blob: 4302beb79b3f5108053a17cf62d003c8a0f49b90 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000030using namespace llvm;
31
32namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000033 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
34 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000035 ///
36 enum TypeClass {
37 cByte, cShort, cInt, cFP, cLong
38 };
39}
40
41/// getClass - Turn a primitive type into a "class" number which is based on the
42/// size of the type, and whether or not it is floating point.
43///
44static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000045 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000046 case Type::SByteTyID:
47 case Type::UByteTyID: return cByte; // Byte operands are class #0
48 case Type::ShortTyID:
49 case Type::UShortTyID: return cShort; // Short operands are class #1
50 case Type::IntTyID:
51 case Type::UIntTyID:
52 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
53
54 case Type::FloatTyID:
55 case Type::DoubleTyID: return cFP; // Floating Point is #3
56
57 case Type::LongTyID:
58 case Type::ULongTyID: return cLong; // Longs are class #4
59 default:
60 assert(0 && "Invalid type to getClass!");
61 return cByte; // not reached
62 }
63}
64
65// getClassB - Just like getClass, but treat boolean values as ints.
66static inline TypeClass getClassB(const Type *Ty) {
67 if (Ty == Type::BoolTy) return cInt;
68 return getClass(Ty);
69}
70
71namespace {
72 struct ISel : public FunctionPass, InstVisitor<ISel> {
73 TargetMachine &TM;
74 MachineFunction *F; // The function we are compiling into
75 MachineBasicBlock *BB; // The current MBB we are compiling
76 int VarArgsFrameIndex; // FrameIndex for start of varargs area
77 int ReturnAddressIndex; // FrameIndex for the return address
78
79 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
80
81 // MBBMap - Mapping between LLVM BB -> Machine BB
82 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
83
84 // AllocaMap - Mapping from fixed sized alloca instructions to the
85 // FrameIndex for the alloca.
86 std::map<AllocaInst*, unsigned> AllocaMap;
87
88 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
89
90 /// runOnFunction - Top level implementation of instruction selection for
91 /// the entire function.
92 ///
93 bool runOnFunction(Function &Fn) {
94 // First pass over the function, lower any unknown intrinsic functions
95 // with the IntrinsicLowering class.
96 LowerUnknownIntrinsicFunctionCalls(Fn);
97
98 F = &MachineFunction::construct(&Fn, TM);
99
100 // Create all of the machine basic blocks for the function...
101 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
102 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
103
104 BB = &F->front();
105
106 // Set up a frame object for the return address. This is used by the
107 // llvm.returnaddress & llvm.frameaddress intrinisics.
108 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
109
110 // Copy incoming arguments off of the stack...
111 LoadArgumentsToVirtualRegs(Fn);
112
113 // Instruction select everything except PHI nodes
114 visit(Fn);
115
116 // Select the PHI nodes
117 SelectPHINodes();
118
119 RegMap.clear();
120 MBBMap.clear();
121 AllocaMap.clear();
122 F = 0;
123 // We always build a machine code representation for the function
124 return true;
125 }
126
127 virtual const char *getPassName() const {
128 return "PowerPC Simple Instruction Selection";
129 }
130
131 /// visitBasicBlock - This method is called when we are visiting a new basic
132 /// block. This simply creates a new MachineBasicBlock to emit code into
133 /// and adds it to the current MachineFunction. Subsequent visit* for
134 /// instructions will be invoked for all instructions in the basic block.
135 ///
136 void visitBasicBlock(BasicBlock &LLVM_BB) {
137 BB = MBBMap[&LLVM_BB];
138 }
139
140 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
141 /// function, lowering any calls to unknown intrinsic functions into the
142 /// equivalent LLVM code.
143 ///
144 void LowerUnknownIntrinsicFunctionCalls(Function &F);
145
146 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
147 /// from the stack into virtual registers.
148 ///
149 void LoadArgumentsToVirtualRegs(Function &F);
150
151 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
152 /// because we have to generate our sources into the source basic blocks,
153 /// not the current one.
154 ///
155 void SelectPHINodes();
156
157 // Visitation methods for various instructions. These methods simply emit
158 // fixed PowerPC code for each instruction.
159
160 // Control flow operators
161 void visitReturnInst(ReturnInst &RI);
162 void visitBranchInst(BranchInst &BI);
163
164 struct ValueRecord {
165 Value *Val;
166 unsigned Reg;
167 const Type *Ty;
168 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
169 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
170 };
171 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
172 const std::vector<ValueRecord> &Args);
173 void visitCallInst(CallInst &I);
174 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
175
176 // Arithmetic operators
177 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
178 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
179 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
180 void visitMul(BinaryOperator &B);
181
182 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
183 void visitRem(BinaryOperator &B) { visitDivRem(B); }
184 void visitDivRem(BinaryOperator &B);
185
186 // Bitwise operators
187 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
188 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
189 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
190
191 // Comparison operators...
192 void visitSetCondInst(SetCondInst &I);
193 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
194 MachineBasicBlock *MBB,
195 MachineBasicBlock::iterator MBBI);
196 void visitSelectInst(SelectInst &SI);
197
198
199 // Memory Instructions
200 void visitLoadInst(LoadInst &I);
201 void visitStoreInst(StoreInst &I);
202 void visitGetElementPtrInst(GetElementPtrInst &I);
203 void visitAllocaInst(AllocaInst &I);
204 void visitMallocInst(MallocInst &I);
205 void visitFreeInst(FreeInst &I);
206
207 // Other operators
208 void visitShiftInst(ShiftInst &I);
209 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
210 void visitCastInst(CastInst &I);
211 void visitVANextInst(VANextInst &I);
212 void visitVAArgInst(VAArgInst &I);
213
214 void visitInstruction(Instruction &I) {
215 std::cerr << "Cannot instruction select: " << I;
216 abort();
217 }
218
219 /// promote32 - Make a value 32-bits wide, and put it somewhere.
220 ///
221 void promote32(unsigned targetReg, const ValueRecord &VR);
222
223 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
224 /// constant expression GEP support.
225 ///
226 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
227 Value *Src, User::op_iterator IdxBegin,
228 User::op_iterator IdxEnd, unsigned TargetReg);
229
230 /// emitCastOperation - Common code shared between visitCastInst and
231 /// constant expression cast support.
232 ///
233 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
234 Value *Src, const Type *DestTy, unsigned TargetReg);
235
236 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
237 /// and constant expression support.
238 ///
239 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
240 MachineBasicBlock::iterator IP,
241 Value *Op0, Value *Op1,
242 unsigned OperatorClass, unsigned TargetReg);
243
244 /// emitBinaryFPOperation - This method handles emission of floating point
245 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
246 void emitBinaryFPOperation(MachineBasicBlock *BB,
247 MachineBasicBlock::iterator IP,
248 Value *Op0, Value *Op1,
249 unsigned OperatorClass, unsigned TargetReg);
250
251 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
252 Value *Op0, Value *Op1, unsigned TargetReg);
253
254 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
255 unsigned DestReg, const Type *DestTy,
256 unsigned Op0Reg, unsigned Op1Reg);
257 void doMultiplyConst(MachineBasicBlock *MBB,
258 MachineBasicBlock::iterator MBBI,
259 unsigned DestReg, const Type *DestTy,
260 unsigned Op0Reg, unsigned Op1Val);
261
262 void emitDivRemOperation(MachineBasicBlock *BB,
263 MachineBasicBlock::iterator IP,
264 Value *Op0, Value *Op1, bool isDiv,
265 unsigned TargetReg);
266
267 /// emitSetCCOperation - Common code shared between visitSetCondInst and
268 /// constant expression support.
269 ///
270 void emitSetCCOperation(MachineBasicBlock *BB,
271 MachineBasicBlock::iterator IP,
272 Value *Op0, Value *Op1, unsigned Opcode,
273 unsigned TargetReg);
274
275 /// emitShiftOperation - Common code shared between visitShiftInst and
276 /// constant expression support.
277 ///
278 void emitShiftOperation(MachineBasicBlock *MBB,
279 MachineBasicBlock::iterator IP,
280 Value *Op, Value *ShiftAmount, bool isLeftShift,
281 const Type *ResultTy, unsigned DestReg);
282
283 /// emitSelectOperation - Common code shared between visitSelectInst and the
284 /// constant expression support.
285 void emitSelectOperation(MachineBasicBlock *MBB,
286 MachineBasicBlock::iterator IP,
287 Value *Cond, Value *TrueVal, Value *FalseVal,
288 unsigned DestReg);
289
290 /// copyConstantToRegister - Output the instructions required to put the
291 /// specified constant into the specified register.
292 ///
293 void copyConstantToRegister(MachineBasicBlock *MBB,
294 MachineBasicBlock::iterator MBBI,
295 Constant *C, unsigned Reg);
296
297 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
298 unsigned LHS, unsigned RHS);
299
300 /// makeAnotherReg - This method returns the next register number we haven't
301 /// yet used.
302 ///
303 /// Long values are handled somewhat specially. They are always allocated
304 /// as pairs of 32 bit integer values. The register number returned is the
305 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
306 /// of the long value.
307 ///
308 unsigned makeAnotherReg(const Type *Ty) {
309 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
310 "Current target doesn't have PPC reg info??");
311 const PowerPCRegisterInfo *MRI =
312 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
313 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
314 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
315 // Create the lower part
316 F->getSSARegMap()->createVirtualRegister(RC);
317 // Create the upper part.
318 return F->getSSARegMap()->createVirtualRegister(RC)-1;
319 }
320
321 // Add the mapping of regnumber => reg class to MachineFunction
322 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
323 return F->getSSARegMap()->createVirtualRegister(RC);
324 }
325
326 /// getReg - This method turns an LLVM value into a register number.
327 ///
328 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
329 unsigned getReg(Value *V) {
330 // Just append to the end of the current bb.
331 MachineBasicBlock::iterator It = BB->end();
332 return getReg(V, BB, It);
333 }
334 unsigned getReg(Value *V, MachineBasicBlock *MBB,
335 MachineBasicBlock::iterator IPt);
336
337 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
338 /// that is to be statically allocated with the initial stack frame
339 /// adjustment.
340 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
341 };
342}
343
344/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
345/// instruction in the entry block, return it. Otherwise, return a null
346/// pointer.
347static AllocaInst *dyn_castFixedAlloca(Value *V) {
348 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
349 BasicBlock *BB = AI->getParent();
350 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
351 return AI;
352 }
353 return 0;
354}
355
356/// getReg - This method turns an LLVM value into a register number.
357///
358unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
359 MachineBasicBlock::iterator IPt) {
360 // If this operand is a constant, emit the code to copy the constant into
361 // the register here...
362 //
363 if (Constant *C = dyn_cast<Constant>(V)) {
364 unsigned Reg = makeAnotherReg(V->getType());
365 copyConstantToRegister(MBB, IPt, C, Reg);
366 return Reg;
367 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
368 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000369 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000370 // Move the address of the global into the register
Misha Brukman911afde2004-06-25 14:50:41 +0000371 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(PPC32::R0)
372 .addGlobalAddress(GV);
Misha Brukman9ecf3bf2004-06-25 14:57:19 +0000373 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
Misha Brukman911afde2004-06-25 14:50:41 +0000374 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000375 return Reg2;
376 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
377 // Do not emit noop casts at all.
378 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
379 return getReg(CI->getOperand(0), MBB, IPt);
380 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
381 unsigned Reg = makeAnotherReg(V->getType());
382 unsigned FI = getFixedSizedAllocaFI(AI);
383 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
384 return Reg;
385 }
386
387 unsigned &Reg = RegMap[V];
388 if (Reg == 0) {
389 Reg = makeAnotherReg(V->getType());
390 RegMap[V] = Reg;
391 }
392
393 return Reg;
394}
395
396/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
397/// that is to be statically allocated with the initial stack frame
398/// adjustment.
399unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
400 // Already computed this?
401 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
402 if (I != AllocaMap.end() && I->first == AI) return I->second;
403
404 const Type *Ty = AI->getAllocatedType();
405 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
406 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
407 TySize *= CUI->getValue(); // Get total allocated size...
408 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
409
410 // Create a new stack object using the frame manager...
411 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
412 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
413 return FrameIdx;
414}
415
416
417/// copyConstantToRegister - Output the instructions required to put the
418/// specified constant into the specified register.
419///
420void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
421 MachineBasicBlock::iterator IP,
422 Constant *C, unsigned R) {
423 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
424 unsigned Class = 0;
425 switch (CE->getOpcode()) {
426 case Instruction::GetElementPtr:
427 emitGEPOperation(MBB, IP, CE->getOperand(0),
428 CE->op_begin()+1, CE->op_end(), R);
429 return;
430 case Instruction::Cast:
431 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
432 return;
433
434 case Instruction::Xor: ++Class; // FALL THROUGH
435 case Instruction::Or: ++Class; // FALL THROUGH
436 case Instruction::And: ++Class; // FALL THROUGH
437 case Instruction::Sub: ++Class; // FALL THROUGH
438 case Instruction::Add:
439 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
440 Class, R);
441 return;
442
443 case Instruction::Mul:
444 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
445 return;
446
447 case Instruction::Div:
448 case Instruction::Rem:
449 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
450 CE->getOpcode() == Instruction::Div, R);
451 return;
452
453 case Instruction::SetNE:
454 case Instruction::SetEQ:
455 case Instruction::SetLT:
456 case Instruction::SetGT:
457 case Instruction::SetLE:
458 case Instruction::SetGE:
459 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
460 CE->getOpcode(), R);
461 return;
462
463 case Instruction::Shl:
464 case Instruction::Shr:
465 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
466 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
467 return;
468
469 case Instruction::Select:
470 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
471 CE->getOperand(2), R);
472 return;
473
474 default:
475 std::cerr << "Offending expr: " << C << "\n";
476 assert(0 && "Constant expression not yet handled!\n");
477 }
478 }
479
480 if (C->getType()->isIntegral()) {
481 unsigned Class = getClassB(C->getType());
482
483 if (Class == cLong) {
484 // Copy the value into the register pair.
485 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000486 unsigned hiTmp = makeAnotherReg(Type::IntTy);
487 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000488 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0)
489 .addImm(Val >> 48);
490 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp)
491 .addImm((Val >> 32) & 0xFFFF);
492 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0)
493 .addImm((Val >> 16) & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000494 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
495 return;
496 }
497
498 assert(Class <= cInt && "Type not handled yet!");
499
500 if (C->getType() == Type::BoolTy) {
Misha Brukman911afde2004-06-25 14:50:41 +0000501 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
502 .addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000503 } else if (Class == cByte || Class == cShort) {
504 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman911afde2004-06-25 14:50:41 +0000505 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
506 .addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000507 } else {
508 ConstantInt *CI = cast<ConstantInt>(C);
509 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
510 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman911afde2004-06-25 14:50:41 +0000511 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
512 .addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000513 } else {
514 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000515 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
516 .addImm(CI->getRawValue() >> 16);
517 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
518 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000519 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000520 }
521 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
522 // We need to spill the constant to memory...
523 MachineConstantPool *CP = F->getConstantPool();
524 unsigned CPI = CP->getConstantPoolIndex(CFP);
525 const Type *Ty = CFP->getType();
526
Misha Brukman911afde2004-06-25 14:50:41 +0000527 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000528 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
529 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
530 } else if (isa<ConstantPointerNull>(C)) {
531 // Copy zero (null pointer) to the register.
532 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
533 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000534 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
535 .addGlobalAddress(CPR->getValue());
536 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
537 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000538 } else {
539 std::cerr << "Offending constant: " << C << "\n";
540 assert(0 && "Type not handled yet!");
541 }
542}
543
544/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
545/// the stack into virtual registers.
546///
547/// FIXME: When we can calculate which args are coming in via registers
548/// source them from there instead.
549void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
550 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
551 unsigned GPR_remaining = 8;
552 unsigned FPR_remaining = 13;
553 unsigned GPR_idx = 3;
554 unsigned FPR_idx = 1;
Misha Brukman422791f2004-06-21 17:41:12 +0000555
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000556 MachineFrameInfo *MFI = F->getFrameInfo();
557
558 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
559 bool ArgLive = !I->use_empty();
560 unsigned Reg = ArgLive ? getReg(*I) : 0;
561 int FI; // Frame object index
562
563 switch (getClassB(I->getType())) {
564 case cByte:
565 if (ArgLive) {
566 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000567 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000568 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
569 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000570 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000571 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000572 }
573 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000574 break;
575 case cShort:
576 if (ArgLive) {
577 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000578 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000579 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
580 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000581 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000582 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000583 }
584 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000585 break;
586 case cInt:
587 if (ArgLive) {
588 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000589 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000590 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
591 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000592 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000593 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000594 }
595 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000596 break;
597 case cLong:
598 if (ArgLive) {
599 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000600 if (GPR_remaining > 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000601 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
602 .addReg(PPC32::R0+GPR_idx);
603 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1)
604 .addReg(PPC32::R0+GPR_idx+1);
Misha Brukman422791f2004-06-21 17:41:12 +0000605 } else {
606 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
607 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
608 }
609 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000610 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000611 if (GPR_remaining > 1) {
612 GPR_remaining--; // uses up 2 GPRs
613 GPR_idx++;
614 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000615 break;
616 case cFP:
617 if (ArgLive) {
618 unsigned Opcode;
619 if (I->getType() == Type::FloatTy) {
620 Opcode = PPC32::LFS;
621 FI = MFI->CreateFixedObject(4, ArgOffset);
622 } else {
623 Opcode = PPC32::LFD;
624 FI = MFI->CreateFixedObject(8, ArgOffset);
625 }
Misha Brukman422791f2004-06-21 17:41:12 +0000626 if (FPR_remaining > 0) {
627 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
628 FPR_remaining--;
629 FPR_idx++;
630 } else {
631 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
632 }
633 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000634 if (I->getType() == Type::DoubleTy) {
635 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000636 if (GPR_remaining > 0) {
637 GPR_remaining--; // uses up 2 GPRs
638 GPR_idx++;
639 }
640 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000641 break;
642 default:
643 assert(0 && "Unhandled argument type!");
644 }
645 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000646 if (GPR_remaining > 0) {
647 GPR_remaining--; // uses up 2 GPRs
648 GPR_idx++;
649 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000650 }
651
652 // If the function takes variable number of arguments, add a frame offset for
653 // the start of the first vararg value... this is used to expand
654 // llvm.va_start.
655 if (Fn.getFunctionType()->isVarArg())
656 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
657}
658
659
660/// SelectPHINodes - Insert machine code to generate phis. This is tricky
661/// because we have to generate our sources into the source basic blocks, not
662/// the current one.
663///
664void ISel::SelectPHINodes() {
665 const TargetInstrInfo &TII = *TM.getInstrInfo();
666 const Function &LF = *F->getFunction(); // The LLVM function...
667 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
668 const BasicBlock *BB = I;
669 MachineBasicBlock &MBB = *MBBMap[I];
670
671 // Loop over all of the PHI nodes in the LLVM basic block...
672 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
673 for (BasicBlock::const_iterator I = BB->begin();
674 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
675
676 // Create a new machine instr PHI node, and insert it.
677 unsigned PHIReg = getReg(*PN);
678 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
679 PPC32::PHI, PN->getNumOperands(), PHIReg);
680
681 MachineInstr *LongPhiMI = 0;
682 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
683 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
684 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
685
686 // PHIValues - Map of blocks to incoming virtual registers. We use this
687 // so that we only initialize one incoming value for a particular block,
688 // even if the block has multiple entries in the PHI node.
689 //
690 std::map<MachineBasicBlock*, unsigned> PHIValues;
691
692 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
693 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
694 unsigned ValReg;
695 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
696 PHIValues.lower_bound(PredMBB);
697
698 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
699 // We already inserted an initialization of the register for this
700 // predecessor. Recycle it.
701 ValReg = EntryIt->second;
702
703 } else {
704 // Get the incoming value into a virtual register.
705 //
706 Value *Val = PN->getIncomingValue(i);
707
708 // If this is a constant or GlobalValue, we may have to insert code
709 // into the basic block to compute it into a virtual register.
710 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
711 isa<GlobalValue>(Val)) {
712 // Simple constants get emitted at the end of the basic block,
713 // before any terminator instructions. We "know" that the code to
714 // move a constant into a register will never clobber any flags.
715 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
716 } else {
717 // Because we don't want to clobber any values which might be in
718 // physical registers with the computation of this constant (which
719 // might be arbitrarily complex if it is a constant expression),
720 // just insert the computation at the top of the basic block.
721 MachineBasicBlock::iterator PI = PredMBB->begin();
722
723 // Skip over any PHI nodes though!
724 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
725 ++PI;
726
727 ValReg = getReg(Val, PredMBB, PI);
728 }
729
730 // Remember that we inserted a value for this PHI for this predecessor
731 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
732 }
733
734 PhiMI->addRegOperand(ValReg);
735 PhiMI->addMachineBasicBlockOperand(PredMBB);
736 if (LongPhiMI) {
737 LongPhiMI->addRegOperand(ValReg+1);
738 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
739 }
740 }
741
742 // Now that we emitted all of the incoming values for the PHI node, make
743 // sure to reposition the InsertPoint after the PHI that we just added.
744 // This is needed because we might have inserted a constant into this
745 // block, right after the PHI's which is before the old insert point!
746 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
747 ++PHIInsertPoint;
748 }
749 }
750}
751
752
753// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
754// it into the conditional branch or select instruction which is the only user
755// of the cc instruction. This is the case if the conditional branch is the
756// only user of the setcc, and if the setcc is in the same basic block as the
757// conditional branch. We also don't handle long arguments below, so we reject
758// them here as well.
759//
760static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
761 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
762 if (SCI->hasOneUse()) {
763 Instruction *User = cast<Instruction>(SCI->use_back());
764 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
765 SCI->getParent() == User->getParent() &&
766 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
767 SCI->getOpcode() == Instruction::SetEQ ||
768 SCI->getOpcode() == Instruction::SetNE))
769 return SCI;
770 }
771 return 0;
772}
773
774// Return a fixed numbering for setcc instructions which does not depend on the
775// order of the opcodes.
776//
777static unsigned getSetCCNumber(unsigned Opcode) {
778 switch(Opcode) {
779 default: assert(0 && "Unknown setcc instruction!");
780 case Instruction::SetEQ: return 0;
781 case Instruction::SetNE: return 1;
782 case Instruction::SetLT: return 2;
783 case Instruction::SetGE: return 3;
784 case Instruction::SetGT: return 4;
785 case Instruction::SetLE: return 5;
786 }
787}
788
789/// emitUCOM - emits an unordered FP compare.
790void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
791 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000792 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000793}
794
795// EmitComparison - This function emits a comparison of the two operands,
796// returning the extended setcc code to use.
797unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
798 MachineBasicBlock *MBB,
799 MachineBasicBlock::iterator IP) {
800 // The arguments are already supposed to be of the same type.
801 const Type *CompTy = Op0->getType();
802 unsigned Class = getClassB(CompTy);
803 unsigned Op0r = getReg(Op0, MBB, IP);
804
805 // Special case handling of: cmp R, i
806 if (isa<ConstantPointerNull>(Op1)) {
807 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
808 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
809 if (Class == cByte || Class == cShort || Class == cInt) {
810 unsigned Op1v = CI->getRawValue();
811
812 // Mask off any upper bits of the constant, if there are any...
813 Op1v &= (1ULL << (8 << Class)) - 1;
814
Misha Brukman422791f2004-06-21 17:41:12 +0000815 // Compare immediate or promote to reg?
816 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000817 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
818 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000819 } else {
820 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000821 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
822 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000823 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000824 return OpNum;
825 } else {
826 assert(Class == cLong && "Unknown integer class!");
827 unsigned LowCst = CI->getRawValue();
828 unsigned HiCst = CI->getRawValue() >> 32;
829 if (OpNum < 2) { // seteq, setne
830 unsigned LoTmp = Op0r;
831 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000832 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000833 unsigned LoTmp = makeAnotherReg(Type::IntTy);
834 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000835 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
836 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000837 }
838 unsigned HiTmp = Op0r+1;
839 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000840 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000841 unsigned HiTmp = makeAnotherReg(Type::IntTy);
842 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000843 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
844 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000845 }
846 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
847 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
848 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
849 return OpNum;
850 } else {
851 // Emit a sequence of code which compares the high and low parts once
852 // each, then uses a conditional move to handle the overflow case. For
853 // example, a setlt for long would generate code like this:
854 //
855 // AL = lo(op1) < lo(op2) // Always unsigned comparison
856 // BL = hi(op1) < hi(op2) // Signedness depends on operands
857 // dest = hi(op1) == hi(op2) ? BL : AL;
858 //
859
860 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000861 std::cerr << "EmitComparison unimplemented: Opnum >= 2\n";
862 abort();
Misha Brukman422791f2004-06-21 17:41:12 +0000863 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000864 }
865 }
866 }
867
868 unsigned Op1r = getReg(Op1, MBB, IP);
869 switch (Class) {
870 default: assert(0 && "Unknown type class!");
871 case cByte:
872 case cShort:
873 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000874 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
875 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000876 break;
877 case cFP:
878 emitUCOM(MBB, IP, Op0r, Op1r);
879 break;
880
881 case cLong:
882 if (OpNum < 2) { // seteq, setne
883 unsigned LoTmp = makeAnotherReg(Type::IntTy);
884 unsigned HiTmp = makeAnotherReg(Type::IntTy);
885 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
886 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
887 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
888 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
889 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
890 break; // Allow the sete or setne to be generated from flags set by OR
891 } else {
892 // Emit a sequence of code which compares the high and low parts once
893 // each, then uses a conditional move to handle the overflow case. For
894 // example, a setlt for long would generate code like this:
895 //
896 // AL = lo(op1) < lo(op2) // Signedness depends on operands
897 // BL = hi(op1) < hi(op2) // Always unsigned comparison
898 // dest = hi(op1) == hi(op2) ? BL : AL;
899 //
900
901 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000902 std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n";
903 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000904 return OpNum;
905 }
906 }
907 return OpNum;
908}
909
910/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
911/// register, then move it to wherever the result should be.
912///
913void ISel::visitSetCondInst(SetCondInst &I) {
914 if (canFoldSetCCIntoBranchOrSelect(&I))
915 return; // Fold this into a branch or select.
916
917 unsigned DestReg = getReg(I);
918 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000919 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
920 DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000921}
922
923/// emitSetCCOperation - Common code shared between visitSetCondInst and
924/// constant expression support.
925///
926/// FIXME: this is wrong. we should figure out a way to guarantee
927/// TargetReg is a CR and then make it a no-op
928void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
929 MachineBasicBlock::iterator IP,
930 Value *Op0, Value *Op1, unsigned Opcode,
931 unsigned TargetReg) {
932 unsigned OpNum = getSetCCNumber(Opcode);
933 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
934
935 // The value is already in CR0 at this point, do nothing.
936}
937
938
939void ISel::visitSelectInst(SelectInst &SI) {
940 unsigned DestReg = getReg(SI);
941 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000942 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
943 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000944}
945
946/// emitSelect - Common code shared between visitSelectInst and the constant
947/// expression support.
948/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
949/// no select instruction. FSEL only works for comparisons against zero.
950void ISel::emitSelectOperation(MachineBasicBlock *MBB,
951 MachineBasicBlock::iterator IP,
952 Value *Cond, Value *TrueVal, Value *FalseVal,
953 unsigned DestReg) {
954 unsigned SelectClass = getClassB(TrueVal->getType());
955
956 unsigned TrueReg = getReg(TrueVal, MBB, IP);
957 unsigned FalseReg = getReg(FalseVal, MBB, IP);
958
959 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +0000960 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000961 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000962 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000963 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000964 }
965
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000966 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +0000967 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
968 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000969 return;
970 }
971
972 unsigned CondReg = getReg(Cond, MBB, IP);
973 unsigned numZeros = makeAnotherReg(Type::IntTy);
974 unsigned falseHi = makeAnotherReg(Type::IntTy);
975 unsigned falseAll = makeAnotherReg(Type::IntTy);
976 unsigned trueAll = makeAnotherReg(Type::IntTy);
977 unsigned Temp1 = makeAnotherReg(Type::IntTy);
978 unsigned Temp2 = makeAnotherReg(Type::IntTy);
979
980 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +0000981 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
982 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000983 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
984 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
985 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
986 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
987 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
988
989 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +0000990 unsigned Temp3 = makeAnotherReg(Type::IntTy);
991 unsigned Temp4 = makeAnotherReg(Type::IntTy);
992 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
993 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
994 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000995 }
996
997 return;
998}
999
1000
1001
1002/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1003/// operand, in the specified target register.
1004///
1005void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1006 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1007
1008 Value *Val = VR.Val;
1009 const Type *Ty = VR.Ty;
1010 if (Val) {
1011 if (Constant *C = dyn_cast<Constant>(Val)) {
1012 Val = ConstantExpr::getCast(C, Type::IntTy);
1013 Ty = Type::IntTy;
1014 }
1015
Misha Brukman2fec9902004-06-21 20:22:03 +00001016 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001017 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1018 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1019
1020 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001021 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1022 } else {
1023 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001024 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1025 .addImm(TheVal >> 16);
1026 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1027 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001028 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001029 return;
1030 }
1031 }
1032
1033 // Make sure we have the register number for this value...
1034 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1035
1036 switch (getClassB(Ty)) {
1037 case cByte:
1038 // Extend value into target register (8->32)
1039 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001040 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1041 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001042 else
1043 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1044 break;
1045 case cShort:
1046 // Extend value into target register (16->32)
1047 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001048 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1049 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001050 else
1051 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1052 break;
1053 case cInt:
1054 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001055 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001056 break;
1057 default:
1058 assert(0 && "Unpromotable operand class in promote32");
1059 }
1060}
1061
Misha Brukman2fec9902004-06-21 20:22:03 +00001062/// visitReturnInst - implemented with BLR
1063///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001064void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001065 // Only do the processing if this is a non-void return
1066 if (I.getNumOperands() > 0) {
1067 Value *RetVal = I.getOperand(0);
1068 switch (getClassB(RetVal->getType())) {
1069 case cByte: // integral return values: extend or move into r3 and return
1070 case cShort:
1071 case cInt:
1072 promote32(PPC32::R3, ValueRecord(RetVal));
1073 break;
1074 case cFP: { // Floats & Doubles: Return in f1
1075 unsigned RetReg = getReg(RetVal);
1076 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1077 break;
1078 }
1079 case cLong: {
1080 unsigned RetReg = getReg(RetVal);
1081 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1082 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1083 break;
1084 }
1085 default:
1086 visitInstruction(I);
1087 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001088 }
1089 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1090}
1091
1092// getBlockAfter - Return the basic block which occurs lexically after the
1093// specified one.
1094static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1095 Function::iterator I = BB; ++I; // Get iterator to next block
1096 return I != BB->getParent()->end() ? &*I : 0;
1097}
1098
1099/// visitBranchInst - Handle conditional and unconditional branches here. Note
1100/// that since code layout is frozen at this point, that if we are trying to
1101/// jump to a block that is the immediate successor of the current block, we can
1102/// just make a fall-through (but we don't currently).
1103///
1104void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001105 // Update machine-CFG edges
1106 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1107 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001108 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001109
1110 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1111
1112 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001113 if (BI.getSuccessor(0) != NextBB)
1114 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1115 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001116 }
1117
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001118 // See if we can fold the setcc into the branch itself...
1119 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1120 if (SCI == 0) {
1121 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1122 // computed some other way...
1123 unsigned condReg = getReg(BI.getCondition());
Misha Brukman2fec9902004-06-21 20:22:03 +00001124 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
1125 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001126 if (BI.getSuccessor(1) == NextBB) {
1127 if (BI.getSuccessor(0) != NextBB)
Misha Brukman2fec9902004-06-21 20:22:03 +00001128 BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2)
1129 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001130 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001131 BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2)
1132 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001133
1134 if (BI.getSuccessor(0) != NextBB)
1135 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1136 }
1137 return;
1138 }
1139
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001140 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1141 MachineBasicBlock::iterator MII = BB->end();
1142 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1143
1144 const Type *CompTy = SCI->getOperand(0)->getType();
1145 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1146
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001147 static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 };
1148 unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4;
1149 unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12;
1150 unsigned BIval = BITab[0];
1151
1152 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001153 BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval)
1154 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001155 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001156 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001157 } else {
1158 // Change to the inverse condition...
1159 if (BI.getSuccessor(1) != NextBB) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001160 BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval)
1161 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001162 }
1163 }
1164}
1165
1166
1167/// doCall - This emits an abstract call instruction, setting up the arguments
1168/// and the return value as appropriate. For the actual function call itself,
1169/// it inserts the specified CallMI instruction into the stream.
1170///
1171/// FIXME: See Documentation at the following URL for "correct" behavior
1172/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1173void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1174 const std::vector<ValueRecord> &Args) {
1175 // Count how many bytes are to be pushed on the stack...
1176 unsigned NumBytes = 0;
1177
1178 if (!Args.empty()) {
1179 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1180 switch (getClassB(Args[i].Ty)) {
1181 case cByte: case cShort: case cInt:
1182 NumBytes += 4; break;
1183 case cLong:
1184 NumBytes += 8; break;
1185 case cFP:
1186 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1187 break;
1188 default: assert(0 && "Unknown class!");
1189 }
1190
1191 // Adjust the stack pointer for the new arguments...
1192 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1193
1194 // Arguments go on the stack in reverse order, as specified by the ABI.
1195 unsigned ArgOffset = 0;
Misha Brukman422791f2004-06-21 17:41:12 +00001196 unsigned GPR_remaining = 8;
1197 unsigned FPR_remaining = 13;
1198 unsigned GPR_idx = 3;
1199 unsigned FPR_idx = 1;
1200
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001201 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1202 unsigned ArgReg;
1203 switch (getClassB(Args[i].Ty)) {
1204 case cByte:
1205 case cShort:
1206 // Promote arg to 32 bits wide into a temporary register...
1207 ArgReg = makeAnotherReg(Type::UIntTy);
1208 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001209
1210 // Reg or stack?
1211 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001212 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1213 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001214 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001215 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1216 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001217 }
1218 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001219 case cInt:
1220 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1221
Misha Brukman422791f2004-06-21 17:41:12 +00001222 // Reg or stack?
1223 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001224 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1225 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001226 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001227 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1228 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001229 }
1230 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001231 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001232 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001233
Misha Brukman422791f2004-06-21 17:41:12 +00001234 // Reg or stack?
1235 if (GPR_remaining > 1) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001236 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1237 .addReg(ArgReg);
1238 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1)
1239 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001240 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001241 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1242 .addReg(PPC32::R1);
1243 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1244 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001245 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001246
1247 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman422791f2004-06-21 17:41:12 +00001248 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001249 GPR_remaining -= 1; // uses up 2 GPRs
1250 GPR_idx += 1;
Misha Brukman422791f2004-06-21 17:41:12 +00001251 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001252 break;
1253 case cFP:
1254 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1255 if (Args[i].Ty == Type::FloatTy) {
Misha Brukman1916bf92004-06-24 21:56:15 +00001256 // Reg or stack?
1257 if (FPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001258 BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
1259 FPR_remaining--;
1260 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001261 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001262 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1263 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001264 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001265 } else {
1266 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001267 // Reg or stack?
1268 if (FPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001269 BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
1270 FPR_remaining--;
1271 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001272 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001273 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1274 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001275 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001276
Misha Brukman1916bf92004-06-24 21:56:15 +00001277 ArgOffset += 4; // 8 byte entry, not 4.
1278 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001279 GPR_remaining--; // uses up 2 GPRs
1280 GPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001281 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001282 }
1283 break;
1284
1285 default: assert(0 && "Unknown class!");
1286 }
1287 ArgOffset += 4;
Misha Brukman422791f2004-06-21 17:41:12 +00001288 if (GPR_remaining > 0) {
1289 GPR_remaining--; // uses up 2 GPRs
1290 GPR_idx++;
1291 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001292 }
1293 } else {
1294 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1295 }
1296
1297 BB->push_back(CallMI);
1298
1299 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1300
1301 // If there is a return value, scavenge the result from the location the call
1302 // leaves it in...
1303 //
1304 if (Ret.Ty != Type::VoidTy) {
1305 unsigned DestClass = getClassB(Ret.Ty);
1306 switch (DestClass) {
1307 case cByte:
1308 case cShort:
1309 case cInt:
1310 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001311 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001312 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001313 case cFP: // Floating-point return values live in f1
1314 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1315 break;
1316 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001317 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1318 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001319 break;
1320 default: assert(0 && "Unknown class!");
1321 }
1322 }
1323}
1324
1325
1326/// visitCallInst - Push args on stack and do a procedure call instruction.
1327void ISel::visitCallInst(CallInst &CI) {
1328 MachineInstr *TheCall;
1329 if (Function *F = CI.getCalledFunction()) {
1330 // Is it an intrinsic function call?
1331 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1332 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1333 return;
1334 }
1335
1336 // Emit a CALL instruction with PC-relative displacement.
1337 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1338 } else { // Emit an indirect call through the CTR
1339 unsigned Reg = getReg(CI.getCalledValue());
1340 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1341 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1342 }
1343
1344 std::vector<ValueRecord> Args;
1345 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1346 Args.push_back(ValueRecord(CI.getOperand(i)));
1347
1348 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1349 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1350}
1351
1352
1353/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1354///
1355static Value *dyncastIsNan(Value *V) {
1356 if (CallInst *CI = dyn_cast<CallInst>(V))
1357 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001358 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001359 return CI->getOperand(1);
1360 return 0;
1361}
1362
1363/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1364/// or's whos operands are all calls to the isnan predicate.
1365static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1366 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1367
1368 // Check all uses, which will be or's of isnans if this predicate is true.
1369 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1370 Instruction *I = cast<Instruction>(*UI);
1371 if (I->getOpcode() != Instruction::Or) return false;
1372 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1373 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1374 }
1375
1376 return true;
1377}
1378
1379/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1380/// function, lowering any calls to unknown intrinsic functions into the
1381/// equivalent LLVM code.
1382///
1383void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1384 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1385 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1386 if (CallInst *CI = dyn_cast<CallInst>(I++))
1387 if (Function *F = CI->getCalledFunction())
1388 switch (F->getIntrinsicID()) {
1389 case Intrinsic::not_intrinsic:
1390 case Intrinsic::vastart:
1391 case Intrinsic::vacopy:
1392 case Intrinsic::vaend:
1393 case Intrinsic::returnaddress:
1394 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001395 // FIXME: should lower this ourselves
1396 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001397 // We directly implement these intrinsics
1398 break;
1399 case Intrinsic::readio: {
1400 // On PPC, memory operations are in-order. Lower this intrinsic
1401 // into a volatile load.
1402 Instruction *Before = CI->getPrev();
1403 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1404 CI->replaceAllUsesWith(LI);
1405 BB->getInstList().erase(CI);
1406 break;
1407 }
1408 case Intrinsic::writeio: {
1409 // On PPC, memory operations are in-order. Lower this intrinsic
1410 // into a volatile store.
1411 Instruction *Before = CI->getPrev();
1412 StoreInst *LI = new StoreInst(CI->getOperand(1),
1413 CI->getOperand(2), true, CI);
1414 CI->replaceAllUsesWith(LI);
1415 BB->getInstList().erase(CI);
1416 break;
1417 }
1418 default:
1419 // All other intrinsic calls we must lower.
1420 Instruction *Before = CI->getPrev();
1421 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1422 if (Before) { // Move iterator to instruction after call
1423 I = Before; ++I;
1424 } else {
1425 I = BB->begin();
1426 }
1427 }
1428}
1429
1430void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1431 unsigned TmpReg1, TmpReg2, TmpReg3;
1432 switch (ID) {
1433 case Intrinsic::vastart:
1434 // Get the address of the first vararg value...
1435 TmpReg1 = getReg(CI);
1436 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1437 return;
1438
1439 case Intrinsic::vacopy:
1440 TmpReg1 = getReg(CI);
1441 TmpReg2 = getReg(CI.getOperand(1));
1442 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1443 return;
1444 case Intrinsic::vaend: return;
1445
1446 case Intrinsic::returnaddress:
1447 case Intrinsic::frameaddress:
1448 TmpReg1 = getReg(CI);
1449 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1450 if (ID == Intrinsic::returnaddress) {
1451 // Just load the return address
1452 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1453 ReturnAddressIndex);
1454 } else {
1455 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1456 ReturnAddressIndex, -4, false);
1457 }
1458 } else {
1459 // Values other than zero are not implemented yet.
1460 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1461 }
1462 return;
1463
Misha Brukmana2916ce2004-06-21 17:58:36 +00001464#if 0
1465 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001466 case Intrinsic::isnan:
1467 // If this is only used by 'isunordered' style comparisons, don't emit it.
1468 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1469 TmpReg1 = getReg(CI.getOperand(1));
1470 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001471 TmpReg2 = makeAnotherReg(Type::IntTy);
1472 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001473 TmpReg3 = getReg(CI);
1474 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1475 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001476#endif
1477
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001478 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1479 }
1480}
1481
1482/// visitSimpleBinary - Implement simple binary operators for integral types...
1483/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1484/// Xor.
1485///
1486void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1487 unsigned DestReg = getReg(B);
1488 MachineBasicBlock::iterator MI = BB->end();
1489 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1490 unsigned Class = getClassB(B.getType());
1491
1492 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1493}
1494
1495/// emitBinaryFPOperation - This method handles emission of floating point
1496/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1497void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1498 MachineBasicBlock::iterator IP,
1499 Value *Op0, Value *Op1,
1500 unsigned OperatorClass, unsigned DestReg) {
1501
1502 // Special case: op Reg, <const fp>
1503 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001504 // Create a constant pool entry for this constant.
1505 MachineConstantPool *CP = F->getConstantPool();
1506 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1507 const Type *Ty = Op1->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001508
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001509 static const unsigned OpcodeTab[][4] = {
1510 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1511 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1512 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001513
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001514 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1515 unsigned TempReg = makeAnotherReg(Ty);
1516 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1517 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001518
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001519 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1520 unsigned Op0r = getReg(Op0, BB, IP);
1521 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
1522 return;
1523 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001524
1525 // Special case: R1 = op <const fp>, R2
1526 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1527 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1528 // -0.0 - X === -X
1529 unsigned op1Reg = getReg(Op1, BB, IP);
1530 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1531 return;
1532 } else {
1533 // R1 = op CST, R2 --> R1 = opr R2, CST
1534
1535 // Create a constant pool entry for this constant.
1536 MachineConstantPool *CP = F->getConstantPool();
1537 unsigned CPI = CP->getConstantPoolIndex(CFP);
1538 const Type *Ty = CFP->getType();
1539
1540 static const unsigned OpcodeTab[][4] = {
1541 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1542 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1543 };
1544
1545 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001546 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001547 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1548 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1549
1550 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1551 unsigned Op1r = getReg(Op1, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001552 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001553 return;
1554 }
1555
1556 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001557 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001558 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1559 };
1560
1561 unsigned Opcode = OpcodeTab[OperatorClass];
1562 unsigned Op0r = getReg(Op0, BB, IP);
1563 unsigned Op1r = getReg(Op1, BB, IP);
1564 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1565}
1566
1567/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1568/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1569/// Or, 4 for Xor.
1570///
1571/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1572/// and constant expression support.
1573///
1574void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1575 MachineBasicBlock::iterator IP,
1576 Value *Op0, Value *Op1,
1577 unsigned OperatorClass, unsigned DestReg) {
1578 unsigned Class = getClassB(Op0->getType());
1579
Misha Brukman422791f2004-06-21 17:41:12 +00001580 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001581 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001582 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1583 };
1584 // Otherwise, code generate the full operation with a constant.
1585 static const unsigned BottomTab[] = {
1586 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1587 };
1588 static const unsigned TopTab[] = {
1589 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1590 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001591
1592 if (Class == cFP) {
1593 assert(OperatorClass < 2 && "No logical ops for FP!");
1594 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1595 return;
1596 }
1597
1598 if (Op0->getType() == Type::BoolTy) {
1599 if (OperatorClass == 3)
1600 // If this is an or of two isnan's, emit an FP comparison directly instead
1601 // of or'ing two isnan's together.
1602 if (Value *LHS = dyncastIsNan(Op0))
1603 if (Value *RHS = dyncastIsNan(Op1)) {
1604 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001605 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001606 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001607 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001608 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1609 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001610 return;
1611 }
1612 }
1613
1614 // sub 0, X -> neg X
1615 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1616 if (OperatorClass == 1 && CI->isNullValue()) {
1617 unsigned op1Reg = getReg(Op1, MBB, IP);
1618 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1619
1620 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001621 unsigned zeroes = makeAnotherReg(Type::IntTy);
1622 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001623 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001624 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001625 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1626 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001627 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1628 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001629 }
1630 return;
1631 }
1632
1633 // Special case: op Reg, <const int>
1634 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1635 unsigned Op0r = getReg(Op0, MBB, IP);
1636
1637 // xor X, -1 -> not X
1638 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1639 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1640 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001641 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1642 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001643 return;
1644 }
1645
1646 unsigned Opcode = OpcodeTab[OperatorClass];
1647 unsigned Op1r = getReg(Op1, MBB, IP);
1648
1649 if (Class != cLong) {
1650 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1651 return;
1652 }
1653
1654 // If the constant is zero in the low 32-bits, just copy the low part
1655 // across and apply the normal 32-bit operation to the high parts. There
1656 // will be no carry or borrow into the top.
1657 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1658 if (OperatorClass != 2) // All but and...
1659 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1660 else
1661 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001662 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001663 return;
1664 }
1665
1666 // If this is a long value and the high or low bits have a special
1667 // property, emit some special cases.
1668 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1669
1670 // If this is a logical operation and the top 32-bits are zero, just
1671 // operate on the lower 32.
1672 if (Op1h == 0 && OperatorClass > 1) {
1673 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1674 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001675 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001676 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001677 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001678 return;
1679 }
1680
1681 // TODO: We could handle lots of other special cases here, such as AND'ing
1682 // with 0xFFFFFFFF00000000 -> noop, etc.
1683
Misha Brukman2fec9902004-06-21 20:22:03 +00001684 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1685 .addImm(Op1r);
1686 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1687 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001688 return;
1689 }
1690
1691 unsigned Op0r = getReg(Op0, MBB, IP);
1692 unsigned Op1r = getReg(Op1, MBB, IP);
1693
1694 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001695 unsigned Opcode = OpcodeTab[OperatorClass];
1696 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001697 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001698 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1699 .addImm(Op1r);
1700 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1701 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001702 }
1703 return;
1704}
1705
1706/// doMultiply - Emit appropriate instructions to multiply together the
1707/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1708/// result should be given as DestTy.
1709///
1710void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1711 unsigned DestReg, const Type *DestTy,
1712 unsigned op0Reg, unsigned op1Reg) {
1713 unsigned Class = getClass(DestTy);
1714 switch (Class) {
1715 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001716 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1717 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001718 case cInt:
1719 case cShort:
1720 case cByte:
1721 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1722 return;
1723 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001724 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001725 }
1726}
1727
1728// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1729// returns zero when the input is not exactly a power of two.
1730static unsigned ExactLog2(unsigned Val) {
1731 if (Val == 0 || (Val & (Val-1))) return 0;
1732 unsigned Count = 0;
1733 while (Val != 1) {
1734 Val >>= 1;
1735 ++Count;
1736 }
1737 return Count+1;
1738}
1739
1740
1741/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1742/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001743///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001744void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1745 MachineBasicBlock::iterator IP,
1746 unsigned DestReg, const Type *DestTy,
1747 unsigned op0Reg, unsigned ConstRHS) {
1748 unsigned Class = getClass(DestTy);
1749 // Handle special cases here.
1750 switch (ConstRHS) {
1751 case 0:
1752 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1753 return;
1754 case 1:
1755 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1756 return;
1757 case 2:
1758 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1759 return;
1760 }
1761
1762 // If the element size is exactly a power of 2, use a shift to get it.
1763 if (unsigned Shift = ExactLog2(ConstRHS)) {
1764 switch (Class) {
1765 default: assert(0 && "Unknown class for this function!");
1766 case cByte:
1767 case cShort:
1768 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001769 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1770 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001771 return;
1772 }
1773 }
1774
1775 // Most general case, emit a normal multiply...
1776 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1777 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001778 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1779 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001780 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1781
1782 // Emit a MUL to multiply the register holding the index by
1783 // elementSize, putting the result in OffsetReg.
1784 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1785}
1786
1787void ISel::visitMul(BinaryOperator &I) {
1788 unsigned ResultReg = getReg(I);
1789
1790 Value *Op0 = I.getOperand(0);
1791 Value *Op1 = I.getOperand(1);
1792
1793 MachineBasicBlock::iterator IP = BB->end();
1794 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1795}
1796
1797void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1798 Value *Op0, Value *Op1, unsigned DestReg) {
1799 MachineBasicBlock &BB = *MBB;
1800 TypeClass Class = getClass(Op0->getType());
1801
1802 // Simple scalar multiply?
1803 unsigned Op0Reg = getReg(Op0, &BB, IP);
1804 switch (Class) {
1805 case cByte:
1806 case cShort:
1807 case cInt:
1808 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1809 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1810 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1811 } else {
1812 unsigned Op1Reg = getReg(Op1, &BB, IP);
1813 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1814 }
1815 return;
1816 case cFP:
1817 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1818 return;
1819 case cLong:
1820 break;
1821 }
1822
1823 // Long value. We have to do things the hard way...
1824 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1825 unsigned CLow = CI->getRawValue();
1826 unsigned CHi = CI->getRawValue() >> 32;
1827
1828 if (CLow == 0) {
1829 // If the low part of the constant is all zeros, things are simple.
1830 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1831 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1832 return;
1833 }
1834
1835 // Multiply the two low parts
1836 unsigned OverflowReg = 0;
1837 if (CLow == 1) {
1838 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1839 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001840 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001841 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1842 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001843 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1844 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001845 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1846 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001847 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1848 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001849 }
1850
1851 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1852 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1853
1854 unsigned AHBLplusOverflowReg;
1855 if (OverflowReg) {
1856 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1857 BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
1858 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1859 } else {
1860 AHBLplusOverflowReg = AHBLReg;
1861 }
1862
1863 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001864 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1865 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001866 } else {
1867 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1868 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1869
1870 BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1871 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1872 }
1873 return;
1874 }
1875
1876 // General 64x64 multiply
1877
1878 unsigned Op1Reg = getReg(Op1, &BB, IP);
1879
1880 // Multiply the two low parts... capturing carry into EDX
1881 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL
1882
1883 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1884 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32
1885
1886 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1887 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1888
1889 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1890 BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
1891 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1892
1893 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1894 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1895
1896 BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1897 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1898}
1899
1900
1901/// visitDivRem - Handle division and remainder instructions... these
1902/// instruction both require the same instructions to be generated, they just
1903/// select the result from a different register. Note that both of these
1904/// instructions work differently for signed and unsigned operands.
1905///
1906void ISel::visitDivRem(BinaryOperator &I) {
1907 unsigned ResultReg = getReg(I);
1908 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1909
1910 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001911 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1912 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001913}
1914
1915void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1916 MachineBasicBlock::iterator IP,
1917 Value *Op0, Value *Op1, bool isDiv,
1918 unsigned ResultReg) {
1919 const Type *Ty = Op0->getType();
1920 unsigned Class = getClass(Ty);
1921 switch (Class) {
1922 case cFP: // Floating point divide
1923 if (isDiv) {
1924 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1925 return;
1926 } else { // Floating point remainder...
1927 unsigned Op0Reg = getReg(Op0, BB, IP);
1928 unsigned Op1Reg = getReg(Op1, BB, IP);
1929 MachineInstr *TheCall =
1930 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
1931 std::vector<ValueRecord> Args;
1932 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1933 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1934 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1935 }
1936 return;
1937 case cLong: {
1938 static const char *FnName[] =
1939 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1940 unsigned Op0Reg = getReg(Op0, BB, IP);
1941 unsigned Op1Reg = getReg(Op1, BB, IP);
1942 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
1943 MachineInstr *TheCall =
1944 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
1945
1946 std::vector<ValueRecord> Args;
1947 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1948 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1949 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1950 return;
1951 }
1952 case cByte: case cShort: case cInt:
1953 break; // Small integrals, handled below...
1954 default: assert(0 && "Unknown class!");
1955 }
1956
1957 // Special case signed division by power of 2.
1958 if (isDiv)
1959 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
1960 assert(Class != cLong && "This doesn't handle 64-bit divides!");
1961 int V = CI->getValue();
1962
1963 if (V == 1) { // X /s 1 => X
1964 unsigned Op0Reg = getReg(Op0, BB, IP);
1965 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
1966 return;
1967 }
1968
1969 if (V == -1) { // X /s -1 => -X
1970 unsigned Op0Reg = getReg(Op0, BB, IP);
1971 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
1972 return;
1973 }
1974
1975 bool isNeg = false;
1976 if (V < 0) { // Not a positive power of 2?
1977 V = -V;
1978 isNeg = true; // Maybe it's a negative power of 2.
1979 }
1980 if (unsigned Log = ExactLog2(V)) {
1981 --Log;
1982 unsigned Op0Reg = getReg(Op0, BB, IP);
1983 unsigned TmpReg = makeAnotherReg(Op0->getType());
1984 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001985 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001986 else
1987 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
1988
1989 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00001990 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
1991 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001992
1993 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
1994 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
1995
1996 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
1997 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
1998
1999 if (isNeg)
2000 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
2001 return;
2002 }
2003 }
2004
2005 unsigned Op0Reg = getReg(Op0, BB, IP);
2006 unsigned Op1Reg = getReg(Op1, BB, IP);
2007
2008 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002009 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002010 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002011 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002012 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002013 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002014 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002015 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2016 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2017
2018 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002019 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002020 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002021 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002022 }
2023 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2024 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002025 }
2026}
2027
2028
2029/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2030/// for constant immediate shift values, and for constant immediate
2031/// shift values equal to 1. Even the general case is sort of special,
2032/// because the shift amount has to be in CL, not just any old register.
2033///
2034void ISel::visitShiftInst(ShiftInst &I) {
2035 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002036 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2037 I.getOpcode () == Instruction::Shl, I.getType (),
2038 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002039}
2040
2041/// emitShiftOperation - Common code shared between visitShiftInst and
2042/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002043///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002044void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2045 MachineBasicBlock::iterator IP,
2046 Value *Op, Value *ShiftAmount, bool isLeftShift,
2047 const Type *ResultTy, unsigned DestReg) {
2048 unsigned SrcReg = getReg (Op, MBB, IP);
2049 bool isSigned = ResultTy->isSigned ();
2050 unsigned Class = getClass (ResultTy);
2051
2052 // Longs, as usual, are handled specially...
2053 if (Class == cLong) {
2054 // If we have a constant shift, we can generate much more efficient code
2055 // than otherwise...
2056 //
2057 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2058 unsigned Amount = CUI->getValue();
2059 if (Amount < 32) {
2060 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002061 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002062 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2063 .addImm(Amount).addImm(0).addImm(31-Amount);
2064 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2065 .addImm(Amount).addImm(32-Amount).addImm(31);
2066 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2067 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002068 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002069 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002070 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2071 .addImm(32-Amount).addImm(Amount).addImm(31);
2072 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2073 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2074 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2075 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002076 }
2077 } else { // Shifting more than 32 bits
2078 Amount -= 32;
2079 if (isLeftShift) {
2080 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002081 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2082 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002083 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002084 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2085 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002086 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002087 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002088 } else {
2089 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002090 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002091 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2092 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002093 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002094 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2095 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002096 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002097 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2098 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002099 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002100 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002101 }
2102 }
2103 } else {
2104 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2105 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002106 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2107 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2108 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2109 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2110 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2111
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002112 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002113 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2114 .addImm(32);
2115 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2116 .addReg(ShiftAmountReg);
2117 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2118 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2119 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2120 .addImm(-32);
2121 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2122 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2123 .addReg(TmpReg6);
2124 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2125 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002126 } else {
2127 if (isSigned) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002128 // FIXME: Unimplmented
2129 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman422791f2004-06-21 17:41:12 +00002130 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002131 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2132 .addImm(32);
2133 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2134 .addReg(ShiftAmountReg);
2135 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2136 .addReg(TmpReg1);
2137 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2138 .addReg(TmpReg3);
2139 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2140 .addImm(-32);
2141 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2142 .addReg(TmpReg5);
2143 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2144 .addReg(TmpReg6);
2145 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2146 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002147 }
2148 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002149 }
2150 return;
2151 }
2152
2153 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2154 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2155 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2156 unsigned Amount = CUI->getValue();
2157
Misha Brukman422791f2004-06-21 17:41:12 +00002158 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002159 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2160 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002161 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002162 if (isSigned) {
2163 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2164 } else {
2165 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2166 .addImm(32-Amount).addImm(Amount).addImm(31);
2167 }
Misha Brukman422791f2004-06-21 17:41:12 +00002168 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002169 } else { // The shift amount is non-constant.
2170 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2171
Misha Brukman422791f2004-06-21 17:41:12 +00002172 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002173 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2174 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002175 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002176 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2177 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002178 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002179 }
2180}
2181
2182
2183/// visitLoadInst - Implement LLVM load instructions
2184///
2185void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002186 static const unsigned Opcodes[] = {
2187 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2188 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002189 unsigned Class = getClassB(I.getType());
2190 unsigned Opcode = Opcodes[Class];
2191 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2192
2193 unsigned DestReg = getReg(I);
2194
2195 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002196 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002197 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002198 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2199 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002200 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002201 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002202 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002203 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002204 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002205
2206 if (Class == cLong) {
2207 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2208 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2209 } else {
2210 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2211 }
2212 }
2213}
2214
2215/// visitStoreInst - Implement LLVM store instructions
2216///
2217void ISel::visitStoreInst(StoreInst &I) {
2218 unsigned ValReg = getReg(I.getOperand(0));
2219 unsigned AddressReg = getReg(I.getOperand(1));
2220
2221 const Type *ValTy = I.getOperand(0)->getType();
2222 unsigned Class = getClassB(ValTy);
2223
2224 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002225 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002226 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002227 return;
2228 }
2229
2230 static const unsigned Opcodes[] = {
2231 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2232 };
2233 unsigned Opcode = Opcodes[Class];
2234 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2235 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2236}
2237
2238
2239/// visitCastInst - Here we have various kinds of copying with or without sign
2240/// extension going on.
2241///
2242void ISel::visitCastInst(CastInst &CI) {
2243 Value *Op = CI.getOperand(0);
2244
2245 unsigned SrcClass = getClassB(Op->getType());
2246 unsigned DestClass = getClassB(CI.getType());
2247 // Noop casts are not emitted: getReg will return the source operand as the
2248 // register to use for any uses of the noop cast.
2249 if (DestClass == SrcClass)
2250 return;
2251
2252 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2253 // of the case are GEP instructions, then the cast does not need to be
2254 // generated explicitly, it will be folded into the GEP.
2255 if (DestClass == cLong && SrcClass == cInt) {
2256 bool AllUsesAreGEPs = true;
2257 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2258 if (!isa<GetElementPtrInst>(*I)) {
2259 AllUsesAreGEPs = false;
2260 break;
2261 }
2262
2263 // No need to codegen this cast if all users are getelementptr instrs...
2264 if (AllUsesAreGEPs) return;
2265 }
2266
2267 unsigned DestReg = getReg(CI);
2268 MachineBasicBlock::iterator MI = BB->end();
2269 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2270}
2271
2272/// emitCastOperation - Common code shared between visitCastInst and constant
2273/// expression cast support.
2274///
2275void ISel::emitCastOperation(MachineBasicBlock *BB,
2276 MachineBasicBlock::iterator IP,
2277 Value *Src, const Type *DestTy,
2278 unsigned DestReg) {
2279 const Type *SrcTy = Src->getType();
2280 unsigned SrcClass = getClassB(SrcTy);
2281 unsigned DestClass = getClassB(DestTy);
2282 unsigned SrcReg = getReg(Src, BB, IP);
2283
2284 // Implement casts to bool by using compare on the operand followed by set if
2285 // not zero on the result.
2286 if (DestTy == Type::BoolTy) {
2287 switch (SrcClass) {
2288 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002289 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002290 case cInt: {
2291 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002292 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2293 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002294 break;
2295 }
2296 case cLong: {
2297 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2298 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2299 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002300 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2301 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002302 break;
2303 }
2304 case cFP:
2305 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002306 // Load -0.0
2307 // Compare
2308 // move to CR1
2309 // Negate -0.0
2310 // Compare
2311 // CROR
2312 // MFCR
2313 // Left-align
2314 // SRA ?
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002315 break;
2316 }
2317 return;
2318 }
2319
2320 // Implement casts between values of the same type class (as determined by
2321 // getClass) by using a register-to-register move.
2322 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002323 if (SrcClass <= cInt) {
2324 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2325 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002326 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2327 } else if (SrcClass == cFP) {
2328 if (SrcTy == Type::FloatTy) { // float -> double
2329 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2330 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2331 } else { // double -> float
2332 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2333 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002334 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002335 }
2336 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002337 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002338 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2339 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002340 } else {
2341 assert(0 && "Cannot handle this type of cast instruction!");
2342 abort();
2343 }
2344 return;
2345 }
2346
2347 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2348 // or zero extension, depending on whether the source type was signed.
2349 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2350 SrcClass < DestClass) {
2351 bool isLong = DestClass == cLong;
2352 if (isLong) DestClass = cInt;
2353
2354 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2355 if (SrcClass < cInt) {
2356 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002357 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002358 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2359 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002360 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002361 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2362 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002363 }
2364 } else {
2365 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2366 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002367
2368 if (isLong) { // Handle upper 32 bits as appropriate...
2369 if (isUnsigned) // Zero out top bits...
2370 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2371 else // Sign extend bottom half...
2372 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2373 }
2374 return;
2375 }
2376
2377 // Special case long -> int ...
2378 if (SrcClass == cLong && DestClass == cInt) {
2379 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2380 return;
2381 }
2382
2383 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2384 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2385 && SrcClass > DestClass) {
2386 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002387 if (isUnsigned) {
2388 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002389 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2390 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002391 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002392 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2393 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002394 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002395 return;
2396 }
2397
2398 // Handle casts from integer to floating point now...
2399 if (DestClass == cFP) {
2400
Misha Brukman422791f2004-06-21 17:41:12 +00002401 // Emit a library call for long to float conversion
2402 if (SrcClass == cLong) {
2403 std::vector<ValueRecord> Args;
2404 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002405 MachineInstr *TheCall =
2406 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002407 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2408 return;
2409 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002410
2411 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002412 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002413 case Type::BoolTyID:
2414 case Type::SByteTyID:
2415 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2416 break;
2417 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002418 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2419 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002420 break;
2421 case Type::ShortTyID:
2422 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2423 break;
2424 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002425 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2426 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002427 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002428 case Type::IntTyID:
2429 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2430 break;
2431 case Type::UIntTyID:
2432 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2433 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002434 default: // No promotion needed...
2435 break;
2436 }
2437
2438 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002439
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002440 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002441 // Also spill room for a special conversion constant
2442 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002443 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2444 int ValueFrameIdx =
2445 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2446
Misha Brukman422791f2004-06-21 17:41:12 +00002447 unsigned constantHi = makeAnotherReg(Type::IntTy);
2448 unsigned constantLo = makeAnotherReg(Type::IntTy);
2449 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2450 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2451
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002452 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002453 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2454 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002455 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002456 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2457 ConstantFrameIndex);
2458 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2459 ConstantFrameIndex, 4);
2460 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2461 ValueFrameIdx);
2462 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2463 ValueFrameIdx, 4);
2464 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2465 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002466 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2467 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2468 } else {
2469 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002470 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2471 .addImm(0x4330);
2472 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2473 .addImm(0x8000);
2474 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2475 ConstantFrameIndex);
2476 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2477 ConstantFrameIndex, 4);
2478 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2479 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002480 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002481 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2482 ValueFrameIdx, 4);
2483 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2484 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002485 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002486 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002487 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002488 return;
2489 }
2490
2491 // Handle casts from floating point to integer now...
2492 if (SrcClass == cFP) {
2493
Misha Brukman422791f2004-06-21 17:41:12 +00002494 // emit library call
2495 if (DestClass == cLong) {
2496 std::vector<ValueRecord> Args;
2497 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002498 MachineInstr *TheCall =
2499 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002500 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2501 return;
2502 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002503
2504 int ValueFrameIdx =
2505 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2506
Misha Brukman422791f2004-06-21 17:41:12 +00002507 // load into 32 bit value, and then truncate as necessary
2508 // FIXME: This is wrong for unsigned dest types
2509 //if (DestTy->isSigned()) {
2510 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2511 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002512 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2513 .addReg(TempReg), ValueFrameIdx);
2514 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2515 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002516 //} else {
2517 //}
2518
2519 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002520 return;
2521 }
2522
2523 // Anything we haven't handled already, we can't (yet) handle at all.
2524 assert(0 && "Unhandled cast instruction!");
2525 abort();
2526}
2527
2528/// visitVANextInst - Implement the va_next instruction...
2529///
2530void ISel::visitVANextInst(VANextInst &I) {
2531 unsigned VAList = getReg(I.getOperand(0));
2532 unsigned DestReg = getReg(I);
2533
2534 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002535 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002536 default:
2537 std::cerr << I;
2538 assert(0 && "Error: bad type for va_next instruction!");
2539 return;
2540 case Type::PointerTyID:
2541 case Type::UIntTyID:
2542 case Type::IntTyID:
2543 Size = 4;
2544 break;
2545 case Type::ULongTyID:
2546 case Type::LongTyID:
2547 case Type::DoubleTyID:
2548 Size = 8;
2549 break;
2550 }
2551
2552 // Increment the VAList pointer...
2553 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2554}
2555
2556void ISel::visitVAArgInst(VAArgInst &I) {
2557 unsigned VAList = getReg(I.getOperand(0));
2558 unsigned DestReg = getReg(I);
2559
Misha Brukman358829f2004-06-21 17:25:55 +00002560 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002561 default:
2562 std::cerr << I;
2563 assert(0 && "Error: bad type for va_next instruction!");
2564 return;
2565 case Type::PointerTyID:
2566 case Type::UIntTyID:
2567 case Type::IntTyID:
2568 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2569 break;
2570 case Type::ULongTyID:
2571 case Type::LongTyID:
2572 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2573 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2574 break;
2575 case Type::DoubleTyID:
2576 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2577 break;
2578 }
2579}
2580
2581/// visitGetElementPtrInst - instruction-select GEP instructions
2582///
2583void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2584 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002585 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2586 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002587}
2588
2589void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2590 MachineBasicBlock::iterator IP,
2591 Value *Src, User::op_iterator IdxBegin,
2592 User::op_iterator IdxEnd, unsigned TargetReg) {
2593 const TargetData &TD = TM.getTargetData();
2594 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2595 Src = CPR->getValue();
2596
2597 std::vector<Value*> GEPOps;
2598 GEPOps.resize(IdxEnd-IdxBegin+1);
2599 GEPOps[0] = Src;
2600 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2601
2602 std::vector<const Type*> GEPTypes;
2603 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2604 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2605
2606 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman98649d12004-06-24 21:54:47 +00002607 while (!GEPTypes.empty()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002608 // It's an array or pointer access: [ArraySize x ElementType].
2609 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2610 Value *idx = GEPOps.back();
2611 GEPOps.pop_back(); // Consume a GEP operand
2612 GEPTypes.pop_back();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002613
Misha Brukman2fec9902004-06-21 20:22:03 +00002614 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2615 // operand on X86. Handle this case directly now...
2616 if (CastInst *CI = dyn_cast<CastInst>(idx))
2617 if (CI->getOperand(0)->getType() == Type::IntTy ||
2618 CI->getOperand(0)->getType() == Type::UIntTy)
2619 idx = CI->getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002620
Misha Brukman2fec9902004-06-21 20:22:03 +00002621 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2622 // must find the size of the pointed-to type (Not coincidentally, the next
2623 // type is the type of the elements in the array).
2624 const Type *ElTy = SqTy->getElementType();
2625 unsigned elementSize = TD.getTypeSize(ElTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002626
Misha Brukman2fec9902004-06-21 20:22:03 +00002627 if (elementSize == 1) {
2628 // If the element size is 1, we don't have to multiply, just add
2629 unsigned idxReg = getReg(idx, MBB, IP);
2630 unsigned Reg = makeAnotherReg(Type::UIntTy);
2631 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2632 --IP; // Insert the next instruction before this one.
2633 TargetReg = Reg; // Codegen the rest of the GEP into this
2634 } else {
2635 unsigned idxReg = getReg(idx, MBB, IP);
2636 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002637
Misha Brukman2fec9902004-06-21 20:22:03 +00002638 // Make sure we can back the iterator up to point to the first
2639 // instruction emitted.
2640 MachineBasicBlock::iterator BeforeIt = IP;
2641 if (IP == MBB->begin())
2642 BeforeIt = MBB->end();
2643 else
2644 --BeforeIt;
2645 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002646
Misha Brukman2fec9902004-06-21 20:22:03 +00002647 // Emit an ADD to add OffsetReg to the basePtr.
2648 unsigned Reg = makeAnotherReg(Type::UIntTy);
2649 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002650
Misha Brukman2fec9902004-06-21 20:22:03 +00002651 // Step to the first instruction of the multiply.
2652 if (BeforeIt == MBB->end())
2653 IP = MBB->begin();
2654 else
2655 IP = ++BeforeIt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002656
Misha Brukman2fec9902004-06-21 20:22:03 +00002657 TargetReg = Reg; // Codegen the rest of the GEP into this
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002658 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002659 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002660}
2661
2662/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2663/// frame manager, otherwise do it the hard way.
2664///
2665void ISel::visitAllocaInst(AllocaInst &I) {
2666 // If this is a fixed size alloca in the entry block for the function, we
2667 // statically stack allocate the space, so we don't need to do anything here.
2668 //
2669 if (dyn_castFixedAlloca(&I)) return;
2670
2671 // Find the data size of the alloca inst's getAllocatedType.
2672 const Type *Ty = I.getAllocatedType();
2673 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2674
2675 // Create a register to hold the temporary result of multiplying the type size
2676 // constant by the variable amount.
2677 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2678 unsigned SrcReg1 = getReg(I.getArraySize());
2679
2680 // TotalSizeReg = mul <numelements>, <TypeSize>
2681 MachineBasicBlock::iterator MBBI = BB->end();
2682 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2683
2684 // AddedSize = add <TotalSizeReg>, 15
2685 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2686 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2687
2688 // AlignedSize = and <AddedSize>, ~15
2689 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002690 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2691 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002692
2693 // Subtract size from stack pointer, thereby allocating some space.
2694 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2695
2696 // Put a pointer to the space into the result register, by copying
2697 // the stack pointer.
2698 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2699
2700 // Inform the Frame Information that we have just allocated a variable-sized
2701 // object.
2702 F->getFrameInfo()->CreateVariableSizedObject();
2703}
2704
2705/// visitMallocInst - Malloc instructions are code generated into direct calls
2706/// to the library malloc.
2707///
2708void ISel::visitMallocInst(MallocInst &I) {
2709 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2710 unsigned Arg;
2711
2712 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2713 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2714 } else {
2715 Arg = makeAnotherReg(Type::UIntTy);
2716 unsigned Op0Reg = getReg(I.getOperand(0));
2717 MachineBasicBlock::iterator MBBI = BB->end();
2718 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2719 }
2720
2721 std::vector<ValueRecord> Args;
2722 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002723 MachineInstr *TheCall =
2724 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002725 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2726}
2727
2728
2729/// visitFreeInst - Free instructions are code gen'd to call the free libc
2730/// function.
2731///
2732void ISel::visitFreeInst(FreeInst &I) {
2733 std::vector<ValueRecord> Args;
2734 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002735 MachineInstr *TheCall =
2736 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002737 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2738}
2739
2740/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2741/// into a machine code representation is a very simple peep-hole fashion. The
2742/// generated code sucks but the implementation is nice and simple.
2743///
2744FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2745 return new ISel(TM);
2746}