blob: 3b38ee0d256a74ca4da49ad15aaded0b7554e5e8 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000027 <li><a href="#paramattrs">Parameter Attributes</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000028 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000029 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000030 </ol>
31 </li>
Chris Lattner00950542001-06-06 20:29:01 +000032 <li><a href="#typesystem">Type System</a>
33 <ol>
Robert Bocchino7b81c752006-02-17 21:18:08 +000034 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000035 <ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000036 <li><a href="#t_classifications">Type Classifications</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000037 </ol>
38 </li>
Chris Lattner00950542001-06-06 20:29:01 +000039 <li><a href="#t_derived">Derived Types</a>
40 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000041 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000042 <li><a href="#t_function">Function Type</a></li>
43 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000044 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000045 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000046 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000047 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000048 </ol>
49 </li>
50 </ol>
51 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000052 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000053 <ol>
54 <li><a href="#simpleconstants">Simple Constants</a>
55 <li><a href="#aggregateconstants">Aggregate Constants</a>
56 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
57 <li><a href="#undefvalues">Undefined Values</a>
58 <li><a href="#constantexprs">Constant Expressions</a>
59 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000060 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000061 <li><a href="#othervalues">Other Values</a>
62 <ol>
63 <li><a href="#inlineasm">Inline Assembler Expressions</a>
64 </ol>
65 </li>
Chris Lattner00950542001-06-06 20:29:01 +000066 <li><a href="#instref">Instruction Reference</a>
67 <ol>
68 <li><a href="#terminators">Terminator Instructions</a>
69 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000070 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
71 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000072 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
73 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000074 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000075 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000076 </ol>
77 </li>
Chris Lattner00950542001-06-06 20:29:01 +000078 <li><a href="#binaryops">Binary Operations</a>
79 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000080 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
81 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
82 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000083 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
84 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
85 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000086 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
87 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
88 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000089 </ol>
90 </li>
Chris Lattner00950542001-06-06 20:29:01 +000091 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
92 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +000093 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
94 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
95 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000096 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000097 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000098 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000099 </ol>
100 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000101 <li><a href="#vectorops">Vector Operations</a>
102 <ol>
103 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
104 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
105 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000106 </ol>
107 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000108 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000109 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000110 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
111 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
112 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000113 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
114 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
115 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000116 </ol>
117 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000118 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000119 <ol>
120 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
121 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
122 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000125 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
127 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
128 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000129 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
130 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000131 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000132 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000133 <li><a href="#otherops">Other Operations</a>
134 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000135 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
136 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000137 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000138 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000139 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000140 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000141 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000142 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000143 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000144 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000145 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000146 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000147 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
148 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000149 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
150 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000152 </ol>
153 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000154 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
155 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000156 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
157 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000159 </ol>
160 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000161 <li><a href="#int_codegen">Code Generator Intrinsics</a>
162 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000163 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
164 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
166 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
167 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
168 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
169 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000170 </ol>
171 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000172 <li><a href="#int_libc">Standard C Library Intrinsics</a>
173 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000174 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
175 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000179 </ol>
180 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000181 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000182 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000183 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000184 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
185 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000187 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
188 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000189 </ol>
190 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000191 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000192 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000193 </ol>
194 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000195</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000196
197<div class="doc_author">
198 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
199 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000200</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000201
Chris Lattner00950542001-06-06 20:29:01 +0000202<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000203<div class="doc_section"> <a name="abstract">Abstract </a></div>
204<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000205
Misha Brukman9d0919f2003-11-08 01:05:38 +0000206<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000207<p>This document is a reference manual for the LLVM assembly language.
208LLVM is an SSA based representation that provides type safety,
209low-level operations, flexibility, and the capability of representing
210'all' high-level languages cleanly. It is the common code
211representation used throughout all phases of the LLVM compilation
212strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000213</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000214
Chris Lattner00950542001-06-06 20:29:01 +0000215<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000216<div class="doc_section"> <a name="introduction">Introduction</a> </div>
217<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000218
Misha Brukman9d0919f2003-11-08 01:05:38 +0000219<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000220
Chris Lattner261efe92003-11-25 01:02:51 +0000221<p>The LLVM code representation is designed to be used in three
222different forms: as an in-memory compiler IR, as an on-disk bytecode
223representation (suitable for fast loading by a Just-In-Time compiler),
224and as a human readable assembly language representation. This allows
225LLVM to provide a powerful intermediate representation for efficient
226compiler transformations and analysis, while providing a natural means
227to debug and visualize the transformations. The three different forms
228of LLVM are all equivalent. This document describes the human readable
229representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000230
John Criswellc1f786c2005-05-13 22:25:59 +0000231<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000232while being expressive, typed, and extensible at the same time. It
233aims to be a "universal IR" of sorts, by being at a low enough level
234that high-level ideas may be cleanly mapped to it (similar to how
235microprocessors are "universal IR's", allowing many source languages to
236be mapped to them). By providing type information, LLVM can be used as
237the target of optimizations: for example, through pointer analysis, it
238can be proven that a C automatic variable is never accessed outside of
239the current function... allowing it to be promoted to a simple SSA
240value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000241
Misha Brukman9d0919f2003-11-08 01:05:38 +0000242</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000243
Chris Lattner00950542001-06-06 20:29:01 +0000244<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000245<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000246
Misha Brukman9d0919f2003-11-08 01:05:38 +0000247<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000248
Chris Lattner261efe92003-11-25 01:02:51 +0000249<p>It is important to note that this document describes 'well formed'
250LLVM assembly language. There is a difference between what the parser
251accepts and what is considered 'well formed'. For example, the
252following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000253
254<pre>
Reid Spencerca86e162006-12-31 07:07:53 +0000255 %x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000256</pre>
257
Chris Lattner261efe92003-11-25 01:02:51 +0000258<p>...because the definition of <tt>%x</tt> does not dominate all of
259its uses. The LLVM infrastructure provides a verification pass that may
260be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000261automatically run by the parser after parsing input assembly and by
Chris Lattner261efe92003-11-25 01:02:51 +0000262the optimizer before it outputs bytecode. The violations pointed out
263by the verifier pass indicate bugs in transformation passes or input to
264the parser.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000265
Chris Lattner261efe92003-11-25 01:02:51 +0000266<!-- Describe the typesetting conventions here. --> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000267
Chris Lattner00950542001-06-06 20:29:01 +0000268<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000269<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000270<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Misha Brukman9d0919f2003-11-08 01:05:38 +0000272<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000273
Chris Lattner261efe92003-11-25 01:02:51 +0000274<p>LLVM uses three different forms of identifiers, for different
275purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000276
Chris Lattner00950542001-06-06 20:29:01 +0000277<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000278 <li>Named values are represented as a string of characters with a '%' prefix.
279 For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual
280 regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
281 Identifiers which require other characters in their names can be surrounded
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000282 with quotes. In this way, anything except a <tt>&quot;</tt> character can be used
Chris Lattnere5d947b2004-12-09 16:36:40 +0000283 in a name.</li>
284
285 <li>Unnamed values are represented as an unsigned numeric value with a '%'
286 prefix. For example, %12, %2, %44.</li>
287
Reid Spencercc16dc32004-12-09 18:02:53 +0000288 <li>Constants, which are described in a <a href="#constants">section about
289 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000290</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000291
292<p>LLVM requires that values start with a '%' sign for two reasons: Compilers
293don't need to worry about name clashes with reserved words, and the set of
294reserved words may be expanded in the future without penalty. Additionally,
295unnamed identifiers allow a compiler to quickly come up with a temporary
296variable without having to avoid symbol table conflicts.</p>
297
Chris Lattner261efe92003-11-25 01:02:51 +0000298<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000299languages. There are keywords for different opcodes
300('<tt><a href="#i_add">add</a></tt>',
301 '<tt><a href="#i_bitcast">bitcast</a></tt>',
302 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000303href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000304and others. These reserved words cannot conflict with variable names, because
305none of them start with a '%' character.</p>
306
307<p>Here is an example of LLVM code to multiply the integer variable
308'<tt>%X</tt>' by 8:</p>
309
Misha Brukman9d0919f2003-11-08 01:05:38 +0000310<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000311
312<pre>
Reid Spencerca86e162006-12-31 07:07:53 +0000313 %result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000314</pre>
315
Misha Brukman9d0919f2003-11-08 01:05:38 +0000316<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000317
318<pre>
Reid Spencerca86e162006-12-31 07:07:53 +0000319 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000320</pre>
321
Misha Brukman9d0919f2003-11-08 01:05:38 +0000322<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000323
324<pre>
Reid Spencerca86e162006-12-31 07:07:53 +0000325 <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
326 <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
327 %result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000328</pre>
329
Chris Lattner261efe92003-11-25 01:02:51 +0000330<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
331important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000332
Chris Lattner00950542001-06-06 20:29:01 +0000333<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000334
335 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
336 line.</li>
337
338 <li>Unnamed temporaries are created when the result of a computation is not
339 assigned to a named value.</li>
340
Misha Brukman9d0919f2003-11-08 01:05:38 +0000341 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000342
Misha Brukman9d0919f2003-11-08 01:05:38 +0000343</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000344
John Criswelle4c57cc2005-05-12 16:52:32 +0000345<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000346demonstrating instructions, we will follow an instruction with a comment that
347defines the type and name of value produced. Comments are shown in italic
348text.</p>
349
Misha Brukman9d0919f2003-11-08 01:05:38 +0000350</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000351
352<!-- *********************************************************************** -->
353<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
354<!-- *********************************************************************** -->
355
356<!-- ======================================================================= -->
357<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
358</div>
359
360<div class="doc_text">
361
362<p>LLVM programs are composed of "Module"s, each of which is a
363translation unit of the input programs. Each module consists of
364functions, global variables, and symbol table entries. Modules may be
365combined together with the LLVM linker, which merges function (and
366global variable) definitions, resolves forward declarations, and merges
367symbol table entries. Here is an example of the "hello world" module:</p>
368
369<pre><i>; Declare the string constant as a global constant...</i>
370<a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a
Reid Spencerca86e162006-12-31 07:07:53 +0000371 href="#globalvars">constant</a> <a href="#t_array">[13 x i8 ]</a> c"hello world\0A\00" <i>; [13 x i8 ]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000372
373<i>; External declaration of the puts function</i>
Reid Spencerca86e162006-12-31 07:07:53 +0000374<a href="#functionstructure">declare</a> i32 %puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000375
376<i>; Definition of main function</i>
Reid Spencerca86e162006-12-31 07:07:53 +0000377define i32 %main() { <i>; i32()* </i>
378 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000379 %cast210 = <a
Reid Spencerca86e162006-12-31 07:07:53 +0000380 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* %.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000381
382 <i>; Call puts function to write out the string to stdout...</i>
383 <a
Reid Spencerca86e162006-12-31 07:07:53 +0000384 href="#i_call">call</a> i32 %puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000385 <a
Reid Spencerca86e162006-12-31 07:07:53 +0000386 href="#i_ret">ret</a> i32 0<br>}<br></pre>
Chris Lattnerfa730212004-12-09 16:11:40 +0000387
388<p>This example is made up of a <a href="#globalvars">global variable</a>
389named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
390function, and a <a href="#functionstructure">function definition</a>
391for "<tt>main</tt>".</p>
392
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393<p>In general, a module is made up of a list of global values,
394where both functions and global variables are global values. Global values are
395represented by a pointer to a memory location (in this case, a pointer to an
396array of char, and a pointer to a function), and have one of the following <a
397href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000398
Chris Lattnere5d947b2004-12-09 16:36:40 +0000399</div>
400
401<!-- ======================================================================= -->
402<div class="doc_subsection">
403 <a name="linkage">Linkage Types</a>
404</div>
405
406<div class="doc_text">
407
408<p>
409All Global Variables and Functions have one of the following types of linkage:
410</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000411
412<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000413
Chris Lattnerfa730212004-12-09 16:11:40 +0000414 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000415
416 <dd>Global values with internal linkage are only directly accessible by
417 objects in the current module. In particular, linking code into a module with
418 an internal global value may cause the internal to be renamed as necessary to
419 avoid collisions. Because the symbol is internal to the module, all
420 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000421 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000422 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000423
Chris Lattnerfa730212004-12-09 16:11:40 +0000424 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000425
Chris Lattner4887bd82007-01-14 06:51:48 +0000426 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
427 the same name when linkage occurs. This is typically used to implement
428 inline functions, templates, or other code which must be generated in each
429 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
430 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000431 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000432
Chris Lattnerfa730212004-12-09 16:11:40 +0000433 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000434
435 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
436 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
Chris Lattner4887bd82007-01-14 06:51:48 +0000437 used for globals that may be emitted in multiple translation units, but that
438 are not guaranteed to be emitted into every translation unit that uses them.
439 One example of this are common globals in C, such as "<tt>int X;</tt>" at
440 global scope.
Chris Lattnerfa730212004-12-09 16:11:40 +0000441 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000442
Chris Lattnerfa730212004-12-09 16:11:40 +0000443 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000444
445 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
446 pointer to array type. When two global variables with appending linkage are
447 linked together, the two global arrays are appended together. This is the
448 LLVM, typesafe, equivalent of having the system linker append together
449 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000450 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000451
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000452 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
453 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
454 until linked, if not linked, the symbol becomes null instead of being an
455 undefined reference.
456 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000457
Chris Lattnerfa730212004-12-09 16:11:40 +0000458 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000459
460 <dd>If none of the above identifiers are used, the global is externally
461 visible, meaning that it participates in linkage and can be used to resolve
462 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000463 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000464</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000465
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000466 <p>
467 The next two types of linkage are targeted for Microsoft Windows platform
468 only. They are designed to support importing (exporting) symbols from (to)
469 DLLs.
470 </p>
471
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000472 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000473 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
474
475 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
476 or variable via a global pointer to a pointer that is set up by the DLL
477 exporting the symbol. On Microsoft Windows targets, the pointer name is
478 formed by combining <code>_imp__</code> and the function or variable name.
479 </dd>
480
481 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
482
483 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
484 pointer to a pointer in a DLL, so that it can be referenced with the
485 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
486 name is formed by combining <code>_imp__</code> and the function or variable
487 name.
488 </dd>
489
Chris Lattnerfa730212004-12-09 16:11:40 +0000490</dl>
491
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000492<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000493variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
494variable and was linked with this one, one of the two would be renamed,
495preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
496external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000497outside of the current module.</p>
498<p>It is illegal for a function <i>declaration</i>
499to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000500or <tt>extern_weak</tt>.</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000501
Chris Lattnerfa730212004-12-09 16:11:40 +0000502</div>
503
504<!-- ======================================================================= -->
505<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000506 <a name="callingconv">Calling Conventions</a>
507</div>
508
509<div class="doc_text">
510
511<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
512and <a href="#i_invoke">invokes</a> can all have an optional calling convention
513specified for the call. The calling convention of any pair of dynamic
514caller/callee must match, or the behavior of the program is undefined. The
515following calling conventions are supported by LLVM, and more may be added in
516the future:</p>
517
518<dl>
519 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
520
521 <dd>This calling convention (the default if no other calling convention is
522 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000523 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000524 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000525 </dd>
526
527 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
528
529 <dd>This calling convention attempts to make calls as fast as possible
530 (e.g. by passing things in registers). This calling convention allows the
531 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner8cdc5bc2005-05-06 23:08:23 +0000532 without having to conform to an externally specified ABI. Implementations of
533 this convention should allow arbitrary tail call optimization to be supported.
534 This calling convention does not support varargs and requires the prototype of
535 all callees to exactly match the prototype of the function definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000536 </dd>
537
538 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
539
540 <dd>This calling convention attempts to make code in the caller as efficient
541 as possible under the assumption that the call is not commonly executed. As
542 such, these calls often preserve all registers so that the call does not break
543 any live ranges in the caller side. This calling convention does not support
544 varargs and requires the prototype of all callees to exactly match the
545 prototype of the function definition.
546 </dd>
547
Chris Lattnercfe6b372005-05-07 01:46:40 +0000548 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000549
550 <dd>Any calling convention may be specified by number, allowing
551 target-specific calling conventions to be used. Target specific calling
552 conventions start at 64.
553 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000554</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000555
556<p>More calling conventions can be added/defined on an as-needed basis, to
557support pascal conventions or any other well-known target-independent
558convention.</p>
559
560</div>
561
562<!-- ======================================================================= -->
563<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000564 <a name="visibility">Visibility Styles</a>
565</div>
566
567<div class="doc_text">
568
569<p>
570All Global Variables and Functions have one of the following visibility styles:
571</p>
572
573<dl>
574 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
575
576 <dd>On ELF, default visibility means that the declaration is visible to other
577 modules and, in shared libraries, means that the declared entity may be
578 overridden. On Darwin, default visibility means that the declaration is
579 visible to other modules. Default visibility corresponds to "external
580 linkage" in the language.
581 </dd>
582
583 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
584
585 <dd>Two declarations of an object with hidden visibility refer to the same
586 object if they are in the same shared object. Usually, hidden visibility
587 indicates that the symbol will not be placed into the dynamic symbol table,
588 so no other module (executable or shared library) can reference it
589 directly.
590 </dd>
591
592</dl>
593
594</div>
595
596<!-- ======================================================================= -->
597<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000598 <a name="globalvars">Global Variables</a>
599</div>
600
601<div class="doc_text">
602
Chris Lattner3689a342005-02-12 19:30:21 +0000603<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000604instead of run-time. Global variables may optionally be initialized, may have
605an explicit section to be placed in, and may
Chris Lattner2cbdc452005-11-06 08:02:57 +0000606have an optional explicit alignment specified. A
John Criswell0ec250c2005-10-24 16:17:18 +0000607variable may be defined as a global "constant," which indicates that the
Chris Lattner3689a342005-02-12 19:30:21 +0000608contents of the variable will <b>never</b> be modified (enabling better
609optimization, allowing the global data to be placed in the read-only section of
610an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000611cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000612
613<p>
614LLVM explicitly allows <em>declarations</em> of global variables to be marked
615constant, even if the final definition of the global is not. This capability
616can be used to enable slightly better optimization of the program, but requires
617the language definition to guarantee that optimizations based on the
618'constantness' are valid for the translation units that do not include the
619definition.
620</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000621
622<p>As SSA values, global variables define pointer values that are in
623scope (i.e. they dominate) all basic blocks in the program. Global
624variables always define a pointer to their "content" type because they
625describe a region of memory, and all memory objects in LLVM are
626accessed through pointers.</p>
627
Chris Lattner88f6c462005-11-12 00:45:07 +0000628<p>LLVM allows an explicit section to be specified for globals. If the target
629supports it, it will emit globals to the section specified.</p>
630
Chris Lattner2cbdc452005-11-06 08:02:57 +0000631<p>An explicit alignment may be specified for a global. If not present, or if
632the alignment is set to zero, the alignment of the global is set by the target
633to whatever it feels convenient. If an explicit alignment is specified, the
634global is forced to have at least that much alignment. All alignments must be
635a power of 2.</p>
636
Chris Lattner68027ea2007-01-14 00:27:09 +0000637<p>For example, the following defines a global with an initializer, section,
638 and alignment:</p>
639
640<pre>
641 %G = constant float 1.0, section "foo", align 4
642</pre>
643
Chris Lattnerfa730212004-12-09 16:11:40 +0000644</div>
645
646
647<!-- ======================================================================= -->
648<div class="doc_subsection">
649 <a name="functionstructure">Functions</a>
650</div>
651
652<div class="doc_text">
653
Reid Spencerca86e162006-12-31 07:07:53 +0000654<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
655an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000656<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000657<a href="#callingconv">calling convention</a>, a return type, an optional
658<a href="#paramattrs">parameter attribute</a> for the return type, a function
659name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000660<a href="#paramattrs">parameter attributes</a>), an optional section, an
661optional alignment, an opening curly brace, a list of basic blocks, and a
662closing curly brace.
663
664LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
665optional <a href="#linkage">linkage type</a>, an optional
666<a href="#visibility">visibility style</a>, an optional
667<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000668<a href="#paramattrs">parameter attribute</a> for the return type, a function
669name, a possibly empty list of arguments, and an optional alignment.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000670
671<p>A function definition contains a list of basic blocks, forming the CFG for
672the function. Each basic block may optionally start with a label (giving the
673basic block a symbol table entry), contains a list of instructions, and ends
674with a <a href="#terminators">terminator</a> instruction (such as a branch or
675function return).</p>
676
John Criswelle4c57cc2005-05-12 16:52:32 +0000677<p>The first basic block in a program is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000678executed on entrance to the function, and it is not allowed to have predecessor
679basic blocks (i.e. there can not be any branches to the entry block of a
680function). Because the block can have no predecessors, it also cannot have any
681<a href="#i_phi">PHI nodes</a>.</p>
682
683<p>LLVM functions are identified by their name and type signature. Hence, two
684functions with the same name but different parameter lists or return values are
Chris Lattnerd4f6b172005-03-07 22:13:59 +0000685considered different functions, and LLVM will resolve references to each
Chris Lattnerfa730212004-12-09 16:11:40 +0000686appropriately.</p>
687
Chris Lattner88f6c462005-11-12 00:45:07 +0000688<p>LLVM allows an explicit section to be specified for functions. If the target
689supports it, it will emit functions to the section specified.</p>
690
Chris Lattner2cbdc452005-11-06 08:02:57 +0000691<p>An explicit alignment may be specified for a function. If not present, or if
692the alignment is set to zero, the alignment of the function is set by the target
693to whatever it feels convenient. If an explicit alignment is specified, the
694function is forced to have at least that much alignment. All alignments must be
695a power of 2.</p>
696
Chris Lattnerfa730212004-12-09 16:11:40 +0000697</div>
698
Chris Lattner4e9aba72006-01-23 23:23:47 +0000699<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000700<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
701<div class="doc_text">
702 <p>The return type and each parameter of a function type may have a set of
703 <i>parameter attributes</i> associated with them. Parameter attributes are
704 used to communicate additional information about the result or parameters of
705 a function. Parameter attributes are considered to be part of the function
706 type so two functions types that differ only by the parameter attributes
707 are different function types.</p>
708
Reid Spencer950e9f82007-01-15 18:27:39 +0000709 <p>Parameter attributes are simple keywords that follow the type specified. If
710 multiple parameter attributes are needed, they are space separated. For
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000711 example:</p><pre>
Reid Spencer950e9f82007-01-15 18:27:39 +0000712 %someFunc = i16 (i8 sext %someParam) zext
713 %someFunc = i16 (i8 zext %someParam) zext</pre>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000714 <p>Note that the two function types above are unique because the parameter has
Reid Spencer950e9f82007-01-15 18:27:39 +0000715 a different attribute (sext in the first one, zext in the second). Also note
716 that the attribute for the function result (zext) comes immediately after the
717 argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000718
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000719 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000720 <dl>
Reid Spencer950e9f82007-01-15 18:27:39 +0000721 <dt><tt>zext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000722 <dd>This indicates that the parameter should be zero extended just before
723 a call to this function.</dd>
Reid Spencer950e9f82007-01-15 18:27:39 +0000724 <dt><tt>sext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000725 <dd>This indicates that the parameter should be sign extended just before
726 a call to this function.</dd>
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000727 <dt><tt>inreg</tt></dt>
728 <dd>This indicates that the parameter should be placed in register (if
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000729 possible) during assembling function call. Support for this attribute is
730 target-specific</dd>
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000731 <dt><tt>sret</tt></dt>
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000732 <dd>This indicates that the parameter specifies the address of a structure
Reid Spencer67606122007-03-22 02:02:11 +0000733 that is the return value of the function in the source program.</dd>
Reid Spencer2dc52012007-03-22 02:18:56 +0000734 <dt><tt>noreturn</tt></dt>
735 <dd>This function attribute indicates that the function never returns. This
736 indicates to LLVM that every call to this function should be treated as if
737 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Reid Spencer67606122007-03-22 02:02:11 +0000738 <dt><tt>nounwind</tt></dt>
739 <dd>This function attribute indicates that the function type does not use
740 the unwind instruction and does not allow stack unwinding to propagate
741 through it.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000742 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000743
Reid Spencerca86e162006-12-31 07:07:53 +0000744</div>
745
746<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000747<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000748 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000749</div>
750
751<div class="doc_text">
752<p>
753Modules may contain "module-level inline asm" blocks, which corresponds to the
754GCC "file scope inline asm" blocks. These blocks are internally concatenated by
755LLVM and treated as a single unit, but may be separated in the .ll file if
756desired. The syntax is very simple:
757</p>
758
759<div class="doc_code"><pre>
Chris Lattner52599e12006-01-24 00:37:20 +0000760 module asm "inline asm code goes here"
761 module asm "more can go here"
Chris Lattner4e9aba72006-01-23 23:23:47 +0000762</pre></div>
763
764<p>The strings can contain any character by escaping non-printable characters.
765 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
766 for the number.
767</p>
768
769<p>
770 The inline asm code is simply printed to the machine code .s file when
771 assembly code is generated.
772</p>
773</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000774
Reid Spencerde151942007-02-19 23:54:10 +0000775<!-- ======================================================================= -->
776<div class="doc_subsection">
777 <a name="datalayout">Data Layout</a>
778</div>
779
780<div class="doc_text">
781<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +0000782data is to be laid out in memory. The syntax for the data layout is simply:</p>
783<pre> target datalayout = "<i>layout specification</i>"</pre>
784<p>The <i>layout specification</i> consists of a list of specifications
785separated by the minus sign character ('-'). Each specification starts with a
786letter and may include other information after the letter to define some
787aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +0000788<dl>
789 <dt><tt>E</tt></dt>
790 <dd>Specifies that the target lays out data in big-endian form. That is, the
791 bits with the most significance have the lowest address location.</dd>
792 <dt><tt>e</tt></dt>
793 <dd>Specifies that hte target lays out data in little-endian form. That is,
794 the bits with the least significance have the lowest address location.</dd>
795 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
796 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
797 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
798 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
799 too.</dd>
800 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
801 <dd>This specifies the alignment for an integer type of a given bit
802 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
803 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
804 <dd>This specifies the alignment for a vector type of a given bit
805 <i>size</i>.</dd>
806 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
807 <dd>This specifies the alignment for a floating point type of a given bit
808 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
809 (double).</dd>
810 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
811 <dd>This specifies the alignment for an aggregate type of a given bit
812 <i>size</i>.</dd>
813</dl>
814<p>When constructing the data layout for a given target, LLVM starts with a
815default set of specifications which are then (possibly) overriden by the
816specifications in the <tt>datalayout</tt> keyword. The default specifications
817are given in this list:</p>
818<ul>
819 <li><tt>E</tt> - big endian</li>
820 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
821 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
822 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
823 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
824 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
825 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
826 alignment of 64-bits</li>
827 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
828 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
829 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
830 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
831 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
832</ul>
833<p>When llvm is determining the alignment for a given type, it uses the
834following rules:
835<ol>
836 <li>If the type sought is an exact match for one of the specifications, that
837 specification is used.</li>
838 <li>If no match is found, and the type sought is an integer type, then the
839 smallest integer type that is larger than the bitwidth of the sought type is
840 used. If none of the specifications are larger than the bitwidth then the the
841 largest integer type is used. For example, given the default specifications
842 above, the i7 type will use the alignment of i8 (next largest) while both
843 i65 and i256 will use the alignment of i64 (largest specified).</li>
844 <li>If no match is found, and the type sought is a vector type, then the
845 largest vector type that is smaller than the sought vector type will be used
846 as a fall back. This happens because <128 x double> can be implemented in
847 terms of 64 <2 x double>, for example.</li>
848</ol>
849</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000850
Chris Lattner00950542001-06-06 20:29:01 +0000851<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000852<div class="doc_section"> <a name="typesystem">Type System</a> </div>
853<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +0000854
Misha Brukman9d0919f2003-11-08 01:05:38 +0000855<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +0000856
Misha Brukman9d0919f2003-11-08 01:05:38 +0000857<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +0000858intermediate representation. Being typed enables a number of
859optimizations to be performed on the IR directly, without having to do
860extra analyses on the side before the transformation. A strong type
861system makes it easier to read the generated code and enables novel
862analyses and transformations that are not feasible to perform on normal
863three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000864
865</div>
866
Chris Lattner00950542001-06-06 20:29:01 +0000867<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +0000868<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000869<div class="doc_text">
John Criswell4457dc92004-04-09 16:48:45 +0000870<p>The primitive types are the fundamental building blocks of the LLVM
Chris Lattnerd4f6b172005-03-07 22:13:59 +0000871system. The current set of primitive types is as follows:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000872
Reid Spencerd3f876c2004-11-01 08:19:36 +0000873<table class="layout">
874 <tr class="layout">
875 <td class="left">
876 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000877 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000878 <tr><th>Type</th><th>Description</th></tr>
Duncan Sands8036ca42007-03-30 12:22:09 +0000879 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
Chris Lattner3b19d652007-01-15 01:54:13 +0000880 <tr><td><tt>i8</tt></td><td>8-bit value</td></tr>
881 <tr><td><tt>i32</tt></td><td>32-bit value</td></tr>
Misha Brukmancfa87bc2005-04-22 18:02:52 +0000882 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000883 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000884 </tbody>
885 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000886 </td>
887 <td class="right">
888 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000889 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000890 <tr><th>Type</th><th>Description</th></tr>
Reid Spencerc78f3372007-01-12 03:35:51 +0000891 <tr><td><tt>i1</tt></td><td>True or False value</td></tr>
Chris Lattner3b19d652007-01-15 01:54:13 +0000892 <tr><td><tt>i16</tt></td><td>16-bit value</td></tr>
893 <tr><td><tt>i64</tt></td><td>64-bit value</td></tr>
Reid Spencerca86e162006-12-31 07:07:53 +0000894 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000895 </tbody>
896 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000897 </td>
898 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000899</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000900</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000901
Chris Lattner00950542001-06-06 20:29:01 +0000902<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000903<div class="doc_subsubsection"> <a name="t_classifications">Type
904Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000905<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000906<p>These different primitive types fall into a few useful
907classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000908
909<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +0000910 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000911 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000912 <tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000913 <td><a name="t_integer">integer</a></td>
Chris Lattner3b19d652007-01-15 01:54:13 +0000914 <td><tt>i1, i8, i16, i32, i64</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +0000915 </tr>
916 <tr>
917 <td><a name="t_floating">floating point</a></td>
918 <td><tt>float, double</tt></td>
919 </tr>
920 <tr>
921 <td><a name="t_firstclass">first class</a></td>
Reid Spencerc78f3372007-01-12 03:35:51 +0000922 <td><tt>i1, i8, i16, i32, i64, float, double, <br/>
Reid Spencer485bad12007-02-15 03:07:05 +0000923 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
Reid Spencerca86e162006-12-31 07:07:53 +0000924 </td>
Chris Lattner261efe92003-11-25 01:02:51 +0000925 </tr>
926 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000927</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000928
Chris Lattner261efe92003-11-25 01:02:51 +0000929<p>The <a href="#t_firstclass">first class</a> types are perhaps the
930most important. Values of these types are the only ones which can be
931produced by instructions, passed as arguments, or used as operands to
932instructions. This means that all structures and arrays must be
933manipulated either by pointer or by component.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000934</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000935
Chris Lattner00950542001-06-06 20:29:01 +0000936<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +0000937<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000938
Misha Brukman9d0919f2003-11-08 01:05:38 +0000939<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +0000940
Chris Lattner261efe92003-11-25 01:02:51 +0000941<p>The real power in LLVM comes from the derived types in the system.
942This is what allows a programmer to represent arrays, functions,
943pointers, and other useful types. Note that these derived types may be
944recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000945
Misha Brukman9d0919f2003-11-08 01:05:38 +0000946</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000947
Chris Lattner00950542001-06-06 20:29:01 +0000948<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000949<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000950
Misha Brukman9d0919f2003-11-08 01:05:38 +0000951<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +0000952
Chris Lattner00950542001-06-06 20:29:01 +0000953<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000954
Misha Brukman9d0919f2003-11-08 01:05:38 +0000955<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +0000956sequentially in memory. The array type requires a size (number of
957elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000958
Chris Lattner7faa8832002-04-14 06:13:44 +0000959<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000960
961<pre>
962 [&lt;# elements&gt; x &lt;elementtype&gt;]
963</pre>
964
John Criswelle4c57cc2005-05-12 16:52:32 +0000965<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +0000966be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000967
Chris Lattner7faa8832002-04-14 06:13:44 +0000968<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000969<table class="layout">
970 <tr class="layout">
971 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +0000972 <tt>[40 x i32 ]</tt><br/>
973 <tt>[41 x i32 ]</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +0000974 <tt>[40 x i8]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000975 </td>
976 <td class="left">
Reid Spencera5173382007-01-04 16:43:23 +0000977 Array of 40 32-bit integer values.<br/>
978 Array of 41 32-bit integer values.<br/>
979 Array of 40 8-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000980 </td>
981 </tr>
Chris Lattner00950542001-06-06 20:29:01 +0000982</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000983<p>Here are some examples of multidimensional arrays:</p>
984<table class="layout">
985 <tr class="layout">
986 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +0000987 <tt>[3 x [4 x i32]]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000988 <tt>[12 x [10 x float]]</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +0000989 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000990 </td>
991 <td class="left">
Reid Spencera5173382007-01-04 16:43:23 +0000992 3x4 array of 32-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000993 12x10 array of single precision floating point values.<br/>
Reid Spencera5173382007-01-04 16:43:23 +0000994 2x3x4 array of 16-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000995 </td>
996 </tr>
997</table>
Chris Lattnere67a9512005-06-24 17:22:57 +0000998
John Criswell0ec250c2005-10-24 16:17:18 +0000999<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1000length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001001LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1002As a special case, however, zero length arrays are recognized to be variable
1003length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001004type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001005
Misha Brukman9d0919f2003-11-08 01:05:38 +00001006</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001007
Chris Lattner00950542001-06-06 20:29:01 +00001008<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001009<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001010<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001011<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001012<p>The function type can be thought of as a function signature. It
1013consists of a return type and a list of formal parameter types.
John Criswell009900b2003-11-25 21:45:46 +00001014Function types are usually used to build virtual function tables
Chris Lattner261efe92003-11-25 01:02:51 +00001015(which are structures of pointers to functions), for indirect function
1016calls, and when defining a function.</p>
John Criswell009900b2003-11-25 21:45:46 +00001017<p>
1018The return type of a function type cannot be an aggregate type.
1019</p>
Chris Lattner00950542001-06-06 20:29:01 +00001020<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001021<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
John Criswell0ec250c2005-10-24 16:17:18 +00001022<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001023specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001024which indicates that the function takes a variable number of arguments.
1025Variable argument functions can access their arguments with the <a
Chris Lattner261efe92003-11-25 01:02:51 +00001026 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001027<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001028<table class="layout">
1029 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001030 <td class="left"><tt>i32 (i32)</tt></td>
1031 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001032 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001033 </tr><tr class="layout">
Reid Spencer7bf214d2007-01-15 18:28:34 +00001034 <td class="left"><tt>float&nbsp;(i16&nbsp;sext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001035 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001036 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1037 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001038 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001039 <tt>float</tt>.
1040 </td>
1041 </tr><tr class="layout">
1042 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1043 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001044 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001045 which returns an integer. This is the signature for <tt>printf</tt> in
1046 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001047 </td>
1048 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001049</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001050
Misha Brukman9d0919f2003-11-08 01:05:38 +00001051</div>
Chris Lattner00950542001-06-06 20:29:01 +00001052<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001053<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001054<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001055<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001056<p>The structure type is used to represent a collection of data members
1057together in memory. The packing of the field types is defined to match
1058the ABI of the underlying processor. The elements of a structure may
1059be any type that has a size.</p>
1060<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1061and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1062field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1063instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001064<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001065<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001066<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001067<table class="layout">
1068 <tr class="layout">
1069 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001070 <tt>{ i32, i32, i32 }</tt><br/>
1071 <tt>{ float, i32 (i32) * }</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001072 </td>
1073 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001074 a triple of three <tt>i32</tt> values<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001075 A pair, where the first element is a <tt>float</tt> and the second element
1076 is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a>
Reid Spencerca86e162006-12-31 07:07:53 +00001077 that takes an <tt>i32</tt>, returning an <tt>i32</tt>.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001078 </td>
1079 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001080</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001081</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001082
Chris Lattner00950542001-06-06 20:29:01 +00001083<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001084<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1085</div>
1086<div class="doc_text">
1087<h5>Overview:</h5>
1088<p>The packed structure type is used to represent a collection of data members
1089together in memory. There is no padding between fields. Further, the alignment
1090of a packed structure is 1 byte. The elements of a packed structure may
1091be any type that has a size.</p>
1092<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1093and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1094field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1095instruction.</p>
1096<h5>Syntax:</h5>
1097<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1098<h5>Examples:</h5>
1099<table class="layout">
1100 <tr class="layout">
1101 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001102 <tt> &lt; { i32, i32, i32 } &gt; </tt><br/>
1103 <tt> &lt; { float, i32 (i32) * } &gt; </tt><br/>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001104 </td>
1105 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001106 a triple of three <tt>i32</tt> values<br/>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001107 A pair, where the first element is a <tt>float</tt> and the second element
1108 is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a>
Reid Spencerca86e162006-12-31 07:07:53 +00001109 that takes an <tt>i32</tt>, returning an <tt>i32</tt>.<br/>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001110 </td>
1111 </tr>
1112</table>
1113</div>
1114
1115<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001116<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001117<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001118<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001119<p>As in many languages, the pointer type represents a pointer or
1120reference to another object, which must live in memory.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001121<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001122<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001123<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001124<table class="layout">
1125 <tr class="layout">
1126 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001127 <tt>[4x i32]*</tt><br/>
1128 <tt>i32 (i32 *) *</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001129 </td>
1130 <td class="left">
1131 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
Reid Spencerca86e162006-12-31 07:07:53 +00001132 four <tt>i32</tt> values<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001133 A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001134 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1135 <tt>i32</tt>.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001136 </td>
1137 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001138</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001139</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001140
Chris Lattnera58561b2004-08-12 19:12:28 +00001141<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001142<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001143<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001144
Chris Lattnera58561b2004-08-12 19:12:28 +00001145<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001146
Reid Spencer485bad12007-02-15 03:07:05 +00001147<p>A vector type is a simple derived type that represents a vector
1148of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001149are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001150A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001151elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001152of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001153considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001154
Chris Lattnera58561b2004-08-12 19:12:28 +00001155<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001156
1157<pre>
1158 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1159</pre>
1160
John Criswellc1f786c2005-05-13 22:25:59 +00001161<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001162be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001163
Chris Lattnera58561b2004-08-12 19:12:28 +00001164<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001165
Reid Spencerd3f876c2004-11-01 08:19:36 +00001166<table class="layout">
1167 <tr class="layout">
1168 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001169 <tt>&lt;4 x i32&gt;</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001170 <tt>&lt;8 x float&gt;</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +00001171 <tt>&lt;2 x i64&gt;</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001172 </td>
1173 <td class="left">
Reid Spencer485bad12007-02-15 03:07:05 +00001174 Vector of 4 32-bit integer values.<br/>
1175 Vector of 8 floating-point values.<br/>
1176 Vector of 2 64-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001177 </td>
1178 </tr>
1179</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001180</div>
1181
Chris Lattner69c11bb2005-04-25 17:34:15 +00001182<!-- _______________________________________________________________________ -->
1183<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1184<div class="doc_text">
1185
1186<h5>Overview:</h5>
1187
1188<p>Opaque types are used to represent unknown types in the system. This
1189corresponds (for example) to the C notion of a foward declared structure type.
1190In LLVM, opaque types can eventually be resolved to any type (not just a
1191structure type).</p>
1192
1193<h5>Syntax:</h5>
1194
1195<pre>
1196 opaque
1197</pre>
1198
1199<h5>Examples:</h5>
1200
1201<table class="layout">
1202 <tr class="layout">
1203 <td class="left">
1204 <tt>opaque</tt>
1205 </td>
1206 <td class="left">
1207 An opaque type.<br/>
1208 </td>
1209 </tr>
1210</table>
1211</div>
1212
1213
Chris Lattnerc3f59762004-12-09 17:30:23 +00001214<!-- *********************************************************************** -->
1215<div class="doc_section"> <a name="constants">Constants</a> </div>
1216<!-- *********************************************************************** -->
1217
1218<div class="doc_text">
1219
1220<p>LLVM has several different basic types of constants. This section describes
1221them all and their syntax.</p>
1222
1223</div>
1224
1225<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001226<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001227
1228<div class="doc_text">
1229
1230<dl>
1231 <dt><b>Boolean constants</b></dt>
1232
1233 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001234 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001235 </dd>
1236
1237 <dt><b>Integer constants</b></dt>
1238
Reid Spencercc16dc32004-12-09 18:02:53 +00001239 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001240 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001241 integer types.
1242 </dd>
1243
1244 <dt><b>Floating point constants</b></dt>
1245
1246 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1247 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerc3f59762004-12-09 17:30:23 +00001248 notation (see below). Floating point constants must have a <a
1249 href="#t_floating">floating point</a> type. </dd>
1250
1251 <dt><b>Null pointer constants</b></dt>
1252
John Criswell9e2485c2004-12-10 15:51:16 +00001253 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001254 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1255
1256</dl>
1257
John Criswell9e2485c2004-12-10 15:51:16 +00001258<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001259of floating point constants. For example, the form '<tt>double
12600x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
12614.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001262(and the only time that they are generated by the disassembler) is when a
1263floating point constant must be emitted but it cannot be represented as a
1264decimal floating point number. For example, NaN's, infinities, and other
1265special values are represented in their IEEE hexadecimal format so that
1266assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001267
1268</div>
1269
1270<!-- ======================================================================= -->
1271<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1272</div>
1273
1274<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001275<p>Aggregate constants arise from aggregation of simple constants
1276and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001277
1278<dl>
1279 <dt><b>Structure constants</b></dt>
1280
1281 <dd>Structure constants are represented with notation similar to structure
1282 type definitions (a comma separated list of elements, surrounded by braces
Reid Spencerca86e162006-12-31 07:07:53 +00001283 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1284 where "<tt>%G</tt>" is declared as "<tt>%G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001285 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001286 types of elements must match those specified by the type.
1287 </dd>
1288
1289 <dt><b>Array constants</b></dt>
1290
1291 <dd>Array constants are represented with notation similar to array type
1292 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001293 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001294 constants must have <a href="#t_array">array type</a>, and the number and
1295 types of elements must match those specified by the type.
1296 </dd>
1297
Reid Spencer485bad12007-02-15 03:07:05 +00001298 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001299
Reid Spencer485bad12007-02-15 03:07:05 +00001300 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001301 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001302 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Reid Spencer485bad12007-02-15 03:07:05 +00001303 i32 11, i32 74, i32 100 &gt;</tt>". VEctor constants must have <a
1304 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001305 match those specified by the type.
1306 </dd>
1307
1308 <dt><b>Zero initialization</b></dt>
1309
1310 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1311 value to zero of <em>any</em> type, including scalar and aggregate types.
1312 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001313 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001314 initializers.
1315 </dd>
1316</dl>
1317
1318</div>
1319
1320<!-- ======================================================================= -->
1321<div class="doc_subsection">
1322 <a name="globalconstants">Global Variable and Function Addresses</a>
1323</div>
1324
1325<div class="doc_text">
1326
1327<p>The addresses of <a href="#globalvars">global variables</a> and <a
1328href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001329constants. These constants are explicitly referenced when the <a
1330href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001331href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1332file:</p>
1333
1334<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00001335 %X = global i32 17
1336 %Y = global i32 42
1337 %Z = global [2 x i32*] [ i32* %X, i32* %Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001338</pre>
1339
1340</div>
1341
1342<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001343<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001344<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001345 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001346 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001347 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001348
Reid Spencer2dc45b82004-12-09 18:13:12 +00001349 <p>Undefined values indicate to the compiler that the program is well defined
1350 no matter what value is used, giving the compiler more freedom to optimize.
1351 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001352</div>
1353
1354<!-- ======================================================================= -->
1355<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1356</div>
1357
1358<div class="doc_text">
1359
1360<p>Constant expressions are used to allow expressions involving other constants
1361to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001362href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001363that does not have side effects (e.g. load and call are not supported). The
1364following is the syntax for constant expressions:</p>
1365
1366<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001367 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1368 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001369 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001370
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001371 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1372 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001373 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001374
1375 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1376 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001377 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001378
1379 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1380 <dd>Truncate a floating point constant to another floating point type. The
1381 size of CST must be larger than the size of TYPE. Both types must be
1382 floating point.</dd>
1383
1384 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1385 <dd>Floating point extend a constant to another type. The size of CST must be
1386 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1387
1388 <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt>
1389 <dd>Convert a floating point constant to the corresponding unsigned integer
1390 constant. TYPE must be an integer type. CST must be floating point. If the
1391 value won't fit in the integer type, the results are undefined.</dd>
1392
Reid Spencerd4448792006-11-09 23:03:26 +00001393 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001394 <dd>Convert a floating point constant to the corresponding signed integer
1395 constant. TYPE must be an integer type. CST must be floating point. If the
1396 value won't fit in the integer type, the results are undefined.</dd>
1397
Reid Spencerd4448792006-11-09 23:03:26 +00001398 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001399 <dd>Convert an unsigned integer constant to the corresponding floating point
1400 constant. TYPE must be floating point. CST must be of integer type. If the
1401 value won't fit in the floating point type, the results are undefined.</dd>
1402
Reid Spencerd4448792006-11-09 23:03:26 +00001403 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001404 <dd>Convert a signed integer constant to the corresponding floating point
1405 constant. TYPE must be floating point. CST must be of integer type. If the
1406 value won't fit in the floating point type, the results are undefined.</dd>
1407
Reid Spencer5c0ef472006-11-11 23:08:07 +00001408 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1409 <dd>Convert a pointer typed constant to the corresponding integer constant
1410 TYPE must be an integer type. CST must be of pointer type. The CST value is
1411 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1412
1413 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1414 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1415 pointer type. CST must be of integer type. The CST value is zero extended,
1416 truncated, or unchanged to make it fit in a pointer size. This one is
1417 <i>really</i> dangerous!</dd>
1418
1419 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001420 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1421 identical (same number of bits). The conversion is done as if the CST value
1422 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001423 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001424 vector types to any other type, as long as they have the same bit width. For
Reid Spencer5c0ef472006-11-11 23:08:07 +00001425 pointers it is only valid to cast to another pointer type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001426 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001427
1428 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1429
1430 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1431 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1432 instruction, the index list may have zero or more indexes, which are required
1433 to make sense for the type of "CSTPTR".</dd>
1434
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001435 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1436
1437 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001438 constants.</dd>
1439
1440 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1441 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1442
1443 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1444 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001445
1446 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1447
1448 <dd>Perform the <a href="#i_extractelement">extractelement
1449 operation</a> on constants.
1450
Robert Bocchino05ccd702006-01-15 20:48:27 +00001451 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1452
1453 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001454 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001455
Chris Lattnerc1989542006-04-08 00:13:41 +00001456
1457 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1458
1459 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001460 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001461
Chris Lattnerc3f59762004-12-09 17:30:23 +00001462 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1463
Reid Spencer2dc45b82004-12-09 18:13:12 +00001464 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1465 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001466 binary</a> operations. The constraints on operands are the same as those for
1467 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001468 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001469</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001470</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001471
Chris Lattner00950542001-06-06 20:29:01 +00001472<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001473<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1474<!-- *********************************************************************** -->
1475
1476<!-- ======================================================================= -->
1477<div class="doc_subsection">
1478<a name="inlineasm">Inline Assembler Expressions</a>
1479</div>
1480
1481<div class="doc_text">
1482
1483<p>
1484LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1485Module-Level Inline Assembly</a>) through the use of a special value. This
1486value represents the inline assembler as a string (containing the instructions
1487to emit), a list of operand constraints (stored as a string), and a flag that
1488indicates whether or not the inline asm expression has side effects. An example
1489inline assembler expression is:
1490</p>
1491
1492<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00001493 i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001494</pre>
1495
1496<p>
1497Inline assembler expressions may <b>only</b> be used as the callee operand of
1498a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1499</p>
1500
1501<pre>
Reid Spencera3e435f2007-04-04 02:42:35 +00001502 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001503</pre>
1504
1505<p>
1506Inline asms with side effects not visible in the constraint list must be marked
1507as having side effects. This is done through the use of the
1508'<tt>sideeffect</tt>' keyword, like so:
1509</p>
1510
1511<pre>
1512 call void asm sideeffect "eieio", ""()
1513</pre>
1514
1515<p>TODO: The format of the asm and constraints string still need to be
1516documented here. Constraints on what can be done (e.g. duplication, moving, etc
1517need to be documented).
1518</p>
1519
1520</div>
1521
1522<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001523<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1524<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001525
Misha Brukman9d0919f2003-11-08 01:05:38 +00001526<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001527
Chris Lattner261efe92003-11-25 01:02:51 +00001528<p>The LLVM instruction set consists of several different
1529classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001530instructions</a>, <a href="#binaryops">binary instructions</a>,
1531<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001532 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1533instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001534
Misha Brukman9d0919f2003-11-08 01:05:38 +00001535</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001536
Chris Lattner00950542001-06-06 20:29:01 +00001537<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001538<div class="doc_subsection"> <a name="terminators">Terminator
1539Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001540
Misha Brukman9d0919f2003-11-08 01:05:38 +00001541<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001542
Chris Lattner261efe92003-11-25 01:02:51 +00001543<p>As mentioned <a href="#functionstructure">previously</a>, every
1544basic block in a program ends with a "Terminator" instruction, which
1545indicates which block should be executed after the current block is
1546finished. These terminator instructions typically yield a '<tt>void</tt>'
1547value: they produce control flow, not values (the one exception being
1548the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001549<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001550 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1551instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001552the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1553 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1554 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001555
Misha Brukman9d0919f2003-11-08 01:05:38 +00001556</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001557
Chris Lattner00950542001-06-06 20:29:01 +00001558<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001559<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1560Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001561<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001562<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001563<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001564 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001565</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001566<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001567<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001568value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001569<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner261efe92003-11-25 01:02:51 +00001570returns a value and then causes control flow, and one that just causes
1571control flow to occur.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001572<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001573<p>The '<tt>ret</tt>' instruction may return any '<a
1574 href="#t_firstclass">first class</a>' type. Notice that a function is
1575not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1576instruction inside of the function that returns a value that does not
1577match the return type of the function.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001578<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001579<p>When the '<tt>ret</tt>' instruction is executed, control flow
1580returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001581 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001582the instruction after the call. If the caller was an "<a
1583 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001584at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001585returns a value, that value shall set the call or invoke instruction's
1586return value.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001587<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001588<pre> ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001589 ret void <i>; Return from a void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001590</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001591</div>
Chris Lattner00950542001-06-06 20:29:01 +00001592<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001593<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001594<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001595<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001596<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001597</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001598<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001599<p>The '<tt>br</tt>' instruction is used to cause control flow to
1600transfer to a different basic block in the current function. There are
1601two forms of this instruction, corresponding to a conditional branch
1602and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001603<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001604<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001605single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001606unconditional form of the '<tt>br</tt>' instruction takes a single
1607'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001608<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001609<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001610argument is evaluated. If the value is <tt>true</tt>, control flows
1611to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1612control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001613<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001614<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001615 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001616</div>
Chris Lattner00950542001-06-06 20:29:01 +00001617<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001618<div class="doc_subsubsection">
1619 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1620</div>
1621
Misha Brukman9d0919f2003-11-08 01:05:38 +00001622<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001623<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001624
1625<pre>
1626 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1627</pre>
1628
Chris Lattner00950542001-06-06 20:29:01 +00001629<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001630
1631<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1632several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001633instruction, allowing a branch to occur to one of many possible
1634destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001635
1636
Chris Lattner00950542001-06-06 20:29:01 +00001637<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001638
1639<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1640comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1641an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1642table is not allowed to contain duplicate constant entries.</p>
1643
Chris Lattner00950542001-06-06 20:29:01 +00001644<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001645
Chris Lattner261efe92003-11-25 01:02:51 +00001646<p>The <tt>switch</tt> instruction specifies a table of values and
1647destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001648table is searched for the given value. If the value is found, control flow is
1649transfered to the corresponding destination; otherwise, control flow is
1650transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001651
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001652<h5>Implementation:</h5>
1653
1654<p>Depending on properties of the target machine and the particular
1655<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001656ways. For example, it could be generated as a series of chained conditional
1657branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001658
1659<h5>Example:</h5>
1660
1661<pre>
1662 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00001663 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00001664 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001665
1666 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001667 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001668
1669 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001670 switch i32 %val, label %otherwise [ i32 0, label %onzero
1671 i32 1, label %onone
1672 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001673</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001674</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001675
Chris Lattner00950542001-06-06 20:29:01 +00001676<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001677<div class="doc_subsubsection">
1678 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1679</div>
1680
Misha Brukman9d0919f2003-11-08 01:05:38 +00001681<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001682
Chris Lattner00950542001-06-06 20:29:01 +00001683<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001684
1685<pre>
1686 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001687 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001688</pre>
1689
Chris Lattner6536cfe2002-05-06 22:08:29 +00001690<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001691
1692<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1693function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001694'<tt>normal</tt>' label or the
1695'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001696"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1697"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001698href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1699continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001700
Chris Lattner00950542001-06-06 20:29:01 +00001701<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001702
Misha Brukman9d0919f2003-11-08 01:05:38 +00001703<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001704
Chris Lattner00950542001-06-06 20:29:01 +00001705<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001706 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00001707 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001708 convention</a> the call should use. If none is specified, the call defaults
1709 to using C calling conventions.
1710 </li>
1711 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1712 function value being invoked. In most cases, this is a direct function
1713 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1714 an arbitrary pointer to function value.
1715 </li>
1716
1717 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1718 function to be invoked. </li>
1719
1720 <li>'<tt>function args</tt>': argument list whose types match the function
1721 signature argument types. If the function signature indicates the function
1722 accepts a variable number of arguments, the extra arguments can be
1723 specified. </li>
1724
1725 <li>'<tt>normal label</tt>': the label reached when the called function
1726 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1727
1728 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1729 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1730
Chris Lattner00950542001-06-06 20:29:01 +00001731</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001732
Chris Lattner00950542001-06-06 20:29:01 +00001733<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001734
Misha Brukman9d0919f2003-11-08 01:05:38 +00001735<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001736href="#i_call">call</a></tt>' instruction in most regards. The primary
1737difference is that it establishes an association with a label, which is used by
1738the runtime library to unwind the stack.</p>
1739
1740<p>This instruction is used in languages with destructors to ensure that proper
1741cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1742exception. Additionally, this is important for implementation of
1743'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1744
Chris Lattner00950542001-06-06 20:29:01 +00001745<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001746<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00001747 %retval = invoke i32 %Test(i32 15) to label %Continue
1748 unwind label %TestCleanup <i>; {i32}:retval set</i>
1749 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1750 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00001751</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001752</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001753
1754
Chris Lattner27f71f22003-09-03 00:41:47 +00001755<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00001756
Chris Lattner261efe92003-11-25 01:02:51 +00001757<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1758Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00001759
Misha Brukman9d0919f2003-11-08 01:05:38 +00001760<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00001761
Chris Lattner27f71f22003-09-03 00:41:47 +00001762<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001763<pre>
1764 unwind
1765</pre>
1766
Chris Lattner27f71f22003-09-03 00:41:47 +00001767<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001768
1769<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1770at the first callee in the dynamic call stack which used an <a
1771href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1772primarily used to implement exception handling.</p>
1773
Chris Lattner27f71f22003-09-03 00:41:47 +00001774<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001775
1776<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1777immediately halt. The dynamic call stack is then searched for the first <a
1778href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1779execution continues at the "exceptional" destination block specified by the
1780<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1781dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001782</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001783
1784<!-- _______________________________________________________________________ -->
1785
1786<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1787Instruction</a> </div>
1788
1789<div class="doc_text">
1790
1791<h5>Syntax:</h5>
1792<pre>
1793 unreachable
1794</pre>
1795
1796<h5>Overview:</h5>
1797
1798<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1799instruction is used to inform the optimizer that a particular portion of the
1800code is not reachable. This can be used to indicate that the code after a
1801no-return function cannot be reached, and other facts.</p>
1802
1803<h5>Semantics:</h5>
1804
1805<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1806</div>
1807
1808
1809
Chris Lattner00950542001-06-06 20:29:01 +00001810<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001811<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001812<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00001813<p>Binary operators are used to do most of the computation in a
1814program. They require two operands, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00001815produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00001816multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattnera58561b2004-08-12 19:12:28 +00001817The result value of a binary operator is not
Chris Lattner261efe92003-11-25 01:02:51 +00001818necessarily the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001819<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001820</div>
Chris Lattner00950542001-06-06 20:29:01 +00001821<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001822<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1823Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001824<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001825<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001826<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001827</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001828<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001829<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001830<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001831<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
Chris Lattnera58561b2004-08-12 19:12:28 +00001832 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
Reid Spencer485bad12007-02-15 03:07:05 +00001833 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00001834Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001835<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001836<p>The value produced is the integer or floating point sum of the two
1837operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001838<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001839<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001840</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001841</div>
Chris Lattner00950542001-06-06 20:29:01 +00001842<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001843<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1844Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001845<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001846<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001847<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001848</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001849<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001850<p>The '<tt>sub</tt>' instruction returns the difference of its two
1851operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001852<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1853instruction present in most other intermediate representations.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001854<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001855<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00001856 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00001857values.
Reid Spencer485bad12007-02-15 03:07:05 +00001858This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00001859Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001860<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001861<p>The value produced is the integer or floating point difference of
1862the two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001863<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001864<pre> &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1865 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001866</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001867</div>
Chris Lattner00950542001-06-06 20:29:01 +00001868<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001869<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1870Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001871<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001872<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001873<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001874</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001875<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001876<p>The '<tt>mul</tt>' instruction returns the product of its two
1877operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001878<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001879<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00001880 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00001881values.
Reid Spencer485bad12007-02-15 03:07:05 +00001882This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00001883Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001884<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001885<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00001886two operands.</p>
Reid Spencera5173382007-01-04 16:43:23 +00001887<p>Because the operands are the same width, the result of an integer
1888multiplication is the same whether the operands should be deemed unsigned or
1889signed.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001890<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001891<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001892</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001893</div>
Chris Lattner00950542001-06-06 20:29:01 +00001894<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00001895<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
1896</a></div>
1897<div class="doc_text">
1898<h5>Syntax:</h5>
1899<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1900</pre>
1901<h5>Overview:</h5>
1902<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
1903operands.</p>
1904<h5>Arguments:</h5>
1905<p>The two arguments to the '<tt>udiv</tt>' instruction must be
1906<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00001907types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00001908of the values in which case the elements must be integers.</p>
1909<h5>Semantics:</h5>
1910<p>The value produced is the unsigned integer quotient of the two operands. This
1911instruction always performs an unsigned division operation, regardless of
1912whether the arguments are unsigned or not.</p>
1913<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001914<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00001915</pre>
1916</div>
1917<!-- _______________________________________________________________________ -->
1918<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
1919</a> </div>
1920<div class="doc_text">
1921<h5>Syntax:</h5>
1922<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1923</pre>
1924<h5>Overview:</h5>
1925<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
1926operands.</p>
1927<h5>Arguments:</h5>
1928<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
1929<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00001930types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00001931of the values in which case the elements must be integers.</p>
1932<h5>Semantics:</h5>
1933<p>The value produced is the signed integer quotient of the two operands. This
1934instruction always performs a signed division operation, regardless of whether
1935the arguments are signed or not.</p>
1936<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001937<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00001938</pre>
1939</div>
1940<!-- _______________________________________________________________________ -->
1941<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001942Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001943<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001944<h5>Syntax:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001945<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001946</pre>
1947<h5>Overview:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001948<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00001949operands.</p>
1950<h5>Arguments:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001951<p>The two arguments to the '<tt>div</tt>' instruction must be
1952<a href="#t_floating">floating point</a> values. Both arguments must have
Reid Spencer485bad12007-02-15 03:07:05 +00001953identical types. This instruction can also take <a href="#t_vector">vector</a>
Reid Spencer1628cec2006-10-26 06:15:43 +00001954versions of the values in which case the elements must be floating point.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001955<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001956<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001957<h5>Example:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001958<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001959</pre>
1960</div>
1961<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00001962<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
1963</div>
1964<div class="doc_text">
1965<h5>Syntax:</h5>
1966<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1967</pre>
1968<h5>Overview:</h5>
1969<p>The '<tt>urem</tt>' instruction returns the remainder from the
1970unsigned division of its two arguments.</p>
1971<h5>Arguments:</h5>
1972<p>The two arguments to the '<tt>urem</tt>' instruction must be
1973<a href="#t_integer">integer</a> values. Both arguments must have identical
1974types.</p>
1975<h5>Semantics:</h5>
1976<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
1977This instruction always performs an unsigned division to get the remainder,
1978regardless of whether the arguments are unsigned or not.</p>
1979<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001980<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00001981</pre>
1982
1983</div>
1984<!-- _______________________________________________________________________ -->
1985<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001986Instruction</a> </div>
1987<div class="doc_text">
1988<h5>Syntax:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001989<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001990</pre>
1991<h5>Overview:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001992<p>The '<tt>srem</tt>' instruction returns the remainder from the
1993signed division of its two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001994<h5>Arguments:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001995<p>The two arguments to the '<tt>srem</tt>' instruction must be
1996<a href="#t_integer">integer</a> values. Both arguments must have identical
1997types.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001998<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001999<p>This instruction returns the <i>remainder</i> of a division (where the result
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002000has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2001operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2002a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002003 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002004Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002005please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002006Wikipedia: modulo operation</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002007<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002008<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002009</pre>
2010
2011</div>
2012<!-- _______________________________________________________________________ -->
2013<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2014Instruction</a> </div>
2015<div class="doc_text">
2016<h5>Syntax:</h5>
2017<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2018</pre>
2019<h5>Overview:</h5>
2020<p>The '<tt>frem</tt>' instruction returns the remainder from the
2021division of its two operands.</p>
2022<h5>Arguments:</h5>
2023<p>The two arguments to the '<tt>frem</tt>' instruction must be
2024<a href="#t_floating">floating point</a> values. Both arguments must have
2025identical types.</p>
2026<h5>Semantics:</h5>
2027<p>This instruction returns the <i>remainder</i> of a division.</p>
2028<h5>Example:</h5>
2029<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002030</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002031</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002032
Reid Spencer8e11bf82007-02-02 13:57:07 +00002033<!-- ======================================================================= -->
2034<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2035Operations</a> </div>
2036<div class="doc_text">
2037<p>Bitwise binary operators are used to do various forms of
2038bit-twiddling in a program. They are generally very efficient
2039instructions and can commonly be strength reduced from other
2040instructions. They require two operands, execute an operation on them,
2041and produce a single value. The resulting value of the bitwise binary
2042operators is always the same type as its first operand.</p>
2043</div>
2044
Reid Spencer569f2fa2007-01-31 21:39:12 +00002045<!-- _______________________________________________________________________ -->
2046<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2047Instruction</a> </div>
2048<div class="doc_text">
2049<h5>Syntax:</h5>
2050<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2051</pre>
2052<h5>Overview:</h5>
2053<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2054the left a specified number of bits.</p>
2055<h5>Arguments:</h5>
2056<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2057 href="#t_integer">integer</a> type.</p>
2058<h5>Semantics:</h5>
2059<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2060<h5>Example:</h5><pre>
2061 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2062 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2063 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2064</pre>
2065</div>
2066<!-- _______________________________________________________________________ -->
2067<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2068Instruction</a> </div>
2069<div class="doc_text">
2070<h5>Syntax:</h5>
2071<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2072</pre>
2073
2074<h5>Overview:</h5>
2075<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2076operand shifted to the right a specified number of bits.</p>
2077
2078<h5>Arguments:</h5>
2079<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2080<a href="#t_integer">integer</a> type.</p>
2081
2082<h5>Semantics:</h5>
2083<p>This instruction always performs a logical shift right operation. The most
2084significant bits of the result will be filled with zero bits after the
2085shift.</p>
2086
2087<h5>Example:</h5>
2088<pre>
2089 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2090 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2091 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2092 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2093</pre>
2094</div>
2095
Reid Spencer8e11bf82007-02-02 13:57:07 +00002096<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002097<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2098Instruction</a> </div>
2099<div class="doc_text">
2100
2101<h5>Syntax:</h5>
2102<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2103</pre>
2104
2105<h5>Overview:</h5>
2106<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2107operand shifted to the right a specified number of bits.</p>
2108
2109<h5>Arguments:</h5>
2110<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2111<a href="#t_integer">integer</a> type.</p>
2112
2113<h5>Semantics:</h5>
2114<p>This instruction always performs an arithmetic shift right operation,
2115The most significant bits of the result will be filled with the sign bit
2116of <tt>var1</tt>.</p>
2117
2118<h5>Example:</h5>
2119<pre>
2120 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2121 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2122 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2123 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2124</pre>
2125</div>
2126
Chris Lattner00950542001-06-06 20:29:01 +00002127<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002128<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2129Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002130<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002131<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002132<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002133</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002134<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002135<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2136its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002137<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002138<p>The two arguments to the '<tt>and</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002139 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002140identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002141<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002142<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002143<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002144<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00002145<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002146 <tbody>
2147 <tr>
2148 <td>In0</td>
2149 <td>In1</td>
2150 <td>Out</td>
2151 </tr>
2152 <tr>
2153 <td>0</td>
2154 <td>0</td>
2155 <td>0</td>
2156 </tr>
2157 <tr>
2158 <td>0</td>
2159 <td>1</td>
2160 <td>0</td>
2161 </tr>
2162 <tr>
2163 <td>1</td>
2164 <td>0</td>
2165 <td>0</td>
2166 </tr>
2167 <tr>
2168 <td>1</td>
2169 <td>1</td>
2170 <td>1</td>
2171 </tr>
2172 </tbody>
2173</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002174</div>
Chris Lattner00950542001-06-06 20:29:01 +00002175<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002176<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2177 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2178 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002179</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002180</div>
Chris Lattner00950542001-06-06 20:29:01 +00002181<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002182<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002183<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002184<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002185<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002186</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002187<h5>Overview:</h5>
2188<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2189or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002190<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002191<p>The two arguments to the '<tt>or</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002192 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002193identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002194<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002195<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002196<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002197<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002198<table border="1" cellspacing="0" cellpadding="4">
2199 <tbody>
2200 <tr>
2201 <td>In0</td>
2202 <td>In1</td>
2203 <td>Out</td>
2204 </tr>
2205 <tr>
2206 <td>0</td>
2207 <td>0</td>
2208 <td>0</td>
2209 </tr>
2210 <tr>
2211 <td>0</td>
2212 <td>1</td>
2213 <td>1</td>
2214 </tr>
2215 <tr>
2216 <td>1</td>
2217 <td>0</td>
2218 <td>1</td>
2219 </tr>
2220 <tr>
2221 <td>1</td>
2222 <td>1</td>
2223 <td>1</td>
2224 </tr>
2225 </tbody>
2226</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002227</div>
Chris Lattner00950542001-06-06 20:29:01 +00002228<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002229<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2230 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2231 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002232</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002233</div>
Chris Lattner00950542001-06-06 20:29:01 +00002234<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002235<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2236Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002237<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002238<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002239<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002240</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002241<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002242<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2243or of its two operands. The <tt>xor</tt> is used to implement the
2244"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002245<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002246<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002247 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002248identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002249<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002250<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002251<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002252<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002253<table border="1" cellspacing="0" cellpadding="4">
2254 <tbody>
2255 <tr>
2256 <td>In0</td>
2257 <td>In1</td>
2258 <td>Out</td>
2259 </tr>
2260 <tr>
2261 <td>0</td>
2262 <td>0</td>
2263 <td>0</td>
2264 </tr>
2265 <tr>
2266 <td>0</td>
2267 <td>1</td>
2268 <td>1</td>
2269 </tr>
2270 <tr>
2271 <td>1</td>
2272 <td>0</td>
2273 <td>1</td>
2274 </tr>
2275 <tr>
2276 <td>1</td>
2277 <td>1</td>
2278 <td>0</td>
2279 </tr>
2280 </tbody>
2281</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002282</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002283<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002284<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002285<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2286 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2287 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2288 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002289</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002290</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002291
Chris Lattner00950542001-06-06 20:29:01 +00002292<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002293<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002294 <a name="vectorops">Vector Operations</a>
2295</div>
2296
2297<div class="doc_text">
2298
2299<p>LLVM supports several instructions to represent vector operations in a
2300target-independent manner. This instructions cover the element-access and
2301vector-specific operations needed to process vectors effectively. While LLVM
2302does directly support these vector operations, many sophisticated algorithms
2303will want to use target-specific intrinsics to take full advantage of a specific
2304target.</p>
2305
2306</div>
2307
2308<!-- _______________________________________________________________________ -->
2309<div class="doc_subsubsection">
2310 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2311</div>
2312
2313<div class="doc_text">
2314
2315<h5>Syntax:</h5>
2316
2317<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002318 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002319</pre>
2320
2321<h5>Overview:</h5>
2322
2323<p>
2324The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002325element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002326</p>
2327
2328
2329<h5>Arguments:</h5>
2330
2331<p>
2332The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002333value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002334an index indicating the position from which to extract the element.
2335The index may be a variable.</p>
2336
2337<h5>Semantics:</h5>
2338
2339<p>
2340The result is a scalar of the same type as the element type of
2341<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2342<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2343results are undefined.
2344</p>
2345
2346<h5>Example:</h5>
2347
2348<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002349 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002350</pre>
2351</div>
2352
2353
2354<!-- _______________________________________________________________________ -->
2355<div class="doc_subsubsection">
2356 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2357</div>
2358
2359<div class="doc_text">
2360
2361<h5>Syntax:</h5>
2362
2363<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002364 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002365</pre>
2366
2367<h5>Overview:</h5>
2368
2369<p>
2370The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002371element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002372</p>
2373
2374
2375<h5>Arguments:</h5>
2376
2377<p>
2378The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002379value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002380scalar value whose type must equal the element type of the first
2381operand. The third operand is an index indicating the position at
2382which to insert the value. The index may be a variable.</p>
2383
2384<h5>Semantics:</h5>
2385
2386<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002387The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002388element values are those of <tt>val</tt> except at position
2389<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2390exceeds the length of <tt>val</tt>, the results are undefined.
2391</p>
2392
2393<h5>Example:</h5>
2394
2395<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002396 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002397</pre>
2398</div>
2399
2400<!-- _______________________________________________________________________ -->
2401<div class="doc_subsubsection">
2402 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2403</div>
2404
2405<div class="doc_text">
2406
2407<h5>Syntax:</h5>
2408
2409<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002410 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002411</pre>
2412
2413<h5>Overview:</h5>
2414
2415<p>
2416The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2417from two input vectors, returning a vector of the same type.
2418</p>
2419
2420<h5>Arguments:</h5>
2421
2422<p>
2423The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2424with types that match each other and types that match the result of the
2425instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002426of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002427</p>
2428
2429<p>
2430The shuffle mask operand is required to be a constant vector with either
2431constant integer or undef values.
2432</p>
2433
2434<h5>Semantics:</h5>
2435
2436<p>
2437The elements of the two input vectors are numbered from left to right across
2438both of the vectors. The shuffle mask operand specifies, for each element of
2439the result vector, which element of the two input registers the result element
2440gets. The element selector may be undef (meaning "don't care") and the second
2441operand may be undef if performing a shuffle from only one vector.
2442</p>
2443
2444<h5>Example:</h5>
2445
2446<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002447 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2448 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2449 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2450 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002451</pre>
2452</div>
2453
Tanya Lattner09474292006-04-14 19:24:33 +00002454
Chris Lattner3df241e2006-04-08 23:07:04 +00002455<!-- ======================================================================= -->
2456<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00002457 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002458</div>
2459
Misha Brukman9d0919f2003-11-08 01:05:38 +00002460<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002461
Chris Lattner261efe92003-11-25 01:02:51 +00002462<p>A key design point of an SSA-based representation is how it
2463represents memory. In LLVM, no memory locations are in SSA form, which
2464makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00002465allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002466
Misha Brukman9d0919f2003-11-08 01:05:38 +00002467</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002468
Chris Lattner00950542001-06-06 20:29:01 +00002469<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002470<div class="doc_subsubsection">
2471 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2472</div>
2473
Misha Brukman9d0919f2003-11-08 01:05:38 +00002474<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002475
Chris Lattner00950542001-06-06 20:29:01 +00002476<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002477
2478<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002479 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002480</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002481
Chris Lattner00950542001-06-06 20:29:01 +00002482<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002483
Chris Lattner261efe92003-11-25 01:02:51 +00002484<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2485heap and returns a pointer to it.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002486
Chris Lattner00950542001-06-06 20:29:01 +00002487<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002488
2489<p>The '<tt>malloc</tt>' instruction allocates
2490<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00002491bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002492appropriate type to the program. If "NumElements" is specified, it is the
2493number of elements allocated. If an alignment is specified, the value result
2494of the allocation is guaranteed to be aligned to at least that boundary. If
2495not specified, or if zero, the target can choose to align the allocation on any
2496convenient boundary.</p>
2497
Misha Brukman9d0919f2003-11-08 01:05:38 +00002498<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002499
Chris Lattner00950542001-06-06 20:29:01 +00002500<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002501
Chris Lattner261efe92003-11-25 01:02:51 +00002502<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2503a pointer is returned.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002504
Chris Lattner2cbdc452005-11-06 08:02:57 +00002505<h5>Example:</h5>
2506
2507<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002508 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002509
Reid Spencerca86e162006-12-31 07:07:53 +00002510 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2511 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2512 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2513 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2514 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00002515</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002516</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002517
Chris Lattner00950542001-06-06 20:29:01 +00002518<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002519<div class="doc_subsubsection">
2520 <a name="i_free">'<tt>free</tt>' Instruction</a>
2521</div>
2522
Misha Brukman9d0919f2003-11-08 01:05:38 +00002523<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002524
Chris Lattner00950542001-06-06 20:29:01 +00002525<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002526
2527<pre>
2528 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00002529</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002530
Chris Lattner00950542001-06-06 20:29:01 +00002531<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002532
Chris Lattner261efe92003-11-25 01:02:51 +00002533<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00002534memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002535
Chris Lattner00950542001-06-06 20:29:01 +00002536<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002537
Chris Lattner261efe92003-11-25 01:02:51 +00002538<p>'<tt>value</tt>' shall be a pointer value that points to a value
2539that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2540instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002541
Chris Lattner00950542001-06-06 20:29:01 +00002542<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002543
John Criswell9e2485c2004-12-10 15:51:16 +00002544<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner261efe92003-11-25 01:02:51 +00002545after this instruction executes.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002546
Chris Lattner00950542001-06-06 20:29:01 +00002547<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002548
2549<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002550 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2551 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00002552</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002553</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002554
Chris Lattner00950542001-06-06 20:29:01 +00002555<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002556<div class="doc_subsubsection">
2557 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2558</div>
2559
Misha Brukman9d0919f2003-11-08 01:05:38 +00002560<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002561
Chris Lattner00950542001-06-06 20:29:01 +00002562<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002563
2564<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002565 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002566</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002567
Chris Lattner00950542001-06-06 20:29:01 +00002568<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002569
Chris Lattner261efe92003-11-25 01:02:51 +00002570<p>The '<tt>alloca</tt>' instruction allocates memory on the current
2571stack frame of the procedure that is live until the current function
2572returns to its caller.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002573
Chris Lattner00950542001-06-06 20:29:01 +00002574<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002575
John Criswell9e2485c2004-12-10 15:51:16 +00002576<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00002577bytes of memory on the runtime stack, returning a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002578appropriate type to the program. If "NumElements" is specified, it is the
2579number of elements allocated. If an alignment is specified, the value result
2580of the allocation is guaranteed to be aligned to at least that boundary. If
2581not specified, or if zero, the target can choose to align the allocation on any
2582convenient boundary.</p>
2583
Misha Brukman9d0919f2003-11-08 01:05:38 +00002584<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002585
Chris Lattner00950542001-06-06 20:29:01 +00002586<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002587
John Criswellc1f786c2005-05-13 22:25:59 +00002588<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00002589memory is automatically released when the function returns. The '<tt>alloca</tt>'
2590instruction is commonly used to represent automatic variables that must
2591have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00002592 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002593instructions), the memory is reclaimed.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002594
Chris Lattner00950542001-06-06 20:29:01 +00002595<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002596
2597<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002598 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2599 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2600 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2601 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00002602</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002603</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002604
Chris Lattner00950542001-06-06 20:29:01 +00002605<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002606<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2607Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002608<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002609<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002610<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002611<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002612<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002613<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002614<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00002615address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00002616 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00002617marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00002618the number or order of execution of this <tt>load</tt> with other
2619volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2620instructions. </p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002621<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002622<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002623<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002624<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002625 <a
Reid Spencerca86e162006-12-31 07:07:53 +00002626 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2627 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002628</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002629</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002630<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002631<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2632Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00002633<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002634<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002635<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
Chris Lattnerf0651072003-09-08 18:27:49 +00002636 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002637</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002638<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002639<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002640<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002641<p>There are two arguments to the '<tt>store</tt>' instruction: a value
John Criswell0ec250c2005-10-24 16:17:18 +00002642to store and an address in which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002643operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00002644operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00002645optimizer is not allowed to modify the number or order of execution of
2646this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2647 href="#i_store">store</a></tt> instructions.</p>
2648<h5>Semantics:</h5>
2649<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2650at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002651<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002652<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002653 <a
Reid Spencerca86e162006-12-31 07:07:53 +00002654 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2655 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002656</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00002657</div>
2658
Chris Lattner2b7d3202002-05-06 03:03:22 +00002659<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002660<div class="doc_subsubsection">
2661 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2662</div>
2663
Misha Brukman9d0919f2003-11-08 01:05:38 +00002664<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00002665<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002666<pre>
2667 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2668</pre>
2669
Chris Lattner7faa8832002-04-14 06:13:44 +00002670<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002671
2672<p>
2673The '<tt>getelementptr</tt>' instruction is used to get the address of a
2674subelement of an aggregate data structure.</p>
2675
Chris Lattner7faa8832002-04-14 06:13:44 +00002676<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002677
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002678<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002679elements of the aggregate object to index to. The actual types of the arguments
2680provided depend on the type of the first pointer argument. The
2681'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00002682levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00002683structure, only <tt>i32</tt> integer constants are allowed. When indexing
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002684into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2685be sign extended to 64-bit values.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002686
Chris Lattner261efe92003-11-25 01:02:51 +00002687<p>For example, let's consider a C code fragment and how it gets
2688compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002689
2690<pre>
2691 struct RT {
2692 char A;
Reid Spencerca86e162006-12-31 07:07:53 +00002693 i32 B[10][20];
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002694 char C;
2695 };
2696 struct ST {
Reid Spencerca86e162006-12-31 07:07:53 +00002697 i32 X;
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002698 double Y;
2699 struct RT Z;
2700 };
2701
Reid Spencerca86e162006-12-31 07:07:53 +00002702 define i32 *foo(struct ST *s) {
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002703 return &amp;s[1].Z.B[5][13];
2704 }
2705</pre>
2706
Misha Brukman9d0919f2003-11-08 01:05:38 +00002707<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002708
2709<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002710 %RT = type { i8 , [10 x [20 x i32]], i8 }
2711 %ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002712
Reid Spencerca86e162006-12-31 07:07:53 +00002713 define i32* %foo(%ST* %s) {
Brian Gaeke7283e7c2004-07-02 21:08:14 +00002714 entry:
Reid Spencerca86e162006-12-31 07:07:53 +00002715 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2716 ret i32* %reg
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002717 }
2718</pre>
2719
Chris Lattner7faa8832002-04-14 06:13:44 +00002720<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002721
2722<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00002723on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002724and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00002725<a href="#t_integer">integer</a> type but the value will always be sign extended
Reid Spencerca86e162006-12-31 07:07:53 +00002726to 64-bits. <a href="#t_struct">Structure</a> types, require <tt>i32</tt>
Reid Spencer42ddd842006-12-03 16:53:48 +00002727<b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002728
Misha Brukman9d0919f2003-11-08 01:05:38 +00002729<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00002730type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002731}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00002732the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2733i8 }</tt>' type, another structure. The third index indexes into the second
2734element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002735array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00002736'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2737to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002738
Chris Lattner261efe92003-11-25 01:02:51 +00002739<p>Note that it is perfectly legal to index partially through a
2740structure, returning a pointer to an inner element. Because of this,
2741the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002742
2743<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002744 define i32* %foo(%ST* %s) {
2745 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2746 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2747 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2748 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2749 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2750 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002751 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00002752</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00002753
2754<p>Note that it is undefined to access an array out of bounds: array and
2755pointer indexes must always be within the defined bounds of the array type.
2756The one exception for this rules is zero length arrays. These arrays are
2757defined to be accessible as variable length arrays, which requires access
2758beyond the zero'th element.</p>
2759
Chris Lattner884a9702006-08-15 00:45:58 +00002760<p>The getelementptr instruction is often confusing. For some more insight
2761into how it works, see <a href="GetElementPtr.html">the getelementptr
2762FAQ</a>.</p>
2763
Chris Lattner7faa8832002-04-14 06:13:44 +00002764<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00002765
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002766<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002767 <i>; yields [12 x i8]*:aptr</i>
2768 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002769</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002770</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00002771
Chris Lattner00950542001-06-06 20:29:01 +00002772<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00002773<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002774</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002775<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00002776<p>The instructions in this category are the conversion instructions (casting)
2777which all take a single operand and a type. They perform various bit conversions
2778on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002779</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002780
Chris Lattner6536cfe2002-05-06 22:08:29 +00002781<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00002782<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002783 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2784</div>
2785<div class="doc_text">
2786
2787<h5>Syntax:</h5>
2788<pre>
2789 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2790</pre>
2791
2792<h5>Overview:</h5>
2793<p>
2794The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2795</p>
2796
2797<h5>Arguments:</h5>
2798<p>
2799The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2800be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00002801and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00002802type. The bit size of <tt>value</tt> must be larger than the bit size of
2803<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002804
2805<h5>Semantics:</h5>
2806<p>
2807The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00002808and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2809larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2810It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002811
2812<h5>Example:</h5>
2813<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002814 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002815 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2816 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002817</pre>
2818</div>
2819
2820<!-- _______________________________________________________________________ -->
2821<div class="doc_subsubsection">
2822 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2823</div>
2824<div class="doc_text">
2825
2826<h5>Syntax:</h5>
2827<pre>
2828 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2829</pre>
2830
2831<h5>Overview:</h5>
2832<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2833<tt>ty2</tt>.</p>
2834
2835
2836<h5>Arguments:</h5>
2837<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00002838<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2839also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00002840<tt>value</tt> must be smaller than the bit size of the destination type,
2841<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002842
2843<h5>Semantics:</h5>
2844<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2845bits until it reaches the size of the destination type, <tt>ty2</tt>. When the
2846the operand and the type are the same size, no bit filling is done and the
2847cast is considered a <i>no-op cast</i> because no bits change (only the type
2848changes).</p>
2849
Reid Spencerb5929522007-01-12 15:46:11 +00002850<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002851
2852<h5>Example:</h5>
2853<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002854 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002855 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002856</pre>
2857</div>
2858
2859<!-- _______________________________________________________________________ -->
2860<div class="doc_subsubsection">
2861 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2862</div>
2863<div class="doc_text">
2864
2865<h5>Syntax:</h5>
2866<pre>
2867 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2868</pre>
2869
2870<h5>Overview:</h5>
2871<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2872
2873<h5>Arguments:</h5>
2874<p>
2875The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00002876<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2877also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00002878<tt>value</tt> must be smaller than the bit size of the destination type,
2879<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002880
2881<h5>Semantics:</h5>
2882<p>
2883The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
2884bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
2885the type <tt>ty2</tt>. When the the operand and the type are the same size,
2886no bit filling is done and the cast is considered a <i>no-op cast</i> because
2887no bits change (only the type changes).</p>
2888
Reid Spencerc78f3372007-01-12 03:35:51 +00002889<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002890
2891<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002892<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002893 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002894 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002895</pre>
2896</div>
2897
2898<!-- _______________________________________________________________________ -->
2899<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00002900 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
2901</div>
2902
2903<div class="doc_text">
2904
2905<h5>Syntax:</h5>
2906
2907<pre>
2908 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2909</pre>
2910
2911<h5>Overview:</h5>
2912<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
2913<tt>ty2</tt>.</p>
2914
2915
2916<h5>Arguments:</h5>
2917<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
2918 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
2919cast it to. The size of <tt>value</tt> must be larger than the size of
2920<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
2921<i>no-op cast</i>.</p>
2922
2923<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002924<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
2925<a href="#t_floating">floating point</a> type to a smaller
2926<a href="#t_floating">floating point</a> type. If the value cannot fit within
2927the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00002928
2929<h5>Example:</h5>
2930<pre>
2931 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
2932 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
2933</pre>
2934</div>
2935
2936<!-- _______________________________________________________________________ -->
2937<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002938 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
2939</div>
2940<div class="doc_text">
2941
2942<h5>Syntax:</h5>
2943<pre>
2944 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2945</pre>
2946
2947<h5>Overview:</h5>
2948<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
2949floating point value.</p>
2950
2951<h5>Arguments:</h5>
2952<p>The '<tt>fpext</tt>' instruction takes a
2953<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00002954and a <a href="#t_floating">floating point</a> type to cast it to. The source
2955type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002956
2957<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002958<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00002959<a href="#t_floating">floating point</a> type to a larger
2960<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00002961used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00002962<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002963
2964<h5>Example:</h5>
2965<pre>
2966 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
2967 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
2968</pre>
2969</div>
2970
2971<!-- _______________________________________________________________________ -->
2972<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00002973 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002974</div>
2975<div class="doc_text">
2976
2977<h5>Syntax:</h5>
2978<pre>
2979 &lt;result&gt; = fp2uint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2980</pre>
2981
2982<h5>Overview:</h5>
2983<p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its
2984unsigned integer equivalent of type <tt>ty2</tt>.
2985</p>
2986
2987<h5>Arguments:</h5>
2988<p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a
2989<a href="#t_floating">floating point</a> value, and a type to cast it to, which
Chris Lattner3b19d652007-01-15 01:54:13 +00002990must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002991
2992<h5>Semantics:</h5>
2993<p> The '<tt>fp2uint</tt>' instruction converts its
2994<a href="#t_floating">floating point</a> operand into the nearest (rounding
2995towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
2996the results are undefined.</p>
2997
Reid Spencerc78f3372007-01-12 03:35:51 +00002998<p>When converting to i1, the conversion is done as a comparison against
2999zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3000If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003001
3002<h5>Example:</h5>
3003<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003004 %X = fp2uint double 123.0 to i32 <i>; yields i32:123</i>
3005 %Y = fp2uint float 1.0E+300 to i1 <i>; yields i1:true</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003006 %X = fp2uint float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003007</pre>
3008</div>
3009
3010<!-- _______________________________________________________________________ -->
3011<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003012 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003013</div>
3014<div class="doc_text">
3015
3016<h5>Syntax:</h5>
3017<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003018 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003019</pre>
3020
3021<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003022<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003023<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003024</p>
3025
3026
Chris Lattner6536cfe2002-05-06 22:08:29 +00003027<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003028<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003029<a href="#t_floating">floating point</a> value, and a type to cast it to, which
Chris Lattner3b19d652007-01-15 01:54:13 +00003030must also be an <a href="#t_integer">integer</a> type.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003031
Chris Lattner6536cfe2002-05-06 22:08:29 +00003032<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003033<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003034<a href="#t_floating">floating point</a> operand into the nearest (rounding
3035towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3036the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003037
Reid Spencerc78f3372007-01-12 03:35:51 +00003038<p>When converting to i1, the conversion is done as a comparison against
3039zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3040If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003041
Chris Lattner33ba0d92001-07-09 00:26:23 +00003042<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003043<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003044 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
3045 %Y = fptosi float 1.0E-247 to i1 <i>; yields i1:true</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003046 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003047</pre>
3048</div>
3049
3050<!-- _______________________________________________________________________ -->
3051<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003052 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003053</div>
3054<div class="doc_text">
3055
3056<h5>Syntax:</h5>
3057<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003058 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003059</pre>
3060
3061<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003062<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003063integer and converts that value to the <tt>ty2</tt> type.</p>
3064
3065
3066<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003067<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
Chris Lattner3b19d652007-01-15 01:54:13 +00003068<a href="#t_integer">integer</a> value, and a type to cast it to, which must
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003069be a <a href="#t_floating">floating point</a> type.</p>
3070
3071<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003072<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003073integer quantity and converts it to the corresponding floating point value. If
3074the value cannot fit in the floating point value, the results are undefined.</p>
3075
3076
3077<h5>Example:</h5>
3078<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003079 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3080 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003081</pre>
3082</div>
3083
3084<!-- _______________________________________________________________________ -->
3085<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003086 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003087</div>
3088<div class="doc_text">
3089
3090<h5>Syntax:</h5>
3091<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003092 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003093</pre>
3094
3095<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003096<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003097integer and converts that value to the <tt>ty2</tt> type.</p>
3098
3099<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003100<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
Chris Lattner3b19d652007-01-15 01:54:13 +00003101<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003102a <a href="#t_floating">floating point</a> type.</p>
3103
3104<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003105<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003106integer quantity and converts it to the corresponding floating point value. If
3107the value cannot fit in the floating point value, the results are undefined.</p>
3108
3109<h5>Example:</h5>
3110<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003111 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3112 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003113</pre>
3114</div>
3115
3116<!-- _______________________________________________________________________ -->
3117<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003118 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3119</div>
3120<div class="doc_text">
3121
3122<h5>Syntax:</h5>
3123<pre>
3124 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3125</pre>
3126
3127<h5>Overview:</h5>
3128<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3129the integer type <tt>ty2</tt>.</p>
3130
3131<h5>Arguments:</h5>
3132<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003133must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003134<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3135
3136<h5>Semantics:</h5>
3137<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3138<tt>ty2</tt> by interpreting the pointer value as an integer and either
3139truncating or zero extending that value to the size of the integer type. If
3140<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3141<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3142are the same size, then nothing is done (<i>no-op cast</i>).</p>
3143
3144<h5>Example:</h5>
3145<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003146 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit</i>
3147 %Y = ptrtoint i32* %x to i64 <i>; yields zero extend on 32-bit</i>
Reid Spencer72679252006-11-11 21:00:47 +00003148</pre>
3149</div>
3150
3151<!-- _______________________________________________________________________ -->
3152<div class="doc_subsubsection">
3153 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3154</div>
3155<div class="doc_text">
3156
3157<h5>Syntax:</h5>
3158<pre>
3159 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3160</pre>
3161
3162<h5>Overview:</h5>
3163<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3164a pointer type, <tt>ty2</tt>.</p>
3165
3166<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003167<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003168value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003169<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003170
3171<h5>Semantics:</h5>
3172<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3173<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3174the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3175size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3176the size of a pointer then a zero extension is done. If they are the same size,
3177nothing is done (<i>no-op cast</i>).</p>
3178
3179<h5>Example:</h5>
3180<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003181 %X = inttoptr i32 255 to i32* <i>; yields zero extend on 64-bit</i>
3182 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit </i>
3183 %Y = inttoptr i16 0 to i32* <i>; yields zero extend on 32-bit</i>
Reid Spencer72679252006-11-11 21:00:47 +00003184</pre>
3185</div>
3186
3187<!-- _______________________________________________________________________ -->
3188<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003189 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003190</div>
3191<div class="doc_text">
3192
3193<h5>Syntax:</h5>
3194<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003195 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003196</pre>
3197
3198<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003199<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003200<tt>ty2</tt> without changing any bits.</p>
3201
3202<h5>Arguments:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003203<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003204a first class value, and a type to cast it to, which must also be a <a
3205 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003206and the destination type, <tt>ty2</tt>, must be identical. If the source
3207type is a pointer, the destination type must also be a pointer.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003208
3209<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003210<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003211<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3212this conversion. The conversion is done as if the <tt>value</tt> had been
3213stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3214converted to other pointer types with this instruction. To convert pointers to
3215other types, use the <a href="#i_inttoptr">inttoptr</a> or
3216<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003217
3218<h5>Example:</h5>
3219<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003220 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3221 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3222 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003223</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003224</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003225
Reid Spencer2fd21e62006-11-08 01:18:52 +00003226<!-- ======================================================================= -->
3227<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3228<div class="doc_text">
3229<p>The instructions in this category are the "miscellaneous"
3230instructions, which defy better classification.</p>
3231</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003232
3233<!-- _______________________________________________________________________ -->
3234<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3235</div>
3236<div class="doc_text">
3237<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00003238<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;
3239<i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003240</pre>
3241<h5>Overview:</h5>
3242<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3243of its two integer operands.</p>
3244<h5>Arguments:</h5>
3245<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3246the condition code which indicates the kind of comparison to perform. It is not
3247a value, just a keyword. The possibilities for the condition code are:
3248<ol>
3249 <li><tt>eq</tt>: equal</li>
3250 <li><tt>ne</tt>: not equal </li>
3251 <li><tt>ugt</tt>: unsigned greater than</li>
3252 <li><tt>uge</tt>: unsigned greater or equal</li>
3253 <li><tt>ult</tt>: unsigned less than</li>
3254 <li><tt>ule</tt>: unsigned less or equal</li>
3255 <li><tt>sgt</tt>: signed greater than</li>
3256 <li><tt>sge</tt>: signed greater or equal</li>
3257 <li><tt>slt</tt>: signed less than</li>
3258 <li><tt>sle</tt>: signed less or equal</li>
3259</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003260<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Reid Spencer350f8aa2007-01-04 05:19:58 +00003261<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003262<h5>Semantics:</h5>
3263<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3264the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003265yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003266<ol>
3267 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3268 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3269 </li>
3270 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3271 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3272 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3273 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3274 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3275 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3276 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3277 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3278 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3279 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3280 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3281 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3282 <li><tt>sge</tt>: interprets the operands as signed values and yields
3283 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3284 <li><tt>slt</tt>: interprets the operands as signed values and yields
3285 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3286 <li><tt>sle</tt>: interprets the operands as signed values and yields
3287 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003288</ol>
3289<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3290values are treated as integers and then compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003291
3292<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003293<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3294 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3295 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3296 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3297 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3298 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003299</pre>
3300</div>
3301
3302<!-- _______________________________________________________________________ -->
3303<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3304</div>
3305<div class="doc_text">
3306<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00003307<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;
3308<i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003309</pre>
3310<h5>Overview:</h5>
3311<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3312of its floating point operands.</p>
3313<h5>Arguments:</h5>
3314<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3315the condition code which indicates the kind of comparison to perform. It is not
3316a value, just a keyword. The possibilities for the condition code are:
3317<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003318 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003319 <li><tt>oeq</tt>: ordered and equal</li>
3320 <li><tt>ogt</tt>: ordered and greater than </li>
3321 <li><tt>oge</tt>: ordered and greater than or equal</li>
3322 <li><tt>olt</tt>: ordered and less than </li>
3323 <li><tt>ole</tt>: ordered and less than or equal</li>
3324 <li><tt>one</tt>: ordered and not equal</li>
3325 <li><tt>ord</tt>: ordered (no nans)</li>
3326 <li><tt>ueq</tt>: unordered or equal</li>
3327 <li><tt>ugt</tt>: unordered or greater than </li>
3328 <li><tt>uge</tt>: unordered or greater than or equal</li>
3329 <li><tt>ult</tt>: unordered or less than </li>
3330 <li><tt>ule</tt>: unordered or less than or equal</li>
3331 <li><tt>une</tt>: unordered or not equal</li>
3332 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003333 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003334</ol>
Reid Spencer93a49852006-12-06 07:08:07 +00003335<p>In the preceding, <i>ordered</i> means that neither operand is a QNAN while
3336<i>unordered</i> means that either operand may be a QNAN.</p>
Reid Spencer350f8aa2007-01-04 05:19:58 +00003337<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3338<a href="#t_floating">floating point</a> typed. They must have identical
3339types.</p>
Reid Spencerb7f26282006-11-19 03:00:14 +00003340<p>In the foregoing, <i>ordered</i> means that neither operand is a QNAN and
3341<i>unordered</i> means that either operand is a QNAN.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003342<h5>Semantics:</h5>
3343<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3344the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003345yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003346<ol>
3347 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003348 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003349 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003350 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003351 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003352 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003353 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003354 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003355 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003356 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003357 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003358 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003359 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003360 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3361 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003362 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003363 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003364 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003365 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003366 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003367 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003368 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003369 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003370 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003371 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003372 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003373 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003374 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3375</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003376
3377<h5>Example:</h5>
3378<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3379 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3380 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3381 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3382</pre>
3383</div>
3384
Reid Spencer2fd21e62006-11-08 01:18:52 +00003385<!-- _______________________________________________________________________ -->
3386<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3387Instruction</a> </div>
3388<div class="doc_text">
3389<h5>Syntax:</h5>
3390<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3391<h5>Overview:</h5>
3392<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3393the SSA graph representing the function.</p>
3394<h5>Arguments:</h5>
3395<p>The type of the incoming values are specified with the first type
3396field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3397as arguments, with one pair for each predecessor basic block of the
3398current block. Only values of <a href="#t_firstclass">first class</a>
3399type may be used as the value arguments to the PHI node. Only labels
3400may be used as the label arguments.</p>
3401<p>There must be no non-phi instructions between the start of a basic
3402block and the PHI instructions: i.e. PHI instructions must be first in
3403a basic block.</p>
3404<h5>Semantics:</h5>
3405<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the
3406value specified by the parameter, depending on which basic block we
3407came from in the last <a href="#terminators">terminator</a> instruction.</p>
3408<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003409<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003410</div>
3411
Chris Lattnercc37aae2004-03-12 05:50:16 +00003412<!-- _______________________________________________________________________ -->
3413<div class="doc_subsubsection">
3414 <a name="i_select">'<tt>select</tt>' Instruction</a>
3415</div>
3416
3417<div class="doc_text">
3418
3419<h5>Syntax:</h5>
3420
3421<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003422 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003423</pre>
3424
3425<h5>Overview:</h5>
3426
3427<p>
3428The '<tt>select</tt>' instruction is used to choose one value based on a
3429condition, without branching.
3430</p>
3431
3432
3433<h5>Arguments:</h5>
3434
3435<p>
3436The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3437</p>
3438
3439<h5>Semantics:</h5>
3440
3441<p>
3442If the boolean condition evaluates to true, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00003443value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003444</p>
3445
3446<h5>Example:</h5>
3447
3448<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003449 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003450</pre>
3451</div>
3452
Robert Bocchino05ccd702006-01-15 20:48:27 +00003453
3454<!-- _______________________________________________________________________ -->
3455<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00003456 <a name="i_call">'<tt>call</tt>' Instruction</a>
3457</div>
3458
Misha Brukman9d0919f2003-11-08 01:05:38 +00003459<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00003460
Chris Lattner00950542001-06-06 20:29:01 +00003461<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003462<pre>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003463 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00003464</pre>
3465
Chris Lattner00950542001-06-06 20:29:01 +00003466<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003467
Misha Brukman9d0919f2003-11-08 01:05:38 +00003468<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003469
Chris Lattner00950542001-06-06 20:29:01 +00003470<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003471
Misha Brukman9d0919f2003-11-08 01:05:38 +00003472<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003473
Chris Lattner6536cfe2002-05-06 22:08:29 +00003474<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00003475 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003476 <p>The optional "tail" marker indicates whether the callee function accesses
3477 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00003478 function call is eligible for tail call optimization. Note that calls may
3479 be marked "tail" even if they do not occur before a <a
3480 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00003481 </li>
3482 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00003483 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003484 convention</a> the call should use. If none is specified, the call defaults
3485 to using C calling conventions.
3486 </li>
3487 <li>
Chris Lattner2bff5242005-05-06 05:47:36 +00003488 <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
3489 being invoked. The argument types must match the types implied by this
John Criswellfc6b8952005-05-16 16:17:45 +00003490 signature. This type can be omitted if the function is not varargs and
3491 if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003492 </li>
3493 <li>
3494 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3495 be invoked. In most cases, this is a direct function invocation, but
3496 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00003497 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003498 </li>
3499 <li>
3500 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00003501 function signature argument types. All arguments must be of
3502 <a href="#t_firstclass">first class</a> type. If the function signature
3503 indicates the function accepts a variable number of arguments, the extra
3504 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003505 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00003506</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00003507
Chris Lattner00950542001-06-06 20:29:01 +00003508<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003509
Chris Lattner261efe92003-11-25 01:02:51 +00003510<p>The '<tt>call</tt>' instruction is used to cause control flow to
3511transfer to a specified function, with its incoming arguments bound to
3512the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3513instruction in the called function, control flow continues with the
3514instruction after the function call, and the return value of the
3515function is bound to the result argument. This is a simpler case of
3516the <a href="#i_invoke">invoke</a> instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003517
Chris Lattner00950542001-06-06 20:29:01 +00003518<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003519
3520<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003521 %retval = call i32 %test(i32 %argc)
3522 call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8 42);
3523 %X = tail call i32 %foo()
3524 %Y = tail call <a href="#callingconv">fastcc</a> i32 %foo()
Chris Lattner2bff5242005-05-06 05:47:36 +00003525</pre>
3526
Misha Brukman9d0919f2003-11-08 01:05:38 +00003527</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003528
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003529<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00003530<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003531 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003532</div>
3533
Misha Brukman9d0919f2003-11-08 01:05:38 +00003534<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00003535
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003536<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003537
3538<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003539 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00003540</pre>
3541
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003542<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003543
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003544<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00003545the "variable argument" area of a function call. It is used to implement the
3546<tt>va_arg</tt> macro in C.</p>
3547
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003548<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003549
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003550<p>This instruction takes a <tt>va_list*</tt> value and the type of
3551the argument. It returns a value of the specified argument type and
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00003552increments the <tt>va_list</tt> to point to the next argument. Again, the
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003553actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003554
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003555<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003556
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003557<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3558type from the specified <tt>va_list</tt> and causes the
3559<tt>va_list</tt> to point to the next argument. For more information,
3560see the variable argument handling <a href="#int_varargs">Intrinsic
3561Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003562
3563<p>It is legal for this instruction to be called in a function which does not
3564take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003565function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003566
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003567<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00003568href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00003569argument.</p>
3570
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003571<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003572
3573<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3574
Misha Brukman9d0919f2003-11-08 01:05:38 +00003575</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003576
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003577<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00003578<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3579<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003580
Misha Brukman9d0919f2003-11-08 01:05:38 +00003581<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003582
3583<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00003584well known names and semantics and are required to follow certain restrictions.
3585Overall, these intrinsics represent an extension mechanism for the LLVM
3586language that does not require changing all of the transformations in LLVM to
3587add to the language (or the bytecode reader/writer, the parser,
Chris Lattner33aec9e2004-02-12 17:01:32 +00003588etc...).</p>
3589
John Criswellfc6b8952005-05-16 16:17:45 +00003590<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3591prefix is reserved in LLVM for intrinsic names; thus, functions may not be named
Chris Lattner33aec9e2004-02-12 17:01:32 +00003592this. Intrinsic functions must always be external functions: you cannot define
3593the body of intrinsic functions. Intrinsic functions may only be used in call
3594or invoke instructions: it is illegal to take the address of an intrinsic
3595function. Additionally, because intrinsic functions are part of the LLVM
3596language, it is required that they all be documented here if any are added.</p>
3597
Reid Spencer409e28f2007-04-01 08:04:23 +00003598<p>Some intrinsic functions can be overloaded. That is, the intrinsic represents
3599a family of functions that perform the same operation but on different data
3600types. This is most frequent with the integer types. Since LLVM can represent
3601over 8 million different integer types, there is a way to declare an intrinsic
3602that can be overloaded based on its arguments. Such intrinsics will have the
3603names of the arbitrary types encoded into the intrinsic function name, each
3604preceded by a period. For example, the <tt>llvm.ctpop</tt> function can take an
3605integer of any width. This leads to a family of functions such as
3606<tt>i32 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i32 @llvm.ctpop.i29(i29 %val)</tt>.
3607</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003608
Reid Spencer409e28f2007-04-01 08:04:23 +00003609
3610<p>To learn how to add an intrinsic function, please see the
3611<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00003612</p>
3613
Misha Brukman9d0919f2003-11-08 01:05:38 +00003614</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003615
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003616<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003617<div class="doc_subsection">
3618 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3619</div>
3620
Misha Brukman9d0919f2003-11-08 01:05:38 +00003621<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003622
Misha Brukman9d0919f2003-11-08 01:05:38 +00003623<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003624 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00003625intrinsic functions. These functions are related to the similarly
3626named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003627
Chris Lattner261efe92003-11-25 01:02:51 +00003628<p>All of these functions operate on arguments that use a
3629target-specific value type "<tt>va_list</tt>". The LLVM assembly
3630language reference manual does not define what this type is, so all
3631transformations should be prepared to handle intrinsics with any type
3632used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003633
Chris Lattner374ab302006-05-15 17:26:46 +00003634<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00003635instruction and the variable argument handling intrinsic functions are
3636used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003637
Chris Lattner33aec9e2004-02-12 17:01:32 +00003638<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003639define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00003640 ; Initialize variable argument processing
Reid Spencerca86e162006-12-31 07:07:53 +00003641 %ap = alloca i8 *
Chris Lattnerb75137d2007-01-08 07:55:15 +00003642 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003643 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003644
3645 ; Read a single integer argument
Reid Spencerca86e162006-12-31 07:07:53 +00003646 %tmp = va_arg i8 ** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00003647
3648 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Reid Spencerca86e162006-12-31 07:07:53 +00003649 %aq = alloca i8 *
Chris Lattnerb75137d2007-01-08 07:55:15 +00003650 %aq2 = bitcast i8** %aq to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003651 call void @llvm.va_copy(i8 *%aq2, i8* %ap2)
3652 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003653
3654 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003655 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00003656 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00003657}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003658
3659declare void @llvm.va_start(i8*)
3660declare void @llvm.va_copy(i8*, i8*)
3661declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003662</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003663</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003664
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003665<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003666<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003667 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003668</div>
3669
3670
Misha Brukman9d0919f2003-11-08 01:05:38 +00003671<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003672<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003673<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003674<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003675<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3676<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3677href="#i_va_arg">va_arg</a></tt>.</p>
3678
3679<h5>Arguments:</h5>
3680
3681<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3682
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003683<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003684
3685<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3686macro available in C. In a target-dependent way, it initializes the
3687<tt>va_list</tt> element the argument points to, so that the next call to
3688<tt>va_arg</tt> will produce the first variable argument passed to the function.
3689Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3690last argument of the function, the compiler can figure that out.</p>
3691
Misha Brukman9d0919f2003-11-08 01:05:38 +00003692</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003693
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003694<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003695<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003696 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003697</div>
3698
Misha Brukman9d0919f2003-11-08 01:05:38 +00003699<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003700<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003701<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003702<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003703
Chris Lattner261efe92003-11-25 01:02:51 +00003704<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>&lt;arglist&gt;</tt>
Reid Spencera3e435f2007-04-04 02:42:35 +00003705which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003706or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003707
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003708<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003709
Misha Brukman9d0919f2003-11-08 01:05:38 +00003710<p>The argument is a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003711
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003712<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003713
Misha Brukman9d0919f2003-11-08 01:05:38 +00003714<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003715macro available in C. In a target-dependent way, it destroys the <tt>va_list</tt>.
Reid Spencera3e435f2007-04-04 02:42:35 +00003716Calls to <a href="#int_va_start"><tt>llvm.va_start</tt></a> and <a
3717 href="#int_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly
Chris Lattner261efe92003-11-25 01:02:51 +00003718with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003719
Misha Brukman9d0919f2003-11-08 01:05:38 +00003720</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003721
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003722<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003723<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003724 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003725</div>
3726
Misha Brukman9d0919f2003-11-08 01:05:38 +00003727<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003728
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003729<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003730
3731<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003732 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00003733</pre>
3734
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003735<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003736
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003737<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position from
3738the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003739
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003740<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003741
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003742<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00003743The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003744
Chris Lattnerd7923912004-05-23 21:06:01 +00003745
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003746<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003747
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003748<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> macro
3749available in C. In a target-dependent way, it copies the source
3750<tt>va_list</tt> element into the destination list. This intrinsic is necessary
Reid Spencera3e435f2007-04-04 02:42:35 +00003751because the <tt><a href="#int_va_start">llvm.va_start</a></tt> intrinsic may be
Chris Lattnerd7923912004-05-23 21:06:01 +00003752arbitrarily complex and require memory allocation, for example.</p>
3753
Misha Brukman9d0919f2003-11-08 01:05:38 +00003754</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003755
Chris Lattner33aec9e2004-02-12 17:01:32 +00003756<!-- ======================================================================= -->
3757<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00003758 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3759</div>
3760
3761<div class="doc_text">
3762
3763<p>
3764LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3765Collection</a> requires the implementation and generation of these intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00003766These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00003767stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00003768href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00003769Front-ends for type-safe garbage collected languages should generate these
3770intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3771href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3772</p>
3773</div>
3774
3775<!-- _______________________________________________________________________ -->
3776<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003777 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00003778</div>
3779
3780<div class="doc_text">
3781
3782<h5>Syntax:</h5>
3783
3784<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003785 declare void @llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00003786</pre>
3787
3788<h5>Overview:</h5>
3789
John Criswell9e2485c2004-12-10 15:51:16 +00003790<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00003791the code generator, and allows some metadata to be associated with it.</p>
3792
3793<h5>Arguments:</h5>
3794
3795<p>The first argument specifies the address of a stack object that contains the
3796root pointer. The second pointer (which must be either a constant or a global
3797value address) contains the meta-data to be associated with the root.</p>
3798
3799<h5>Semantics:</h5>
3800
3801<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3802location. At compile-time, the code generator generates information to allow
3803the runtime to find the pointer at GC safe points.
3804</p>
3805
3806</div>
3807
3808
3809<!-- _______________________________________________________________________ -->
3810<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003811 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00003812</div>
3813
3814<div class="doc_text">
3815
3816<h5>Syntax:</h5>
3817
3818<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003819 declare i8 * @llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00003820</pre>
3821
3822<h5>Overview:</h5>
3823
3824<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3825locations, allowing garbage collector implementations that require read
3826barriers.</p>
3827
3828<h5>Arguments:</h5>
3829
Chris Lattner80626e92006-03-14 20:02:51 +00003830<p>The second argument is the address to read from, which should be an address
3831allocated from the garbage collector. The first object is a pointer to the
3832start of the referenced object, if needed by the language runtime (otherwise
3833null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003834
3835<h5>Semantics:</h5>
3836
3837<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3838instruction, but may be replaced with substantially more complex code by the
3839garbage collector runtime, as needed.</p>
3840
3841</div>
3842
3843
3844<!-- _______________________________________________________________________ -->
3845<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003846 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00003847</div>
3848
3849<div class="doc_text">
3850
3851<h5>Syntax:</h5>
3852
3853<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003854 declare void @llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00003855</pre>
3856
3857<h5>Overview:</h5>
3858
3859<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3860locations, allowing garbage collector implementations that require write
3861barriers (such as generational or reference counting collectors).</p>
3862
3863<h5>Arguments:</h5>
3864
Chris Lattner80626e92006-03-14 20:02:51 +00003865<p>The first argument is the reference to store, the second is the start of the
3866object to store it to, and the third is the address of the field of Obj to
3867store to. If the runtime does not require a pointer to the object, Obj may be
3868null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003869
3870<h5>Semantics:</h5>
3871
3872<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
3873instruction, but may be replaced with substantially more complex code by the
3874garbage collector runtime, as needed.</p>
3875
3876</div>
3877
3878
3879
3880<!-- ======================================================================= -->
3881<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00003882 <a name="int_codegen">Code Generator Intrinsics</a>
3883</div>
3884
3885<div class="doc_text">
3886<p>
3887These intrinsics are provided by LLVM to expose special features that may only
3888be implemented with code generator support.
3889</p>
3890
3891</div>
3892
3893<!-- _______________________________________________________________________ -->
3894<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003895 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00003896</div>
3897
3898<div class="doc_text">
3899
3900<h5>Syntax:</h5>
3901<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003902 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00003903</pre>
3904
3905<h5>Overview:</h5>
3906
3907<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00003908The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
3909target-specific value indicating the return address of the current function
3910or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00003911</p>
3912
3913<h5>Arguments:</h5>
3914
3915<p>
3916The argument to this intrinsic indicates which function to return the address
3917for. Zero indicates the calling function, one indicates its caller, etc. The
3918argument is <b>required</b> to be a constant integer value.
3919</p>
3920
3921<h5>Semantics:</h5>
3922
3923<p>
3924The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
3925the return address of the specified call frame, or zero if it cannot be
3926identified. The value returned by this intrinsic is likely to be incorrect or 0
3927for arguments other than zero, so it should only be used for debugging purposes.
3928</p>
3929
3930<p>
3931Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00003932aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00003933source-language caller.
3934</p>
3935</div>
3936
3937
3938<!-- _______________________________________________________________________ -->
3939<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003940 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00003941</div>
3942
3943<div class="doc_text">
3944
3945<h5>Syntax:</h5>
3946<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003947 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00003948</pre>
3949
3950<h5>Overview:</h5>
3951
3952<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00003953The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
3954target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00003955</p>
3956
3957<h5>Arguments:</h5>
3958
3959<p>
3960The argument to this intrinsic indicates which function to return the frame
3961pointer for. Zero indicates the calling function, one indicates its caller,
3962etc. The argument is <b>required</b> to be a constant integer value.
3963</p>
3964
3965<h5>Semantics:</h5>
3966
3967<p>
3968The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
3969the frame address of the specified call frame, or zero if it cannot be
3970identified. The value returned by this intrinsic is likely to be incorrect or 0
3971for arguments other than zero, so it should only be used for debugging purposes.
3972</p>
3973
3974<p>
3975Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00003976aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00003977source-language caller.
3978</p>
3979</div>
3980
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003981<!-- _______________________________________________________________________ -->
3982<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003983 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00003984</div>
3985
3986<div class="doc_text">
3987
3988<h5>Syntax:</h5>
3989<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003990 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00003991</pre>
3992
3993<h5>Overview:</h5>
3994
3995<p>
3996The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00003997the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00003998<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
3999features like scoped automatic variable sized arrays in C99.
4000</p>
4001
4002<h5>Semantics:</h5>
4003
4004<p>
4005This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004006href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004007<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4008<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4009state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4010practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4011that were allocated after the <tt>llvm.stacksave</tt> was executed.
4012</p>
4013
4014</div>
4015
4016<!-- _______________________________________________________________________ -->
4017<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004018 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004019</div>
4020
4021<div class="doc_text">
4022
4023<h5>Syntax:</h5>
4024<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004025 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004026</pre>
4027
4028<h5>Overview:</h5>
4029
4030<p>
4031The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4032the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004033href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004034useful for implementing language features like scoped automatic variable sized
4035arrays in C99.
4036</p>
4037
4038<h5>Semantics:</h5>
4039
4040<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004041See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004042</p>
4043
4044</div>
4045
4046
4047<!-- _______________________________________________________________________ -->
4048<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004049 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004050</div>
4051
4052<div class="doc_text">
4053
4054<h5>Syntax:</h5>
4055<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004056 declare void @llvm.prefetch(i8 * &lt;address&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004057 i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004058</pre>
4059
4060<h5>Overview:</h5>
4061
4062
4063<p>
4064The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004065a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4066no
4067effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004068characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004069</p>
4070
4071<h5>Arguments:</h5>
4072
4073<p>
4074<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4075determining if the fetch should be for a read (0) or write (1), and
4076<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004077locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004078<tt>locality</tt> arguments must be constant integers.
4079</p>
4080
4081<h5>Semantics:</h5>
4082
4083<p>
4084This intrinsic does not modify the behavior of the program. In particular,
4085prefetches cannot trap and do not produce a value. On targets that support this
4086intrinsic, the prefetch can provide hints to the processor cache for better
4087performance.
4088</p>
4089
4090</div>
4091
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004092<!-- _______________________________________________________________________ -->
4093<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004094 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004095</div>
4096
4097<div class="doc_text">
4098
4099<h5>Syntax:</h5>
4100<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004101 declare void @llvm.pcmarker( i32 &lt;id&gt; )
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004102</pre>
4103
4104<h5>Overview:</h5>
4105
4106
4107<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004108The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4109(PC) in a region of
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004110code to simulators and other tools. The method is target specific, but it is
4111expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00004112The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnerd07c3f42005-11-15 06:07:55 +00004113after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004114optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004115correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004116</p>
4117
4118<h5>Arguments:</h5>
4119
4120<p>
4121<tt>id</tt> is a numerical id identifying the marker.
4122</p>
4123
4124<h5>Semantics:</h5>
4125
4126<p>
4127This intrinsic does not modify the behavior of the program. Backends that do not
4128support this intrinisic may ignore it.
4129</p>
4130
4131</div>
4132
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004133<!-- _______________________________________________________________________ -->
4134<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004135 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004136</div>
4137
4138<div class="doc_text">
4139
4140<h5>Syntax:</h5>
4141<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004142 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004143</pre>
4144
4145<h5>Overview:</h5>
4146
4147
4148<p>
4149The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4150counter register (or similar low latency, high accuracy clocks) on those targets
4151that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4152As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4153should only be used for small timings.
4154</p>
4155
4156<h5>Semantics:</h5>
4157
4158<p>
4159When directly supported, reading the cycle counter should not modify any memory.
4160Implementations are allowed to either return a application specific value or a
4161system wide value. On backends without support, this is lowered to a constant 0.
4162</p>
4163
4164</div>
4165
Chris Lattner10610642004-02-14 04:08:35 +00004166<!-- ======================================================================= -->
4167<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004168 <a name="int_libc">Standard C Library Intrinsics</a>
4169</div>
4170
4171<div class="doc_text">
4172<p>
Chris Lattner10610642004-02-14 04:08:35 +00004173LLVM provides intrinsics for a few important standard C library functions.
4174These intrinsics allow source-language front-ends to pass information about the
4175alignment of the pointer arguments to the code generator, providing opportunity
4176for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004177</p>
4178
4179</div>
4180
4181<!-- _______________________________________________________________________ -->
4182<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004183 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004184</div>
4185
4186<div class="doc_text">
4187
4188<h5>Syntax:</h5>
4189<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004190 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004191 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004192 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004193 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004194</pre>
4195
4196<h5>Overview:</h5>
4197
4198<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004199The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004200location to the destination location.
4201</p>
4202
4203<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004204Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4205intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004206</p>
4207
4208<h5>Arguments:</h5>
4209
4210<p>
4211The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004212the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00004213specifying the number of bytes to copy, and the fourth argument is the alignment
4214of the source and destination locations.
4215</p>
4216
Chris Lattner3301ced2004-02-12 21:18:15 +00004217<p>
4218If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004219the caller guarantees that both the source and destination pointers are aligned
4220to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004221</p>
4222
Chris Lattner33aec9e2004-02-12 17:01:32 +00004223<h5>Semantics:</h5>
4224
4225<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004226The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004227location to the destination location, which are not allowed to overlap. It
4228copies "len" bytes of memory over. If the argument is known to be aligned to
4229some boundary, this can be specified as the fourth argument, otherwise it should
4230be set to 0 or 1.
4231</p>
4232</div>
4233
4234
Chris Lattner0eb51b42004-02-12 18:10:10 +00004235<!-- _______________________________________________________________________ -->
4236<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004237 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00004238</div>
4239
4240<div class="doc_text">
4241
4242<h5>Syntax:</h5>
4243<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004244 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004245 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004246 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004247 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00004248</pre>
4249
4250<h5>Overview:</h5>
4251
4252<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004253The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4254location to the destination location. It is similar to the
4255'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004256</p>
4257
4258<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004259Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4260intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004261</p>
4262
4263<h5>Arguments:</h5>
4264
4265<p>
4266The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004267the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00004268specifying the number of bytes to copy, and the fourth argument is the alignment
4269of the source and destination locations.
4270</p>
4271
Chris Lattner3301ced2004-02-12 21:18:15 +00004272<p>
4273If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004274the caller guarantees that the source and destination pointers are aligned to
4275that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004276</p>
4277
Chris Lattner0eb51b42004-02-12 18:10:10 +00004278<h5>Semantics:</h5>
4279
4280<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004281The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00004282location to the destination location, which may overlap. It
4283copies "len" bytes of memory over. If the argument is known to be aligned to
4284some boundary, this can be specified as the fourth argument, otherwise it should
4285be set to 0 or 1.
4286</p>
4287</div>
4288
Chris Lattner8ff75902004-01-06 05:31:32 +00004289
Chris Lattner10610642004-02-14 04:08:35 +00004290<!-- _______________________________________________________________________ -->
4291<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004292 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00004293</div>
4294
4295<div class="doc_text">
4296
4297<h5>Syntax:</h5>
4298<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004299 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004300 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004301 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004302 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004303</pre>
4304
4305<h5>Overview:</h5>
4306
4307<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004308The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00004309byte value.
4310</p>
4311
4312<p>
4313Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4314does not return a value, and takes an extra alignment argument.
4315</p>
4316
4317<h5>Arguments:</h5>
4318
4319<p>
4320The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00004321byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00004322argument specifying the number of bytes to fill, and the fourth argument is the
4323known alignment of destination location.
4324</p>
4325
4326<p>
4327If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004328the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00004329</p>
4330
4331<h5>Semantics:</h5>
4332
4333<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004334The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4335the
Chris Lattner10610642004-02-14 04:08:35 +00004336destination location. If the argument is known to be aligned to some boundary,
4337this can be specified as the fourth argument, otherwise it should be set to 0 or
43381.
4339</p>
4340</div>
4341
4342
Chris Lattner32006282004-06-11 02:28:03 +00004343<!-- _______________________________________________________________________ -->
4344<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004345 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00004346</div>
4347
4348<div class="doc_text">
4349
4350<h5>Syntax:</h5>
4351<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004352 declare float @llvm.sqrt.f32(float %Val)
4353 declare double @llvm.sqrt.f64(double %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00004354</pre>
4355
4356<h5>Overview:</h5>
4357
4358<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004359The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Chris Lattnera4d74142005-07-21 01:29:16 +00004360returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4361<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4362negative numbers (which allows for better optimization).
4363</p>
4364
4365<h5>Arguments:</h5>
4366
4367<p>
4368The argument and return value are floating point numbers of the same type.
4369</p>
4370
4371<h5>Semantics:</h5>
4372
4373<p>
4374This function returns the sqrt of the specified operand if it is a positive
4375floating point number.
4376</p>
4377</div>
4378
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004379<!-- _______________________________________________________________________ -->
4380<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004381 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004382</div>
4383
4384<div class="doc_text">
4385
4386<h5>Syntax:</h5>
4387<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004388 declare float @llvm.powi.f32(float %Val, i32 %power)
4389 declare double @llvm.powi.f64(double %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004390</pre>
4391
4392<h5>Overview:</h5>
4393
4394<p>
4395The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4396specified (positive or negative) power. The order of evaluation of
4397multiplications is not defined.
4398</p>
4399
4400<h5>Arguments:</h5>
4401
4402<p>
4403The second argument is an integer power, and the first is a value to raise to
4404that power.
4405</p>
4406
4407<h5>Semantics:</h5>
4408
4409<p>
4410This function returns the first value raised to the second power with an
4411unspecified sequence of rounding operations.</p>
4412</div>
4413
4414
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004415<!-- ======================================================================= -->
4416<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004417 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004418</div>
4419
4420<div class="doc_text">
4421<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00004422LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004423These allow efficient code generation for some algorithms.
4424</p>
4425
4426</div>
4427
4428<!-- _______________________________________________________________________ -->
4429<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004430 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00004431</div>
4432
4433<div class="doc_text">
4434
4435<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004436<p>This is an overloaded intrinsic function. You can use bswap on any integer
4437type that is an even number of bytes (i.e. BitWidth % 16 == 0). Note the suffix
4438that includes the type for the result and the operand.
Nate Begeman7e36c472006-01-13 23:26:38 +00004439<pre>
Reid Spencer409e28f2007-04-01 08:04:23 +00004440 declare i16 @llvm.bswap.i16.i16(i16 &lt;id&gt;)
4441 declare i32 @llvm.bswap.i32.i32(i32 &lt;id&gt;)
Reid Spencer543ab1d2007-04-02 00:19:52 +00004442 declare i64 @llvm.bswap.i64.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00004443</pre>
4444
4445<h5>Overview:</h5>
4446
4447<p>
Reid Spencer338ea092007-04-02 02:25:19 +00004448The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00004449values with an even number of bytes (positive multiple of 16 bits). These are
4450useful for performing operations on data that is not in the target's native
4451byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00004452</p>
4453
4454<h5>Semantics:</h5>
4455
4456<p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004457The <tt>llvm.bswap.16.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00004458and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4459intrinsic returns an i32 value that has the four bytes of the input i32
4460swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Reid Spencer409e28f2007-04-01 08:04:23 +00004461i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48.i48</tt>,
4462<tt>llvm.bswap.i64.i64</tt> and other intrinsics extend this concept to
4463additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00004464</p>
4465
4466</div>
4467
4468<!-- _______________________________________________________________________ -->
4469<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00004470 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004471</div>
4472
4473<div class="doc_text">
4474
4475<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004476<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4477width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004478<pre>
Reid Spencer409e28f2007-04-01 08:04:23 +00004479 declare i32 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4480 declare i32 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004481 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Reid Spencer409e28f2007-04-01 08:04:23 +00004482 declare i32 @llvm.ctpop.i64(i64 &lt;src&gt;)
4483 declare i32 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004484</pre>
4485
4486<h5>Overview:</h5>
4487
4488<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004489The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4490value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004491</p>
4492
4493<h5>Arguments:</h5>
4494
4495<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004496The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004497integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004498</p>
4499
4500<h5>Semantics:</h5>
4501
4502<p>
4503The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4504</p>
4505</div>
4506
4507<!-- _______________________________________________________________________ -->
4508<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004509 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004510</div>
4511
4512<div class="doc_text">
4513
4514<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004515<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4516integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004517<pre>
Reid Spencer409e28f2007-04-01 08:04:23 +00004518 declare i32 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4519 declare i32 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004520 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Reid Spencer409e28f2007-04-01 08:04:23 +00004521 declare i32 @llvm.ctlz.i64(i64 &lt;src&gt;)
4522 declare i32 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004523</pre>
4524
4525<h5>Overview:</h5>
4526
4527<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004528The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4529leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004530</p>
4531
4532<h5>Arguments:</h5>
4533
4534<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004535The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004536integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004537</p>
4538
4539<h5>Semantics:</h5>
4540
4541<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004542The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4543in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00004544of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004545</p>
4546</div>
Chris Lattner32006282004-06-11 02:28:03 +00004547
4548
Chris Lattnereff29ab2005-05-15 19:39:26 +00004549
4550<!-- _______________________________________________________________________ -->
4551<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004552 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004553</div>
4554
4555<div class="doc_text">
4556
4557<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004558<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4559integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004560<pre>
Reid Spencer409e28f2007-04-01 08:04:23 +00004561 declare i32 @llvm.cttz.i8 (i8 &lt;src&gt;)
4562 declare i32 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004563 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Reid Spencer409e28f2007-04-01 08:04:23 +00004564 declare i32 @llvm.cttz.i64(i64 &lt;src&gt;)
4565 declare i32 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00004566</pre>
4567
4568<h5>Overview:</h5>
4569
4570<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004571The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4572trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004573</p>
4574
4575<h5>Arguments:</h5>
4576
4577<p>
4578The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004579integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004580</p>
4581
4582<h5>Semantics:</h5>
4583
4584<p>
4585The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4586in a variable. If the src == 0 then the result is the size in bits of the type
4587of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4588</p>
4589</div>
4590
Reid Spencer497d93e2007-04-01 08:27:01 +00004591<!-- _______________________________________________________________________ -->
4592<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00004593 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004594</div>
4595
4596<div class="doc_text">
4597
4598<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00004599<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004600on any integer bit width.
4601<pre>
Reid Spencerbeacf662007-04-10 02:51:31 +00004602 declare i17 @llvm.part.select.i17.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4603 declare i29 @llvm.part.select.i29.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00004604</pre>
4605
4606<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00004607<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00004608range of bits from an integer value and returns them in the same bit width as
4609the original value.</p>
4610
4611<h5>Arguments:</h5>
4612<p>The first argument, <tt>%val</tt> and the result may be integer types of
4613any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00004614arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004615
4616<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00004617<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00004618of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4619<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4620operates in forward mode.</p>
4621<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4622right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00004623only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4624<ol>
4625 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4626 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4627 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4628 to determine the number of bits to retain.</li>
4629 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4630 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4631</ol>
Reid Spencera3e435f2007-04-04 02:42:35 +00004632<p>In reverse mode, a similar computation is made except that:</p>
4633<ol>
4634 <li>The bits selected wrap around to include both the highest and lowest bits.
Reid Spencerbeacf662007-04-10 02:51:31 +00004635 For example, part.select(i16 X, 4, 7) selects bits from X with a mask of
4636 0x00F0 (forwards case) while part.select(i16 X, 8, 3) selects bits from X
Reid Spencera3e435f2007-04-04 02:42:35 +00004637 with a mask of 0xFF0F.</li>
4638 <li>The bits returned in the reverse case are reversed. So, if X has the value
Reid Spencerbeacf662007-04-10 02:51:31 +00004639 0x6ACF and we apply part.select(i16 X, 8, 3) to it, we get back the value
Reid Spencera3e435f2007-04-04 02:42:35 +00004640 0x0A6F.</li>
4641</ol>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004642</div>
4643
Reid Spencerf86037f2007-04-11 23:23:49 +00004644<div class="doc_subsubsection">
4645 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4646</div>
4647
4648<div class="doc_text">
4649
4650<h5>Syntax:</h5>
4651<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4652on any integer bit width.
4653<pre>
4654 declare i17 @llvm.part.set.i17.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4655 declare i29 @llvm.part.set.i29.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
4656</pre>
4657
4658<h5>Overview:</h5>
4659<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4660of bits in an integer value with another integer value. It returns the integer
4661with the replaced bits.</p>
4662
4663<h5>Arguments:</h5>
4664<p>The first argument, <tt>%val</tt> and the result may be integer types of
4665any bit width but they must have the same bit width. <tt>%val</tt> is the value
4666whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4667integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4668type since they specify only a bit index.</p>
4669
4670<h5>Semantics:</h5>
4671<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4672of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4673<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4674operates in forward mode.</p>
4675<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4676truncating it down to the size of the replacement area or zero extending it
4677up to that size.</p>
4678<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4679are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4680in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4681to the <tt>%hi</tt>th bit.
4682<p>In reverse mode, a similar computation is made except that the bits replaced
4683wrap around to include both the highest and lowest bits. For example, if a
468416 bit value is being replaced then <tt>%lo=8</tt> and <tt>%hi=4</tt> would
Reid Spencer065cc7f2007-04-11 23:46:06 +00004685cause these bits to be set: <tt>0xFF1F</tt>.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00004686<h5>Examples:</h5>
4687<pre>
4688 llvm.part.set(0xFFFF, 0, Y, 4, 7) -&gt; 0xFF0F
4689 llvm.part.set(0xFFFF, 0, Y, 7, 4) -&gt; 0x0060
4690 llvm.part.set(0xFFFF, 0, Y, 8, 3) -&gt; 0x00F0
4691 llvm.part.set(0xFFFF, 0, Y, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00004692</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00004693</div>
4694
Chris Lattner8ff75902004-01-06 05:31:32 +00004695<!-- ======================================================================= -->
4696<div class="doc_subsection">
4697 <a name="int_debugger">Debugger Intrinsics</a>
4698</div>
4699
4700<div class="doc_text">
4701<p>
4702The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4703are described in the <a
4704href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4705Debugging</a> document.
4706</p>
4707</div>
4708
4709
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00004710<!-- ======================================================================= -->
4711<div class="doc_subsection">
4712 <a name="int_eh">Exception Handling Intrinsics</a>
4713</div>
4714
4715<div class="doc_text">
4716<p> The LLVM exception handling intrinsics (which all start with
4717<tt>llvm.eh.</tt> prefix), are described in the <a
4718href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4719Handling</a> document. </p>
4720</div>
4721
4722
Chris Lattner00950542001-06-06 20:29:01 +00004723<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00004724<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00004725<address>
4726 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
4727 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
4728 <a href="http://validator.w3.org/check/referer"><img
4729 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
4730
4731 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00004732 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00004733 Last modified: $Date$
4734</address>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004735</body>
4736</html>