);
Dan Gohman94623022009-05-02 17:43:35 +00002418 forgetLoopPHIs(L);
2419}
2420
2421/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2422/// PHI nodes in the given loop. This is used when the trip count of
2423/// the loop may have changed.
2424void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00002425 BasicBlock *Header = L->getHeader();
2426
Dan Gohman9fd4a002009-05-12 01:27:58 +00002427 // Push all Loop-header PHIs onto the Worklist stack, except those
2428 // that are presently represented via a SCEVUnknown. SCEVUnknown for
2429 // a PHI either means that it has an unrecognized structure, or it's
2430 // a PHI that's in the progress of being computed by createNodeForPHI.
2431 // In the former case, additional loop trip count information isn't
2432 // going to change anything. In the later case, createNodeForPHI will
2433 // perform the necessary updates on its own when it gets to that point.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002434 SmallVector<Instruction *, 16> Worklist;
2435 for (BasicBlock::iterator I = Header->begin();
Dan Gohman9fd4a002009-05-12 01:27:58 +00002436 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2437 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I);
2438 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2439 Worklist.push_back(PN);
2440 }
Dan Gohmanbff6b582009-05-04 22:30:44 +00002441
2442 while (!Worklist.empty()) {
2443 Instruction *I = Worklist.pop_back_val();
2444 if (Scalars.erase(I))
2445 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2446 UI != UE; ++UI)
2447 Worklist.push_back(cast<Instruction>(UI));
2448 }
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002449}
2450
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002451/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2452/// of the specified loop will execute.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002453ScalarEvolution::BackedgeTakenInfo
2454ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002455 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patel02451fa2007-08-21 00:31:24 +00002456 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002457 L->getExitBlocks(ExitBlocks);
2458 if (ExitBlocks.size() != 1) return UnknownValue;
2459
2460 // Okay, there is one exit block. Try to find the condition that causes the
2461 // loop to be exited.
2462 BasicBlock *ExitBlock = ExitBlocks[0];
2463
2464 BasicBlock *ExitingBlock = 0;
2465 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2466 PI != E; ++PI)
2467 if (L->contains(*PI)) {
2468 if (ExitingBlock == 0)
2469 ExitingBlock = *PI;
2470 else
2471 return UnknownValue; // More than one block exiting!
2472 }
2473 assert(ExitingBlock && "No exits from loop, something is broken!");
2474
2475 // Okay, we've computed the exiting block. See what condition causes us to
2476 // exit.
2477 //
2478 // FIXME: we should be able to handle switch instructions (with a single exit)
2479 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2480 if (ExitBr == 0) return UnknownValue;
2481 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2482
2483 // At this point, we know we have a conditional branch that determines whether
2484 // the loop is exited. However, we don't know if the branch is executed each
2485 // time through the loop. If not, then the execution count of the branch will
2486 // not be equal to the trip count of the loop.
2487 //
2488 // Currently we check for this by checking to see if the Exit branch goes to
2489 // the loop header. If so, we know it will always execute the same number of
2490 // times as the loop. We also handle the case where the exit block *is* the
2491 // loop header. This is common for un-rotated loops. More extensive analysis
2492 // could be done to handle more cases here.
2493 if (ExitBr->getSuccessor(0) != L->getHeader() &&
2494 ExitBr->getSuccessor(1) != L->getHeader() &&
2495 ExitBr->getParent() != L->getHeader())
2496 return UnknownValue;
2497
2498 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2499
Eli Friedman459d7292009-05-09 12:32:42 +00002500 // If it's not an integer or pointer comparison then compute it the hard way.
2501 if (ExitCond == 0)
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002502 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002503 ExitBr->getSuccessor(0) == ExitBlock);
2504
2505 // If the condition was exit on true, convert the condition to exit on false
2506 ICmpInst::Predicate Cond;
2507 if (ExitBr->getSuccessor(1) == ExitBlock)
2508 Cond = ExitCond->getPredicate();
2509 else
2510 Cond = ExitCond->getInversePredicate();
2511
2512 // Handle common loops like: for (X = "string"; *X; ++X)
2513 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2514 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2515 SCEVHandle ItCnt =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002516 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002517 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2518 }
2519
2520 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2521 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2522
2523 // Try to evaluate any dependencies out of the loop.
Dan Gohmanaff14d62009-05-24 23:25:42 +00002524 LHS = getSCEVAtScope(LHS, L);
2525 RHS = getSCEVAtScope(RHS, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002526
2527 // At this point, we would like to compute how many iterations of the
2528 // loop the predicate will return true for these inputs.
Dan Gohman2d96e352008-09-16 18:52:57 +00002529 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2530 // If there is a loop-invariant, force it into the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002531 std::swap(LHS, RHS);
2532 Cond = ICmpInst::getSwappedPredicate(Cond);
2533 }
2534
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002535 // If we have a comparison of a chrec against a constant, try to use value
2536 // ranges to answer this query.
Dan Gohmanc76b5452009-05-04 22:02:23 +00002537 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2538 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002539 if (AddRec->getLoop() == L) {
Eli Friedman459d7292009-05-09 12:32:42 +00002540 // Form the constant range.
2541 ConstantRange CompRange(
2542 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002543
Eli Friedman459d7292009-05-09 12:32:42 +00002544 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2545 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002546 }
2547
2548 switch (Cond) {
2549 case ICmpInst::ICMP_NE: { // while (X != Y)
2550 // Convert to: while (X-Y != 0)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002551 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002552 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2553 break;
2554 }
2555 case ICmpInst::ICMP_EQ: {
2556 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002557 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002558 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2559 break;
2560 }
2561 case ICmpInst::ICMP_SLT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002562 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2563 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002564 break;
2565 }
2566 case ICmpInst::ICMP_SGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002567 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2568 getNotSCEV(RHS), L, true);
2569 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002570 break;
2571 }
2572 case ICmpInst::ICMP_ULT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002573 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2574 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002575 break;
2576 }
2577 case ICmpInst::ICMP_UGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002578 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2579 getNotSCEV(RHS), L, false);
2580 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002581 break;
2582 }
2583 default:
2584#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002585 errs() << "ComputeBackedgeTakenCount ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002586 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohman13058cc2009-04-21 00:47:46 +00002587 errs() << "[unsigned] ";
2588 errs() << *LHS << " "
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002589 << Instruction::getOpcodeName(Instruction::ICmp)
2590 << " " << *RHS << "\n";
2591#endif
2592 break;
2593 }
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002594 return
2595 ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2596 ExitBr->getSuccessor(0) == ExitBlock);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002597}
2598
2599static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00002600EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2601 ScalarEvolution &SE) {
2602 SCEVHandle InVal = SE.getConstant(C);
2603 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002604 assert(isa<SCEVConstant>(Val) &&
2605 "Evaluation of SCEV at constant didn't fold correctly?");
2606 return cast<SCEVConstant>(Val)->getValue();
2607}
2608
2609/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2610/// and a GEP expression (missing the pointer index) indexing into it, return
2611/// the addressed element of the initializer or null if the index expression is
2612/// invalid.
2613static Constant *
2614GetAddressedElementFromGlobal(GlobalVariable *GV,
2615 const std::vector<ConstantInt*> &Indices) {
2616 Constant *Init = GV->getInitializer();
2617 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2618 uint64_t Idx = Indices[i]->getZExtValue();
2619 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2620 assert(Idx < CS->getNumOperands() && "Bad struct index!");
2621 Init = cast<Constant>(CS->getOperand(Idx));
2622 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2623 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
2624 Init = cast<Constant>(CA->getOperand(Idx));
2625 } else if (isa<ConstantAggregateZero>(Init)) {
2626 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2627 assert(Idx < STy->getNumElements() && "Bad struct index!");
2628 Init = Constant::getNullValue(STy->getElementType(Idx));
2629 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2630 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
2631 Init = Constant::getNullValue(ATy->getElementType());
2632 } else {
2633 assert(0 && "Unknown constant aggregate type!");
2634 }
2635 return 0;
2636 } else {
2637 return 0; // Unknown initializer type
2638 }
2639 }
2640 return Init;
2641}
2642
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002643/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2644/// 'icmp op load X, cst', try to see if we can compute the backedge
2645/// execution count.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002646SCEVHandle ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002647ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2648 const Loop *L,
2649 ICmpInst::Predicate predicate) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002650 if (LI->isVolatile()) return UnknownValue;
2651
2652 // Check to see if the loaded pointer is a getelementptr of a global.
2653 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2654 if (!GEP) return UnknownValue;
2655
2656 // Make sure that it is really a constant global we are gepping, with an
2657 // initializer, and make sure the first IDX is really 0.
2658 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2659 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2660 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2661 !cast<Constant>(GEP->getOperand(1))->isNullValue())
2662 return UnknownValue;
2663
2664 // Okay, we allow one non-constant index into the GEP instruction.
2665 Value *VarIdx = 0;
2666 std::vector<ConstantInt*> Indexes;
2667 unsigned VarIdxNum = 0;
2668 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2669 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2670 Indexes.push_back(CI);
2671 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2672 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
2673 VarIdx = GEP->getOperand(i);
2674 VarIdxNum = i-2;
2675 Indexes.push_back(0);
2676 }
2677
2678 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2679 // Check to see if X is a loop variant variable value now.
2680 SCEVHandle Idx = getSCEV(VarIdx);
Dan Gohmanaff14d62009-05-24 23:25:42 +00002681 Idx = getSCEVAtScope(Idx, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002682
2683 // We can only recognize very limited forms of loop index expressions, in
2684 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002685 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002686 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2687 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2688 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2689 return UnknownValue;
2690
2691 unsigned MaxSteps = MaxBruteForceIterations;
2692 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2693 ConstantInt *ItCst =
2694 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002695 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002696
2697 // Form the GEP offset.
2698 Indexes[VarIdxNum] = Val;
2699
2700 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2701 if (Result == 0) break; // Cannot compute!
2702
2703 // Evaluate the condition for this iteration.
2704 Result = ConstantExpr::getICmp(predicate, Result, RHS);
2705 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
2706 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2707#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002708 errs() << "\n***\n*** Computed loop count " << *ItCst
2709 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2710 << "***\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002711#endif
2712 ++NumArrayLenItCounts;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002713 return getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002714 }
2715 }
2716 return UnknownValue;
2717}
2718
2719
2720/// CanConstantFold - Return true if we can constant fold an instruction of the
2721/// specified type, assuming that all operands were constants.
2722static bool CanConstantFold(const Instruction *I) {
2723 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2724 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2725 return true;
2726
2727 if (const CallInst *CI = dyn_cast<CallInst>(I))
2728 if (const Function *F = CI->getCalledFunction())
Dan Gohmane6e001f2008-01-31 01:05:10 +00002729 return canConstantFoldCallTo(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002730 return false;
2731}
2732
2733/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2734/// in the loop that V is derived from. We allow arbitrary operations along the
2735/// way, but the operands of an operation must either be constants or a value
2736/// derived from a constant PHI. If this expression does not fit with these
2737/// constraints, return null.
2738static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2739 // If this is not an instruction, or if this is an instruction outside of the
2740 // loop, it can't be derived from a loop PHI.
2741 Instruction *I = dyn_cast<Instruction>(V);
2742 if (I == 0 || !L->contains(I->getParent())) return 0;
2743
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002744 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002745 if (L->getHeader() == I->getParent())
2746 return PN;
2747 else
2748 // We don't currently keep track of the control flow needed to evaluate
2749 // PHIs, so we cannot handle PHIs inside of loops.
2750 return 0;
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002751 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002752
2753 // If we won't be able to constant fold this expression even if the operands
2754 // are constants, return early.
2755 if (!CanConstantFold(I)) return 0;
2756
2757 // Otherwise, we can evaluate this instruction if all of its operands are
2758 // constant or derived from a PHI node themselves.
2759 PHINode *PHI = 0;
2760 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2761 if (!(isa<Constant>(I->getOperand(Op)) ||
2762 isa<GlobalValue>(I->getOperand(Op)))) {
2763 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2764 if (P == 0) return 0; // Not evolving from PHI
2765 if (PHI == 0)
2766 PHI = P;
2767 else if (PHI != P)
2768 return 0; // Evolving from multiple different PHIs.
2769 }
2770
2771 // This is a expression evolving from a constant PHI!
2772 return PHI;
2773}
2774
2775/// EvaluateExpression - Given an expression that passes the
2776/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2777/// in the loop has the value PHIVal. If we can't fold this expression for some
2778/// reason, return null.
2779static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2780 if (isa<PHINode>(V)) return PHIVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002781 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002782 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002783 Instruction *I = cast<Instruction>(V);
2784
2785 std::vector<Constant*> Operands;
2786 Operands.resize(I->getNumOperands());
2787
2788 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2789 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2790 if (Operands[i] == 0) return 0;
2791 }
2792
Chris Lattnerd6e56912007-12-10 22:53:04 +00002793 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2794 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2795 &Operands[0], Operands.size());
2796 else
2797 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2798 &Operands[0], Operands.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002799}
2800
2801/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2802/// in the header of its containing loop, we know the loop executes a
2803/// constant number of times, and the PHI node is just a recurrence
2804/// involving constants, fold it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002805Constant *ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002806getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002807 std::map<PHINode*, Constant*>::iterator I =
2808 ConstantEvolutionLoopExitValue.find(PN);
2809 if (I != ConstantEvolutionLoopExitValue.end())
2810 return I->second;
2811
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002812 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002813 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2814
2815 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2816
2817 // Since the loop is canonicalized, the PHI node must have two entries. One
2818 // entry must be a constant (coming in from outside of the loop), and the
2819 // second must be derived from the same PHI.
2820 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2821 Constant *StartCST =
2822 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2823 if (StartCST == 0)
2824 return RetVal = 0; // Must be a constant.
2825
2826 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2827 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2828 if (PN2 != PN)
2829 return RetVal = 0; // Not derived from same PHI.
2830
2831 // Execute the loop symbolically to determine the exit value.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002832 if (BEs.getActiveBits() >= 32)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002833 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2834
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002835 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002836 unsigned IterationNum = 0;
2837 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2838 if (IterationNum == NumIterations)
2839 return RetVal = PHIVal; // Got exit value!
2840
2841 // Compute the value of the PHI node for the next iteration.
2842 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2843 if (NextPHI == PHIVal)
2844 return RetVal = NextPHI; // Stopped evolving!
2845 if (NextPHI == 0)
2846 return 0; // Couldn't evaluate!
2847 PHIVal = NextPHI;
2848 }
2849}
2850
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002851/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002852/// constant number of times (the condition evolves only from constants),
2853/// try to evaluate a few iterations of the loop until we get the exit
2854/// condition gets a value of ExitWhen (true or false). If we cannot
2855/// evaluate the trip count of the loop, return UnknownValue.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002856SCEVHandle ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002857ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002858 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2859 if (PN == 0) return UnknownValue;
2860
2861 // Since the loop is canonicalized, the PHI node must have two entries. One
2862 // entry must be a constant (coming in from outside of the loop), and the
2863 // second must be derived from the same PHI.
2864 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2865 Constant *StartCST =
2866 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2867 if (StartCST == 0) return UnknownValue; // Must be a constant.
2868
2869 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2870 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2871 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2872
2873 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2874 // the loop symbolically to determine when the condition gets a value of
2875 // "ExitWhen".
2876 unsigned IterationNum = 0;
2877 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2878 for (Constant *PHIVal = StartCST;
2879 IterationNum != MaxIterations; ++IterationNum) {
2880 ConstantInt *CondVal =
2881 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2882
2883 // Couldn't symbolically evaluate.
2884 if (!CondVal) return UnknownValue;
2885
2886 if (CondVal->getValue() == uint64_t(ExitWhen)) {
2887 ConstantEvolutionLoopExitValue[PN] = PHIVal;
2888 ++NumBruteForceTripCountsComputed;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002889 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002890 }
2891
2892 // Compute the value of the PHI node for the next iteration.
2893 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2894 if (NextPHI == 0 || NextPHI == PHIVal)
2895 return UnknownValue; // Couldn't evaluate or not making progress...
2896 PHIVal = NextPHI;
2897 }
2898
2899 // Too many iterations were needed to evaluate.
2900 return UnknownValue;
2901}
2902
Dan Gohmandd40e9a2009-05-08 20:38:54 +00002903/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2904/// at the specified scope in the program. The L value specifies a loop
2905/// nest to evaluate the expression at, where null is the top-level or a
2906/// specified loop is immediately inside of the loop.
2907///
2908/// This method can be used to compute the exit value for a variable defined
2909/// in a loop by querying what the value will hold in the parent loop.
2910///
Dan Gohmanaff14d62009-05-24 23:25:42 +00002911/// In the case that a relevant loop exit value cannot be computed, the
2912/// original value V is returned.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002913SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002914 // FIXME: this should be turned into a virtual method on SCEV!
2915
2916 if (isa<SCEVConstant>(V)) return V;
2917
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002918 // If this instruction is evolved from a constant-evolving PHI, compute the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002919 // exit value from the loop without using SCEVs.
Dan Gohmanc76b5452009-05-04 22:02:23 +00002920 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002921 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002922 const Loop *LI = (*this->LI)[I->getParent()];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002923 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2924 if (PHINode *PN = dyn_cast<PHINode>(I))
2925 if (PN->getParent() == LI->getHeader()) {
2926 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002927 // to see if the loop that contains it has a known backedge-taken
2928 // count. If so, we may be able to force computation of the exit
2929 // value.
2930 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002931 if (const SCEVConstant *BTCC =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002932 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002933 // Okay, we know how many times the containing loop executes. If
2934 // this is a constant evolving PHI node, get the final value at
2935 // the specified iteration number.
2936 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002937 BTCC->getValue()->getValue(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002938 LI);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002939 if (RV) return getUnknown(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002940 }
2941 }
2942
2943 // Okay, this is an expression that we cannot symbolically evaluate
2944 // into a SCEV. Check to see if it's possible to symbolically evaluate
2945 // the arguments into constants, and if so, try to constant propagate the
2946 // result. This is particularly useful for computing loop exit values.
2947 if (CanConstantFold(I)) {
Dan Gohmanda0071e2009-05-08 20:47:27 +00002948 // Check to see if we've folded this instruction at this loop before.
2949 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
2950 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
2951 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
2952 if (!Pair.second)
2953 return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
2954
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002955 std::vector<Constant*> Operands;
2956 Operands.reserve(I->getNumOperands());
2957 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2958 Value *Op = I->getOperand(i);
2959 if (Constant *C = dyn_cast<Constant>(Op)) {
2960 Operands.push_back(C);
2961 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00002962 // If any of the operands is non-constant and if they are
Dan Gohman01c2ee72009-04-16 03:18:22 +00002963 // non-integer and non-pointer, don't even try to analyze them
2964 // with scev techniques.
Dan Gohman5e4eb762009-04-30 16:40:30 +00002965 if (!isSCEVable(Op->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00002966 return V;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002967
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002968 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002969 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00002970 Constant *C = SC->getValue();
2971 if (C->getType() != Op->getType())
2972 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2973 Op->getType(),
2974 false),
2975 C, Op->getType());
2976 Operands.push_back(C);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002977 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00002978 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2979 if (C->getType() != Op->getType())
2980 C =
2981 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2982 Op->getType(),
2983 false),
2984 C, Op->getType());
2985 Operands.push_back(C);
2986 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002987 return V;
2988 } else {
2989 return V;
2990 }
2991 }
2992 }
Chris Lattnerd6e56912007-12-10 22:53:04 +00002993
2994 Constant *C;
2995 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2996 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2997 &Operands[0], Operands.size());
2998 else
2999 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3000 &Operands[0], Operands.size());
Dan Gohmanda0071e2009-05-08 20:47:27 +00003001 Pair.first->second = C;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003002 return getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003003 }
3004 }
3005
3006 // This is some other type of SCEVUnknown, just return it.
3007 return V;
3008 }
3009
Dan Gohmanc76b5452009-05-04 22:02:23 +00003010 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003011 // Avoid performing the look-up in the common case where the specified
3012 // expression has no loop-variant portions.
3013 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3014 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3015 if (OpAtScope != Comm->getOperand(i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003016 // Okay, at least one of these operands is loop variant but might be
3017 // foldable. Build a new instance of the folded commutative expression.
3018 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
3019 NewOps.push_back(OpAtScope);
3020
3021 for (++i; i != e; ++i) {
3022 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003023 NewOps.push_back(OpAtScope);
3024 }
3025 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003026 return getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003027 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003028 return getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003029 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003030 return getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00003031 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003032 return getUMaxExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003033 assert(0 && "Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003034 }
3035 }
3036 // If we got here, all operands are loop invariant.
3037 return Comm;
3038 }
3039
Dan Gohmanc76b5452009-05-04 22:02:23 +00003040 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003041 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Nick Lewycky35b56022009-01-13 09:18:58 +00003042 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky35b56022009-01-13 09:18:58 +00003043 if (LHS == Div->getLHS() && RHS == Div->getRHS())
3044 return Div; // must be loop invariant
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003045 return getUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003046 }
3047
3048 // If this is a loop recurrence for a loop that does not contain L, then we
3049 // are dealing with the final value computed by the loop.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003050 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003051 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3052 // To evaluate this recurrence, we need to know how many times the AddRec
3053 // loop iterates. Compute this now.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003054 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanaff14d62009-05-24 23:25:42 +00003055 if (BackedgeTakenCount == UnknownValue) return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003056
Eli Friedman7489ec92008-08-04 23:49:06 +00003057 // Then, evaluate the AddRec.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003058 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003059 }
Dan Gohmanaff14d62009-05-24 23:25:42 +00003060 return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003061 }
3062
Dan Gohmanc76b5452009-05-04 22:02:23 +00003063 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003064 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003065 if (Op == Cast->getOperand())
3066 return Cast; // must be loop invariant
3067 return getZeroExtendExpr(Op, Cast->getType());
3068 }
3069
Dan Gohmanc76b5452009-05-04 22:02:23 +00003070 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003071 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003072 if (Op == Cast->getOperand())
3073 return Cast; // must be loop invariant
3074 return getSignExtendExpr(Op, Cast->getType());
3075 }
3076
Dan Gohmanc76b5452009-05-04 22:02:23 +00003077 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003078 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003079 if (Op == Cast->getOperand())
3080 return Cast; // must be loop invariant
3081 return getTruncateExpr(Op, Cast->getType());
3082 }
3083
3084 assert(0 && "Unknown SCEV type!");
Daniel Dunbara95d96c2009-05-18 16:43:04 +00003085 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003086}
3087
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003088/// getSCEVAtScope - This is a convenience function which does
3089/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003090SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3091 return getSCEVAtScope(getSCEV(V), L);
3092}
3093
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003094/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3095/// following equation:
3096///
3097/// A * X = B (mod N)
3098///
3099/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3100/// A and B isn't important.
3101///
3102/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3103static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3104 ScalarEvolution &SE) {
3105 uint32_t BW = A.getBitWidth();
3106 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3107 assert(A != 0 && "A must be non-zero.");
3108
3109 // 1. D = gcd(A, N)
3110 //
3111 // The gcd of A and N may have only one prime factor: 2. The number of
3112 // trailing zeros in A is its multiplicity
3113 uint32_t Mult2 = A.countTrailingZeros();
3114 // D = 2^Mult2
3115
3116 // 2. Check if B is divisible by D.
3117 //
3118 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3119 // is not less than multiplicity of this prime factor for D.
3120 if (B.countTrailingZeros() < Mult2)
Dan Gohman0ad08b02009-04-18 17:58:19 +00003121 return SE.getCouldNotCompute();
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003122
3123 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3124 // modulo (N / D).
3125 //
3126 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
3127 // bit width during computations.
3128 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
3129 APInt Mod(BW + 1, 0);
3130 Mod.set(BW - Mult2); // Mod = N / D
3131 APInt I = AD.multiplicativeInverse(Mod);
3132
3133 // 4. Compute the minimum unsigned root of the equation:
3134 // I * (B / D) mod (N / D)
3135 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3136
3137 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3138 // bits.
3139 return SE.getConstant(Result.trunc(BW));
3140}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003141
3142/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3143/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
3144/// might be the same) or two SCEVCouldNotCompute objects.
3145///
3146static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman89f85052007-10-22 18:31:58 +00003147SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003148 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00003149 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3150 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3151 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003152
3153 // We currently can only solve this if the coefficients are constants.
3154 if (!LC || !MC || !NC) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003155 const SCEV *CNC = SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003156 return std::make_pair(CNC, CNC);
3157 }
3158
3159 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3160 const APInt &L = LC->getValue()->getValue();
3161 const APInt &M = MC->getValue()->getValue();
3162 const APInt &N = NC->getValue()->getValue();
3163 APInt Two(BitWidth, 2);
3164 APInt Four(BitWidth, 4);
3165
3166 {
3167 using namespace APIntOps;
3168 const APInt& C = L;
3169 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3170 // The B coefficient is M-N/2
3171 APInt B(M);
3172 B -= sdiv(N,Two);
3173
3174 // The A coefficient is N/2
3175 APInt A(N.sdiv(Two));
3176
3177 // Compute the B^2-4ac term.
3178 APInt SqrtTerm(B);
3179 SqrtTerm *= B;
3180 SqrtTerm -= Four * (A * C);
3181
3182 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3183 // integer value or else APInt::sqrt() will assert.
3184 APInt SqrtVal(SqrtTerm.sqrt());
3185
3186 // Compute the two solutions for the quadratic formula.
3187 // The divisions must be performed as signed divisions.
3188 APInt NegB(-B);
3189 APInt TwoA( A << 1 );
Nick Lewycky35776692008-11-03 02:43:49 +00003190 if (TwoA.isMinValue()) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003191 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky35776692008-11-03 02:43:49 +00003192 return std::make_pair(CNC, CNC);
3193 }
3194
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003195 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3196 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3197
Dan Gohman89f85052007-10-22 18:31:58 +00003198 return std::make_pair(SE.getConstant(Solution1),
3199 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003200 } // end APIntOps namespace
3201}
3202
3203/// HowFarToZero - Return the number of times a backedge comparing the specified
3204/// value to zero will execute. If not computable, return UnknownValue
Dan Gohmanbff6b582009-05-04 22:30:44 +00003205SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003206 // If the value is a constant
Dan Gohmanc76b5452009-05-04 22:02:23 +00003207 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003208 // If the value is already zero, the branch will execute zero times.
3209 if (C->getValue()->isZero()) return C;
3210 return UnknownValue; // Otherwise it will loop infinitely.
3211 }
3212
Dan Gohmanbff6b582009-05-04 22:30:44 +00003213 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003214 if (!AddRec || AddRec->getLoop() != L)
3215 return UnknownValue;
3216
3217 if (AddRec->isAffine()) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003218 // If this is an affine expression, the execution count of this branch is
3219 // the minimum unsigned root of the following equation:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003220 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003221 // Start + Step*N = 0 (mod 2^BW)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003222 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003223 // equivalent to:
3224 //
3225 // Step*N = -Start (mod 2^BW)
3226 //
3227 // where BW is the common bit width of Start and Step.
3228
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003229 // Get the initial value for the loop.
3230 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003231 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003232
Dan Gohmanc76b5452009-05-04 22:02:23 +00003233 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003234 // For now we handle only constant steps.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003235
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003236 // First, handle unitary steps.
3237 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003238 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003239 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
3240 return Start; // N = Start (as unsigned)
3241
3242 // Then, try to solve the above equation provided that Start is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003243 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003244 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003245 -StartC->getValue()->getValue(),
3246 *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003247 }
3248 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3249 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3250 // the quadratic equation to solve it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003251 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3252 *this);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003253 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3254 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003255 if (R1) {
3256#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003257 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3258 << " sol#2: " << *R2 << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003259#endif
3260 // Pick the smallest positive root value.
3261 if (ConstantInt *CB =
3262 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3263 R1->getValue(), R2->getValue()))) {
3264 if (CB->getZExtValue() == false)
3265 std::swap(R1, R2); // R1 is the minimum root now.
3266
3267 // We can only use this value if the chrec ends up with an exact zero
3268 // value at this index. When solving for "X*X != 5", for example, we
3269 // should not accept a root of 2.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003270 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohman7b560c42008-06-18 16:23:07 +00003271 if (Val->isZero())
3272 return R1; // We found a quadratic root!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003273 }
3274 }
3275 }
3276
3277 return UnknownValue;
3278}
3279
3280/// HowFarToNonZero - Return the number of times a backedge checking the
3281/// specified value for nonzero will execute. If not computable, return
3282/// UnknownValue
Dan Gohmanbff6b582009-05-04 22:30:44 +00003283SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003284 // Loops that look like: while (X == 0) are very strange indeed. We don't
3285 // handle them yet except for the trivial case. This could be expanded in the
3286 // future as needed.
3287
3288 // If the value is a constant, check to see if it is known to be non-zero
3289 // already. If so, the backedge will execute zero times.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003290 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewyckyf6805182008-02-21 09:14:53 +00003291 if (!C->getValue()->isNullValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003292 return getIntegerSCEV(0, C->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003293 return UnknownValue; // Otherwise it will loop infinitely.
3294 }
3295
3296 // We could implement others, but I really doubt anyone writes loops like
3297 // this, and if they did, they would already be constant folded.
3298 return UnknownValue;
3299}
3300
Dan Gohmanab157b22009-05-18 15:36:09 +00003301/// getLoopPredecessor - If the given loop's header has exactly one unique
3302/// predecessor outside the loop, return it. Otherwise return null.
3303///
3304BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3305 BasicBlock *Header = L->getHeader();
3306 BasicBlock *Pred = 0;
3307 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3308 PI != E; ++PI)
3309 if (!L->contains(*PI)) {
3310 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3311 Pred = *PI;
3312 }
3313 return Pred;
3314}
3315
Dan Gohman1cddf972008-09-15 22:18:04 +00003316/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3317/// (which may not be an immediate predecessor) which has exactly one
3318/// successor from which BB is reachable, or null if no such block is
3319/// found.
3320///
3321BasicBlock *
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003322ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman1116ea72009-04-30 20:48:53 +00003323 // If the block has a unique predecessor, then there is no path from the
3324 // predecessor to the block that does not go through the direct edge
3325 // from the predecessor to the block.
Dan Gohman1cddf972008-09-15 22:18:04 +00003326 if (BasicBlock *Pred = BB->getSinglePredecessor())
3327 return Pred;
3328
3329 // A loop's header is defined to be a block that dominates the loop.
Dan Gohmanab157b22009-05-18 15:36:09 +00003330 // If the header has a unique predecessor outside the loop, it must be
3331 // a block that has exactly one successor that can reach the loop.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003332 if (Loop *L = LI->getLoopFor(BB))
Dan Gohmanab157b22009-05-18 15:36:09 +00003333 return getLoopPredecessor(L);
Dan Gohman1cddf972008-09-15 22:18:04 +00003334
3335 return 0;
3336}
3337
Dan Gohmancacd2012009-02-12 22:19:27 +00003338/// isLoopGuardedByCond - Test whether entry to the loop is protected by
Dan Gohman1116ea72009-04-30 20:48:53 +00003339/// a conditional between LHS and RHS. This is used to help avoid max
3340/// expressions in loop trip counts.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003341bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
Dan Gohman1116ea72009-04-30 20:48:53 +00003342 ICmpInst::Predicate Pred,
Dan Gohmanbff6b582009-05-04 22:30:44 +00003343 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8b938182009-05-18 16:03:58 +00003344 // Interpret a null as meaning no loop, where there is obviously no guard
3345 // (interprocedural conditions notwithstanding).
3346 if (!L) return false;
3347
Dan Gohmanab157b22009-05-18 15:36:09 +00003348 BasicBlock *Predecessor = getLoopPredecessor(L);
3349 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003350
Dan Gohmanab157b22009-05-18 15:36:09 +00003351 // Starting at the loop predecessor, climb up the predecessor chain, as long
3352 // as there are predecessors that can be found that have unique successors
Dan Gohman1cddf972008-09-15 22:18:04 +00003353 // leading to the original header.
Dan Gohmanab157b22009-05-18 15:36:09 +00003354 for (; Predecessor;
3355 PredecessorDest = Predecessor,
3356 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohmanab678fb2008-08-12 20:17:31 +00003357
3358 BranchInst *LoopEntryPredicate =
Dan Gohmanab157b22009-05-18 15:36:09 +00003359 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohmanab678fb2008-08-12 20:17:31 +00003360 if (!LoopEntryPredicate ||
3361 LoopEntryPredicate->isUnconditional())
3362 continue;
3363
3364 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3365 if (!ICI) continue;
3366
3367 // Now that we found a conditional branch that dominates the loop, check to
3368 // see if it is the comparison we are looking for.
3369 Value *PreCondLHS = ICI->getOperand(0);
3370 Value *PreCondRHS = ICI->getOperand(1);
3371 ICmpInst::Predicate Cond;
Dan Gohmanab157b22009-05-18 15:36:09 +00003372 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
Dan Gohmanab678fb2008-08-12 20:17:31 +00003373 Cond = ICI->getPredicate();
3374 else
3375 Cond = ICI->getInversePredicate();
3376
Dan Gohmancacd2012009-02-12 22:19:27 +00003377 if (Cond == Pred)
3378 ; // An exact match.
3379 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3380 ; // The actual condition is beyond sufficient.
3381 else
3382 // Check a few special cases.
3383 switch (Cond) {
3384 case ICmpInst::ICMP_UGT:
3385 if (Pred == ICmpInst::ICMP_ULT) {
3386 std::swap(PreCondLHS, PreCondRHS);
3387 Cond = ICmpInst::ICMP_ULT;
3388 break;
3389 }
3390 continue;
3391 case ICmpInst::ICMP_SGT:
3392 if (Pred == ICmpInst::ICMP_SLT) {
3393 std::swap(PreCondLHS, PreCondRHS);
3394 Cond = ICmpInst::ICMP_SLT;
3395 break;
3396 }
3397 continue;
3398 case ICmpInst::ICMP_NE:
3399 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3400 // so check for this case by checking if the NE is comparing against
3401 // a minimum or maximum constant.
3402 if (!ICmpInst::isTrueWhenEqual(Pred))
3403 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3404 const APInt &A = CI->getValue();
3405 switch (Pred) {
3406 case ICmpInst::ICMP_SLT:
3407 if (A.isMaxSignedValue()) break;
3408 continue;
3409 case ICmpInst::ICMP_SGT:
3410 if (A.isMinSignedValue()) break;
3411 continue;
3412 case ICmpInst::ICMP_ULT:
3413 if (A.isMaxValue()) break;
3414 continue;
3415 case ICmpInst::ICMP_UGT:
3416 if (A.isMinValue()) break;
3417 continue;
3418 default:
3419 continue;
3420 }
3421 Cond = ICmpInst::ICMP_NE;
3422 // NE is symmetric but the original comparison may not be. Swap
3423 // the operands if necessary so that they match below.
3424 if (isa<SCEVConstant>(LHS))
3425 std::swap(PreCondLHS, PreCondRHS);
3426 break;
3427 }
3428 continue;
3429 default:
3430 // We weren't able to reconcile the condition.
3431 continue;
3432 }
Dan Gohmanab678fb2008-08-12 20:17:31 +00003433
3434 if (!PreCondLHS->getType()->isInteger()) continue;
3435
3436 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3437 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3438 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003439 (LHS == getNotSCEV(PreCondRHSSCEV) &&
3440 RHS == getNotSCEV(PreCondLHSSCEV)))
Dan Gohmanab678fb2008-08-12 20:17:31 +00003441 return true;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003442 }
3443
Dan Gohmanab678fb2008-08-12 20:17:31 +00003444 return false;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003445}
3446
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003447/// HowManyLessThans - Return the number of times a backedge containing the
3448/// specified less-than comparison will execute. If not computable, return
3449/// UnknownValue.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003450ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
Dan Gohmanbff6b582009-05-04 22:30:44 +00003451HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3452 const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003453 // Only handle: "ADDREC < LoopInvariant".
3454 if (!RHS->isLoopInvariant(L)) return UnknownValue;
3455
Dan Gohmanbff6b582009-05-04 22:30:44 +00003456 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003457 if (!AddRec || AddRec->getLoop() != L)
3458 return UnknownValue;
3459
3460 if (AddRec->isAffine()) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003461 // FORNOW: We only support unit strides.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003462 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3463 SCEVHandle Step = AddRec->getStepRecurrence(*this);
3464 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3465
3466 // TODO: handle non-constant strides.
3467 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3468 if (!CStep || CStep->isZero())
3469 return UnknownValue;
Dan Gohmanf8bc8e82009-05-18 15:22:39 +00003470 if (CStep->isOne()) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003471 // With unit stride, the iteration never steps past the limit value.
3472 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3473 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3474 // Test whether a positive iteration iteration can step past the limit
3475 // value and past the maximum value for its type in a single step.
3476 if (isSigned) {
3477 APInt Max = APInt::getSignedMaxValue(BitWidth);
3478 if ((Max - CStep->getValue()->getValue())
3479 .slt(CLimit->getValue()->getValue()))
3480 return UnknownValue;
3481 } else {
3482 APInt Max = APInt::getMaxValue(BitWidth);
3483 if ((Max - CStep->getValue()->getValue())
3484 .ult(CLimit->getValue()->getValue()))
3485 return UnknownValue;
3486 }
3487 } else
3488 // TODO: handle non-constant limit values below.
3489 return UnknownValue;
3490 } else
3491 // TODO: handle negative strides below.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003492 return UnknownValue;
3493
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003494 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3495 // m. So, we count the number of iterations in which {n,+,s} < m is true.
3496 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicz1377a542008-02-13 12:21:32 +00003497 // treat m-n as signed nor unsigned due to overflow possibility.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003498
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003499 // First, we get the value of the LHS in the first iteration: n
3500 SCEVHandle Start = AddRec->getOperand(0);
3501
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003502 // Determine the minimum constant start value.
3503 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3504 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3505 APInt::getMinValue(BitWidth));
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003506
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003507 // If we know that the condition is true in order to enter the loop,
3508 // then we know that it will run exactly (m-n)/s times. Otherwise, we
3509 // only know if will execute (max(m,n)-n)/s times. In both cases, the
3510 // division must round up.
3511 SCEVHandle End = RHS;
3512 if (!isLoopGuardedByCond(L,
3513 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3514 getMinusSCEV(Start, Step), RHS))
3515 End = isSigned ? getSMaxExpr(RHS, Start)
3516 : getUMaxExpr(RHS, Start);
3517
3518 // Determine the maximum constant end value.
3519 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3520 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3521 APInt::getMaxValue(BitWidth));
3522
3523 // Finally, we subtract these two values and divide, rounding up, to get
3524 // the number of times the backedge is executed.
3525 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3526 getAddExpr(Step, NegOne)),
3527 Step);
3528
3529 // The maximum backedge count is similar, except using the minimum start
3530 // value and the maximum end value.
3531 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3532 MinStart),
3533 getAddExpr(Step, NegOne)),
3534 Step);
3535
3536 return BackedgeTakenInfo(BECount, MaxBECount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003537 }
3538
3539 return UnknownValue;
3540}
3541
3542/// getNumIterationsInRange - Return the number of iterations of this loop that
3543/// produce values in the specified constant range. Another way of looking at
3544/// this is that it returns the first iteration number where the value is not in
3545/// the condition, thus computing the exit count. If the iteration count can't
3546/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman89f85052007-10-22 18:31:58 +00003547SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3548 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003549 if (Range.isFullSet()) // Infinite loop.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003550 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003551
3552 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003553 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003554 if (!SC->getValue()->isZero()) {
3555 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003556 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3557 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanc76b5452009-05-04 22:02:23 +00003558 if (const SCEVAddRecExpr *ShiftedAddRec =
3559 dyn_cast<SCEVAddRecExpr>(Shifted))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003560 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00003561 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003562 // This is strange and shouldn't happen.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003563 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003564 }
3565
3566 // The only time we can solve this is when we have all constant indices.
3567 // Otherwise, we cannot determine the overflow conditions.
3568 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3569 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003570 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003571
3572
3573 // Okay at this point we know that all elements of the chrec are constants and
3574 // that the start element is zero.
3575
3576 // First check to see if the range contains zero. If not, the first
3577 // iteration exits.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00003578 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00003579 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman89f85052007-10-22 18:31:58 +00003580 return SE.getConstant(ConstantInt::get(getType(),0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003581
3582 if (isAffine()) {
3583 // If this is an affine expression then we have this situation:
3584 // Solve {0,+,A} in Range === Ax in Range
3585
3586 // We know that zero is in the range. If A is positive then we know that
3587 // the upper value of the range must be the first possible exit value.
3588 // If A is negative then the lower of the range is the last possible loop
3589 // value. Also note that we already checked for a full range.
Dan Gohman01c2ee72009-04-16 03:18:22 +00003590 APInt One(BitWidth,1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003591 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3592 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3593
3594 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00003595 APInt ExitVal = (End + A).udiv(A);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003596 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3597
3598 // Evaluate at the exit value. If we really did fall out of the valid
3599 // range, then we computed our trip count, otherwise wrap around or other
3600 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00003601 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003602 if (Range.contains(Val->getValue()))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003603 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003604
3605 // Ensure that the previous value is in the range. This is a sanity check.
3606 assert(Range.contains(
3607 EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003608 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003609 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00003610 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003611 } else if (isQuadratic()) {
3612 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3613 // quadratic equation to solve it. To do this, we must frame our problem in
3614 // terms of figuring out when zero is crossed, instead of when
3615 // Range.getUpper() is crossed.
3616 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003617 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3618 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003619
3620 // Next, solve the constructed addrec
3621 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00003622 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003623 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3624 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003625 if (R1) {
3626 // Pick the smallest positive root value.
3627 if (ConstantInt *CB =
3628 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3629 R1->getValue(), R2->getValue()))) {
3630 if (CB->getZExtValue() == false)
3631 std::swap(R1, R2); // R1 is the minimum root now.
3632
3633 // Make sure the root is not off by one. The returned iteration should
3634 // not be in the range, but the previous one should be. When solving
3635 // for "X*X < 5", for example, we should not return a root of 2.
3636 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003637 R1->getValue(),
3638 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003639 if (Range.contains(R1Val->getValue())) {
3640 // The next iteration must be out of the range...
3641 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3642
Dan Gohman89f85052007-10-22 18:31:58 +00003643 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003644 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00003645 return SE.getConstant(NextVal);
Dan Gohman0ad08b02009-04-18 17:58:19 +00003646 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003647 }
3648
3649 // If R1 was not in the range, then it is a good return value. Make
3650 // sure that R1-1 WAS in the range though, just in case.
3651 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00003652 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003653 if (Range.contains(R1Val->getValue()))
3654 return R1;
Dan Gohman0ad08b02009-04-18 17:58:19 +00003655 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003656 }
3657 }
3658 }
3659
Dan Gohman0ad08b02009-04-18 17:58:19 +00003660 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003661}
3662
3663
3664
3665//===----------------------------------------------------------------------===//
Dan Gohmanbff6b582009-05-04 22:30:44 +00003666// SCEVCallbackVH Class Implementation
3667//===----------------------------------------------------------------------===//
3668
Dan Gohman999d14e2009-05-19 19:22:47 +00003669void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003670 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3671 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3672 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003673 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
3674 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003675 SE->Scalars.erase(getValPtr());
3676 // this now dangles!
3677}
3678
Dan Gohman999d14e2009-05-19 19:22:47 +00003679void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003680 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3681
3682 // Forget all the expressions associated with users of the old value,
3683 // so that future queries will recompute the expressions using the new
3684 // value.
3685 SmallVector<User *, 16> Worklist;
3686 Value *Old = getValPtr();
3687 bool DeleteOld = false;
3688 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3689 UI != UE; ++UI)
3690 Worklist.push_back(*UI);
3691 while (!Worklist.empty()) {
3692 User *U = Worklist.pop_back_val();
3693 // Deleting the Old value will cause this to dangle. Postpone
3694 // that until everything else is done.
3695 if (U == Old) {
3696 DeleteOld = true;
3697 continue;
3698 }
3699 if (PHINode *PN = dyn_cast<PHINode>(U))
3700 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003701 if (Instruction *I = dyn_cast<Instruction>(U))
3702 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003703 if (SE->Scalars.erase(U))
3704 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3705 UI != UE; ++UI)
3706 Worklist.push_back(*UI);
3707 }
3708 if (DeleteOld) {
3709 if (PHINode *PN = dyn_cast<PHINode>(Old))
3710 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003711 if (Instruction *I = dyn_cast<Instruction>(Old))
3712 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003713 SE->Scalars.erase(Old);
3714 // this now dangles!
3715 }
3716 // this may dangle!
3717}
3718
Dan Gohman999d14e2009-05-19 19:22:47 +00003719ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohmanbff6b582009-05-04 22:30:44 +00003720 : CallbackVH(V), SE(se) {}
3721
3722//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003723// ScalarEvolution Class Implementation
3724//===----------------------------------------------------------------------===//
3725
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003726ScalarEvolution::ScalarEvolution()
3727 : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3728}
3729
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003730bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003731 this->F = &F;
3732 LI = &getAnalysis<LoopInfo>();
3733 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003734 return false;
3735}
3736
3737void ScalarEvolution::releaseMemory() {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003738 Scalars.clear();
3739 BackedgeTakenCounts.clear();
3740 ConstantEvolutionLoopExitValue.clear();
Dan Gohmanda0071e2009-05-08 20:47:27 +00003741 ValuesAtScopes.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003742}
3743
3744void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3745 AU.setPreservesAll();
3746 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman01c2ee72009-04-16 03:18:22 +00003747}
3748
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003749bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003750 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003751}
3752
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003753static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003754 const Loop *L) {
3755 // Print all inner loops first
3756 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3757 PrintLoopInfo(OS, SE, *I);
3758
Nick Lewyckye5da1912008-01-02 02:49:20 +00003759 OS << "Loop " << L->getHeader()->getName() << ": ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003760
Devang Patel02451fa2007-08-21 00:31:24 +00003761 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003762 L->getExitBlocks(ExitBlocks);
3763 if (ExitBlocks.size() != 1)
Nick Lewyckye5da1912008-01-02 02:49:20 +00003764 OS << "<multiple exits> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003765
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003766 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3767 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003768 } else {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003769 OS << "Unpredictable backedge-taken count. ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003770 }
3771
Nick Lewyckye5da1912008-01-02 02:49:20 +00003772 OS << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003773}
3774
Dan Gohman13058cc2009-04-21 00:47:46 +00003775void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003776 // ScalarEvolution's implementaiton of the print method is to print
3777 // out SCEV values of all instructions that are interesting. Doing
3778 // this potentially causes it to create new SCEV objects though,
3779 // which technically conflicts with the const qualifier. This isn't
3780 // observable from outside the class though (the hasSCEV function
3781 // notwithstanding), so casting away the const isn't dangerous.
3782 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003783
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003784 OS << "Classifying expressions for: " << F->getName() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003785 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohman43d37e92009-04-30 01:30:18 +00003786 if (isSCEVable(I->getType())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003787 OS << *I;
Dan Gohmanabe991f2008-09-14 17:21:12 +00003788 OS << " --> ";
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003789 SCEVHandle SV = SE.getSCEV(&*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003790 SV->print(OS);
3791 OS << "\t\t";
3792
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003793 if (const Loop *L = LI->getLoopFor((*I).getParent())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003794 OS << "Exits: ";
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003795 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
Dan Gohmanaff14d62009-05-24 23:25:42 +00003796 if (!ExitValue->isLoopInvariant(L)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003797 OS << "<<Unknown>>";
3798 } else {
3799 OS << *ExitValue;
3800 }
3801 }
3802
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003803 OS << "\n";
3804 }
3805
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003806 OS << "Determining loop execution counts for: " << F->getName() << "\n";
3807 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3808 PrintLoopInfo(OS, &SE, *I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003809}
Dan Gohman13058cc2009-04-21 00:47:46 +00003810
3811void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3812 raw_os_ostream OS(o);
3813 print(OS, M);
3814}