blob: f42af12720e50a1e3495d15cc23cc13f4edb6aa6 [file] [log] [blame]
Chris Lattnerce52b7e2004-06-01 06:48:00 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
Jim Laskeyb744c252006-12-15 10:40:48 +00005 <meta http-equiv="content-type" content="text/html; charset=utf-8">
Chris Lattnerce52b7e2004-06-01 06:48:00 +00006 <title>The LLVM Target-Independent Code Generator</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
Benjamin Kramer943beeb2010-10-30 21:07:28 +00008
9 <style type="text/css">
10 .unknown { background-color: #C0C0C0; text-align: center; }
11 .unknown:before { content: "?" }
12 .no { background-color: #C11B17 }
13 .no:before { content: "N" }
14 .partial { background-color: #F88017 }
15 .yes { background-color: #0F0; }
16 .yes:before { content: "Y" }
17 </style>
18
Chris Lattnerce52b7e2004-06-01 06:48:00 +000019</head>
20<body>
21
NAKAMURA Takumi05d02652011-04-18 23:59:50 +000022<h1>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000023 The LLVM Target-Independent Code Generator
NAKAMURA Takumi05d02652011-04-18 23:59:50 +000024</h1>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000025
26<ol>
27 <li><a href="#introduction">Introduction</a>
28 <ul>
29 <li><a href="#required">Required components in the code generator</a></li>
Chris Lattnere35d3bb2005-10-16 00:36:38 +000030 <li><a href="#high-level-design">The high-level design of the code
31 generator</a></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000032 <li><a href="#tablegen">Using TableGen for target description</a></li>
33 </ul>
34 </li>
35 <li><a href="#targetdesc">Target description classes</a>
36 <ul>
37 <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
38 <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000039 <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
Dan Gohman6f0d0242008-02-10 18:45:23 +000040 <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000041 <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
42 <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
Chris Lattner47adebb2005-10-16 17:06:07 +000043 <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000044 <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li>
45 </ul>
46 </li>
Chris Lattnere1b83452010-09-11 23:02:10 +000047 <li><a href="#codegendesc">The "Machine" Code Generator classes</a>
Chris Lattnerec94f802004-06-04 00:16:02 +000048 <ul>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000049 <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
Chris Lattner32e89f22005-10-16 18:31:08 +000050 <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt>
51 class</a></li>
52 <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li>
Chris Lattnerec94f802004-06-04 00:16:02 +000053 </ul>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000054 </li>
Chris Lattnere1b83452010-09-11 23:02:10 +000055 <li><a href="#mc">The "MC" Layer</a>
56 <ul>
57 <li><a href="#mcstreamer">The <tt>MCStreamer</tt> API</a></li>
58 <li><a href="#mccontext">The <tt>MCContext</tt> class</a>
59 <li><a href="#mcsymbol">The <tt>MCSymbol</tt> class</a></li>
60 <li><a href="#mcsection">The <tt>MCSection</tt> class</a></li>
61 <li><a href="#mcinst">The <tt>MCInst</tt> class</a></li>
62 </ul>
63 </li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000064 <li><a href="#codegenalgs">Target-independent code generation algorithms</a>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000065 <ul>
66 <li><a href="#instselect">Instruction Selection</a>
67 <ul>
68 <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li>
69 <li><a href="#selectiondag_process">SelectionDAG Code Generation
70 Process</a></li>
71 <li><a href="#selectiondag_build">Initial SelectionDAG
72 Construction</a></li>
Dan Gohman641b2792008-11-24 16:27:17 +000073 <li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000074 <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li>
75 <li><a href="#selectiondag_optimize">SelectionDAG Optimization
Chris Lattnere35d3bb2005-10-16 00:36:38 +000076 Phase: the DAG Combiner</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000077 <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li>
Chris Lattner32e89f22005-10-16 18:31:08 +000078 <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation
Chris Lattnere35d3bb2005-10-16 00:36:38 +000079 Phase</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000080 <li><a href="#selectiondag_future">Future directions for the
81 SelectionDAG</a></li>
82 </ul></li>
Bill Wendling3fc488d2006-09-06 18:42:41 +000083 <li><a href="#liveintervals">Live Intervals</a>
Bill Wendling2f87a882006-09-04 23:35:52 +000084 <ul>
85 <li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
Bill Wendling3fc488d2006-09-06 18:42:41 +000086 <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
Bill Wendling2f87a882006-09-04 23:35:52 +000087 </ul></li>
Bill Wendlinga396ee82006-09-01 21:46:00 +000088 <li><a href="#regalloc">Register Allocation</a>
89 <ul>
90 <li><a href="#regAlloc_represent">How registers are represented in
91 LLVM</a></li>
92 <li><a href="#regAlloc_howTo">Mapping virtual registers to physical
93 registers</a></li>
94 <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
95 <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
96 <li><a href="#regAlloc_fold">Instruction folding</a></li>
97 <li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
98 </ul></li>
Chris Lattnere1b83452010-09-11 23:02:10 +000099 <li><a href="#codeemit">Code Emission</a></li>
Anshuman Dasgupta6805b562011-12-06 23:12:42 +0000100 <li><a href="#vliw_packetizer">VLIW Packetizer</a>
101 <ul>
102 <li><a href="#vliw_mapping">Mapping from instructions to functional
103 units</a></li>
104 <li><a href="#vliw_repr">How the packetization tables are
105 generated and used</a></li>
106 </ul>
107 </li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000108 </ul>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000109 </li>
Chris Lattnere1b83452010-09-11 23:02:10 +0000110 <li><a href="#nativeassembler">Implementing a Native Assembler</a></li>
111
Chris Lattner32e89f22005-10-16 18:31:08 +0000112 <li><a href="#targetimpls">Target-specific Implementation Notes</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000113 <ul>
Chris Lattner68de6022010-10-24 16:18:00 +0000114 <li><a href="#targetfeatures">Target Feature Matrix</a></li>
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000115 <li><a href="#tailcallopt">Tail call optimization</a></li>
Evan Chengdc444e92010-03-08 21:05:02 +0000116 <li><a href="#sibcallopt">Sibling call optimization</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000117 <li><a href="#x86">The X86 backend</a></li>
Jim Laskeyb744c252006-12-15 10:40:48 +0000118 <li><a href="#ppc">The PowerPC backend</a>
Jim Laskey762b6cb2006-12-14 17:19:50 +0000119 <ul>
120 <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
121 <li><a href="#ppc_frame">Frame Layout</a></li>
122 <li><a href="#ppc_prolog">Prolog/Epilog</a></li>
123 <li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
Jim Laskeyb744c252006-12-15 10:40:48 +0000124 </ul></li>
Justin Holewinskidceb0022011-08-11 17:34:16 +0000125 <li><a href="#ptx">The PTX backend</a></li>
Jim Laskeyb744c252006-12-15 10:40:48 +0000126 </ul></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000127
128</ol>
129
130<div class="doc_author">
Chris Lattnere1b83452010-09-11 23:02:10 +0000131 <p>Written by the LLVM Team.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000132</div>
133
Chris Lattner10d68002004-06-01 17:18:11 +0000134<div class="doc_warning">
135 <p>Warning: This is a work in progress.</p>
136</div>
137
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000138<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000139<h2>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000140 <a name="introduction">Introduction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000141</h2>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000142<!-- *********************************************************************** -->
143
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000144<div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000145
146<p>The LLVM target-independent code generator is a framework that provides a
Bill Wendling80118802009-04-15 02:12:37 +0000147 suite of reusable components for translating the LLVM internal representation
148 to the machine code for a specified target&mdash;either in assembly form
149 (suitable for a static compiler) or in binary machine code format (usable for
Chris Lattnere1b83452010-09-11 23:02:10 +0000150 a JIT compiler). The LLVM target-independent code generator consists of six
Bill Wendling80118802009-04-15 02:12:37 +0000151 main components:</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000152
153<ol>
Bill Wendling80118802009-04-15 02:12:37 +0000154 <li><a href="#targetdesc">Abstract target description</a> interfaces which
155 capture important properties about various aspects of the machine,
156 independently of how they will be used. These interfaces are defined in
157 <tt>include/llvm/Target/</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000158
Chris Lattnere1b83452010-09-11 23:02:10 +0000159 <li>Classes used to represent the <a href="#codegendesc">code being
160 generated</a> for a target. These classes are intended to be abstract
Bill Wendling80118802009-04-15 02:12:37 +0000161 enough to represent the machine code for <i>any</i> target machine. These
Chris Lattnere1b83452010-09-11 23:02:10 +0000162 classes are defined in <tt>include/llvm/CodeGen/</tt>. At this level,
163 concepts like "constant pool entries" and "jump tables" are explicitly
164 exposed.</li>
165
166 <li>Classes and algorithms used to represent code as the object file level,
167 the <a href="#mc">MC Layer</a>. These classes represent assembly level
168 constructs like labels, sections, and instructions. At this level,
169 concepts like "constant pool entries" and "jump tables" don't exist.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000170
Bill Wendling80118802009-04-15 02:12:37 +0000171 <li><a href="#codegenalgs">Target-independent algorithms</a> used to implement
172 various phases of native code generation (register allocation, scheduling,
173 stack frame representation, etc). This code lives
174 in <tt>lib/CodeGen/</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000175
Bill Wendling80118802009-04-15 02:12:37 +0000176 <li><a href="#targetimpls">Implementations of the abstract target description
177 interfaces</a> for particular targets. These machine descriptions make
178 use of the components provided by LLVM, and can optionally provide custom
179 target-specific passes, to build complete code generators for a specific
180 target. Target descriptions live in <tt>lib/Target/</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000181
Bill Wendling80118802009-04-15 02:12:37 +0000182 <li><a href="#jit">The target-independent JIT components</a>. The LLVM JIT is
183 completely target independent (it uses the <tt>TargetJITInfo</tt>
184 structure to interface for target-specific issues. The code for the
185 target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000186</ol>
187
Bill Wendling80118802009-04-15 02:12:37 +0000188<p>Depending on which part of the code generator you are interested in working
189 on, different pieces of this will be useful to you. In any case, you should
190 be familiar with the <a href="#targetdesc">target description</a>
191 and <a href="#codegendesc">machine code representation</a> classes. If you
192 want to add a backend for a new target, you will need
193 to <a href="#targetimpls">implement the target description</a> classes for
194 your new target and understand the <a href="LangRef.html">LLVM code
195 representation</a>. If you are interested in implementing a
196 new <a href="#codegenalgs">code generation algorithm</a>, it should only
197 depend on the target-description and machine code representation classes,
198 ensuring that it is portable.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000199
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000200<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000201<h3>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000202 <a name="required">Required components in the code generator</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000203</h3>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000204
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000205<div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000206
207<p>The two pieces of the LLVM code generator are the high-level interface to the
Bill Wendling80118802009-04-15 02:12:37 +0000208 code generator and the set of reusable components that can be used to build
209 target-specific backends. The two most important interfaces
210 (<a href="#targetmachine"><tt>TargetMachine</tt></a>
211 and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are
212 required to be defined for a backend to fit into the LLVM system, but the
213 others must be defined if the reusable code generator components are going to
214 be used.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000215
216<p>This design has two important implications. The first is that LLVM can
Bill Wendling80118802009-04-15 02:12:37 +0000217 support completely non-traditional code generation targets. For example, the
218 C backend does not require register allocation, instruction selection, or any
219 of the other standard components provided by the system. As such, it only
220 implements these two interfaces, and does its own thing. Another example of
221 a code generator like this is a (purely hypothetical) backend that converts
222 LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000223
Bill Wendling80118802009-04-15 02:12:37 +0000224<p>This design also implies that it is possible to design and implement
225 radically different code generators in the LLVM system that do not make use
226 of any of the built-in components. Doing so is not recommended at all, but
227 could be required for radically different targets that do not fit into the
228 LLVM machine description model: FPGAs for example.</p>
Chris Lattner900bf8c2004-06-02 07:06:06 +0000229
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000230</div>
231
232<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000233<h3>
Chris Lattner10d68002004-06-01 17:18:11 +0000234 <a name="high-level-design">The high-level design of the code generator</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000235</h3>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000236
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000237<div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000238
Bill Wendling80118802009-04-15 02:12:37 +0000239<p>The LLVM target-independent code generator is designed to support efficient
240 and quality code generation for standard register-based microprocessors.
241 Code generation in this model is divided into the following stages:</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000242
243<ol>
Bill Wendling80118802009-04-15 02:12:37 +0000244 <li><b><a href="#instselect">Instruction Selection</a></b> &mdash; This phase
245 determines an efficient way to express the input LLVM code in the target
246 instruction set. This stage produces the initial code for the program in
247 the target instruction set, then makes use of virtual registers in SSA
248 form and physical registers that represent any required register
249 assignments due to target constraints or calling conventions. This step
250 turns the LLVM code into a DAG of target instructions.</li>
Chris Lattner32e89f22005-10-16 18:31:08 +0000251
Bill Wendling80118802009-04-15 02:12:37 +0000252 <li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> &mdash;
253 This phase takes the DAG of target instructions produced by the
254 instruction selection phase, determines an ordering of the instructions,
255 then emits the instructions
256 as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering.
257 Note that we describe this in the <a href="#instselect">instruction
258 selection section</a> because it operates on
259 a <a href="#selectiondag_intro">SelectionDAG</a>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000260
Bill Wendling80118802009-04-15 02:12:37 +0000261 <li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> &mdash;
262 This optional stage consists of a series of machine-code optimizations
263 that operate on the SSA-form produced by the instruction selector.
264 Optimizations like modulo-scheduling or peephole optimization work
265 here.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000266
Bill Wendling80118802009-04-15 02:12:37 +0000267 <li><b><a href="#regalloc">Register Allocation</a></b> &mdash; The target code
268 is transformed from an infinite virtual register file in SSA form to the
269 concrete register file used by the target. This phase introduces spill
270 code and eliminates all virtual register references from the program.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000271
Bill Wendling80118802009-04-15 02:12:37 +0000272 <li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> &mdash; Once
273 the machine code has been generated for the function and the amount of
274 stack space required is known (used for LLVM alloca's and spill slots),
275 the prolog and epilog code for the function can be inserted and "abstract
276 stack location references" can be eliminated. This stage is responsible
277 for implementing optimizations like frame-pointer elimination and stack
278 packing.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000279
Bill Wendling80118802009-04-15 02:12:37 +0000280 <li><b><a href="#latemco">Late Machine Code Optimizations</a></b> &mdash;
281 Optimizations that operate on "final" machine code can go here, such as
282 spill code scheduling and peephole optimizations.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000283
Bill Wendling80118802009-04-15 02:12:37 +0000284 <li><b><a href="#codeemit">Code Emission</a></b> &mdash; The final stage
285 actually puts out the code for the current function, either in the target
286 assembler format or in machine code.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000287</ol>
288
Bill Wendling91e10c42006-08-28 02:26:32 +0000289<p>The code generator is based on the assumption that the instruction selector
Bill Wendling80118802009-04-15 02:12:37 +0000290 will use an optimal pattern matching selector to create high-quality
291 sequences of native instructions. Alternative code generator designs based
292 on pattern expansion and aggressive iterative peephole optimization are much
293 slower. This design permits efficient compilation (important for JIT
294 environments) and aggressive optimization (used when generating code offline)
295 by allowing components of varying levels of sophistication to be used for any
296 step of compilation.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000297
Bill Wendling91e10c42006-08-28 02:26:32 +0000298<p>In addition to these stages, target implementations can insert arbitrary
Bill Wendling80118802009-04-15 02:12:37 +0000299 target-specific passes into the flow. For example, the X86 target uses a
300 special pass to handle the 80x87 floating point stack architecture. Other
301 targets with unusual requirements can be supported with custom passes as
302 needed.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000303
304</div>
305
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000306<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000307<h3>
Chris Lattner10d68002004-06-01 17:18:11 +0000308 <a name="tablegen">Using TableGen for target description</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000309</h3>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000310
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000311<div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000312
Chris Lattner5489e932004-06-01 18:35:00 +0000313<p>The target description classes require a detailed description of the target
Bill Wendling80118802009-04-15 02:12:37 +0000314 architecture. These target descriptions often have a large amount of common
315 information (e.g., an <tt>add</tt> instruction is almost identical to a
316 <tt>sub</tt> instruction). In order to allow the maximum amount of
317 commonality to be factored out, the LLVM code generator uses
318 the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big
319 chunks of the target machine, which allows the use of domain-specific and
320 target-specific abstractions to reduce the amount of repetition.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000321
Chris Lattner32e89f22005-10-16 18:31:08 +0000322<p>As LLVM continues to be developed and refined, we plan to move more and more
Bill Wendling80118802009-04-15 02:12:37 +0000323 of the target description to the <tt>.td</tt> form. Doing so gives us a
324 number of advantages. The most important is that it makes it easier to port
325 LLVM because it reduces the amount of C++ code that has to be written, and
326 the surface area of the code generator that needs to be understood before
327 someone can get something working. Second, it makes it easier to change
328 things. In particular, if tables and other things are all emitted
329 by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to
330 update all of the targets to a new interface.</p>
Chris Lattner32e89f22005-10-16 18:31:08 +0000331
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000332</div>
333
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000334</div>
335
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000336<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000337<h2>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000338 <a name="targetdesc">Target description classes</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000339</h2>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000340<!-- *********************************************************************** -->
341
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000342<div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000343
Bill Wendling91e10c42006-08-28 02:26:32 +0000344<p>The LLVM target description classes (located in the
Bill Wendling80118802009-04-15 02:12:37 +0000345 <tt>include/llvm/Target</tt> directory) provide an abstract description of
346 the target machine independent of any particular client. These classes are
347 designed to capture the <i>abstract</i> properties of the target (such as the
348 instructions and registers it has), and do not incorporate any particular
349 pieces of code generation algorithms.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000350
Bill Wendling80118802009-04-15 02:12:37 +0000351<p>All of the target description classes (except the
352 <tt><a href="#targetdata">TargetData</a></tt> class) are designed to be
353 subclassed by the concrete target implementation, and have virtual methods
354 implemented. To get to these implementations, the
355 <tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors
356 that should be implemented by the target.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000357
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000358<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000359<h3>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000360 <a name="targetmachine">The <tt>TargetMachine</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000361</h3>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000362
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000363<div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000364
365<p>The <tt>TargetMachine</tt> class provides virtual methods that are used to
Bill Wendling80118802009-04-15 02:12:37 +0000366 access the target-specific implementations of the various target description
367 classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>,
368 <tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.). This class is
369 designed to be specialized by a concrete target implementation
370 (e.g., <tt>X86TargetMachine</tt>) which implements the various virtual
371 methods. The only required target description class is
372 the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code
373 generator components are to be used, the other interfaces should be
374 implemented as well.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000375
376</div>
377
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000378<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000379<h3>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000380 <a name="targetdata">The <tt>TargetData</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000381</h3>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000382
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000383<div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000384
385<p>The <tt>TargetData</tt> class is the only required target description class,
Bill Wendling80118802009-04-15 02:12:37 +0000386 and it is the only class that is not extensible (you cannot derived a new
387 class from it). <tt>TargetData</tt> specifies information about how the
388 target lays out memory for structures, the alignment requirements for various
389 data types, the size of pointers in the target, and whether the target is
390 little-endian or big-endian.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000391
392</div>
393
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000394<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000395<h3>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000396 <a name="targetlowering">The <tt>TargetLowering</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000397</h3>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000398
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000399<div>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000400
401<p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction
Bill Wendling80118802009-04-15 02:12:37 +0000402 selectors primarily to describe how LLVM code should be lowered to
403 SelectionDAG operations. Among other things, this class indicates:</p>
Bill Wendling91e10c42006-08-28 02:26:32 +0000404
405<ul>
Bill Wendling80118802009-04-15 02:12:37 +0000406 <li>an initial register class to use for various <tt>ValueType</tt>s,</li>
407
408 <li>which operations are natively supported by the target machine,</li>
409
410 <li>the return type of <tt>setcc</tt> operations,</li>
411
412 <li>the type to use for shift amounts, and</li>
413
Chris Lattner32e89f22005-10-16 18:31:08 +0000414 <li>various high-level characteristics, like whether it is profitable to turn
415 division by a constant into a multiplication sequence</li>
Jim Laskeyb744c252006-12-15 10:40:48 +0000416</ul>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000417
418</div>
419
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000420<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000421<h3>
Dan Gohman6f0d0242008-02-10 18:45:23 +0000422 <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000423</h3>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000424
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000425<div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000426
Bill Wendling80118802009-04-15 02:12:37 +0000427<p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file
428 of the target and any interactions between the registers.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000429
430<p>Registers in the code generator are represented in the code generator by
Bill Wendling80118802009-04-15 02:12:37 +0000431 unsigned integers. Physical registers (those that actually exist in the
432 target description) are unique small numbers, and virtual registers are
433 generally large. Note that register #0 is reserved as a flag value.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000434
435<p>Each register in the processor description has an associated
Bill Wendling80118802009-04-15 02:12:37 +0000436 <tt>TargetRegisterDesc</tt> entry, which provides a textual name for the
437 register (used for assembly output and debugging dumps) and a set of aliases
438 (used to indicate whether one register overlaps with another).</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000439
Dan Gohman6f0d0242008-02-10 18:45:23 +0000440<p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt>
Bill Wendling80118802009-04-15 02:12:37 +0000441 class exposes a set of processor specific register classes (instances of the
442 <tt>TargetRegisterClass</tt> class). Each register class contains sets of
443 registers that have the same properties (for example, they are all 32-bit
444 integer registers). Each SSA virtual register created by the instruction
445 selector has an associated register class. When the register allocator runs,
446 it replaces virtual registers with a physical register in the set.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000447
Bill Wendling80118802009-04-15 02:12:37 +0000448<p>The target-specific implementations of these classes is auto-generated from
449 a <a href="TableGenFundamentals.html">TableGen</a> description of the
450 register file.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000451
452</div>
453
454<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000455<h3>
Chris Lattner10d68002004-06-01 17:18:11 +0000456 <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000457</h3>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000458
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000459<div>
Bill Wendling80118802009-04-15 02:12:37 +0000460
461<p>The <tt>TargetInstrInfo</tt> class is used to describe the machine
462 instructions supported by the target. It is essentially an array of
463 <tt>TargetInstrDescriptor</tt> objects, each of which describes one
464 instruction the target supports. Descriptors define things like the mnemonic
465 for the opcode, the number of operands, the list of implicit register uses
466 and defs, whether the instruction has certain target-independent properties
467 (accesses memory, is commutable, etc), and holds any target-specific
468 flags.</p>
469
Reid Spencer627cd002005-07-19 01:36:35 +0000470</div>
471
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000472<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000473<h3>
Chris Lattner10d68002004-06-01 17:18:11 +0000474 <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000475</h3>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000476
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000477<div>
Bill Wendling80118802009-04-15 02:12:37 +0000478
479<p>The <tt>TargetFrameInfo</tt> class is used to provide information about the
480 stack frame layout of the target. It holds the direction of stack growth, the
481 known stack alignment on entry to each function, and the offset to the local
482 area. The offset to the local area is the offset from the stack pointer on
483 function entry to the first location where function data (local variables,
484 spill locations) can be stored.</p>
485
Reid Spencer627cd002005-07-19 01:36:35 +0000486</div>
Chris Lattner47adebb2005-10-16 17:06:07 +0000487
488<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000489<h3>
Chris Lattner47adebb2005-10-16 17:06:07 +0000490 <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000491</h3>
Chris Lattner47adebb2005-10-16 17:06:07 +0000492
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000493<div>
Bill Wendling80118802009-04-15 02:12:37 +0000494
495<p>The <tt>TargetSubtarget</tt> class is used to provide information about the
496 specific chip set being targeted. A sub-target informs code generation of
497 which instructions are supported, instruction latencies and instruction
498 execution itinerary; i.e., which processing units are used, in what order,
499 and for how long.</p>
500
Chris Lattner47adebb2005-10-16 17:06:07 +0000501</div>
502
503
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000504<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000505<h3>
Chris Lattner10d68002004-06-01 17:18:11 +0000506 <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000507</h3>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000508
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000509<div>
Bill Wendling80118802009-04-15 02:12:37 +0000510
511<p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the
512 Just-In-Time code generator to perform target-specific activities, such as
513 emitting stubs. If a <tt>TargetMachine</tt> supports JIT code generation, it
514 should provide one of these objects through the <tt>getJITInfo</tt>
515 method.</p>
516
Bill Wendling91e10c42006-08-28 02:26:32 +0000517</div>
518
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000519</div>
520
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000521<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000522<h2>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000523 <a name="codegendesc">Machine code description classes</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000524</h2>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000525<!-- *********************************************************************** -->
526
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000527<div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000528
Bill Wendling91e10c42006-08-28 02:26:32 +0000529<p>At the high-level, LLVM code is translated to a machine specific
Bill Wendling80118802009-04-15 02:12:37 +0000530 representation formed out of
531 <a href="#machinefunction"><tt>MachineFunction</tt></a>,
532 <a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>,
533 and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined
534 in <tt>include/llvm/CodeGen</tt>). This representation is completely target
535 agnostic, representing instructions in their most abstract form: an opcode
536 and a series of operands. This representation is designed to support both an
537 SSA representation for machine code, as well as a register allocated, non-SSA
538 form.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000539
Chris Lattnerec94f802004-06-04 00:16:02 +0000540<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000541<h3>
Chris Lattnerec94f802004-06-04 00:16:02 +0000542 <a name="machineinstr">The <tt>MachineInstr</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000543</h3>
Chris Lattnerec94f802004-06-04 00:16:02 +0000544
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000545<div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000546
547<p>Target machine instructions are represented as instances of the
Bill Wendling80118802009-04-15 02:12:37 +0000548 <tt>MachineInstr</tt> class. This class is an extremely abstract way of
549 representing machine instructions. In particular, it only keeps track of an
550 opcode number and a set of operands.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000551
Bill Wendling80118802009-04-15 02:12:37 +0000552<p>The opcode number is a simple unsigned integer that only has meaning to a
553 specific backend. All of the instructions for a target should be defined in
554 the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are
555 auto-generated from this description. The <tt>MachineInstr</tt> class does
556 not have any information about how to interpret the instruction (i.e., what
557 the semantics of the instruction are); for that you must refer to the
558 <tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000559
Bill Wendling80118802009-04-15 02:12:37 +0000560<p>The operands of a machine instruction can be of several different types: a
561 register reference, a constant integer, a basic block reference, etc. In
562 addition, a machine operand should be marked as a def or a use of the value
563 (though only registers are allowed to be defs).</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000564
565<p>By convention, the LLVM code generator orders instruction operands so that
Bill Wendling80118802009-04-15 02:12:37 +0000566 all register definitions come before the register uses, even on architectures
567 that are normally printed in other orders. For example, the SPARC add
568 instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
569 and stores the result into the "%i3" register. In the LLVM code generator,
570 the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the
571 destination first.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000572
Bill Wendling80118802009-04-15 02:12:37 +0000573<p>Keeping destination (definition) operands at the beginning of the operand
574 list has several advantages. In particular, the debugging printer will print
575 the instruction like this:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000576
Bill Wendling91e10c42006-08-28 02:26:32 +0000577<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000578<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000579%r3 = add %i1, %i2
Chris Lattnerec94f802004-06-04 00:16:02 +0000580</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000581</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000582
Bill Wendling80118802009-04-15 02:12:37 +0000583<p>Also if the first operand is a def, it is easier to <a href="#buildmi">create
584 instructions</a> whose only def is the first operand.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000585
Chris Lattnerec94f802004-06-04 00:16:02 +0000586<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000587<h4>
Chris Lattnerec94f802004-06-04 00:16:02 +0000588 <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000589</h4>
Chris Lattnerec94f802004-06-04 00:16:02 +0000590
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000591<div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000592
593<p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
Bill Wendling80118802009-04-15 02:12:37 +0000594 located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file. The
595 <tt>BuildMI</tt> functions make it easy to build arbitrary machine
596 instructions. Usage of the <tt>BuildMI</tt> functions look like this:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000597
Bill Wendling91e10c42006-08-28 02:26:32 +0000598<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000599<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000600// Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
601// instruction. The '1' specifies how many operands will be added.
602MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
Chris Lattnerec94f802004-06-04 00:16:02 +0000603
Bill Wendling91e10c42006-08-28 02:26:32 +0000604// Create the same instr, but insert it at the end of a basic block.
605MachineBasicBlock &amp;MBB = ...
606BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
Chris Lattnerec94f802004-06-04 00:16:02 +0000607
Bill Wendling91e10c42006-08-28 02:26:32 +0000608// Create the same instr, but insert it before a specified iterator point.
609MachineBasicBlock::iterator MBBI = ...
610BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
Chris Lattnerec94f802004-06-04 00:16:02 +0000611
Bill Wendling91e10c42006-08-28 02:26:32 +0000612// Create a 'cmp Reg, 0' instruction, no destination reg.
613MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
614// Create an 'sahf' instruction which takes no operands and stores nothing.
615MI = BuildMI(X86::SAHF, 0);
Chris Lattnerec94f802004-06-04 00:16:02 +0000616
Bill Wendling91e10c42006-08-28 02:26:32 +0000617// Create a self looping branch instruction.
618BuildMI(MBB, X86::JNE, 1).addMBB(&amp;MBB);
Chris Lattnerec94f802004-06-04 00:16:02 +0000619</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000620</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000621
Bill Wendling91e10c42006-08-28 02:26:32 +0000622<p>The key thing to remember with the <tt>BuildMI</tt> functions is that you
Bill Wendling80118802009-04-15 02:12:37 +0000623 have to specify the number of operands that the machine instruction will
624 take. This allows for efficient memory allocation. You also need to specify
625 if operands default to be uses of values, not definitions. If you need to
626 add a definition operand (other than the optional destination register), you
627 must explicitly mark it as such:</p>
Bill Wendling91e10c42006-08-28 02:26:32 +0000628
629<div class="doc_code">
630<pre>
Bill Wendling587daed2009-05-13 21:33:08 +0000631MI.addReg(Reg, RegState::Define);
Bill Wendling91e10c42006-08-28 02:26:32 +0000632</pre>
633</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000634
635</div>
636
637<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000638<h4>
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000639 <a name="fixedregs">Fixed (preassigned) registers</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000640</h4>
Chris Lattnerec94f802004-06-04 00:16:02 +0000641
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000642<div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000643
644<p>One important issue that the code generator needs to be aware of is the
Bill Wendling80118802009-04-15 02:12:37 +0000645 presence of fixed registers. In particular, there are often places in the
646 instruction stream where the register allocator <em>must</em> arrange for a
647 particular value to be in a particular register. This can occur due to
648 limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
649 with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like
650 calling conventions. In any case, the instruction selector should emit code
651 that copies a virtual register into or out of a physical register when
652 needed.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000653
654<p>For example, consider this simple LLVM example:</p>
655
Bill Wendling91e10c42006-08-28 02:26:32 +0000656<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000657<pre>
Matthijs Kooijman61399af2008-06-04 15:46:35 +0000658define i32 @test(i32 %X, i32 %Y) {
659 %Z = udiv i32 %X, %Y
660 ret i32 %Z
Bill Wendling91e10c42006-08-28 02:26:32 +0000661}
Chris Lattnerec94f802004-06-04 00:16:02 +0000662</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000663</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000664
Bill Wendling91e10c42006-08-28 02:26:32 +0000665<p>The X86 instruction selector produces this machine code for the <tt>div</tt>
Bill Wendling80118802009-04-15 02:12:37 +0000666 and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to
667 get this):</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000668
Bill Wendling91e10c42006-08-28 02:26:32 +0000669<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000670<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000671;; Start of div
672%EAX = mov %reg1024 ;; Copy X (in reg1024) into EAX
673%reg1027 = sar %reg1024, 31
674%EDX = mov %reg1027 ;; Sign extend X into EDX
675idiv %reg1025 ;; Divide by Y (in reg1025)
676%reg1026 = mov %EAX ;; Read the result (Z) out of EAX
Chris Lattnerec94f802004-06-04 00:16:02 +0000677
Bill Wendling91e10c42006-08-28 02:26:32 +0000678;; Start of ret
679%EAX = mov %reg1026 ;; 32-bit return value goes in EAX
680ret
Chris Lattnerec94f802004-06-04 00:16:02 +0000681</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000682</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000683
Bill Wendling80118802009-04-15 02:12:37 +0000684<p>By the end of code generation, the register allocator has coalesced the
685 registers and deleted the resultant identity moves producing the following
686 code:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000687
Bill Wendling91e10c42006-08-28 02:26:32 +0000688<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000689<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000690;; X is in EAX, Y is in ECX
691mov %EAX, %EDX
692sar %EDX, 31
693idiv %ECX
694ret
Chris Lattnerec94f802004-06-04 00:16:02 +0000695</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000696</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000697
Bill Wendling80118802009-04-15 02:12:37 +0000698<p>This approach is extremely general (if it can handle the X86 architecture, it
699 can handle anything!) and allows all of the target specific knowledge about
700 the instruction stream to be isolated in the instruction selector. Note that
701 physical registers should have a short lifetime for good code generation, and
702 all physical registers are assumed dead on entry to and exit from basic
703 blocks (before register allocation). Thus, if you need a value to be live
704 across basic block boundaries, it <em>must</em> live in a virtual
705 register.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000706
707</div>
708
709<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000710<h4>
Bill Wendling91e10c42006-08-28 02:26:32 +0000711 <a name="ssa">Machine code in SSA form</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000712</h4>
Chris Lattnerec94f802004-06-04 00:16:02 +0000713
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000714<div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000715
Bill Wendling80118802009-04-15 02:12:37 +0000716<p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are
717 maintained in SSA-form until register allocation happens. For the most part,
718 this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes
719 become machine code PHI nodes, and virtual registers are only allowed to have
720 a single definition.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000721
Bill Wendling80118802009-04-15 02:12:37 +0000722<p>After register allocation, machine code is no longer in SSA-form because
723 there are no virtual registers left in the code.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000724
725</div>
726
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000727</div>
728
Chris Lattner32e89f22005-10-16 18:31:08 +0000729<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000730<h3>
Chris Lattner32e89f22005-10-16 18:31:08 +0000731 <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000732</h3>
Chris Lattner32e89f22005-10-16 18:31:08 +0000733
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000734<div>
Chris Lattner32e89f22005-10-16 18:31:08 +0000735
736<p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions
Bill Wendling80118802009-04-15 02:12:37 +0000737 (<tt><a href="#machineinstr">MachineInstr</a></tt> instances). It roughly
738 corresponds to the LLVM code input to the instruction selector, but there can
739 be a one-to-many mapping (i.e. one LLVM basic block can map to multiple
740 machine basic blocks). The <tt>MachineBasicBlock</tt> class has a
741 "<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it
742 comes from.</p>
Chris Lattner32e89f22005-10-16 18:31:08 +0000743
744</div>
745
746<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000747<h3>
Chris Lattner32e89f22005-10-16 18:31:08 +0000748 <a name="machinefunction">The <tt>MachineFunction</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000749</h3>
Chris Lattner32e89f22005-10-16 18:31:08 +0000750
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000751<div>
Chris Lattner32e89f22005-10-16 18:31:08 +0000752
753<p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks
Bill Wendling80118802009-04-15 02:12:37 +0000754 (<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances). It
755 corresponds one-to-one with the LLVM function input to the instruction
756 selector. In addition to a list of basic blocks,
757 the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>,
758 a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a
759 <tt>MachineRegisterInfo</tt>. See
760 <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>
Chris Lattner32e89f22005-10-16 18:31:08 +0000761
762</div>
763
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000764</div>
Chris Lattnere1b83452010-09-11 23:02:10 +0000765
766<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000767<h2>
Chris Lattnere1b83452010-09-11 23:02:10 +0000768 <a name="mc">The "MC" Layer</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000769</h2>
Chris Lattnere1b83452010-09-11 23:02:10 +0000770<!-- *********************************************************************** -->
771
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000772<div>
Chris Lattnere1b83452010-09-11 23:02:10 +0000773
774<p>
775The MC Layer is used to represent and process code at the raw machine code
776level, devoid of "high level" information like "constant pools", "jump tables",
777"global variables" or anything like that. At this level, LLVM handles things
778like label names, machine instructions, and sections in the object file. The
779code in this layer is used for a number of important purposes: the tail end of
780the code generator uses it to write a .s or .o file, and it is also used by the
Jay Foadd61895a2011-04-13 13:03:56 +0000781llvm-mc tool to implement standalone machine code assemblers and disassemblers.
Chris Lattnere1b83452010-09-11 23:02:10 +0000782</p>
783
784<p>
785This section describes some of the important classes. There are also a number
786of important subsystems that interact at this layer, they are described later
787in this manual.
788</p>
789
Chris Lattnere1b83452010-09-11 23:02:10 +0000790<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000791<h3>
Chris Lattnere1b83452010-09-11 23:02:10 +0000792 <a name="mcstreamer">The <tt>MCStreamer</tt> API</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000793</h3>
Chris Lattnere1b83452010-09-11 23:02:10 +0000794
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000795<div>
Chris Lattnere1b83452010-09-11 23:02:10 +0000796
797<p>
798MCStreamer is best thought of as an assembler API. It is an abstract API which
799is <em>implemented</em> in different ways (e.g. to output a .s file, output an
800ELF .o file, etc) but whose API correspond directly to what you see in a .s
801file. MCStreamer has one method per directive, such as EmitLabel,
802EmitSymbolAttribute, SwitchSection, EmitValue (for .byte, .word), etc, which
803directly correspond to assembly level directives. It also has an
804EmitInstruction method, which is used to output an MCInst to the streamer.
805</p>
806
807<p>
808This API is most important for two clients: the llvm-mc stand-alone assembler is
809effectively a parser that parses a line, then invokes a method on MCStreamer. In
810the code generator, the <a href="#codeemit">Code Emission</a> phase of the code
811generator lowers higher level LLVM IR and Machine* constructs down to the MC
812layer, emitting directives through MCStreamer.</p>
813
814<p>
815On the implementation side of MCStreamer, there are two major implementations:
816one for writing out a .s file (MCAsmStreamer), and one for writing out a .o
817file (MCObjectStreamer). MCAsmStreamer is a straight-forward implementation
818that prints out a directive for each method (e.g. EmitValue -&gt; .byte), but
819MCObjectStreamer implements a full assembler.
820</p>
821
822</div>
823
824<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000825<h3>
Chris Lattnere1b83452010-09-11 23:02:10 +0000826 <a name="mccontext">The <tt>MCContext</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000827</h3>
Chris Lattnere1b83452010-09-11 23:02:10 +0000828
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000829<div>
Chris Lattnere1b83452010-09-11 23:02:10 +0000830
831<p>
832The MCContext class is the owner of a variety of uniqued data structures at the
833MC layer, including symbols, sections, etc. As such, this is the class that you
834interact with to create symbols and sections. This class can not be subclassed.
835</p>
836
837</div>
838
839<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000840<h3>
Chris Lattnere1b83452010-09-11 23:02:10 +0000841 <a name="mcsymbol">The <tt>MCSymbol</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000842</h3>
Chris Lattnere1b83452010-09-11 23:02:10 +0000843
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000844<div>
Chris Lattnere1b83452010-09-11 23:02:10 +0000845
846<p>
847The MCSymbol class represents a symbol (aka label) in the assembly file. There
848are two interesting kinds of symbols: assembler temporary symbols, and normal
849symbols. Assembler temporary symbols are used and processed by the assembler
850but are discarded when the object file is produced. The distinction is usually
851represented by adding a prefix to the label, for example "L" labels are
852assembler temporary labels in MachO.
853</p>
854
855<p>MCSymbols are created by MCContext and uniqued there. This means that
856MCSymbols can be compared for pointer equivalence to find out if they are the
857same symbol. Note that pointer inequality does not guarantee the labels will
858end up at different addresses though. It's perfectly legal to output something
859like this to the .s file:<p>
860
861<pre>
862 foo:
863 bar:
864 .byte 4
865</pre>
866
867<p>In this case, both the foo and bar symbols will have the same address.</p>
868
869</div>
870
871<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000872<h3>
Chris Lattnere1b83452010-09-11 23:02:10 +0000873 <a name="mcsection">The <tt>MCSection</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000874</h3>
Chris Lattnere1b83452010-09-11 23:02:10 +0000875
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000876<div>
Chris Lattnere1b83452010-09-11 23:02:10 +0000877
878<p>
879The MCSection class represents an object-file specific section. It is subclassed
880by object file specific implementations (e.g. <tt>MCSectionMachO</tt>,
881<tt>MCSectionCOFF</tt>, <tt>MCSectionELF</tt>) and these are created and uniqued
882by MCContext. The MCStreamer has a notion of the current section, which can be
883changed with the SwitchToSection method (which corresponds to a ".section"
884directive in a .s file).
885</p>
886
887</div>
888
889<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000890<h3>
Benjamin Kramer943beeb2010-10-30 21:07:28 +0000891 <a name="mcinst">The <tt>MCInst</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000892</h3>
Chris Lattnere1b83452010-09-11 23:02:10 +0000893
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000894<div>
Chris Lattnere1b83452010-09-11 23:02:10 +0000895
896<p>
897The MCInst class is a target-independent representation of an instruction. It
898is a simple class (much more so than <a href="#machineinstr">MachineInstr</a>)
899that holds a target-specific opcode and a vector of MCOperands. MCOperand, in
900turn, is a simple discriminated union of three cases: 1) a simple immediate,
9012) a target register ID, 3) a symbolic expression (e.g. "Lfoo-Lbar+42") as an
902MCExpr.
903</p>
904
905<p>MCInst is the common currency used to represent machine instructions at the
906MC layer. It is the type used by the instruction encoder, the instruction
907printer, and the type generated by the assembly parser and disassembler.
908</p>
909
910</div>
911
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000912</div>
Chris Lattnere1b83452010-09-11 23:02:10 +0000913
Chris Lattnerec94f802004-06-04 00:16:02 +0000914<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000915<h2>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000916 <a name="codegenalgs">Target-independent code generation algorithms</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000917</h2>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000918<!-- *********************************************************************** -->
919
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000920<div>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000921
Bill Wendling80118802009-04-15 02:12:37 +0000922<p>This section documents the phases described in the
923 <a href="#high-level-design">high-level design of the code generator</a>.
924 It explains how they work and some of the rationale behind their design.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000925
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000926<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000927<h3>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000928 <a name="instselect">Instruction Selection</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000929</h3>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000930
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000931<div>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000932
Bill Wendling80118802009-04-15 02:12:37 +0000933<p>Instruction Selection is the process of translating LLVM code presented to
934 the code generator into target-specific machine instructions. There are
935 several well-known ways to do this in the literature. LLVM uses a
936 SelectionDAG based instruction selector.</p>
937
938<p>Portions of the DAG instruction selector are generated from the target
939 description (<tt>*.td</tt>) files. Our goal is for the entire instruction
940 selector to be generated from these <tt>.td</tt> files, though currently
941 there are still things that require custom C++ code.</p>
942
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000943<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000944<h4>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000945 <a name="selectiondag_intro">Introduction to SelectionDAGs</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000946</h4>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000947
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000948<div>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000949
Bill Wendling91e10c42006-08-28 02:26:32 +0000950<p>The SelectionDAG provides an abstraction for code representation in a way
Bill Wendling80118802009-04-15 02:12:37 +0000951 that is amenable to instruction selection using automatic techniques
952 (e.g. dynamic-programming based optimal pattern matching selectors). It is
953 also well-suited to other phases of code generation; in particular,
954 instruction scheduling (SelectionDAG's are very close to scheduling DAGs
955 post-selection). Additionally, the SelectionDAG provides a host
956 representation where a large variety of very-low-level (but
957 target-independent) <a href="#selectiondag_optimize">optimizations</a> may be
958 performed; ones which require extensive information about the instructions
959 efficiently supported by the target.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000960
Bill Wendling91e10c42006-08-28 02:26:32 +0000961<p>The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
Bill Wendling80118802009-04-15 02:12:37 +0000962 <tt>SDNode</tt> class. The primary payload of the <tt>SDNode</tt> is its
963 operation code (Opcode) that indicates what operation the node performs and
964 the operands to the operation. The various operation node types are
965 described at the top of the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
966 file.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000967
Bill Wendling80118802009-04-15 02:12:37 +0000968<p>Although most operations define a single value, each node in the graph may
969 define multiple values. For example, a combined div/rem operation will
970 define both the dividend and the remainder. Many other situations require
971 multiple values as well. Each node also has some number of operands, which
972 are edges to the node defining the used value. Because nodes may define
973 multiple values, edges are represented by instances of the <tt>SDValue</tt>
974 class, which is a <tt>&lt;SDNode, unsigned&gt;</tt> pair, indicating the node
975 and result value being used, respectively. Each value produced by
976 an <tt>SDNode</tt> has an associated <tt>MVT</tt> (Machine Value Type)
977 indicating what the type of the value is.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000978
Bill Wendling91e10c42006-08-28 02:26:32 +0000979<p>SelectionDAGs contain two different kinds of values: those that represent
Bill Wendling80118802009-04-15 02:12:37 +0000980 data flow and those that represent control flow dependencies. Data values
981 are simple edges with an integer or floating point value type. Control edges
982 are represented as "chain" edges which are of type <tt>MVT::Other</tt>.
983 These edges provide an ordering between nodes that have side effects (such as
984 loads, stores, calls, returns, etc). All nodes that have side effects should
985 take a token chain as input and produce a new one as output. By convention,
986 token chain inputs are always operand #0, and chain results are always the
987 last value produced by an operation.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000988
Bill Wendling91e10c42006-08-28 02:26:32 +0000989<p>A SelectionDAG has designated "Entry" and "Root" nodes. The Entry node is
Bill Wendling80118802009-04-15 02:12:37 +0000990 always a marker node with an Opcode of <tt>ISD::EntryToken</tt>. The Root
991 node is the final side-effecting node in the token chain. For example, in a
992 single basic block function it would be the return node.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000993
Bill Wendling91e10c42006-08-28 02:26:32 +0000994<p>One important concept for SelectionDAGs is the notion of a "legal" vs.
Bill Wendling80118802009-04-15 02:12:37 +0000995 "illegal" DAG. A legal DAG for a target is one that only uses supported
996 operations and supported types. On a 32-bit PowerPC, for example, a DAG with
997 a value of type i1, i8, i16, or i64 would be illegal, as would a DAG that
998 uses a SREM or UREM operation. The
999 <a href="#selectinodag_legalize_types">legalize types</a> and
1000 <a href="#selectiondag_legalize">legalize operations</a> phases are
1001 responsible for turning an illegal DAG into a legal DAG.</p>
Bill Wendling91e10c42006-08-28 02:26:32 +00001002
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001003</div>
1004
1005<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001006<h4>
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001007 <a name="selectiondag_process">SelectionDAG Instruction Selection Process</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001008</h4>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001009
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001010<div>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001011
Bill Wendling91e10c42006-08-28 02:26:32 +00001012<p>SelectionDAG-based instruction selection consists of the following steps:</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001013
1014<ol>
Bill Wendling80118802009-04-15 02:12:37 +00001015 <li><a href="#selectiondag_build">Build initial DAG</a> &mdash; This stage
1016 performs a simple translation from the input LLVM code to an illegal
1017 SelectionDAG.</li>
1018
1019 <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; This
1020 stage performs simple optimizations on the SelectionDAG to simplify it,
1021 and recognize meta instructions (like rotates
1022 and <tt>div</tt>/<tt>rem</tt> pairs) for targets that support these meta
1023 operations. This makes the resultant code more efficient and
1024 the <a href="#selectiondag_select">select instructions from DAG</a> phase
1025 (below) simpler.</li>
1026
1027 <li><a href="#selectiondag_legalize_types">Legalize SelectionDAG Types</a>
1028 &mdash; This stage transforms SelectionDAG nodes to eliminate any types
1029 that are unsupported on the target.</li>
1030
1031 <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
1032 SelectionDAG optimizer is run to clean up redundancies exposed by type
1033 legalization.</li>
1034
Chris Lattner71388632010-12-12 02:42:57 +00001035 <li><a href="#selectiondag_legalize">Legalize SelectionDAG Ops</a> &mdash;
Chris Lattner4c247f62010-12-13 00:17:12 +00001036 This stage transforms SelectionDAG nodes to eliminate any operations
1037 that are unsupported on the target.</li>
Bill Wendling80118802009-04-15 02:12:37 +00001038
1039 <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
1040 SelectionDAG optimizer is run to eliminate inefficiencies introduced by
1041 operation legalization.</li>
1042
1043 <li><a href="#selectiondag_select">Select instructions from DAG</a> &mdash;
1044 Finally, the target instruction selector matches the DAG operations to
1045 target instructions. This process translates the target-independent input
1046 DAG into another DAG of target instructions.</li>
1047
1048 <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation</a>
1049 &mdash; The last phase assigns a linear order to the instructions in the
1050 target-instruction DAG and emits them into the MachineFunction being
1051 compiled. This step uses traditional prepass scheduling techniques.</li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001052</ol>
1053
1054<p>After all of these steps are complete, the SelectionDAG is destroyed and the
Bill Wendling80118802009-04-15 02:12:37 +00001055 rest of the code generation passes are run.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001056
Bill Wendling80118802009-04-15 02:12:37 +00001057<p>One great way to visualize what is going on here is to take advantage of a
1058 few LLC command line options. The following options pop up a window
1059 displaying the SelectionDAG at specific times (if you only get errors printed
1060 to the console while using this, you probably
1061 <a href="ProgrammersManual.html#ViewGraph">need to configure your system</a>
1062 to add support for it).</p>
Dan Gohman8c9c55f2008-09-10 22:23:41 +00001063
1064<ul>
Bill Wendling80118802009-04-15 02:12:37 +00001065 <li><tt>-view-dag-combine1-dags</tt> displays the DAG after being built,
1066 before the first optimization pass.</li>
1067
1068 <li><tt>-view-legalize-dags</tt> displays the DAG before Legalization.</li>
1069
1070 <li><tt>-view-dag-combine2-dags</tt> displays the DAG before the second
1071 optimization pass.</li>
1072
1073 <li><tt>-view-isel-dags</tt> displays the DAG before the Select phase.</li>
1074
1075 <li><tt>-view-sched-dags</tt> displays the DAG before Scheduling.</li>
Dan Gohman8c9c55f2008-09-10 22:23:41 +00001076</ul>
1077
1078<p>The <tt>-view-sunit-dags</tt> displays the Scheduler's dependency graph.
Bill Wendling80118802009-04-15 02:12:37 +00001079 This graph is based on the final SelectionDAG, with nodes that must be
1080 scheduled together bundled into a single scheduling-unit node, and with
1081 immediate operands and other nodes that aren't relevant for scheduling
1082 omitted.</p>
Bill Wendling91e10c42006-08-28 02:26:32 +00001083
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001084</div>
1085
1086<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001087<h4>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001088 <a name="selectiondag_build">Initial SelectionDAG Construction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001089</h4>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001090
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001091<div>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001092
Bill Wendling16448772006-08-28 03:04:05 +00001093<p>The initial SelectionDAG is na&iuml;vely peephole expanded from the LLVM
Bill Wendling80118802009-04-15 02:12:37 +00001094 input by the <tt>SelectionDAGLowering</tt> class in the
1095 <tt>lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp</tt> file. The intent of
1096 this pass is to expose as much low-level, target-specific details to the
1097 SelectionDAG as possible. This pass is mostly hard-coded (e.g. an
1098 LLVM <tt>add</tt> turns into an <tt>SDNode add</tt> while a
1099 <tt>getelementptr</tt> is expanded into the obvious arithmetic). This pass
1100 requires target-specific hooks to lower calls, returns, varargs, etc. For
1101 these features, the <tt><a href="#targetlowering">TargetLowering</a></tt>
1102 interface is used.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001103
1104</div>
1105
1106<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001107<h4>
Dan Gohman641b2792008-11-24 16:27:17 +00001108 <a name="selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001109</h4>
Dan Gohman641b2792008-11-24 16:27:17 +00001110
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001111<div>
Dan Gohman641b2792008-11-24 16:27:17 +00001112
1113<p>The Legalize phase is in charge of converting a DAG to only use the types
Bill Wendling80118802009-04-15 02:12:37 +00001114 that are natively supported by the target.</p>
Dan Gohman641b2792008-11-24 16:27:17 +00001115
Bill Wendling80118802009-04-15 02:12:37 +00001116<p>There are two main ways of converting values of unsupported scalar types to
1117 values of supported types: converting small types to larger types
1118 ("promoting"), and breaking up large integer types into smaller ones
1119 ("expanding"). For example, a target might require that all f32 values are
1120 promoted to f64 and that all i1/i8/i16 values are promoted to i32. The same
1121 target might require that all i64 values be expanded into pairs of i32
1122 values. These changes can insert sign and zero extensions as needed to make
1123 sure that the final code has the same behavior as the input.</p>
Dan Gohman641b2792008-11-24 16:27:17 +00001124
Bill Wendling80118802009-04-15 02:12:37 +00001125<p>There are two main ways of converting values of unsupported vector types to
1126 value of supported types: splitting vector types, multiple times if
1127 necessary, until a legal type is found, and extending vector types by adding
1128 elements to the end to round them out to legal types ("widening"). If a
1129 vector gets split all the way down to single-element parts with no supported
1130 vector type being found, the elements are converted to scalars
1131 ("scalarizing").</p>
Dan Gohman641b2792008-11-24 16:27:17 +00001132
Bill Wendling80118802009-04-15 02:12:37 +00001133<p>A target implementation tells the legalizer which types are supported (and
1134 which register class to use for them) by calling the
Dan Gohman641b2792008-11-24 16:27:17 +00001135 <tt>addRegisterClass</tt> method in its TargetLowering constructor.</p>
1136
1137</div>
1138
1139<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001140<h4>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001141 <a name="selectiondag_legalize">SelectionDAG Legalize Phase</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001142</h4>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001143
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001144<div>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001145
Dan Gohman641b2792008-11-24 16:27:17 +00001146<p>The Legalize phase is in charge of converting a DAG to only use the
Bill Wendling80118802009-04-15 02:12:37 +00001147 operations that are natively supported by the target.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001148
Bill Wendling80118802009-04-15 02:12:37 +00001149<p>Targets often have weird constraints, such as not supporting every operation
1150 on every supported datatype (e.g. X86 does not support byte conditional moves
1151 and PowerPC does not support sign-extending loads from a 16-bit memory
1152 location). Legalize takes care of this by open-coding another sequence of
1153 operations to emulate the operation ("expansion"), by promoting one type to a
1154 larger type that supports the operation ("promotion"), or by using a
1155 target-specific hook to implement the legalization ("custom").</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001156
Dan Gohman641b2792008-11-24 16:27:17 +00001157<p>A target implementation tells the legalizer which operations are not
1158 supported (and which of the above three actions to take) by calling the
1159 <tt>setOperationAction</tt> method in its <tt>TargetLowering</tt>
1160 constructor.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001161
Dan Gohman641b2792008-11-24 16:27:17 +00001162<p>Prior to the existence of the Legalize passes, we required that every target
Bill Wendling80118802009-04-15 02:12:37 +00001163 <a href="#selectiondag_optimize">selector</a> supported and handled every
1164 operator and type even if they are not natively supported. The introduction
1165 of the Legalize phases allows all of the canonicalization patterns to be
1166 shared across targets, and makes it very easy to optimize the canonicalized
1167 code because it is still in the form of a DAG.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001168
1169</div>
1170
1171<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001172<h4>
1173 <a name="selectiondag_optimize">
1174 SelectionDAG Optimization Phase: the DAG Combiner
1175 </a>
1176</h4>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001177
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001178<div>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001179
Bill Wendling80118802009-04-15 02:12:37 +00001180<p>The SelectionDAG optimization phase is run multiple times for code
1181 generation, immediately after the DAG is built and once after each
1182 legalization. The first run of the pass allows the initial code to be
1183 cleaned up (e.g. performing optimizations that depend on knowing that the
1184 operators have restricted type inputs). Subsequent runs of the pass clean up
1185 the messy code generated by the Legalize passes, which allows Legalize to be
1186 very simple (it can focus on making code legal instead of focusing on
1187 generating <em>good</em> and legal code).</p>
Bill Wendling91e10c42006-08-28 02:26:32 +00001188
1189<p>One important class of optimizations performed is optimizing inserted sign
Bill Wendling80118802009-04-15 02:12:37 +00001190 and zero extension instructions. We currently use ad-hoc techniques, but
1191 could move to more rigorous techniques in the future. Here are some good
1192 papers on the subject:</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001193
Bill Wendling80118802009-04-15 02:12:37 +00001194<p>"<a href="http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html">Widening
1195 integer arithmetic</a>"<br>
1196 Kevin Redwine and Norman Ramsey<br>
1197 International Conference on Compiler Construction (CC) 2004</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001198
Bill Wendling80118802009-04-15 02:12:37 +00001199<p>"<a href="http://portal.acm.org/citation.cfm?doid=512529.512552">Effective
1200 sign extension elimination</a>"<br>
1201 Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani<br>
1202 Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
1203 and Implementation.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001204
1205</div>
1206
1207<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001208<h4>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001209 <a name="selectiondag_select">SelectionDAG Select Phase</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001210</h4>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001211
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001212<div>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001213
1214<p>The Select phase is the bulk of the target-specific code for instruction
Bill Wendling80118802009-04-15 02:12:37 +00001215 selection. This phase takes a legal SelectionDAG as input, pattern matches
1216 the instructions supported by the target to this DAG, and produces a new DAG
1217 of target code. For example, consider the following LLVM fragment:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001218
Bill Wendling91e10c42006-08-28 02:26:32 +00001219<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001220<pre>
Dan Gohmana9445e12010-03-02 01:11:08 +00001221%t1 = fadd float %W, %X
1222%t2 = fmul float %t1, %Y
1223%t3 = fadd float %t2, %Z
Chris Lattner7a025c82005-10-16 20:02:19 +00001224</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001225</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001226
Bill Wendling91e10c42006-08-28 02:26:32 +00001227<p>This LLVM code corresponds to a SelectionDAG that looks basically like
Bill Wendling80118802009-04-15 02:12:37 +00001228 this:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001229
Bill Wendling91e10c42006-08-28 02:26:32 +00001230<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001231<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001232(fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)
Chris Lattner7a025c82005-10-16 20:02:19 +00001233</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001234</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001235
Bill Wendling80118802009-04-15 02:12:37 +00001236<p>If a target supports floating point multiply-and-add (FMA) operations, one of
1237 the adds can be merged with the multiply. On the PowerPC, for example, the
1238 output of the instruction selector might look like this DAG:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001239
Bill Wendling91e10c42006-08-28 02:26:32 +00001240<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001241<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001242(FMADDS (FADDS W, X), Y, Z)
Chris Lattner7a025c82005-10-16 20:02:19 +00001243</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001244</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001245
Bill Wendling91e10c42006-08-28 02:26:32 +00001246<p>The <tt>FMADDS</tt> instruction is a ternary instruction that multiplies its
1247first two operands and adds the third (as single-precision floating-point
1248numbers). The <tt>FADDS</tt> instruction is a simple binary single-precision
1249add instruction. To perform this pattern match, the PowerPC backend includes
1250the following instruction definitions:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001251
Bill Wendling91e10c42006-08-28 02:26:32 +00001252<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001253<pre>
1254def FMADDS : AForm_1&lt;59, 29,
1255 (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
1256 "fmadds $FRT, $FRA, $FRC, $FRB",
1257 [<b>(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),
1258 F4RC:$FRB))</b>]&gt;;
1259def FADDS : AForm_2&lt;59, 21,
1260 (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
1261 "fadds $FRT, $FRA, $FRB",
1262 [<b>(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))</b>]&gt;;
1263</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001264</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001265
1266<p>The portion of the instruction definition in bold indicates the pattern used
Bill Wendling80118802009-04-15 02:12:37 +00001267 to match the instruction. The DAG operators
1268 (like <tt>fmul</tt>/<tt>fadd</tt>) are defined in
Dan Gohman6a4824c2010-03-25 00:03:04 +00001269 the <tt>include/llvm/Target/TargetSelectionDAG.td</tt> file. "
1270 <tt>F4RC</tt>" is the register class of the input and result values.</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001271
Bill Wendling80118802009-04-15 02:12:37 +00001272<p>The TableGen DAG instruction selector generator reads the instruction
1273 patterns in the <tt>.td</tt> file and automatically builds parts of the
1274 pattern matching code for your target. It has the following strengths:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001275
1276<ul>
Bill Wendling80118802009-04-15 02:12:37 +00001277 <li>At compiler-compiler time, it analyzes your instruction patterns and tells
1278 you if your patterns make sense or not.</li>
1279
1280 <li>It can handle arbitrary constraints on operands for the pattern match. In
1281 particular, it is straight-forward to say things like "match any immediate
1282 that is a 13-bit sign-extended value". For examples, see the
1283 <tt>immSExt16</tt> and related <tt>tblgen</tt> classes in the PowerPC
1284 backend.</li>
1285
1286 <li>It knows several important identities for the patterns defined. For
1287 example, it knows that addition is commutative, so it allows the
1288 <tt>FMADDS</tt> pattern above to match "<tt>(fadd X, (fmul Y, Z))</tt>" as
1289 well as "<tt>(fadd (fmul X, Y), Z)</tt>", without the target author having
1290 to specially handle this case.</li>
1291
1292 <li>It has a full-featured type-inferencing system. In particular, you should
1293 rarely have to explicitly tell the system what type parts of your patterns
1294 are. In the <tt>FMADDS</tt> case above, we didn't have to tell
1295 <tt>tblgen</tt> that all of the nodes in the pattern are of type 'f32'.
1296 It was able to infer and propagate this knowledge from the fact that
1297 <tt>F4RC</tt> has type 'f32'.</li>
1298
1299 <li>Targets can define their own (and rely on built-in) "pattern fragments".
1300 Pattern fragments are chunks of reusable patterns that get inlined into
1301 your patterns during compiler-compiler time. For example, the integer
1302 "<tt>(not x)</tt>" operation is actually defined as a pattern fragment
1303 that expands as "<tt>(xor x, -1)</tt>", since the SelectionDAG does not
1304 have a native '<tt>not</tt>' operation. Targets can define their own
1305 short-hand fragments as they see fit. See the definition of
1306 '<tt>not</tt>' and '<tt>ineg</tt>' for examples.</li>
1307
1308 <li>In addition to instructions, targets can specify arbitrary patterns that
1309 map to one or more instructions using the 'Pat' class. For example, the
1310 PowerPC has no way to load an arbitrary integer immediate into a register
1311 in one instruction. To tell tblgen how to do this, it defines:
1312 <br>
1313 <br>
1314<div class="doc_code">
1315<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001316// Arbitrary immediate support. Implement in terms of LIS/ORI.
1317def : Pat&lt;(i32 imm:$imm),
1318 (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))&gt;;
Bill Wendling80118802009-04-15 02:12:37 +00001319</pre>
1320</div>
1321 <br>
1322 If none of the single-instruction patterns for loading an immediate into a
1323 register match, this will be used. This rule says "match an arbitrary i32
1324 immediate, turning it into an <tt>ORI</tt> ('or a 16-bit immediate') and
1325 an <tt>LIS</tt> ('load 16-bit immediate, where the immediate is shifted to
1326 the left 16 bits') instruction". To make this work, the
1327 <tt>LO16</tt>/<tt>HI16</tt> node transformations are used to manipulate
1328 the input immediate (in this case, take the high or low 16-bits of the
1329 immediate).</li>
1330
1331 <li>While the system does automate a lot, it still allows you to write custom
1332 C++ code to match special cases if there is something that is hard to
1333 express.</li>
Chris Lattner7a025c82005-10-16 20:02:19 +00001334</ul>
1335
Bill Wendling91e10c42006-08-28 02:26:32 +00001336<p>While it has many strengths, the system currently has some limitations,
Bill Wendling80118802009-04-15 02:12:37 +00001337 primarily because it is a work in progress and is not yet finished:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001338
1339<ul>
Bill Wendling80118802009-04-15 02:12:37 +00001340 <li>Overall, there is no way to define or match SelectionDAG nodes that define
Dan Gohmane370c802009-04-22 15:55:31 +00001341 multiple values (e.g. <tt>SMUL_LOHI</tt>, <tt>LOAD</tt>, <tt>CALL</tt>,
Bill Wendling80118802009-04-15 02:12:37 +00001342 etc). This is the biggest reason that you currently still <em>have
1343 to</em> write custom C++ code for your instruction selector.</li>
1344
1345 <li>There is no great way to support matching complex addressing modes yet.
1346 In the future, we will extend pattern fragments to allow them to define
1347 multiple values (e.g. the four operands of the <a href="#x86_memory">X86
1348 addressing mode</a>, which are currently matched with custom C++ code).
1349 In addition, we'll extend fragments so that a fragment can match multiple
1350 different patterns.</li>
1351
1352 <li>We don't automatically infer flags like isStore/isLoad yet.</li>
1353
1354 <li>We don't automatically generate the set of supported registers and
1355 operations for the <a href="#selectiondag_legalize">Legalizer</a>
1356 yet.</li>
1357
1358 <li>We don't have a way of tying in custom legalized nodes yet.</li>
Chris Lattner7d6915c2005-10-17 04:18:41 +00001359</ul>
Chris Lattner7a025c82005-10-16 20:02:19 +00001360
1361<p>Despite these limitations, the instruction selector generator is still quite
Bill Wendling80118802009-04-15 02:12:37 +00001362 useful for most of the binary and logical operations in typical instruction
1363 sets. If you run into any problems or can't figure out how to do something,
1364 please let Chris know!</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001365
1366</div>
1367
1368<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001369<h4>
Chris Lattner32e89f22005-10-16 18:31:08 +00001370 <a name="selectiondag_sched">SelectionDAG Scheduling and Formation Phase</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001371</h4>
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001372
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001373<div>
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001374
1375<p>The scheduling phase takes the DAG of target instructions from the selection
Bill Wendling80118802009-04-15 02:12:37 +00001376 phase and assigns an order. The scheduler can pick an order depending on
1377 various constraints of the machines (i.e. order for minimal register pressure
1378 or try to cover instruction latencies). Once an order is established, the
1379 DAG is converted to a list
1380 of <tt><a href="#machineinstr">MachineInstr</a></tt>s and the SelectionDAG is
1381 destroyed.</p>
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001382
Jeff Cohen0b81cda2005-10-24 16:54:55 +00001383<p>Note that this phase is logically separate from the instruction selection
Bill Wendling80118802009-04-15 02:12:37 +00001384 phase, but is tied to it closely in the code because it operates on
1385 SelectionDAGs.</p>
Chris Lattnerc38959f2005-10-17 03:09:31 +00001386
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001387</div>
1388
1389<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001390<h4>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001391 <a name="selectiondag_future">Future directions for the SelectionDAG</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001392</h4>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001393
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001394<div>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001395
1396<ol>
Bill Wendling80118802009-04-15 02:12:37 +00001397 <li>Optional function-at-a-time selection.</li>
1398
1399 <li>Auto-generate entire selector from <tt>.td</tt> file.</li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001400</ol>
1401
1402</div>
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001403
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001404</div>
1405
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001406<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001407<h3>
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001408 <a name="ssamco">SSA-based Machine Code Optimizations</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001409</h3>
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001410<div><p>To Be Written</p></div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001411
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001412<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001413<h3>
Bill Wendling3fc488d2006-09-06 18:42:41 +00001414 <a name="liveintervals">Live Intervals</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001415</h3>
Bill Wendling2f87a882006-09-04 23:35:52 +00001416
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001417<div>
Bill Wendling2f87a882006-09-04 23:35:52 +00001418
Bill Wendling3fc488d2006-09-06 18:42:41 +00001419<p>Live Intervals are the ranges (intervals) where a variable is <i>live</i>.
Bill Wendling80118802009-04-15 02:12:37 +00001420 They are used by some <a href="#regalloc">register allocator</a> passes to
1421 determine if two or more virtual registers which require the same physical
1422 register are live at the same point in the program (i.e., they conflict).
1423 When this situation occurs, one virtual register must be <i>spilled</i>.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001424
Bill Wendling2f87a882006-09-04 23:35:52 +00001425<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001426<h4>
Bill Wendling2f87a882006-09-04 23:35:52 +00001427 <a name="livevariable_analysis">Live Variable Analysis</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001428</h4>
Bill Wendling2f87a882006-09-04 23:35:52 +00001429
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001430<div>
Bill Wendling2f87a882006-09-04 23:35:52 +00001431
Bill Wendling80118802009-04-15 02:12:37 +00001432<p>The first step in determining the live intervals of variables is to calculate
1433 the set of registers that are immediately dead after the instruction (i.e.,
1434 the instruction calculates the value, but it is never used) and the set of
1435 registers that are used by the instruction, but are never used after the
1436 instruction (i.e., they are killed). Live variable information is computed
1437 for each <i>virtual</i> register and <i>register allocatable</i> physical
1438 register in the function. This is done in a very efficient manner because it
1439 uses SSA to sparsely compute lifetime information for virtual registers
1440 (which are in SSA form) and only has to track physical registers within a
1441 block. Before register allocation, LLVM can assume that physical registers
1442 are only live within a single basic block. This allows it to do a single,
1443 local analysis to resolve physical register lifetimes within each basic
1444 block. If a physical register is not register allocatable (e.g., a stack
1445 pointer or condition codes), it is not tracked.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001446
Bill Wendling80118802009-04-15 02:12:37 +00001447<p>Physical registers may be live in to or out of a function. Live in values are
1448 typically arguments in registers. Live out values are typically return values
1449 in registers. Live in values are marked as such, and are given a dummy
1450 "defining" instruction during live intervals analysis. If the last basic
1451 block of a function is a <tt>return</tt>, then it's marked as using all live
1452 out values in the function.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001453
Bill Wendling80118802009-04-15 02:12:37 +00001454<p><tt>PHI</tt> nodes need to be handled specially, because the calculation of
1455 the live variable information from a depth first traversal of the CFG of the
1456 function won't guarantee that a virtual register used by the <tt>PHI</tt>
1457 node is defined before it's used. When a <tt>PHI</tt> node is encountered,
1458 only the definition is handled, because the uses will be handled in other
1459 basic blocks.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001460
1461<p>For each <tt>PHI</tt> node of the current basic block, we simulate an
Bill Wendling80118802009-04-15 02:12:37 +00001462 assignment at the end of the current basic block and traverse the successor
1463 basic blocks. If a successor basic block has a <tt>PHI</tt> node and one of
1464 the <tt>PHI</tt> node's operands is coming from the current basic block, then
1465 the variable is marked as <i>alive</i> within the current basic block and all
1466 of its predecessor basic blocks, until the basic block with the defining
1467 instruction is encountered.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001468
1469</div>
1470
Bill Wendling3fc488d2006-09-06 18:42:41 +00001471<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001472<h4>
Bill Wendling3fc488d2006-09-06 18:42:41 +00001473 <a name="liveintervals_analysis">Live Intervals Analysis</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001474</h4>
Bill Wendling2f87a882006-09-04 23:35:52 +00001475
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001476<div>
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001477
Bill Wendling82e2eea2006-10-11 18:00:22 +00001478<p>We now have the information available to perform the live intervals analysis
Bill Wendling80118802009-04-15 02:12:37 +00001479 and build the live intervals themselves. We start off by numbering the basic
1480 blocks and machine instructions. We then handle the "live-in" values. These
1481 are in physical registers, so the physical register is assumed to be killed
1482 by the end of the basic block. Live intervals for virtual registers are
1483 computed for some ordering of the machine instructions <tt>[1, N]</tt>. A
1484 live interval is an interval <tt>[i, j)</tt>, where <tt>1 &lt;= i &lt;= j
1485 &lt; N</tt>, for which a variable is live.</p>
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001486
Bill Wendling82e2eea2006-10-11 18:00:22 +00001487<p><i><b>More to come...</b></i></p>
1488
Bill Wendling3fc488d2006-09-06 18:42:41 +00001489</div>
Bill Wendling2f87a882006-09-04 23:35:52 +00001490
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001491</div>
1492
Bill Wendling2f87a882006-09-04 23:35:52 +00001493<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001494<h3>
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001495 <a name="regalloc">Register Allocation</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001496</h3>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001497
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001498<div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001499
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001500<p>The <i>Register Allocation problem</i> consists in mapping a program
Bill Wendling80118802009-04-15 02:12:37 +00001501 <i>P<sub>v</sub></i>, that can use an unbounded number of virtual registers,
1502 to a program <i>P<sub>p</sub></i> that contains a finite (possibly small)
1503 number of physical registers. Each target architecture has a different number
1504 of physical registers. If the number of physical registers is not enough to
1505 accommodate all the virtual registers, some of them will have to be mapped
1506 into memory. These virtuals are called <i>spilled virtuals</i>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001507
Bill Wendlinga396ee82006-09-01 21:46:00 +00001508<!-- _______________________________________________________________________ -->
1509
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001510<h4>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001511 <a name="regAlloc_represent">How registers are represented in LLVM</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001512</h4>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001513
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001514<div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001515
Bill Wendling80118802009-04-15 02:12:37 +00001516<p>In LLVM, physical registers are denoted by integer numbers that normally
1517 range from 1 to 1023. To see how this numbering is defined for a particular
1518 architecture, you can read the <tt>GenRegisterNames.inc</tt> file for that
1519 architecture. For instance, by
1520 inspecting <tt>lib/Target/X86/X86GenRegisterNames.inc</tt> we see that the
1521 32-bit register <tt>EAX</tt> is denoted by 15, and the MMX register
1522 <tt>MM0</tt> is mapped to 48.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001523
Bill Wendling80118802009-04-15 02:12:37 +00001524<p>Some architectures contain registers that share the same physical location. A
1525 notable example is the X86 platform. For instance, in the X86 architecture,
1526 the registers <tt>EAX</tt>, <tt>AX</tt> and <tt>AL</tt> share the first eight
1527 bits. These physical registers are marked as <i>aliased</i> in LLVM. Given a
1528 particular architecture, you can check which registers are aliased by
1529 inspecting its <tt>RegisterInfo.td</tt> file. Moreover, the method
1530 <tt>TargetRegisterInfo::getAliasSet(p_reg)</tt> returns an array containing
1531 all the physical registers aliased to the register <tt>p_reg</tt>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001532
1533<p>Physical registers, in LLVM, are grouped in <i>Register Classes</i>.
Bill Wendling80118802009-04-15 02:12:37 +00001534 Elements in the same register class are functionally equivalent, and can be
1535 interchangeably used. Each virtual register can only be mapped to physical
1536 registers of a particular class. For instance, in the X86 architecture, some
1537 virtuals can only be allocated to 8 bit registers. A register class is
1538 described by <tt>TargetRegisterClass</tt> objects. To discover if a virtual
1539 register is compatible with a given physical, this code can be used:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001540
1541<div class="doc_code">
1542<pre>
Jim Laskeyb744c252006-12-15 10:40:48 +00001543bool RegMapping_Fer::compatible_class(MachineFunction &amp;mf,
Bill Wendlinga396ee82006-09-01 21:46:00 +00001544 unsigned v_reg,
1545 unsigned p_reg) {
Dan Gohman6f0d0242008-02-10 18:45:23 +00001546 assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &amp;&amp;
Bill Wendlinga396ee82006-09-01 21:46:00 +00001547 "Target register must be physical");
Chris Lattner534bcfb2007-12-31 04:16:08 +00001548 const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
1549 return trc-&gt;contains(p_reg);
Bill Wendlinga396ee82006-09-01 21:46:00 +00001550}
1551</pre>
1552</div>
1553
Bill Wendling80118802009-04-15 02:12:37 +00001554<p>Sometimes, mostly for debugging purposes, it is useful to change the number
1555 of physical registers available in the target architecture. This must be done
1556 statically, inside the <tt>TargetRegsterInfo.td</tt> file. Just <tt>grep</tt>
1557 for <tt>RegisterClass</tt>, the last parameter of which is a list of
1558 registers. Just commenting some out is one simple way to avoid them being
1559 used. A more polite way is to explicitly exclude some registers from
Dan Gohmand2cb3d22009-07-24 00:30:09 +00001560 the <i>allocation order</i>. See the definition of the <tt>GR8</tt> register
1561 class in <tt>lib/Target/X86/X86RegisterInfo.td</tt> for an example of this.
1562 </p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001563
Bill Wendling80118802009-04-15 02:12:37 +00001564<p>Virtual registers are also denoted by integer numbers. Contrary to physical
Jakob Stoklund Olesen3ca21022011-01-08 23:10:59 +00001565 registers, different virtual registers never share the same number. Whereas
1566 physical registers are statically defined in a <tt>TargetRegisterInfo.td</tt>
1567 file and cannot be created by the application developer, that is not the case
1568 with virtual registers. In order to create new virtual registers, use the
Bill Wendling80118802009-04-15 02:12:37 +00001569 method <tt>MachineRegisterInfo::createVirtualRegister()</tt>. This method
Jakob Stoklund Olesen3ca21022011-01-08 23:10:59 +00001570 will return a new virtual register. Use an <tt>IndexedMap&lt;Foo,
1571 VirtReg2IndexFunctor&gt;</tt> to hold information per virtual register. If you
1572 need to enumerate all virtual registers, use the function
1573 <tt>TargetRegisterInfo::index2VirtReg()</tt> to find the virtual register
1574 numbers:</p>
1575
1576<div class="doc_code">
1577<pre>
1578 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1579 unsigned VirtReg = TargetRegisterInfo::index2VirtReg(i);
1580 stuff(VirtReg);
1581 }
1582</pre>
1583</div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001584
Bill Wendling80118802009-04-15 02:12:37 +00001585<p>Before register allocation, the operands of an instruction are mostly virtual
1586 registers, although physical registers may also be used. In order to check if
1587 a given machine operand is a register, use the boolean
1588 function <tt>MachineOperand::isRegister()</tt>. To obtain the integer code of
1589 a register, use <tt>MachineOperand::getReg()</tt>. An instruction may define
1590 or use a register. For instance, <tt>ADD reg:1026 := reg:1025 reg:1024</tt>
1591 defines the registers 1024, and uses registers 1025 and 1026. Given a
1592 register operand, the method <tt>MachineOperand::isUse()</tt> informs if that
1593 register is being used by the instruction. The
1594 method <tt>MachineOperand::isDef()</tt> informs if that registers is being
1595 defined.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001596
Bill Wendling80118802009-04-15 02:12:37 +00001597<p>We will call physical registers present in the LLVM bitcode before register
1598 allocation <i>pre-colored registers</i>. Pre-colored registers are used in
1599 many different situations, for instance, to pass parameters of functions
1600 calls, and to store results of particular instructions. There are two types
1601 of pre-colored registers: the ones <i>implicitly</i> defined, and
1602 those <i>explicitly</i> defined. Explicitly defined registers are normal
1603 operands, and can be accessed
1604 with <tt>MachineInstr::getOperand(int)::getReg()</tt>. In order to check
1605 which registers are implicitly defined by an instruction, use
1606 the <tt>TargetInstrInfo::get(opcode)::ImplicitDefs</tt>,
1607 where <tt>opcode</tt> is the opcode of the target instruction. One important
1608 difference between explicit and implicit physical registers is that the
1609 latter are defined statically for each instruction, whereas the former may
1610 vary depending on the program being compiled. For example, an instruction
1611 that represents a function call will always implicitly define or use the same
1612 set of physical registers. To read the registers implicitly used by an
1613 instruction,
1614 use <tt>TargetInstrInfo::get(opcode)::ImplicitUses</tt>. Pre-colored
1615 registers impose constraints on any register allocation algorithm. The
Bob Wilson04738682010-04-09 18:39:54 +00001616 register allocator must make sure that none of them are overwritten by
Bill Wendling80118802009-04-15 02:12:37 +00001617 the values of virtual registers while still alive.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001618
1619</div>
1620
1621<!-- _______________________________________________________________________ -->
1622
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001623<h4>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001624 <a name="regAlloc_howTo">Mapping virtual registers to physical registers</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001625</h4>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001626
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001627<div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001628
1629<p>There are two ways to map virtual registers to physical registers (or to
Bill Wendling80118802009-04-15 02:12:37 +00001630 memory slots). The first way, that we will call <i>direct mapping</i>, is
1631 based on the use of methods of the classes <tt>TargetRegisterInfo</tt>,
1632 and <tt>MachineOperand</tt>. The second way, that we will call <i>indirect
1633 mapping</i>, relies on the <tt>VirtRegMap</tt> class in order to insert loads
1634 and stores sending and getting values to and from memory.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001635
Bill Wendling80118802009-04-15 02:12:37 +00001636<p>The direct mapping provides more flexibility to the developer of the register
1637 allocator; however, it is more error prone, and demands more implementation
1638 work. Basically, the programmer will have to specify where load and store
1639 instructions should be inserted in the target function being compiled in
1640 order to get and store values in memory. To assign a physical register to a
1641 virtual register present in a given operand,
1642 use <tt>MachineOperand::setReg(p_reg)</tt>. To insert a store instruction,
Jakob Stoklund Olesen297907f2010-08-31 22:01:07 +00001643 use <tt>TargetInstrInfo::storeRegToStackSlot(...)</tt>, and to insert a
1644 load instruction, use <tt>TargetInstrInfo::loadRegFromStackSlot</tt>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001645
Bill Wendling80118802009-04-15 02:12:37 +00001646<p>The indirect mapping shields the application developer from the complexities
1647 of inserting load and store instructions. In order to map a virtual register
1648 to a physical one, use <tt>VirtRegMap::assignVirt2Phys(vreg, preg)</tt>. In
1649 order to map a certain virtual register to memory,
1650 use <tt>VirtRegMap::assignVirt2StackSlot(vreg)</tt>. This method will return
1651 the stack slot where <tt>vreg</tt>'s value will be located. If it is
1652 necessary to map another virtual register to the same stack slot,
1653 use <tt>VirtRegMap::assignVirt2StackSlot(vreg, stack_location)</tt>. One
1654 important point to consider when using the indirect mapping, is that even if
1655 a virtual register is mapped to memory, it still needs to be mapped to a
1656 physical register. This physical register is the location where the virtual
1657 register is supposed to be found before being stored or after being
1658 reloaded.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001659
Bill Wendling80118802009-04-15 02:12:37 +00001660<p>If the indirect strategy is used, after all the virtual registers have been
1661 mapped to physical registers or stack slots, it is necessary to use a spiller
1662 object to place load and store instructions in the code. Every virtual that
1663 has been mapped to a stack slot will be stored to memory after been defined
1664 and will be loaded before being used. The implementation of the spiller tries
1665 to recycle load/store instructions, avoiding unnecessary instructions. For an
1666 example of how to invoke the spiller,
1667 see <tt>RegAllocLinearScan::runOnMachineFunction</tt>
1668 in <tt>lib/CodeGen/RegAllocLinearScan.cpp</tt>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001669
1670</div>
1671
1672<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001673<h4>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001674 <a name="regAlloc_twoAddr">Handling two address instructions</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001675</h4>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001676
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001677<div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001678
Bill Wendling80118802009-04-15 02:12:37 +00001679<p>With very rare exceptions (e.g., function calls), the LLVM machine code
1680 instructions are three address instructions. That is, each instruction is
1681 expected to define at most one register, and to use at most two registers.
1682 However, some architectures use two address instructions. In this case, the
1683 defined register is also one of the used register. For instance, an
1684 instruction such as <tt>ADD %EAX, %EBX</tt>, in X86 is actually equivalent
1685 to <tt>%EAX = %EAX + %EBX</tt>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001686
1687<p>In order to produce correct code, LLVM must convert three address
Bill Wendling80118802009-04-15 02:12:37 +00001688 instructions that represent two address instructions into true two address
1689 instructions. LLVM provides the pass <tt>TwoAddressInstructionPass</tt> for
1690 this specific purpose. It must be run before register allocation takes
1691 place. After its execution, the resulting code may no longer be in SSA
1692 form. This happens, for instance, in situations where an instruction such
1693 as <tt>%a = ADD %b %c</tt> is converted to two instructions such as:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001694
1695<div class="doc_code">
1696<pre>
1697%a = MOVE %b
Dan Gohman03e58572008-06-13 17:55:57 +00001698%a = ADD %a %c
Bill Wendlinga396ee82006-09-01 21:46:00 +00001699</pre>
1700</div>
1701
1702<p>Notice that, internally, the second instruction is represented as
Bill Wendling80118802009-04-15 02:12:37 +00001703 <tt>ADD %a[def/use] %c</tt>. I.e., the register operand <tt>%a</tt> is both
1704 used and defined by the instruction.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001705
1706</div>
1707
1708<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001709<h4>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001710 <a name="regAlloc_ssaDecon">The SSA deconstruction phase</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001711</h4>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001712
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001713<div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001714
1715<p>An important transformation that happens during register allocation is called
Bill Wendling80118802009-04-15 02:12:37 +00001716 the <i>SSA Deconstruction Phase</i>. The SSA form simplifies many analyses
1717 that are performed on the control flow graph of programs. However,
1718 traditional instruction sets do not implement PHI instructions. Thus, in
1719 order to generate executable code, compilers must replace PHI instructions
1720 with other instructions that preserve their semantics.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001721
Bill Wendling80118802009-04-15 02:12:37 +00001722<p>There are many ways in which PHI instructions can safely be removed from the
1723 target code. The most traditional PHI deconstruction algorithm replaces PHI
1724 instructions with copy instructions. That is the strategy adopted by
1725 LLVM. The SSA deconstruction algorithm is implemented
1726 in <tt>lib/CodeGen/PHIElimination.cpp</tt>. In order to invoke this pass, the
1727 identifier <tt>PHIEliminationID</tt> must be marked as required in the code
1728 of the register allocator.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001729
1730</div>
1731
1732<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001733<h4>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001734 <a name="regAlloc_fold">Instruction folding</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001735</h4>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001736
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001737<div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001738
Bill Wendling80118802009-04-15 02:12:37 +00001739<p><i>Instruction folding</i> is an optimization performed during register
1740 allocation that removes unnecessary copy instructions. For instance, a
1741 sequence of instructions such as:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001742
1743<div class="doc_code">
1744<pre>
1745%EBX = LOAD %mem_address
1746%EAX = COPY %EBX
1747</pre>
1748</div>
1749
Dan Gohmana7ab2bf2008-11-24 16:35:31 +00001750<p>can be safely substituted by the single instruction:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001751
1752<div class="doc_code">
1753<pre>
1754%EAX = LOAD %mem_address
1755</pre>
1756</div>
1757
Bill Wendling80118802009-04-15 02:12:37 +00001758<p>Instructions can be folded with
1759 the <tt>TargetRegisterInfo::foldMemoryOperand(...)</tt> method. Care must be
1760 taken when folding instructions; a folded instruction can be quite different
1761 from the original
1762 instruction. See <tt>LiveIntervals::addIntervalsForSpills</tt>
1763 in <tt>lib/CodeGen/LiveIntervalAnalysis.cpp</tt> for an example of its
1764 use.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001765
1766</div>
1767
1768<!-- _______________________________________________________________________ -->
1769
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001770<h4>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001771 <a name="regAlloc_builtIn">Built in register allocators</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001772</h4>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001773
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001774<div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001775
Bill Wendling80118802009-04-15 02:12:37 +00001776<p>The LLVM infrastructure provides the application developer with three
1777 different register allocators:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001778
1779<ul>
Jakob Stoklund Olesen8a3eab92010-06-15 21:58:33 +00001780 <li><i>Fast</i> &mdash; This register allocator is the default for debug
1781 builds. It allocates registers on a basic block level, attempting to keep
1782 values in registers and reusing registers as appropriate.</li>
1783
Andrew Trick5acaeb52011-07-26 18:31:49 +00001784 <li><i>Basic</i> &mdash; This is an incremental approach to register
1785 allocation. Live ranges are assigned to registers one at a time in
1786 an order that is driven by heuristics. Since code can be rewritten
1787 on-the-fly during allocation, this framework allows interesting
1788 allocators to be developed as extensions. It is not itself a
1789 production register allocator but is a potentially useful
1790 stand-alone mode for triaging bugs and as a performance baseline.
1791
1792 <li><i>Greedy</i> &mdash; <i>The default allocator</i>. This is a
1793 highly tuned implementation of the <i>Basic</i> allocator that
1794 incorporates global live range splitting. This allocator works hard
1795 to minimize the cost of spill code.
1796
Jakob Stoklund Olesen8a3eab92010-06-15 21:58:33 +00001797 <li><i>PBQP</i> &mdash; A Partitioned Boolean Quadratic Programming (PBQP)
1798 based register allocator. This allocator works by constructing a PBQP
1799 problem representing the register allocation problem under consideration,
1800 solving this using a PBQP solver, and mapping the solution back to a
1801 register assignment.</li>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001802</ul>
1803
1804<p>The type of register allocator used in <tt>llc</tt> can be chosen with the
Bill Wendling80118802009-04-15 02:12:37 +00001805 command line option <tt>-regalloc=...</tt>:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001806
1807<div class="doc_code">
1808<pre>
Dan Gohman0cabaa52009-08-25 15:54:01 +00001809$ llc -regalloc=linearscan file.bc -o ln.s;
Jakob Stoklund Olesen8a3eab92010-06-15 21:58:33 +00001810$ llc -regalloc=fast file.bc -o fa.s;
1811$ llc -regalloc=pbqp file.bc -o pbqp.s;
Bill Wendlinga396ee82006-09-01 21:46:00 +00001812</pre>
1813</div>
1814
1815</div>
1816
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001817</div>
1818
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001819<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001820<h3>
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001821 <a name="proepicode">Prolog/Epilog Code Insertion</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001822</h3>
Bill Wendling66bc5c62011-07-25 20:19:48 +00001823
NAKAMURA Takumi4b2e07a2011-10-31 13:04:26 +00001824<div>
1825
Bill Wendling66bc5c62011-07-25 20:19:48 +00001826<!-- _______________________________________________________________________ -->
1827<h4>
1828 <a name="compact_unwind">Compact Unwind</a>
1829</h4>
1830
1831<div>
1832
Bill Wendling75471d62011-07-26 07:58:09 +00001833<p>Throwing an exception requires <em>unwinding</em> out of a function. The
1834 information on how to unwind a given function is traditionally expressed in
1835 DWARF unwind (a.k.a. frame) info. But that format was originally developed
1836 for debuggers to backtrace, and each Frame Description Entry (FDE) requires
1837 ~20-30 bytes per function. There is also the cost of mapping from an address
1838 in a function to the corresponding FDE at runtime. An alternative unwind
1839 encoding is called <em>compact unwind</em> and requires just 4-bytes per
1840 function.</p>
Bill Wendling66bc5c62011-07-25 20:19:48 +00001841
1842<p>The compact unwind encoding is a 32-bit value, which is encoded in an
1843 architecture-specific way. It specifies which registers to restore and from
Roman Divacky4d7ce322011-08-01 20:38:27 +00001844 where, and how to unwind out of the function. When the linker creates a final
Bill Wendling66bc5c62011-07-25 20:19:48 +00001845 linked image, it will create a <code>__TEXT,__unwind_info</code>
1846 section. This section is a small and fast way for the runtime to access
1847 unwind info for any given function. If we emit compact unwind info for the
1848 function, that compact unwind info will be encoded in
1849 the <code>__TEXT,__unwind_info</code> section. If we emit DWARF unwind info,
1850 the <code>__TEXT,__unwind_info</code> section will contain the offset of the
1851 FDE in the <code>__TEXT,__eh_frame</code> section in the final linked
1852 image.</p>
1853
1854<p>For X86, there are three modes for the compact unwind encoding:</p>
1855
Bill Wendling75471d62011-07-26 07:58:09 +00001856<dl>
Bill Wendling66bc5c62011-07-25 20:19:48 +00001857 <dt><i>Function with a Frame Pointer (<code>EBP</code> or <code>RBP</code>)</i></dt>
1858 <dd><p><code>EBP/RBP</code>-based frame, where <code>EBP/RBP</code> is pushed
1859 onto the stack immediately after the return address,
1860 then <code>ESP/RSP</code> is moved to <code>EBP/RBP</code>. Thus to
1861 unwind, <code>ESP/RSP</code> is restored with the
1862 current <code>EBP/RBP</code> value, then <code>EBP/RBP</code> is restored
1863 by popping the stack, and the return is done by popping the stack once
1864 more into the PC. All non-volatile registers that need to be restored must
1865 have been saved in a small range on the stack that
1866 starts <code>EBP-4</code> to <code>EBP-1020</code> (<code>RBP-8</code>
Bill Wendling75471d62011-07-26 07:58:09 +00001867 to <code>RBP-1020</code>). The offset (divided by 4 in 32-bit mode and 8
1868 in 64-bit mode) is encoded in bits 16-23 (mask: <code>0x00FF0000</code>).
1869 The registers saved are encoded in bits 0-14
1870 (mask: <code>0x00007FFF</code>) as five 3-bit entries from the following
1871 table:</p>
Bill Wendling66bc5c62011-07-25 20:19:48 +00001872<table border="1" cellspacing="0">
1873 <tr>
1874 <th>Compact Number</th>
1875 <th>i386 Register</th>
1876 <th>x86-64 Regiser</th>
1877 </tr>
1878 <tr>
1879 <td>1</td>
1880 <td><code>EBX</code></td>
1881 <td><code>RBX</code></td>
1882 </tr>
1883 <tr>
1884 <td>2</td>
1885 <td><code>ECX</code></td>
1886 <td><code>R12</code></td>
1887 </tr>
1888 <tr>
1889 <td>3</td>
1890 <td><code>EDX</code></td>
1891 <td><code>R13</code></td>
1892 </tr>
1893 <tr>
1894 <td>4</td>
1895 <td><code>EDI</code></td>
1896 <td><code>R14</code></td>
1897 </tr>
1898 <tr>
1899 <td>5</td>
1900 <td><code>ESI</code></td>
1901 <td><code>R15</code></td>
1902 </tr>
1903 <tr>
1904 <td>6</td>
1905 <td><code>EBP</code></td>
1906 <td><code>RBP</code></td>
1907 </tr>
1908</table>
1909
1910</dd>
1911
Bill Wendling3ef750d2011-07-25 20:25:03 +00001912 <dt><i>Frameless with a Small Constant Stack Size (<code>EBP</code>
1913 or <code>RBP</code> is not used as a frame pointer)</i></dt>
Bill Wendling66bc5c62011-07-25 20:19:48 +00001914 <dd><p>To return, a constant (encoded in the compact unwind encoding) is added
1915 to the <code>ESP/RSP</code>. Then the return is done by popping the stack
1916 into the PC. All non-volatile registers that need to be restored must have
1917 been saved on the stack immediately after the return address. The stack
Bill Wendling75471d62011-07-26 07:58:09 +00001918 size (divided by 4 in 32-bit mode and 8 in 64-bit mode) is encoded in bits
1919 16-23 (mask: <code>0x00FF0000</code>). There is a maximum stack size of
1920 1024 bytes in 32-bit mode and 2048 in 64-bit mode. The number of registers
1921 saved is encoded in bits 9-12 (mask: <code>0x00001C00</code>). Bits 0-9
1922 (mask: <code>0x000003FF</code>) contain which registers were saved and
1923 their order. (See
1924 the <code>encodeCompactUnwindRegistersWithoutFrame()</code> function
1925 in <code>lib/Target/X86FrameLowering.cpp</code> for the encoding
Bill Wendling66bc5c62011-07-25 20:19:48 +00001926 algorithm.)</p></dd>
1927
Bill Wendling3ef750d2011-07-25 20:25:03 +00001928 <dt><i>Frameless with a Large Constant Stack Size (<code>EBP</code>
1929 or <code>RBP</code> is not used as a frame pointer)</i></dt>
Bill Wendling66bc5c62011-07-25 20:19:48 +00001930 <dd><p>This case is like the "Frameless with a Small Constant Stack Size"
Bill Wendling3ef750d2011-07-25 20:25:03 +00001931 case, but the stack size is too large to encode in the compact unwind
Bill Wendling66bc5c62011-07-25 20:19:48 +00001932 encoding. Instead it requires that the function contains "<code>subl
1933 $nnnnnn, %esp</code>" in its prolog. The compact encoding contains the
Bill Wendling3ef750d2011-07-25 20:25:03 +00001934 offset to the <code>$nnnnnn</code> value in the function in bits 9-12
Bill Wendling66bc5c62011-07-25 20:19:48 +00001935 (mask: <code>0x00001C00</code>).</p></dd>
Bill Wendling75471d62011-07-26 07:58:09 +00001936</dl>
Bill Wendling66bc5c62011-07-25 20:19:48 +00001937
1938</div>
1939
NAKAMURA Takumi4b2e07a2011-10-31 13:04:26 +00001940</div>
1941
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001942<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001943<h3>
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001944 <a name="latemco">Late Machine Code Optimizations</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001945</h3>
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001946<div><p>To Be Written</p></div>
Chris Lattnere1b83452010-09-11 23:02:10 +00001947
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001948<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001949<h3>
Chris Lattner32e89f22005-10-16 18:31:08 +00001950 <a name="codeemit">Code Emission</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001951</h3>
Chris Lattnere1b83452010-09-11 23:02:10 +00001952
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001953<div>
Chris Lattnere1b83452010-09-11 23:02:10 +00001954
1955<p>The code emission step of code generation is responsible for lowering from
1956the code generator abstractions (like <a
1957href="#machinefunction">MachineFunction</a>, <a
1958href="#machineinstr">MachineInstr</a>, etc) down
1959to the abstractions used by the MC layer (<a href="#mcinst">MCInst</a>,
1960<a href="#mcstreamer">MCStreamer</a>, etc). This is
1961done with a combination of several different classes: the (misnamed)
1962target-independent AsmPrinter class, target-specific subclasses of AsmPrinter
1963(such as SparcAsmPrinter), and the TargetLoweringObjectFile class.</p>
1964
1965<p>Since the MC layer works at the level of abstraction of object files, it
1966doesn't have a notion of functions, global variables etc. Instead, it thinks
1967about labels, directives, and instructions. A key class used at this time is
1968the MCStreamer class. This is an abstract API that is implemented in different
1969ways (e.g. to output a .s file, output an ELF .o file, etc) that is effectively
1970an "assembler API". MCStreamer has one method per directive, such as EmitLabel,
1971EmitSymbolAttribute, SwitchSection, etc, which directly correspond to assembly
1972level directives.
1973</p>
1974
1975<p>If you are interested in implementing a code generator for a target, there
1976are three important things that you have to implement for your target:</p>
1977
1978<ol>
1979<li>First, you need a subclass of AsmPrinter for your target. This class
1980implements the general lowering process converting MachineFunction's into MC
1981label constructs. The AsmPrinter base class provides a number of useful methods
1982and routines, and also allows you to override the lowering process in some
1983important ways. You should get much of the lowering for free if you are
1984implementing an ELF, COFF, or MachO target, because the TargetLoweringObjectFile
1985class implements much of the common logic.</li>
1986
1987<li>Second, you need to implement an instruction printer for your target. The
1988instruction printer takes an <a href="#mcinst">MCInst</a> and renders it to a
1989raw_ostream as text. Most of this is automatically generated from the .td file
1990(when you specify something like "<tt>add $dst, $src1, $src2</tt>" in the
1991instructions), but you need to implement routines to print operands.</li>
1992
1993<li>Third, you need to implement code that lowers a <a
1994href="#machineinstr">MachineInstr</a> to an MCInst, usually implemented in
1995"&lt;target&gt;MCInstLower.cpp". This lowering process is often target
1996specific, and is responsible for turning jump table entries, constant pool
1997indices, global variable addresses, etc into MCLabels as appropriate. This
1998translation layer is also responsible for expanding pseudo ops used by the code
1999generator into the actual machine instructions they correspond to. The MCInsts
2000that are generated by this are fed into the instruction printer or the encoder.
2001</li>
2002
2003</ol>
2004
2005<p>Finally, at your choosing, you can also implement an subclass of
2006MCCodeEmitter which lowers MCInst's into machine code bytes and relocations.
2007This is important if you want to support direct .o file emission, or would like
2008to implement an assembler for your target.</p>
2009
Chris Lattner32e89f22005-10-16 18:31:08 +00002010</div>
Chris Lattnere1b83452010-09-11 23:02:10 +00002011
Anshuman Dasgupta6805b562011-12-06 23:12:42 +00002012<!-- ======================================================================= -->
2013<h3>
2014 <a name="vliw_packetizer">VLIW Packetizer</a>
2015</h3>
2016
2017<div>
2018
2019<p>In a Very Long Instruction Word (VLIW) architecture, the compiler is
2020 responsible for mapping instructions to functional-units available on
2021 the architecture. To that end, the compiler creates groups of instructions
2022 called <i>packets</i> or <i>bundles</i>. The VLIW packetizer in LLVM is
2023 a target-independent mechanism to enable the packetization of machine
2024 instructions.</p>
2025
2026<!-- _______________________________________________________________________ -->
2027
2028<h4>
2029 <a name="vliw_mapping">Mapping from instructions to functional units</a>
2030</h4>
2031
2032<div>
2033
2034<p>Instructions in a VLIW target can typically be mapped to multiple functional
2035units. During the process of packetizing, the compiler must be able to reason
2036about whether an instruction can be added to a packet. This decision can be
2037complex since the compiler has to examine all possible mappings of instructions
2038to functional units. Therefore to alleviate compilation-time complexity, the
2039VLIW packetizer parses the instruction classes of a target and generates tables
2040at compiler build time. These tables can then be queried by the provided
2041machine-independent API to determine if an instruction can be accommodated in a
2042packet.</p>
2043</div>
2044
2045<!-- ======================================================================= -->
2046<h4>
2047 <a name="vliw_repr">
2048 How the packetization tables are generated and used
2049 </a>
2050</h4>
2051
2052<div>
2053
2054<p>The packetizer reads instruction classes from a target's itineraries and
2055creates a deterministic finite automaton (DFA) to represent the state of a
2056packet. A DFA consists of three major elements: inputs, states, and
2057transitions. The set of inputs for the generated DFA represents the instruction
2058being added to a packet. The states represent the possible consumption
2059of functional units by instructions in a packet. In the DFA, transitions from
2060one state to another occur on the addition of an instruction to an existing
2061packet. If there is a legal mapping of functional units to instructions, then
2062the DFA contains a corresponding transition. The absence of a transition
2063indicates that a legal mapping does not exist and that the instruction cannot
2064be added to the packet.</p>
2065
2066<p>To generate tables for a VLIW target, add <i>Target</i>GenDFAPacketizer.inc
2067as a target to the Makefile in the target directory. The exported API provides
2068three functions: <tt>DFAPacketizer::clearResources()</tt>,
2069<tt>DFAPacketizer::reserveResources(MachineInstr *MI)</tt>, and
2070<tt>DFAPacketizer::canReserveResources(MachineInstr *MI)</tt>. These functions
2071allow a target packetizer to add an instruction to an existing packet and to
2072check whether an instruction can be added to a packet. See
2073<tt>llvm/CodeGen/DFAPacketizer.h</tt> for more information.</p>
2074
2075</div>
2076
2077</div>
2078
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002079</div>
Chris Lattnere1b83452010-09-11 23:02:10 +00002080
Chris Lattner22481f22010-09-21 04:03:39 +00002081<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002082<h2>
Chris Lattnere1b83452010-09-11 23:02:10 +00002083 <a name="nativeassembler">Implementing a Native Assembler</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002084</h2>
Chris Lattner22481f22010-09-21 04:03:39 +00002085<!-- *********************************************************************** -->
Chris Lattner32e89f22005-10-16 18:31:08 +00002086
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002087<div>
Chris Lattnere1b83452010-09-11 23:02:10 +00002088
Chris Lattner22481f22010-09-21 04:03:39 +00002089<p>Though you're probably reading this because you want to write or maintain a
2090compiler backend, LLVM also fully supports building a native assemblers too.
2091We've tried hard to automate the generation of the assembler from the .td files
2092(in particular the instruction syntax and encodings), which means that a large
2093part of the manual and repetitive data entry can be factored and shared with the
2094compiler.</p>
2095
Chris Lattner674c1dc2010-10-30 17:36:36 +00002096<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002097<h3 id="na_instparsing">Instruction Parsing</h3>
Chris Lattner674c1dc2010-10-30 17:36:36 +00002098
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002099<div><p>To Be Written</p></div>
Chris Lattner674c1dc2010-10-30 17:36:36 +00002100
2101
2102<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002103<h3 id="na_instaliases">
Chris Lattner674c1dc2010-10-30 17:36:36 +00002104 Instruction Alias Processing
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002105</h3>
Chris Lattner674c1dc2010-10-30 17:36:36 +00002106
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002107<div>
Chris Lattner674c1dc2010-10-30 17:36:36 +00002108<p>Once the instruction is parsed, it enters the MatchInstructionImpl function.
2109The MatchInstructionImpl function performs alias processing and then does
2110actual matching.</p>
2111
Chris Lattner693173f2010-10-30 19:23:13 +00002112<p>Alias processing is the phase that canonicalizes different lexical forms of
Chris Lattner674c1dc2010-10-30 17:36:36 +00002113the same instructions down to one representation. There are several different
2114kinds of alias that are possible to implement and they are listed below in the
2115order that they are processed (which is in order from simplest/weakest to most
2116complex/powerful). Generally you want to use the first alias mechanism that
2117meets the needs of your instruction, because it will allow a more concise
2118description.</p>
2119
2120<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002121<h4>Mnemonic Aliases</h4>
Chris Lattner674c1dc2010-10-30 17:36:36 +00002122
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002123<div>
Chris Lattner674c1dc2010-10-30 17:36:36 +00002124
Chris Lattner8cf8bcc2010-10-30 19:47:49 +00002125<p>The first phase of alias processing is simple instruction mnemonic
Chris Lattner674c1dc2010-10-30 17:36:36 +00002126remapping for classes of instructions which are allowed with two different
Chris Lattner693173f2010-10-30 19:23:13 +00002127mnemonics. This phase is a simple and unconditionally remapping from one input
Chris Lattner674c1dc2010-10-30 17:36:36 +00002128mnemonic to one output mnemonic. It isn't possible for this form of alias to
2129look at the operands at all, so the remapping must apply for all forms of a
2130given mnemonic. Mnemonic aliases are defined simply, for example X86 has:
2131</p>
2132
2133<div class="doc_code">
2134<pre>
2135def : MnemonicAlias&lt;"cbw", "cbtw"&gt;;
2136def : MnemonicAlias&lt;"smovq", "movsq"&gt;;
2137def : MnemonicAlias&lt;"fldcww", "fldcw"&gt;;
2138def : MnemonicAlias&lt;"fucompi", "fucomip"&gt;;
2139def : MnemonicAlias&lt;"ud2a", "ud2"&gt;;
2140</pre>
2141</div>
2142
2143<p>... and many others. With a MnemonicAlias definition, the mnemonic is
Chris Lattner693173f2010-10-30 19:23:13 +00002144remapped simply and directly. Though MnemonicAlias's can't look at any aspect
2145of the instruction (such as the operands) they can depend on global modes (the
2146same ones supported by the matcher), through a Requires clause:</p>
2147
2148<div class="doc_code">
2149<pre>
2150def : MnemonicAlias&lt;"pushf", "pushfq"&gt;, Requires&lt;[In64BitMode]&gt;;
2151def : MnemonicAlias&lt;"pushf", "pushfl"&gt;, Requires&lt;[In32BitMode]&gt;;
2152</pre>
2153</div>
2154
2155<p>In this example, the mnemonic gets mapped into different a new one depending
2156on the current instruction set.</p>
Chris Lattnere1b83452010-09-11 23:02:10 +00002157
Chris Lattner32e89f22005-10-16 18:31:08 +00002158</div>
2159
Chris Lattnerc7a03fb2010-11-06 08:30:26 +00002160<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002161<h4>Instruction Aliases</h4>
Chris Lattnerc7a03fb2010-11-06 08:30:26 +00002162
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002163<div>
Chris Lattnerc7a03fb2010-11-06 08:30:26 +00002164
2165<p>The most general phase of alias processing occurs while matching is
2166happening: it provides new forms for the matcher to match along with a specific
2167instruction to generate. An instruction alias has two parts: the string to
2168match and the instruction to generate. For example:
2169</p>
2170
2171<div class="doc_code">
2172<pre>
2173def : InstAlias&lt;"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8 :$src)&gt;;
2174def : InstAlias&lt;"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src)&gt;;
2175def : InstAlias&lt;"movsx $src, $dst", (MOVSX32rr8 GR32:$dst, GR8 :$src)&gt;;
2176def : InstAlias&lt;"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16 :$src)&gt;;
2177def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr8 GR64:$dst, GR8 :$src)&gt;;
2178def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16 :$src)&gt;;
2179def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32 :$src)&gt;;
2180</pre>
2181</div>
2182
2183<p>This shows a powerful example of the instruction aliases, matching the
2184same mnemonic in multiple different ways depending on what operands are present
2185in the assembly. The result of instruction aliases can include operands in a
2186different order than the destination instruction, and can use an input
2187multiple times, for example:</p>
2188
2189<div class="doc_code">
2190<pre>
2191def : InstAlias&lt;"clrb $reg", (XOR8rr GR8 :$reg, GR8 :$reg)&gt;;
2192def : InstAlias&lt;"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg)&gt;;
2193def : InstAlias&lt;"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg)&gt;;
2194def : InstAlias&lt;"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg)&gt;;
2195</pre>
2196</div>
2197
2198<p>This example also shows that tied operands are only listed once. In the X86
2199backend, XOR8rr has two input GR8's and one output GR8 (where an input is tied
2200to the output). InstAliases take a flattened operand list without duplicates
Chris Lattner90fd7972010-11-06 19:57:21 +00002201for tied operands. The result of an instruction alias can also use immediates
2202and fixed physical registers which are added as simple immediate operands in the
2203result, for example:</p>
Chris Lattner98c870f2010-11-06 19:25:43 +00002204
2205<div class="doc_code">
2206<pre>
Chris Lattner90fd7972010-11-06 19:57:21 +00002207// Fixed Immediate operand.
Chris Lattner98c870f2010-11-06 19:25:43 +00002208def : InstAlias&lt;"aad", (AAD8i8 10)&gt;;
Chris Lattner90fd7972010-11-06 19:57:21 +00002209
2210// Fixed register operand.
2211def : InstAlias&lt;"fcomi", (COM_FIr ST1)&gt;;
2212
2213// Simple alias.
2214def : InstAlias&lt;"fcomi $reg", (COM_FIr RST:$reg)&gt;;
Chris Lattner98c870f2010-11-06 19:25:43 +00002215</pre>
2216</div>
2217
Chris Lattnerc7a03fb2010-11-06 08:30:26 +00002218
2219<p>Instruction aliases can also have a Requires clause to make them
2220subtarget specific.</p>
2221
Bill Wendling3f58a512011-05-04 23:40:14 +00002222<p>If the back-end supports it, the instruction printer can automatically emit
2223 the alias rather than what's being aliased. It typically leads to better,
2224 more readable code. If it's better to print out what's being aliased, then
2225 pass a '0' as the third parameter to the InstAlias definition.</p>
2226
Chris Lattnerc7a03fb2010-11-06 08:30:26 +00002227</div>
2228
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002229</div>
Chris Lattner32e89f22005-10-16 18:31:08 +00002230
Chris Lattner22481f22010-09-21 04:03:39 +00002231<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002232<h3 id="na_matching">Instruction Matching</h3>
Chris Lattner674c1dc2010-10-30 17:36:36 +00002233
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002234<div><p>To Be Written</p></div>
Chris Lattner22481f22010-09-21 04:03:39 +00002235
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002236</div>
Chris Lattner22481f22010-09-21 04:03:39 +00002237
Chris Lattneraa5bcb52005-01-28 17:22:53 +00002238<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002239<h2>
Chris Lattner32e89f22005-10-16 18:31:08 +00002240 <a name="targetimpls">Target-specific Implementation Notes</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002241</h2>
Chris Lattnerec94f802004-06-04 00:16:02 +00002242<!-- *********************************************************************** -->
2243
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002244<div>
Chris Lattnerec94f802004-06-04 00:16:02 +00002245
Bill Wendling80118802009-04-15 02:12:37 +00002246<p>This section of the document explains features or design decisions that are
Chris Lattner68de6022010-10-24 16:18:00 +00002247 specific to the code generator for a particular target. First we start
2248 with a table that summarizes what features are supported by each target.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00002249
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00002250<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002251<h3>
Chris Lattner68de6022010-10-24 16:18:00 +00002252 <a name="targetfeatures">Target Feature Matrix</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002253</h3>
Chris Lattner68de6022010-10-24 16:18:00 +00002254
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002255<div>
Chris Lattner68de6022010-10-24 16:18:00 +00002256
2257<p>Note that this table does not include the C backend or Cpp backends, since
2258they do not use the target independent code generator infrastructure. It also
2259doesn't list features that are not supported fully by any target yet. It
2260considers a feature to be supported if at least one subtarget supports it. A
2261feature being supported means that it is useful and works for most cases, it
2262does not indicate that there are zero known bugs in the implementation. Here
2263is the key:</p>
2264
2265
2266<table border="1" cellspacing="0">
2267 <tr>
2268 <th>Unknown</th>
2269 <th>No support</th>
2270 <th>Partial Support</th>
2271 <th>Complete Support</th>
2272 </tr>
2273 <tr>
2274 <td class="unknown"></td>
2275 <td class="no"></td>
2276 <td class="partial"></td>
2277 <td class="yes"></td>
2278 </tr>
2279</table>
2280
2281<p>Here is the table:</p>
2282
2283<table width="689" border="1" cellspacing="0">
2284<tr><td></td>
Benjamin Kramer943beeb2010-10-30 21:07:28 +00002285<td colspan="13" align="center" style="background-color:#ffc">Target</td>
Chris Lattner68de6022010-10-24 16:18:00 +00002286</tr>
2287 <tr>
2288 <th>Feature</th>
2289 <th>ARM</th>
Chris Lattner68de6022010-10-24 16:18:00 +00002290 <th>CellSPU</th>
Tony Linthicumb4b54152011-12-12 21:14:40 +00002291 <th>Hexagon</th>
Chris Lattner68de6022010-10-24 16:18:00 +00002292 <th>MBlaze</th>
2293 <th>MSP430</th>
2294 <th>Mips</th>
2295 <th>PTX</th>
2296 <th>PowerPC</th>
2297 <th>Sparc</th>
Chris Lattner68de6022010-10-24 16:18:00 +00002298 <th>X86</th>
2299 <th>XCore</th>
2300 </tr>
2301
2302<tr>
2303 <td><a href="#feat_reliable">is generally reliable</a></td>
2304 <td class="yes"></td> <!-- ARM -->
Kalle Raiskila94cc4fe2010-10-25 08:57:30 +00002305 <td class="no"></td> <!-- CellSPU -->
Tony Linthicumb4b54152011-12-12 21:14:40 +00002306 <td class="yes"></td> <!-- Hexagon -->
Wesley Peckc6a45242010-10-24 18:50:12 +00002307 <td class="no"></td> <!-- MBlaze -->
Chris Lattner68de6022010-10-24 16:18:00 +00002308 <td class="unknown"></td> <!-- MSP430 -->
Bruno Cardoso Lopes9d9c4ad2011-10-25 20:09:31 +00002309 <td class="yes"></td> <!-- Mips -->
Chris Lattner68de6022010-10-24 16:18:00 +00002310 <td class="no"></td> <!-- PTX -->
2311 <td class="yes"></td> <!-- PowerPC -->
2312 <td class="yes"></td> <!-- Sparc -->
Chris Lattner68de6022010-10-24 16:18:00 +00002313 <td class="yes"></td> <!-- X86 -->
2314 <td class="unknown"></td> <!-- XCore -->
2315</tr>
2316
2317<tr>
2318 <td><a href="#feat_asmparser">assembly parser</a></td>
2319 <td class="no"></td> <!-- ARM -->
Chris Lattner68de6022010-10-24 16:18:00 +00002320 <td class="no"></td> <!-- CellSPU -->
Tony Linthicumb4b54152011-12-12 21:14:40 +00002321 <td class="no"></td> <!-- Hexagon -->
Wesley Peckd5fe3ef2010-12-20 21:54:50 +00002322 <td class="yes"></td> <!-- MBlaze -->
Chris Lattner68de6022010-10-24 16:18:00 +00002323 <td class="no"></td> <!-- MSP430 -->
2324 <td class="no"></td> <!-- Mips -->
2325 <td class="no"></td> <!-- PTX -->
2326 <td class="no"></td> <!-- PowerPC -->
2327 <td class="no"></td> <!-- Sparc -->
Chris Lattner68de6022010-10-24 16:18:00 +00002328 <td class="yes"></td> <!-- X86 -->
2329 <td class="no"></td> <!-- XCore -->
2330</tr>
2331
2332<tr>
2333 <td><a href="#feat_disassembler">disassembler</a></td>
2334 <td class="yes"></td> <!-- ARM -->
Chris Lattner68de6022010-10-24 16:18:00 +00002335 <td class="no"></td> <!-- CellSPU -->
Tony Linthicumb4b54152011-12-12 21:14:40 +00002336 <td class="no"></td> <!-- Hexagon -->
Wesley Peckd5fe3ef2010-12-20 21:54:50 +00002337 <td class="yes"></td> <!-- MBlaze -->
Chris Lattner68de6022010-10-24 16:18:00 +00002338 <td class="no"></td> <!-- MSP430 -->
2339 <td class="no"></td> <!-- Mips -->
2340 <td class="no"></td> <!-- PTX -->
2341 <td class="no"></td> <!-- PowerPC -->
2342 <td class="no"></td> <!-- Sparc -->
Chris Lattner68de6022010-10-24 16:18:00 +00002343 <td class="yes"></td> <!-- X86 -->
2344 <td class="no"></td> <!-- XCore -->
2345</tr>
2346
2347<tr>
2348 <td><a href="#feat_inlineasm">inline asm</a></td>
2349 <td class="yes"></td> <!-- ARM -->
Kalle Raiskila94cc4fe2010-10-25 08:57:30 +00002350 <td class="no"></td> <!-- CellSPU -->
Tony Linthicumb4b54152011-12-12 21:14:40 +00002351 <td class="yes"></td> <!-- Hexagon -->
Wesley Peckd5fe3ef2010-12-20 21:54:50 +00002352 <td class="yes"></td> <!-- MBlaze -->
Chris Lattner68de6022010-10-24 16:18:00 +00002353 <td class="unknown"></td> <!-- MSP430 -->
Bruno Cardoso Lopes48461f62010-12-19 22:41:43 +00002354 <td class="no"></td> <!-- Mips -->
Chris Lattner68de6022010-10-24 16:18:00 +00002355 <td class="unknown"></td> <!-- PTX -->
2356 <td class="yes"></td> <!-- PowerPC -->
2357 <td class="unknown"></td> <!-- Sparc -->
Jakob Stoklund Olesenf22e6722011-09-19 18:15:46 +00002358 <td class="yes"></td> <!-- X86 -->
Chris Lattner68de6022010-10-24 16:18:00 +00002359 <td class="unknown"></td> <!-- XCore -->
2360</tr>
2361
2362<tr>
2363 <td><a href="#feat_jit">jit</a></td>
2364 <td class="partial"><a href="#feat_jit_arm">*</a></td> <!-- ARM -->
Kalle Raiskila94cc4fe2010-10-25 08:57:30 +00002365 <td class="no"></td> <!-- CellSPU -->
Tony Linthicumb4b54152011-12-12 21:14:40 +00002366 <td class="no"></td> <!-- Hexagon -->
Wesley Peckc6a45242010-10-24 18:50:12 +00002367 <td class="no"></td> <!-- MBlaze -->
Chris Lattner68de6022010-10-24 16:18:00 +00002368 <td class="unknown"></td> <!-- MSP430 -->
Bruno Cardoso Lopes9d9c4ad2011-10-25 20:09:31 +00002369 <td class="yes"></td> <!-- Mips -->
Chris Lattner68de6022010-10-24 16:18:00 +00002370 <td class="unknown"></td> <!-- PTX -->
2371 <td class="yes"></td> <!-- PowerPC -->
2372 <td class="unknown"></td> <!-- Sparc -->
Chris Lattner68de6022010-10-24 16:18:00 +00002373 <td class="yes"></td> <!-- X86 -->
2374 <td class="unknown"></td> <!-- XCore -->
2375</tr>
2376
2377<tr>
2378 <td><a href="#feat_objectwrite">.o&nbsp;file writing</a></td>
2379 <td class="no"></td> <!-- ARM -->
Chris Lattner68de6022010-10-24 16:18:00 +00002380 <td class="no"></td> <!-- CellSPU -->
Tony Linthicumb4b54152011-12-12 21:14:40 +00002381 <td class="no"></td> <!-- Hexagon -->
Wesley Peckd5fe3ef2010-12-20 21:54:50 +00002382 <td class="yes"></td> <!-- MBlaze -->
Chris Lattner68de6022010-10-24 16:18:00 +00002383 <td class="no"></td> <!-- MSP430 -->
2384 <td class="no"></td> <!-- Mips -->
2385 <td class="no"></td> <!-- PTX -->
2386 <td class="no"></td> <!-- PowerPC -->
2387 <td class="no"></td> <!-- Sparc -->
Chris Lattner68de6022010-10-24 16:18:00 +00002388 <td class="yes"></td> <!-- X86 -->
2389 <td class="no"></td> <!-- XCore -->
2390</tr>
2391
2392<tr>
2393 <td><a href="#feat_tailcall">tail calls</a></td>
2394 <td class="yes"></td> <!-- ARM -->
Kalle Raiskila94cc4fe2010-10-25 08:57:30 +00002395 <td class="no"></td> <!-- CellSPU -->
Tony Linthicumb4b54152011-12-12 21:14:40 +00002396 <td class="yes"></td> <!-- Hexagon -->
Wesley Peckc6a45242010-10-24 18:50:12 +00002397 <td class="no"></td> <!-- MBlaze -->
Chris Lattner68de6022010-10-24 16:18:00 +00002398 <td class="unknown"></td> <!-- MSP430 -->
Bruno Cardoso Lopes48461f62010-12-19 22:41:43 +00002399 <td class="no"></td> <!-- Mips -->
Chris Lattner68de6022010-10-24 16:18:00 +00002400 <td class="unknown"></td> <!-- PTX -->
2401 <td class="yes"></td> <!-- PowerPC -->
2402 <td class="unknown"></td> <!-- Sparc -->
Chris Lattner68de6022010-10-24 16:18:00 +00002403 <td class="yes"></td> <!-- X86 -->
2404 <td class="unknown"></td> <!-- XCore -->
2405</tr>
2406
Rafael Espindola70d2b172011-11-27 22:05:46 +00002407<tr>
2408 <td><a href="#feat_segstacks">segmented stacks</a></td>
2409 <td class="no"></td> <!-- ARM -->
2410 <td class="no"></td> <!-- CellSPU -->
2411 <td class="no"></td> <!-- MBlaze -->
2412 <td class="no"></td> <!-- MSP430 -->
2413 <td class="no"></td> <!-- Mips -->
2414 <td class="no"></td> <!-- PTX -->
2415 <td class="no"></td> <!-- PowerPC -->
2416 <td class="no"></td> <!-- Sparc -->
2417 <td class="partial"><a href="#feat_segstacks_x86">*</a></td> <!-- X86 -->
2418 <td class="no"></td> <!-- XCore -->
2419</tr>
2420
Chris Lattner68de6022010-10-24 16:18:00 +00002421
2422</table>
2423
Chris Lattner68de6022010-10-24 16:18:00 +00002424<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002425<h4 id="feat_reliable">Is Generally Reliable</h4>
Chris Lattner68de6022010-10-24 16:18:00 +00002426
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002427<div>
Chris Lattner68de6022010-10-24 16:18:00 +00002428<p>This box indicates whether the target is considered to be production quality.
2429This indicates that the target has been used as a static compiler to
2430compile large amounts of code by a variety of different people and is in
2431continuous use.</p>
2432</div>
2433
2434<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002435<h4 id="feat_asmparser">Assembly Parser</h4>
Chris Lattner68de6022010-10-24 16:18:00 +00002436
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002437<div>
Chris Lattner68de6022010-10-24 16:18:00 +00002438<p>This box indicates whether the target supports parsing target specific .s
2439files by implementing the MCAsmParser interface. This is required for llvm-mc
2440to be able to act as a native assembler and is required for inline assembly
2441support in the native .o file writer.</p>
2442
2443</div>
2444
2445
2446<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002447<h4 id="feat_disassembler">Disassembler</h4>
Chris Lattner68de6022010-10-24 16:18:00 +00002448
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002449<div>
Chris Lattner68de6022010-10-24 16:18:00 +00002450<p>This box indicates whether the target supports the MCDisassembler API for
2451disassembling machine opcode bytes into MCInst's.</p>
2452
2453</div>
2454
2455<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002456<h4 id="feat_inlineasm">Inline Asm</h4>
Chris Lattner68de6022010-10-24 16:18:00 +00002457
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002458<div>
Chris Lattner68de6022010-10-24 16:18:00 +00002459<p>This box indicates whether the target supports most popular inline assembly
2460constraints and modifiers.</p>
2461
Chris Lattner68de6022010-10-24 16:18:00 +00002462</div>
2463
2464<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002465<h4 id="feat_jit">JIT Support</h4>
Chris Lattner68de6022010-10-24 16:18:00 +00002466
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002467<div>
Chris Lattner68de6022010-10-24 16:18:00 +00002468<p>This box indicates whether the target supports the JIT compiler through
2469the ExecutionEngine interface.</p>
2470
Chris Lattner6fb99552010-10-24 16:24:22 +00002471<p id="feat_jit_arm">The ARM backend has basic support for integer code
Chris Lattner68de6022010-10-24 16:18:00 +00002472in ARM codegen mode, but lacks NEON and full Thumb support.</p>
2473
2474</div>
2475
2476<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002477<h4 id="feat_objectwrite">.o File Writing</h4>
Chris Lattner68de6022010-10-24 16:18:00 +00002478
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002479<div>
Chris Lattner68de6022010-10-24 16:18:00 +00002480
2481<p>This box indicates whether the target supports writing .o files (e.g. MachO,
2482ELF, and/or COFF) files directly from the target. Note that the target also
2483must include an assembly parser and general inline assembly support for full
2484inline assembly support in the .o writer.</p>
2485
Chris Lattner219ddf52010-10-28 02:22:02 +00002486<p>Targets that don't support this feature can obviously still write out .o
2487files, they just rely on having an external assembler to translate from a .s
2488file to a .o file (as is the case for many C compilers).</p>
2489
Chris Lattner68de6022010-10-24 16:18:00 +00002490</div>
2491
2492<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002493<h4 id="feat_tailcall">Tail Calls</h4>
Chris Lattner68de6022010-10-24 16:18:00 +00002494
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002495<div>
Chris Lattner68de6022010-10-24 16:18:00 +00002496
2497<p>This box indicates whether the target supports guaranteed tail calls. These
2498are calls marked "<a href="LangRef.html#i_call">tail</a>" and use the fastcc
2499calling convention. Please see the <a href="#tailcallopt">tail call section
2500more more details</a>.</p>
2501
2502</div>
2503
Rafael Espindola70d2b172011-11-27 22:05:46 +00002504<!-- _______________________________________________________________________ -->
2505<h4 id="feat_segstacks">Segmented Stacks</h4>
2506
2507<div>
2508
2509<p>This box indicates whether the target supports segmented stacks. This
2510replaces the traditional large C stack with many linked segments. It
2511is compatible with the <a href="http://gcc.gnu.org/wiki/SplitStacks">gcc
2512implementation</a> used by the Go front end.</p>
2513
Rafael Espindola30c5fa22011-11-28 17:06:58 +00002514<p id="feat_segstacks_x86">Basic support exists on the X86 backend. Currently
2515vararg doesn't work and the object files are not marked the way the gold
Rafael Espindoladda8c6f2011-11-29 19:38:09 +00002516linker expects, but simple Go programs can be built by dragonegg.</p>
Rafael Espindola70d2b172011-11-27 22:05:46 +00002517
2518</div>
2519
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002520</div>
Chris Lattner68de6022010-10-24 16:18:00 +00002521
2522<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002523<h3>
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00002524 <a name="tailcallopt">Tail call optimization</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002525</h3>
Chris Lattnerec94f802004-06-04 00:16:02 +00002526
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002527<div>
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00002528
Bill Wendling80118802009-04-15 02:12:37 +00002529<p>Tail call optimization, callee reusing the stack of the caller, is currently
2530 supported on x86/x86-64 and PowerPC. It is performed if:</p>
2531
2532<ul>
Chris Lattner29689432010-03-11 00:22:57 +00002533 <li>Caller and callee have the calling convention <tt>fastcc</tt> or
2534 <tt>cc 10</tt> (GHC call convention).</li>
Bill Wendling80118802009-04-15 02:12:37 +00002535
2536 <li>The call is a tail call - in tail position (ret immediately follows call
2537 and ret uses value of call or is void).</li>
2538
2539 <li>Option <tt>-tailcallopt</tt> is enabled.</li>
2540
2541 <li>Platform specific constraints are met.</li>
2542</ul>
2543
2544<p>x86/x86-64 constraints:</p>
2545
2546<ul>
2547 <li>No variable argument lists are used.</li>
2548
2549 <li>On x86-64 when generating GOT/PIC code only module-local calls (visibility
2550 = hidden or protected) are supported.</li>
2551</ul>
2552
2553<p>PowerPC constraints:</p>
2554
2555<ul>
2556 <li>No variable argument lists are used.</li>
2557
2558 <li>No byval parameters are used.</li>
2559
2560 <li>On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected) are supported.</li>
2561</ul>
2562
2563<p>Example:</p>
2564
2565<p>Call as <tt>llc -tailcallopt test.ll</tt>.</p>
2566
2567<div class="doc_code">
2568<pre>
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00002569declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4)
2570
2571define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
2572 %l1 = add i32 %in1, %in2
2573 %tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1)
2574 ret i32 %tmp
Bill Wendling80118802009-04-15 02:12:37 +00002575}
2576</pre>
2577</div>
2578
2579<p>Implications of <tt>-tailcallopt</tt>:</p>
2580
2581<p>To support tail call optimization in situations where the callee has more
2582 arguments than the caller a 'callee pops arguments' convention is used. This
2583 currently causes each <tt>fastcc</tt> call that is not tail call optimized
2584 (because one or more of above constraints are not met) to be followed by a
2585 readjustment of the stack. So performance might be worse in such cases.</p>
2586
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00002587</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00002588<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002589<h3>
Evan Chengdc444e92010-03-08 21:05:02 +00002590 <a name="sibcallopt">Sibling call optimization</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002591</h3>
Evan Chengdc444e92010-03-08 21:05:02 +00002592
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002593<div>
Evan Chengdc444e92010-03-08 21:05:02 +00002594
2595<p>Sibling call optimization is a restricted form of tail call optimization.
2596 Unlike tail call optimization described in the previous section, it can be
2597 performed automatically on any tail calls when <tt>-tailcallopt</tt> option
2598 is not specified.</p>
2599
2600<p>Sibling call optimization is currently performed on x86/x86-64 when the
2601 following constraints are met:</p>
2602
2603<ul>
2604 <li>Caller and callee have the same calling convention. It can be either
2605 <tt>c</tt> or <tt>fastcc</tt>.
2606
2607 <li>The call is a tail call - in tail position (ret immediately follows call
2608 and ret uses value of call or is void).</li>
2609
2610 <li>Caller and callee have matching return type or the callee result is not
2611 used.
2612
2613 <li>If any of the callee arguments are being passed in stack, they must be
2614 available in caller's own incoming argument stack and the frame offsets
2615 must be the same.
2616</ul>
2617
2618<p>Example:</p>
2619<div class="doc_code">
2620<pre>
2621declare i32 @bar(i32, i32)
2622
2623define i32 @foo(i32 %a, i32 %b, i32 %c) {
2624entry:
2625 %0 = tail call i32 @bar(i32 %a, i32 %b)
2626 ret i32 %0
2627}
2628</pre>
2629</div>
2630
2631</div>
2632<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002633<h3>
Chris Lattnerec94f802004-06-04 00:16:02 +00002634 <a name="x86">The X86 backend</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002635</h3>
Chris Lattnerec94f802004-06-04 00:16:02 +00002636
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002637<div>
Chris Lattnerec94f802004-06-04 00:16:02 +00002638
Bill Wendling91e10c42006-08-28 02:26:32 +00002639<p>The X86 code generator lives in the <tt>lib/Target/X86</tt> directory. This
Bill Wendling80118802009-04-15 02:12:37 +00002640 code generator is capable of targeting a variety of x86-32 and x86-64
2641 processors, and includes support for ISA extensions such as MMX and SSE.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00002642
Chris Lattnerec94f802004-06-04 00:16:02 +00002643<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002644<h4>
Nate Begeman34509842009-01-26 02:54:45 +00002645 <a name="x86_tt">X86 Target Triples supported</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002646</h4>
Chris Lattner9b988be2005-07-12 00:20:49 +00002647
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002648<div>
Bill Wendling91e10c42006-08-28 02:26:32 +00002649
Bill Wendling80118802009-04-15 02:12:37 +00002650<p>The following are the known target triples that are supported by the X86
2651 backend. This is not an exhaustive list, and it would be useful to add those
2652 that people test.</p>
Chris Lattner9b988be2005-07-12 00:20:49 +00002653
2654<ul>
Bill Wendling80118802009-04-15 02:12:37 +00002655 <li><b>i686-pc-linux-gnu</b> &mdash; Linux</li>
2656
2657 <li><b>i386-unknown-freebsd5.3</b> &mdash; FreeBSD 5.3</li>
2658
2659 <li><b>i686-pc-cygwin</b> &mdash; Cygwin on Win32</li>
2660
2661 <li><b>i686-pc-mingw32</b> &mdash; MingW on Win32</li>
2662
2663 <li><b>i386-pc-mingw32msvc</b> &mdash; MingW crosscompiler on Linux</li>
2664
2665 <li><b>i686-apple-darwin*</b> &mdash; Apple Darwin on X86</li>
Torok Edwinc457b652009-06-15 12:17:44 +00002666
2667 <li><b>x86_64-unknown-linux-gnu</b> &mdash; Linux</li>
Chris Lattner9b988be2005-07-12 00:20:49 +00002668</ul>
2669
2670</div>
2671
2672<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002673<h4>
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00002674 <a name="x86_cc">X86 Calling Conventions supported</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002675</h4>
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00002676
2677
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002678<div>
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00002679
Dan Gohman641b2792008-11-24 16:27:17 +00002680<p>The following target-specific calling conventions are known to backend:</p>
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00002681
2682<ul>
Chris Lattner01ebd562011-05-22 22:28:47 +00002683<li><b>x86_StdCall</b> &mdash; stdcall calling convention seen on Microsoft
2684 Windows platform (CC ID = 64).</li>
2685<li><b>x86_FastCall</b> &mdash; fastcall calling convention seen on Microsoft
2686 Windows platform (CC ID = 65).</li>
2687<li><b>x86_ThisCall</b> &mdash; Similar to X86_StdCall. Passes first argument
2688 in ECX, others via stack. Callee is responsible for stack cleaning. This
2689 convention is used by MSVC by default for methods in its ABI
2690 (CC ID = 70).</li>
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00002691</ul>
2692
2693</div>
2694
2695<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002696<h4>
Chris Lattnerec94f802004-06-04 00:16:02 +00002697 <a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002698</h4>
Chris Lattnerec94f802004-06-04 00:16:02 +00002699
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002700<div>
Chris Lattnerec94f802004-06-04 00:16:02 +00002701
Misha Brukman600df452005-02-17 22:22:24 +00002702<p>The x86 has a very flexible way of accessing memory. It is capable of
Bill Wendling80118802009-04-15 02:12:37 +00002703 forming memory addresses of the following expression directly in integer
2704 instructions (which use ModR/M addressing):</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00002705
Bill Wendling91e10c42006-08-28 02:26:32 +00002706<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +00002707<pre>
Chris Lattnerb91227d2009-10-10 21:30:55 +00002708SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32
Chris Lattnerec94f802004-06-04 00:16:02 +00002709</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00002710</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00002711
Chris Lattnerb91227d2009-10-10 21:30:55 +00002712<p>In order to represent this, LLVM tracks no less than 5 operands for each
Bill Wendling80118802009-04-15 02:12:37 +00002713 memory operand of this form. This means that the "load" form of
2714 '<tt>mov</tt>' has the following <tt>MachineOperand</tt>s in this order:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00002715
Bill Wendling80118802009-04-15 02:12:37 +00002716<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +00002717<pre>
Chris Lattnerb91227d2009-10-10 21:30:55 +00002718Index: 0 | 1 2 3 4 5
2719Meaning: DestReg, | BaseReg, Scale, IndexReg, Displacement Segment
2720OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg, SignExtImm PhysReg
Chris Lattnerec94f802004-06-04 00:16:02 +00002721</pre>
Bill Wendling80118802009-04-15 02:12:37 +00002722</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00002723
Bill Wendling80118802009-04-15 02:12:37 +00002724<p>Stores, and all other instructions, treat the four memory operands in the
Chris Lattnerb91227d2009-10-10 21:30:55 +00002725 same way and in the same order. If the segment register is unspecified
2726 (regno = 0), then no segment override is generated. "Lea" operations do not
2727 have a segment register specified, so they only have 4 operands for their
2728 memory reference.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00002729
2730</div>
2731
2732<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002733<h4>
Nate Begeman34509842009-01-26 02:54:45 +00002734 <a name="x86_memory">X86 address spaces supported</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002735</h4>
Nate Begeman34509842009-01-26 02:54:45 +00002736
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002737<div>
Nate Begeman34509842009-01-26 02:54:45 +00002738
Jay Foadcb88ec32011-04-06 07:55:30 +00002739<p>x86 has a feature which provides
Dan Gohmand26795a2009-05-05 20:48:47 +00002740 the ability to perform loads and stores to different address spaces
Bill Wendling80118802009-04-15 02:12:37 +00002741 via the x86 segment registers. A segment override prefix byte on an
2742 instruction causes the instruction's memory access to go to the specified
2743 segment. LLVM address space 0 is the default address space, which includes
2744 the stack, and any unqualified memory accesses in a program. Address spaces
2745 1-255 are currently reserved for user-defined code. The GS-segment is
Chris Lattner1777d0c2009-05-05 18:52:19 +00002746 represented by address space 256, while the FS-segment is represented by
2747 address space 257. Other x86 segments have yet to be allocated address space
2748 numbers.</p>
Nate Begeman34509842009-01-26 02:54:45 +00002749
Dan Gohmand26795a2009-05-05 20:48:47 +00002750<p>While these address spaces may seem similar to TLS via the
2751 <tt>thread_local</tt> keyword, and often use the same underlying hardware,
2752 there are some fundamental differences.</p>
2753
2754<p>The <tt>thread_local</tt> keyword applies to global variables and
2755 specifies that they are to be allocated in thread-local memory. There are
2756 no type qualifiers involved, and these variables can be pointed to with
2757 normal pointers and accessed with normal loads and stores.
2758 The <tt>thread_local</tt> keyword is target-independent at the LLVM IR
2759 level (though LLVM doesn't yet have implementations of it for some
2760 configurations).<p>
2761
2762<p>Special address spaces, in contrast, apply to static types. Every
2763 load and store has a particular address space in its address operand type,
2764 and this is what determines which address space is accessed.
2765 LLVM ignores these special address space qualifiers on global variables,
2766 and does not provide a way to directly allocate storage in them.
2767 At the LLVM IR level, the behavior of these special address spaces depends
2768 in part on the underlying OS or runtime environment, and they are specific
2769 to x86 (and LLVM doesn't yet handle them correctly in some cases).</p>
2770
2771<p>Some operating systems and runtime environments use (or may in the future
2772 use) the FS/GS-segment registers for various low-level purposes, so care
2773 should be taken when considering them.</p>
Nate Begeman34509842009-01-26 02:54:45 +00002774
2775</div>
2776
2777<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002778<h4>
Chris Lattnerec94f802004-06-04 00:16:02 +00002779 <a name="x86_names">Instruction naming</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002780</h4>
Chris Lattnerec94f802004-06-04 00:16:02 +00002781
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002782<div>
Chris Lattnerec94f802004-06-04 00:16:02 +00002783
Bill Wendling91e10c42006-08-28 02:26:32 +00002784<p>An instruction name consists of the base name, a default operand size, and a
Bill Wendling80118802009-04-15 02:12:37 +00002785 a character per operand with an optional special size. For example:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00002786
Bill Wendling80118802009-04-15 02:12:37 +00002787<div class="doc_code">
2788<pre>
2789ADD8rr -&gt; add, 8-bit register, 8-bit register
2790IMUL16rmi -&gt; imul, 16-bit register, 16-bit memory, 16-bit immediate
2791IMUL16rmi8 -&gt; imul, 16-bit register, 16-bit memory, 8-bit immediate
2792MOVSX32rm16 -&gt; movsx, 32-bit register, 16-bit memory
2793</pre>
2794</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00002795
2796</div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00002797
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002798</div>
2799
Jim Laskey762b6cb2006-12-14 17:19:50 +00002800<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002801<h3>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002802 <a name="ppc">The PowerPC backend</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002803</h3>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002804
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002805<div>
Bill Wendling80118802009-04-15 02:12:37 +00002806
Jim Laskey762b6cb2006-12-14 17:19:50 +00002807<p>The PowerPC code generator lives in the lib/Target/PowerPC directory. The
Bill Wendling80118802009-04-15 02:12:37 +00002808 code generation is retargetable to several variations or <i>subtargets</i> of
2809 the PowerPC ISA; including ppc32, ppc64 and altivec.</p>
2810
Jim Laskey762b6cb2006-12-14 17:19:50 +00002811<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002812<h4>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002813 <a name="ppc_abi">LLVM PowerPC ABI</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002814</h4>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002815
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002816<div>
Bill Wendling80118802009-04-15 02:12:37 +00002817
Jim Laskey762b6cb2006-12-14 17:19:50 +00002818<p>LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC
Bill Wendling80118802009-04-15 02:12:37 +00002819 relative (PIC) or static addressing for accessing global values, so no TOC
2820 (r2) is used. Second, r31 is used as a frame pointer to allow dynamic growth
2821 of a stack frame. LLVM takes advantage of having no TOC to provide space to
2822 save the frame pointer in the PowerPC linkage area of the caller frame.
2823 Other details of PowerPC ABI can be found at <a href=
2824 "http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html"
2825 >PowerPC ABI.</a> Note: This link describes the 32 bit ABI. The 64 bit ABI
2826 is similar except space for GPRs are 8 bytes wide (not 4) and r13 is reserved
2827 for system use.</p>
2828
Jim Laskey762b6cb2006-12-14 17:19:50 +00002829</div>
2830
2831<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002832<h4>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002833 <a name="ppc_frame">Frame Layout</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002834</h4>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002835
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002836<div>
Bill Wendling80118802009-04-15 02:12:37 +00002837
Jim Laskey762b6cb2006-12-14 17:19:50 +00002838<p>The size of a PowerPC frame is usually fixed for the duration of a
Bill Wendling80118802009-04-15 02:12:37 +00002839 function's invocation. Since the frame is fixed size, all references
2840 into the frame can be accessed via fixed offsets from the stack pointer. The
2841 exception to this is when dynamic alloca or variable sized arrays are
2842 present, then a base pointer (r31) is used as a proxy for the stack pointer
2843 and stack pointer is free to grow or shrink. A base pointer is also used if
2844 llvm-gcc is not passed the -fomit-frame-pointer flag. The stack pointer is
2845 always aligned to 16 bytes, so that space allocated for altivec vectors will
2846 be properly aligned.</p>
2847
Dan Gohman641b2792008-11-24 16:27:17 +00002848<p>An invocation frame is laid out as follows (low memory at top);</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002849
Jim Laskey762b6cb2006-12-14 17:19:50 +00002850<table class="layout">
Bill Wendling80118802009-04-15 02:12:37 +00002851 <tr>
2852 <td>Linkage<br><br></td>
2853 </tr>
2854 <tr>
2855 <td>Parameter area<br><br></td>
2856 </tr>
2857 <tr>
2858 <td>Dynamic area<br><br></td>
2859 </tr>
2860 <tr>
2861 <td>Locals area<br><br></td>
2862 </tr>
2863 <tr>
2864 <td>Saved registers area<br><br></td>
2865 </tr>
2866 <tr style="border-style: none hidden none hidden;">
2867 <td><br></td>
2868 </tr>
2869 <tr>
2870 <td>Previous Frame<br><br></td>
2871 </tr>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002872</table>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002873
Jim Laskey762b6cb2006-12-14 17:19:50 +00002874<p>The <i>linkage</i> area is used by a callee to save special registers prior
Bill Wendling80118802009-04-15 02:12:37 +00002875 to allocating its own frame. Only three entries are relevant to LLVM. The
2876 first entry is the previous stack pointer (sp), aka link. This allows
2877 probing tools like gdb or exception handlers to quickly scan the frames in
2878 the stack. A function epilog can also use the link to pop the frame from the
2879 stack. The third entry in the linkage area is used to save the return
2880 address from the lr register. Finally, as mentioned above, the last entry is
2881 used to save the previous frame pointer (r31.) The entries in the linkage
2882 area are the size of a GPR, thus the linkage area is 24 bytes long in 32 bit
2883 mode and 48 bytes in 64 bit mode.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002884
Jim Laskey762b6cb2006-12-14 17:19:50 +00002885<p>32 bit linkage area</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002886
Bill Wendling80118802009-04-15 02:12:37 +00002887<table class="layout">
2888 <tr>
2889 <td>0</td>
2890 <td>Saved SP (r1)</td>
2891 </tr>
2892 <tr>
2893 <td>4</td>
2894 <td>Saved CR</td>
2895 </tr>
2896 <tr>
2897 <td>8</td>
2898 <td>Saved LR</td>
2899 </tr>
2900 <tr>
2901 <td>12</td>
2902 <td>Reserved</td>
2903 </tr>
2904 <tr>
2905 <td>16</td>
2906 <td>Reserved</td>
2907 </tr>
2908 <tr>
2909 <td>20</td>
2910 <td>Saved FP (r31)</td>
2911 </tr>
2912</table>
2913
Jim Laskey762b6cb2006-12-14 17:19:50 +00002914<p>64 bit linkage area</p>
Bill Wendling80118802009-04-15 02:12:37 +00002915
Jim Laskey762b6cb2006-12-14 17:19:50 +00002916<table class="layout">
Bill Wendling80118802009-04-15 02:12:37 +00002917 <tr>
2918 <td>0</td>
2919 <td>Saved SP (r1)</td>
2920 </tr>
2921 <tr>
2922 <td>8</td>
2923 <td>Saved CR</td>
2924 </tr>
2925 <tr>
2926 <td>16</td>
2927 <td>Saved LR</td>
2928 </tr>
2929 <tr>
2930 <td>24</td>
2931 <td>Reserved</td>
2932 </tr>
2933 <tr>
2934 <td>32</td>
2935 <td>Reserved</td>
2936 </tr>
2937 <tr>
2938 <td>40</td>
2939 <td>Saved FP (r31)</td>
2940 </tr>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002941</table>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002942
Jim Laskey762b6cb2006-12-14 17:19:50 +00002943<p>The <i>parameter area</i> is used to store arguments being passed to a callee
Bill Wendling80118802009-04-15 02:12:37 +00002944 function. Following the PowerPC ABI, the first few arguments are actually
2945 passed in registers, with the space in the parameter area unused. However,
2946 if there are not enough registers or the callee is a thunk or vararg
2947 function, these register arguments can be spilled into the parameter area.
2948 Thus, the parameter area must be large enough to store all the parameters for
2949 the largest call sequence made by the caller. The size must also be
2950 minimally large enough to spill registers r3-r10. This allows callees blind
2951 to the call signature, such as thunks and vararg functions, enough space to
2952 cache the argument registers. Therefore, the parameter area is minimally 32
2953 bytes (64 bytes in 64 bit mode.) Also note that since the parameter area is
2954 a fixed offset from the top of the frame, that a callee can access its spilt
2955 arguments using fixed offsets from the stack pointer (or base pointer.)</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002956
Jim Laskey762b6cb2006-12-14 17:19:50 +00002957<p>Combining the information about the linkage, parameter areas and alignment. A
Bill Wendling80118802009-04-15 02:12:37 +00002958 stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit
2959 mode.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002960
Jim Laskey762b6cb2006-12-14 17:19:50 +00002961<p>The <i>dynamic area</i> starts out as size zero. If a function uses dynamic
Bill Wendling80118802009-04-15 02:12:37 +00002962 alloca then space is added to the stack, the linkage and parameter areas are
2963 shifted to top of stack, and the new space is available immediately below the
2964 linkage and parameter areas. The cost of shifting the linkage and parameter
2965 areas is minor since only the link value needs to be copied. The link value
2966 can be easily fetched by adding the original frame size to the base pointer.
2967 Note that allocations in the dynamic space need to observe 16 byte
2968 alignment.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002969
Jim Laskey762b6cb2006-12-14 17:19:50 +00002970<p>The <i>locals area</i> is where the llvm compiler reserves space for local
Bill Wendling80118802009-04-15 02:12:37 +00002971 variables.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002972
Bill Wendling80118802009-04-15 02:12:37 +00002973<p>The <i>saved registers area</i> is where the llvm compiler spills callee
2974 saved registers on entry to the callee.</p>
2975
Jim Laskey762b6cb2006-12-14 17:19:50 +00002976</div>
2977
2978<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002979<h4>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002980 <a name="ppc_prolog">Prolog/Epilog</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002981</h4>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002982
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002983<div>
Bill Wendling80118802009-04-15 02:12:37 +00002984
Jim Laskey762b6cb2006-12-14 17:19:50 +00002985<p>The llvm prolog and epilog are the same as described in the PowerPC ABI, with
Bill Wendling80118802009-04-15 02:12:37 +00002986 the following exceptions. Callee saved registers are spilled after the frame
2987 is created. This allows the llvm epilog/prolog support to be common with
2988 other targets. The base pointer callee saved register r31 is saved in the
2989 TOC slot of linkage area. This simplifies allocation of space for the base
2990 pointer and makes it convenient to locate programatically and during
2991 debugging.</p>
2992
Jim Laskey762b6cb2006-12-14 17:19:50 +00002993</div>
2994
2995<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002996<h4>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002997 <a name="ppc_dynamic">Dynamic Allocation</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002998</h4>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002999
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003000<div>
Jim Laskey762b6cb2006-12-14 17:19:50 +00003001
Jim Laskeyb744c252006-12-15 10:40:48 +00003002<p><i>TODO - More to come.</i></p>
Bill Wendling80118802009-04-15 02:12:37 +00003003
Jim Laskeyb744c252006-12-15 10:40:48 +00003004</div>
Jim Laskey762b6cb2006-12-14 17:19:50 +00003005
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003006</div>
3007
Justin Holewinskidceb0022011-08-11 17:34:16 +00003008<!-- ======================================================================= -->
3009<h3>
3010 <a name="ptx">The PTX backend</a>
3011</h3>
3012
3013<div>
3014
3015<p>The PTX code generator lives in the lib/Target/PTX directory. It is
3016 currently a work-in-progress, but already supports most of the code
3017 generation functionality needed to generate correct PTX kernels for
3018 CUDA devices.</p>
3019
3020<p>The code generator can target PTX 2.0+, and shader model 1.0+. The
3021 PTX ISA Reference Manual is used as the primary source of ISA
3022 information, though an effort is made to make the output of the code
3023 generator match the output of the NVidia nvcc compiler, whenever
3024 possible.</p>
3025
3026<p>Code Generator Options:</p>
3027<table border="1" cellspacing="0">
3028 <tr>
3029 <th>Option</th>
3030 <th>Description</th>
3031 </tr>
3032 <tr>
3033 <td><code>double</code></td>
3034 <td align="left">If enabled, the map_f64_to_f32 directive is
3035 disabled in the PTX output, allowing native double-precision
3036 arithmetic</td>
3037 </tr>
3038 <tr>
3039 <td><code>no-fma</code></td>
3040 <td align="left">Disable generation of Fused-Multiply Add
3041 instructions, which may be beneficial for some devices</td>
3042 </tr>
3043 <tr>
3044 <td><code>smxy / computexy</code></td>
3045 <td align="left">Set shader model/compute capability to x.y,
3046 e.g. sm20 or compute13</td>
3047 </tr>
3048</table>
3049
3050<p>Working:</p>
3051<ul>
3052 <li>Arithmetic instruction selection (including combo FMA)</li>
3053 <li>Bitwise instruction selection</li>
3054 <li>Control-flow instruction selection</li>
3055 <li>Function calls (only on SM 2.0+ and no return arguments)</li>
3056 <li>Addresses spaces (0 = global, 1 = constant, 2 = local, 4 =
3057 shared)</li>
3058 <li>Thread synchronization (bar.sync)</li>
3059 <li>Special register reads ([N]TID, [N]CTAID, PMx, CLOCK, etc.)</li>
3060</ul>
3061
3062<p>In Progress:</p>
3063<ul>
3064 <li>Robust call instruction selection</li>
3065 <li>Stack frame allocation</li>
3066 <li>Device-specific instruction scheduling optimizations</li>
3067</ul>
3068
3069
3070</div>
3071
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003072</div>
Jim Laskey762b6cb2006-12-14 17:19:50 +00003073
Chris Lattnerce52b7e2004-06-01 06:48:00 +00003074<!-- *********************************************************************** -->
3075<hr>
3076<address>
3077 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00003078 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00003079 <a href="http://validator.w3.org/check/referer"><img
Misha Brukmanf00ddb02008-12-11 18:23:24 +00003080 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00003081
3082 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumib9a33632011-04-09 02:13:37 +00003083 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00003084 Last modified: $Date$
3085</address>
3086
3087</body>
3088</html>