blob: 8c52a2118eb3a7263ff86e8a678fb51bc2927f7c [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christophera1151bf2009-12-05 02:46:03 +00008 <meta name="description"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendling41a07852009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendlinge2753242009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
28 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
29 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
30 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
31 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
32 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
33 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner0fee5c22009-10-10 18:26:06 +000034 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendlinge2753242009-07-20 02:41:50 +000035 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
36 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
37 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
38 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendling41a07852009-07-20 01:03:30 +000039 </ol>
40 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000041 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +000042 <li><a href="#namedtypes">Named Types</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043 <li><a href="#globalvars">Global Variables</a></li>
44 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman2672f3e2008-10-14 16:51:45 +000045 <li><a href="#aliasstructure">Aliases</a></li>
Devang Patela4bb6792010-01-11 19:35:55 +000046 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel008cd3e2008-09-26 23:51:19 +000048 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +000049 <li><a href="#gc">Garbage Collector Names</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000050 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
51 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman27b47012009-07-27 18:07:55 +000052 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053 </ol>
54 </li>
55 <li><a href="#typesystem">Type System</a>
56 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000057 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christophera1151bf2009-12-05 02:46:03 +000058 <li><a href="#t_primitive">Primitive Types</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000059 <ol>
Nick Lewycky244cf482009-09-27 00:45:11 +000060 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner488772f2008-01-04 04:32:38 +000061 <li><a href="#t_floating">Floating Point Types</a></li>
62 <li><a href="#t_void">Void Type</a></li>
63 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky29aaef82009-05-30 05:06:04 +000064 <li><a href="#t_metadata">Metadata Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000065 </ol>
66 </li>
67 <li><a href="#t_derived">Derived Types</a>
68 <ol>
Chris Lattnerd5d51722010-02-12 20:49:41 +000069 <li><a href="#t_aggregate">Aggregate Types</a>
70 <ol>
71 <li><a href="#t_array">Array Type</a></li>
72 <li><a href="#t_struct">Structure Type</a></li>
73 <li><a href="#t_pstruct">Packed Structure Type</a></li>
74 <li><a href="#t_union">Union Type</a></li>
75 <li><a href="#t_vector">Vector Type</a></li>
76 </ol>
77 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 <li><a href="#t_function">Function Type</a></li>
79 <li><a href="#t_pointer">Pointer Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000080 <li><a href="#t_opaque">Opaque Type</a></li>
81 </ol>
82 </li>
Chris Lattner515195a2009-02-02 07:32:36 +000083 <li><a href="#t_uprefs">Type Up-references</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084 </ol>
85 </li>
86 <li><a href="#constants">Constants</a>
87 <ol>
Dan Gohman2672f3e2008-10-14 16:51:45 +000088 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner97063852009-02-28 18:32:25 +000089 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman2672f3e2008-10-14 16:51:45 +000090 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
91 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohmanb8ddf022010-04-22 23:14:21 +000092 <li><a href="#trapvalues">Trap Values</a></li>
Chris Lattner29246b52009-10-27 21:19:13 +000093 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohman2672f3e2008-10-14 16:51:45 +000094 <li><a href="#constantexprs">Constant Expressions</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000095 </ol>
96 </li>
97 <li><a href="#othervalues">Other Values</a>
98 <ol>
Dan Gohman2672f3e2008-10-14 16:51:45 +000099 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Devang Patela4bb6792010-01-11 19:35:55 +0000100 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000101 </ol>
102 </li>
Chris Lattner75c24e02009-07-20 05:55:19 +0000103 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
104 <ol>
105 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner1e0e0d12009-07-20 06:14:25 +0000106 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
107 Global Variable</a></li>
Chris Lattner75c24e02009-07-20 05:55:19 +0000108 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
109 Global Variable</a></li>
110 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
111 Global Variable</a></li>
112 </ol>
113 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000114 <li><a href="#instref">Instruction Reference</a>
115 <ol>
116 <li><a href="#terminators">Terminator Instructions</a>
117 <ol>
118 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
119 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
120 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattner4c3800f2009-10-28 00:19:10 +0000121 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000122 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
123 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
124 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
125 </ol>
126 </li>
127 <li><a href="#binaryops">Binary Operations</a>
128 <ol>
129 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohman7ce405e2009-06-04 22:49:04 +0000130 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000131 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohman7ce405e2009-06-04 22:49:04 +0000132 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000133 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohman7ce405e2009-06-04 22:49:04 +0000134 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
136 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
137 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
138 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
139 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
140 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
141 </ol>
142 </li>
143 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
144 <ol>
145 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
146 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
147 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
148 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
149 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
150 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
151 </ol>
152 </li>
153 <li><a href="#vectorops">Vector Operations</a>
154 <ol>
155 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
156 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
157 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
158 </ol>
159 </li>
Dan Gohman74d6faf2008-05-12 23:51:09 +0000160 <li><a href="#aggregateops">Aggregate Operations</a>
161 <ol>
162 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
163 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
164 </ol>
165 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000166 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
167 <ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000168 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
169 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
170 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
171 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
172 </ol>
173 </li>
174 <li><a href="#convertops">Conversion Operations</a>
175 <ol>
176 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
177 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
178 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
179 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
180 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
181 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
182 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
183 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
184 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
185 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
186 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
187 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
188 </ol>
Dan Gohman2672f3e2008-10-14 16:51:45 +0000189 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000190 <li><a href="#otherops">Other Operations</a>
191 <ol>
192 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
193 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
194 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
195 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
196 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
197 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
198 </ol>
199 </li>
200 </ol>
201 </li>
202 <li><a href="#intrinsics">Intrinsic Functions</a>
203 <ol>
204 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
205 <ol>
206 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
207 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
208 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
209 </ol>
210 </li>
211 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
212 <ol>
213 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
214 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
215 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
216 </ol>
217 </li>
218 <li><a href="#int_codegen">Code Generator Intrinsics</a>
219 <ol>
220 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
221 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
222 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
223 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
224 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
225 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
226 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
227 </ol>
228 </li>
229 <li><a href="#int_libc">Standard C Library Intrinsics</a>
230 <ol>
231 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
232 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
233 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
234 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
235 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman361079c2007-10-15 20:30:11 +0000236 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
237 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
238 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000239 </ol>
240 </li>
241 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
242 <ol>
243 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
244 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
245 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
246 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000247 </ol>
248 </li>
Bill Wendling3f8cebe2009-02-08 01:40:31 +0000249 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
250 <ol>
Bill Wendling3e1258b2009-02-08 04:04:40 +0000251 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
252 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
253 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
254 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
255 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingbda98b62009-02-08 23:00:09 +0000256 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling3f8cebe2009-02-08 01:40:31 +0000257 </ol>
258 </li>
Anton Korobeynikov8c98a892010-03-14 18:42:47 +0000259 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
260 <ol>
Chris Lattnerebc48e52010-03-14 23:03:31 +0000261 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
262 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikov8c98a892010-03-14 18:42:47 +0000263 </ol>
264 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000265 <li><a href="#int_debugger">Debugger intrinsics</a></li>
266 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000267 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000268 <ol>
269 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000270 </ol>
271 </li>
Bill Wendling9127adb2008-11-18 22:10:53 +0000272 <li><a href="#int_atomics">Atomic intrinsics</a>
273 <ol>
274 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
275 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
276 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
277 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
278 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
279 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
280 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
281 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
282 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
283 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
284 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
285 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
286 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
287 </ol>
288 </li>
Nick Lewyckyc888d352009-10-13 07:03:23 +0000289 <li><a href="#int_memorymarkers">Memory Use Markers</a>
290 <ol>
291 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
292 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
293 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
294 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
295 </ol>
296 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000297 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000298 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000299 <li><a href="#int_var_annotation">
Bill Wendlinge4164592008-11-19 05:56:17 +0000300 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000301 <li><a href="#int_annotation">
Bill Wendlinge4164592008-11-19 05:56:17 +0000302 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +0000303 <li><a href="#int_trap">
Bill Wendlinge4164592008-11-19 05:56:17 +0000304 '<tt>llvm.trap</tt>' Intrinsic</a></li>
305 <li><a href="#int_stackprotector">
306 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher767a3722009-11-30 08:03:53 +0000307 <li><a href="#int_objectsize">
308 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000309 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000310 </li>
311 </ol>
312 </li>
313</ol>
314
315<div class="doc_author">
316 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
317 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
318</div>
319
320<!-- *********************************************************************** -->
321<div class="doc_section"> <a name="abstract">Abstract </a></div>
322<!-- *********************************************************************** -->
323
324<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +0000325
326<p>This document is a reference manual for the LLVM assembly language. LLVM is
327 a Static Single Assignment (SSA) based representation that provides type
328 safety, low-level operations, flexibility, and the capability of representing
329 'all' high-level languages cleanly. It is the common code representation
330 used throughout all phases of the LLVM compilation strategy.</p>
331
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000332</div>
333
334<!-- *********************************************************************** -->
335<div class="doc_section"> <a name="introduction">Introduction</a> </div>
336<!-- *********************************************************************** -->
337
338<div class="doc_text">
339
Bill Wendlingf85859d2009-07-20 02:29:24 +0000340<p>The LLVM code representation is designed to be used in three different forms:
341 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
342 for fast loading by a Just-In-Time compiler), and as a human readable
343 assembly language representation. This allows LLVM to provide a powerful
344 intermediate representation for efficient compiler transformations and
345 analysis, while providing a natural means to debug and visualize the
346 transformations. The three different forms of LLVM are all equivalent. This
347 document describes the human readable representation and notation.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000348
Bill Wendlingf85859d2009-07-20 02:29:24 +0000349<p>The LLVM representation aims to be light-weight and low-level while being
350 expressive, typed, and extensible at the same time. It aims to be a
351 "universal IR" of sorts, by being at a low enough level that high-level ideas
352 may be cleanly mapped to it (similar to how microprocessors are "universal
353 IR's", allowing many source languages to be mapped to them). By providing
354 type information, LLVM can be used as the target of optimizations: for
355 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling614b32b2009-11-02 00:24:16 +0000356 variable is never accessed outside of the current function, allowing it to
Bill Wendlingf85859d2009-07-20 02:29:24 +0000357 be promoted to a simple SSA value instead of a memory location.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000358
359</div>
360
361<!-- _______________________________________________________________________ -->
362<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
363
364<div class="doc_text">
365
Bill Wendlingf85859d2009-07-20 02:29:24 +0000366<p>It is important to note that this document describes 'well formed' LLVM
367 assembly language. There is a difference between what the parser accepts and
368 what is considered 'well formed'. For example, the following instruction is
369 syntactically okay, but not well formed:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000370
371<div class="doc_code">
372<pre>
373%x = <a href="#i_add">add</a> i32 1, %x
374</pre>
375</div>
376
Bill Wendling614b32b2009-11-02 00:24:16 +0000377<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
378 LLVM infrastructure provides a verification pass that may be used to verify
379 that an LLVM module is well formed. This pass is automatically run by the
380 parser after parsing input assembly and by the optimizer before it outputs
381 bitcode. The violations pointed out by the verifier pass indicate bugs in
382 transformation passes or input to the parser.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000383
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000384</div>
385
Chris Lattnera83fdc02007-10-03 17:34:29 +0000386<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000387
388<!-- *********************************************************************** -->
389<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
390<!-- *********************************************************************** -->
391
392<div class="doc_text">
393
Bill Wendlingf85859d2009-07-20 02:29:24 +0000394<p>LLVM identifiers come in two basic types: global and local. Global
395 identifiers (functions, global variables) begin with the <tt>'@'</tt>
396 character. Local identifiers (register names, types) begin with
397 the <tt>'%'</tt> character. Additionally, there are three different formats
398 for identifiers, for different purposes:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399
400<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000401 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingf85859d2009-07-20 02:29:24 +0000402 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
403 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
404 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
405 other characters in their names can be surrounded with quotes. Special
406 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
407 ASCII code for the character in hexadecimal. In this way, any character
408 can be used in a name value, even quotes themselves.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409
Reid Spencerc8245b02007-08-07 14:34:28 +0000410 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingf85859d2009-07-20 02:29:24 +0000411 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000412
413 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingf85859d2009-07-20 02:29:24 +0000414 constants</a>, below.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415</ol>
416
Reid Spencerc8245b02007-08-07 14:34:28 +0000417<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingf85859d2009-07-20 02:29:24 +0000418 don't need to worry about name clashes with reserved words, and the set of
419 reserved words may be expanded in the future without penalty. Additionally,
420 unnamed identifiers allow a compiler to quickly come up with a temporary
421 variable without having to avoid symbol table conflicts.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000422
423<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingf85859d2009-07-20 02:29:24 +0000424 languages. There are keywords for different opcodes
425 ('<tt><a href="#i_add">add</a></tt>',
426 '<tt><a href="#i_bitcast">bitcast</a></tt>',
427 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
428 ('<tt><a href="#t_void">void</a></tt>',
429 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
430 reserved words cannot conflict with variable names, because none of them
431 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432
433<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingf85859d2009-07-20 02:29:24 +0000434 '<tt>%X</tt>' by 8:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435
436<p>The easy way:</p>
437
438<div class="doc_code">
439<pre>
440%result = <a href="#i_mul">mul</a> i32 %X, 8
441</pre>
442</div>
443
444<p>After strength reduction:</p>
445
446<div class="doc_code">
447<pre>
448%result = <a href="#i_shl">shl</a> i32 %X, i8 3
449</pre>
450</div>
451
452<p>And the hard way:</p>
453
454<div class="doc_code">
455<pre>
Gabor Greifc0ea7672009-10-28 13:05:07 +0000456%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
457%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000458%result = <a href="#i_add">add</a> i32 %1, %1
459</pre>
460</div>
461
Bill Wendlingf85859d2009-07-20 02:29:24 +0000462<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
463 lexical features of LLVM:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464
465<ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000466 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingf85859d2009-07-20 02:29:24 +0000467 line.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000468
469 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingf85859d2009-07-20 02:29:24 +0000470 assigned to a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000471
472 <li>Unnamed temporaries are numbered sequentially</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000473</ol>
474
Bill Wendling614b32b2009-11-02 00:24:16 +0000475<p>It also shows a convention that we follow in this document. When
Bill Wendlingf85859d2009-07-20 02:29:24 +0000476 demonstrating instructions, we will follow an instruction with a comment that
477 defines the type and name of value produced. Comments are shown in italic
478 text.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000479
480</div>
481
482<!-- *********************************************************************** -->
483<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
484<!-- *********************************************************************** -->
485
486<!-- ======================================================================= -->
487<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
488</div>
489
490<div class="doc_text">
491
Bill Wendlingf85859d2009-07-20 02:29:24 +0000492<p>LLVM programs are composed of "Module"s, each of which is a translation unit
493 of the input programs. Each module consists of functions, global variables,
494 and symbol table entries. Modules may be combined together with the LLVM
495 linker, which merges function (and global variable) definitions, resolves
496 forward declarations, and merges symbol table entries. Here is an example of
497 the "hello world" module:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000498
499<div class="doc_code">
Bill Wendling614b32b2009-11-02 00:24:16 +0000500<pre>
501<i>; Declare the string constant as a global constant.</i>
502<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000503
504<i>; External declaration of the puts function</i>
Bill Wendling614b32b2009-11-02 00:24:16 +0000505<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000506
507<i>; Definition of main function</i>
Bill Wendling614b32b2009-11-02 00:24:16 +0000508define i32 @main() { <i>; i32()* </i>
509 <i>; Convert [13 x i8]* to i8 *...</i>
510 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000511
Bill Wendling614b32b2009-11-02 00:24:16 +0000512 <i>; Call puts function to write out the string to stdout.</i>
513 <a href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Devang Patela4bb6792010-01-11 19:35:55 +0000514 <a href="#i_ret">ret</a> i32 0<br>}
515
516<i>; Named metadata</i>
517!1 = metadata !{i32 41}
518!foo = !{!1, null}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000519</pre>
520</div>
521
Bill Wendlingf85859d2009-07-20 02:29:24 +0000522<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Patela4bb6792010-01-11 19:35:55 +0000523 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingf85859d2009-07-20 02:29:24 +0000524 a <a href="#functionstructure">function definition</a> for
Devang Patela4bb6792010-01-11 19:35:55 +0000525 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
526 "<tt>foo"</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000527
Bill Wendlingf85859d2009-07-20 02:29:24 +0000528<p>In general, a module is made up of a list of global values, where both
529 functions and global variables are global values. Global values are
530 represented by a pointer to a memory location (in this case, a pointer to an
531 array of char, and a pointer to a function), and have one of the
532 following <a href="#linkage">linkage types</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000533
534</div>
535
536<!-- ======================================================================= -->
537<div class="doc_subsection">
538 <a name="linkage">Linkage Types</a>
539</div>
540
541<div class="doc_text">
542
Bill Wendlingf85859d2009-07-20 02:29:24 +0000543<p>All Global Variables and Functions have one of the following types of
544 linkage:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000545
546<dl>
Bill Wendling614b32b2009-11-02 00:24:16 +0000547 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000548 <dd>Global values with private linkage are only directly accessible by objects
549 in the current module. In particular, linking code into a module with an
550 private global value may cause the private to be renamed as necessary to
551 avoid collisions. Because the symbol is private to the module, all
552 references can be updated. This doesn't show up in any symbol table in the
553 object file.</dd>
Rafael Espindolaa168fc92009-01-15 20:18:42 +0000554
Bill Wendling614b32b2009-11-02 00:24:16 +0000555 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling41a07852009-07-20 01:03:30 +0000556 <dd>Similar to private, but the symbol is passed through the assembler and
Chris Lattner06c1ecc2009-08-24 04:32:16 +0000557 removed by the linker after evaluation. Note that (unlike private
558 symbols) linker_private symbols are subject to coalescing by the linker:
559 weak symbols get merged and redefinitions are rejected. However, unlike
560 normal strong symbols, they are removed by the linker from the final
561 linked image (executable or dynamic library).</dd>
Bill Wendling41a07852009-07-20 01:03:30 +0000562
Bill Wendling614b32b2009-11-02 00:24:16 +0000563 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000564 <dd>Similar to private, but the value shows as a local symbol
565 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
566 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000567
Bill Wendling614b32b2009-11-02 00:24:16 +0000568 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner68433442009-04-13 05:44:34 +0000569 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingf85859d2009-07-20 02:29:24 +0000570 into the object file corresponding to the LLVM module. They exist to
571 allow inlining and other optimizations to take place given knowledge of
572 the definition of the global, which is known to be somewhere outside the
573 module. Globals with <tt>available_externally</tt> linkage are allowed to
574 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
575 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner68433442009-04-13 05:44:34 +0000576
Bill Wendling614b32b2009-11-02 00:24:16 +0000577 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000578 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattnerd16c5512010-01-09 19:15:14 +0000579 the same name when linkage occurs. This can be used to implement
580 some forms of inline functions, templates, or other code which must be
581 generated in each translation unit that uses it, but where the body may
582 be overridden with a more definitive definition later. Unreferenced
583 <tt>linkonce</tt> globals are allowed to be discarded. Note that
584 <tt>linkonce</tt> linkage does not actually allow the optimizer to
585 inline the body of this function into callers because it doesn't know if
586 this definition of the function is the definitive definition within the
587 program or whether it will be overridden by a stronger definition.
588 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
589 linkage.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000590
Bill Wendling614b32b2009-11-02 00:24:16 +0000591 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattner7215c7f2009-08-05 05:21:07 +0000592 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
593 <tt>linkonce</tt> linkage, except that unreferenced globals with
594 <tt>weak</tt> linkage may not be discarded. This is used for globals that
595 are declared "weak" in C source code.</dd>
596
Bill Wendling614b32b2009-11-02 00:24:16 +0000597 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattner7215c7f2009-08-05 05:21:07 +0000598 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
599 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
600 global scope.
601 Symbols with "<tt>common</tt>" linkage are merged in the same way as
602 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner83c4a712009-08-05 05:41:44 +0000603 <tt>common</tt> symbols may not have an explicit section,
Eric Christophera1151bf2009-12-05 02:46:03 +0000604 must have a zero initializer, and may not be marked '<a
Chris Lattner83c4a712009-08-05 05:41:44 +0000605 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
606 have common linkage.</dd>
Chris Lattner7215c7f2009-08-05 05:21:07 +0000607
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000608
Bill Wendling614b32b2009-11-02 00:24:16 +0000609 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000610 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingf85859d2009-07-20 02:29:24 +0000611 pointer to array type. When two global variables with appending linkage
612 are linked together, the two global arrays are appended together. This is
613 the LLVM, typesafe, equivalent of having the system linker append together
614 "sections" with identical names when .o files are linked.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000615
Bill Wendling614b32b2009-11-02 00:24:16 +0000616 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000617 <dd>The semantics of this linkage follow the ELF object file model: the symbol
618 is weak until linked, if not linked, the symbol becomes null instead of
619 being an undefined reference.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000620
Bill Wendling614b32b2009-11-02 00:24:16 +0000621 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
622 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000623 <dd>Some languages allow differing globals to be merged, such as two functions
624 with different semantics. Other languages, such as <tt>C++</tt>, ensure
625 that only equivalent globals are ever merged (the "one definition rule" -
626 "ODR"). Such languages can use the <tt>linkonce_odr</tt>
627 and <tt>weak_odr</tt> linkage types to indicate that the global will only
628 be merged with equivalent globals. These linkage types are otherwise the
629 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands19d161f2009-03-07 15:45:40 +0000630
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000631 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000632 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingf85859d2009-07-20 02:29:24 +0000633 visible, meaning that it participates in linkage and can be used to
634 resolve external symbol references.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000635</dl>
636
Bill Wendlingf85859d2009-07-20 02:29:24 +0000637<p>The next two types of linkage are targeted for Microsoft Windows platform
638 only. They are designed to support importing (exporting) symbols from (to)
639 DLLs (Dynamic Link Libraries).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000640
Bill Wendlingf85859d2009-07-20 02:29:24 +0000641<dl>
Bill Wendling614b32b2009-11-02 00:24:16 +0000642 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000643 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingf85859d2009-07-20 02:29:24 +0000644 or variable via a global pointer to a pointer that is set up by the DLL
645 exporting the symbol. On Microsoft Windows targets, the pointer name is
646 formed by combining <code>__imp_</code> and the function or variable
647 name.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000648
Bill Wendling614b32b2009-11-02 00:24:16 +0000649 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000650 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingf85859d2009-07-20 02:29:24 +0000651 pointer to a pointer in a DLL, so that it can be referenced with the
652 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
653 name is formed by combining <code>__imp_</code> and the function or
654 variable name.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000655</dl>
656
Bill Wendlingf85859d2009-07-20 02:29:24 +0000657<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
658 another module defined a "<tt>.LC0</tt>" variable and was linked with this
659 one, one of the two would be renamed, preventing a collision. Since
660 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
661 declarations), they are accessible outside of the current module.</p>
662
663<p>It is illegal for a function <i>declaration</i> to have any linkage type
664 other than "externally visible", <tt>dllimport</tt>
665 or <tt>extern_weak</tt>.</p>
666
Duncan Sands19d161f2009-03-07 15:45:40 +0000667<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000668 or <tt>weak_odr</tt> linkages.</p>
669
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000670</div>
671
672<!-- ======================================================================= -->
673<div class="doc_subsection">
674 <a name="callingconv">Calling Conventions</a>
675</div>
676
677<div class="doc_text">
678
679<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000680 and <a href="#i_invoke">invokes</a> can all have an optional calling
681 convention specified for the call. The calling convention of any pair of
682 dynamic caller/callee must match, or the behavior of the program is
683 undefined. The following calling conventions are supported by LLVM, and more
684 may be added in the future:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000685
686<dl>
687 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000688 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingf85859d2009-07-20 02:29:24 +0000689 specified) matches the target C calling conventions. This calling
690 convention supports varargs function calls and tolerates some mismatch in
691 the declared prototype and implemented declaration of the function (as
692 does normal C).</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000693
694 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000695 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingf85859d2009-07-20 02:29:24 +0000696 (e.g. by passing things in registers). This calling convention allows the
697 target to use whatever tricks it wants to produce fast code for the
698 target, without having to conform to an externally specified ABI
Jeffrey Yasskin3e1a3a02010-01-09 19:44:16 +0000699 (Application Binary Interface).
700 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattnerac9a9392010-03-11 00:22:57 +0000701 when this or the GHC convention is used.</a> This calling convention
702 does not support varargs and requires the prototype of all callees to
703 exactly match the prototype of the function definition.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704
705 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000706 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingf85859d2009-07-20 02:29:24 +0000707 as possible under the assumption that the call is not commonly executed.
708 As such, these calls often preserve all registers so that the call does
709 not break any live ranges in the caller side. This calling convention
710 does not support varargs and requires the prototype of all callees to
711 exactly match the prototype of the function definition.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712
Chris Lattnerac9a9392010-03-11 00:22:57 +0000713 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
714 <dd>This calling convention has been implemented specifically for use by the
715 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
716 It passes everything in registers, going to extremes to achieve this by
717 disabling callee save registers. This calling convention should not be
718 used lightly but only for specific situations such as an alternative to
719 the <em>register pinning</em> performance technique often used when
720 implementing functional programming languages.At the moment only X86
721 supports this convention and it has the following limitations:
722 <ul>
723 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
724 floating point types are supported.</li>
725 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
726 6 floating point parameters.</li>
727 </ul>
728 This calling convention supports
729 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
730 requires both the caller and callee are using it.
731 </dd>
732
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000733 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingf85859d2009-07-20 02:29:24 +0000735 target-specific calling conventions to be used. Target specific calling
736 conventions start at 64.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737</dl>
738
739<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingf85859d2009-07-20 02:29:24 +0000740 support Pascal conventions or any other well-known target-independent
741 convention.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742
743</div>
744
745<!-- ======================================================================= -->
746<div class="doc_subsection">
747 <a name="visibility">Visibility Styles</a>
748</div>
749
750<div class="doc_text">
751
Bill Wendlingf85859d2009-07-20 02:29:24 +0000752<p>All Global Variables and Functions have one of the following visibility
753 styles:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000754
755<dl>
756 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner96451482008-08-05 18:29:16 +0000757 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingf85859d2009-07-20 02:29:24 +0000758 that the declaration is visible to other modules and, in shared libraries,
759 means that the declared entity may be overridden. On Darwin, default
760 visibility means that the declaration is visible to other modules. Default
761 visibility corresponds to "external linkage" in the language.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000762
763 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingf85859d2009-07-20 02:29:24 +0000765 object if they are in the same shared object. Usually, hidden visibility
766 indicates that the symbol will not be placed into the dynamic symbol
767 table, so no other module (executable or shared library) can reference it
768 directly.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000769
770 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000771 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingf85859d2009-07-20 02:29:24 +0000772 the dynamic symbol table, but that references within the defining module
773 will bind to the local symbol. That is, the symbol cannot be overridden by
774 another module.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000775</dl>
776
777</div>
778
779<!-- ======================================================================= -->
780<div class="doc_subsection">
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000781 <a name="namedtypes">Named Types</a>
782</div>
783
784<div class="doc_text">
785
786<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingf85859d2009-07-20 02:29:24 +0000787 it easier to read the IR and make the IR more condensed (particularly when
788 recursive types are involved). An example of a name specification is:</p>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000789
790<div class="doc_code">
791<pre>
792%mytype = type { %mytype*, i32 }
793</pre>
794</div>
795
Bill Wendlingf85859d2009-07-20 02:29:24 +0000796<p>You may give a name to any <a href="#typesystem">type</a> except
797 "<a href="t_void">void</a>". Type name aliases may be used anywhere a type
798 is expected with the syntax "%mytype".</p>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000799
800<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingf85859d2009-07-20 02:29:24 +0000801 and that you can therefore specify multiple names for the same type. This
802 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
803 uses structural typing, the name is not part of the type. When printing out
804 LLVM IR, the printer will pick <em>one name</em> to render all types of a
805 particular shape. This means that if you have code where two different
806 source types end up having the same LLVM type, that the dumper will sometimes
807 print the "wrong" or unexpected type. This is an important design point and
808 isn't going to change.</p>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000809
810</div>
811
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000812<!-- ======================================================================= -->
813<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000814 <a name="globalvars">Global Variables</a>
815</div>
816
817<div class="doc_text">
818
819<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingf85859d2009-07-20 02:29:24 +0000820 instead of run-time. Global variables may optionally be initialized, may
821 have an explicit section to be placed in, and may have an optional explicit
822 alignment specified. A variable may be defined as "thread_local", which
823 means that it will not be shared by threads (each thread will have a
824 separated copy of the variable). A variable may be defined as a global
825 "constant," which indicates that the contents of the variable
826 will <b>never</b> be modified (enabling better optimization, allowing the
827 global data to be placed in the read-only section of an executable, etc).
828 Note that variables that need runtime initialization cannot be marked
829 "constant" as there is a store to the variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000830
Bill Wendlingf85859d2009-07-20 02:29:24 +0000831<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
832 constant, even if the final definition of the global is not. This capability
833 can be used to enable slightly better optimization of the program, but
834 requires the language definition to guarantee that optimizations based on the
835 'constantness' are valid for the translation units that do not include the
836 definition.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000837
Bill Wendlingf85859d2009-07-20 02:29:24 +0000838<p>As SSA values, global variables define pointer values that are in scope
839 (i.e. they dominate) all basic blocks in the program. Global variables
840 always define a pointer to their "content" type because they describe a
841 region of memory, and all memory objects in LLVM are accessed through
842 pointers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000843
Bill Wendlingf85859d2009-07-20 02:29:24 +0000844<p>A global variable may be declared to reside in a target-specific numbered
845 address space. For targets that support them, address spaces may affect how
846 optimizations are performed and/or what target instructions are used to
847 access the variable. The default address space is zero. The address space
848 qualifier must precede any other attributes.</p>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000849
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000850<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingf85859d2009-07-20 02:29:24 +0000851 supports it, it will emit globals to the section specified.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000852
853<p>An explicit alignment may be specified for a global. If not present, or if
Bill Wendlingf85859d2009-07-20 02:29:24 +0000854 the alignment is set to zero, the alignment of the global is set by the
855 target to whatever it feels convenient. If an explicit alignment is
856 specified, the global is forced to have at least that much alignment. All
857 alignments must be a power of 2.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000858
Bill Wendlingf85859d2009-07-20 02:29:24 +0000859<p>For example, the following defines a global in a numbered address space with
860 an initializer, section, and alignment:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000861
862<div class="doc_code">
863<pre>
Dan Gohman21ef02c2009-01-11 00:40:00 +0000864@G = addrspace(5) constant float 1.0, section "foo", align 4
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000865</pre>
866</div>
867
868</div>
869
870
871<!-- ======================================================================= -->
872<div class="doc_subsection">
873 <a name="functionstructure">Functions</a>
874</div>
875
876<div class="doc_text">
877
Dan Gohman22dc6682010-03-01 17:41:39 +0000878<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlingf85859d2009-07-20 02:29:24 +0000879 optional <a href="#linkage">linkage type</a>, an optional
880 <a href="#visibility">visibility style</a>, an optional
881 <a href="#callingconv">calling convention</a>, a return type, an optional
882 <a href="#paramattrs">parameter attribute</a> for the return type, a function
883 name, a (possibly empty) argument list (each with optional
884 <a href="#paramattrs">parameter attributes</a>), optional
885 <a href="#fnattrs">function attributes</a>, an optional section, an optional
886 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
887 curly brace, a list of basic blocks, and a closing curly brace.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000888
Bill Wendlingf85859d2009-07-20 02:29:24 +0000889<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
890 optional <a href="#linkage">linkage type</a>, an optional
Eric Christophera1151bf2009-12-05 02:46:03 +0000891 <a href="#visibility">visibility style</a>, an optional
Bill Wendlingf85859d2009-07-20 02:29:24 +0000892 <a href="#callingconv">calling convention</a>, a return type, an optional
893 <a href="#paramattrs">parameter attribute</a> for the return type, a function
894 name, a possibly empty list of arguments, an optional alignment, and an
895 optional <a href="#gc">garbage collector name</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000896
Chris Lattner96451482008-08-05 18:29:16 +0000897<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingf85859d2009-07-20 02:29:24 +0000898 (Control Flow Graph) for the function. Each basic block may optionally start
899 with a label (giving the basic block a symbol table entry), contains a list
900 of instructions, and ends with a <a href="#terminators">terminator</a>
901 instruction (such as a branch or function return).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000902
903<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingf85859d2009-07-20 02:29:24 +0000904 executed on entrance to the function, and it is not allowed to have
905 predecessor basic blocks (i.e. there can not be any branches to the entry
906 block of a function). Because the block can have no predecessors, it also
907 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000908
909<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingf85859d2009-07-20 02:29:24 +0000910 supports it, it will emit functions to the section specified.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000911
912<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingf85859d2009-07-20 02:29:24 +0000913 the alignment is set to zero, the alignment of the function is set by the
914 target to whatever it feels convenient. If an explicit alignment is
915 specified, the function is forced to have at least that much alignment. All
916 alignments must be a power of 2.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000917
Bill Wendling6ec40612009-07-20 02:39:26 +0000918<h5>Syntax:</h5>
Devang Pateld0bfcc72008-10-07 17:48:33 +0000919<div class="doc_code">
Bill Wendlingf85859d2009-07-20 02:29:24 +0000920<pre>
Chris Lattner1e5c5cd02008-10-13 16:55:18 +0000921define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingf85859d2009-07-20 02:29:24 +0000922 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
923 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
924 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
925 [<a href="#gc">gc</a>] { ... }
926</pre>
Devang Pateld0bfcc72008-10-07 17:48:33 +0000927</div>
928
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000929</div>
930
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000931<!-- ======================================================================= -->
932<div class="doc_subsection">
933 <a name="aliasstructure">Aliases</a>
934</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000935
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000936<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +0000937
938<p>Aliases act as "second name" for the aliasee value (which can be either
939 function, global variable, another alias or bitcast of global value). Aliases
940 may have an optional <a href="#linkage">linkage type</a>, and an
941 optional <a href="#visibility">visibility style</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000942
Bill Wendling6ec40612009-07-20 02:39:26 +0000943<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944<div class="doc_code">
945<pre>
Duncan Sandsd7bfabf2008-09-12 20:48:21 +0000946@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000947</pre>
948</div>
949
950</div>
951
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000952<!-- ======================================================================= -->
Devang Patela4bb6792010-01-11 19:35:55 +0000953<div class="doc_subsection">
954 <a name="namedmetadatastructure">Named Metadata</a>
955</div>
956
957<div class="doc_text">
958
Chris Lattnerd0d96292010-01-15 21:50:19 +0000959<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
960 nodes</a> (but not metadata strings) and null are the only valid operands for
961 a named metadata.</p>
Devang Patela4bb6792010-01-11 19:35:55 +0000962
963<h5>Syntax:</h5>
964<div class="doc_code">
965<pre>
966!1 = metadata !{metadata !"one"}
967!name = !{null, !1}
968</pre>
969</div>
970
971</div>
972
973<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000974<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000975
Bill Wendlingf85859d2009-07-20 02:29:24 +0000976<div class="doc_text">
977
978<p>The return type and each parameter of a function type may have a set of
979 <i>parameter attributes</i> associated with them. Parameter attributes are
980 used to communicate additional information about the result or parameters of
981 a function. Parameter attributes are considered to be part of the function,
982 not of the function type, so functions with different parameter attributes
983 can have the same function type.</p>
984
985<p>Parameter attributes are simple keywords that follow the type specified. If
986 multiple parameter attributes are needed, they are space separated. For
987 example:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000988
989<div class="doc_code">
990<pre>
Nick Lewycky3022a742009-02-15 23:06:14 +0000991declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerf33b8452008-10-04 18:33:34 +0000992declare i32 @atoi(i8 zeroext)
993declare signext i8 @returns_signed_char()
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000994</pre>
995</div>
996
Bill Wendlingf85859d2009-07-20 02:29:24 +0000997<p>Note that any attributes for the function result (<tt>nounwind</tt>,
998 <tt>readonly</tt>) come immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000999
Bill Wendlingf85859d2009-07-20 02:29:24 +00001000<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner275e6be2008-01-11 06:20:47 +00001001
Bill Wendlingf85859d2009-07-20 02:29:24 +00001002<dl>
Bill Wendling614b32b2009-11-02 00:24:16 +00001003 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001004 <dd>This indicates to the code generator that the parameter or return value
1005 should be zero-extended to a 32-bit value by the caller (for a parameter)
1006 or the callee (for a return value).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +00001007
Bill Wendling614b32b2009-11-02 00:24:16 +00001008 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001009 <dd>This indicates to the code generator that the parameter or return value
1010 should be sign-extended to a 32-bit value by the caller (for a parameter)
1011 or the callee (for a return value).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +00001012
Bill Wendling614b32b2009-11-02 00:24:16 +00001013 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001014 <dd>This indicates that this parameter or return value should be treated in a
1015 special target-dependent fashion during while emitting code for a function
1016 call or return (usually, by putting it in a register as opposed to memory,
1017 though some targets use it to distinguish between two different kinds of
1018 registers). Use of this attribute is target-specific.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +00001019
Bill Wendling614b32b2009-11-02 00:24:16 +00001020 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001021 <dd>This indicates that the pointer parameter should really be passed by value
1022 to the function. The attribute implies that a hidden copy of the pointee
1023 is made between the caller and the callee, so the callee is unable to
1024 modify the value in the callee. This attribute is only valid on LLVM
1025 pointer arguments. It is generally used to pass structs and arrays by
1026 value, but is also valid on pointers to scalars. The copy is considered
1027 to belong to the caller not the callee (for example,
1028 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1029 <tt>byval</tt> parameters). This is not a valid attribute for return
1030 values. The byval attribute also supports specifying an alignment with
1031 the align attribute. This has a target-specific effect on the code
1032 generator that usually indicates a desired alignment for the synthesized
1033 stack slot.</dd>
1034
Bill Wendling614b32b2009-11-02 00:24:16 +00001035 <dt><tt><b>sret</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001036 <dd>This indicates that the pointer parameter specifies the address of a
1037 structure that is the return value of the function in the source program.
1038 This pointer must be guaranteed by the caller to be valid: loads and
1039 stores to the structure may be assumed by the callee to not to trap. This
1040 may only be applied to the first parameter. This is not a valid attribute
1041 for return values. </dd>
1042
Bill Wendling614b32b2009-11-02 00:24:16 +00001043 <dt><tt><b>noalias</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001044 <dd>This indicates that the pointer does not alias any global or any other
1045 parameter. The caller is responsible for ensuring that this is the
1046 case. On a function return value, <tt>noalias</tt> additionally indicates
1047 that the pointer does not alias any other pointers visible to the
1048 caller. For further details, please see the discussion of the NoAlias
1049 response in
1050 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
1051 analysis</a>.</dd>
1052
Bill Wendling614b32b2009-11-02 00:24:16 +00001053 <dt><tt><b>nocapture</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001054 <dd>This indicates that the callee does not make any copies of the pointer
1055 that outlive the callee itself. This is not a valid attribute for return
1056 values.</dd>
1057
Bill Wendling614b32b2009-11-02 00:24:16 +00001058 <dt><tt><b>nest</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001059 <dd>This indicates that the pointer parameter can be excised using the
1060 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1061 attribute for return values.</dd>
1062</dl>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001063
1064</div>
1065
1066<!-- ======================================================================= -->
1067<div class="doc_subsection">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +00001068 <a name="gc">Garbage Collector Names</a>
1069</div>
1070
1071<div class="doc_text">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +00001072
Bill Wendlingf85859d2009-07-20 02:29:24 +00001073<p>Each function may specify a garbage collector name, which is simply a
1074 string:</p>
1075
1076<div class="doc_code">
1077<pre>
Bill Wendling614b32b2009-11-02 00:24:16 +00001078define void @f() gc "name" { ... }
Bill Wendlingf85859d2009-07-20 02:29:24 +00001079</pre>
1080</div>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +00001081
1082<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingf85859d2009-07-20 02:29:24 +00001083 collector which will cause the compiler to alter its output in order to
1084 support the named garbage collection algorithm.</p>
1085
Gordon Henriksen13fe5e32007-12-10 03:18:06 +00001086</div>
1087
1088<!-- ======================================================================= -->
1089<div class="doc_subsection">
Devang Patel008cd3e2008-09-26 23:51:19 +00001090 <a name="fnattrs">Function Attributes</a>
Devang Pateld468f1c2008-09-04 23:05:13 +00001091</div>
1092
1093<div class="doc_text">
Devang Patel008cd3e2008-09-26 23:51:19 +00001094
Bill Wendlingf85859d2009-07-20 02:29:24 +00001095<p>Function attributes are set to communicate additional information about a
1096 function. Function attributes are considered to be part of the function, not
1097 of the function type, so functions with different parameter attributes can
1098 have the same function type.</p>
Devang Patel008cd3e2008-09-26 23:51:19 +00001099
Bill Wendlingf85859d2009-07-20 02:29:24 +00001100<p>Function attributes are simple keywords that follow the type specified. If
1101 multiple attributes are needed, they are space separated. For example:</p>
Devang Pateld468f1c2008-09-04 23:05:13 +00001102
1103<div class="doc_code">
Bill Wendling74d3eac2008-09-07 10:26:33 +00001104<pre>
Devang Patel008cd3e2008-09-26 23:51:19 +00001105define void @f() noinline { ... }
1106define void @f() alwaysinline { ... }
1107define void @f() alwaysinline optsize { ... }
Bill Wendling614b32b2009-11-02 00:24:16 +00001108define void @f() optsize { ... }
Bill Wendling74d3eac2008-09-07 10:26:33 +00001109</pre>
Devang Pateld468f1c2008-09-04 23:05:13 +00001110</div>
1111
Bill Wendling74d3eac2008-09-07 10:26:33 +00001112<dl>
Charles Davisfaa8f752010-02-12 00:31:15 +00001113 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1114 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1115 the backend should forcibly align the stack pointer. Specify the
1116 desired alignment, which must be a power of two, in parentheses.
1117
Bill Wendling614b32b2009-11-02 00:24:16 +00001118 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001119 <dd>This attribute indicates that the inliner should attempt to inline this
1120 function into callers whenever possible, ignoring any active inlining size
1121 threshold for this caller.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +00001122
Jakob Stoklund Olesen77180732010-02-06 01:16:28 +00001123 <dt><tt><b>inlinehint</b></tt></dt>
1124 <dd>This attribute indicates that the source code contained a hint that inlining
1125 this function is desirable (such as the "inline" keyword in C/C++). It
1126 is just a hint; it imposes no requirements on the inliner.</dd>
1127
Bill Wendling614b32b2009-11-02 00:24:16 +00001128 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001129 <dd>This attribute indicates that the inliner should never inline this
1130 function in any situation. This attribute may not be used together with
1131 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel008cd3e2008-09-26 23:51:19 +00001132
Bill Wendling614b32b2009-11-02 00:24:16 +00001133 <dt><tt><b>optsize</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001134 <dd>This attribute suggests that optimization passes and code generator passes
1135 make choices that keep the code size of this function low, and otherwise
1136 do optimizations specifically to reduce code size.</dd>
Devang Patel008cd3e2008-09-26 23:51:19 +00001137
Bill Wendling614b32b2009-11-02 00:24:16 +00001138 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001139 <dd>This function attribute indicates that the function never returns
1140 normally. This produces undefined behavior at runtime if the function
1141 ever does dynamically return.</dd>
Bill Wendlingdfaabba2008-11-13 01:02:51 +00001142
Bill Wendling614b32b2009-11-02 00:24:16 +00001143 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001144 <dd>This function attribute indicates that the function never returns with an
1145 unwind or exceptional control flow. If the function does unwind, its
1146 runtime behavior is undefined.</dd>
Bill Wendlingbe9ec3f2008-11-26 19:07:40 +00001147
Bill Wendling614b32b2009-11-02 00:24:16 +00001148 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001149 <dd>This attribute indicates that the function computes its result (or decides
1150 to unwind an exception) based strictly on its arguments, without
1151 dereferencing any pointer arguments or otherwise accessing any mutable
1152 state (e.g. memory, control registers, etc) visible to caller functions.
1153 It does not write through any pointer arguments
1154 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1155 changes any state visible to callers. This means that it cannot unwind
1156 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1157 could use the <tt>unwind</tt> instruction.</dd>
Devang Patela2f9f412009-06-12 19:45:19 +00001158
Bill Wendling614b32b2009-11-02 00:24:16 +00001159 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001160 <dd>This attribute indicates that the function does not write through any
1161 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1162 arguments) or otherwise modify any state (e.g. memory, control registers,
1163 etc) visible to caller functions. It may dereference pointer arguments
1164 and read state that may be set in the caller. A readonly function always
1165 returns the same value (or unwinds an exception identically) when called
1166 with the same set of arguments and global state. It cannot unwind an
1167 exception by calling the <tt>C++</tt> exception throwing methods, but may
1168 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovedd7d112009-07-17 18:07:26 +00001169
Bill Wendling614b32b2009-11-02 00:24:16 +00001170 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001171 <dd>This attribute indicates that the function should emit a stack smashing
1172 protector. It is in the form of a "canary"&mdash;a random value placed on
1173 the stack before the local variables that's checked upon return from the
1174 function to see if it has been overwritten. A heuristic is used to
1175 determine if a function needs stack protectors or not.<br>
1176<br>
1177 If a function that has an <tt>ssp</tt> attribute is inlined into a
1178 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1179 function will have an <tt>ssp</tt> attribute.</dd>
1180
Bill Wendling614b32b2009-11-02 00:24:16 +00001181 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001182 <dd>This attribute indicates that the function should <em>always</em> emit a
1183 stack smashing protector. This overrides
Bill Wendling6ec40612009-07-20 02:39:26 +00001184 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1185<br>
1186 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1187 function that doesn't have an <tt>sspreq</tt> attribute or which has
1188 an <tt>ssp</tt> attribute, then the resulting function will have
1189 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001190
Bill Wendling614b32b2009-11-02 00:24:16 +00001191 <dt><tt><b>noredzone</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001192 <dd>This attribute indicates that the code generator should not use a red
1193 zone, even if the target-specific ABI normally permits it.</dd>
1194
Bill Wendling614b32b2009-11-02 00:24:16 +00001195 <dt><tt><b>noimplicitfloat</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001196 <dd>This attributes disables implicit floating point instructions.</dd>
1197
Bill Wendling614b32b2009-11-02 00:24:16 +00001198 <dt><tt><b>naked</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001199 <dd>This attribute disables prologue / epilogue emission for the function.
1200 This can have very system-specific consequences.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +00001201</dl>
1202
Devang Pateld468f1c2008-09-04 23:05:13 +00001203</div>
1204
1205<!-- ======================================================================= -->
1206<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001207 <a name="moduleasm">Module-Level Inline Assembly</a>
1208</div>
1209
1210<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001211
1212<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1213 the GCC "file scope inline asm" blocks. These blocks are internally
1214 concatenated by LLVM and treated as a single unit, but may be separated in
1215 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001216
1217<div class="doc_code">
1218<pre>
1219module asm "inline asm code goes here"
1220module asm "more can go here"
1221</pre>
1222</div>
1223
1224<p>The strings can contain any character by escaping non-printable characters.
1225 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingf85859d2009-07-20 02:29:24 +00001226 for the number.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001227
Bill Wendlingf85859d2009-07-20 02:29:24 +00001228<p>The inline asm code is simply printed to the machine code .s file when
1229 assembly code is generated.</p>
1230
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001231</div>
1232
1233<!-- ======================================================================= -->
1234<div class="doc_subsection">
1235 <a name="datalayout">Data Layout</a>
1236</div>
1237
1238<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001239
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001240<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingf85859d2009-07-20 02:29:24 +00001241 data is to be laid out in memory. The syntax for the data layout is
1242 simply:</p>
1243
1244<div class="doc_code">
1245<pre>
1246target datalayout = "<i>layout specification</i>"
1247</pre>
1248</div>
1249
1250<p>The <i>layout specification</i> consists of a list of specifications
1251 separated by the minus sign character ('-'). Each specification starts with
1252 a letter and may include other information after the letter to define some
1253 aspect of the data layout. The specifications accepted are as follows:</p>
1254
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001255<dl>
1256 <dt><tt>E</tt></dt>
1257 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingf85859d2009-07-20 02:29:24 +00001258 bits with the most significance have the lowest address location.</dd>
1259
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001260 <dt><tt>e</tt></dt>
Chris Lattner96451482008-08-05 18:29:16 +00001261 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingf85859d2009-07-20 02:29:24 +00001262 the bits with the least significance have the lowest address
1263 location.</dd>
1264
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christophera1151bf2009-12-05 02:46:03 +00001266 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingf85859d2009-07-20 02:29:24 +00001267 <i>preferred</i> alignments. All sizes are in bits. Specifying
1268 the <i>pref</i> alignment is optional. If omitted, the
1269 preceding <tt>:</tt> should be omitted too.</dd>
1270
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001271 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1272 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001273 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1274
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001275 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christophera1151bf2009-12-05 02:46:03 +00001276 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001277 <i>size</i>.</dd>
1278
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001279 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christophera1151bf2009-12-05 02:46:03 +00001280 <dd>This specifies the alignment for a floating point type of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001281 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1282 (double).</dd>
1283
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001284 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1285 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001286 <i>size</i>.</dd>
1287
Daniel Dunbard88a97b2009-06-08 22:17:53 +00001288 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1289 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001290 <i>size</i>.</dd>
Chris Lattnerece41802009-11-07 09:35:34 +00001291
1292 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1293 <dd>This specifies a set of native integer widths for the target CPU
1294 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1295 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christophera1151bf2009-12-05 02:46:03 +00001296 this set are considered to support most general arithmetic
Chris Lattnerece41802009-11-07 09:35:34 +00001297 operations efficiently.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001298</dl>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001299
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001300<p>When constructing the data layout for a given target, LLVM starts with a
Bill Wendlingf85859d2009-07-20 02:29:24 +00001301 default set of specifications which are then (possibly) overriden by the
1302 specifications in the <tt>datalayout</tt> keyword. The default specifications
1303 are given in this list:</p>
1304
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001305<ul>
1306 <li><tt>E</tt> - big endian</li>
Dan Gohmane78194f2010-02-23 02:44:03 +00001307 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001308 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1309 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1310 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1311 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner96451482008-08-05 18:29:16 +00001312 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001313 alignment of 64-bits</li>
1314 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1315 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1316 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1317 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1318 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbard88a97b2009-06-08 22:17:53 +00001319 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001320</ul>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001321
1322<p>When LLVM is determining the alignment for a given type, it uses the
1323 following rules:</p>
1324
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001325<ol>
1326 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingf85859d2009-07-20 02:29:24 +00001327 specification is used.</li>
1328
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001329 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingf85859d2009-07-20 02:29:24 +00001330 smallest integer type that is larger than the bitwidth of the sought type
1331 is used. If none of the specifications are larger than the bitwidth then
1332 the the largest integer type is used. For example, given the default
1333 specifications above, the i7 type will use the alignment of i8 (next
1334 largest) while both i65 and i256 will use the alignment of i64 (largest
1335 specified).</li>
1336
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001337 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingf85859d2009-07-20 02:29:24 +00001338 largest vector type that is smaller than the sought vector type will be
1339 used as a fall back. This happens because &lt;128 x double&gt; can be
1340 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001341</ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001342
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001343</div>
1344
Dan Gohman27b47012009-07-27 18:07:55 +00001345<!-- ======================================================================= -->
1346<div class="doc_subsection">
1347 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1348</div>
1349
1350<div class="doc_text">
1351
Andreas Bolka11fbf432009-07-29 00:02:05 +00001352<p>Any memory access must be done through a pointer value associated
Andreas Bolka23bece42009-07-27 20:37:10 +00001353with an address range of the memory access, otherwise the behavior
Dan Gohman27b47012009-07-27 18:07:55 +00001354is undefined. Pointer values are associated with address ranges
1355according to the following rules:</p>
1356
1357<ul>
Andreas Bolka11fbf432009-07-29 00:02:05 +00001358 <li>A pointer value formed from a
1359 <tt><a href="#i_getelementptr">getelementptr</a></tt> instruction
1360 is associated with the addresses associated with the first operand
1361 of the <tt>getelementptr</tt>.</li>
1362 <li>An address of a global variable is associated with the address
Dan Gohman27b47012009-07-27 18:07:55 +00001363 range of the variable's storage.</li>
1364 <li>The result value of an allocation instruction is associated with
1365 the address range of the allocated storage.</li>
1366 <li>A null pointer in the default address-space is associated with
Andreas Bolka11fbf432009-07-29 00:02:05 +00001367 no address.</li>
1368 <li>A pointer value formed by an
1369 <tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all
1370 address ranges of all pointer values that contribute (directly or
1371 indirectly) to the computation of the pointer's value.</li>
1372 <li>The result value of a
1373 <tt><a href="#i_bitcast">bitcast</a></tt> is associated with all
Dan Gohman27b47012009-07-27 18:07:55 +00001374 addresses associated with the operand of the <tt>bitcast</tt>.</li>
1375 <li>An integer constant other than zero or a pointer value returned
1376 from a function not defined within LLVM may be associated with address
1377 ranges allocated through mechanisms other than those provided by
Andreas Bolka11fbf432009-07-29 00:02:05 +00001378 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman27b47012009-07-27 18:07:55 +00001379 allocated by mechanisms provided by LLVM.</li>
1380 </ul>
1381
1382<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka11fbf432009-07-29 00:02:05 +00001383<tt><a href="#i_load">load</a></tt> merely indicates the size and
1384alignment of the memory from which to load, as well as the
1385interpretation of the value. The first operand of a
1386<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1387and alignment of the store.</p>
Dan Gohman27b47012009-07-27 18:07:55 +00001388
1389<p>Consequently, type-based alias analysis, aka TBAA, aka
1390<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1391LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1392additional information which specialized optimization passes may use
1393to implement type-based alias analysis.</p>
1394
1395</div>
1396
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001397<!-- *********************************************************************** -->
1398<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1399<!-- *********************************************************************** -->
1400
1401<div class="doc_text">
1402
1403<p>The LLVM type system is one of the most important features of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00001404 intermediate representation. Being typed enables a number of optimizations
1405 to be performed on the intermediate representation directly, without having
1406 to do extra analyses on the side before the transformation. A strong type
1407 system makes it easier to read the generated code and enables novel analyses
1408 and transformations that are not feasible to perform on normal three address
1409 code representations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001410
1411</div>
1412
1413<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001414<div class="doc_subsection"> <a name="t_classifications">Type
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001415Classifications</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001416
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001417<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001418
1419<p>The types fall into a few useful classifications:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001420
1421<table border="1" cellspacing="0" cellpadding="4">
1422 <tbody>
1423 <tr><th>Classification</th><th>Types</th></tr>
1424 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001425 <td><a href="#t_integer">integer</a></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001426 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1427 </tr>
1428 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001429 <td><a href="#t_floating">floating point</a></td>
1430 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001431 </tr>
1432 <tr>
1433 <td><a name="t_firstclass">first class</a></td>
Chris Lattner488772f2008-01-04 04:32:38 +00001434 <td><a href="#t_integer">integer</a>,
1435 <a href="#t_floating">floating point</a>,
1436 <a href="#t_pointer">pointer</a>,
Dan Gohmanf6237db2008-06-18 18:42:13 +00001437 <a href="#t_vector">vector</a>,
Dan Gohman74d6faf2008-05-12 23:51:09 +00001438 <a href="#t_struct">structure</a>,
Chris Lattnerd5d51722010-02-12 20:49:41 +00001439 <a href="#t_union">union</a>,
Dan Gohman74d6faf2008-05-12 23:51:09 +00001440 <a href="#t_array">array</a>,
Nick Lewycky29aaef82009-05-30 05:06:04 +00001441 <a href="#t_label">label</a>,
1442 <a href="#t_metadata">metadata</a>.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001443 </td>
1444 </tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001445 <tr>
1446 <td><a href="#t_primitive">primitive</a></td>
1447 <td><a href="#t_label">label</a>,
1448 <a href="#t_void">void</a>,
Nick Lewycky29aaef82009-05-30 05:06:04 +00001449 <a href="#t_floating">floating point</a>,
1450 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner488772f2008-01-04 04:32:38 +00001451 </tr>
1452 <tr>
1453 <td><a href="#t_derived">derived</a></td>
Chris Lattnerd5d51722010-02-12 20:49:41 +00001454 <td><a href="#t_array">array</a>,
Chris Lattner488772f2008-01-04 04:32:38 +00001455 <a href="#t_function">function</a>,
1456 <a href="#t_pointer">pointer</a>,
1457 <a href="#t_struct">structure</a>,
1458 <a href="#t_pstruct">packed structure</a>,
Chris Lattnerd5d51722010-02-12 20:49:41 +00001459 <a href="#t_union">union</a>,
Chris Lattner488772f2008-01-04 04:32:38 +00001460 <a href="#t_vector">vector</a>,
1461 <a href="#t_opaque">opaque</a>.
Dan Gohman032ba852008-10-14 16:32:04 +00001462 </td>
Chris Lattner488772f2008-01-04 04:32:38 +00001463 </tr>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001464 </tbody>
1465</table>
1466
Bill Wendlingf85859d2009-07-20 02:29:24 +00001467<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1468 important. Values of these types are the only ones which can be produced by
Nick Lewycky244cf482009-09-27 00:45:11 +00001469 instructions.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001470
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001471</div>
1472
1473<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001474<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner86437612008-01-04 04:34:14 +00001475
Chris Lattner488772f2008-01-04 04:32:38 +00001476<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001477
Chris Lattner488772f2008-01-04 04:32:38 +00001478<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingf85859d2009-07-20 02:29:24 +00001479 system.</p>
Chris Lattner488772f2008-01-04 04:32:38 +00001480
Chris Lattner86437612008-01-04 04:34:14 +00001481</div>
1482
Chris Lattner488772f2008-01-04 04:32:38 +00001483<!-- _______________________________________________________________________ -->
Nick Lewycky244cf482009-09-27 00:45:11 +00001484<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1485
1486<div class="doc_text">
1487
1488<h5>Overview:</h5>
1489<p>The integer type is a very simple type that simply specifies an arbitrary
1490 bit width for the integer type desired. Any bit width from 1 bit to
1491 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1492
1493<h5>Syntax:</h5>
1494<pre>
1495 iN
1496</pre>
1497
1498<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1499 value.</p>
1500
1501<h5>Examples:</h5>
1502<table class="layout">
1503 <tr class="layout">
1504 <td class="left"><tt>i1</tt></td>
1505 <td class="left">a single-bit integer.</td>
1506 </tr>
1507 <tr class="layout">
1508 <td class="left"><tt>i32</tt></td>
1509 <td class="left">a 32-bit integer.</td>
1510 </tr>
1511 <tr class="layout">
1512 <td class="left"><tt>i1942652</tt></td>
1513 <td class="left">a really big integer of over 1 million bits.</td>
1514 </tr>
1515</table>
1516
Nick Lewycky244cf482009-09-27 00:45:11 +00001517</div>
1518
1519<!-- _______________________________________________________________________ -->
Chris Lattner488772f2008-01-04 04:32:38 +00001520<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1521
1522<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001523
1524<table>
1525 <tbody>
1526 <tr><th>Type</th><th>Description</th></tr>
1527 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1528 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1529 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1530 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1531 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1532 </tbody>
1533</table>
1534
Chris Lattner488772f2008-01-04 04:32:38 +00001535</div>
1536
1537<!-- _______________________________________________________________________ -->
1538<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1539
1540<div class="doc_text">
Bill Wendling6ec40612009-07-20 02:39:26 +00001541
Chris Lattner488772f2008-01-04 04:32:38 +00001542<h5>Overview:</h5>
1543<p>The void type does not represent any value and has no size.</p>
1544
1545<h5>Syntax:</h5>
Chris Lattner488772f2008-01-04 04:32:38 +00001546<pre>
1547 void
1548</pre>
Bill Wendling6ec40612009-07-20 02:39:26 +00001549
Chris Lattner488772f2008-01-04 04:32:38 +00001550</div>
1551
1552<!-- _______________________________________________________________________ -->
1553<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1554
1555<div class="doc_text">
Bill Wendling6ec40612009-07-20 02:39:26 +00001556
Chris Lattner488772f2008-01-04 04:32:38 +00001557<h5>Overview:</h5>
1558<p>The label type represents code labels.</p>
1559
1560<h5>Syntax:</h5>
Chris Lattner488772f2008-01-04 04:32:38 +00001561<pre>
1562 label
1563</pre>
Bill Wendling6ec40612009-07-20 02:39:26 +00001564
Chris Lattner488772f2008-01-04 04:32:38 +00001565</div>
1566
Nick Lewycky29aaef82009-05-30 05:06:04 +00001567<!-- _______________________________________________________________________ -->
1568<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1569
1570<div class="doc_text">
Bill Wendling6ec40612009-07-20 02:39:26 +00001571
Nick Lewycky29aaef82009-05-30 05:06:04 +00001572<h5>Overview:</h5>
Nick Lewyckyeb021882009-09-27 23:27:42 +00001573<p>The metadata type represents embedded metadata. No derived types may be
1574 created from metadata except for <a href="#t_function">function</a>
1575 arguments.
Nick Lewycky29aaef82009-05-30 05:06:04 +00001576
1577<h5>Syntax:</h5>
Nick Lewycky29aaef82009-05-30 05:06:04 +00001578<pre>
1579 metadata
1580</pre>
Bill Wendling6ec40612009-07-20 02:39:26 +00001581
Nick Lewycky29aaef82009-05-30 05:06:04 +00001582</div>
1583
Chris Lattner488772f2008-01-04 04:32:38 +00001584
1585<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001586<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1587
1588<div class="doc_text">
1589
Bill Wendlingf85859d2009-07-20 02:29:24 +00001590<p>The real power in LLVM comes from the derived types in the system. This is
1591 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky244cf482009-09-27 00:45:11 +00001592 useful types. Each of these types contain one or more element types which
1593 may be a primitive type, or another derived type. For example, it is
1594 possible to have a two dimensional array, using an array as the element type
1595 of another array.</p>
djge93155c2009-01-24 15:58:40 +00001596
Chris Lattnerd5d51722010-02-12 20:49:41 +00001597
1598</div>
1599
1600<!-- _______________________________________________________________________ -->
1601<div class="doc_subsubsection"> <a name="t_aggregate">Aggregate Types</a> </div>
1602
1603<div class="doc_text">
1604
1605<p>Aggregate Types are a subset of derived types that can contain multiple
1606 member types. <a href="#t_array">Arrays</a>,
1607 <a href="#t_struct">structs</a>, <a href="#t_vector">vectors</a> and
1608 <a href="#t_union">unions</a> are aggregate types.</p>
1609
1610</div>
1611
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001612</div>
1613
1614<!-- _______________________________________________________________________ -->
1615<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1616
1617<div class="doc_text">
1618
1619<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001620<p>The array type is a very simple derived type that arranges elements
Bill Wendlingf85859d2009-07-20 02:29:24 +00001621 sequentially in memory. The array type requires a size (number of elements)
1622 and an underlying data type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001623
1624<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001625<pre>
1626 [&lt;# elements&gt; x &lt;elementtype&gt;]
1627</pre>
1628
Bill Wendlingf85859d2009-07-20 02:29:24 +00001629<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1630 be any type with a size.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001631
1632<h5>Examples:</h5>
1633<table class="layout">
1634 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001635 <td class="left"><tt>[40 x i32]</tt></td>
1636 <td class="left">Array of 40 32-bit integer values.</td>
1637 </tr>
1638 <tr class="layout">
1639 <td class="left"><tt>[41 x i32]</tt></td>
1640 <td class="left">Array of 41 32-bit integer values.</td>
1641 </tr>
1642 <tr class="layout">
1643 <td class="left"><tt>[4 x i8]</tt></td>
1644 <td class="left">Array of 4 8-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001645 </tr>
1646</table>
1647<p>Here are some examples of multidimensional arrays:</p>
1648<table class="layout">
1649 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001650 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1651 <td class="left">3x4 array of 32-bit integer values.</td>
1652 </tr>
1653 <tr class="layout">
1654 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1655 <td class="left">12x10 array of single precision floating point values.</td>
1656 </tr>
1657 <tr class="layout">
1658 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1659 <td class="left">2x3x4 array of 16-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001660 </tr>
1661</table>
1662
Dan Gohman87ec5ad2009-11-09 19:01:53 +00001663<p>There is no restriction on indexing beyond the end of the array implied by
1664 a static type (though there are restrictions on indexing beyond the bounds
1665 of an allocated object in some cases). This means that single-dimension
1666 'variable sized array' addressing can be implemented in LLVM with a zero
1667 length array type. An implementation of 'pascal style arrays' in LLVM could
1668 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001669
1670</div>
1671
1672<!-- _______________________________________________________________________ -->
1673<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001674
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001675<div class="doc_text">
Chris Lattner43030e72008-04-23 04:59:35 +00001676
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001677<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001678<p>The function type can be thought of as a function signature. It consists of
1679 a return type and a list of formal parameter types. The return type of a
Chris Lattnerd5d51722010-02-12 20:49:41 +00001680 function type is a scalar type, a void type, a struct type, or a union
1681 type. If the return type is a struct type then all struct elements must be
1682 of first class types, and the struct must have at least one element.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00001683
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001684<h5>Syntax:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001685<pre>
Nick Lewycky3b3b54d2009-09-27 07:55:32 +00001686 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattner43030e72008-04-23 04:59:35 +00001687</pre>
1688
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001689<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingf85859d2009-07-20 02:29:24 +00001690 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1691 which indicates that the function takes a variable number of arguments.
1692 Variable argument functions can access their arguments with
1693 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner553fb1e2010-03-02 06:36:51 +00001694 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewyckyeb021882009-09-27 23:27:42 +00001695 <a href="#t_label">label</a>.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001696
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001697<h5>Examples:</h5>
1698<table class="layout">
1699 <tr class="layout">
1700 <td class="left"><tt>i32 (i32)</tt></td>
1701 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1702 </td>
1703 </tr><tr class="layout">
Chris Lattner553fb1e2010-03-02 06:36:51 +00001704 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001705 </tt></td>
Eric Christophera1151bf2009-12-05 02:46:03 +00001706 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner553fb1e2010-03-02 06:36:51 +00001707 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
1708 returning <tt>float</tt>.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001709 </td>
1710 </tr><tr class="layout">
1711 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christophera1151bf2009-12-05 02:46:03 +00001712 <td class="left">A vararg function that takes at least one
1713 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1714 which returns an integer. This is the signature for <tt>printf</tt> in
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001715 LLVM.
1716 </td>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001717 </tr><tr class="layout">
1718 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky3b3b54d2009-09-27 07:55:32 +00001719 <td class="left">A function taking an <tt>i32</tt>, returning a
1720 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Pateld4ba41d2008-03-24 05:35:41 +00001721 </td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001722 </tr>
1723</table>
1724
1725</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001726
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001727<!-- _______________________________________________________________________ -->
1728<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001729
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001730<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001731
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001732<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001733<p>The structure type is used to represent a collection of data members together
1734 in memory. The packing of the field types is defined to match the ABI of the
1735 underlying processor. The elements of a structure may be any type that has a
1736 size.</p>
1737
Jeffrey Yasskine05d7732010-01-11 19:19:26 +00001738<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
1739 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
1740 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1741 Structures in registers are accessed using the
1742 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
1743 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001744<h5>Syntax:</h5>
Bill Wendling6ec40612009-07-20 02:39:26 +00001745<pre>
1746 { &lt;type list&gt; }
1747</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001748
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749<h5>Examples:</h5>
1750<table class="layout">
1751 <tr class="layout">
1752 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1753 <td class="left">A triple of three <tt>i32</tt> values</td>
1754 </tr><tr class="layout">
1755 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1756 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1757 second element is a <a href="#t_pointer">pointer</a> to a
1758 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1759 an <tt>i32</tt>.</td>
1760 </tr>
1761</table>
djge93155c2009-01-24 15:58:40 +00001762
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001763</div>
1764
1765<!-- _______________________________________________________________________ -->
1766<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1767</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001768
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001769<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001770
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001771<h5>Overview:</h5>
1772<p>The packed structure type is used to represent a collection of data members
Bill Wendlingf85859d2009-07-20 02:29:24 +00001773 together in memory. There is no padding between fields. Further, the
1774 alignment of a packed structure is 1 byte. The elements of a packed
1775 structure may be any type that has a size.</p>
1776
1777<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1778 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1779 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1780
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001781<h5>Syntax:</h5>
Bill Wendling6ec40612009-07-20 02:39:26 +00001782<pre>
1783 &lt; { &lt;type list&gt; } &gt;
1784</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001785
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001786<h5>Examples:</h5>
1787<table class="layout">
1788 <tr class="layout">
1789 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1790 <td class="left">A triple of three <tt>i32</tt> values</td>
1791 </tr><tr class="layout">
Bill Wendling74d3eac2008-09-07 10:26:33 +00001792 <td class="left">
1793<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001794 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1795 second element is a <a href="#t_pointer">pointer</a> to a
1796 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1797 an <tt>i32</tt>.</td>
1798 </tr>
1799</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001800
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001801</div>
1802
1803<!-- _______________________________________________________________________ -->
Chris Lattnerd5d51722010-02-12 20:49:41 +00001804<div class="doc_subsubsection"> <a name="t_union">Union Type</a> </div>
1805
1806<div class="doc_text">
1807
1808<h5>Overview:</h5>
1809<p>A union type describes an object with size and alignment suitable for
1810 an object of any one of a given set of types (also known as an "untagged"
1811 union). It is similar in concept and usage to a
1812 <a href="#t_struct">struct</a>, except that all members of the union
1813 have an offset of zero. The elements of a union may be any type that has a
1814 size. Unions must have at least one member - empty unions are not allowed.
1815 </p>
1816
1817<p>The size of the union as a whole will be the size of its largest member,
1818 and the alignment requirements of the union as a whole will be the largest
1819 alignment requirement of any member.</p>
1820
Dan Gohmanef8400c2010-02-25 16:51:31 +00001821<p>Union members are accessed using '<tt><a href="#i_load">load</a></tt> and
Chris Lattnerd5d51722010-02-12 20:49:41 +00001822 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1823 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1824 Since all members are at offset zero, the getelementptr instruction does
1825 not affect the address, only the type of the resulting pointer.</p>
1826
1827<h5>Syntax:</h5>
1828<pre>
1829 union { &lt;type list&gt; }
1830</pre>
1831
1832<h5>Examples:</h5>
1833<table class="layout">
1834 <tr class="layout">
1835 <td class="left"><tt>union { i32, i32*, float }</tt></td>
1836 <td class="left">A union of three types: an <tt>i32</tt>, a pointer to
1837 an <tt>i32</tt>, and a <tt>float</tt>.</td>
1838 </tr><tr class="layout">
1839 <td class="left">
1840 <tt>union {&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1841 <td class="left">A union, where the first element is a <tt>float</tt> and the
1842 second element is a <a href="#t_pointer">pointer</a> to a
1843 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1844 an <tt>i32</tt>.</td>
1845 </tr>
1846</table>
1847
1848</div>
1849
1850<!-- _______________________________________________________________________ -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001851<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Chris Lattner96edbd32009-02-08 19:53:29 +00001852
Bill Wendlingf85859d2009-07-20 02:29:24 +00001853<div class="doc_text">
1854
1855<h5>Overview:</h5>
Dan Gohmanb2f72c82010-02-25 16:50:07 +00001856<p>The pointer type is used to specify memory locations.
1857 Pointers are commonly used to reference objects in memory.</p>
1858
1859<p>Pointer types may have an optional address space attribute defining the
1860 numbered address space where the pointed-to object resides. The default
1861 address space is number zero. The semantics of non-zero address
1862 spaces are target-specific.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001863
1864<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1865 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner96edbd32009-02-08 19:53:29 +00001866
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001867<h5>Syntax:</h5>
Bill Wendling6ec40612009-07-20 02:39:26 +00001868<pre>
1869 &lt;type&gt; *
1870</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001871
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001872<h5>Examples:</h5>
1873<table class="layout">
1874 <tr class="layout">
Dan Gohman01852382009-01-04 23:44:43 +00001875 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner7311d222007-12-19 05:04:11 +00001876 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1877 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1878 </tr>
1879 <tr class="layout">
1880 <td class="left"><tt>i32 (i32 *) *</tt></td>
1881 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001882 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner7311d222007-12-19 05:04:11 +00001883 <tt>i32</tt>.</td>
1884 </tr>
1885 <tr class="layout">
1886 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1887 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1888 that resides in address space #5.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001889 </tr>
1890</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001891
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001892</div>
1893
1894<!-- _______________________________________________________________________ -->
1895<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001896
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001897<div class="doc_text">
1898
1899<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001900<p>A vector type is a simple derived type that represents a vector of elements.
1901 Vector types are used when multiple primitive data are operated in parallel
1902 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands87598b02009-11-27 13:38:03 +00001903 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingf85859d2009-07-20 02:29:24 +00001904 <a href="#t_firstclass">first class</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001905
1906<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001907<pre>
1908 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1909</pre>
1910
Bill Wendlingf85859d2009-07-20 02:29:24 +00001911<p>The number of elements is a constant integer value; elementtype may be any
1912 integer or floating point type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001913
1914<h5>Examples:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001915<table class="layout">
1916 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001917 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1918 <td class="left">Vector of 4 32-bit integer values.</td>
1919 </tr>
1920 <tr class="layout">
1921 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1922 <td class="left">Vector of 8 32-bit floating-point values.</td>
1923 </tr>
1924 <tr class="layout">
1925 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1926 <td class="left">Vector of 2 64-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001927 </tr>
1928</table>
djge93155c2009-01-24 15:58:40 +00001929
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001930</div>
1931
1932<!-- _______________________________________________________________________ -->
1933<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1934<div class="doc_text">
1935
1936<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001937<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlingf85859d2009-07-20 02:29:24 +00001938 corresponds (for example) to the C notion of a forward declared structure
1939 type. In LLVM, opaque types can eventually be resolved to any type (not just
1940 a structure type).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001941
1942<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001943<pre>
1944 opaque
1945</pre>
1946
1947<h5>Examples:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001948<table class="layout">
1949 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001950 <td class="left"><tt>opaque</tt></td>
1951 <td class="left">An opaque type.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001952 </tr>
1953</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001954
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001955</div>
1956
Chris Lattner515195a2009-02-02 07:32:36 +00001957<!-- ======================================================================= -->
1958<div class="doc_subsection">
1959 <a name="t_uprefs">Type Up-references</a>
1960</div>
1961
1962<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001963
Chris Lattner515195a2009-02-02 07:32:36 +00001964<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001965<p>An "up reference" allows you to refer to a lexically enclosing type without
1966 requiring it to have a name. For instance, a structure declaration may
1967 contain a pointer to any of the types it is lexically a member of. Example
1968 of up references (with their equivalent as named type declarations)
1969 include:</p>
Chris Lattner515195a2009-02-02 07:32:36 +00001970
1971<pre>
Chris Lattner5ad632d2009-02-09 10:00:56 +00001972 { \2 * } %x = type { %x* }
Chris Lattner515195a2009-02-02 07:32:36 +00001973 { \2 }* %y = type { %y }*
1974 \1* %z = type %z*
1975</pre>
1976
Bill Wendlingf85859d2009-07-20 02:29:24 +00001977<p>An up reference is needed by the asmprinter for printing out cyclic types
1978 when there is no declared name for a type in the cycle. Because the
1979 asmprinter does not want to print out an infinite type string, it needs a
1980 syntax to handle recursive types that have no names (all names are optional
1981 in llvm IR).</p>
Chris Lattner515195a2009-02-02 07:32:36 +00001982
1983<h5>Syntax:</h5>
1984<pre>
1985 \&lt;level&gt;
1986</pre>
1987
Bill Wendlingf85859d2009-07-20 02:29:24 +00001988<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattner515195a2009-02-02 07:32:36 +00001989
1990<h5>Examples:</h5>
Chris Lattner515195a2009-02-02 07:32:36 +00001991<table class="layout">
1992 <tr class="layout">
1993 <td class="left"><tt>\1*</tt></td>
1994 <td class="left">Self-referential pointer.</td>
1995 </tr>
1996 <tr class="layout">
1997 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1998 <td class="left">Recursive structure where the upref refers to the out-most
1999 structure.</td>
2000 </tr>
2001</table>
Chris Lattner515195a2009-02-02 07:32:36 +00002002
Bill Wendlingf85859d2009-07-20 02:29:24 +00002003</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002004
2005<!-- *********************************************************************** -->
2006<div class="doc_section"> <a name="constants">Constants</a> </div>
2007<!-- *********************************************************************** -->
2008
2009<div class="doc_text">
2010
2011<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingf85859d2009-07-20 02:29:24 +00002012 them all and their syntax.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002013
2014</div>
2015
2016<!-- ======================================================================= -->
2017<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
2018
2019<div class="doc_text">
2020
2021<dl>
2022 <dt><b>Boolean constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002023 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky244cf482009-09-27 00:45:11 +00002024 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002025
2026 <dt><b>Integer constants</b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002027 <dd>Standard integers (such as '4') are constants of
2028 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2029 with integer types.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002030
2031 <dt><b>Floating point constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002032 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingf85859d2009-07-20 02:29:24 +00002033 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2034 notation (see below). The assembler requires the exact decimal value of a
2035 floating-point constant. For example, the assembler accepts 1.25 but
2036 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2037 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002038
2039 <dt><b>Null pointer constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002040 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingf85859d2009-07-20 02:29:24 +00002041 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002042</dl>
2043
Bill Wendlingf85859d2009-07-20 02:29:24 +00002044<p>The one non-intuitive notation for constants is the hexadecimal form of
2045 floating point constants. For example, the form '<tt>double
2046 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2047 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2048 constants are required (and the only time that they are generated by the
2049 disassembler) is when a floating point constant must be emitted but it cannot
2050 be represented as a decimal floating point number in a reasonable number of
2051 digits. For example, NaN's, infinities, and other special values are
2052 represented in their IEEE hexadecimal format so that assembly and disassembly
2053 do not cause any bits to change in the constants.</p>
2054
Dale Johannesenf82a52f2009-02-11 22:14:51 +00002055<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingf85859d2009-07-20 02:29:24 +00002056 represented using the 16-digit form shown above (which matches the IEEE754
2057 representation for double); float values must, however, be exactly
2058 representable as IEE754 single precision. Hexadecimal format is always used
2059 for long double, and there are three forms of long double. The 80-bit format
2060 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2061 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2062 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2063 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2064 currently supported target uses this format. Long doubles will only work if
2065 they match the long double format on your target. All hexadecimal formats
2066 are big-endian (sign bit at the left).</p>
2067
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002068</div>
2069
2070<!-- ======================================================================= -->
Chris Lattner97063852009-02-28 18:32:25 +00002071<div class="doc_subsection">
Bill Wendling1a2630a2009-07-20 02:32:41 +00002072<a name="aggregateconstants"></a> <!-- old anchor -->
2073<a name="complexconstants">Complex Constants</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002074</div>
2075
2076<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002077
Chris Lattner97063852009-02-28 18:32:25 +00002078<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingf85859d2009-07-20 02:29:24 +00002079 constants and smaller complex constants.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002080
2081<dl>
2082 <dt><b>Structure constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002083 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingf85859d2009-07-20 02:29:24 +00002084 type definitions (a comma separated list of elements, surrounded by braces
2085 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2086 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2087 Structure constants must have <a href="#t_struct">structure type</a>, and
2088 the number and types of elements must match those specified by the
2089 type.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002090
Chris Lattnerd5d51722010-02-12 20:49:41 +00002091 <dt><b>Union constants</b></dt>
2092 <dd>Union constants are represented with notation similar to a structure with
2093 a single element - that is, a single typed element surrounded
2094 by braces (<tt>{}</tt>)). For example: "<tt>{ i32 4 }</tt>". The
2095 <a href="#t_union">union type</a> can be initialized with a single-element
2096 struct as long as the type of the struct element matches the type of
2097 one of the union members.</dd>
2098
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002099 <dt><b>Array constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002100 <dd>Array constants are represented with notation similar to array type
Bill Wendlingf85859d2009-07-20 02:29:24 +00002101 definitions (a comma separated list of elements, surrounded by square
2102 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2103 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2104 the number and types of elements must match those specified by the
2105 type.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002106
2107 <dt><b>Vector constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002108 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingf85859d2009-07-20 02:29:24 +00002109 definitions (a comma separated list of elements, surrounded by
2110 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2111 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2112 have <a href="#t_vector">vector type</a>, and the number and types of
2113 elements must match those specified by the type.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002114
2115 <dt><b>Zero initialization</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002116 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattnerd5d51722010-02-12 20:49:41 +00002117 value to zero of <em>any</em> type, including scalar and
2118 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingf85859d2009-07-20 02:29:24 +00002119 This is often used to avoid having to print large zero initializers
2120 (e.g. for large arrays) and is always exactly equivalent to using explicit
2121 zero initializers.</dd>
Nick Lewycky4dcf8102009-04-04 07:22:01 +00002122
2123 <dt><b>Metadata node</b></dt>
Nick Lewyckyf122c7e2009-05-30 16:08:30 +00002124 <dd>A metadata node is a structure-like constant with
Bill Wendlingf85859d2009-07-20 02:29:24 +00002125 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2126 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2127 be interpreted as part of the instruction stream, metadata is a place to
2128 attach additional information such as debug info.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002129</dl>
2130
2131</div>
2132
2133<!-- ======================================================================= -->
2134<div class="doc_subsection">
2135 <a name="globalconstants">Global Variable and Function Addresses</a>
2136</div>
2137
2138<div class="doc_text">
2139
Bill Wendlingf85859d2009-07-20 02:29:24 +00002140<p>The addresses of <a href="#globalvars">global variables</a>
2141 and <a href="#functionstructure">functions</a> are always implicitly valid
2142 (link-time) constants. These constants are explicitly referenced when
2143 the <a href="#identifiers">identifier for the global</a> is used and always
2144 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2145 legal LLVM file:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002146
2147<div class="doc_code">
2148<pre>
2149@X = global i32 17
2150@Y = global i32 42
2151@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2152</pre>
2153</div>
2154
2155</div>
2156
2157<!-- ======================================================================= -->
2158<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
2159<div class="doc_text">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002160
Chris Lattner3d72cd82009-09-07 22:52:39 +00002161<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00002162 indicates that the user of the value may receive an unspecified bit-pattern.
Chris Lattner3d72cd82009-09-07 22:52:39 +00002163 Undefined values may be of any type (other than label or void) and be used
2164 anywhere a constant is permitted.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002165
Chris Lattner9d1e4fa2009-09-11 01:49:31 +00002166<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattner3d72cd82009-09-07 22:52:39 +00002167 program is well defined no matter what value is used. This gives the
2168 compiler more freedom to optimize. Here are some examples of (potentially
2169 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002170
Chris Lattner3d72cd82009-09-07 22:52:39 +00002171
2172<div class="doc_code">
2173<pre>
2174 %A = add %X, undef
2175 %B = sub %X, undef
2176 %C = xor %X, undef
2177Safe:
2178 %A = undef
2179 %B = undef
2180 %C = undef
2181</pre>
2182</div>
2183
2184<p>This is safe because all of the output bits are affected by the undef bits.
2185Any output bit can have a zero or one depending on the input bits.</p>
2186
2187<div class="doc_code">
2188<pre>
2189 %A = or %X, undef
2190 %B = and %X, undef
2191Safe:
2192 %A = -1
2193 %B = 0
2194Unsafe:
2195 %A = undef
2196 %B = undef
2197</pre>
2198</div>
2199
2200<p>These logical operations have bits that are not always affected by the input.
2201For example, if "%X" has a zero bit, then the output of the 'and' operation will
2202always be a zero, no matter what the corresponding bit from the undef is. As
Chris Lattner9d1e4fa2009-09-11 01:49:31 +00002203such, it is unsafe to optimize or assume that the result of the and is undef.
Eric Christophera1151bf2009-12-05 02:46:03 +00002204However, it is safe to assume that all bits of the undef could be 0, and
2205optimize the and to 0. Likewise, it is safe to assume that all the bits of
2206the undef operand to the or could be set, allowing the or to be folded to
Chris Lattner9d1e4fa2009-09-11 01:49:31 +00002207-1.</p>
Chris Lattner3d72cd82009-09-07 22:52:39 +00002208
2209<div class="doc_code">
2210<pre>
2211 %A = select undef, %X, %Y
2212 %B = select undef, 42, %Y
2213 %C = select %X, %Y, undef
2214Safe:
2215 %A = %X (or %Y)
2216 %B = 42 (or %Y)
2217 %C = %Y
2218Unsafe:
2219 %A = undef
2220 %B = undef
2221 %C = undef
2222</pre>
2223</div>
2224
2225<p>This set of examples show that undefined select (and conditional branch)
2226conditions can go "either way" but they have to come from one of the two
2227operands. In the %A example, if %X and %Y were both known to have a clear low
2228bit, then %A would have to have a cleared low bit. However, in the %C example,
2229the optimizer is allowed to assume that the undef operand could be the same as
2230%Y, allowing the whole select to be eliminated.</p>
2231
2232
2233<div class="doc_code">
2234<pre>
2235 %A = xor undef, undef
Eric Christophera1151bf2009-12-05 02:46:03 +00002236
Chris Lattner3d72cd82009-09-07 22:52:39 +00002237 %B = undef
2238 %C = xor %B, %B
2239
2240 %D = undef
2241 %E = icmp lt %D, 4
2242 %F = icmp gte %D, 4
2243
2244Safe:
2245 %A = undef
2246 %B = undef
2247 %C = undef
2248 %D = undef
2249 %E = undef
2250 %F = undef
2251</pre>
2252</div>
2253
2254<p>This example points out that two undef operands are not necessarily the same.
2255This can be surprising to people (and also matches C semantics) where they
2256assume that "X^X" is always zero, even if X is undef. This isn't true for a
2257number of reasons, but the short answer is that an undef "variable" can
2258arbitrarily change its value over its "live range". This is true because the
2259"variable" doesn't actually <em>have a live range</em>. Instead, the value is
2260logically read from arbitrary registers that happen to be around when needed,
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00002261so the value is not necessarily consistent over time. In fact, %A and %C need
Chris Lattnerc802e482009-09-08 15:13:16 +00002262to have the same semantics or the core LLVM "replace all uses with" concept
Chris Lattner3d72cd82009-09-07 22:52:39 +00002263would not hold.</p>
Chris Lattner466291f2009-09-07 23:33:52 +00002264
2265<div class="doc_code">
2266<pre>
2267 %A = fdiv undef, %X
2268 %B = fdiv %X, undef
2269Safe:
2270 %A = undef
2271b: unreachable
2272</pre>
2273</div>
2274
2275<p>These examples show the crucial difference between an <em>undefined
2276value</em> and <em>undefined behavior</em>. An undefined value (like undef) is
2277allowed to have an arbitrary bit-pattern. This means that the %A operation
2278can be constant folded to undef because the undef could be an SNaN, and fdiv is
2279not (currently) defined on SNaN's. However, in the second example, we can make
2280a more aggressive assumption: because the undef is allowed to be an arbitrary
2281value, we are allowed to assume that it could be zero. Since a divide by zero
Chris Lattner83d45d72009-09-08 19:45:34 +00002282has <em>undefined behavior</em>, we are allowed to assume that the operation
Chris Lattner466291f2009-09-07 23:33:52 +00002283does not execute at all. This allows us to delete the divide and all code after
2284it: since the undefined operation "can't happen", the optimizer can assume that
2285it occurs in dead code.
2286</p>
Eric Christophera1151bf2009-12-05 02:46:03 +00002287
Chris Lattner466291f2009-09-07 23:33:52 +00002288<div class="doc_code">
2289<pre>
2290a: store undef -> %X
2291b: store %X -> undef
2292Safe:
2293a: &lt;deleted&gt;
2294b: unreachable
2295</pre>
2296</div>
2297
2298<p>These examples reiterate the fdiv example: a store "of" an undefined value
Eric Christophera1151bf2009-12-05 02:46:03 +00002299can be assumed to not have any effect: we can assume that the value is
Chris Lattner466291f2009-09-07 23:33:52 +00002300overwritten with bits that happen to match what was already there. However, a
2301store "to" an undefined location could clobber arbitrary memory, therefore, it
2302has undefined behavior.</p>
2303
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002304</div>
2305
2306<!-- ======================================================================= -->
Dan Gohmanb8ddf022010-04-22 23:14:21 +00002307<div class="doc_subsection"><a name="trapvalues">Trap Values</a></div>
2308<div class="doc_text">
2309
2310<p>Trap values are similar to <a href="undefvalues">undef values</a>, however
2311 instead of representing an unspecified bit pattern, they represent the
2312 fact that an instruction or constant expression which cannot evoke side
2313 effects has nevertheless detected a condition which results in undefined
2314 behavior.<p>
2315
2316<p>Any non-void instruction or constant expression other than non-intrinsic
2317 calls or invokes with a trap operand has trap as its result value.
2318 Any instruction with a trap operand which may have side effects emits
2319 those side effects as if it had an undef operand instead.</p>
2320
2321<p>For example, an <a href="#i_and"><tt>and</tt></a> of a trap value with
2322 zero still has a trap value result. Using that value as an index in a
2323 <a href="#i_getelementptr"><tt>getelementptr</tt></a> yields a trap
2324 result. Using that result as the address of a
2325 <a href="#i_store"><tt>store</tt></a> produces undefined behavior.</p>
2326
2327<p>There is currently no way of representing a trap constant in the IR; they
2328 only exist when produced by certain instructions, such as an
2329 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag
2330 set, when overflow occurs.</p>
2331
2332</div>
2333
2334<!-- ======================================================================= -->
Chris Lattner29246b52009-10-27 21:19:13 +00002335<div class="doc_subsection"><a name="blockaddress">Addresses of Basic
2336 Blocks</a></div>
Chris Lattnerd07c8372009-10-27 21:01:34 +00002337<div class="doc_text">
2338
Chris Lattner620cead2009-11-01 01:27:45 +00002339<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnerd07c8372009-10-27 21:01:34 +00002340
2341<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner24f2e852009-10-27 21:49:40 +00002342 basic block in the specified function, and always has an i8* type. Taking
Chris Lattner620cead2009-11-01 01:27:45 +00002343 the address of the entry block is illegal.</p>
Eric Christophera1151bf2009-12-05 02:46:03 +00002344
Chris Lattnerd07c8372009-10-27 21:01:34 +00002345<p>This value only has defined behavior when used as an operand to the
Chris Lattner4c3800f2009-10-28 00:19:10 +00002346 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction or for comparisons
Chris Lattnerd07c8372009-10-27 21:01:34 +00002347 against null. Pointer equality tests between labels addresses is undefined
2348 behavior - though, again, comparison against null is ok, and no label is
Chris Lattner29246b52009-10-27 21:19:13 +00002349 equal to the null pointer. This may also be passed around as an opaque
2350 pointer sized value as long as the bits are not inspected. This allows
Chris Lattner0bae7b32009-10-27 21:44:20 +00002351 <tt>ptrtoint</tt> and arithmetic to be performed on these values so long as
Chris Lattner4c3800f2009-10-28 00:19:10 +00002352 the original value is reconstituted before the <tt>indirectbr</tt>.</p>
Eric Christophera1151bf2009-12-05 02:46:03 +00002353
Chris Lattner29246b52009-10-27 21:19:13 +00002354<p>Finally, some targets may provide defined semantics when
Chris Lattnerd07c8372009-10-27 21:01:34 +00002355 using the value as the operand to an inline assembly, but that is target
2356 specific.
2357 </p>
2358
2359</div>
2360
2361
2362<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002363<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2364</div>
2365
2366<div class="doc_text">
2367
2368<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingf85859d2009-07-20 02:29:24 +00002369 to be used as constants. Constant expressions may be of
2370 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2371 operation that does not have side effects (e.g. load and call are not
2372 supported). The following is the syntax for constant expressions:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002373
2374<dl>
2375 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002376 <dd>Truncate a constant to another type. The bit size of CST must be larger
2377 than the bit size of TYPE. Both types must be integers.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002378
2379 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002380 <dd>Zero extend a constant to another type. The bit size of CST must be
2381 smaller or equal to the bit size of TYPE. Both types must be
2382 integers.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002383
2384 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002385 <dd>Sign extend a constant to another type. The bit size of CST must be
2386 smaller or equal to the bit size of TYPE. Both types must be
2387 integers.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002388
2389 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002390 <dd>Truncate a floating point constant to another floating point type. The
2391 size of CST must be larger than the size of TYPE. Both types must be
2392 floating point.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002393
2394 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002395 <dd>Floating point extend a constant to another type. The size of CST must be
2396 smaller or equal to the size of TYPE. Both types must be floating
2397 point.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002398
Reid Spencere6adee82007-07-31 14:40:14 +00002399 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002400 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00002401 constant. TYPE must be a scalar or vector integer type. CST must be of
2402 scalar or vector floating point type. Both CST and TYPE must be scalars,
2403 or vectors of the same number of elements. If the value won't fit in the
2404 integer type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002405
2406 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
2407 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00002408 constant. TYPE must be a scalar or vector integer type. CST must be of
2409 scalar or vector floating point type. Both CST and TYPE must be scalars,
2410 or vectors of the same number of elements. If the value won't fit in the
2411 integer type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002412
2413 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
2414 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingf85859d2009-07-20 02:29:24 +00002415 constant. TYPE must be a scalar or vector floating point type. CST must be
2416 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2417 vectors of the same number of elements. If the value won't fit in the
2418 floating point type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002419
2420 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
2421 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingf85859d2009-07-20 02:29:24 +00002422 constant. TYPE must be a scalar or vector floating point type. CST must be
2423 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2424 vectors of the same number of elements. If the value won't fit in the
2425 floating point type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002426
2427 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2428 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingf85859d2009-07-20 02:29:24 +00002429 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2430 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2431 make it fit in <tt>TYPE</tt>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002432
2433 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002434 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2435 type. CST must be of integer type. The CST value is zero extended,
2436 truncated, or unchanged to make it fit in a pointer size. This one is
2437 <i>really</i> dangerous!</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002438
2439 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner557bc5d2009-02-28 18:27:03 +00002440 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2441 are the same as those for the <a href="#i_bitcast">bitcast
2442 instruction</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002443
2444 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohman106b2ae2009-07-27 21:53:46 +00002445 <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002446 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingf85859d2009-07-20 02:29:24 +00002447 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2448 instruction, the index list may have zero or more indexes, which are
2449 required to make sense for the type of "CSTPTR".</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002450
2451 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002452 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002453
2454 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2455 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2456
2457 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2458 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
2459
2460 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002461 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2462 constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002463
2464 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002465 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2466 constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002467
2468 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002469 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2470 constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002471
2472 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002473 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2474 be any of the <a href="#binaryops">binary</a>
2475 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2476 on operands are the same as those for the corresponding instruction
2477 (e.g. no bitwise operations on floating point values are allowed).</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002478</dl>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002479
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002480</div>
2481
2482<!-- *********************************************************************** -->
2483<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2484<!-- *********************************************************************** -->
2485
2486<!-- ======================================================================= -->
2487<div class="doc_subsection">
2488<a name="inlineasm">Inline Assembler Expressions</a>
2489</div>
2490
2491<div class="doc_text">
2492
Bill Wendlingf85859d2009-07-20 02:29:24 +00002493<p>LLVM supports inline assembler expressions (as opposed
2494 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2495 a special value. This value represents the inline assembler as a string
2496 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen648950f2009-10-13 21:56:55 +00002497 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen5ee3e4b2009-10-21 23:28:00 +00002498 expression has side effects, and a flag indicating whether the function
2499 containing the asm needs to align its stack conservatively. An example
2500 inline assembler expression is:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002501
2502<div class="doc_code">
2503<pre>
2504i32 (i32) asm "bswap $0", "=r,r"
2505</pre>
2506</div>
2507
Bill Wendlingf85859d2009-07-20 02:29:24 +00002508<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2509 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2510 have:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002511
2512<div class="doc_code">
2513<pre>
2514%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
2515</pre>
2516</div>
2517
Bill Wendlingf85859d2009-07-20 02:29:24 +00002518<p>Inline asms with side effects not visible in the constraint list must be
2519 marked as having side effects. This is done through the use of the
2520 '<tt>sideeffect</tt>' keyword, like so:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002521
2522<div class="doc_code">
2523<pre>
2524call void asm sideeffect "eieio", ""()
2525</pre>
2526</div>
2527
Dale Johannesen5ee3e4b2009-10-21 23:28:00 +00002528<p>In some cases inline asms will contain code that will not work unless the
2529 stack is aligned in some way, such as calls or SSE instructions on x86,
2530 yet will not contain code that does that alignment within the asm.
2531 The compiler should make conservative assumptions about what the asm might
2532 contain and should generate its usual stack alignment code in the prologue
2533 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen648950f2009-10-13 21:56:55 +00002534
2535<div class="doc_code">
2536<pre>
Dale Johannesen5ee3e4b2009-10-21 23:28:00 +00002537call void asm alignstack "eieio", ""()
Dale Johannesen648950f2009-10-13 21:56:55 +00002538</pre>
2539</div>
2540
2541<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2542 first.</p>
2543
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002544<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingf85859d2009-07-20 02:29:24 +00002545 documented here. Constraints on what can be done (e.g. duplication, moving,
2546 etc need to be documented). This is probably best done by reference to
2547 another document that covers inline asm from a holistic perspective.</p>
Chris Lattnerbafc8372010-04-07 05:38:05 +00002548</div>
2549
2550<div class="doc_subsubsection">
2551<a name="inlineasm_md">Inline Asm Metadata</a>
2552</div>
2553
2554<div class="doc_text">
2555
2556<p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
2557 attached to it that contains a constant integer. If present, the code
2558 generator will use the integer as the location cookie value when report
2559 errors through the LLVMContext error reporting mechanisms. This allows a
2560 front-end to corrolate backend errors that occur with inline asm back to the
2561 source code that produced it. For example:</p>
2562
2563<div class="doc_code">
2564<pre>
2565call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2566...
2567!42 = !{ i32 1234567 }
2568</pre>
2569</div>
2570
2571<p>It is up to the front-end to make sense of the magic numbers it places in the
2572 IR.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002573
2574</div>
2575
Chris Lattnerd0d96292010-01-15 21:50:19 +00002576<!-- ======================================================================= -->
2577<div class="doc_subsection"><a name="metadata">Metadata Nodes and Metadata
2578 Strings</a>
2579</div>
2580
2581<div class="doc_text">
2582
2583<p>LLVM IR allows metadata to be attached to instructions in the program that
2584 can convey extra information about the code to the optimizers and code
2585 generator. One example application of metadata is source-level debug
2586 information. There are two metadata primitives: strings and nodes. All
2587 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2588 preceding exclamation point ('<tt>!</tt>').</p>
2589
2590<p>A metadata string is a string surrounded by double quotes. It can contain
2591 any character by escaping non-printable characters with "\xx" where "xx" is
2592 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2593
2594<p>Metadata nodes are represented with notation similar to structure constants
2595 (a comma separated list of elements, surrounded by braces and preceded by an
2596 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2597 10}</tt>". Metadata nodes can have any values as their operand.</p>
2598
2599<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2600 metadata nodes, which can be looked up in the module symbol table. For
2601 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2602
Devang Patelb1586922010-03-04 23:44:48 +00002603<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
2604 function is using two metadata arguments.
2605
2606 <div class="doc_code">
2607 <pre>
2608 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2609 </pre>
2610 </div></p>
2611
2612<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
2613 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.
2614
2615 <div class="doc_code">
2616 <pre>
2617 %indvar.next = add i64 %indvar, 1, !dbg !21
2618 </pre>
2619 </div></p>
Chris Lattnerd0d96292010-01-15 21:50:19 +00002620</div>
2621
Chris Lattner75c24e02009-07-20 05:55:19 +00002622
2623<!-- *********************************************************************** -->
2624<div class="doc_section">
2625 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2626</div>
2627<!-- *********************************************************************** -->
2628
2629<p>LLVM has a number of "magic" global variables that contain data that affect
2630code generation or other IR semantics. These are documented here. All globals
Chris Lattner1e0e0d12009-07-20 06:14:25 +00002631of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2632section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2633by LLVM.</p>
Chris Lattner75c24e02009-07-20 05:55:19 +00002634
2635<!-- ======================================================================= -->
2636<div class="doc_subsection">
2637<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2638</div>
2639
2640<div class="doc_text">
2641
2642<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2643href="#linkage_appending">appending linkage</a>. This array contains a list of
2644pointers to global variables and functions which may optionally have a pointer
2645cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2646
2647<pre>
2648 @X = global i8 4
2649 @Y = global i32 123
2650
2651 @llvm.used = appending global [2 x i8*] [
2652 i8* @X,
2653 i8* bitcast (i32* @Y to i8*)
2654 ], section "llvm.metadata"
2655</pre>
2656
2657<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2658compiler, assembler, and linker are required to treat the symbol as if there is
2659a reference to the global that it cannot see. For example, if a variable has
2660internal linkage and no references other than that from the <tt>@llvm.used</tt>
2661list, it cannot be deleted. This is commonly used to represent references from
2662inline asms and other things the compiler cannot "see", and corresponds to
2663"attribute((used))" in GNU C.</p>
2664
2665<p>On some targets, the code generator must emit a directive to the assembler or
2666object file to prevent the assembler and linker from molesting the symbol.</p>
2667
2668</div>
2669
2670<!-- ======================================================================= -->
2671<div class="doc_subsection">
Chris Lattner1e0e0d12009-07-20 06:14:25 +00002672<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2673</div>
2674
2675<div class="doc_text">
2676
2677<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2678<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2679touching the symbol. On targets that support it, this allows an intelligent
2680linker to optimize references to the symbol without being impeded as it would be
2681by <tt>@llvm.used</tt>.</p>
2682
2683<p>This is a rare construct that should only be used in rare circumstances, and
2684should not be exposed to source languages.</p>
2685
2686</div>
2687
2688<!-- ======================================================================= -->
2689<div class="doc_subsection">
Chris Lattner75c24e02009-07-20 05:55:19 +00002690<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2691</div>
2692
2693<div class="doc_text">
2694
2695<p>TODO: Describe this.</p>
2696
2697</div>
2698
2699<!-- ======================================================================= -->
2700<div class="doc_subsection">
2701<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2702</div>
2703
2704<div class="doc_text">
2705
2706<p>TODO: Describe this.</p>
2707
2708</div>
2709
2710
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002711<!-- *********************************************************************** -->
2712<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2713<!-- *********************************************************************** -->
2714
2715<div class="doc_text">
2716
Bill Wendlingf85859d2009-07-20 02:29:24 +00002717<p>The LLVM instruction set consists of several different classifications of
2718 instructions: <a href="#terminators">terminator
2719 instructions</a>, <a href="#binaryops">binary instructions</a>,
2720 <a href="#bitwiseops">bitwise binary instructions</a>,
2721 <a href="#memoryops">memory instructions</a>, and
2722 <a href="#otherops">other instructions</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002723
2724</div>
2725
2726<!-- ======================================================================= -->
2727<div class="doc_subsection"> <a name="terminators">Terminator
2728Instructions</a> </div>
2729
2730<div class="doc_text">
2731
Bill Wendlingf85859d2009-07-20 02:29:24 +00002732<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2733 in a program ends with a "Terminator" instruction, which indicates which
2734 block should be executed after the current block is finished. These
2735 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2736 control flow, not values (the one exception being the
2737 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2738
Duncan Sands048d8062010-04-15 20:35:54 +00002739<p>There are seven different terminator instructions: the
Bill Wendlingf85859d2009-07-20 02:29:24 +00002740 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2741 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2742 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
Bill Wendlingb4ae2292009-11-02 00:25:26 +00002743 '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
Bill Wendlingf85859d2009-07-20 02:29:24 +00002744 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2745 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2746 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002747
2748</div>
2749
2750<!-- _______________________________________________________________________ -->
2751<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2752Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002753
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002754<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002755
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002756<h5>Syntax:</h5>
Dan Gohman3e700032008-10-04 19:00:07 +00002757<pre>
2758 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002759 ret void <i>; Return from void function</i>
2760</pre>
Chris Lattner43030e72008-04-23 04:59:35 +00002761
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002762<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002763<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2764 a value) from a function back to the caller.</p>
2765
2766<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2767 value and then causes control flow, and one that just causes control flow to
2768 occur.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00002769
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002770<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002771<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2772 return value. The type of the return value must be a
2773 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohman3e700032008-10-04 19:00:07 +00002774
Bill Wendlingf85859d2009-07-20 02:29:24 +00002775<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2776 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2777 value or a return value with a type that does not match its type, or if it
2778 has a void return type and contains a '<tt>ret</tt>' instruction with a
2779 return value.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00002780
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002781<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002782<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2783 the calling function's context. If the caller is a
2784 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2785 instruction after the call. If the caller was an
2786 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2787 the beginning of the "normal" destination block. If the instruction returns
2788 a value, that value shall set the call or invoke instruction's return
2789 value.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00002790
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002791<h5>Example:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00002792<pre>
2793 ret i32 5 <i>; Return an integer value of 5</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002794 ret void <i>; Return from a void function</i>
Bill Wendlingd163e2d2009-02-28 22:12:54 +00002795 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002796</pre>
Dan Gohman60967192009-01-12 23:12:39 +00002797
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002798</div>
2799<!-- _______________________________________________________________________ -->
2800<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002801
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002802<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002803
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002804<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002805<pre>
2806 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002807</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002808
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002809<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002810<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2811 different basic block in the current function. There are two forms of this
2812 instruction, corresponding to a conditional branch and an unconditional
2813 branch.</p>
2814
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002815<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002816<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2817 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2818 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2819 target.</p>
2820
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002821<h5>Semantics:</h5>
2822<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingf85859d2009-07-20 02:29:24 +00002823 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2824 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2825 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2826
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002827<h5>Example:</h5>
Bill Wendling6ec40612009-07-20 02:39:26 +00002828<pre>
2829Test:
2830 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2831 br i1 %cond, label %IfEqual, label %IfUnequal
2832IfEqual:
2833 <a href="#i_ret">ret</a> i32 1
2834IfUnequal:
2835 <a href="#i_ret">ret</a> i32 0
2836</pre>
2837
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002838</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002839
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002840<!-- _______________________________________________________________________ -->
2841<div class="doc_subsubsection">
2842 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2843</div>
2844
2845<div class="doc_text">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002846
Bill Wendlingf85859d2009-07-20 02:29:24 +00002847<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002848<pre>
2849 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2850</pre>
2851
2852<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002853<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingf85859d2009-07-20 02:29:24 +00002854 several different places. It is a generalization of the '<tt>br</tt>'
2855 instruction, allowing a branch to occur to one of many possible
2856 destinations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002857
2858<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002859<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00002860 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2861 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2862 The table is not allowed to contain duplicate constant entries.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002863
2864<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002865<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingf85859d2009-07-20 02:29:24 +00002866 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2867 is searched for the given value. If the value is found, control flow is
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00002868 transferred to the corresponding destination; otherwise, control flow is
2869 transferred to the default destination.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002870
2871<h5>Implementation:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002872<p>Depending on properties of the target machine and the particular
Bill Wendlingf85859d2009-07-20 02:29:24 +00002873 <tt>switch</tt> instruction, this instruction may be code generated in
2874 different ways. For example, it could be generated as a series of chained
2875 conditional branches or with a lookup table.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002876
2877<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002878<pre>
2879 <i>; Emulate a conditional br instruction</i>
2880 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman01852382009-01-04 23:44:43 +00002881 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002882
2883 <i>; Emulate an unconditional br instruction</i>
2884 switch i32 0, label %dest [ ]
2885
2886 <i>; Implement a jump table:</i>
Dan Gohman01852382009-01-04 23:44:43 +00002887 switch i32 %val, label %otherwise [ i32 0, label %onzero
2888 i32 1, label %onone
2889 i32 2, label %ontwo ]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002890</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002891
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002892</div>
2893
Chris Lattnere0787282009-10-27 19:13:16 +00002894
2895<!-- _______________________________________________________________________ -->
2896<div class="doc_subsubsection">
Chris Lattner4c3800f2009-10-28 00:19:10 +00002897 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
Chris Lattnere0787282009-10-27 19:13:16 +00002898</div>
2899
2900<div class="doc_text">
2901
2902<h5>Syntax:</h5>
2903<pre>
Chris Lattner4c3800f2009-10-28 00:19:10 +00002904 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattnere0787282009-10-27 19:13:16 +00002905</pre>
2906
2907<h5>Overview:</h5>
2908
Chris Lattner4c3800f2009-10-28 00:19:10 +00002909<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattnere0787282009-10-27 19:13:16 +00002910 within the current function, whose address is specified by
Chris Lattnerd07c8372009-10-27 21:01:34 +00002911 "<tt>address</tt>". Address must be derived from a <a
2912 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattnere0787282009-10-27 19:13:16 +00002913
2914<h5>Arguments:</h5>
2915
2916<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
2917 rest of the arguments indicate the full set of possible destinations that the
2918 address may point to. Blocks are allowed to occur multiple times in the
2919 destination list, though this isn't particularly useful.</p>
Eric Christophera1151bf2009-12-05 02:46:03 +00002920
Chris Lattnere0787282009-10-27 19:13:16 +00002921<p>This destination list is required so that dataflow analysis has an accurate
2922 understanding of the CFG.</p>
2923
2924<h5>Semantics:</h5>
2925
2926<p>Control transfers to the block specified in the address argument. All
2927 possible destination blocks must be listed in the label list, otherwise this
2928 instruction has undefined behavior. This implies that jumps to labels
2929 defined in other functions have undefined behavior as well.</p>
2930
2931<h5>Implementation:</h5>
2932
2933<p>This is typically implemented with a jump through a register.</p>
2934
2935<h5>Example:</h5>
2936<pre>
Chris Lattner4c3800f2009-10-28 00:19:10 +00002937 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattnere0787282009-10-27 19:13:16 +00002938</pre>
2939
2940</div>
2941
2942
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002943<!-- _______________________________________________________________________ -->
2944<div class="doc_subsubsection">
2945 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2946</div>
2947
2948<div class="doc_text">
2949
2950<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002951<pre>
Devang Pateld0bfcc72008-10-07 17:48:33 +00002952 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002953 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
2954</pre>
2955
2956<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002957<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingf85859d2009-07-20 02:29:24 +00002958 function, with the possibility of control flow transfer to either the
2959 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
2960 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
2961 control flow will return to the "normal" label. If the callee (or any
2962 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
2963 instruction, control is interrupted and continued at the dynamically nearest
2964 "exception" label.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002965
2966<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002967<p>This instruction requires several arguments:</p>
2968
2969<ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002970 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
2971 convention</a> the call should use. If none is specified, the call
2972 defaults to using C calling conventions.</li>
Devang Patelac2fc272008-10-06 18:50:38 +00002973
2974 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingf85859d2009-07-20 02:29:24 +00002975 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
2976 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patelac2fc272008-10-06 18:50:38 +00002977
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002978 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingf85859d2009-07-20 02:29:24 +00002979 function value being invoked. In most cases, this is a direct function
2980 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
2981 off an arbitrary pointer to function value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002982
2983 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingf85859d2009-07-20 02:29:24 +00002984 function to be invoked. </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002985
2986 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner553fb1e2010-03-02 06:36:51 +00002987 signature argument types and parameter attributes. All arguments must be
2988 of <a href="#t_firstclass">first class</a> type. If the function
2989 signature indicates the function accepts a variable number of arguments,
2990 the extra arguments can be specified.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002991
2992 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingf85859d2009-07-20 02:29:24 +00002993 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002994
2995 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingf85859d2009-07-20 02:29:24 +00002996 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002997
Devang Pateld0bfcc72008-10-07 17:48:33 +00002998 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingf85859d2009-07-20 02:29:24 +00002999 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3000 '<tt>readnone</tt>' attributes are valid here.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003001</ol>
3002
3003<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003004<p>This instruction is designed to operate as a standard
3005 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3006 primary difference is that it establishes an association with a label, which
3007 is used by the runtime library to unwind the stack.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003008
3009<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingf85859d2009-07-20 02:29:24 +00003010 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3011 exception. Additionally, this is important for implementation of
3012 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003013
Bill Wendlingf85859d2009-07-20 02:29:24 +00003014<p>For the purposes of the SSA form, the definition of the value returned by the
3015 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3016 block to the "normal" label. If the callee unwinds then no return value is
3017 available.</p>
Dan Gohman140ba5d2009-05-22 21:47:08 +00003018
Chris Lattner4a91ef42010-01-15 18:08:37 +00003019<p>Note that the code generator does not yet completely support unwind, and
3020that the invoke/unwind semantics are likely to change in future versions.</p>
3021
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003022<h5>Example:</h5>
3023<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00003024 %retval = invoke i32 @Test(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003025 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00003026 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003027 unwind label %TestCleanup <i>; {i32}:retval set</i>
3028</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003029
Bill Wendlingf85859d2009-07-20 02:29:24 +00003030</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003031
3032<!-- _______________________________________________________________________ -->
3033
3034<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
3035Instruction</a> </div>
3036
3037<div class="doc_text">
3038
3039<h5>Syntax:</h5>
3040<pre>
3041 unwind
3042</pre>
3043
3044<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003045<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingf85859d2009-07-20 02:29:24 +00003046 at the first callee in the dynamic call stack which used
3047 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3048 This is primarily used to implement exception handling.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003049
3050<h5>Semantics:</h5>
Chris Lattner8b094fc2008-04-19 21:01:16 +00003051<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingf85859d2009-07-20 02:29:24 +00003052 immediately halt. The dynamic call stack is then searched for the
3053 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3054 Once found, execution continues at the "exceptional" destination block
3055 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3056 instruction in the dynamic call chain, undefined behavior results.</p>
3057
Chris Lattner4a91ef42010-01-15 18:08:37 +00003058<p>Note that the code generator does not yet completely support unwind, and
3059that the invoke/unwind semantics are likely to change in future versions.</p>
3060
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003061</div>
3062
3063<!-- _______________________________________________________________________ -->
3064
3065<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
3066Instruction</a> </div>
3067
3068<div class="doc_text">
3069
3070<h5>Syntax:</h5>
3071<pre>
3072 unreachable
3073</pre>
3074
3075<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003076<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingf85859d2009-07-20 02:29:24 +00003077 instruction is used to inform the optimizer that a particular portion of the
3078 code is not reachable. This can be used to indicate that the code after a
3079 no-return function cannot be reached, and other facts.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003080
3081<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003082<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003083
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003084</div>
3085
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003086<!-- ======================================================================= -->
3087<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003088
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003089<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003090
3091<p>Binary operators are used to do most of the computation in a program. They
3092 require two operands of the same type, execute an operation on them, and
3093 produce a single value. The operands might represent multiple data, as is
3094 the case with the <a href="#t_vector">vector</a> data type. The result value
3095 has the same type as its operands.</p>
3096
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003097<p>There are several different binary operators:</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003098
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003099</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003100
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003101<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00003102<div class="doc_subsubsection">
3103 <a name="i_add">'<tt>add</tt>' Instruction</a>
3104</div>
3105
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003106<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003107
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003108<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003109<pre>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00003110 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanb3b03482009-09-02 17:31:42 +00003111 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3112 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3113 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003114</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003115
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003116<h5>Overview:</h5>
3117<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003118
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003119<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003120<p>The two arguments to the '<tt>add</tt>' instruction must
3121 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3122 integer values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003123
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003124<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003125<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003126
Bill Wendlingf85859d2009-07-20 02:29:24 +00003127<p>If the sum has unsigned overflow, the result returned is the mathematical
3128 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003129
Bill Wendlingf85859d2009-07-20 02:29:24 +00003130<p>Because LLVM integers use a two's complement representation, this instruction
3131 is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003132
Dan Gohman46e96012009-07-22 22:44:56 +00003133<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3134 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3135 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohmanb8ddf022010-04-22 23:14:21 +00003136 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3137 respectively, occurs.</p>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00003138
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003139<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003140<pre>
3141 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003142</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003143
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003144</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003145
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003146<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00003147<div class="doc_subsubsection">
Dan Gohman7ce405e2009-06-04 22:49:04 +00003148 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
3149</div>
3150
3151<div class="doc_text">
3152
3153<h5>Syntax:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003154<pre>
3155 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3156</pre>
3157
3158<h5>Overview:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003159<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3160
3161<h5>Arguments:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003162<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003163 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3164 floating point values. Both arguments must have identical types.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003165
3166<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003167<p>The value produced is the floating point sum of the two operands.</p>
3168
3169<h5>Example:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003170<pre>
3171 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3172</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003173
Dan Gohman7ce405e2009-06-04 22:49:04 +00003174</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003175
Dan Gohman7ce405e2009-06-04 22:49:04 +00003176<!-- _______________________________________________________________________ -->
3177<div class="doc_subsubsection">
Chris Lattner6704c212008-05-20 20:48:21 +00003178 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
3179</div>
3180
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003181<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003182
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003183<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003184<pre>
Dan Gohman46e96012009-07-22 22:44:56 +00003185 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanb3b03482009-09-02 17:31:42 +00003186 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3187 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3188 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003189</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003190
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003191<h5>Overview:</h5>
3192<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingf85859d2009-07-20 02:29:24 +00003193 operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003194
3195<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingf85859d2009-07-20 02:29:24 +00003196 '<tt>neg</tt>' instruction present in most other intermediate
3197 representations.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003198
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003199<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003200<p>The two arguments to the '<tt>sub</tt>' instruction must
3201 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3202 integer values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003203
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003204<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003205<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003206
Dan Gohman7ce405e2009-06-04 22:49:04 +00003207<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingf85859d2009-07-20 02:29:24 +00003208 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3209 result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003210
Bill Wendlingf85859d2009-07-20 02:29:24 +00003211<p>Because LLVM integers use a two's complement representation, this instruction
3212 is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003213
Dan Gohman46e96012009-07-22 22:44:56 +00003214<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3215 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3216 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohmanb8ddf022010-04-22 23:14:21 +00003217 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3218 respectively, occurs.</p>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00003219
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003220<h5>Example:</h5>
3221<pre>
3222 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
3223 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
3224</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003225
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003226</div>
Chris Lattner6704c212008-05-20 20:48:21 +00003227
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003228<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00003229<div class="doc_subsubsection">
Dan Gohman7ce405e2009-06-04 22:49:04 +00003230 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3231</div>
3232
3233<div class="doc_text">
3234
3235<h5>Syntax:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003236<pre>
3237 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3238</pre>
3239
3240<h5>Overview:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003241<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingf85859d2009-07-20 02:29:24 +00003242 operands.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003243
3244<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingf85859d2009-07-20 02:29:24 +00003245 '<tt>fneg</tt>' instruction present in most other intermediate
3246 representations.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003247
3248<h5>Arguments:</h5>
Bill Wendling1a2630a2009-07-20 02:32:41 +00003249<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003250 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3251 floating point values. Both arguments must have identical types.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003252
3253<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003254<p>The value produced is the floating point difference of the two operands.</p>
3255
3256<h5>Example:</h5>
3257<pre>
3258 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3259 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3260</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003261
Dan Gohman7ce405e2009-06-04 22:49:04 +00003262</div>
3263
3264<!-- _______________________________________________________________________ -->
3265<div class="doc_subsubsection">
Chris Lattner6704c212008-05-20 20:48:21 +00003266 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3267</div>
3268
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003269<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003270
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003271<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003272<pre>
Dan Gohman46e96012009-07-22 22:44:56 +00003273 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanb3b03482009-09-02 17:31:42 +00003274 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3275 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3276 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003277</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003278
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003279<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003280<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003281
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003282<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003283<p>The two arguments to the '<tt>mul</tt>' instruction must
3284 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3285 integer values. Both arguments must have identical types.</p>
Eric Christophera1151bf2009-12-05 02:46:03 +00003286
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003287<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003288<p>The value produced is the integer product of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003289
Bill Wendlingf85859d2009-07-20 02:29:24 +00003290<p>If the result of the multiplication has unsigned overflow, the result
3291 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3292 width of the result.</p>
3293
3294<p>Because LLVM integers use a two's complement representation, and the result
3295 is the same width as the operands, this instruction returns the correct
3296 result for both signed and unsigned integers. If a full product
3297 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3298 be sign-extended or zero-extended as appropriate to the width of the full
3299 product.</p>
3300
Dan Gohman46e96012009-07-22 22:44:56 +00003301<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3302 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3303 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohmanb8ddf022010-04-22 23:14:21 +00003304 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3305 respectively, occurs.</p>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00003306
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003307<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003308<pre>
3309 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003310</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003311
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003312</div>
Chris Lattner6704c212008-05-20 20:48:21 +00003313
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003314<!-- _______________________________________________________________________ -->
Dan Gohman7ce405e2009-06-04 22:49:04 +00003315<div class="doc_subsubsection">
3316 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3317</div>
3318
3319<div class="doc_text">
3320
3321<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003322<pre>
3323 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003324</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003325
Dan Gohman7ce405e2009-06-04 22:49:04 +00003326<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003327<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003328
3329<h5>Arguments:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003330<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003331 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3332 floating point values. Both arguments must have identical types.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003333
3334<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003335<p>The value produced is the floating point product of the two operands.</p>
3336
3337<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003338<pre>
3339 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003340</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003341
Dan Gohman7ce405e2009-06-04 22:49:04 +00003342</div>
3343
3344<!-- _______________________________________________________________________ -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003345<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
3346</a></div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003347
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003348<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003349
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003350<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003351<pre>
3352 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003353</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003354
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003355<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003356<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003357
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003358<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003359<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003360 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3361 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003362
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003363<h5>Semantics:</h5>
Chris Lattner9aba1e22008-01-28 00:36:27 +00003364<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003365
Chris Lattner9aba1e22008-01-28 00:36:27 +00003366<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingf85859d2009-07-20 02:29:24 +00003367 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3368
Chris Lattner9aba1e22008-01-28 00:36:27 +00003369<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003370
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003371<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003372<pre>
3373 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003374</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003375
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003376</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003377
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003378<!-- _______________________________________________________________________ -->
3379<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
3380</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003381
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003382<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003383
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003384<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003385<pre>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00003386 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanb3b03482009-09-02 17:31:42 +00003387 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003388</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003389
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003390<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003391<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003392
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003393<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003394<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003395 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3396 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003397
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003398<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003399<p>The value produced is the signed integer quotient of the two operands rounded
3400 towards zero.</p>
3401
Chris Lattner9aba1e22008-01-28 00:36:27 +00003402<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingf85859d2009-07-20 02:29:24 +00003403 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3404
Chris Lattner9aba1e22008-01-28 00:36:27 +00003405<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingf85859d2009-07-20 02:29:24 +00003406 undefined behavior; this is a rare case, but can occur, for example, by doing
3407 a 32-bit division of -2147483648 by -1.</p>
3408
Dan Gohman67fa48e2009-07-22 00:04:19 +00003409<p>If the <tt>exact</tt> keyword is present, the result value of the
3410 <tt>sdiv</tt> is undefined if the result would be rounded or if overflow
3411 would occur.</p>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00003412
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003413<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003414<pre>
3415 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003416</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003417
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003418</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003419
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003420<!-- _______________________________________________________________________ -->
3421<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
3422Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003423
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003424<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003425
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003426<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003427<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003428 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003429</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003430
Bill Wendlingf85859d2009-07-20 02:29:24 +00003431<h5>Overview:</h5>
3432<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003433
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003434<h5>Arguments:</h5>
3435<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003436 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3437 floating point values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003438
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003439<h5>Semantics:</h5>
3440<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003441
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003442<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003443<pre>
3444 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003445</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003446
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003447</div>
Chris Lattner6704c212008-05-20 20:48:21 +00003448
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003449<!-- _______________________________________________________________________ -->
3450<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3451</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003452
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003453<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003454
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003455<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003456<pre>
3457 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003458</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003459
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003460<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003461<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3462 division of its two arguments.</p>
3463
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003464<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003465<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003466 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3467 values. Both arguments must have identical types.</p>
3468
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003469<h5>Semantics:</h5>
3470<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingf85859d2009-07-20 02:29:24 +00003471 This instruction always performs an unsigned division to get the
3472 remainder.</p>
3473
Chris Lattner9aba1e22008-01-28 00:36:27 +00003474<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingf85859d2009-07-20 02:29:24 +00003475 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3476
Chris Lattner9aba1e22008-01-28 00:36:27 +00003477<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003478
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003479<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003480<pre>
3481 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003482</pre>
3483
3484</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003485
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003486<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00003487<div class="doc_subsubsection">
3488 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3489</div>
3490
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003491<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003492
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003493<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003494<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003495 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003496</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003497
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003498<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003499<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3500 division of its two operands. This instruction can also take
3501 <a href="#t_vector">vector</a> versions of the values in which case the
3502 elements must be integers.</p>
Chris Lattner08497ce2008-01-04 04:33:49 +00003503
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003504<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003505<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003506 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3507 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003508
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003509<h5>Semantics:</h5>
3510<p>This instruction returns the <i>remainder</i> of a division (where the result
Bill Wendlingf85859d2009-07-20 02:29:24 +00003511 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3512 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3513 a value. For more information about the difference,
3514 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3515 Math Forum</a>. For a table of how this is implemented in various languages,
3516 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3517 Wikipedia: modulo operation</a>.</p>
3518
Chris Lattner9aba1e22008-01-28 00:36:27 +00003519<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingf85859d2009-07-20 02:29:24 +00003520 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3521
Chris Lattner9aba1e22008-01-28 00:36:27 +00003522<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingf85859d2009-07-20 02:29:24 +00003523 Overflow also leads to undefined behavior; this is a rare case, but can
3524 occur, for example, by taking the remainder of a 32-bit division of
3525 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3526 lets srem be implemented using instructions that return both the result of
3527 the division and the remainder.)</p>
3528
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003529<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003530<pre>
3531 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003532</pre>
3533
3534</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003535
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003536<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00003537<div class="doc_subsubsection">
3538 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3539
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003540<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003541
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003542<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003543<pre>
3544 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003545</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003546
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003547<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003548<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3549 its two operands.</p>
3550
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003551<h5>Arguments:</h5>
3552<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003553 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3554 floating point values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003555
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003556<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003557<p>This instruction returns the <i>remainder</i> of a division. The remainder
3558 has the same sign as the dividend.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003559
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003560<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003561<pre>
3562 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003563</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003564
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003565</div>
3566
3567<!-- ======================================================================= -->
3568<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3569Operations</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003570
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003571<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003572
3573<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3574 program. They are generally very efficient instructions and can commonly be
3575 strength reduced from other instructions. They require two operands of the
3576 same type, execute an operation on them, and produce a single value. The
3577 resulting value is the same type as its operands.</p>
3578
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003579</div>
3580
3581<!-- _______________________________________________________________________ -->
3582<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3583Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003584
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003585<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003586
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003587<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003588<pre>
3589 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003590</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003591
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003592<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003593<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3594 a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003595
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003596<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003597<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3598 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3599 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christophera1151bf2009-12-05 02:46:03 +00003600
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003601<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003602<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3603 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3604 is (statically or dynamically) negative or equal to or larger than the number
3605 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3606 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3607 shift amount in <tt>op2</tt>.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003608
Bill Wendlingf85859d2009-07-20 02:29:24 +00003609<h5>Example:</h5>
3610<pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003611 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3612 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3613 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003614 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang9901e732008-12-09 05:46:39 +00003615 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003616</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003617
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003618</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003619
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003620<!-- _______________________________________________________________________ -->
3621<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3622Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003623
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003624<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003625
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003626<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003627<pre>
3628 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003629</pre>
3630
3631<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003632<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3633 operand shifted to the right a specified number of bits with zero fill.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003634
3635<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003636<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingf85859d2009-07-20 02:29:24 +00003637 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3638 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003639
3640<h5>Semantics:</h5>
3641<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingf85859d2009-07-20 02:29:24 +00003642 significant bits of the result will be filled with zero bits after the shift.
3643 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3644 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3645 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3646 shift amount in <tt>op2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003647
3648<h5>Example:</h5>
3649<pre>
3650 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3651 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3652 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3653 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003654 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang9901e732008-12-09 05:46:39 +00003655 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003656</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003657
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003658</div>
3659
3660<!-- _______________________________________________________________________ -->
3661<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3662Instruction</a> </div>
3663<div class="doc_text">
3664
3665<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003666<pre>
3667 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003668</pre>
3669
3670<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003671<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3672 operand shifted to the right a specified number of bits with sign
3673 extension.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003674
3675<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003676<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingf85859d2009-07-20 02:29:24 +00003677 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3678 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003679
3680<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003681<p>This instruction always performs an arithmetic shift right operation, The
3682 most significant bits of the result will be filled with the sign bit
3683 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3684 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3685 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3686 the corresponding shift amount in <tt>op2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003687
3688<h5>Example:</h5>
3689<pre>
3690 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3691 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3692 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3693 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003694 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang9901e732008-12-09 05:46:39 +00003695 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003696</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003697
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003698</div>
3699
3700<!-- _______________________________________________________________________ -->
3701<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3702Instruction</a> </div>
Chris Lattner6704c212008-05-20 20:48:21 +00003703
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003704<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003705
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003706<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003707<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003708 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003709</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003710
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003711<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003712<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3713 operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003714
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003715<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003716<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003717 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3718 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003719
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003720<h5>Semantics:</h5>
3721<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003722
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003723<table border="1" cellspacing="0" cellpadding="4">
3724 <tbody>
3725 <tr>
3726 <td>In0</td>
3727 <td>In1</td>
3728 <td>Out</td>
3729 </tr>
3730 <tr>
3731 <td>0</td>
3732 <td>0</td>
3733 <td>0</td>
3734 </tr>
3735 <tr>
3736 <td>0</td>
3737 <td>1</td>
3738 <td>0</td>
3739 </tr>
3740 <tr>
3741 <td>1</td>
3742 <td>0</td>
3743 <td>0</td>
3744 </tr>
3745 <tr>
3746 <td>1</td>
3747 <td>1</td>
3748 <td>1</td>
3749 </tr>
3750 </tbody>
3751</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003752
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003753<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003754<pre>
3755 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003756 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3757 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
3758</pre>
3759</div>
3760<!-- _______________________________________________________________________ -->
3761<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Chris Lattner6704c212008-05-20 20:48:21 +00003762
Bill Wendlingf85859d2009-07-20 02:29:24 +00003763<div class="doc_text">
3764
3765<h5>Syntax:</h5>
3766<pre>
3767 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3768</pre>
3769
3770<h5>Overview:</h5>
3771<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3772 two operands.</p>
3773
3774<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003775<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003776 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3777 values. Both arguments must have identical types.</p>
3778
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003779<h5>Semantics:</h5>
3780<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003781
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003782<table border="1" cellspacing="0" cellpadding="4">
3783 <tbody>
3784 <tr>
3785 <td>In0</td>
3786 <td>In1</td>
3787 <td>Out</td>
3788 </tr>
3789 <tr>
3790 <td>0</td>
3791 <td>0</td>
3792 <td>0</td>
3793 </tr>
3794 <tr>
3795 <td>0</td>
3796 <td>1</td>
3797 <td>1</td>
3798 </tr>
3799 <tr>
3800 <td>1</td>
3801 <td>0</td>
3802 <td>1</td>
3803 </tr>
3804 <tr>
3805 <td>1</td>
3806 <td>1</td>
3807 <td>1</td>
3808 </tr>
3809 </tbody>
3810</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003811
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003812<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003813<pre>
3814 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003815 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3816 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
3817</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003818
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003819</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003820
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003821<!-- _______________________________________________________________________ -->
3822<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3823Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003824
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003825<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003826
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003827<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003828<pre>
3829 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003830</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003831
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003832<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003833<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3834 its two operands. The <tt>xor</tt> is used to implement the "one's
3835 complement" operation, which is the "~" operator in C.</p>
3836
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003837<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003838<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003839 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3840 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003841
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003842<h5>Semantics:</h5>
3843<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003844
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003845<table border="1" cellspacing="0" cellpadding="4">
3846 <tbody>
3847 <tr>
3848 <td>In0</td>
3849 <td>In1</td>
3850 <td>Out</td>
3851 </tr>
3852 <tr>
3853 <td>0</td>
3854 <td>0</td>
3855 <td>0</td>
3856 </tr>
3857 <tr>
3858 <td>0</td>
3859 <td>1</td>
3860 <td>1</td>
3861 </tr>
3862 <tr>
3863 <td>1</td>
3864 <td>0</td>
3865 <td>1</td>
3866 </tr>
3867 <tr>
3868 <td>1</td>
3869 <td>1</td>
3870 <td>0</td>
3871 </tr>
3872 </tbody>
3873</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003874
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003875<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003876<pre>
3877 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003878 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3879 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3880 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
3881</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003882
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003883</div>
3884
3885<!-- ======================================================================= -->
Eric Christophera1151bf2009-12-05 02:46:03 +00003886<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003887 <a name="vectorops">Vector Operations</a>
3888</div>
3889
3890<div class="doc_text">
3891
3892<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingf85859d2009-07-20 02:29:24 +00003893 target-independent manner. These instructions cover the element-access and
3894 vector-specific operations needed to process vectors effectively. While LLVM
3895 does directly support these vector operations, many sophisticated algorithms
3896 will want to use target-specific intrinsics to take full advantage of a
3897 specific target.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003898
3899</div>
3900
3901<!-- _______________________________________________________________________ -->
3902<div class="doc_subsubsection">
3903 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3904</div>
3905
3906<div class="doc_text">
3907
3908<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003909<pre>
3910 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
3911</pre>
3912
3913<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003914<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
3915 from a vector at a specified index.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003916
3917
3918<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003919<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
3920 of <a href="#t_vector">vector</a> type. The second operand is an index
3921 indicating the position from which to extract the element. The index may be
3922 a variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003923
3924<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003925<p>The result is a scalar of the same type as the element type of
3926 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3927 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3928 results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003929
3930<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003931<pre>
Gabor Greifb2c73142009-10-28 13:14:50 +00003932 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003933</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003934
Bill Wendlingf85859d2009-07-20 02:29:24 +00003935</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003936
3937<!-- _______________________________________________________________________ -->
3938<div class="doc_subsubsection">
3939 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3940</div>
3941
3942<div class="doc_text">
3943
3944<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003945<pre>
Dan Gohmanbcc3c502008-05-12 23:38:42 +00003946 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003947</pre>
3948
3949<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003950<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
3951 vector at a specified index.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003952
3953<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003954<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
3955 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
3956 whose type must equal the element type of the first operand. The third
3957 operand is an index indicating the position at which to insert the value.
3958 The index may be a variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003959
3960<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003961<p>The result is a vector of the same type as <tt>val</tt>. Its element values
3962 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
3963 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3964 results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003965
3966<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003967<pre>
Gabor Greifb2c73142009-10-28 13:14:50 +00003968 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003969</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003970
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003971</div>
3972
3973<!-- _______________________________________________________________________ -->
3974<div class="doc_subsubsection">
3975 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3976</div>
3977
3978<div class="doc_text">
3979
3980<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003981<pre>
Mon P Wangbff5d9c2008-11-10 04:46:22 +00003982 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003983</pre>
3984
3985<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003986<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
3987 from two input vectors, returning a vector with the same element type as the
3988 input and length that is the same as the shuffle mask.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003989
3990<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003991<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3992 with types that match each other. The third argument is a shuffle mask whose
3993 element type is always 'i32'. The result of the instruction is a vector
3994 whose length is the same as the shuffle mask and whose element type is the
3995 same as the element type of the first two operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003996
Bill Wendlingf85859d2009-07-20 02:29:24 +00003997<p>The shuffle mask operand is required to be a constant vector with either
3998 constant integer or undef values.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003999
4000<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004001<p>The elements of the two input vectors are numbered from left to right across
4002 both of the vectors. The shuffle mask operand specifies, for each element of
4003 the result vector, which element of the two input vectors the result element
4004 gets. The element selector may be undef (meaning "don't care") and the
4005 second operand may be undef if performing a shuffle from only one vector.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004006
4007<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004008<pre>
Eric Christophera1151bf2009-12-05 02:46:03 +00004009 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004010 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christophera1151bf2009-12-05 02:46:03 +00004011 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004012 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christophera1151bf2009-12-05 02:46:03 +00004013 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wangbff5d9c2008-11-10 04:46:22 +00004014 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christophera1151bf2009-12-05 02:46:03 +00004015 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wangbff5d9c2008-11-10 04:46:22 +00004016 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004017</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004018
Bill Wendlingf85859d2009-07-20 02:29:24 +00004019</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004020
4021<!-- ======================================================================= -->
Eric Christophera1151bf2009-12-05 02:46:03 +00004022<div class="doc_subsection">
Dan Gohman74d6faf2008-05-12 23:51:09 +00004023 <a name="aggregateops">Aggregate Operations</a>
4024</div>
4025
4026<div class="doc_text">
4027
Chris Lattnerd5d51722010-02-12 20:49:41 +00004028<p>LLVM supports several instructions for working with
4029 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004030
4031</div>
4032
4033<!-- _______________________________________________________________________ -->
4034<div class="doc_subsubsection">
4035 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
4036</div>
4037
4038<div class="doc_text">
4039
4040<h5>Syntax:</h5>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004041<pre>
4042 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4043</pre>
4044
4045<h5>Overview:</h5>
Chris Lattnerd5d51722010-02-12 20:49:41 +00004046<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4047 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004048
4049<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004050<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattnerd5d51722010-02-12 20:49:41 +00004051 of <a href="#t_struct">struct</a>, <a href="#t_union">union</a> or
4052 <a href="#t_array">array</a> type. The operands are constant indices to
4053 specify which value to extract in a similar manner as indices in a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004054 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004055
4056<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004057<p>The result is the value at the position in the aggregate specified by the
4058 index operands.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004059
4060<h5>Example:</h5>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004061<pre>
Gabor Greifb2c73142009-10-28 13:14:50 +00004062 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004063</pre>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004064
Bill Wendlingf85859d2009-07-20 02:29:24 +00004065</div>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004066
4067<!-- _______________________________________________________________________ -->
4068<div class="doc_subsubsection">
4069 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
4070</div>
4071
4072<div class="doc_text">
4073
4074<h5>Syntax:</h5>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004075<pre>
Jeffrey Yasskine05d7732010-01-11 19:19:26 +00004076 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt; <i>; yields &lt;aggregate type&gt;</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004077</pre>
4078
4079<h5>Overview:</h5>
Chris Lattnerd5d51722010-02-12 20:49:41 +00004080<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4081 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004082
4083<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004084<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattnerd5d51722010-02-12 20:49:41 +00004085 of <a href="#t_struct">struct</a>, <a href="#t_union">union</a> or
4086 <a href="#t_array">array</a> type. The second operand is a first-class
4087 value to insert. The following operands are constant indices indicating
4088 the position at which to insert the value in a similar manner as indices in a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004089 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
4090 value to insert must have the same type as the value identified by the
4091 indices.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004092
4093<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004094<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4095 that of <tt>val</tt> except that the value at the position specified by the
4096 indices is that of <tt>elt</tt>.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004097
4098<h5>Example:</h5>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004099<pre>
Jeffrey Yasskine05d7732010-01-11 19:19:26 +00004100 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4101 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004102</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004103
Dan Gohman74d6faf2008-05-12 23:51:09 +00004104</div>
4105
4106
4107<!-- ======================================================================= -->
Eric Christophera1151bf2009-12-05 02:46:03 +00004108<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004109 <a name="memoryops">Memory Access and Addressing Operations</a>
4110</div>
4111
4112<div class="doc_text">
4113
Bill Wendlingf85859d2009-07-20 02:29:24 +00004114<p>A key design point of an SSA-based representation is how it represents
4115 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandez6b054092009-10-26 23:44:29 +00004116 very simple. This section describes how to read, write, and allocate
Bill Wendlingf85859d2009-07-20 02:29:24 +00004117 memory in LLVM.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004118
4119</div>
4120
4121<!-- _______________________________________________________________________ -->
4122<div class="doc_subsubsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004123 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
4124</div>
4125
4126<div class="doc_text">
4127
4128<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004129<pre>
4130 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
4131</pre>
4132
4133<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004134<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00004135 currently executing function, to be automatically released when this function
4136 returns to its caller. The object is always allocated in the generic address
4137 space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004138
4139<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004140<p>The '<tt>alloca</tt>' instruction
4141 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4142 runtime stack, returning a pointer of the appropriate type to the program.
4143 If "NumElements" is specified, it is the number of elements allocated,
4144 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4145 specified, the value result of the allocation is guaranteed to be aligned to
4146 at least that boundary. If not specified, or if zero, the target can choose
4147 to align the allocation on any convenient boundary compatible with the
4148 type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004149
4150<p>'<tt>type</tt>' may be any sized type.</p>
4151
4152<h5>Semantics:</h5>
Bill Wendling2a454572009-05-08 20:49:29 +00004153<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingf85859d2009-07-20 02:29:24 +00004154 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4155 memory is automatically released when the function returns. The
4156 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4157 variables that must have an address available. When the function returns
4158 (either with the <tt><a href="#i_ret">ret</a></tt>
4159 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4160 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004161
4162<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004163<pre>
Dan Gohmanf54f50a2009-01-04 23:49:44 +00004164 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4165 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4166 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4167 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004168</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004169
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004170</div>
4171
4172<!-- _______________________________________________________________________ -->
4173<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
4174Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004175
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004176<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004177
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004178<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004179<pre>
Bill Wendling4197e452010-02-25 21:23:24 +00004180 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4181 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4182 !&lt;index&gt; = !{ i32 1 }
Bill Wendlingf85859d2009-07-20 02:29:24 +00004183</pre>
4184
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004185<h5>Overview:</h5>
4186<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004187
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004188<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004189<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4190 from which to load. The pointer must point to
4191 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4192 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
4193 number or order of execution of this <tt>load</tt> with other
4194 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
David Greene02dfe202010-02-16 20:50:18 +00004195 instructions.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004196
Bill Wendling4197e452010-02-25 21:23:24 +00004197<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00004198 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendling4197e452010-02-25 21:23:24 +00004199 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlingf85859d2009-07-20 02:29:24 +00004200 alignment for the target. It is the responsibility of the code emitter to
4201 ensure that the alignment information is correct. Overestimating the
Bill Wendling4197e452010-02-25 21:23:24 +00004202 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlingf85859d2009-07-20 02:29:24 +00004203 produce less efficient code. An alignment of 1 is always safe.</p>
4204
Bill Wendling4197e452010-02-25 21:23:24 +00004205<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4206 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohman22dc6682010-03-01 17:41:39 +00004207 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendling4197e452010-02-25 21:23:24 +00004208 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4209 and code generator that this load is not expected to be reused in the cache.
4210 The code generator may select special instructions to save cache bandwidth,
Dan Gohman22dc6682010-03-01 17:41:39 +00004211 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene02dfe202010-02-16 20:50:18 +00004212
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004213<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004214<p>The location of memory pointed to is loaded. If the value being loaded is of
4215 scalar type then the number of bytes read does not exceed the minimum number
4216 of bytes needed to hold all bits of the type. For example, loading an
4217 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4218 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4219 is undefined if the value was not originally written using a store of the
4220 same type.</p>
4221
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004222<h5>Examples:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004223<pre>
4224 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4225 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004226 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
4227</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004228
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004229</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004230
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004231<!-- _______________________________________________________________________ -->
4232<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
4233Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004234
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004235<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004236
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004237<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004238<pre>
David Greene02dfe202010-02-16 20:50:18 +00004239 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !<index>] <i>; yields {void}</i>
4240 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !<index>] <i>; yields {void}</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004241</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004242
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004243<h5>Overview:</h5>
4244<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004245
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004246<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004247<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4248 and an address at which to store it. The type of the
4249 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4250 the <a href="#t_firstclass">first class</a> type of the
4251 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
4252 as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
4253 or order of execution of this <tt>store</tt> with other
4254 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
4255 instructions.</p>
4256
4257<p>The optional constant "align" argument specifies the alignment of the
4258 operation (that is, the alignment of the memory address). A value of 0 or an
4259 omitted "align" argument means that the operation has the preferential
4260 alignment for the target. It is the responsibility of the code emitter to
4261 ensure that the alignment information is correct. Overestimating the
4262 alignment results in an undefined behavior. Underestimating the alignment may
4263 produce less efficient code. An alignment of 1 is always safe.</p>
4264
David Greene02dfe202010-02-16 20:50:18 +00004265<p>The optional !nontemporal metadata must reference a single metatadata
4266 name <index> corresponding to a metadata node with one i32 entry of
Dan Gohman22dc6682010-03-01 17:41:39 +00004267 value 1. The existence of the !nontemporal metatadata on the
David Greene02dfe202010-02-16 20:50:18 +00004268 instruction tells the optimizer and code generator that this load is
4269 not expected to be reused in the cache. The code generator may
4270 select special instructions to save cache bandwidth, such as the
Dan Gohman22dc6682010-03-01 17:41:39 +00004271 MOVNT instruction on x86.</p>
David Greene02dfe202010-02-16 20:50:18 +00004272
4273
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004274<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004275<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4276 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4277 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4278 does not exceed the minimum number of bytes needed to hold all bits of the
4279 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4280 writing a value of a type like <tt>i20</tt> with a size that is not an
4281 integral number of bytes, it is unspecified what happens to the extra bits
4282 that do not belong to the type, but they will typically be overwritten.</p>
4283
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004284<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004285<pre>
4286 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling63ffa142007-10-22 05:10:05 +00004287 store i32 3, i32* %ptr <i>; yields {void}</i>
4288 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004289</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004290
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004291</div>
4292
4293<!-- _______________________________________________________________________ -->
4294<div class="doc_subsubsection">
4295 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4296</div>
4297
4298<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004299
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004300<h5>Syntax:</h5>
4301<pre>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00004302 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman106b2ae2009-07-27 21:53:46 +00004303 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004304</pre>
4305
4306<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004307<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattnerd5d51722010-02-12 20:49:41 +00004308 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4309 It performs address calculation only and does not access memory.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004310
4311<h5>Arguments:</h5>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00004312<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnere92fc832009-07-29 06:44:13 +00004313 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00004314 elements of the aggregate object are indexed. The interpretation of each
4315 index is dependent on the type being indexed into. The first index always
4316 indexes the pointer value given as the first argument, the second index
4317 indexes a value of the type pointed to (not necessarily the value directly
4318 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattnerd5d51722010-02-12 20:49:41 +00004319 indexed into must be a pointer value, subsequent types can be arrays,
4320 vectors, structs and unions. Note that subsequent types being indexed into
4321 can never be pointers, since that would require loading the pointer before
4322 continuing calculation.</p>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00004323
4324<p>The type of each index argument depends on the type it is indexing into.
Chris Lattnerd5d51722010-02-12 20:49:41 +00004325 When indexing into a (optionally packed) structure or union, only <tt>i32</tt>
4326 integer <b>constants</b> are allowed. When indexing into an array, pointer
4327 or vector, integers of any width are allowed, and they are not required to be
Chris Lattnere92fc832009-07-29 06:44:13 +00004328 constant.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004329
Bill Wendlingf85859d2009-07-20 02:29:24 +00004330<p>For example, let's consider a C code fragment and how it gets compiled to
4331 LLVM:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004332
4333<div class="doc_code">
4334<pre>
4335struct RT {
4336 char A;
4337 int B[10][20];
4338 char C;
4339};
4340struct ST {
4341 int X;
4342 double Y;
4343 struct RT Z;
4344};
4345
4346int *foo(struct ST *s) {
4347 return &amp;s[1].Z.B[5][13];
4348}
4349</pre>
4350</div>
4351
4352<p>The LLVM code generated by the GCC frontend is:</p>
4353
4354<div class="doc_code">
4355<pre>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +00004356%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4357%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004358
Dan Gohman47360842009-07-25 02:23:48 +00004359define i32* @foo(%ST* %s) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004360entry:
4361 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4362 ret i32* %reg
4363}
4364</pre>
4365</div>
4366
4367<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004368<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingf85859d2009-07-20 02:29:24 +00004369 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4370 }</tt>' type, a structure. The second index indexes into the third element
4371 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4372 i8 }</tt>' type, another structure. The third index indexes into the second
4373 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4374 array. The two dimensions of the array are subscripted into, yielding an
4375 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4376 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004377
Bill Wendlingf85859d2009-07-20 02:29:24 +00004378<p>Note that it is perfectly legal to index partially through a structure,
4379 returning a pointer to an inner element. Because of this, the LLVM code for
4380 the given testcase is equivalent to:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004381
4382<pre>
Dan Gohman47360842009-07-25 02:23:48 +00004383 define i32* @foo(%ST* %s) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004384 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
4385 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4386 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
4387 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4388 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4389 ret i32* %t5
4390 }
4391</pre>
4392
Dan Gohman106b2ae2009-07-27 21:53:46 +00004393<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman4cba1562009-07-29 16:00:30 +00004394 <tt>getelementptr</tt> is undefined if the base pointer is not an
4395 <i>in bounds</i> address of an allocated object, or if any of the addresses
Dan Gohmanbc4c87f2009-08-20 17:08:17 +00004396 that would be formed by successive addition of the offsets implied by the
4397 indices to the base address with infinitely precise arithmetic are not an
4398 <i>in bounds</i> address of that allocated object.
Dan Gohman4cba1562009-07-29 16:00:30 +00004399 The <i>in bounds</i> addresses for an allocated object are all the addresses
Dan Gohmanbc4c87f2009-08-20 17:08:17 +00004400 that point into the object, plus the address one byte past the end.</p>
Dan Gohman106b2ae2009-07-27 21:53:46 +00004401
4402<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4403 the base address with silently-wrapping two's complement arithmetic, and
4404 the result value of the <tt>getelementptr</tt> may be outside the object
4405 pointed to by the base pointer. The result value may not necessarily be
4406 used to access memory though, even if it happens to point into allocated
4407 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4408 section for more information.</p>
4409
Bill Wendlingf85859d2009-07-20 02:29:24 +00004410<p>The getelementptr instruction is often confusing. For some more insight into
4411 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004412
4413<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004414<pre>
4415 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00004416 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4417 <i>; yields i8*:vptr</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00004418 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00004419 <i>; yields i8*:eptr</i>
4420 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta4f9a0dc2009-04-25 07:27:44 +00004421 <i>; yields i32*:iptr</i>
Sanjiv Gupta1e46c582009-04-24 16:38:13 +00004422 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004423</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004424
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004425</div>
4426
4427<!-- ======================================================================= -->
4428<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
4429</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004430
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004431<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004432
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004433<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingf85859d2009-07-20 02:29:24 +00004434 which all take a single operand and a type. They perform various bit
4435 conversions on the operand.</p>
4436
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004437</div>
4438
4439<!-- _______________________________________________________________________ -->
4440<div class="doc_subsubsection">
4441 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4442</div>
4443<div class="doc_text">
4444
4445<h5>Syntax:</h5>
4446<pre>
4447 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4448</pre>
4449
4450<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004451<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4452 type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004453
4454<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004455<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4456 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4457 size and type of the result, which must be
4458 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4459 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4460 allowed.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004461
4462<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004463<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4464 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4465 source size must be larger than the destination size, <tt>trunc</tt> cannot
4466 be a <i>no-op cast</i>. It will always truncate bits.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004467
4468<h5>Example:</h5>
4469<pre>
4470 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
4471 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
Gabor Greif463c9342009-10-28 09:21:30 +00004472 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004473</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004474
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004475</div>
4476
4477<!-- _______________________________________________________________________ -->
4478<div class="doc_subsubsection">
4479 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4480</div>
4481<div class="doc_text">
4482
4483<h5>Syntax:</h5>
4484<pre>
4485 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4486</pre>
4487
4488<h5>Overview:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004489<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004490 <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004491
4492
4493<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004494<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Bill Wendlingf85859d2009-07-20 02:29:24 +00004495 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4496 also be of <a href="#t_integer">integer</a> type. The bit size of the
Eric Christophera1151bf2009-12-05 02:46:03 +00004497 <tt>value</tt> must be smaller than the bit size of the destination type,
Bill Wendlingf85859d2009-07-20 02:29:24 +00004498 <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004499
4500<h5>Semantics:</h5>
4501<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingf85859d2009-07-20 02:29:24 +00004502 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004503
4504<p>When zero extending from i1, the result will always be either 0 or 1.</p>
4505
4506<h5>Example:</h5>
4507<pre>
4508 %X = zext i32 257 to i64 <i>; yields i64:257</i>
4509 %Y = zext i1 true to i32 <i>; yields i32:1</i>
4510</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004511
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004512</div>
4513
4514<!-- _______________________________________________________________________ -->
4515<div class="doc_subsubsection">
4516 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4517</div>
4518<div class="doc_text">
4519
4520<h5>Syntax:</h5>
4521<pre>
4522 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4523</pre>
4524
4525<h5>Overview:</h5>
4526<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4527
4528<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004529<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Bill Wendlingf85859d2009-07-20 02:29:24 +00004530 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4531 also be of <a href="#t_integer">integer</a> type. The bit size of the
Eric Christophera1151bf2009-12-05 02:46:03 +00004532 <tt>value</tt> must be smaller than the bit size of the destination type,
Bill Wendlingf85859d2009-07-20 02:29:24 +00004533 <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004534
4535<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004536<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4537 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4538 of the type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004539
4540<p>When sign extending from i1, the extension always results in -1 or 0.</p>
4541
4542<h5>Example:</h5>
4543<pre>
4544 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
4545 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
4546</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004547
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004548</div>
4549
4550<!-- _______________________________________________________________________ -->
4551<div class="doc_subsubsection">
4552 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4553</div>
4554
4555<div class="doc_text">
4556
4557<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004558<pre>
4559 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4560</pre>
4561
4562<h5>Overview:</h5>
4563<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004564 <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004565
4566<h5>Arguments:</h5>
4567<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingf85859d2009-07-20 02:29:24 +00004568 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4569 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christophera1151bf2009-12-05 02:46:03 +00004570 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004571 <i>no-op cast</i>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004572
4573<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004574<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christophera1151bf2009-12-05 02:46:03 +00004575 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingf85859d2009-07-20 02:29:24 +00004576 <a href="#t_floating">floating point</a> type. If the value cannot fit
4577 within the destination type, <tt>ty2</tt>, then the results are
4578 undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004579
4580<h5>Example:</h5>
4581<pre>
4582 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4583 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4584</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004585
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004586</div>
4587
4588<!-- _______________________________________________________________________ -->
4589<div class="doc_subsubsection">
4590 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4591</div>
4592<div class="doc_text">
4593
4594<h5>Syntax:</h5>
4595<pre>
4596 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4597</pre>
4598
4599<h5>Overview:</h5>
4600<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingf85859d2009-07-20 02:29:24 +00004601 floating point value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004602
4603<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004604<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004605 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4606 a <a href="#t_floating">floating point</a> type to cast it to. The source
4607 type must be smaller than the destination type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004608
4609<h5>Semantics:</h5>
4610<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingf85859d2009-07-20 02:29:24 +00004611 <a href="#t_floating">floating point</a> type to a larger
4612 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4613 used to make a <i>no-op cast</i> because it always changes bits. Use
4614 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004615
4616<h5>Example:</h5>
4617<pre>
4618 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4619 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4620</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004621
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004622</div>
4623
4624<!-- _______________________________________________________________________ -->
4625<div class="doc_subsubsection">
4626 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
4627</div>
4628<div class="doc_text">
4629
4630<h5>Syntax:</h5>
4631<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00004632 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004633</pre>
4634
4635<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00004636<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingf85859d2009-07-20 02:29:24 +00004637 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004638
4639<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004640<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4641 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4642 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4643 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4644 vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004645
4646<h5>Semantics:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004647<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingf85859d2009-07-20 02:29:24 +00004648 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4649 towards zero) unsigned integer value. If the value cannot fit
4650 in <tt>ty2</tt>, the results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004651
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004652<h5>Example:</h5>
4653<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00004654 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00004655 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greif463c9342009-10-28 09:21:30 +00004656 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004657</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004658
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004659</div>
4660
4661<!-- _______________________________________________________________________ -->
4662<div class="doc_subsubsection">
4663 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
4664</div>
4665<div class="doc_text">
4666
4667<h5>Syntax:</h5>
4668<pre>
4669 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4670</pre>
4671
4672<h5>Overview:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004673<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingf85859d2009-07-20 02:29:24 +00004674 <a href="#t_floating">floating point</a> <tt>value</tt> to
4675 type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004676
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004677<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004678<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4679 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4680 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4681 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4682 vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004683
4684<h5>Semantics:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004685<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingf85859d2009-07-20 02:29:24 +00004686 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4687 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4688 the results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004689
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004690<h5>Example:</h5>
4691<pre>
4692 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00004693 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greif463c9342009-10-28 09:21:30 +00004694 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004695</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004696
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004697</div>
4698
4699<!-- _______________________________________________________________________ -->
4700<div class="doc_subsubsection">
4701 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
4702</div>
4703<div class="doc_text">
4704
4705<h5>Syntax:</h5>
4706<pre>
4707 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4708</pre>
4709
4710<h5>Overview:</h5>
4711<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingf85859d2009-07-20 02:29:24 +00004712 integer and converts that value to the <tt>ty2</tt> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004713
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004714<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00004715<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004716 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4717 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4718 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4719 floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004720
4721<h5>Semantics:</h5>
4722<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingf85859d2009-07-20 02:29:24 +00004723 integer quantity and converts it to the corresponding floating point
4724 value. If the value cannot fit in the floating point value, the results are
4725 undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004726
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004727<h5>Example:</h5>
4728<pre>
4729 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00004730 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004731</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004732
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004733</div>
4734
4735<!-- _______________________________________________________________________ -->
4736<div class="doc_subsubsection">
4737 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
4738</div>
4739<div class="doc_text">
4740
4741<h5>Syntax:</h5>
4742<pre>
4743 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4744</pre>
4745
4746<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004747<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4748 and converts that value to the <tt>ty2</tt> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004749
4750<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00004751<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004752 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4753 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4754 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4755 floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004756
4757<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004758<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4759 quantity and converts it to the corresponding floating point value. If the
4760 value cannot fit in the floating point value, the results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004761
4762<h5>Example:</h5>
4763<pre>
4764 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00004765 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004766</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004767
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004768</div>
4769
4770<!-- _______________________________________________________________________ -->
4771<div class="doc_subsubsection">
4772 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4773</div>
4774<div class="doc_text">
4775
4776<h5>Syntax:</h5>
4777<pre>
4778 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4779</pre>
4780
4781<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004782<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4783 the integer type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004784
4785<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004786<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4787 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4788 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004789
4790<h5>Semantics:</h5>
4791<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004792 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4793 truncating or zero extending that value to the size of the integer type. If
4794 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4795 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4796 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4797 change.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004798
4799<h5>Example:</h5>
4800<pre>
4801 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4802 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
4803</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004804
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004805</div>
4806
4807<!-- _______________________________________________________________________ -->
4808<div class="doc_subsubsection">
4809 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4810</div>
4811<div class="doc_text">
4812
4813<h5>Syntax:</h5>
4814<pre>
4815 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4816</pre>
4817
4818<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004819<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4820 pointer type, <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004821
4822<h5>Arguments:</h5>
4823<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004824 value to cast, and a type to cast it to, which must be a
4825 <a href="#t_pointer">pointer</a> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004826
4827<h5>Semantics:</h5>
4828<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004829 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4830 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4831 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4832 than the size of a pointer then a zero extension is done. If they are the
4833 same size, nothing is done (<i>no-op cast</i>).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004834
4835<h5>Example:</h5>
4836<pre>
4837 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greif463c9342009-10-28 09:21:30 +00004838 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4839 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004840</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004841
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004842</div>
4843
4844<!-- _______________________________________________________________________ -->
4845<div class="doc_subsubsection">
4846 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
4847</div>
4848<div class="doc_text">
4849
4850<h5>Syntax:</h5>
4851<pre>
4852 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4853</pre>
4854
4855<h5>Overview:</h5>
4856<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004857 <tt>ty2</tt> without changing any bits.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004858
4859<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004860<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4861 non-aggregate first class value, and a type to cast it to, which must also be
4862 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4863 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4864 identical. If the source type is a pointer, the destination type must also be
4865 a pointer. This instruction supports bitwise conversion of vectors to
4866 integers and to vectors of other types (as long as they have the same
4867 size).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004868
4869<h5>Semantics:</h5>
4870<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004871 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4872 this conversion. The conversion is done as if the <tt>value</tt> had been
4873 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4874 be converted to other pointer types with this instruction. To convert
4875 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4876 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004877
4878<h5>Example:</h5>
4879<pre>
4880 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
4881 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christophera1151bf2009-12-05 02:46:03 +00004882 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004883</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004884
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004885</div>
4886
4887<!-- ======================================================================= -->
4888<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004889
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004890<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004891
4892<p>The instructions in this category are the "miscellaneous" instructions, which
4893 defy better classification.</p>
4894
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004895</div>
4896
4897<!-- _______________________________________________________________________ -->
4898<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4899</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004900
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004901<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004902
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004903<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004904<pre>
4905 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004906</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004907
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004908<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004909<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4910 boolean values based on comparison of its two integer, integer vector, or
4911 pointer operands.</p>
4912
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004913<h5>Arguments:</h5>
4914<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingf85859d2009-07-20 02:29:24 +00004915 the condition code indicating the kind of comparison to perform. It is not a
4916 value, just a keyword. The possible condition code are:</p>
4917
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004918<ol>
4919 <li><tt>eq</tt>: equal</li>
4920 <li><tt>ne</tt>: not equal </li>
4921 <li><tt>ugt</tt>: unsigned greater than</li>
4922 <li><tt>uge</tt>: unsigned greater or equal</li>
4923 <li><tt>ult</tt>: unsigned less than</li>
4924 <li><tt>ule</tt>: unsigned less or equal</li>
4925 <li><tt>sgt</tt>: signed greater than</li>
4926 <li><tt>sge</tt>: signed greater or equal</li>
4927 <li><tt>slt</tt>: signed less than</li>
4928 <li><tt>sle</tt>: signed less or equal</li>
4929</ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004930
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004931<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004932 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
4933 typed. They must also be identical types.</p>
4934
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004935<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004936<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
4937 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky244cf482009-09-27 00:45:11 +00004938 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004939 result, as follows:</p>
4940
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004941<ol>
Eric Christophera1151bf2009-12-05 02:46:03 +00004942 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingf85859d2009-07-20 02:29:24 +00004943 <tt>false</tt> otherwise. No sign interpretation is necessary or
4944 performed.</li>
4945
Eric Christophera1151bf2009-12-05 02:46:03 +00004946 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingf85859d2009-07-20 02:29:24 +00004947 <tt>false</tt> otherwise. No sign interpretation is necessary or
4948 performed.</li>
4949
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004950 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004951 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4952
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004953 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004954 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4955 to <tt>op2</tt>.</li>
4956
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004957 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004958 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4959
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004960 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004961 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4962
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004963 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004964 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4965
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004966 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004967 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4968 to <tt>op2</tt>.</li>
4969
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004970 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004971 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4972
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004973 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004974 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004975</ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004976
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004977<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingf85859d2009-07-20 02:29:24 +00004978 values are compared as if they were integers.</p>
4979
4980<p>If the operands are integer vectors, then they are compared element by
4981 element. The result is an <tt>i1</tt> vector with the same number of elements
4982 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004983
4984<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004985<pre>
4986 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004987 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4988 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4989 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4990 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4991 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
4992</pre>
Dan Gohmana53eb382009-01-22 01:39:38 +00004993
4994<p>Note that the code generator does not yet support vector types with
4995 the <tt>icmp</tt> instruction.</p>
4996
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004997</div>
4998
4999<!-- _______________________________________________________________________ -->
5000<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5001</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005002
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005003<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00005004
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005005<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005006<pre>
5007 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005008</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005009
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005010<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005011<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5012 values based on comparison of its operands.</p>
5013
5014<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky244cf482009-09-27 00:45:11 +00005015(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005016
5017<p>If the operands are floating point vectors, then the result type is a vector
5018 of boolean with the same number of elements as the operands being
5019 compared.</p>
5020
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005021<h5>Arguments:</h5>
5022<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingf85859d2009-07-20 02:29:24 +00005023 the condition code indicating the kind of comparison to perform. It is not a
5024 value, just a keyword. The possible condition code are:</p>
5025
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005026<ol>
5027 <li><tt>false</tt>: no comparison, always returns false</li>
5028 <li><tt>oeq</tt>: ordered and equal</li>
5029 <li><tt>ogt</tt>: ordered and greater than </li>
5030 <li><tt>oge</tt>: ordered and greater than or equal</li>
5031 <li><tt>olt</tt>: ordered and less than </li>
5032 <li><tt>ole</tt>: ordered and less than or equal</li>
5033 <li><tt>one</tt>: ordered and not equal</li>
5034 <li><tt>ord</tt>: ordered (no nans)</li>
5035 <li><tt>ueq</tt>: unordered or equal</li>
5036 <li><tt>ugt</tt>: unordered or greater than </li>
5037 <li><tt>uge</tt>: unordered or greater than or equal</li>
5038 <li><tt>ult</tt>: unordered or less than </li>
5039 <li><tt>ule</tt>: unordered or less than or equal</li>
5040 <li><tt>une</tt>: unordered or not equal</li>
5041 <li><tt>uno</tt>: unordered (either nans)</li>
5042 <li><tt>true</tt>: no comparison, always returns true</li>
5043</ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005044
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005045<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingf85859d2009-07-20 02:29:24 +00005046 <i>unordered</i> means that either operand may be a QNAN.</p>
5047
5048<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5049 a <a href="#t_floating">floating point</a> type or
5050 a <a href="#t_vector">vector</a> of floating point type. They must have
5051 identical types.</p>
5052
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005053<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00005054<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005055 according to the condition code given as <tt>cond</tt>. If the operands are
5056 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky244cf482009-09-27 00:45:11 +00005057 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingf85859d2009-07-20 02:29:24 +00005058 follows:</p>
5059
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005060<ol>
5061 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005062
Eric Christophera1151bf2009-12-05 02:46:03 +00005063 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00005064 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5065
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005066 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohman22dc6682010-03-01 17:41:39 +00005067 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005068
Eric Christophera1151bf2009-12-05 02:46:03 +00005069 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00005070 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5071
Eric Christophera1151bf2009-12-05 02:46:03 +00005072 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00005073 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5074
Eric Christophera1151bf2009-12-05 02:46:03 +00005075 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00005076 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5077
Eric Christophera1151bf2009-12-05 02:46:03 +00005078 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00005079 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5080
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005081 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005082
Eric Christophera1151bf2009-12-05 02:46:03 +00005083 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00005084 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5085
Eric Christophera1151bf2009-12-05 02:46:03 +00005086 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00005087 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5088
Eric Christophera1151bf2009-12-05 02:46:03 +00005089 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00005090 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5091
Eric Christophera1151bf2009-12-05 02:46:03 +00005092 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00005093 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5094
Eric Christophera1151bf2009-12-05 02:46:03 +00005095 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00005096 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5097
Eric Christophera1151bf2009-12-05 02:46:03 +00005098 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00005099 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5100
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005101 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005102
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005103 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5104</ol>
5105
5106<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005107<pre>
5108 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00005109 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5110 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5111 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005112</pre>
Dan Gohmana53eb382009-01-22 01:39:38 +00005113
5114<p>Note that the code generator does not yet support vector types with
5115 the <tt>fcmp</tt> instruction.</p>
5116
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005117</div>
5118
5119<!-- _______________________________________________________________________ -->
Nate Begeman646fa482008-05-12 19:01:56 +00005120<div class="doc_subsubsection">
Chris Lattner6704c212008-05-20 20:48:21 +00005121 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
5122</div>
5123
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005124<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00005125
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005126<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005127<pre>
5128 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5129</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00005130
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005131<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005132<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5133 SSA graph representing the function.</p>
5134
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005135<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005136<p>The type of the incoming values is specified with the first type field. After
5137 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5138 one pair for each predecessor basic block of the current block. Only values
5139 of <a href="#t_firstclass">first class</a> type may be used as the value
5140 arguments to the PHI node. Only labels may be used as the label
5141 arguments.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00005142
Bill Wendlingf85859d2009-07-20 02:29:24 +00005143<p>There must be no non-phi instructions between the start of a basic block and
5144 the PHI instructions: i.e. PHI instructions must be first in a basic
5145 block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00005146
Bill Wendlingf85859d2009-07-20 02:29:24 +00005147<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5148 occur on the edge from the corresponding predecessor block to the current
5149 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5150 value on the same edge).</p>
Jay Foad8e2fd2c2009-06-03 10:20:10 +00005151
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005152<h5>Semantics:</h5>
5153<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingf85859d2009-07-20 02:29:24 +00005154 specified by the pair corresponding to the predecessor basic block that
5155 executed just prior to the current block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00005156
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005157<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00005158<pre>
5159Loop: ; Infinite loop that counts from 0 on up...
5160 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5161 %nextindvar = add i32 %indvar, 1
5162 br label %Loop
5163</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005164
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005165</div>
5166
5167<!-- _______________________________________________________________________ -->
5168<div class="doc_subsubsection">
5169 <a name="i_select">'<tt>select</tt>' Instruction</a>
5170</div>
5171
5172<div class="doc_text">
5173
5174<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005175<pre>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00005176 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5177
Dan Gohman2672f3e2008-10-14 16:51:45 +00005178 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005179</pre>
5180
5181<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005182<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5183 condition, without branching.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005184
5185
5186<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005187<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5188 values indicating the condition, and two values of the
5189 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5190 vectors and the condition is a scalar, then entire vectors are selected, not
5191 individual elements.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005192
5193<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005194<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5195 first value argument; otherwise, it returns the second value argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005196
Bill Wendlingf85859d2009-07-20 02:29:24 +00005197<p>If the condition is a vector of i1, then the value arguments must be vectors
5198 of the same size, and the selection is done element by element.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005199
5200<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005201<pre>
5202 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
5203</pre>
Dan Gohmana53eb382009-01-22 01:39:38 +00005204
5205<p>Note that the code generator does not yet support conditions
5206 with vector type.</p>
5207
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005208</div>
5209
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005210<!-- _______________________________________________________________________ -->
5211<div class="doc_subsubsection">
5212 <a name="i_call">'<tt>call</tt>' Instruction</a>
5213</div>
5214
5215<div class="doc_text">
5216
5217<h5>Syntax:</h5>
5218<pre>
Devang Pateld0bfcc72008-10-07 17:48:33 +00005219 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005220</pre>
5221
5222<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005223<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
5224
5225<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005226<p>This instruction requires several arguments:</p>
5227
5228<ol>
Jeffrey Yasskin3e1a3a02010-01-09 19:44:16 +00005229 <li>The optional "tail" marker indicates that the callee function does not
5230 access any allocas or varargs in the caller. Note that calls may be
5231 marked "tail" even if they do not occur before
5232 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5233 present, the function call is eligible for tail call optimization,
5234 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Chengcc7495c2010-03-08 21:05:02 +00005235 optimized into a jump</a>. The code generator may optimize calls marked
5236 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5237 sibling call optimization</a> when the caller and callee have
5238 matching signatures, or 2) forced tail call optimization when the
5239 following extra requirements are met:
Jeffrey Yasskin3e1a3a02010-01-09 19:44:16 +00005240 <ul>
5241 <li>Caller and callee both have the calling
5242 convention <tt>fastcc</tt>.</li>
5243 <li>The call is in tail position (ret immediately follows call and ret
5244 uses value of call or is void).</li>
5245 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohman1be84f02010-03-02 01:08:11 +00005246 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskin3e1a3a02010-01-09 19:44:16 +00005247 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5248 constraints are met.</a></li>
5249 </ul>
5250 </li>
Devang Patelac2fc272008-10-06 18:50:38 +00005251
Bill Wendlingf85859d2009-07-20 02:29:24 +00005252 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5253 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskin3e1a3a02010-01-09 19:44:16 +00005254 defaults to using C calling conventions. The calling convention of the
5255 call must match the calling convention of the target function, or else the
5256 behavior is undefined.</li>
Devang Patelac2fc272008-10-06 18:50:38 +00005257
Bill Wendlingf85859d2009-07-20 02:29:24 +00005258 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5259 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5260 '<tt>inreg</tt>' attributes are valid here.</li>
5261
5262 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5263 type of the return value. Functions that return no value are marked
5264 <tt><a href="#t_void">void</a></tt>.</li>
5265
5266 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5267 being invoked. The argument types must match the types implied by this
5268 signature. This type can be omitted if the function is not varargs and if
5269 the function type does not return a pointer to a function.</li>
5270
5271 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5272 be invoked. In most cases, this is a direct function invocation, but
5273 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5274 to function value.</li>
5275
5276 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner553fb1e2010-03-02 06:36:51 +00005277 signature argument types and parameter attributes. All arguments must be
5278 of <a href="#t_firstclass">first class</a> type. If the function
5279 signature indicates the function accepts a variable number of arguments,
5280 the extra arguments can be specified.</li>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005281
5282 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5283 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5284 '<tt>readnone</tt>' attributes are valid here.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005285</ol>
5286
5287<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005288<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5289 a specified function, with its incoming arguments bound to the specified
5290 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5291 function, control flow continues with the instruction after the function
5292 call, and the return value of the function is bound to the result
5293 argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005294
5295<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005296<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00005297 %retval = call i32 @test(i32 %argc)
Chris Lattner5e893ef2008-03-21 17:24:17 +00005298 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
5299 %X = tail call i32 @foo() <i>; yields i32</i>
5300 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5301 call void %foo(i8 97 signext)
Devang Patela3cc5372008-03-10 20:49:15 +00005302
5303 %struct.A = type { i32, i8 }
Devang Patelac2fc272008-10-06 18:50:38 +00005304 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohman3e700032008-10-04 19:00:07 +00005305 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5306 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattnerac454b32008-10-08 06:26:11 +00005307 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijman2c4e05a2008-10-07 10:03:45 +00005308 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005309</pre>
5310
Dale Johannesen9fcf4a92009-09-24 18:38:21 +00005311<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen4730cd32009-09-25 17:04:42 +00005312standard C99 library as being the C99 library functions, and may perform
5313optimizations or generate code for them under that assumption. This is
5314something we'd like to change in the future to provide better support for
Dan Gohman22dc6682010-03-01 17:41:39 +00005315freestanding environments and non-C-based languages.</p>
Dale Johannesen9fcf4a92009-09-24 18:38:21 +00005316
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005317</div>
5318
5319<!-- _______________________________________________________________________ -->
5320<div class="doc_subsubsection">
5321 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
5322</div>
5323
5324<div class="doc_text">
5325
5326<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005327<pre>
5328 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
5329</pre>
5330
5331<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005332<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingf85859d2009-07-20 02:29:24 +00005333 the "variable argument" area of a function call. It is used to implement the
5334 <tt>va_arg</tt> macro in C.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005335
5336<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005337<p>This instruction takes a <tt>va_list*</tt> value and the type of the
5338 argument. It returns a value of the specified argument type and increments
5339 the <tt>va_list</tt> to point to the next argument. The actual type
5340 of <tt>va_list</tt> is target specific.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005341
5342<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005343<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5344 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5345 to the next argument. For more information, see the variable argument
5346 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005347
5348<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingf85859d2009-07-20 02:29:24 +00005349 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5350 function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005351
Bill Wendlingf85859d2009-07-20 02:29:24 +00005352<p><tt>va_arg</tt> is an LLVM instruction instead of
5353 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5354 argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005355
5356<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005357<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5358
Bill Wendlingf85859d2009-07-20 02:29:24 +00005359<p>Note that the code generator does not yet fully support va_arg on many
5360 targets. Also, it does not currently support va_arg with aggregate types on
5361 any target.</p>
Dan Gohman60967192009-01-12 23:12:39 +00005362
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005363</div>
5364
5365<!-- *********************************************************************** -->
5366<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
5367<!-- *********************************************************************** -->
5368
5369<div class="doc_text">
5370
5371<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingf85859d2009-07-20 02:29:24 +00005372 well known names and semantics and are required to follow certain
5373 restrictions. Overall, these intrinsics represent an extension mechanism for
5374 the LLVM language that does not require changing all of the transformations
5375 in LLVM when adding to the language (or the bitcode reader/writer, the
5376 parser, etc...).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005377
5378<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingf85859d2009-07-20 02:29:24 +00005379 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5380 begin with this prefix. Intrinsic functions must always be external
5381 functions: you cannot define the body of intrinsic functions. Intrinsic
5382 functions may only be used in call or invoke instructions: it is illegal to
5383 take the address of an intrinsic function. Additionally, because intrinsic
5384 functions are part of the LLVM language, it is required if any are added that
5385 they be documented here.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005386
Bill Wendlingf85859d2009-07-20 02:29:24 +00005387<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5388 family of functions that perform the same operation but on different data
5389 types. Because LLVM can represent over 8 million different integer types,
5390 overloading is used commonly to allow an intrinsic function to operate on any
5391 integer type. One or more of the argument types or the result type can be
5392 overloaded to accept any integer type. Argument types may also be defined as
5393 exactly matching a previous argument's type or the result type. This allows
5394 an intrinsic function which accepts multiple arguments, but needs all of them
5395 to be of the same type, to only be overloaded with respect to a single
5396 argument or the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005397
Bill Wendlingf85859d2009-07-20 02:29:24 +00005398<p>Overloaded intrinsics will have the names of its overloaded argument types
5399 encoded into its function name, each preceded by a period. Only those types
5400 which are overloaded result in a name suffix. Arguments whose type is matched
5401 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5402 can take an integer of any width and returns an integer of exactly the same
5403 integer width. This leads to a family of functions such as
5404 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5405 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5406 suffix is required. Because the argument's type is matched against the return
5407 type, it does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005408
Eric Christophera1151bf2009-12-05 02:46:03 +00005409<p>To learn how to add an intrinsic function, please see the
Bill Wendlingf85859d2009-07-20 02:29:24 +00005410 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005411
5412</div>
5413
5414<!-- ======================================================================= -->
5415<div class="doc_subsection">
5416 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5417</div>
5418
5419<div class="doc_text">
5420
Bill Wendlingf85859d2009-07-20 02:29:24 +00005421<p>Variable argument support is defined in LLVM with
5422 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5423 intrinsic functions. These functions are related to the similarly named
5424 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005425
Bill Wendlingf85859d2009-07-20 02:29:24 +00005426<p>All of these functions operate on arguments that use a target-specific value
5427 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5428 not define what this type is, so all transformations should be prepared to
5429 handle these functions regardless of the type used.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005430
5431<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005432 instruction and the variable argument handling intrinsic functions are
5433 used.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005434
5435<div class="doc_code">
5436<pre>
5437define i32 @test(i32 %X, ...) {
5438 ; Initialize variable argument processing
5439 %ap = alloca i8*
5440 %ap2 = bitcast i8** %ap to i8*
5441 call void @llvm.va_start(i8* %ap2)
5442
5443 ; Read a single integer argument
5444 %tmp = va_arg i8** %ap, i32
5445
5446 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5447 %aq = alloca i8*
5448 %aq2 = bitcast i8** %aq to i8*
5449 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5450 call void @llvm.va_end(i8* %aq2)
5451
5452 ; Stop processing of arguments.
5453 call void @llvm.va_end(i8* %ap2)
5454 ret i32 %tmp
5455}
5456
5457declare void @llvm.va_start(i8*)
5458declare void @llvm.va_copy(i8*, i8*)
5459declare void @llvm.va_end(i8*)
5460</pre>
5461</div>
5462
5463</div>
5464
5465<!-- _______________________________________________________________________ -->
5466<div class="doc_subsubsection">
5467 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
5468</div>
5469
5470
5471<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00005472
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005473<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005474<pre>
5475 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5476</pre>
5477
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005478<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005479<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5480 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005481
5482<h5>Arguments:</h5>
Dan Gohman2672f3e2008-10-14 16:51:45 +00005483<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005484
5485<h5>Semantics:</h5>
Dan Gohman2672f3e2008-10-14 16:51:45 +00005486<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005487 macro available in C. In a target-dependent way, it initializes
5488 the <tt>va_list</tt> element to which the argument points, so that the next
5489 call to <tt>va_arg</tt> will produce the first variable argument passed to
5490 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5491 need to know the last argument of the function as the compiler can figure
5492 that out.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005493
5494</div>
5495
5496<!-- _______________________________________________________________________ -->
5497<div class="doc_subsubsection">
5498 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
5499</div>
5500
5501<div class="doc_text">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005502
Bill Wendlingf85859d2009-07-20 02:29:24 +00005503<h5>Syntax:</h5>
5504<pre>
5505 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5506</pre>
5507
5508<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005509<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingf85859d2009-07-20 02:29:24 +00005510 which has been initialized previously
5511 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5512 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005513
5514<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005515<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
5516
5517<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005518<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005519 macro available in C. In a target-dependent way, it destroys
5520 the <tt>va_list</tt> element to which the argument points. Calls
5521 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5522 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5523 with calls to <tt>llvm.va_end</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005524
5525</div>
5526
5527<!-- _______________________________________________________________________ -->
5528<div class="doc_subsubsection">
5529 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
5530</div>
5531
5532<div class="doc_text">
5533
5534<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005535<pre>
5536 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
5537</pre>
5538
5539<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005540<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingf85859d2009-07-20 02:29:24 +00005541 from the source argument list to the destination argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005542
5543<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005544<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingf85859d2009-07-20 02:29:24 +00005545 The second argument is a pointer to a <tt>va_list</tt> element to copy
5546 from.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005547
5548<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005549<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005550 macro available in C. In a target-dependent way, it copies the
5551 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5552 element. This intrinsic is necessary because
5553 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5554 arbitrarily complex and require, for example, memory allocation.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005555
5556</div>
5557
5558<!-- ======================================================================= -->
5559<div class="doc_subsection">
5560 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5561</div>
5562
5563<div class="doc_text">
5564
Bill Wendlingf85859d2009-07-20 02:29:24 +00005565<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner96451482008-08-05 18:29:16 +00005566Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingf85859d2009-07-20 02:29:24 +00005567intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5568roots on the stack</a>, as well as garbage collector implementations that
5569require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5570barriers. Front-ends for type-safe garbage collected languages should generate
5571these intrinsics to make use of the LLVM garbage collectors. For more details,
5572see <a href="GarbageCollection.html">Accurate Garbage Collection with
5573LLVM</a>.</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00005574
Bill Wendlingf85859d2009-07-20 02:29:24 +00005575<p>The garbage collection intrinsics only operate on objects in the generic
5576 address space (address space zero).</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00005577
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005578</div>
5579
5580<!-- _______________________________________________________________________ -->
5581<div class="doc_subsubsection">
5582 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
5583</div>
5584
5585<div class="doc_text">
5586
5587<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005588<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005589 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005590</pre>
5591
5592<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005593<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingf85859d2009-07-20 02:29:24 +00005594 the code generator, and allows some metadata to be associated with it.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005595
5596<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005597<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingf85859d2009-07-20 02:29:24 +00005598 root pointer. The second pointer (which must be either a constant or a
5599 global value address) contains the meta-data to be associated with the
5600 root.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005601
5602<h5>Semantics:</h5>
Chris Lattnera7d94ba2008-04-24 05:59:56 +00005603<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingf85859d2009-07-20 02:29:24 +00005604 location. At compile-time, the code generator generates information to allow
5605 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5606 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5607 algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005608
5609</div>
5610
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005611<!-- _______________________________________________________________________ -->
5612<div class="doc_subsubsection">
5613 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
5614</div>
5615
5616<div class="doc_text">
5617
5618<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005619<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005620 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005621</pre>
5622
5623<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005624<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingf85859d2009-07-20 02:29:24 +00005625 locations, allowing garbage collector implementations that require read
5626 barriers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005627
5628<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005629<p>The second argument is the address to read from, which should be an address
Bill Wendlingf85859d2009-07-20 02:29:24 +00005630 allocated from the garbage collector. The first object is a pointer to the
5631 start of the referenced object, if needed by the language runtime (otherwise
5632 null).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005633
5634<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005635<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingf85859d2009-07-20 02:29:24 +00005636 instruction, but may be replaced with substantially more complex code by the
5637 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5638 may only be used in a function which <a href="#gc">specifies a GC
5639 algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005640
5641</div>
5642
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005643<!-- _______________________________________________________________________ -->
5644<div class="doc_subsubsection">
5645 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
5646</div>
5647
5648<div class="doc_text">
5649
5650<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005651<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005652 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005653</pre>
5654
5655<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005656<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingf85859d2009-07-20 02:29:24 +00005657 locations, allowing garbage collector implementations that require write
5658 barriers (such as generational or reference counting collectors).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005659
5660<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005661<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00005662 object to store it to, and the third is the address of the field of Obj to
5663 store to. If the runtime does not require a pointer to the object, Obj may
5664 be null.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005665
5666<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005667<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingf85859d2009-07-20 02:29:24 +00005668 instruction, but may be replaced with substantially more complex code by the
5669 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5670 may only be used in a function which <a href="#gc">specifies a GC
5671 algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005672
5673</div>
5674
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005675<!-- ======================================================================= -->
5676<div class="doc_subsection">
5677 <a name="int_codegen">Code Generator Intrinsics</a>
5678</div>
5679
5680<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00005681
5682<p>These intrinsics are provided by LLVM to expose special features that may
5683 only be implemented with code generator support.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005684
5685</div>
5686
5687<!-- _______________________________________________________________________ -->
5688<div class="doc_subsubsection">
5689 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
5690</div>
5691
5692<div class="doc_text">
5693
5694<h5>Syntax:</h5>
5695<pre>
5696 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
5697</pre>
5698
5699<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005700<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5701 target-specific value indicating the return address of the current function
5702 or one of its callers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005703
5704<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005705<p>The argument to this intrinsic indicates which function to return the address
5706 for. Zero indicates the calling function, one indicates its caller, etc.
5707 The argument is <b>required</b> to be a constant integer value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005708
5709<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005710<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5711 indicating the return address of the specified call frame, or zero if it
5712 cannot be identified. The value returned by this intrinsic is likely to be
5713 incorrect or 0 for arguments other than zero, so it should only be used for
5714 debugging purposes.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005715
Bill Wendlingf85859d2009-07-20 02:29:24 +00005716<p>Note that calling this intrinsic does not prevent function inlining or other
5717 aggressive transformations, so the value returned may not be that of the
5718 obvious source-language caller.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005719
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005720</div>
5721
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005722<!-- _______________________________________________________________________ -->
5723<div class="doc_subsubsection">
5724 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
5725</div>
5726
5727<div class="doc_text">
5728
5729<h5>Syntax:</h5>
5730<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005731 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005732</pre>
5733
5734<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005735<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5736 target-specific frame pointer value for the specified stack frame.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005737
5738<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005739<p>The argument to this intrinsic indicates which function to return the frame
5740 pointer for. Zero indicates the calling function, one indicates its caller,
5741 etc. The argument is <b>required</b> to be a constant integer value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005742
5743<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005744<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5745 indicating the frame address of the specified call frame, or zero if it
5746 cannot be identified. The value returned by this intrinsic is likely to be
5747 incorrect or 0 for arguments other than zero, so it should only be used for
5748 debugging purposes.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005749
Bill Wendlingf85859d2009-07-20 02:29:24 +00005750<p>Note that calling this intrinsic does not prevent function inlining or other
5751 aggressive transformations, so the value returned may not be that of the
5752 obvious source-language caller.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005753
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005754</div>
5755
5756<!-- _______________________________________________________________________ -->
5757<div class="doc_subsubsection">
5758 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
5759</div>
5760
5761<div class="doc_text">
5762
5763<h5>Syntax:</h5>
5764<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005765 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005766</pre>
5767
5768<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005769<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5770 of the function stack, for use
5771 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5772 useful for implementing language features like scoped automatic variable
5773 sized arrays in C99.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005774
5775<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005776<p>This intrinsic returns a opaque pointer value that can be passed
5777 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5778 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5779 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5780 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5781 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5782 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005783
5784</div>
5785
5786<!-- _______________________________________________________________________ -->
5787<div class="doc_subsubsection">
5788 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
5789</div>
5790
5791<div class="doc_text">
5792
5793<h5>Syntax:</h5>
5794<pre>
5795 declare void @llvm.stackrestore(i8 * %ptr)
5796</pre>
5797
5798<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005799<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5800 the function stack to the state it was in when the
5801 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5802 executed. This is useful for implementing language features like scoped
5803 automatic variable sized arrays in C99.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005804
5805<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005806<p>See the description
5807 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005808
5809</div>
5810
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005811<!-- _______________________________________________________________________ -->
5812<div class="doc_subsubsection">
5813 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
5814</div>
5815
5816<div class="doc_text">
5817
5818<h5>Syntax:</h5>
5819<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005820 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005821</pre>
5822
5823<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005824<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5825 insert a prefetch instruction if supported; otherwise, it is a noop.
5826 Prefetches have no effect on the behavior of the program but can change its
5827 performance characteristics.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005828
5829<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005830<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5831 specifier determining if the fetch should be for a read (0) or write (1),
5832 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5833 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5834 and <tt>locality</tt> arguments must be constant integers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005835
5836<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005837<p>This intrinsic does not modify the behavior of the program. In particular,
5838 prefetches cannot trap and do not produce a value. On targets that support
5839 this intrinsic, the prefetch can provide hints to the processor cache for
5840 better performance.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005841
5842</div>
5843
5844<!-- _______________________________________________________________________ -->
5845<div class="doc_subsubsection">
5846 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
5847</div>
5848
5849<div class="doc_text">
5850
5851<h5>Syntax:</h5>
5852<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005853 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005854</pre>
5855
5856<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005857<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5858 Counter (PC) in a region of code to simulators and other tools. The method
5859 is target specific, but it is expected that the marker will use exported
5860 symbols to transmit the PC of the marker. The marker makes no guarantees
5861 that it will remain with any specific instruction after optimizations. It is
5862 possible that the presence of a marker will inhibit optimizations. The
5863 intended use is to be inserted after optimizations to allow correlations of
5864 simulation runs.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005865
5866<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005867<p><tt>id</tt> is a numerical id identifying the marker.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005868
5869<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005870<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohman22dc6682010-03-01 17:41:39 +00005871 not support this intrinsic may ignore it.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005872
5873</div>
5874
5875<!-- _______________________________________________________________________ -->
5876<div class="doc_subsubsection">
5877 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
5878</div>
5879
5880<div class="doc_text">
5881
5882<h5>Syntax:</h5>
5883<pre>
5884 declare i64 @llvm.readcyclecounter( )
5885</pre>
5886
5887<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005888<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5889 counter register (or similar low latency, high accuracy clocks) on those
5890 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5891 should map to RPCC. As the backing counters overflow quickly (on the order
5892 of 9 seconds on alpha), this should only be used for small timings.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005893
5894<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005895<p>When directly supported, reading the cycle counter should not modify any
5896 memory. Implementations are allowed to either return a application specific
5897 value or a system wide value. On backends without support, this is lowered
5898 to a constant 0.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005899
5900</div>
5901
5902<!-- ======================================================================= -->
5903<div class="doc_subsection">
5904 <a name="int_libc">Standard C Library Intrinsics</a>
5905</div>
5906
5907<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00005908
5909<p>LLVM provides intrinsics for a few important standard C library functions.
5910 These intrinsics allow source-language front-ends to pass information about
5911 the alignment of the pointer arguments to the code generator, providing
5912 opportunity for more efficient code generation.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005913
5914</div>
5915
5916<!-- _______________________________________________________________________ -->
5917<div class="doc_subsubsection">
5918 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
5919</div>
5920
5921<div class="doc_text">
5922
5923<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005924<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wang238462c2010-04-07 06:35:53 +00005925 integer bit width and for different address spaces. Not all targets support
5926 all bit widths however.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005927
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005928<pre>
Chris Lattner5aa5aab2010-04-08 00:53:57 +00005929 declare void @llvm.memcpy.p0i8.p0i8.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5930 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
5931 declare void @llvm.memcpy.p0i8.p0i8.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5932 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005933</pre>
5934
5935<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005936<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5937 source location to the destination location.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005938
Bill Wendlingf85859d2009-07-20 02:29:24 +00005939<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattner5aa5aab2010-04-08 00:53:57 +00005940 intrinsics do not return a value, takes extra alignment/isvolatile arguments
5941 and the pointers can be in specified address spaces.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005942
5943<h5>Arguments:</h5>
Chris Lattner5aa5aab2010-04-08 00:53:57 +00005944
Bill Wendlingf85859d2009-07-20 02:29:24 +00005945<p>The first argument is a pointer to the destination, the second is a pointer
5946 to the source. The third argument is an integer argument specifying the
Chris Lattner5aa5aab2010-04-08 00:53:57 +00005947 number of bytes to copy, the fourth argument is the alignment of the
5948 source and destination locations, and the fifth is a boolean indicating a
5949 volatile access.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005950
Dan Gohman22dc6682010-03-01 17:41:39 +00005951<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingf85859d2009-07-20 02:29:24 +00005952 then the caller guarantees that both the source and destination pointers are
5953 aligned to that boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005954
Chris Lattner5aa5aab2010-04-08 00:53:57 +00005955<p>Volatile accesses should not be deleted if dead, but the access behavior is
5956 not very cleanly specified and it is unwise to depend on it.</p>
5957
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005958<h5>Semantics:</h5>
Chris Lattner5aa5aab2010-04-08 00:53:57 +00005959
Bill Wendlingf85859d2009-07-20 02:29:24 +00005960<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5961 source location to the destination location, which are not allowed to
5962 overlap. It copies "len" bytes of memory over. If the argument is known to
5963 be aligned to some boundary, this can be specified as the fourth argument,
5964 otherwise it should be set to 0 or 1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005965
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005966</div>
5967
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005968<!-- _______________________________________________________________________ -->
5969<div class="doc_subsubsection">
5970 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
5971</div>
5972
5973<div class="doc_text">
5974
5975<h5>Syntax:</h5>
Chris Lattner82c2e432008-11-21 16:42:48 +00005976<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wang238462c2010-04-07 06:35:53 +00005977 width and for different address space. Not all targets support all bit
5978 widths however.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005979
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005980<pre>
Chris Lattner5aa5aab2010-04-08 00:53:57 +00005981 declare void @llvm.memmove.p0i8.p0i8.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5982 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
5983 declare void @llvm.memmove.p0i8.p0i8.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5984 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005985</pre>
5986
5987<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005988<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
5989 source location to the destination location. It is similar to the
5990 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
5991 overlap.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005992
Bill Wendlingf85859d2009-07-20 02:29:24 +00005993<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattner5aa5aab2010-04-08 00:53:57 +00005994 intrinsics do not return a value, takes extra alignment/isvolatile arguments
5995 and the pointers can be in specified address spaces.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005996
5997<h5>Arguments:</h5>
Chris Lattner5aa5aab2010-04-08 00:53:57 +00005998
Bill Wendlingf85859d2009-07-20 02:29:24 +00005999<p>The first argument is a pointer to the destination, the second is a pointer
6000 to the source. The third argument is an integer argument specifying the
Chris Lattner5aa5aab2010-04-08 00:53:57 +00006001 number of bytes to copy, the fourth argument is the alignment of the
6002 source and destination locations, and the fifth is a boolean indicating a
6003 volatile access.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006004
Dan Gohman22dc6682010-03-01 17:41:39 +00006005<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingf85859d2009-07-20 02:29:24 +00006006 then the caller guarantees that the source and destination pointers are
6007 aligned to that boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006008
Chris Lattner5aa5aab2010-04-08 00:53:57 +00006009<p>Volatile accesses should not be deleted if dead, but the access behavior is
6010 not very cleanly specified and it is unwise to depend on it.</p>
6011
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006012<h5>Semantics:</h5>
Chris Lattner5aa5aab2010-04-08 00:53:57 +00006013
Bill Wendlingf85859d2009-07-20 02:29:24 +00006014<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6015 source location to the destination location, which may overlap. It copies
6016 "len" bytes of memory over. If the argument is known to be aligned to some
6017 boundary, this can be specified as the fourth argument, otherwise it should
6018 be set to 0 or 1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006019
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006020</div>
6021
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006022<!-- _______________________________________________________________________ -->
6023<div class="doc_subsubsection">
6024 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
6025</div>
6026
6027<div class="doc_text">
6028
6029<h5>Syntax:</h5>
Chris Lattner82c2e432008-11-21 16:42:48 +00006030<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
Mon P Wang238462c2010-04-07 06:35:53 +00006031 width and for different address spaces. Not all targets support all bit
6032 widths however.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006033
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006034<pre>
Chris Lattner5aa5aab2010-04-08 00:53:57 +00006035 declare void @llvm.memset.p0i8.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattnerc0dfafe2010-04-08 00:54:34 +00006036 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner5aa5aab2010-04-08 00:53:57 +00006037 declare void @llvm.memset.p0i8.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattnerc0dfafe2010-04-08 00:54:34 +00006038 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006039</pre>
6040
6041<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006042<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6043 particular byte value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006044
Bill Wendlingf85859d2009-07-20 02:29:24 +00006045<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
Chris Lattner5aa5aab2010-04-08 00:53:57 +00006046 intrinsic does not return a value, takes extra alignment/volatile arguments,
6047 and the destination can be in an arbitrary address space.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006048
6049<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006050<p>The first argument is a pointer to the destination to fill, the second is the
6051 byte value to fill it with, the third argument is an integer argument
6052 specifying the number of bytes to fill, and the fourth argument is the known
6053 alignment of destination location.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006054
Dan Gohman22dc6682010-03-01 17:41:39 +00006055<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingf85859d2009-07-20 02:29:24 +00006056 then the caller guarantees that the destination pointer is aligned to that
6057 boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006058
Chris Lattner5aa5aab2010-04-08 00:53:57 +00006059<p>Volatile accesses should not be deleted if dead, but the access behavior is
6060 not very cleanly specified and it is unwise to depend on it.</p>
6061
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006062<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006063<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6064 at the destination location. If the argument is known to be aligned to some
6065 boundary, this can be specified as the fourth argument, otherwise it should
6066 be set to 0 or 1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006067
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006068</div>
6069
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006070<!-- _______________________________________________________________________ -->
6071<div class="doc_subsubsection">
6072 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
6073</div>
6074
6075<div class="doc_text">
6076
6077<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006078<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6079 floating point or vector of floating point type. Not all targets support all
6080 types however.</p>
6081
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006082<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00006083 declare float @llvm.sqrt.f32(float %Val)
6084 declare double @llvm.sqrt.f64(double %Val)
6085 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6086 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6087 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006088</pre>
6089
6090<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006091<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6092 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6093 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6094 behavior for negative numbers other than -0.0 (which allows for better
6095 optimization, because there is no need to worry about errno being
6096 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006097
6098<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006099<p>The argument and return value are floating point numbers of the same
6100 type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006101
6102<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006103<p>This function returns the sqrt of the specified operand if it is a
6104 nonnegative floating point number.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006105
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006106</div>
6107
6108<!-- _______________________________________________________________________ -->
6109<div class="doc_subsubsection">
6110 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
6111</div>
6112
6113<div class="doc_text">
6114
6115<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006116<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6117 floating point or vector of floating point type. Not all targets support all
6118 types however.</p>
6119
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006120<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00006121 declare float @llvm.powi.f32(float %Val, i32 %power)
6122 declare double @llvm.powi.f64(double %Val, i32 %power)
6123 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6124 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6125 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006126</pre>
6127
6128<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006129<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6130 specified (positive or negative) power. The order of evaluation of
6131 multiplications is not defined. When a vector of floating point type is
6132 used, the second argument remains a scalar integer value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006133
6134<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006135<p>The second argument is an integer power, and the first is a value to raise to
6136 that power.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006137
6138<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006139<p>This function returns the first value raised to the second power with an
6140 unspecified sequence of rounding operations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006141
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006142</div>
6143
Dan Gohman361079c2007-10-15 20:30:11 +00006144<!-- _______________________________________________________________________ -->
6145<div class="doc_subsubsection">
6146 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
6147</div>
6148
6149<div class="doc_text">
6150
6151<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006152<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6153 floating point or vector of floating point type. Not all targets support all
6154 types however.</p>
6155
Dan Gohman361079c2007-10-15 20:30:11 +00006156<pre>
6157 declare float @llvm.sin.f32(float %Val)
6158 declare double @llvm.sin.f64(double %Val)
6159 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6160 declare fp128 @llvm.sin.f128(fp128 %Val)
6161 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6162</pre>
6163
6164<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006165<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006166
6167<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006168<p>The argument and return value are floating point numbers of the same
6169 type.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006170
6171<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006172<p>This function returns the sine of the specified operand, returning the same
6173 values as the libm <tt>sin</tt> functions would, and handles error conditions
6174 in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006175
Dan Gohman361079c2007-10-15 20:30:11 +00006176</div>
6177
6178<!-- _______________________________________________________________________ -->
6179<div class="doc_subsubsection">
6180 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
6181</div>
6182
6183<div class="doc_text">
6184
6185<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006186<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6187 floating point or vector of floating point type. Not all targets support all
6188 types however.</p>
6189
Dan Gohman361079c2007-10-15 20:30:11 +00006190<pre>
6191 declare float @llvm.cos.f32(float %Val)
6192 declare double @llvm.cos.f64(double %Val)
6193 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6194 declare fp128 @llvm.cos.f128(fp128 %Val)
6195 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6196</pre>
6197
6198<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006199<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006200
6201<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006202<p>The argument and return value are floating point numbers of the same
6203 type.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006204
6205<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006206<p>This function returns the cosine of the specified operand, returning the same
6207 values as the libm <tt>cos</tt> functions would, and handles error conditions
6208 in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006209
Dan Gohman361079c2007-10-15 20:30:11 +00006210</div>
6211
6212<!-- _______________________________________________________________________ -->
6213<div class="doc_subsubsection">
6214 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
6215</div>
6216
6217<div class="doc_text">
6218
6219<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006220<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6221 floating point or vector of floating point type. Not all targets support all
6222 types however.</p>
6223
Dan Gohman361079c2007-10-15 20:30:11 +00006224<pre>
6225 declare float @llvm.pow.f32(float %Val, float %Power)
6226 declare double @llvm.pow.f64(double %Val, double %Power)
6227 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6228 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6229 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6230</pre>
6231
6232<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006233<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6234 specified (positive or negative) power.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006235
6236<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006237<p>The second argument is a floating point power, and the first is a value to
6238 raise to that power.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006239
6240<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006241<p>This function returns the first value raised to the second power, returning
6242 the same values as the libm <tt>pow</tt> functions would, and handles error
6243 conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006244
Dan Gohman361079c2007-10-15 20:30:11 +00006245</div>
6246
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006247<!-- ======================================================================= -->
6248<div class="doc_subsection">
6249 <a name="int_manip">Bit Manipulation Intrinsics</a>
6250</div>
6251
6252<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006253
6254<p>LLVM provides intrinsics for a few important bit manipulation operations.
6255 These allow efficient code generation for some algorithms.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006256
6257</div>
6258
6259<!-- _______________________________________________________________________ -->
6260<div class="doc_subsubsection">
6261 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
6262</div>
6263
6264<div class="doc_text">
6265
6266<h5>Syntax:</h5>
6267<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00006268 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6269
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006270<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00006271 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6272 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6273 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006274</pre>
6275
6276<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006277<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6278 values with an even number of bytes (positive multiple of 16 bits). These
6279 are useful for performing operations on data that is not in the target's
6280 native byte order.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006281
6282<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006283<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6284 and low byte of the input i16 swapped. Similarly,
6285 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6286 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6287 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6288 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6289 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6290 more, respectively).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006291
6292</div>
6293
6294<!-- _______________________________________________________________________ -->
6295<div class="doc_subsubsection">
6296 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
6297</div>
6298
6299<div class="doc_text">
6300
6301<h5>Syntax:</h5>
6302<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00006303 width. Not all targets support all bit widths however.</p>
6304
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006305<pre>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006306 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00006307 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006308 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00006309 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6310 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006311</pre>
6312
6313<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006314<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6315 in a value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006316
6317<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006318<p>The only argument is the value to be counted. The argument may be of any
6319 integer type. The return type must match the argument type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006320
6321<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006322<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006323
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006324</div>
6325
6326<!-- _______________________________________________________________________ -->
6327<div class="doc_subsubsection">
6328 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
6329</div>
6330
6331<div class="doc_text">
6332
6333<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006334<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6335 integer bit width. Not all targets support all bit widths however.</p>
6336
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006337<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00006338 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6339 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006340 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00006341 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6342 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006343</pre>
6344
6345<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006346<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6347 leading zeros in a variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006348
6349<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006350<p>The only argument is the value to be counted. The argument may be of any
6351 integer type. The return type must match the argument type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006352
6353<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006354<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6355 zeros in a variable. If the src == 0 then the result is the size in bits of
6356 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006357
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006358</div>
6359
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006360<!-- _______________________________________________________________________ -->
6361<div class="doc_subsubsection">
6362 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
6363</div>
6364
6365<div class="doc_text">
6366
6367<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006368<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6369 integer bit width. Not all targets support all bit widths however.</p>
6370
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006371<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00006372 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6373 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006374 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00006375 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6376 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006377</pre>
6378
6379<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006380<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6381 trailing zeros.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006382
6383<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006384<p>The only argument is the value to be counted. The argument may be of any
6385 integer type. The return type must match the argument type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006386
6387<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006388<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6389 zeros in a variable. If the src == 0 then the result is the size in bits of
6390 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006391
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006392</div>
6393
Bill Wendling3e1258b2009-02-08 04:04:40 +00006394<!-- ======================================================================= -->
6395<div class="doc_subsection">
6396 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6397</div>
6398
6399<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006400
6401<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendling3e1258b2009-02-08 04:04:40 +00006402
6403</div>
6404
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006405<!-- _______________________________________________________________________ -->
6406<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006407 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006408</div>
6409
6410<div class="doc_text">
6411
6412<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006413<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006414 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006415
6416<pre>
6417 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6418 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6419 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6420</pre>
6421
6422<h5>Overview:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006423<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006424 a signed addition of the two arguments, and indicate whether an overflow
6425 occurred during the signed summation.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006426
6427<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006428<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006429 be of integer types of any bit width, but they must have the same bit
6430 width. The second element of the result structure must be of
6431 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6432 undergo signed addition.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006433
6434<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006435<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006436 a signed addition of the two variables. They return a structure &mdash; the
6437 first element of which is the signed summation, and the second element of
6438 which is a bit specifying if the signed summation resulted in an
6439 overflow.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006440
6441<h5>Examples:</h5>
6442<pre>
6443 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6444 %sum = extractvalue {i32, i1} %res, 0
6445 %obit = extractvalue {i32, i1} %res, 1
6446 br i1 %obit, label %overflow, label %normal
6447</pre>
6448
6449</div>
6450
6451<!-- _______________________________________________________________________ -->
6452<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006453 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006454</div>
6455
6456<div class="doc_text">
6457
6458<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006459<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006460 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006461
6462<pre>
6463 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6464 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6465 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6466</pre>
6467
6468<h5>Overview:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006469<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006470 an unsigned addition of the two arguments, and indicate whether a carry
6471 occurred during the unsigned summation.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006472
6473<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006474<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006475 be of integer types of any bit width, but they must have the same bit
6476 width. The second element of the result structure must be of
6477 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6478 undergo unsigned addition.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006479
6480<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006481<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006482 an unsigned addition of the two arguments. They return a structure &mdash;
6483 the first element of which is the sum, and the second element of which is a
6484 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006485
6486<h5>Examples:</h5>
6487<pre>
6488 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6489 %sum = extractvalue {i32, i1} %res, 0
6490 %obit = extractvalue {i32, i1} %res, 1
6491 br i1 %obit, label %carry, label %normal
6492</pre>
6493
6494</div>
6495
6496<!-- _______________________________________________________________________ -->
6497<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006498 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006499</div>
6500
6501<div class="doc_text">
6502
6503<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006504<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006505 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006506
6507<pre>
6508 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6509 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6510 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6511</pre>
6512
6513<h5>Overview:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006514<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006515 a signed subtraction of the two arguments, and indicate whether an overflow
6516 occurred during the signed subtraction.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006517
6518<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006519<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006520 be of integer types of any bit width, but they must have the same bit
6521 width. The second element of the result structure must be of
6522 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6523 undergo signed subtraction.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006524
6525<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006526<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006527 a signed subtraction of the two arguments. They return a structure &mdash;
6528 the first element of which is the subtraction, and the second element of
6529 which is a bit specifying if the signed subtraction resulted in an
6530 overflow.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006531
6532<h5>Examples:</h5>
6533<pre>
6534 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6535 %sum = extractvalue {i32, i1} %res, 0
6536 %obit = extractvalue {i32, i1} %res, 1
6537 br i1 %obit, label %overflow, label %normal
6538</pre>
6539
6540</div>
6541
6542<!-- _______________________________________________________________________ -->
6543<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006544 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006545</div>
6546
6547<div class="doc_text">
6548
6549<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006550<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006551 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006552
6553<pre>
6554 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6555 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6556 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6557</pre>
6558
6559<h5>Overview:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006560<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006561 an unsigned subtraction of the two arguments, and indicate whether an
6562 overflow occurred during the unsigned subtraction.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006563
6564<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006565<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006566 be of integer types of any bit width, but they must have the same bit
6567 width. The second element of the result structure must be of
6568 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6569 undergo unsigned subtraction.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006570
6571<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006572<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006573 an unsigned subtraction of the two arguments. They return a structure &mdash;
6574 the first element of which is the subtraction, and the second element of
6575 which is a bit specifying if the unsigned subtraction resulted in an
6576 overflow.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006577
6578<h5>Examples:</h5>
6579<pre>
6580 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6581 %sum = extractvalue {i32, i1} %res, 0
6582 %obit = extractvalue {i32, i1} %res, 1
6583 br i1 %obit, label %overflow, label %normal
6584</pre>
6585
6586</div>
6587
6588<!-- _______________________________________________________________________ -->
6589<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006590 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006591</div>
6592
6593<div class="doc_text">
6594
6595<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006596<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006597 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006598
6599<pre>
6600 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6601 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6602 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6603</pre>
6604
6605<h5>Overview:</h5>
6606
6607<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006608 a signed multiplication of the two arguments, and indicate whether an
6609 overflow occurred during the signed multiplication.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006610
6611<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006612<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006613 be of integer types of any bit width, but they must have the same bit
6614 width. The second element of the result structure must be of
6615 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6616 undergo signed multiplication.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006617
6618<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006619<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006620 a signed multiplication of the two arguments. They return a structure &mdash;
6621 the first element of which is the multiplication, and the second element of
6622 which is a bit specifying if the signed multiplication resulted in an
6623 overflow.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006624
6625<h5>Examples:</h5>
6626<pre>
6627 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6628 %sum = extractvalue {i32, i1} %res, 0
6629 %obit = extractvalue {i32, i1} %res, 1
6630 br i1 %obit, label %overflow, label %normal
6631</pre>
6632
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006633</div>
6634
Bill Wendlingbda98b62009-02-08 23:00:09 +00006635<!-- _______________________________________________________________________ -->
6636<div class="doc_subsubsection">
6637 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6638</div>
6639
6640<div class="doc_text">
6641
6642<h5>Syntax:</h5>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006643<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006644 on any integer bit width.</p>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006645
6646<pre>
6647 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6648 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6649 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6650</pre>
6651
6652<h5>Overview:</h5>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006653<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006654 a unsigned multiplication of the two arguments, and indicate whether an
6655 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006656
6657<h5>Arguments:</h5>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006658<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006659 be of integer types of any bit width, but they must have the same bit
6660 width. The second element of the result structure must be of
6661 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6662 undergo unsigned multiplication.</p>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006663
6664<h5>Semantics:</h5>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006665<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006666 an unsigned multiplication of the two arguments. They return a structure
6667 &mdash; the first element of which is the multiplication, and the second
6668 element of which is a bit specifying if the unsigned multiplication resulted
6669 in an overflow.</p>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006670
6671<h5>Examples:</h5>
6672<pre>
6673 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6674 %sum = extractvalue {i32, i1} %res, 0
6675 %obit = extractvalue {i32, i1} %res, 1
6676 br i1 %obit, label %overflow, label %normal
6677</pre>
6678
6679</div>
6680
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006681<!-- ======================================================================= -->
6682<div class="doc_subsection">
Anton Korobeynikov8c98a892010-03-14 18:42:47 +00006683 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
6684</div>
6685
6686<div class="doc_text">
6687
Chris Lattnere5969c62010-03-15 04:12:21 +00006688<p>Half precision floating point is a storage-only format. This means that it is
6689 a dense encoding (in memory) but does not support computation in the
6690 format.</p>
Chris Lattnerebc48e52010-03-14 23:03:31 +00006691
Chris Lattnere5969c62010-03-15 04:12:21 +00006692<p>This means that code must first load the half-precision floating point
Chris Lattnerebc48e52010-03-14 23:03:31 +00006693 value as an i16, then convert it to float with <a
6694 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
6695 Computation can then be performed on the float value (including extending to
Chris Lattnere5969c62010-03-15 04:12:21 +00006696 double etc). To store the value back to memory, it is first converted to
6697 float if needed, then converted to i16 with
Chris Lattnerebc48e52010-03-14 23:03:31 +00006698 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
6699 storing as an i16 value.</p>
Anton Korobeynikov8c98a892010-03-14 18:42:47 +00006700</div>
6701
6702<!-- _______________________________________________________________________ -->
6703<div class="doc_subsubsection">
Chris Lattnerebc48e52010-03-14 23:03:31 +00006704 <a name="int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a>
Anton Korobeynikov8c98a892010-03-14 18:42:47 +00006705</div>
6706
6707<div class="doc_text">
6708
6709<h5>Syntax:</h5>
6710<pre>
6711 declare i16 @llvm.convert.to.fp16(f32 %a)
6712</pre>
6713
6714<h5>Overview:</h5>
6715<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6716 a conversion from single precision floating point format to half precision
6717 floating point format.</p>
6718
6719<h5>Arguments:</h5>
6720<p>The intrinsic function contains single argument - the value to be
6721 converted.</p>
6722
6723<h5>Semantics:</h5>
6724<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6725 a conversion from single precision floating point format to half precision
Chris Lattnere5969c62010-03-15 04:12:21 +00006726 floating point format. The return value is an <tt>i16</tt> which
Chris Lattnerebc48e52010-03-14 23:03:31 +00006727 contains the converted number.</p>
Anton Korobeynikov8c98a892010-03-14 18:42:47 +00006728
6729<h5>Examples:</h5>
6730<pre>
6731 %res = call i16 @llvm.convert.to.fp16(f32 %a)
6732 store i16 %res, i16* @x, align 2
6733</pre>
6734
6735</div>
6736
6737<!-- _______________________________________________________________________ -->
6738<div class="doc_subsubsection">
Chris Lattnerebc48e52010-03-14 23:03:31 +00006739 <a name="int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a>
Anton Korobeynikov8c98a892010-03-14 18:42:47 +00006740</div>
6741
6742<div class="doc_text">
6743
6744<h5>Syntax:</h5>
6745<pre>
6746 declare f32 @llvm.convert.from.fp16(i16 %a)
6747</pre>
6748
6749<h5>Overview:</h5>
6750<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
6751 a conversion from half precision floating point format to single precision
6752 floating point format.</p>
6753
6754<h5>Arguments:</h5>
6755<p>The intrinsic function contains single argument - the value to be
6756 converted.</p>
6757
6758<h5>Semantics:</h5>
6759<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattnere5969c62010-03-15 04:12:21 +00006760 conversion from half single precision floating point format to single
Chris Lattnerebc48e52010-03-14 23:03:31 +00006761 precision floating point format. The input half-float value is represented by
6762 an <tt>i16</tt> value.</p>
Anton Korobeynikov8c98a892010-03-14 18:42:47 +00006763
6764<h5>Examples:</h5>
6765<pre>
6766 %a = load i16* @x, align 2
6767 %res = call f32 @llvm.convert.from.fp16(i16 %a)
6768</pre>
6769
6770</div>
6771
6772<!-- ======================================================================= -->
6773<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006774 <a name="int_debugger">Debugger Intrinsics</a>
6775</div>
6776
6777<div class="doc_text">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006778
Bill Wendlingf85859d2009-07-20 02:29:24 +00006779<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6780 prefix), are described in
6781 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6782 Level Debugging</a> document.</p>
6783
6784</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006785
6786<!-- ======================================================================= -->
6787<div class="doc_subsection">
6788 <a name="int_eh">Exception Handling Intrinsics</a>
6789</div>
6790
6791<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006792
6793<p>The LLVM exception handling intrinsics (which all start with
6794 <tt>llvm.eh.</tt> prefix), are described in
6795 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6796 Handling</a> document.</p>
6797
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006798</div>
6799
6800<!-- ======================================================================= -->
6801<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00006802 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00006803</div>
6804
6805<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006806
6807<p>This intrinsic makes it possible to excise one parameter, marked with
6808 the <tt>nest</tt> attribute, from a function. The result is a callable
6809 function pointer lacking the nest parameter - the caller does not need to
6810 provide a value for it. Instead, the value to use is stored in advance in a
6811 "trampoline", a block of memory usually allocated on the stack, which also
6812 contains code to splice the nest value into the argument list. This is used
6813 to implement the GCC nested function address extension.</p>
6814
6815<p>For example, if the function is
6816 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6817 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6818 follows:</p>
6819
6820<div class="doc_code">
Duncan Sands38947cd2007-07-27 12:58:54 +00006821<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00006822 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6823 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6824 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6825 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00006826</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006827</div>
6828
6829<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6830 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
6831
Duncan Sands38947cd2007-07-27 12:58:54 +00006832</div>
6833
6834<!-- _______________________________________________________________________ -->
6835<div class="doc_subsubsection">
6836 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6837</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006838
Duncan Sands38947cd2007-07-27 12:58:54 +00006839<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006840
Duncan Sands38947cd2007-07-27 12:58:54 +00006841<h5>Syntax:</h5>
6842<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006843 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00006844</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006845
Duncan Sands38947cd2007-07-27 12:58:54 +00006846<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006847<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6848 function pointer suitable for executing it.</p>
6849
Duncan Sands38947cd2007-07-27 12:58:54 +00006850<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006851<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6852 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6853 sufficiently aligned block of memory; this memory is written to by the
6854 intrinsic. Note that the size and the alignment are target-specific - LLVM
6855 currently provides no portable way of determining them, so a front-end that
6856 generates this intrinsic needs to have some target-specific knowledge.
6857 The <tt>func</tt> argument must hold a function bitcast to
6858 an <tt>i8*</tt>.</p>
6859
Duncan Sands38947cd2007-07-27 12:58:54 +00006860<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006861<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6862 dependent code, turning it into a function. A pointer to this function is
6863 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6864 function pointer type</a> before being called. The new function's signature
6865 is the same as that of <tt>func</tt> with any arguments marked with
6866 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6867 is allowed, and it must be of pointer type. Calling the new function is
6868 equivalent to calling <tt>func</tt> with the same argument list, but
6869 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6870 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6871 by <tt>tramp</tt> is modified, then the effect of any later call to the
6872 returned function pointer is undefined.</p>
6873
Duncan Sands38947cd2007-07-27 12:58:54 +00006874</div>
6875
6876<!-- ======================================================================= -->
6877<div class="doc_subsection">
Andrew Lenharth785610d2008-02-16 01:24:58 +00006878 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6879</div>
6880
6881<div class="doc_text">
Andrew Lenharth785610d2008-02-16 01:24:58 +00006882
Bill Wendlingf85859d2009-07-20 02:29:24 +00006883<p>These intrinsic functions expand the "universal IR" of LLVM to represent
6884 hardware constructs for atomic operations and memory synchronization. This
6885 provides an interface to the hardware, not an interface to the programmer. It
6886 is aimed at a low enough level to allow any programming models or APIs
6887 (Application Programming Interfaces) which need atomic behaviors to map
6888 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6889 hardware provides a "universal IR" for source languages, it also provides a
6890 starting point for developing a "universal" atomic operation and
6891 synchronization IR.</p>
6892
6893<p>These do <em>not</em> form an API such as high-level threading libraries,
6894 software transaction memory systems, atomic primitives, and intrinsic
6895 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6896 application libraries. The hardware interface provided by LLVM should allow
6897 a clean implementation of all of these APIs and parallel programming models.
6898 No one model or paradigm should be selected above others unless the hardware
6899 itself ubiquitously does so.</p>
6900
Andrew Lenharth785610d2008-02-16 01:24:58 +00006901</div>
6902
6903<!-- _______________________________________________________________________ -->
6904<div class="doc_subsubsection">
6905 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6906</div>
6907<div class="doc_text">
6908<h5>Syntax:</h5>
6909<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006910 declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
Andrew Lenharth785610d2008-02-16 01:24:58 +00006911</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006912
Andrew Lenharth785610d2008-02-16 01:24:58 +00006913<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006914<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6915 specific pairs of memory access types.</p>
6916
Andrew Lenharth785610d2008-02-16 01:24:58 +00006917<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006918<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6919 The first four arguments enables a specific barrier as listed below. The
Dan Gohman22dc6682010-03-01 17:41:39 +00006920 fifth argument specifies that the barrier applies to io or device or uncached
Bill Wendlingf85859d2009-07-20 02:29:24 +00006921 memory.</p>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006922
Bill Wendlingf85859d2009-07-20 02:29:24 +00006923<ul>
6924 <li><tt>ll</tt>: load-load barrier</li>
6925 <li><tt>ls</tt>: load-store barrier</li>
6926 <li><tt>sl</tt>: store-load barrier</li>
6927 <li><tt>ss</tt>: store-store barrier</li>
6928 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
6929</ul>
6930
Andrew Lenharth785610d2008-02-16 01:24:58 +00006931<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006932<p>This intrinsic causes the system to enforce some ordering constraints upon
6933 the loads and stores of the program. This barrier does not
6934 indicate <em>when</em> any events will occur, it only enforces
6935 an <em>order</em> in which they occur. For any of the specified pairs of load
6936 and store operations (f.ex. load-load, or store-load), all of the first
6937 operations preceding the barrier will complete before any of the second
6938 operations succeeding the barrier begin. Specifically the semantics for each
6939 pairing is as follows:</p>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006940
Bill Wendlingf85859d2009-07-20 02:29:24 +00006941<ul>
6942 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6943 after the barrier begins.</li>
Eric Christophera1151bf2009-12-05 02:46:03 +00006944 <li><tt>ls</tt>: All loads before the barrier must complete before any
Bill Wendlingf85859d2009-07-20 02:29:24 +00006945 store after the barrier begins.</li>
Eric Christophera1151bf2009-12-05 02:46:03 +00006946 <li><tt>ss</tt>: All stores before the barrier must complete before any
Bill Wendlingf85859d2009-07-20 02:29:24 +00006947 store after the barrier begins.</li>
Eric Christophera1151bf2009-12-05 02:46:03 +00006948 <li><tt>sl</tt>: All stores before the barrier must complete before any
Bill Wendlingf85859d2009-07-20 02:29:24 +00006949 load after the barrier begins.</li>
6950</ul>
6951
6952<p>These semantics are applied with a logical "and" behavior when more than one
6953 is enabled in a single memory barrier intrinsic.</p>
6954
6955<p>Backends may implement stronger barriers than those requested when they do
6956 not support as fine grained a barrier as requested. Some architectures do
6957 not need all types of barriers and on such architectures, these become
6958 noops.</p>
6959
Andrew Lenharth785610d2008-02-16 01:24:58 +00006960<h5>Example:</h5>
6961<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00006962%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6963%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth785610d2008-02-16 01:24:58 +00006964 store i32 4, %ptr
6965
6966%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6967 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6968 <i>; guarantee the above finishes</i>
6969 store i32 8, %ptr <i>; before this begins</i>
6970</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006971
Andrew Lenharth785610d2008-02-16 01:24:58 +00006972</div>
6973
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006974<!-- _______________________________________________________________________ -->
6975<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006976 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006977</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006978
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006979<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006980
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006981<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006982<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6983 any integer bit width and for different address spaces. Not all targets
6984 support all bit widths however.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006985
6986<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006987 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6988 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6989 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6990 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006991</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006992
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006993<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006994<p>This loads a value in memory and compares it to a given value. If they are
6995 equal, it stores a new value into the memory.</p>
6996
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006997<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006998<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
6999 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
7000 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
7001 this integer type. While any bit width integer may be used, targets may only
7002 lower representations they support in hardware.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007003
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007004<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007005<p>This entire intrinsic must be executed atomically. It first loads the value
7006 in memory pointed to by <tt>ptr</tt> and compares it with the
7007 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
7008 memory. The loaded value is yielded in all cases. This provides the
7009 equivalent of an atomic compare-and-swap operation within the SSA
7010 framework.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007011
Bill Wendlingf85859d2009-07-20 02:29:24 +00007012<h5>Examples:</h5>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007013<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00007014%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7015%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007016 store i32 4, %ptr
7017
7018%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00007019%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007020 <i>; yields {i32}:result1 = 4</i>
7021%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7022%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7023
7024%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00007025%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007026 <i>; yields {i32}:result2 = 8</i>
7027%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
7028
7029%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
7030</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007031
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007032</div>
7033
7034<!-- _______________________________________________________________________ -->
7035<div class="doc_subsubsection">
7036 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
7037</div>
7038<div class="doc_text">
7039<h5>Syntax:</h5>
7040
Bill Wendlingf85859d2009-07-20 02:29:24 +00007041<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
7042 integer bit width. Not all targets support all bit widths however.</p>
7043
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007044<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007045 declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
7046 declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
7047 declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
7048 declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007049</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007050
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007051<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007052<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
7053 the value from memory. It then stores the value in <tt>val</tt> in the memory
7054 at <tt>ptr</tt>.</p>
7055
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007056<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007057<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
7058 the <tt>val</tt> argument and the result must be integers of the same bit
7059 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
7060 integer type. The targets may only lower integer representations they
7061 support.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007062
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007063<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007064<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
7065 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
7066 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007067
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007068<h5>Examples:</h5>
7069<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00007070%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7071%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007072 store i32 4, %ptr
7073
7074%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00007075%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007076 <i>; yields {i32}:result1 = 4</i>
7077%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7078%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7079
7080%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00007081%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007082 <i>; yields {i32}:result2 = 8</i>
7083
7084%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
7085%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
7086</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007087
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007088</div>
7089
7090<!-- _______________________________________________________________________ -->
7091<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007092 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007093
7094</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007095
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007096<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00007097
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007098<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007099<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
7100 any integer bit width. Not all targets support all bit widths however.</p>
7101
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007102<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007103 declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7104 declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7105 declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7106 declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007107</pre>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007108
Bill Wendlingf85859d2009-07-20 02:29:24 +00007109<h5>Overview:</h5>
7110<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
7111 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7112
7113<h5>Arguments:</h5>
7114<p>The intrinsic takes two arguments, the first a pointer to an integer value
7115 and the second an integer value. The result is also an integer value. These
7116 integer types can have any bit width, but they must all have the same bit
7117 width. The targets may only lower integer representations they support.</p>
7118
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007119<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007120<p>This intrinsic does a series of operations atomically. It first loads the
7121 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
7122 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007123
7124<h5>Examples:</h5>
7125<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00007126%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7127%ptr = bitcast i8* %mallocP to i32*
7128 store i32 4, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00007129%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007130 <i>; yields {i32}:result1 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007131%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007132 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007133%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007134 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007135%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007136</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007137
Andrew Lenharthe44f3902008-02-21 06:45:13 +00007138</div>
7139
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007140<!-- _______________________________________________________________________ -->
7141<div class="doc_subsubsection">
7142 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
7143
7144</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007145
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007146<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00007147
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007148<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007149<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
7150 any integer bit width and for different address spaces. Not all targets
7151 support all bit widths however.</p>
7152
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007153<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007154 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7155 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7156 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7157 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007158</pre>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007159
Bill Wendlingf85859d2009-07-20 02:29:24 +00007160<h5>Overview:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00007161<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
Bill Wendlingf85859d2009-07-20 02:29:24 +00007162 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7163
7164<h5>Arguments:</h5>
7165<p>The intrinsic takes two arguments, the first a pointer to an integer value
7166 and the second an integer value. The result is also an integer value. These
7167 integer types can have any bit width, but they must all have the same bit
7168 width. The targets may only lower integer representations they support.</p>
7169
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007170<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007171<p>This intrinsic does a series of operations atomically. It first loads the
7172 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
7173 result to <tt>ptr</tt>. It yields the original value stored
7174 at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007175
7176<h5>Examples:</h5>
7177<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00007178%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7179%ptr = bitcast i8* %mallocP to i32*
7180 store i32 8, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00007181%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007182 <i>; yields {i32}:result1 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007183%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007184 <i>; yields {i32}:result2 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007185%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007186 <i>; yields {i32}:result3 = 2</i>
7187%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
7188</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007189
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007190</div>
7191
7192<!-- _______________________________________________________________________ -->
7193<div class="doc_subsubsection">
7194 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
7195 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
7196 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
7197 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007198</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007199
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007200<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00007201
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007202<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007203<p>These are overloaded intrinsics. You can
7204 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
7205 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
7206 bit width and for different address spaces. Not all targets support all bit
7207 widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007208
Bill Wendlingf85859d2009-07-20 02:29:24 +00007209<pre>
7210 declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7211 declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7212 declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7213 declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007214</pre>
7215
7216<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007217 declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7218 declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7219 declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7220 declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007221</pre>
7222
7223<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007224 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7225 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7226 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7227 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007228</pre>
7229
7230<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007231 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7232 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7233 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7234 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007235</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007236
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007237<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007238<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
7239 the value stored in memory at <tt>ptr</tt>. It yields the original value
7240 at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007241
Bill Wendlingf85859d2009-07-20 02:29:24 +00007242<h5>Arguments:</h5>
7243<p>These intrinsics take two arguments, the first a pointer to an integer value
7244 and the second an integer value. The result is also an integer value. These
7245 integer types can have any bit width, but they must all have the same bit
7246 width. The targets may only lower integer representations they support.</p>
7247
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007248<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007249<p>These intrinsics does a series of operations atomically. They first load the
7250 value stored at <tt>ptr</tt>. They then do the bitwise
7251 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
7252 original value stored at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007253
7254<h5>Examples:</h5>
7255<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00007256%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7257%ptr = bitcast i8* %mallocP to i32*
7258 store i32 0x0F0F, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00007259%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007260 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007261%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007262 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007263%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007264 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007265%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007266 <i>; yields {i32}:result3 = FF</i>
7267%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
7268</pre>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007269
Bill Wendlingf85859d2009-07-20 02:29:24 +00007270</div>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007271
7272<!-- _______________________________________________________________________ -->
7273<div class="doc_subsubsection">
7274 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
7275 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
7276 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
7277 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007278</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007279
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007280<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00007281
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007282<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007283<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
7284 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
7285 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
7286 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007287
Bill Wendlingf85859d2009-07-20 02:29:24 +00007288<pre>
7289 declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7290 declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7291 declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7292 declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007293</pre>
7294
7295<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007296 declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7297 declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7298 declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7299 declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007300</pre>
7301
7302<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007303 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7304 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7305 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7306 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007307</pre>
7308
7309<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007310 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7311 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7312 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7313 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007314</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007315
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007316<h5>Overview:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00007317<p>These intrinsics takes the signed or unsigned minimum or maximum of
Bill Wendlingf85859d2009-07-20 02:29:24 +00007318 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7319 original value at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007320
Bill Wendlingf85859d2009-07-20 02:29:24 +00007321<h5>Arguments:</h5>
7322<p>These intrinsics take two arguments, the first a pointer to an integer value
7323 and the second an integer value. The result is also an integer value. These
7324 integer types can have any bit width, but they must all have the same bit
7325 width. The targets may only lower integer representations they support.</p>
7326
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007327<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007328<p>These intrinsics does a series of operations atomically. They first load the
7329 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
7330 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
7331 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007332
7333<h5>Examples:</h5>
7334<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00007335%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7336%ptr = bitcast i8* %mallocP to i32*
7337 store i32 7, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00007338%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007339 <i>; yields {i32}:result0 = 7</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007340%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007341 <i>; yields {i32}:result1 = -2</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007342%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007343 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007344%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007345 <i>; yields {i32}:result3 = 8</i>
7346%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7347</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007348
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007349</div>
Andrew Lenharth785610d2008-02-16 01:24:58 +00007350
Nick Lewyckyc888d352009-10-13 07:03:23 +00007351
7352<!-- ======================================================================= -->
7353<div class="doc_subsection">
7354 <a name="int_memorymarkers">Memory Use Markers</a>
7355</div>
7356
7357<div class="doc_text">
7358
7359<p>This class of intrinsics exists to information about the lifetime of memory
7360 objects and ranges where variables are immutable.</p>
7361
7362</div>
7363
7364<!-- _______________________________________________________________________ -->
7365<div class="doc_subsubsection">
7366 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7367</div>
7368
7369<div class="doc_text">
7370
7371<h5>Syntax:</h5>
7372<pre>
7373 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7374</pre>
7375
7376<h5>Overview:</h5>
7377<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7378 object's lifetime.</p>
7379
7380<h5>Arguments:</h5>
Nick Lewycky23f49982009-10-13 07:57:33 +00007381<p>The first argument is a constant integer representing the size of the
7382 object, or -1 if it is variable sized. The second argument is a pointer to
7383 the object.</p>
Nick Lewyckyc888d352009-10-13 07:03:23 +00007384
7385<h5>Semantics:</h5>
7386<p>This intrinsic indicates that before this point in the code, the value of the
7387 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyf8a5f302009-10-27 16:56:58 +00007388 never be used and has an undefined value. A load from the pointer that
7389 precedes this intrinsic can be replaced with
Nick Lewyckyc888d352009-10-13 07:03:23 +00007390 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7391
7392</div>
7393
7394<!-- _______________________________________________________________________ -->
7395<div class="doc_subsubsection">
7396 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7397</div>
7398
7399<div class="doc_text">
7400
7401<h5>Syntax:</h5>
7402<pre>
7403 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7404</pre>
7405
7406<h5>Overview:</h5>
7407<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7408 object's lifetime.</p>
7409
7410<h5>Arguments:</h5>
Nick Lewycky23f49982009-10-13 07:57:33 +00007411<p>The first argument is a constant integer representing the size of the
7412 object, or -1 if it is variable sized. The second argument is a pointer to
7413 the object.</p>
Nick Lewyckyc888d352009-10-13 07:03:23 +00007414
7415<h5>Semantics:</h5>
7416<p>This intrinsic indicates that after this point in the code, the value of the
7417 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7418 never be used and has an undefined value. Any stores into the memory object
7419 following this intrinsic may be removed as dead.
7420
7421</div>
7422
7423<!-- _______________________________________________________________________ -->
7424<div class="doc_subsubsection">
7425 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7426</div>
7427
7428<div class="doc_text">
7429
7430<h5>Syntax:</h5>
7431<pre>
7432 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;) readonly
7433</pre>
7434
7435<h5>Overview:</h5>
7436<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7437 a memory object will not change.</p>
7438
7439<h5>Arguments:</h5>
Nick Lewycky23f49982009-10-13 07:57:33 +00007440<p>The first argument is a constant integer representing the size of the
7441 object, or -1 if it is variable sized. The second argument is a pointer to
7442 the object.</p>
Nick Lewyckyc888d352009-10-13 07:03:23 +00007443
7444<h5>Semantics:</h5>
7445<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7446 the return value, the referenced memory location is constant and
7447 unchanging.</p>
7448
7449</div>
7450
7451<!-- _______________________________________________________________________ -->
7452<div class="doc_subsubsection">
7453 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7454</div>
7455
7456<div class="doc_text">
7457
7458<h5>Syntax:</h5>
7459<pre>
7460 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7461</pre>
7462
7463<h5>Overview:</h5>
7464<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7465 a memory object are mutable.</p>
7466
7467<h5>Arguments:</h5>
7468<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky23f49982009-10-13 07:57:33 +00007469 The second argument is a constant integer representing the size of the
7470 object, or -1 if it is variable sized and the third argument is a pointer
7471 to the object.</p>
Nick Lewyckyc888d352009-10-13 07:03:23 +00007472
7473<h5>Semantics:</h5>
7474<p>This intrinsic indicates that the memory is mutable again.</p>
7475
7476</div>
7477
Andrew Lenharth785610d2008-02-16 01:24:58 +00007478<!-- ======================================================================= -->
7479<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007480 <a name="int_general">General Intrinsics</a>
7481</div>
7482
7483<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00007484
7485<p>This class of intrinsics is designed to be generic and has no specific
7486 purpose.</p>
7487
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007488</div>
7489
7490<!-- _______________________________________________________________________ -->
7491<div class="doc_subsubsection">
7492 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7493</div>
7494
7495<div class="doc_text">
7496
7497<h5>Syntax:</h5>
7498<pre>
7499 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7500</pre>
7501
7502<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007503<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007504
7505<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007506<p>The first argument is a pointer to a value, the second is a pointer to a
7507 global string, the third is a pointer to a global string which is the source
7508 file name, and the last argument is the line number.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007509
7510<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007511<p>This intrinsic allows annotation of local variables with arbitrary strings.
7512 This can be useful for special purpose optimizations that want to look for
7513 these annotations. These have no other defined use, they are ignored by code
7514 generation and optimization.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007515
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007516</div>
7517
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007518<!-- _______________________________________________________________________ -->
7519<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00007520 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007521</div>
7522
7523<div class="doc_text">
7524
7525<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007526<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7527 any integer bit width.</p>
7528
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007529<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00007530 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7531 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7532 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7533 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7534 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007535</pre>
7536
7537<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007538<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007539
7540<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007541<p>The first argument is an integer value (result of some expression), the
7542 second is a pointer to a global string, the third is a pointer to a global
7543 string which is the source file name, and the last argument is the line
7544 number. It returns the value of the first argument.</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007545
7546<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007547<p>This intrinsic allows annotations to be put on arbitrary expressions with
7548 arbitrary strings. This can be useful for special purpose optimizations that
7549 want to look for these annotations. These have no other defined use, they
7550 are ignored by code generation and optimization.</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007551
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007552</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007553
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00007554<!-- _______________________________________________________________________ -->
7555<div class="doc_subsubsection">
7556 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7557</div>
7558
7559<div class="doc_text">
7560
7561<h5>Syntax:</h5>
7562<pre>
7563 declare void @llvm.trap()
7564</pre>
7565
7566<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007567<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00007568
7569<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007570<p>None.</p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00007571
7572<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007573<p>This intrinsics is lowered to the target dependent trap instruction. If the
7574 target does not have a trap instruction, this intrinsic will be lowered to
7575 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00007576
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00007577</div>
7578
Bill Wendlinge4164592008-11-19 05:56:17 +00007579<!-- _______________________________________________________________________ -->
7580<div class="doc_subsubsection">
Misha Brukman5dd7f4d2008-11-22 23:55:29 +00007581 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendlinge4164592008-11-19 05:56:17 +00007582</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007583
Bill Wendlinge4164592008-11-19 05:56:17 +00007584<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00007585
Bill Wendlinge4164592008-11-19 05:56:17 +00007586<h5>Syntax:</h5>
7587<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007588 declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
Bill Wendlinge4164592008-11-19 05:56:17 +00007589</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007590
Bill Wendlinge4164592008-11-19 05:56:17 +00007591<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007592<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7593 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7594 ensure that it is placed on the stack before local variables.</p>
7595
Bill Wendlinge4164592008-11-19 05:56:17 +00007596<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007597<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7598 arguments. The first argument is the value loaded from the stack
7599 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7600 that has enough space to hold the value of the guard.</p>
7601
Bill Wendlinge4164592008-11-19 05:56:17 +00007602<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007603<p>This intrinsic causes the prologue/epilogue inserter to force the position of
7604 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7605 stack. This is to ensure that if a local variable on the stack is
7606 overwritten, it will destroy the value of the guard. When the function exits,
7607 the guard on the stack is checked against the original guard. If they're
7608 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7609 function.</p>
7610
Bill Wendlinge4164592008-11-19 05:56:17 +00007611</div>
7612
Eric Christopher767a3722009-11-30 08:03:53 +00007613<!-- _______________________________________________________________________ -->
7614<div class="doc_subsubsection">
7615 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
7616</div>
7617
7618<div class="doc_text">
7619
7620<h5>Syntax:</h5>
7621<pre>
Eric Christopher0101f9d2009-12-23 00:29:49 +00007622 declare i32 @llvm.objectsize.i32( i8* &lt;object&gt;, i1 &lt;type&gt; )
7623 declare i64 @llvm.objectsize.i64( i8* &lt;object&gt;, i1 &lt;type&gt; )
Eric Christopher767a3722009-11-30 08:03:53 +00007624</pre>
7625
7626<h5>Overview:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00007627<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information
Eric Christopher184f44d2010-01-08 21:42:39 +00007628 to the optimizers to discover at compile time either a) when an
Eric Christophera1151bf2009-12-05 02:46:03 +00007629 operation like memcpy will either overflow a buffer that corresponds to
7630 an object, or b) to determine that a runtime check for overflow isn't
7631 necessary. An object in this context means an allocation of a
Eric Christopher0101f9d2009-12-23 00:29:49 +00007632 specific class, structure, array, or other object.</p>
Eric Christopher767a3722009-11-30 08:03:53 +00007633
7634<h5>Arguments:</h5>
7635<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher0101f9d2009-12-23 00:29:49 +00007636 argument is a pointer to or into the <tt>object</tt>. The second argument
7637 is a boolean 0 or 1. This argument determines whether you want the
7638 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
7639 1, variables are not allowed.</p>
7640
Eric Christopher767a3722009-11-30 08:03:53 +00007641<h5>Semantics:</h5>
7642<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Eric Christophera1151bf2009-12-05 02:46:03 +00007643 representing the size of the object concerned or <tt>i32/i64 -1 or 0</tt>
7644 (depending on the <tt>type</tt> argument if the size cannot be determined
7645 at compile time.</p>
Eric Christopher767a3722009-11-30 08:03:53 +00007646
7647</div>
7648
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007649<!-- *********************************************************************** -->
7650<hr>
7651<address>
7652 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman947321d2008-12-11 17:34:48 +00007653 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007654 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman947321d2008-12-11 17:34:48 +00007655 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007656
7657 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
7658 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
7659 Last modified: $Date$
7660</address>
Chris Lattner08497ce2008-01-04 04:33:49 +00007661
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007662</body>
7663</html>