blob: f5c3d1db68754de984e5f2dbe9deb8d46c0eb92f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000021#include "llvm/DerivedTypes.h"
Owen Anderson1636de92007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000023#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000028#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000029#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000030#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000031
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032using namespace llvm;
33
Rafael Espindola6cdf4be2009-03-27 15:57:50 +000034// FIXME: This should be some header
35static const int X86AddrNumOperands = 4;
36
Owen Anderson9a184ef2008-01-07 01:35:02 +000037namespace {
38 cl::opt<bool>
39 NoFusing("disable-spill-fusing",
40 cl::desc("Disable fusing of spill code into instructions"));
41 cl::opt<bool>
42 PrintFailedFusing("print-failed-fuse-candidates",
43 cl::desc("Print instructions that the allocator wants to"
44 " fuse, but the X86 backend currently can't"),
45 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000046 cl::opt<bool>
47 ReMatPICStubLoad("remat-pic-stub-load",
48 cl::desc("Re-materialize load from stub in PIC mode"),
49 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000050}
51
Dan Gohmanf17a25c2007-07-18 16:29:46 +000052X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000053 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000054 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000055 SmallVector<unsigned,16> AmbEntries;
56 static const unsigned OpTbl2Addr[][2] = {
57 { X86::ADC32ri, X86::ADC32mi },
58 { X86::ADC32ri8, X86::ADC32mi8 },
59 { X86::ADC32rr, X86::ADC32mr },
60 { X86::ADC64ri32, X86::ADC64mi32 },
61 { X86::ADC64ri8, X86::ADC64mi8 },
62 { X86::ADC64rr, X86::ADC64mr },
63 { X86::ADD16ri, X86::ADD16mi },
64 { X86::ADD16ri8, X86::ADD16mi8 },
65 { X86::ADD16rr, X86::ADD16mr },
66 { X86::ADD32ri, X86::ADD32mi },
67 { X86::ADD32ri8, X86::ADD32mi8 },
68 { X86::ADD32rr, X86::ADD32mr },
69 { X86::ADD64ri32, X86::ADD64mi32 },
70 { X86::ADD64ri8, X86::ADD64mi8 },
71 { X86::ADD64rr, X86::ADD64mr },
72 { X86::ADD8ri, X86::ADD8mi },
73 { X86::ADD8rr, X86::ADD8mr },
74 { X86::AND16ri, X86::AND16mi },
75 { X86::AND16ri8, X86::AND16mi8 },
76 { X86::AND16rr, X86::AND16mr },
77 { X86::AND32ri, X86::AND32mi },
78 { X86::AND32ri8, X86::AND32mi8 },
79 { X86::AND32rr, X86::AND32mr },
80 { X86::AND64ri32, X86::AND64mi32 },
81 { X86::AND64ri8, X86::AND64mi8 },
82 { X86::AND64rr, X86::AND64mr },
83 { X86::AND8ri, X86::AND8mi },
84 { X86::AND8rr, X86::AND8mr },
85 { X86::DEC16r, X86::DEC16m },
86 { X86::DEC32r, X86::DEC32m },
87 { X86::DEC64_16r, X86::DEC64_16m },
88 { X86::DEC64_32r, X86::DEC64_32m },
89 { X86::DEC64r, X86::DEC64m },
90 { X86::DEC8r, X86::DEC8m },
91 { X86::INC16r, X86::INC16m },
92 { X86::INC32r, X86::INC32m },
93 { X86::INC64_16r, X86::INC64_16m },
94 { X86::INC64_32r, X86::INC64_32m },
95 { X86::INC64r, X86::INC64m },
96 { X86::INC8r, X86::INC8m },
97 { X86::NEG16r, X86::NEG16m },
98 { X86::NEG32r, X86::NEG32m },
99 { X86::NEG64r, X86::NEG64m },
100 { X86::NEG8r, X86::NEG8m },
101 { X86::NOT16r, X86::NOT16m },
102 { X86::NOT32r, X86::NOT32m },
103 { X86::NOT64r, X86::NOT64m },
104 { X86::NOT8r, X86::NOT8m },
105 { X86::OR16ri, X86::OR16mi },
106 { X86::OR16ri8, X86::OR16mi8 },
107 { X86::OR16rr, X86::OR16mr },
108 { X86::OR32ri, X86::OR32mi },
109 { X86::OR32ri8, X86::OR32mi8 },
110 { X86::OR32rr, X86::OR32mr },
111 { X86::OR64ri32, X86::OR64mi32 },
112 { X86::OR64ri8, X86::OR64mi8 },
113 { X86::OR64rr, X86::OR64mr },
114 { X86::OR8ri, X86::OR8mi },
115 { X86::OR8rr, X86::OR8mr },
116 { X86::ROL16r1, X86::ROL16m1 },
117 { X86::ROL16rCL, X86::ROL16mCL },
118 { X86::ROL16ri, X86::ROL16mi },
119 { X86::ROL32r1, X86::ROL32m1 },
120 { X86::ROL32rCL, X86::ROL32mCL },
121 { X86::ROL32ri, X86::ROL32mi },
122 { X86::ROL64r1, X86::ROL64m1 },
123 { X86::ROL64rCL, X86::ROL64mCL },
124 { X86::ROL64ri, X86::ROL64mi },
125 { X86::ROL8r1, X86::ROL8m1 },
126 { X86::ROL8rCL, X86::ROL8mCL },
127 { X86::ROL8ri, X86::ROL8mi },
128 { X86::ROR16r1, X86::ROR16m1 },
129 { X86::ROR16rCL, X86::ROR16mCL },
130 { X86::ROR16ri, X86::ROR16mi },
131 { X86::ROR32r1, X86::ROR32m1 },
132 { X86::ROR32rCL, X86::ROR32mCL },
133 { X86::ROR32ri, X86::ROR32mi },
134 { X86::ROR64r1, X86::ROR64m1 },
135 { X86::ROR64rCL, X86::ROR64mCL },
136 { X86::ROR64ri, X86::ROR64mi },
137 { X86::ROR8r1, X86::ROR8m1 },
138 { X86::ROR8rCL, X86::ROR8mCL },
139 { X86::ROR8ri, X86::ROR8mi },
140 { X86::SAR16r1, X86::SAR16m1 },
141 { X86::SAR16rCL, X86::SAR16mCL },
142 { X86::SAR16ri, X86::SAR16mi },
143 { X86::SAR32r1, X86::SAR32m1 },
144 { X86::SAR32rCL, X86::SAR32mCL },
145 { X86::SAR32ri, X86::SAR32mi },
146 { X86::SAR64r1, X86::SAR64m1 },
147 { X86::SAR64rCL, X86::SAR64mCL },
148 { X86::SAR64ri, X86::SAR64mi },
149 { X86::SAR8r1, X86::SAR8m1 },
150 { X86::SAR8rCL, X86::SAR8mCL },
151 { X86::SAR8ri, X86::SAR8mi },
152 { X86::SBB32ri, X86::SBB32mi },
153 { X86::SBB32ri8, X86::SBB32mi8 },
154 { X86::SBB32rr, X86::SBB32mr },
155 { X86::SBB64ri32, X86::SBB64mi32 },
156 { X86::SBB64ri8, X86::SBB64mi8 },
157 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000158 { X86::SHL16rCL, X86::SHL16mCL },
159 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000160 { X86::SHL32rCL, X86::SHL32mCL },
161 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000162 { X86::SHL64rCL, X86::SHL64mCL },
163 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000164 { X86::SHL8rCL, X86::SHL8mCL },
165 { X86::SHL8ri, X86::SHL8mi },
166 { X86::SHLD16rrCL, X86::SHLD16mrCL },
167 { X86::SHLD16rri8, X86::SHLD16mri8 },
168 { X86::SHLD32rrCL, X86::SHLD32mrCL },
169 { X86::SHLD32rri8, X86::SHLD32mri8 },
170 { X86::SHLD64rrCL, X86::SHLD64mrCL },
171 { X86::SHLD64rri8, X86::SHLD64mri8 },
172 { X86::SHR16r1, X86::SHR16m1 },
173 { X86::SHR16rCL, X86::SHR16mCL },
174 { X86::SHR16ri, X86::SHR16mi },
175 { X86::SHR32r1, X86::SHR32m1 },
176 { X86::SHR32rCL, X86::SHR32mCL },
177 { X86::SHR32ri, X86::SHR32mi },
178 { X86::SHR64r1, X86::SHR64m1 },
179 { X86::SHR64rCL, X86::SHR64mCL },
180 { X86::SHR64ri, X86::SHR64mi },
181 { X86::SHR8r1, X86::SHR8m1 },
182 { X86::SHR8rCL, X86::SHR8mCL },
183 { X86::SHR8ri, X86::SHR8mi },
184 { X86::SHRD16rrCL, X86::SHRD16mrCL },
185 { X86::SHRD16rri8, X86::SHRD16mri8 },
186 { X86::SHRD32rrCL, X86::SHRD32mrCL },
187 { X86::SHRD32rri8, X86::SHRD32mri8 },
188 { X86::SHRD64rrCL, X86::SHRD64mrCL },
189 { X86::SHRD64rri8, X86::SHRD64mri8 },
190 { X86::SUB16ri, X86::SUB16mi },
191 { X86::SUB16ri8, X86::SUB16mi8 },
192 { X86::SUB16rr, X86::SUB16mr },
193 { X86::SUB32ri, X86::SUB32mi },
194 { X86::SUB32ri8, X86::SUB32mi8 },
195 { X86::SUB32rr, X86::SUB32mr },
196 { X86::SUB64ri32, X86::SUB64mi32 },
197 { X86::SUB64ri8, X86::SUB64mi8 },
198 { X86::SUB64rr, X86::SUB64mr },
199 { X86::SUB8ri, X86::SUB8mi },
200 { X86::SUB8rr, X86::SUB8mr },
201 { X86::XOR16ri, X86::XOR16mi },
202 { X86::XOR16ri8, X86::XOR16mi8 },
203 { X86::XOR16rr, X86::XOR16mr },
204 { X86::XOR32ri, X86::XOR32mi },
205 { X86::XOR32ri8, X86::XOR32mi8 },
206 { X86::XOR32rr, X86::XOR32mr },
207 { X86::XOR64ri32, X86::XOR64mi32 },
208 { X86::XOR64ri8, X86::XOR64mi8 },
209 { X86::XOR64rr, X86::XOR64mr },
210 { X86::XOR8ri, X86::XOR8mi },
211 { X86::XOR8rr, X86::XOR8mr }
212 };
213
214 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
215 unsigned RegOp = OpTbl2Addr[i][0];
216 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000217 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
218 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000219 assert(false && "Duplicated entries?");
220 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
221 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000222 std::make_pair(RegOp,
223 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000224 AmbEntries.push_back(MemOp);
225 }
226
227 // If the third value is 1, then it's folding either a load or a store.
228 static const unsigned OpTbl0[][3] = {
Dan Gohman27a4bc02009-01-15 17:57:09 +0000229 { X86::BT16ri8, X86::BT16mi8, 1 },
230 { X86::BT32ri8, X86::BT32mi8, 1 },
231 { X86::BT64ri8, X86::BT64mi8, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000232 { X86::CALL32r, X86::CALL32m, 1 },
233 { X86::CALL64r, X86::CALL64m, 1 },
234 { X86::CMP16ri, X86::CMP16mi, 1 },
235 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::CMP32ri, X86::CMP32mi, 1 },
238 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000239 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000240 { X86::CMP64ri32, X86::CMP64mi32, 1 },
241 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000242 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000243 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000244 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000245 { X86::DIV16r, X86::DIV16m, 1 },
246 { X86::DIV32r, X86::DIV32m, 1 },
247 { X86::DIV64r, X86::DIV64m, 1 },
248 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000249 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000250 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
251 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
252 { X86::IDIV16r, X86::IDIV16m, 1 },
253 { X86::IDIV32r, X86::IDIV32m, 1 },
254 { X86::IDIV64r, X86::IDIV64m, 1 },
255 { X86::IDIV8r, X86::IDIV8m, 1 },
256 { X86::IMUL16r, X86::IMUL16m, 1 },
257 { X86::IMUL32r, X86::IMUL32m, 1 },
258 { X86::IMUL64r, X86::IMUL64m, 1 },
259 { X86::IMUL8r, X86::IMUL8m, 1 },
260 { X86::JMP32r, X86::JMP32m, 1 },
261 { X86::JMP64r, X86::JMP64m, 1 },
262 { X86::MOV16ri, X86::MOV16mi, 0 },
263 { X86::MOV16rr, X86::MOV16mr, 0 },
264 { X86::MOV16to16_, X86::MOV16_mr, 0 },
265 { X86::MOV32ri, X86::MOV32mi, 0 },
266 { X86::MOV32rr, X86::MOV32mr, 0 },
267 { X86::MOV32to32_, X86::MOV32_mr, 0 },
268 { X86::MOV64ri32, X86::MOV64mi32, 0 },
269 { X86::MOV64rr, X86::MOV64mr, 0 },
270 { X86::MOV8ri, X86::MOV8mi, 0 },
271 { X86::MOV8rr, X86::MOV8mr, 0 },
272 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
273 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
Dan Gohmana645d1a2009-01-09 02:40:34 +0000274 { X86::MOVDQArr, X86::MOVDQAmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000275 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
276 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
277 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
278 { X86::MOVSDrr, X86::MOVSDmr, 0 },
279 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
280 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
281 { X86::MOVSSrr, X86::MOVSSmr, 0 },
282 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
283 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
284 { X86::MUL16r, X86::MUL16m, 1 },
285 { X86::MUL32r, X86::MUL32m, 1 },
286 { X86::MUL64r, X86::MUL64m, 1 },
287 { X86::MUL8r, X86::MUL8m, 1 },
288 { X86::SETAEr, X86::SETAEm, 0 },
289 { X86::SETAr, X86::SETAm, 0 },
290 { X86::SETBEr, X86::SETBEm, 0 },
291 { X86::SETBr, X86::SETBm, 0 },
292 { X86::SETEr, X86::SETEm, 0 },
293 { X86::SETGEr, X86::SETGEm, 0 },
294 { X86::SETGr, X86::SETGm, 0 },
295 { X86::SETLEr, X86::SETLEm, 0 },
296 { X86::SETLr, X86::SETLm, 0 },
297 { X86::SETNEr, X86::SETNEm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000298 { X86::SETNOr, X86::SETNOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000299 { X86::SETNPr, X86::SETNPm, 0 },
300 { X86::SETNSr, X86::SETNSm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000301 { X86::SETOr, X86::SETOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000302 { X86::SETPr, X86::SETPm, 0 },
303 { X86::SETSr, X86::SETSm, 0 },
304 { X86::TAILJMPr, X86::TAILJMPm, 1 },
305 { X86::TEST16ri, X86::TEST16mi, 1 },
306 { X86::TEST32ri, X86::TEST32mi, 1 },
307 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000308 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000309 };
310
311 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
312 unsigned RegOp = OpTbl0[i][0];
313 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000314 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
315 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000316 assert(false && "Duplicated entries?");
317 unsigned FoldedLoad = OpTbl0[i][2];
318 // Index 0, folded load or store.
319 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
320 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
321 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000322 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000323 AmbEntries.push_back(MemOp);
324 }
325
326 static const unsigned OpTbl1[][2] = {
327 { X86::CMP16rr, X86::CMP16rm },
328 { X86::CMP32rr, X86::CMP32rm },
329 { X86::CMP64rr, X86::CMP64rm },
330 { X86::CMP8rr, X86::CMP8rm },
331 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
332 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
333 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
334 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
335 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
336 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
337 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
338 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
339 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
340 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
341 { X86::FsMOVAPDrr, X86::MOVSDrm },
342 { X86::FsMOVAPSrr, X86::MOVSSrm },
343 { X86::IMUL16rri, X86::IMUL16rmi },
344 { X86::IMUL16rri8, X86::IMUL16rmi8 },
345 { X86::IMUL32rri, X86::IMUL32rmi },
346 { X86::IMUL32rri8, X86::IMUL32rmi8 },
347 { X86::IMUL64rri32, X86::IMUL64rmi32 },
348 { X86::IMUL64rri8, X86::IMUL64rmi8 },
349 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
350 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
351 { X86::Int_COMISDrr, X86::Int_COMISDrm },
352 { X86::Int_COMISSrr, X86::Int_COMISSrm },
353 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
354 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
355 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
356 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
357 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
358 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
359 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
360 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
361 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
362 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
363 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
364 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
365 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
366 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
367 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
368 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
369 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
370 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
371 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
372 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
373 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
374 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
375 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
376 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
377 { X86::MOV16rr, X86::MOV16rm },
378 { X86::MOV16to16_, X86::MOV16_rm },
379 { X86::MOV32rr, X86::MOV32rm },
380 { X86::MOV32to32_, X86::MOV32_rm },
381 { X86::MOV64rr, X86::MOV64rm },
382 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
383 { X86::MOV64toSDrr, X86::MOV64toSDrm },
384 { X86::MOV8rr, X86::MOV8rm },
385 { X86::MOVAPDrr, X86::MOVAPDrm },
386 { X86::MOVAPSrr, X86::MOVAPSrm },
387 { X86::MOVDDUPrr, X86::MOVDDUPrm },
388 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
389 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
Dan Gohmana645d1a2009-01-09 02:40:34 +0000390 { X86::MOVDQArr, X86::MOVDQArm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000391 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
392 { X86::MOVSDrr, X86::MOVSDrm },
393 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
394 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
395 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
396 { X86::MOVSSrr, X86::MOVSSrm },
397 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
398 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
399 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
400 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
401 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
402 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
403 { X86::MOVUPDrr, X86::MOVUPDrm },
404 { X86::MOVUPSrr, X86::MOVUPSrm },
405 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
406 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
407 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
408 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
409 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
410 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
411 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000412 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000413 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
414 { X86::PSHUFDri, X86::PSHUFDmi },
415 { X86::PSHUFHWri, X86::PSHUFHWmi },
416 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000417 { X86::RCPPSr, X86::RCPPSm },
418 { X86::RCPPSr_Int, X86::RCPPSm_Int },
419 { X86::RSQRTPSr, X86::RSQRTPSm },
420 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
421 { X86::RSQRTSSr, X86::RSQRTSSm },
422 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
423 { X86::SQRTPDr, X86::SQRTPDm },
424 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
425 { X86::SQRTPSr, X86::SQRTPSm },
426 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
427 { X86::SQRTSDr, X86::SQRTSDm },
428 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
429 { X86::SQRTSSr, X86::SQRTSSm },
430 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
431 { X86::TEST16rr, X86::TEST16rm },
432 { X86::TEST32rr, X86::TEST32rm },
433 { X86::TEST64rr, X86::TEST64rm },
434 { X86::TEST8rr, X86::TEST8rm },
435 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
436 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000437 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000438 };
439
440 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
441 unsigned RegOp = OpTbl1[i][0];
442 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000443 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
444 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000445 assert(false && "Duplicated entries?");
446 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
447 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
448 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000449 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000450 AmbEntries.push_back(MemOp);
451 }
452
453 static const unsigned OpTbl2[][2] = {
454 { X86::ADC32rr, X86::ADC32rm },
455 { X86::ADC64rr, X86::ADC64rm },
456 { X86::ADD16rr, X86::ADD16rm },
457 { X86::ADD32rr, X86::ADD32rm },
458 { X86::ADD64rr, X86::ADD64rm },
459 { X86::ADD8rr, X86::ADD8rm },
460 { X86::ADDPDrr, X86::ADDPDrm },
461 { X86::ADDPSrr, X86::ADDPSrm },
462 { X86::ADDSDrr, X86::ADDSDrm },
463 { X86::ADDSSrr, X86::ADDSSrm },
464 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
465 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
466 { X86::AND16rr, X86::AND16rm },
467 { X86::AND32rr, X86::AND32rm },
468 { X86::AND64rr, X86::AND64rm },
469 { X86::AND8rr, X86::AND8rm },
470 { X86::ANDNPDrr, X86::ANDNPDrm },
471 { X86::ANDNPSrr, X86::ANDNPSrm },
472 { X86::ANDPDrr, X86::ANDPDrm },
473 { X86::ANDPSrr, X86::ANDPSrm },
474 { X86::CMOVA16rr, X86::CMOVA16rm },
475 { X86::CMOVA32rr, X86::CMOVA32rm },
476 { X86::CMOVA64rr, X86::CMOVA64rm },
477 { X86::CMOVAE16rr, X86::CMOVAE16rm },
478 { X86::CMOVAE32rr, X86::CMOVAE32rm },
479 { X86::CMOVAE64rr, X86::CMOVAE64rm },
480 { X86::CMOVB16rr, X86::CMOVB16rm },
481 { X86::CMOVB32rr, X86::CMOVB32rm },
482 { X86::CMOVB64rr, X86::CMOVB64rm },
483 { X86::CMOVBE16rr, X86::CMOVBE16rm },
484 { X86::CMOVBE32rr, X86::CMOVBE32rm },
485 { X86::CMOVBE64rr, X86::CMOVBE64rm },
486 { X86::CMOVE16rr, X86::CMOVE16rm },
487 { X86::CMOVE32rr, X86::CMOVE32rm },
488 { X86::CMOVE64rr, X86::CMOVE64rm },
489 { X86::CMOVG16rr, X86::CMOVG16rm },
490 { X86::CMOVG32rr, X86::CMOVG32rm },
491 { X86::CMOVG64rr, X86::CMOVG64rm },
492 { X86::CMOVGE16rr, X86::CMOVGE16rm },
493 { X86::CMOVGE32rr, X86::CMOVGE32rm },
494 { X86::CMOVGE64rr, X86::CMOVGE64rm },
495 { X86::CMOVL16rr, X86::CMOVL16rm },
496 { X86::CMOVL32rr, X86::CMOVL32rm },
497 { X86::CMOVL64rr, X86::CMOVL64rm },
498 { X86::CMOVLE16rr, X86::CMOVLE16rm },
499 { X86::CMOVLE32rr, X86::CMOVLE32rm },
500 { X86::CMOVLE64rr, X86::CMOVLE64rm },
501 { X86::CMOVNE16rr, X86::CMOVNE16rm },
502 { X86::CMOVNE32rr, X86::CMOVNE32rm },
503 { X86::CMOVNE64rr, X86::CMOVNE64rm },
Dan Gohmanac441ab2009-01-07 00:44:53 +0000504 { X86::CMOVNO16rr, X86::CMOVNO16rm },
505 { X86::CMOVNO32rr, X86::CMOVNO32rm },
506 { X86::CMOVNO64rr, X86::CMOVNO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000507 { X86::CMOVNP16rr, X86::CMOVNP16rm },
508 { X86::CMOVNP32rr, X86::CMOVNP32rm },
509 { X86::CMOVNP64rr, X86::CMOVNP64rm },
510 { X86::CMOVNS16rr, X86::CMOVNS16rm },
511 { X86::CMOVNS32rr, X86::CMOVNS32rm },
512 { X86::CMOVNS64rr, X86::CMOVNS64rm },
Dan Gohman12fd4d72009-01-07 00:35:10 +0000513 { X86::CMOVO16rr, X86::CMOVO16rm },
514 { X86::CMOVO32rr, X86::CMOVO32rm },
515 { X86::CMOVO64rr, X86::CMOVO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000516 { X86::CMOVP16rr, X86::CMOVP16rm },
517 { X86::CMOVP32rr, X86::CMOVP32rm },
518 { X86::CMOVP64rr, X86::CMOVP64rm },
519 { X86::CMOVS16rr, X86::CMOVS16rm },
520 { X86::CMOVS32rr, X86::CMOVS32rm },
521 { X86::CMOVS64rr, X86::CMOVS64rm },
522 { X86::CMPPDrri, X86::CMPPDrmi },
523 { X86::CMPPSrri, X86::CMPPSrmi },
524 { X86::CMPSDrr, X86::CMPSDrm },
525 { X86::CMPSSrr, X86::CMPSSrm },
526 { X86::DIVPDrr, X86::DIVPDrm },
527 { X86::DIVPSrr, X86::DIVPSrm },
528 { X86::DIVSDrr, X86::DIVSDrm },
529 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000530 { X86::FsANDNPDrr, X86::FsANDNPDrm },
531 { X86::FsANDNPSrr, X86::FsANDNPSrm },
532 { X86::FsANDPDrr, X86::FsANDPDrm },
533 { X86::FsANDPSrr, X86::FsANDPSrm },
534 { X86::FsORPDrr, X86::FsORPDrm },
535 { X86::FsORPSrr, X86::FsORPSrm },
536 { X86::FsXORPDrr, X86::FsXORPDrm },
537 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000538 { X86::HADDPDrr, X86::HADDPDrm },
539 { X86::HADDPSrr, X86::HADDPSrm },
540 { X86::HSUBPDrr, X86::HSUBPDrm },
541 { X86::HSUBPSrr, X86::HSUBPSrm },
542 { X86::IMUL16rr, X86::IMUL16rm },
543 { X86::IMUL32rr, X86::IMUL32rm },
544 { X86::IMUL64rr, X86::IMUL64rm },
545 { X86::MAXPDrr, X86::MAXPDrm },
546 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
547 { X86::MAXPSrr, X86::MAXPSrm },
548 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
549 { X86::MAXSDrr, X86::MAXSDrm },
550 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
551 { X86::MAXSSrr, X86::MAXSSrm },
552 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
553 { X86::MINPDrr, X86::MINPDrm },
554 { X86::MINPDrr_Int, X86::MINPDrm_Int },
555 { X86::MINPSrr, X86::MINPSrm },
556 { X86::MINPSrr_Int, X86::MINPSrm_Int },
557 { X86::MINSDrr, X86::MINSDrm },
558 { X86::MINSDrr_Int, X86::MINSDrm_Int },
559 { X86::MINSSrr, X86::MINSSrm },
560 { X86::MINSSrr_Int, X86::MINSSrm_Int },
561 { X86::MULPDrr, X86::MULPDrm },
562 { X86::MULPSrr, X86::MULPSrm },
563 { X86::MULSDrr, X86::MULSDrm },
564 { X86::MULSSrr, X86::MULSSrm },
565 { X86::OR16rr, X86::OR16rm },
566 { X86::OR32rr, X86::OR32rm },
567 { X86::OR64rr, X86::OR64rm },
568 { X86::OR8rr, X86::OR8rm },
569 { X86::ORPDrr, X86::ORPDrm },
570 { X86::ORPSrr, X86::ORPSrm },
571 { X86::PACKSSDWrr, X86::PACKSSDWrm },
572 { X86::PACKSSWBrr, X86::PACKSSWBrm },
573 { X86::PACKUSWBrr, X86::PACKUSWBrm },
574 { X86::PADDBrr, X86::PADDBrm },
575 { X86::PADDDrr, X86::PADDDrm },
576 { X86::PADDQrr, X86::PADDQrm },
577 { X86::PADDSBrr, X86::PADDSBrm },
578 { X86::PADDSWrr, X86::PADDSWrm },
579 { X86::PADDWrr, X86::PADDWrm },
580 { X86::PANDNrr, X86::PANDNrm },
581 { X86::PANDrr, X86::PANDrm },
582 { X86::PAVGBrr, X86::PAVGBrm },
583 { X86::PAVGWrr, X86::PAVGWrm },
584 { X86::PCMPEQBrr, X86::PCMPEQBrm },
585 { X86::PCMPEQDrr, X86::PCMPEQDrm },
586 { X86::PCMPEQWrr, X86::PCMPEQWrm },
587 { X86::PCMPGTBrr, X86::PCMPGTBrm },
588 { X86::PCMPGTDrr, X86::PCMPGTDrm },
589 { X86::PCMPGTWrr, X86::PCMPGTWrm },
590 { X86::PINSRWrri, X86::PINSRWrmi },
591 { X86::PMADDWDrr, X86::PMADDWDrm },
592 { X86::PMAXSWrr, X86::PMAXSWrm },
593 { X86::PMAXUBrr, X86::PMAXUBrm },
594 { X86::PMINSWrr, X86::PMINSWrm },
595 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000596 { X86::PMULDQrr, X86::PMULDQrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000597 { X86::PMULHUWrr, X86::PMULHUWrm },
598 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000599 { X86::PMULLDrr, X86::PMULLDrm },
600 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000601 { X86::PMULLWrr, X86::PMULLWrm },
602 { X86::PMULUDQrr, X86::PMULUDQrm },
603 { X86::PORrr, X86::PORrm },
604 { X86::PSADBWrr, X86::PSADBWrm },
605 { X86::PSLLDrr, X86::PSLLDrm },
606 { X86::PSLLQrr, X86::PSLLQrm },
607 { X86::PSLLWrr, X86::PSLLWrm },
608 { X86::PSRADrr, X86::PSRADrm },
609 { X86::PSRAWrr, X86::PSRAWrm },
610 { X86::PSRLDrr, X86::PSRLDrm },
611 { X86::PSRLQrr, X86::PSRLQrm },
612 { X86::PSRLWrr, X86::PSRLWrm },
613 { X86::PSUBBrr, X86::PSUBBrm },
614 { X86::PSUBDrr, X86::PSUBDrm },
615 { X86::PSUBSBrr, X86::PSUBSBrm },
616 { X86::PSUBSWrr, X86::PSUBSWrm },
617 { X86::PSUBWrr, X86::PSUBWrm },
618 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
619 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
620 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
621 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
622 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
623 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
624 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
625 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
626 { X86::PXORrr, X86::PXORrm },
627 { X86::SBB32rr, X86::SBB32rm },
628 { X86::SBB64rr, X86::SBB64rm },
629 { X86::SHUFPDrri, X86::SHUFPDrmi },
630 { X86::SHUFPSrri, X86::SHUFPSrmi },
631 { X86::SUB16rr, X86::SUB16rm },
632 { X86::SUB32rr, X86::SUB32rm },
633 { X86::SUB64rr, X86::SUB64rm },
634 { X86::SUB8rr, X86::SUB8rm },
635 { X86::SUBPDrr, X86::SUBPDrm },
636 { X86::SUBPSrr, X86::SUBPSrm },
637 { X86::SUBSDrr, X86::SUBSDrm },
638 { X86::SUBSSrr, X86::SUBSSrm },
639 // FIXME: TEST*rr -> swapped operand of TEST*mr.
640 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
641 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
642 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
643 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
644 { X86::XOR16rr, X86::XOR16rm },
645 { X86::XOR32rr, X86::XOR32rm },
646 { X86::XOR64rr, X86::XOR64rm },
647 { X86::XOR8rr, X86::XOR8rm },
648 { X86::XORPDrr, X86::XORPDrm },
649 { X86::XORPSrr, X86::XORPSrm }
650 };
651
652 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
653 unsigned RegOp = OpTbl2[i][0];
654 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000655 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
656 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000657 assert(false && "Duplicated entries?");
Dan Gohman590c05b2009-03-04 19:24:25 +0000658 unsigned AuxInfo = 2 | (1 << 4); // Index 2, folded load
Owen Anderson9a184ef2008-01-07 01:35:02 +0000659 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000660 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000661 AmbEntries.push_back(MemOp);
662 }
663
664 // Remove ambiguous entries.
665 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000666}
667
668bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
Evan Chengf97496a2009-01-20 19:12:24 +0000669 unsigned &SrcReg, unsigned &DstReg,
670 unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000671 switch (MI.getOpcode()) {
672 default:
673 return false;
674 case X86::MOV8rr:
675 case X86::MOV16rr:
676 case X86::MOV32rr:
677 case X86::MOV64rr:
678 case X86::MOV16to16_:
679 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000680 case X86::MOVSSrr:
681 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000682
683 // FP Stack register class copies
684 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
685 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
686 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
687
Chris Lattnerff195282008-03-11 19:28:17 +0000688 case X86::FsMOVAPSrr:
689 case X86::FsMOVAPDrr:
690 case X86::MOVAPSrr:
691 case X86::MOVAPDrr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000692 case X86::MOVDQArr:
Chris Lattnerff195282008-03-11 19:28:17 +0000693 case X86::MOVSS2PSrr:
694 case X86::MOVSD2PDrr:
695 case X86::MOVPS2SSrr:
696 case X86::MOVPD2SDrr:
Chris Lattnerff195282008-03-11 19:28:17 +0000697 case X86::MMX_MOVQ64rr:
698 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000699 MI.getOperand(0).isReg() &&
700 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000701 "invalid register-register move instruction");
Evan Chengf97496a2009-01-20 19:12:24 +0000702 SrcReg = MI.getOperand(1).getReg();
703 DstReg = MI.getOperand(0).getReg();
704 SrcSubIdx = MI.getOperand(1).getSubReg();
705 DstSubIdx = MI.getOperand(0).getSubReg();
Chris Lattnerff195282008-03-11 19:28:17 +0000706 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000708}
709
Dan Gohman90feee22008-11-18 19:49:32 +0000710unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 int &FrameIndex) const {
712 switch (MI->getOpcode()) {
713 default: break;
714 case X86::MOV8rm:
715 case X86::MOV16rm:
716 case X86::MOV16_rm:
717 case X86::MOV32rm:
718 case X86::MOV32_rm:
719 case X86::MOV64rm:
720 case X86::LD_Fp64m:
721 case X86::MOVSSrm:
722 case X86::MOVSDrm:
723 case X86::MOVAPSrm:
724 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000725 case X86::MOVDQArm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000726 case X86::MMX_MOVD64rm:
727 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000728 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
729 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000730 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000731 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000732 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000733 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734 return MI->getOperand(0).getReg();
735 }
736 break;
737 }
738 return 0;
739}
740
Dan Gohman90feee22008-11-18 19:49:32 +0000741unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 int &FrameIndex) const {
743 switch (MI->getOpcode()) {
744 default: break;
745 case X86::MOV8mr:
746 case X86::MOV16mr:
747 case X86::MOV16_mr:
748 case X86::MOV32mr:
749 case X86::MOV32_mr:
750 case X86::MOV64mr:
751 case X86::ST_FpP64m:
752 case X86::MOVSSmr:
753 case X86::MOVSDmr:
754 case X86::MOVAPSmr:
755 case X86::MOVAPDmr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000756 case X86::MOVDQAmr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757 case X86::MMX_MOVD64mr:
758 case X86::MMX_MOVQ64mr:
759 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000760 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
761 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000762 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000763 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000764 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000765 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000766 return MI->getOperand(4).getReg();
767 }
768 break;
769 }
770 return 0;
771}
772
773
Evan Chengb819a512008-03-27 01:45:11 +0000774/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
775/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000776static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000777 bool isPICBase = false;
778 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
779 E = MRI.def_end(); I != E; ++I) {
780 MachineInstr *DefMI = I.getOperand().getParent();
781 if (DefMI->getOpcode() != X86::MOVPC32r)
782 return false;
783 assert(!isPICBase && "More than one PIC base?");
784 isPICBase = true;
785 }
786 return isPICBase;
787}
Evan Chenge9caab52008-03-31 07:54:19 +0000788
789/// isGVStub - Return true if the GV requires an extra load to get the
790/// real address.
791static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
792 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
793}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000794
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000795bool
796X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000797 switch (MI->getOpcode()) {
798 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000799 case X86::MOV8rm:
800 case X86::MOV16rm:
801 case X86::MOV16_rm:
802 case X86::MOV32rm:
803 case X86::MOV32_rm:
804 case X86::MOV64rm:
805 case X86::LD_Fp64m:
806 case X86::MOVSSrm:
807 case X86::MOVSDrm:
808 case X86::MOVAPSrm:
809 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000810 case X86::MOVDQArm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000811 case X86::MMX_MOVD64rm:
812 case X86::MMX_MOVQ64rm: {
813 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000814 if (MI->getOperand(1).isReg() &&
815 MI->getOperand(2).isImm() &&
816 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
817 (MI->getOperand(4).isCPI() ||
818 (MI->getOperand(4).isGlobal() &&
Evan Chenge9caab52008-03-31 07:54:19 +0000819 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000820 unsigned BaseReg = MI->getOperand(1).getReg();
821 if (BaseReg == 0)
822 return true;
823 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000824 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000825 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000826 const MachineFunction &MF = *MI->getParent()->getParent();
827 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000828 bool isPICBase = false;
829 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
830 E = MRI.def_end(); I != E; ++I) {
831 MachineInstr *DefMI = I.getOperand().getParent();
832 if (DefMI->getOpcode() != X86::MOVPC32r)
833 return false;
834 assert(!isPICBase && "More than one PIC base?");
835 isPICBase = true;
836 }
837 return isPICBase;
838 }
839 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000840 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000841
842 case X86::LEA32r:
843 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000844 if (MI->getOperand(2).isImm() &&
845 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
846 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000847 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000848 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000849 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000850 unsigned BaseReg = MI->getOperand(1).getReg();
851 if (BaseReg == 0)
852 return true;
853 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000854 const MachineFunction &MF = *MI->getParent()->getParent();
855 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000856 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000857 }
858 return false;
859 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000861
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000862 // All other instructions marked M_REMATERIALIZABLE are always trivially
863 // rematerializable.
864 return true;
865}
866
Evan Chengc564ded2008-06-24 07:10:51 +0000867/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
868/// would clobber the EFLAGS condition register. Note the result may be
869/// conservative. If it cannot definitely determine the safety after visiting
870/// two instructions it assumes it's not safe.
871static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
872 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000873 // It's always safe to clobber EFLAGS at the end of a block.
874 if (I == MBB.end())
875 return true;
876
Evan Chengc564ded2008-06-24 07:10:51 +0000877 // For compile time consideration, if we are not able to determine the
878 // safety after visiting 2 instructions, we will assume it's not safe.
879 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000880 bool SeenDef = false;
881 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
882 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000883 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000884 continue;
885 if (MO.getReg() == X86::EFLAGS) {
886 if (MO.isUse())
887 return false;
888 SeenDef = true;
889 }
890 }
891
892 if (SeenDef)
893 // This instruction defines EFLAGS, no need to look any further.
894 return true;
895 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000896
897 // If we make it to the end of the block, it's safe to clobber EFLAGS.
898 if (I == MBB.end())
899 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000900 }
901
902 // Conservative answer.
903 return false;
904}
905
Evan Cheng7d73efc2008-03-31 20:40:39 +0000906void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
907 MachineBasicBlock::iterator I,
908 unsigned DestReg,
909 const MachineInstr *Orig) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +0000910 DebugLoc DL = DebugLoc::getUnknownLoc();
911 if (I != MBB.end()) DL = I->getDebugLoc();
912
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000913 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000914 ? Orig->getOperand(0).getSubReg() : 0;
915 bool ChangeSubIdx = SubIdx != 0;
916 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
917 DestReg = RI.getSubReg(DestReg, SubIdx);
918 SubIdx = 0;
919 }
920
Evan Cheng7d73efc2008-03-31 20:40:39 +0000921 // MOV32r0 etc. are implemented with xor which clobbers condition code.
922 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000923 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000924 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000925 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000926 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000927 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000928 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000929 case X86::MOV64r0: {
930 if (!isSafeToClobberEFLAGS(MBB, I)) {
931 unsigned Opc = 0;
932 switch (Orig->getOpcode()) {
933 default: break;
934 case X86::MOV8r0: Opc = X86::MOV8ri; break;
935 case X86::MOV16r0: Opc = X86::MOV16ri; break;
936 case X86::MOV32r0: Opc = X86::MOV32ri; break;
937 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
938 }
Bill Wendling13ee2e42009-02-11 21:51:19 +0000939 BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
Evan Chengc564ded2008-06-24 07:10:51 +0000940 Emitted = true;
941 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000942 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000943 }
944 }
945
946 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000947 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000948 MI->getOperand(0).setReg(DestReg);
949 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000950 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000951
952 if (ChangeSubIdx) {
953 MachineInstr *NewMI = prior(I);
954 NewMI->getOperand(0).setSubReg(SubIdx);
955 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000956}
957
Chris Lattnerea3a1812008-01-10 23:08:24 +0000958/// isInvariantLoad - Return true if the specified instruction (which is marked
959/// mayLoad) is loading from a location whose value is invariant across the
960/// function. For example, loading a value from the constant pool or from
961/// from the argument area of a function if it does not change. This should
962/// only return true of *all* loads the instruction does are invariant (if it
963/// does multiple loads).
Dan Gohman90feee22008-11-18 19:49:32 +0000964bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000965 // This code cares about loads from three cases: constant pool entries,
966 // invariant argument slots, and global stubs. In order to handle these cases
967 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000968 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000969 // none of these three cases is ever used as anything other than a load base
970 // and X86 doesn't have any instructions that load from multiple places.
971
972 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
973 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000974 // Loads from constant pools are trivially invariant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000975 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000976 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000977
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000978 if (MO.isGlobal())
Evan Chenge9caab52008-03-31 07:54:19 +0000979 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000980
981 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000982 if (MO.isFI()) {
Chris Lattner0875b572008-01-12 00:35:08 +0000983 const MachineFrameInfo &MFI =
984 *MI->getParent()->getParent()->getFrameInfo();
985 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000986 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
987 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000988 }
Chris Lattner0875b572008-01-12 00:35:08 +0000989
Chris Lattnerea3a1812008-01-10 23:08:24 +0000990 // All other instances of these instructions are presumed to have other
991 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000992 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000993}
994
Evan Chengfa1a4952007-10-05 08:04:01 +0000995/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
996/// is not marked dead.
997static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000998 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
999 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001000 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +00001001 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1002 return true;
1003 }
1004 }
1005 return false;
1006}
1007
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008/// convertToThreeAddress - This method must be implemented by targets that
1009/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1010/// may be able to convert a two-address instruction into a true
1011/// three-address instruction on demand. This allows the X86 target (for
1012/// example) to convert ADD and SHL instructions into LEA instructions if they
1013/// would require register copies due to two-addressness.
1014///
1015/// This method returns a null pointer if the transformation cannot be
1016/// performed, otherwise it returns the new instruction.
1017///
1018MachineInstr *
1019X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1020 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +00001021 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001022 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +00001023 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001024 // All instructions input are two-addr instructions. Get the known operands.
1025 unsigned Dest = MI->getOperand(0).getReg();
1026 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +00001027 bool isDead = MI->getOperand(0).isDead();
1028 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029
1030 MachineInstr *NewMI = NULL;
1031 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1032 // we have better subtarget support, enable the 16-bit LEA generation here.
1033 bool DisableLEA16 = true;
1034
Evan Cheng6b96ed32007-10-05 20:34:26 +00001035 unsigned MIOpc = MI->getOpcode();
1036 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001037 case X86::SHUFPSrri: {
1038 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1039 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1040
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 unsigned B = MI->getOperand(1).getReg();
1042 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001043 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001044 unsigned A = MI->getOperand(0).getReg();
1045 unsigned M = MI->getOperand(3).getImm();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001046 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1047 .addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001048 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001049 break;
1050 }
1051 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001052 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1054 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001055 unsigned ShAmt = MI->getOperand(2).getImm();
1056 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001057
Bill Wendling13ee2e42009-02-11 21:51:19 +00001058 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1059 .addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001060 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001061 break;
1062 }
1063 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001064 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001065 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1066 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001067 unsigned ShAmt = MI->getOperand(2).getImm();
1068 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001069
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001070 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1071 X86::LEA64_32r : X86::LEA32r;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001072 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1073 .addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001074 .addReg(0).addImm(1 << ShAmt)
1075 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001076 break;
1077 }
1078 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001079 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001080 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1081 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001082 unsigned ShAmt = MI->getOperand(2).getImm();
1083 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001084
Christopher Lamb380c6272007-08-10 21:18:25 +00001085 if (DisableLEA16) {
1086 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001087 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001088 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1089 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001090 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1091 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001092
Christopher Lamb8d226a22008-03-11 10:27:36 +00001093 // Build and insert into an implicit UNDEF value. This is OK because
1094 // well be shifting and then extracting the lower 16-bits.
Bill Wendling13ee2e42009-02-11 21:51:19 +00001095 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1096 MachineInstr *InsMI =
1097 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001098 .addReg(leaInReg).addReg(Src, false, false, isKill)
1099 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001100
Bill Wendling13ee2e42009-02-11 21:51:19 +00001101 NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg)
1102 .addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001103 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001104
Bill Wendling13ee2e42009-02-11 21:51:19 +00001105 MachineInstr *ExtMI =
1106 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001107 .addReg(Dest, true, false, false, isDead)
1108 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001109
Owen Andersonc6959722008-07-02 23:41:07 +00001110 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001111 // Update live variables
1112 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1113 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1114 if (isKill)
1115 LV->replaceKillInstruction(Src, MI, InsMI);
1116 if (isDead)
1117 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001118 }
Evan Chenge52c1912008-07-03 09:09:37 +00001119 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001120 } else {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001121 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1122 .addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001123 .addReg(0).addImm(1 << ShAmt)
1124 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001125 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001126 break;
1127 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001128 default: {
1129 // The following opcodes also sets the condition code register(s). Only
1130 // convert them to equivalent lea if the condition code register def's
1131 // are dead!
1132 if (hasLiveCondCodeDef(MI))
1133 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001134
Evan Chenga28a9562007-10-09 07:14:53 +00001135 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001136 switch (MIOpc) {
1137 default: return 0;
1138 case X86::INC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001139 case X86::INC32r:
1140 case X86::INC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001141 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001142 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1143 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001144 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001145 .addReg(Dest, true, false, false, isDead),
1146 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001147 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001148 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001149 case X86::INC16r:
1150 case X86::INC64_16r:
1151 if (DisableLEA16) return 0;
1152 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001153 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001154 .addReg(Dest, true, false, false, isDead),
1155 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001156 break;
1157 case X86::DEC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001158 case X86::DEC32r:
1159 case X86::DEC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001160 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001161 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1162 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001163 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001164 .addReg(Dest, true, false, false, isDead),
1165 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001166 break;
1167 }
1168 case X86::DEC16r:
1169 case X86::DEC64_16r:
1170 if (DisableLEA16) return 0;
1171 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001172 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001173 .addReg(Dest, true, false, false, isDead),
1174 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001175 break;
1176 case X86::ADD64rr:
1177 case X86::ADD32rr: {
1178 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001179 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1180 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001181 unsigned Src2 = MI->getOperand(2).getReg();
1182 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001183 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001184 .addReg(Dest, true, false, false, isDead),
1185 Src, isKill, Src2, isKill2);
1186 if (LV && isKill2)
1187 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001188 break;
1189 }
Evan Chenge52c1912008-07-03 09:09:37 +00001190 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001191 if (DisableLEA16) return 0;
1192 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001193 unsigned Src2 = MI->getOperand(2).getReg();
1194 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001195 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001196 .addReg(Dest, true, false, false, isDead),
1197 Src, isKill, Src2, isKill2);
1198 if (LV && isKill2)
1199 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001200 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001201 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001202 case X86::ADD64ri32:
1203 case X86::ADD64ri8:
1204 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001205 if (MI->getOperand(2).isImm())
Bill Wendling13ee2e42009-02-11 21:51:19 +00001206 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Evan Chenge52c1912008-07-03 09:09:37 +00001207 .addReg(Dest, true, false, false, isDead),
1208 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001209 break;
1210 case X86::ADD32ri:
1211 case X86::ADD32ri8:
1212 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001213 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001214 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001215 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001216 .addReg(Dest, true, false, false, isDead),
1217 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001218 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001219 break;
1220 case X86::ADD16ri:
1221 case X86::ADD16ri8:
1222 if (DisableLEA16) return 0;
1223 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001224 if (MI->getOperand(2).isImm())
Bill Wendling13ee2e42009-02-11 21:51:19 +00001225 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001226 .addReg(Dest, true, false, false, isDead),
1227 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001228 break;
1229 case X86::SHL16ri:
1230 if (DisableLEA16) return 0;
1231 case X86::SHL32ri:
1232 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001233 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001234 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001235 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001236 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1237 X86AddressMode AM;
1238 AM.Scale = 1 << ShAmt;
1239 AM.IndexReg = Src;
1240 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001241 : (MIOpc == X86::SHL32ri
1242 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001243 NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001244 .addReg(Dest, true, false, false, isDead), AM);
1245 if (isKill)
1246 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001247 }
1248 break;
1249 }
1250 }
1251 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001252 }
1253
Evan Chengc3cb24d2008-02-07 08:29:53 +00001254 if (!NewMI) return 0;
1255
Evan Chenge52c1912008-07-03 09:09:37 +00001256 if (LV) { // Update live variables
1257 if (isKill)
1258 LV->replaceKillInstruction(Src, MI, NewMI);
1259 if (isDead)
1260 LV->replaceKillInstruction(Dest, MI, NewMI);
1261 }
1262
Evan Cheng6b96ed32007-10-05 20:34:26 +00001263 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001264 return NewMI;
1265}
1266
1267/// commuteInstruction - We have a few instructions that must be hacked on to
1268/// commute them.
1269///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001270MachineInstr *
1271X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001272 switch (MI->getOpcode()) {
1273 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1274 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1275 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001276 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1277 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1278 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001279 unsigned Opc;
1280 unsigned Size;
1281 switch (MI->getOpcode()) {
1282 default: assert(0 && "Unreachable!");
1283 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1284 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1285 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1286 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001287 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1288 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001289 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001290 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001291 if (NewMI) {
1292 MachineFunction &MF = *MI->getParent()->getParent();
1293 MI = MF.CloneMachineInstr(MI);
1294 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001295 }
Dan Gohman921581d2008-10-17 01:23:35 +00001296 MI->setDesc(get(Opc));
1297 MI->getOperand(3).setImm(Size-Amt);
1298 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001299 }
Evan Cheng926658c2007-10-05 23:13:21 +00001300 case X86::CMOVB16rr:
1301 case X86::CMOVB32rr:
1302 case X86::CMOVB64rr:
1303 case X86::CMOVAE16rr:
1304 case X86::CMOVAE32rr:
1305 case X86::CMOVAE64rr:
1306 case X86::CMOVE16rr:
1307 case X86::CMOVE32rr:
1308 case X86::CMOVE64rr:
1309 case X86::CMOVNE16rr:
1310 case X86::CMOVNE32rr:
1311 case X86::CMOVNE64rr:
1312 case X86::CMOVBE16rr:
1313 case X86::CMOVBE32rr:
1314 case X86::CMOVBE64rr:
1315 case X86::CMOVA16rr:
1316 case X86::CMOVA32rr:
1317 case X86::CMOVA64rr:
1318 case X86::CMOVL16rr:
1319 case X86::CMOVL32rr:
1320 case X86::CMOVL64rr:
1321 case X86::CMOVGE16rr:
1322 case X86::CMOVGE32rr:
1323 case X86::CMOVGE64rr:
1324 case X86::CMOVLE16rr:
1325 case X86::CMOVLE32rr:
1326 case X86::CMOVLE64rr:
1327 case X86::CMOVG16rr:
1328 case X86::CMOVG32rr:
1329 case X86::CMOVG64rr:
1330 case X86::CMOVS16rr:
1331 case X86::CMOVS32rr:
1332 case X86::CMOVS64rr:
1333 case X86::CMOVNS16rr:
1334 case X86::CMOVNS32rr:
1335 case X86::CMOVNS64rr:
1336 case X86::CMOVP16rr:
1337 case X86::CMOVP32rr:
1338 case X86::CMOVP64rr:
1339 case X86::CMOVNP16rr:
1340 case X86::CMOVNP32rr:
Dan Gohman12fd4d72009-01-07 00:35:10 +00001341 case X86::CMOVNP64rr:
1342 case X86::CMOVO16rr:
1343 case X86::CMOVO32rr:
1344 case X86::CMOVO64rr:
1345 case X86::CMOVNO16rr:
1346 case X86::CMOVNO32rr:
1347 case X86::CMOVNO64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001348 unsigned Opc = 0;
1349 switch (MI->getOpcode()) {
1350 default: break;
1351 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1352 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1353 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1354 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1355 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1356 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1357 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1358 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1359 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1360 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1361 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1362 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1363 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1364 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1365 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1366 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1367 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1368 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1369 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1370 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1371 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1372 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1373 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1374 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1375 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1376 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1377 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1378 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1379 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1380 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1381 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1382 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1383 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1384 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1385 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1386 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1387 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1388 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1389 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1390 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1391 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1392 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001393 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1394 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
1395 case X86::CMOVO64rr: Opc = X86::CMOVNO32rr; break;
1396 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1397 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1398 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001399 }
Dan Gohman921581d2008-10-17 01:23:35 +00001400 if (NewMI) {
1401 MachineFunction &MF = *MI->getParent()->getParent();
1402 MI = MF.CloneMachineInstr(MI);
1403 NewMI = false;
1404 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001405 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001406 // Fallthrough intended.
1407 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001408 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001409 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001410 }
1411}
1412
1413static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1414 switch (BrOpc) {
1415 default: return X86::COND_INVALID;
1416 case X86::JE: return X86::COND_E;
1417 case X86::JNE: return X86::COND_NE;
1418 case X86::JL: return X86::COND_L;
1419 case X86::JLE: return X86::COND_LE;
1420 case X86::JG: return X86::COND_G;
1421 case X86::JGE: return X86::COND_GE;
1422 case X86::JB: return X86::COND_B;
1423 case X86::JBE: return X86::COND_BE;
1424 case X86::JA: return X86::COND_A;
1425 case X86::JAE: return X86::COND_AE;
1426 case X86::JS: return X86::COND_S;
1427 case X86::JNS: return X86::COND_NS;
1428 case X86::JP: return X86::COND_P;
1429 case X86::JNP: return X86::COND_NP;
1430 case X86::JO: return X86::COND_O;
1431 case X86::JNO: return X86::COND_NO;
1432 }
1433}
1434
1435unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1436 switch (CC) {
1437 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001438 case X86::COND_E: return X86::JE;
1439 case X86::COND_NE: return X86::JNE;
1440 case X86::COND_L: return X86::JL;
1441 case X86::COND_LE: return X86::JLE;
1442 case X86::COND_G: return X86::JG;
1443 case X86::COND_GE: return X86::JGE;
1444 case X86::COND_B: return X86::JB;
1445 case X86::COND_BE: return X86::JBE;
1446 case X86::COND_A: return X86::JA;
1447 case X86::COND_AE: return X86::JAE;
1448 case X86::COND_S: return X86::JS;
1449 case X86::COND_NS: return X86::JNS;
1450 case X86::COND_P: return X86::JP;
1451 case X86::COND_NP: return X86::JNP;
1452 case X86::COND_O: return X86::JO;
1453 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001454 }
1455}
1456
1457/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1458/// e.g. turning COND_E to COND_NE.
1459X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1460 switch (CC) {
1461 default: assert(0 && "Illegal condition code!");
1462 case X86::COND_E: return X86::COND_NE;
1463 case X86::COND_NE: return X86::COND_E;
1464 case X86::COND_L: return X86::COND_GE;
1465 case X86::COND_LE: return X86::COND_G;
1466 case X86::COND_G: return X86::COND_LE;
1467 case X86::COND_GE: return X86::COND_L;
1468 case X86::COND_B: return X86::COND_AE;
1469 case X86::COND_BE: return X86::COND_A;
1470 case X86::COND_A: return X86::COND_BE;
1471 case X86::COND_AE: return X86::COND_B;
1472 case X86::COND_S: return X86::COND_NS;
1473 case X86::COND_NS: return X86::COND_S;
1474 case X86::COND_P: return X86::COND_NP;
1475 case X86::COND_NP: return X86::COND_P;
1476 case X86::COND_O: return X86::COND_NO;
1477 case X86::COND_NO: return X86::COND_O;
1478 }
1479}
1480
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001481bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001482 const TargetInstrDesc &TID = MI->getDesc();
1483 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001484
1485 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001486 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001487 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001488 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001489 return true;
1490 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001491}
1492
Evan Cheng12515792007-07-26 17:32:14 +00001493// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1494static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1495 const X86InstrInfo &TII) {
1496 if (MI->getOpcode() == X86::FP_REG_KILL)
1497 return false;
1498 return TII.isUnpredicatedTerminator(MI);
1499}
1500
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001501bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1502 MachineBasicBlock *&TBB,
1503 MachineBasicBlock *&FBB,
Evan Chengeac31642009-02-09 07:14:22 +00001504 SmallVectorImpl<MachineOperand> &Cond,
1505 bool AllowModify) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001506 // Start from the bottom of the block and work up, examining the
1507 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001508 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001509 while (I != MBB.begin()) {
1510 --I;
1511 // Working from the bottom, when we see a non-terminator
1512 // instruction, we're done.
1513 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1514 break;
1515 // A terminator that isn't a branch can't easily be handled
1516 // by this analysis.
1517 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001518 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001519 // Handle unconditional branches.
1520 if (I->getOpcode() == X86::JMP) {
Evan Chengeac31642009-02-09 07:14:22 +00001521 if (!AllowModify) {
1522 TBB = I->getOperand(0).getMBB();
1523 return false;
1524 }
1525
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001526 // If the block has any instructions after a JMP, delete them.
1527 while (next(I) != MBB.end())
1528 next(I)->eraseFromParent();
1529 Cond.clear();
1530 FBB = 0;
1531 // Delete the JMP if it's equivalent to a fall-through.
1532 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1533 TBB = 0;
1534 I->eraseFromParent();
1535 I = MBB.end();
1536 continue;
1537 }
1538 // TBB is used to indicate the unconditinal destination.
1539 TBB = I->getOperand(0).getMBB();
1540 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001541 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001542 // Handle conditional branches.
1543 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001544 if (BranchCode == X86::COND_INVALID)
1545 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001546 // Working from the bottom, handle the first conditional branch.
1547 if (Cond.empty()) {
1548 FBB = TBB;
1549 TBB = I->getOperand(0).getMBB();
1550 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1551 continue;
1552 }
1553 // Handle subsequent conditional branches. Only handle the case
1554 // where all conditional branches branch to the same destination
1555 // and their condition opcodes fit one of the special
1556 // multi-branch idioms.
1557 assert(Cond.size() == 1);
1558 assert(TBB);
1559 // Only handle the case where all conditional branches branch to
1560 // the same destination.
1561 if (TBB != I->getOperand(0).getMBB())
1562 return true;
1563 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1564 // If the conditions are the same, we can leave them alone.
1565 if (OldBranchCode == BranchCode)
1566 continue;
1567 // If they differ, see if they fit one of the known patterns.
1568 // Theoretically we could handle more patterns here, but
1569 // we shouldn't expect to see them if instruction selection
1570 // has done a reasonable job.
1571 if ((OldBranchCode == X86::COND_NP &&
1572 BranchCode == X86::COND_E) ||
1573 (OldBranchCode == X86::COND_E &&
1574 BranchCode == X86::COND_NP))
1575 BranchCode = X86::COND_NP_OR_E;
1576 else if ((OldBranchCode == X86::COND_P &&
1577 BranchCode == X86::COND_NE) ||
1578 (OldBranchCode == X86::COND_NE &&
1579 BranchCode == X86::COND_P))
1580 BranchCode = X86::COND_NE_OR_P;
1581 else
1582 return true;
1583 // Update the MachineOperand.
1584 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001585 }
1586
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001587 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001588}
1589
1590unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1591 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001592 unsigned Count = 0;
1593
1594 while (I != MBB.begin()) {
1595 --I;
1596 if (I->getOpcode() != X86::JMP &&
1597 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1598 break;
1599 // Remove the branch.
1600 I->eraseFromParent();
1601 I = MBB.end();
1602 ++Count;
1603 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001604
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001605 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001606}
1607
1608unsigned
1609X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1610 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001611 const SmallVectorImpl<MachineOperand> &Cond) const {
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001612 // FIXME this should probably have a DebugLoc operand
1613 DebugLoc dl = DebugLoc::getUnknownLoc();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001614 // Shouldn't be a fall through.
1615 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1616 assert((Cond.size() == 1 || Cond.size() == 0) &&
1617 "X86 branch conditions have one component!");
1618
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001619 if (Cond.empty()) {
1620 // Unconditional branch?
1621 assert(!FBB && "Unconditional branch with multiple successors!");
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001622 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001623 return 1;
1624 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001625
1626 // Conditional branch.
1627 unsigned Count = 0;
1628 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1629 switch (CC) {
1630 case X86::COND_NP_OR_E:
1631 // Synthesize NP_OR_E with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001632 BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001633 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001634 BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001635 ++Count;
1636 break;
1637 case X86::COND_NE_OR_P:
1638 // Synthesize NE_OR_P with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001639 BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001640 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001641 BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001642 ++Count;
1643 break;
1644 default: {
1645 unsigned Opc = GetCondBranchFromCond(CC);
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001646 BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001647 ++Count;
1648 }
1649 }
1650 if (FBB) {
1651 // Two-way Conditional branch. Insert the second branch.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001652 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001653 ++Count;
1654 }
1655 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001656}
1657
Owen Anderson9fa72d92008-08-26 18:03:31 +00001658bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001659 MachineBasicBlock::iterator MI,
1660 unsigned DestReg, unsigned SrcReg,
1661 const TargetRegisterClass *DestRC,
1662 const TargetRegisterClass *SrcRC) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001663 DebugLoc DL = DebugLoc::getUnknownLoc();
1664 if (MI != MBB.end()) DL = MI->getDebugLoc();
1665
Chris Lattner59707122008-03-09 07:58:04 +00001666 if (DestRC == SrcRC) {
1667 unsigned Opc;
1668 if (DestRC == &X86::GR64RegClass) {
1669 Opc = X86::MOV64rr;
1670 } else if (DestRC == &X86::GR32RegClass) {
1671 Opc = X86::MOV32rr;
1672 } else if (DestRC == &X86::GR16RegClass) {
1673 Opc = X86::MOV16rr;
1674 } else if (DestRC == &X86::GR8RegClass) {
1675 Opc = X86::MOV8rr;
1676 } else if (DestRC == &X86::GR32_RegClass) {
1677 Opc = X86::MOV32_rr;
1678 } else if (DestRC == &X86::GR16_RegClass) {
1679 Opc = X86::MOV16_rr;
1680 } else if (DestRC == &X86::RFP32RegClass) {
1681 Opc = X86::MOV_Fp3232;
1682 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1683 Opc = X86::MOV_Fp6464;
1684 } else if (DestRC == &X86::RFP80RegClass) {
1685 Opc = X86::MOV_Fp8080;
1686 } else if (DestRC == &X86::FR32RegClass) {
1687 Opc = X86::FsMOVAPSrr;
1688 } else if (DestRC == &X86::FR64RegClass) {
1689 Opc = X86::FsMOVAPDrr;
1690 } else if (DestRC == &X86::VR128RegClass) {
1691 Opc = X86::MOVAPSrr;
1692 } else if (DestRC == &X86::VR64RegClass) {
1693 Opc = X86::MMX_MOVQ64rr;
1694 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001695 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001696 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001697 BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001698 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001699 }
Chris Lattner59707122008-03-09 07:58:04 +00001700
1701 // Moving EFLAGS to / from another register requires a push and a pop.
1702 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001703 if (SrcReg != X86::EFLAGS)
1704 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001705 if (DestRC == &X86::GR64RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001706 BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1707 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001708 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001709 } else if (DestRC == &X86::GR32RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001710 BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1711 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001712 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001713 }
1714 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001715 if (DestReg != X86::EFLAGS)
1716 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001717 if (SrcRC == &X86::GR64RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001718 BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1719 BuildMI(MBB, MI, DL, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001720 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001721 } else if (SrcRC == &X86::GR32RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001722 BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1723 BuildMI(MBB, MI, DL, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001724 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001725 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001726 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001727
Chris Lattner0d128722008-03-09 09:15:31 +00001728 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001729 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001730 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001731 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1732 // Can only copy from ST(0)/ST(1) right now
1733 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001734 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001735 unsigned Opc;
1736 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001737 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001738 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001739 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001740 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001741 if (DestRC != &X86::RFP80RegClass)
1742 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001743 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001744 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001745 BuildMI(MBB, MI, DL, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001746 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001747 }
Chris Lattner0d128722008-03-09 09:15:31 +00001748
1749 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1750 if (DestRC == &X86::RSTRegClass) {
Evan Cheng307a72e2009-02-09 23:32:07 +00001751 // Copying to ST(0) / ST(1).
1752 if (DestReg != X86::ST0 && DestReg != X86::ST1)
Owen Anderson9fa72d92008-08-26 18:03:31 +00001753 // Can only copy to TOS right now
1754 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001755 bool isST0 = DestReg == X86::ST0;
Chris Lattner0d128722008-03-09 09:15:31 +00001756 unsigned Opc;
1757 if (SrcRC == &X86::RFP32RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001758 Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
Chris Lattner0d128722008-03-09 09:15:31 +00001759 else if (SrcRC == &X86::RFP64RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001760 Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
Chris Lattner0d128722008-03-09 09:15:31 +00001761 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001762 if (SrcRC != &X86::RFP80RegClass)
1763 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001764 Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
Chris Lattner0d128722008-03-09 09:15:31 +00001765 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001766 BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001767 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001768 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001769
Owen Anderson9fa72d92008-08-26 18:03:31 +00001770 // Not yet supported!
1771 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001772}
1773
Owen Anderson81875432008-01-01 21:11:32 +00001774static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001775 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001776 unsigned Opc = 0;
1777 if (RC == &X86::GR64RegClass) {
1778 Opc = X86::MOV64mr;
1779 } else if (RC == &X86::GR32RegClass) {
1780 Opc = X86::MOV32mr;
1781 } else if (RC == &X86::GR16RegClass) {
1782 Opc = X86::MOV16mr;
1783 } else if (RC == &X86::GR8RegClass) {
1784 Opc = X86::MOV8mr;
1785 } else if (RC == &X86::GR32_RegClass) {
1786 Opc = X86::MOV32_mr;
1787 } else if (RC == &X86::GR16_RegClass) {
1788 Opc = X86::MOV16_mr;
1789 } else if (RC == &X86::RFP80RegClass) {
1790 Opc = X86::ST_FpP80m; // pops
1791 } else if (RC == &X86::RFP64RegClass) {
1792 Opc = X86::ST_Fp64m;
1793 } else if (RC == &X86::RFP32RegClass) {
1794 Opc = X86::ST_Fp32m;
1795 } else if (RC == &X86::FR32RegClass) {
1796 Opc = X86::MOVSSmr;
1797 } else if (RC == &X86::FR64RegClass) {
1798 Opc = X86::MOVSDmr;
1799 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001800 // If stack is realigned we can use aligned stores.
1801 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001802 } else if (RC == &X86::VR64RegClass) {
1803 Opc = X86::MMX_MOVQ64mr;
1804 } else {
1805 assert(0 && "Unknown regclass");
1806 abort();
1807 }
1808
1809 return Opc;
1810}
1811
1812void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1813 MachineBasicBlock::iterator MI,
1814 unsigned SrcReg, bool isKill, int FrameIdx,
1815 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001816 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001817 bool isAligned = (RI.getStackAlignment() >= 16) ||
1818 RI.needsStackRealignment(MF);
1819 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001820 DebugLoc DL = DebugLoc::getUnknownLoc();
1821 if (MI != MBB.end()) DL = MI->getDebugLoc();
1822 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
1823 .addReg(SrcReg, false, false, isKill);
Owen Anderson81875432008-01-01 21:11:32 +00001824}
1825
1826void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1827 bool isKill,
1828 SmallVectorImpl<MachineOperand> &Addr,
1829 const TargetRegisterClass *RC,
1830 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001831 bool isAligned = (RI.getStackAlignment() >= 16) ||
1832 RI.needsStackRealignment(MF);
1833 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001834 DebugLoc DL = DebugLoc::getUnknownLoc();
1835 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001836 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001837 MIB.addOperand(Addr[i]);
Owen Anderson81875432008-01-01 21:11:32 +00001838 MIB.addReg(SrcReg, false, false, isKill);
1839 NewMIs.push_back(MIB);
1840}
1841
1842static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001843 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001844 unsigned Opc = 0;
1845 if (RC == &X86::GR64RegClass) {
1846 Opc = X86::MOV64rm;
1847 } else if (RC == &X86::GR32RegClass) {
1848 Opc = X86::MOV32rm;
1849 } else if (RC == &X86::GR16RegClass) {
1850 Opc = X86::MOV16rm;
1851 } else if (RC == &X86::GR8RegClass) {
1852 Opc = X86::MOV8rm;
1853 } else if (RC == &X86::GR32_RegClass) {
1854 Opc = X86::MOV32_rm;
1855 } else if (RC == &X86::GR16_RegClass) {
1856 Opc = X86::MOV16_rm;
1857 } else if (RC == &X86::RFP80RegClass) {
1858 Opc = X86::LD_Fp80m;
1859 } else if (RC == &X86::RFP64RegClass) {
1860 Opc = X86::LD_Fp64m;
1861 } else if (RC == &X86::RFP32RegClass) {
1862 Opc = X86::LD_Fp32m;
1863 } else if (RC == &X86::FR32RegClass) {
1864 Opc = X86::MOVSSrm;
1865 } else if (RC == &X86::FR64RegClass) {
1866 Opc = X86::MOVSDrm;
1867 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001868 // If stack is realigned we can use aligned loads.
1869 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001870 } else if (RC == &X86::VR64RegClass) {
1871 Opc = X86::MMX_MOVQ64rm;
1872 } else {
1873 assert(0 && "Unknown regclass");
1874 abort();
1875 }
1876
1877 return Opc;
1878}
1879
1880void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001881 MachineBasicBlock::iterator MI,
1882 unsigned DestReg, int FrameIdx,
1883 const TargetRegisterClass *RC) const{
1884 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001885 bool isAligned = (RI.getStackAlignment() >= 16) ||
1886 RI.needsStackRealignment(MF);
1887 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001888 DebugLoc DL = DebugLoc::getUnknownLoc();
1889 if (MI != MBB.end()) DL = MI->getDebugLoc();
1890 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Anderson81875432008-01-01 21:11:32 +00001891}
1892
1893void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001894 SmallVectorImpl<MachineOperand> &Addr,
1895 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001896 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001897 bool isAligned = (RI.getStackAlignment() >= 16) ||
1898 RI.needsStackRealignment(MF);
1899 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001900 DebugLoc DL = DebugLoc::getUnknownLoc();
1901 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001902 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001903 MIB.addOperand(Addr[i]);
Owen Anderson81875432008-01-01 21:11:32 +00001904 NewMIs.push_back(MIB);
1905}
1906
Owen Anderson6690c7f2008-01-04 23:57:37 +00001907bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00001908 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001909 const std::vector<CalleeSavedInfo> &CSI) const {
1910 if (CSI.empty())
1911 return false;
1912
Bill Wendling13ee2e42009-02-11 21:51:19 +00001913 DebugLoc DL = DebugLoc::getUnknownLoc();
1914 if (MI != MBB.end()) DL = MI->getDebugLoc();
1915
Evan Chengc275cf62008-09-26 19:14:21 +00001916 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001917 unsigned SlotSize = is64Bit ? 8 : 4;
1918
1919 MachineFunction &MF = *MBB.getParent();
1920 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1921 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1922
Owen Anderson6690c7f2008-01-04 23:57:37 +00001923 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1924 for (unsigned i = CSI.size(); i != 0; --i) {
1925 unsigned Reg = CSI[i-1].getReg();
1926 // Add the callee-saved register as live-in. It's killed at the spill.
1927 MBB.addLiveIn(Reg);
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001928 BuildMI(MBB, MI, DL, get(Opc))
Dan Gohman4df0e362008-11-26 06:39:12 +00001929 .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
Owen Anderson6690c7f2008-01-04 23:57:37 +00001930 }
1931 return true;
1932}
1933
1934bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00001935 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001936 const std::vector<CalleeSavedInfo> &CSI) const {
1937 if (CSI.empty())
1938 return false;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001939
1940 DebugLoc DL = DebugLoc::getUnknownLoc();
1941 if (MI != MBB.end()) DL = MI->getDebugLoc();
1942
Owen Anderson6690c7f2008-01-04 23:57:37 +00001943 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1944
1945 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1946 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1947 unsigned Reg = CSI[i].getReg();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001948 BuildMI(MBB, MI, DL, get(Opc), Reg);
Owen Anderson6690c7f2008-01-04 23:57:37 +00001949 }
1950 return true;
1951}
1952
Dan Gohman221a4372008-07-07 23:14:23 +00001953static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001954 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00001955 MachineInstr *MI,
1956 const TargetInstrInfo &TII) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001957 // Create the base instruction with the memory operand as the first part.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00001958 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
1959 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001960 MachineInstrBuilder MIB(NewMI);
1961 unsigned NumAddrOps = MOs.size();
1962 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001963 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001964 if (NumAddrOps < 4) // FrameIndex only
1965 MIB.addImm(1).addReg(0).addImm(0);
1966
1967 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001968 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001969 for (unsigned i = 0; i != NumOps; ++i) {
1970 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001971 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001972 }
1973 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1974 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001975 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001976 }
1977 return MIB;
1978}
1979
Dan Gohman221a4372008-07-07 23:14:23 +00001980static MachineInstr *FuseInst(MachineFunction &MF,
1981 unsigned Opcode, unsigned OpNo,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001982 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001983 MachineInstr *MI, const TargetInstrInfo &TII) {
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00001984 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
1985 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001986 MachineInstrBuilder MIB(NewMI);
1987
1988 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1989 MachineOperand &MO = MI->getOperand(i);
1990 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001991 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00001992 unsigned NumAddrOps = MOs.size();
1993 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001994 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001995 if (NumAddrOps < 4) // FrameIndex only
1996 MIB.addImm(1).addReg(0).addImm(0);
1997 } else {
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001998 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001999 }
2000 }
2001 return MIB;
2002}
2003
2004static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002005 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002006 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00002007 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendling13ee2e42009-02-11 21:51:19 +00002008 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002009
2010 unsigned NumAddrOps = MOs.size();
2011 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002012 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002013 if (NumAddrOps < 4) // FrameIndex only
2014 MIB.addImm(1).addReg(0).addImm(0);
2015 return MIB.addImm(0);
2016}
2017
2018MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00002019X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2020 MachineInstr *MI, unsigned i,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002021 const SmallVectorImpl<MachineOperand> &MOs) const{
Owen Anderson9a184ef2008-01-07 01:35:02 +00002022 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2023 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00002024 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002025 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002026 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002027
2028 MachineInstr *NewMI = NULL;
2029 // Folding a memory location into the two-address part of a two-address
2030 // instruction is different than folding it other places. It requires
2031 // replacing the *two* registers with the memory location.
2032 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002033 MI->getOperand(0).isReg() &&
2034 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00002035 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2036 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2037 isTwoAddrFold = true;
2038 } else if (i == 0) { // If operand 0
2039 if (MI->getOpcode() == X86::MOV16r0)
2040 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2041 else if (MI->getOpcode() == X86::MOV32r0)
2042 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2043 else if (MI->getOpcode() == X86::MOV64r0)
2044 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2045 else if (MI->getOpcode() == X86::MOV8r0)
2046 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002047 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002048 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002049
2050 OpcodeTablePtr = &RegOp2MemOpTable0;
2051 } else if (i == 1) {
2052 OpcodeTablePtr = &RegOp2MemOpTable1;
2053 } else if (i == 2) {
2054 OpcodeTablePtr = &RegOp2MemOpTable2;
2055 }
2056
2057 // If table selected...
2058 if (OpcodeTablePtr) {
2059 // Find the Opcode to fuse
2060 DenseMap<unsigned*, unsigned>::iterator I =
2061 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2062 if (I != OpcodeTablePtr->end()) {
2063 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00002064 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002065 else
Dan Gohman221a4372008-07-07 23:14:23 +00002066 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002067 return NewMI;
2068 }
2069 }
2070
2071 // No fusion
2072 if (PrintFailedFusing)
Dan Gohman5f599f62008-12-23 00:19:20 +00002073 cerr << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002074 return NULL;
2075}
2076
2077
Dan Gohmanedc83d62008-12-03 18:43:12 +00002078MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2079 MachineInstr *MI,
2080 const SmallVectorImpl<unsigned> &Ops,
2081 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002082 // Check switch flag
2083 if (NoFusing) return NULL;
2084
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002085 const MachineFrameInfo *MFI = MF.getFrameInfo();
2086 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2087 // FIXME: Move alignment requirement into tables?
2088 if (Alignment < 16) {
2089 switch (MI->getOpcode()) {
2090 default: break;
2091 // Not always safe to fold movsd into these instructions since their load
2092 // folding variants expects the address to be 16 byte aligned.
2093 case X86::FsANDNPDrr:
2094 case X86::FsANDNPSrr:
2095 case X86::FsANDPDrr:
2096 case X86::FsANDPSrr:
2097 case X86::FsORPDrr:
2098 case X86::FsORPSrr:
2099 case X86::FsXORPDrr:
2100 case X86::FsXORPSrr:
2101 return NULL;
2102 }
2103 }
2104
Owen Anderson9a184ef2008-01-07 01:35:02 +00002105 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2106 unsigned NewOpc = 0;
2107 switch (MI->getOpcode()) {
2108 default: return NULL;
2109 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2110 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2111 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2112 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2113 }
2114 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002115 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002116 MI->getOperand(1).ChangeToImmediate(0);
2117 } else if (Ops.size() != 1)
2118 return NULL;
2119
2120 SmallVector<MachineOperand,4> MOs;
2121 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohmanedc83d62008-12-03 18:43:12 +00002122 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002123}
2124
Dan Gohmanedc83d62008-12-03 18:43:12 +00002125MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2126 MachineInstr *MI,
2127 const SmallVectorImpl<unsigned> &Ops,
2128 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002129 // Check switch flag
2130 if (NoFusing) return NULL;
2131
Dan Gohmand0e8c752008-07-12 00:10:52 +00002132 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002133 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002134 if (LoadMI->hasOneMemOperand())
2135 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002136
2137 // FIXME: Move alignment requirement into tables?
2138 if (Alignment < 16) {
2139 switch (MI->getOpcode()) {
2140 default: break;
2141 // Not always safe to fold movsd into these instructions since their load
2142 // folding variants expects the address to be 16 byte aligned.
2143 case X86::FsANDNPDrr:
2144 case X86::FsANDNPSrr:
2145 case X86::FsANDPDrr:
2146 case X86::FsANDPSrr:
2147 case X86::FsORPDrr:
2148 case X86::FsORPSrr:
2149 case X86::FsXORPDrr:
2150 case X86::FsXORPSrr:
2151 return NULL;
2152 }
2153 }
2154
Owen Anderson9a184ef2008-01-07 01:35:02 +00002155 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2156 unsigned NewOpc = 0;
2157 switch (MI->getOpcode()) {
2158 default: return NULL;
2159 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2160 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2161 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2162 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2163 }
2164 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002165 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002166 MI->getOperand(1).ChangeToImmediate(0);
2167 } else if (Ops.size() != 1)
2168 return NULL;
2169
2170 SmallVector<MachineOperand,4> MOs;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002171 if (LoadMI->getOpcode() == X86::V_SET0 ||
2172 LoadMI->getOpcode() == X86::V_SETALLONES) {
2173 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2174 // Create a constant-pool entry and operands to load from it.
2175
2176 // x86-32 PIC requires a PIC base register for constant pools.
2177 unsigned PICBase = 0;
2178 if (TM.getRelocationModel() == Reloc::PIC_ &&
2179 !TM.getSubtarget<X86Subtarget>().is64Bit())
Evan Chengf95d0fc2008-12-05 17:23:48 +00002180 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2181 // This doesn't work for several reasons.
2182 // 1. GlobalBaseReg may have been spilled.
2183 // 2. It may not be live at MI.
Evan Chengf95d0fc2008-12-05 17:23:48 +00002184 return false;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002185
2186 // Create a v4i32 constant-pool entry.
2187 MachineConstantPool &MCP = *MF.getConstantPool();
2188 const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2189 Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2190 ConstantVector::getNullValue(Ty) :
2191 ConstantVector::getAllOnesValue(Ty);
Evan Cheng68c18682009-03-13 07:51:59 +00002192 unsigned CPI = MCP.getConstantPoolIndex(C, 16);
Dan Gohman37eb6c82008-12-03 05:21:24 +00002193
2194 // Create operands to load from the constant pool entry.
2195 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2196 MOs.push_back(MachineOperand::CreateImm(1));
2197 MOs.push_back(MachineOperand::CreateReg(0, false));
2198 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2199 } else {
2200 // Folding a normal load. Just copy the load's address operands.
2201 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002202 for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
Dan Gohman37eb6c82008-12-03 05:21:24 +00002203 MOs.push_back(LoadMI->getOperand(i));
2204 }
Dan Gohmanedc83d62008-12-03 18:43:12 +00002205 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002206}
2207
2208
Dan Gohman46b948e2008-10-16 01:49:15 +00002209bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2210 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002211 // Check switch flag
2212 if (NoFusing) return 0;
2213
2214 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2215 switch (MI->getOpcode()) {
2216 default: return false;
2217 case X86::TEST8rr:
2218 case X86::TEST16rr:
2219 case X86::TEST32rr:
2220 case X86::TEST64rr:
2221 return true;
2222 }
2223 }
2224
2225 if (Ops.size() != 1)
2226 return false;
2227
2228 unsigned OpNum = Ops[0];
2229 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002230 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002231 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002232 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002233
2234 // Folding a memory location into the two-address part of a two-address
2235 // instruction is different than folding it other places. It requires
2236 // replacing the *two* registers with the memory location.
2237 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2238 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2239 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2240 } else if (OpNum == 0) { // If operand 0
2241 switch (Opc) {
2242 case X86::MOV16r0:
2243 case X86::MOV32r0:
2244 case X86::MOV64r0:
2245 case X86::MOV8r0:
2246 return true;
2247 default: break;
2248 }
2249 OpcodeTablePtr = &RegOp2MemOpTable0;
2250 } else if (OpNum == 1) {
2251 OpcodeTablePtr = &RegOp2MemOpTable1;
2252 } else if (OpNum == 2) {
2253 OpcodeTablePtr = &RegOp2MemOpTable2;
2254 }
2255
2256 if (OpcodeTablePtr) {
2257 // Find the Opcode to fuse
2258 DenseMap<unsigned*, unsigned>::iterator I =
2259 OpcodeTablePtr->find((unsigned*)Opc);
2260 if (I != OpcodeTablePtr->end())
2261 return true;
2262 }
2263 return false;
2264}
2265
2266bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2267 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002268 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002269 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2270 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2271 if (I == MemOp2RegOpTable.end())
2272 return false;
Dale Johannesen77cce4d2009-02-12 23:08:38 +00002273 DebugLoc dl = MI->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002274 unsigned Opc = I->second.first;
2275 unsigned Index = I->second.second & 0xf;
2276 bool FoldedLoad = I->second.second & (1 << 4);
2277 bool FoldedStore = I->second.second & (1 << 5);
2278 if (UnfoldLoad && !FoldedLoad)
2279 return false;
2280 UnfoldLoad &= FoldedLoad;
2281 if (UnfoldStore && !FoldedStore)
2282 return false;
2283 UnfoldStore &= FoldedStore;
2284
Chris Lattner5b930372008-01-07 07:27:27 +00002285 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002286 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002287 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002288 ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002289 SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002290 SmallVector<MachineOperand,2> BeforeOps;
2291 SmallVector<MachineOperand,2> AfterOps;
2292 SmallVector<MachineOperand,4> ImpOps;
2293 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2294 MachineOperand &Op = MI->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002295 if (i >= Index && i < Index + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002296 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002297 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002298 ImpOps.push_back(Op);
2299 else if (i < Index)
2300 BeforeOps.push_back(Op);
2301 else if (i > Index)
2302 AfterOps.push_back(Op);
2303 }
2304
2305 // Emit the load instruction.
2306 if (UnfoldLoad) {
2307 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2308 if (UnfoldStore) {
2309 // Address operands cannot be marked isKill.
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002310 for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002311 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002312 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002313 MO.setIsKill(false);
2314 }
2315 }
2316 }
2317
2318 // Emit the data processing instruction.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002319 MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002320 MachineInstrBuilder MIB(DataMI);
2321
2322 if (FoldedStore)
2323 MIB.addReg(Reg, true);
2324 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002325 MIB.addOperand(BeforeOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002326 if (FoldedLoad)
2327 MIB.addReg(Reg);
2328 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002329 MIB.addOperand(AfterOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002330 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2331 MachineOperand &MO = ImpOps[i];
2332 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2333 }
2334 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2335 unsigned NewOpc = 0;
2336 switch (DataMI->getOpcode()) {
2337 default: break;
2338 case X86::CMP64ri32:
2339 case X86::CMP32ri:
2340 case X86::CMP16ri:
2341 case X86::CMP8ri: {
2342 MachineOperand &MO0 = DataMI->getOperand(0);
2343 MachineOperand &MO1 = DataMI->getOperand(1);
2344 if (MO1.getImm() == 0) {
2345 switch (DataMI->getOpcode()) {
2346 default: break;
2347 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2348 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2349 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2350 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2351 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002352 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002353 MO1.ChangeToRegister(MO0.getReg(), false);
2354 }
2355 }
2356 }
2357 NewMIs.push_back(DataMI);
2358
2359 // Emit the store instruction.
2360 if (UnfoldStore) {
2361 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002362 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002363 ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002364 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2365 }
2366
2367 return true;
2368}
2369
2370bool
2371X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002372 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002373 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002374 return false;
2375
2376 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002377 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002378 if (I == MemOp2RegOpTable.end())
2379 return false;
2380 unsigned Opc = I->second.first;
2381 unsigned Index = I->second.second & 0xf;
2382 bool FoldedLoad = I->second.second & (1 << 4);
2383 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002384 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002385 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002386 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002387 ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman31b70a62009-03-04 19:23:38 +00002388 unsigned NumDefs = TID.NumDefs;
Dan Gohman8181bd12008-07-27 21:46:04 +00002389 std::vector<SDValue> AddrOps;
2390 std::vector<SDValue> BeforeOps;
2391 std::vector<SDValue> AfterOps;
Dale Johannesen913ba762009-02-06 01:31:28 +00002392 DebugLoc dl = N->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002393 unsigned NumOps = N->getNumOperands();
2394 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002395 SDValue Op = N->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002396 if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002397 AddrOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002398 else if (i < Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002399 BeforeOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002400 else if (i > Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002401 AfterOps.push_back(Op);
2402 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002403 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002404 AddrOps.push_back(Chain);
2405
2406 // Emit the load instruction.
2407 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002408 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002409 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002410 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002411 bool isAligned = (RI.getStackAlignment() >= 16) ||
2412 RI.needsStackRealignment(MF);
Dale Johannesen913ba762009-02-06 01:31:28 +00002413 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned), dl,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002414 VT, MVT::Other,
2415 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002416 NewNodes.push_back(Load);
2417 }
2418
2419 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002420 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002421 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002422 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002423 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002424 DstRC = DstTOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002425 ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002426 VTs.push_back(*DstRC->vt_begin());
2427 }
2428 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002429 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002430 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002431 VTs.push_back(VT);
2432 }
2433 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002434 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002435 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Dale Johannesen913ba762009-02-06 01:31:28 +00002436 SDNode *NewNode= DAG.getTargetNode(Opc, dl, VTs, &BeforeOps[0],
2437 BeforeOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002438 NewNodes.push_back(NewNode);
2439
2440 // Emit the store instruction.
2441 if (FoldedStore) {
2442 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002443 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002444 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002445 bool isAligned = (RI.getStackAlignment() >= 16) ||
2446 RI.needsStackRealignment(MF);
Dale Johannesen913ba762009-02-06 01:31:28 +00002447 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned), dl,
Evan Cheng47906a22008-07-21 06:34:17 +00002448 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002449 NewNodes.push_back(Store);
2450 }
2451
2452 return true;
2453}
2454
2455unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2456 bool UnfoldLoad, bool UnfoldStore) const {
2457 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2458 MemOp2RegOpTable.find((unsigned*)Opc);
2459 if (I == MemOp2RegOpTable.end())
2460 return 0;
2461 bool FoldedLoad = I->second.second & (1 << 4);
2462 bool FoldedStore = I->second.second & (1 << 5);
2463 if (UnfoldLoad && !FoldedLoad)
2464 return 0;
2465 if (UnfoldStore && !FoldedStore)
2466 return 0;
2467 return I->second.first;
2468}
2469
Dan Gohman46b948e2008-10-16 01:49:15 +00002470bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002471 if (MBB.empty()) return false;
2472
2473 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002474 case X86::TCRETURNri:
2475 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002476 case X86::RET: // Return.
2477 case X86::RETI:
2478 case X86::TAILJMPd:
2479 case X86::TAILJMPr:
2480 case X86::TAILJMPm:
2481 case X86::JMP: // Uncond branch.
2482 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002483 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002484 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002485 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002486 return true;
2487 default: return false;
2488 }
2489}
2490
2491bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002492ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002493 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002494 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002495 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2496 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002497 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002498 return false;
2499}
2500
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002501bool X86InstrInfo::
Evan Chengf5a8a362009-02-06 17:17:30 +00002502isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2503 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002504 // allow any loads of these registers before FpGet_ST0_80.
Evan Chengf5a8a362009-02-06 17:17:30 +00002505 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2506 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002507}
2508
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002509unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2510 switch (Desc->TSFlags & X86II::ImmMask) {
2511 case X86II::Imm8: return 1;
2512 case X86II::Imm16: return 2;
2513 case X86II::Imm32: return 4;
2514 case X86II::Imm64: return 8;
2515 default: assert(0 && "Immediate size not set!");
2516 return 0;
2517 }
2518}
2519
2520/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2521/// e.g. r8, xmm8, etc.
2522bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002523 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002524 switch (MO.getReg()) {
2525 default: break;
2526 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2527 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2528 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2529 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2530 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2531 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2532 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2533 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2534 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2535 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2536 return true;
2537 }
2538 return false;
2539}
2540
2541
2542/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2543/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2544/// size, and 3) use of X86-64 extended registers.
2545unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2546 unsigned REX = 0;
2547 const TargetInstrDesc &Desc = MI.getDesc();
2548
2549 // Pseudo instructions do not need REX prefix byte.
2550 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2551 return 0;
2552 if (Desc.TSFlags & X86II::REX_W)
2553 REX |= 1 << 3;
2554
2555 unsigned NumOps = Desc.getNumOperands();
2556 if (NumOps) {
2557 bool isTwoAddr = NumOps > 1 &&
2558 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2559
2560 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2561 unsigned i = isTwoAddr ? 1 : 0;
2562 for (unsigned e = NumOps; i != e; ++i) {
2563 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002564 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002565 unsigned Reg = MO.getReg();
2566 if (isX86_64NonExtLowByteReg(Reg))
2567 REX |= 0x40;
2568 }
2569 }
2570
2571 switch (Desc.TSFlags & X86II::FormMask) {
2572 case X86II::MRMInitReg:
2573 if (isX86_64ExtendedReg(MI.getOperand(0)))
2574 REX |= (1 << 0) | (1 << 2);
2575 break;
2576 case X86II::MRMSrcReg: {
2577 if (isX86_64ExtendedReg(MI.getOperand(0)))
2578 REX |= 1 << 2;
2579 i = isTwoAddr ? 2 : 1;
2580 for (unsigned e = NumOps; i != e; ++i) {
2581 const MachineOperand& MO = MI.getOperand(i);
2582 if (isX86_64ExtendedReg(MO))
2583 REX |= 1 << 0;
2584 }
2585 break;
2586 }
2587 case X86II::MRMSrcMem: {
2588 if (isX86_64ExtendedReg(MI.getOperand(0)))
2589 REX |= 1 << 2;
2590 unsigned Bit = 0;
2591 i = isTwoAddr ? 2 : 1;
2592 for (; i != NumOps; ++i) {
2593 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002594 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002595 if (isX86_64ExtendedReg(MO))
2596 REX |= 1 << Bit;
2597 Bit++;
2598 }
2599 }
2600 break;
2601 }
2602 case X86II::MRM0m: case X86II::MRM1m:
2603 case X86II::MRM2m: case X86II::MRM3m:
2604 case X86II::MRM4m: case X86II::MRM5m:
2605 case X86II::MRM6m: case X86II::MRM7m:
2606 case X86II::MRMDestMem: {
2607 unsigned e = isTwoAddr ? 5 : 4;
2608 i = isTwoAddr ? 1 : 0;
2609 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2610 REX |= 1 << 2;
2611 unsigned Bit = 0;
2612 for (; i != e; ++i) {
2613 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002614 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002615 if (isX86_64ExtendedReg(MO))
2616 REX |= 1 << Bit;
2617 Bit++;
2618 }
2619 }
2620 break;
2621 }
2622 default: {
2623 if (isX86_64ExtendedReg(MI.getOperand(0)))
2624 REX |= 1 << 0;
2625 i = isTwoAddr ? 2 : 1;
2626 for (unsigned e = NumOps; i != e; ++i) {
2627 const MachineOperand& MO = MI.getOperand(i);
2628 if (isX86_64ExtendedReg(MO))
2629 REX |= 1 << 2;
2630 }
2631 break;
2632 }
2633 }
2634 }
2635 return REX;
2636}
2637
2638/// sizePCRelativeBlockAddress - This method returns the size of a PC
2639/// relative block address instruction
2640///
2641static unsigned sizePCRelativeBlockAddress() {
2642 return 4;
2643}
2644
2645/// sizeGlobalAddress - Give the size of the emission of this global address
2646///
2647static unsigned sizeGlobalAddress(bool dword) {
2648 return dword ? 8 : 4;
2649}
2650
2651/// sizeConstPoolAddress - Give the size of the emission of this constant
2652/// pool address
2653///
2654static unsigned sizeConstPoolAddress(bool dword) {
2655 return dword ? 8 : 4;
2656}
2657
2658/// sizeExternalSymbolAddress - Give the size of the emission of this external
2659/// symbol
2660///
2661static unsigned sizeExternalSymbolAddress(bool dword) {
2662 return dword ? 8 : 4;
2663}
2664
2665/// sizeJumpTableAddress - Give the size of the emission of this jump
2666/// table address
2667///
2668static unsigned sizeJumpTableAddress(bool dword) {
2669 return dword ? 8 : 4;
2670}
2671
2672static unsigned sizeConstant(unsigned Size) {
2673 return Size;
2674}
2675
2676static unsigned sizeRegModRMByte(){
2677 return 1;
2678}
2679
2680static unsigned sizeSIBByte(){
2681 return 1;
2682}
2683
2684static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2685 unsigned FinalSize = 0;
2686 // If this is a simple integer displacement that doesn't require a relocation.
2687 if (!RelocOp) {
2688 FinalSize += sizeConstant(4);
2689 return FinalSize;
2690 }
2691
2692 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002693 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002694 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002695 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002696 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002697 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002698 FinalSize += sizeJumpTableAddress(false);
2699 } else {
2700 assert(0 && "Unknown value to relocate!");
2701 }
2702 return FinalSize;
2703}
2704
2705static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2706 bool IsPIC, bool Is64BitMode) {
2707 const MachineOperand &Op3 = MI.getOperand(Op+3);
2708 int DispVal = 0;
2709 const MachineOperand *DispForReloc = 0;
2710 unsigned FinalSize = 0;
2711
2712 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002713 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002714 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002715 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002716 if (Is64BitMode || IsPIC) {
2717 DispForReloc = &Op3;
2718 } else {
2719 DispVal = 1;
2720 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002721 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002722 if (Is64BitMode || IsPIC) {
2723 DispForReloc = &Op3;
2724 } else {
2725 DispVal = 1;
2726 }
2727 } else {
2728 DispVal = 1;
2729 }
2730
2731 const MachineOperand &Base = MI.getOperand(Op);
2732 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2733
2734 unsigned BaseReg = Base.getReg();
2735
2736 // Is a SIB byte needed?
2737 if (IndexReg.getReg() == 0 &&
2738 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2739 if (BaseReg == 0) { // Just a displacement?
2740 // Emit special case [disp32] encoding
2741 ++FinalSize;
2742 FinalSize += getDisplacementFieldSize(DispForReloc);
2743 } else {
2744 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2745 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2746 // Emit simple indirect register encoding... [EAX] f.e.
2747 ++FinalSize;
2748 // Be pessimistic and assume it's a disp32, not a disp8
2749 } else {
2750 // Emit the most general non-SIB encoding: [REG+disp32]
2751 ++FinalSize;
2752 FinalSize += getDisplacementFieldSize(DispForReloc);
2753 }
2754 }
2755
2756 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2757 assert(IndexReg.getReg() != X86::ESP &&
2758 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2759
2760 bool ForceDisp32 = false;
2761 if (BaseReg == 0 || DispForReloc) {
2762 // Emit the normal disp32 encoding.
2763 ++FinalSize;
2764 ForceDisp32 = true;
2765 } else {
2766 ++FinalSize;
2767 }
2768
2769 FinalSize += sizeSIBByte();
2770
2771 // Do we need to output a displacement?
2772 if (DispVal != 0 || ForceDisp32) {
2773 FinalSize += getDisplacementFieldSize(DispForReloc);
2774 }
2775 }
2776 return FinalSize;
2777}
2778
2779
2780static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2781 const TargetInstrDesc *Desc,
2782 bool IsPIC, bool Is64BitMode) {
2783
2784 unsigned Opcode = Desc->Opcode;
2785 unsigned FinalSize = 0;
2786
2787 // Emit the lock opcode prefix as needed.
2788 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2789
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002790 // Emit segment overrid opcode prefix as needed.
2791 switch (Desc->TSFlags & X86II::SegOvrMask) {
2792 case X86II::FS:
2793 case X86II::GS:
2794 ++FinalSize;
2795 break;
2796 default: assert(0 && "Invalid segment!");
2797 case 0: break; // No segment override!
2798 }
2799
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002800 // Emit the repeat opcode prefix as needed.
2801 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2802
2803 // Emit the operand size opcode prefix as needed.
2804 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2805
2806 // Emit the address size opcode prefix as needed.
2807 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2808
2809 bool Need0FPrefix = false;
2810 switch (Desc->TSFlags & X86II::Op0Mask) {
2811 case X86II::TB: // Two-byte opcode prefix
2812 case X86II::T8: // 0F 38
2813 case X86II::TA: // 0F 3A
2814 Need0FPrefix = true;
2815 break;
2816 case X86II::REP: break; // already handled.
2817 case X86II::XS: // F3 0F
2818 ++FinalSize;
2819 Need0FPrefix = true;
2820 break;
2821 case X86II::XD: // F2 0F
2822 ++FinalSize;
2823 Need0FPrefix = true;
2824 break;
2825 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2826 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2827 ++FinalSize;
2828 break; // Two-byte opcode prefix
2829 default: assert(0 && "Invalid prefix!");
2830 case 0: break; // No prefix!
2831 }
2832
2833 if (Is64BitMode) {
2834 // REX prefix
2835 unsigned REX = X86InstrInfo::determineREX(MI);
2836 if (REX)
2837 ++FinalSize;
2838 }
2839
2840 // 0x0F escape code must be emitted just before the opcode.
2841 if (Need0FPrefix)
2842 ++FinalSize;
2843
2844 switch (Desc->TSFlags & X86II::Op0Mask) {
2845 case X86II::T8: // 0F 38
2846 ++FinalSize;
2847 break;
2848 case X86II::TA: // 0F 3A
2849 ++FinalSize;
2850 break;
2851 }
2852
2853 // If this is a two-address instruction, skip one of the register operands.
2854 unsigned NumOps = Desc->getNumOperands();
2855 unsigned CurOp = 0;
2856 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2857 CurOp++;
2858
2859 switch (Desc->TSFlags & X86II::FormMask) {
2860 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2861 case X86II::Pseudo:
2862 // Remember the current PC offset, this is the PIC relocation
2863 // base address.
2864 switch (Opcode) {
2865 default:
2866 break;
2867 case TargetInstrInfo::INLINEASM: {
2868 const MachineFunction *MF = MI.getParent()->getParent();
2869 const char *AsmStr = MI.getOperand(0).getSymbolName();
2870 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2871 FinalSize += AI->getInlineAsmLength(AsmStr);
2872 break;
2873 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002874 case TargetInstrInfo::DBG_LABEL:
2875 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002876 break;
2877 case TargetInstrInfo::IMPLICIT_DEF:
2878 case TargetInstrInfo::DECLARE:
2879 case X86::DWARF_LOC:
2880 case X86::FP_REG_KILL:
2881 break;
2882 case X86::MOVPC32r: {
2883 // This emits the "call" portion of this pseudo instruction.
2884 ++FinalSize;
2885 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2886 break;
2887 }
Nicolas Geoffray81580792008-10-25 15:22:06 +00002888 case X86::TLS_tp:
2889 case X86::TLS_gs_ri:
2890 FinalSize += 2;
2891 FinalSize += sizeGlobalAddress(false);
2892 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002893 }
2894 CurOp = NumOps;
2895 break;
2896 case X86II::RawFrm:
2897 ++FinalSize;
2898
2899 if (CurOp != NumOps) {
2900 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002901 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002902 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002903 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002904 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002905 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002906 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002907 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002908 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2909 } else {
2910 assert(0 && "Unknown RawFrm operand!");
2911 }
2912 }
2913 break;
2914
2915 case X86II::AddRegFrm:
2916 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002917 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002918
2919 if (CurOp != NumOps) {
2920 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2921 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002922 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002923 FinalSize += sizeConstant(Size);
2924 else {
2925 bool dword = false;
2926 if (Opcode == X86::MOV64ri)
2927 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002928 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002929 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002930 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002931 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002932 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002933 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002934 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002935 FinalSize += sizeJumpTableAddress(dword);
2936 }
2937 }
2938 break;
2939
2940 case X86II::MRMDestReg: {
2941 ++FinalSize;
2942 FinalSize += sizeRegModRMByte();
2943 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002944 if (CurOp != NumOps) {
2945 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002946 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002947 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002948 break;
2949 }
2950 case X86II::MRMDestMem: {
2951 ++FinalSize;
2952 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2953 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002954 if (CurOp != NumOps) {
2955 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002956 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002957 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002958 break;
2959 }
2960
2961 case X86II::MRMSrcReg:
2962 ++FinalSize;
2963 FinalSize += sizeRegModRMByte();
2964 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002965 if (CurOp != NumOps) {
2966 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002967 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002968 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002969 break;
2970
2971 case X86II::MRMSrcMem: {
2972
2973 ++FinalSize;
2974 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2975 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002976 if (CurOp != NumOps) {
2977 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002978 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002979 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002980 break;
2981 }
2982
2983 case X86II::MRM0r: case X86II::MRM1r:
2984 case X86II::MRM2r: case X86II::MRM3r:
2985 case X86II::MRM4r: case X86II::MRM5r:
2986 case X86II::MRM6r: case X86II::MRM7r:
2987 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002988 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002989 FinalSize += sizeRegModRMByte();
2990
2991 if (CurOp != NumOps) {
2992 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2993 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002994 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002995 FinalSize += sizeConstant(Size);
2996 else {
2997 bool dword = false;
2998 if (Opcode == X86::MOV64ri32)
2999 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003000 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003001 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003002 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003003 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003004 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003005 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003006 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003007 FinalSize += sizeJumpTableAddress(dword);
3008 }
3009 }
3010 break;
3011
3012 case X86II::MRM0m: case X86II::MRM1m:
3013 case X86II::MRM2m: case X86II::MRM3m:
3014 case X86II::MRM4m: case X86II::MRM5m:
3015 case X86II::MRM6m: case X86II::MRM7m: {
3016
3017 ++FinalSize;
3018 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3019 CurOp += 4;
3020
3021 if (CurOp != NumOps) {
3022 const MachineOperand &MO = MI.getOperand(CurOp++);
3023 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003024 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003025 FinalSize += sizeConstant(Size);
3026 else {
3027 bool dword = false;
3028 if (Opcode == X86::MOV64mi32)
3029 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003030 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003031 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003032 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003033 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003034 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003035 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003036 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003037 FinalSize += sizeJumpTableAddress(dword);
3038 }
3039 }
3040 break;
3041 }
3042
3043 case X86II::MRMInitReg:
3044 ++FinalSize;
3045 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3046 FinalSize += sizeRegModRMByte();
3047 ++CurOp;
3048 break;
3049 }
3050
3051 if (!Desc->isVariadic() && CurOp != NumOps) {
3052 cerr << "Cannot determine size: ";
3053 MI.dump();
3054 cerr << '\n';
3055 abort();
3056 }
3057
3058
3059 return FinalSize;
3060}
3061
3062
3063unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3064 const TargetInstrDesc &Desc = MI->getDesc();
3065 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003066 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003067 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3068 if (Desc.getOpcode() == X86::MOVPC32r) {
3069 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3070 }
3071 return Size;
3072}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003073
Dan Gohman882ab732008-09-30 00:58:23 +00003074/// getGlobalBaseReg - Return a virtual register initialized with the
3075/// the global base register value. Output instructions required to
3076/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003077///
Dan Gohman882ab732008-09-30 00:58:23 +00003078unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3079 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3080 "X86-64 PIC uses RIP relative addressing");
3081
3082 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3083 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3084 if (GlobalBaseReg != 0)
3085 return GlobalBaseReg;
3086
Dan Gohmanb60482f2008-09-23 18:22:58 +00003087 // Insert the set of GlobalBaseReg into the first MBB of the function
3088 MachineBasicBlock &FirstMBB = MF->front();
3089 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
Bill Wendling13ee2e42009-02-11 21:51:19 +00003090 DebugLoc DL = DebugLoc::getUnknownLoc();
3091 if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
Dan Gohmanb60482f2008-09-23 18:22:58 +00003092 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3093 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3094
3095 const TargetInstrInfo *TII = TM.getInstrInfo();
3096 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3097 // only used in JIT code emission as displacement to pc.
Bill Wendling13ee2e42009-02-11 21:51:19 +00003098 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC)
3099 .addImm(0);
Dan Gohmanb60482f2008-09-23 18:22:58 +00003100
3101 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3102 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3103 if (TM.getRelocationModel() == Reloc::PIC_ &&
3104 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman882ab732008-09-30 00:58:23 +00003105 GlobalBaseReg =
Dan Gohmanb60482f2008-09-23 18:22:58 +00003106 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
Bill Wendling13ee2e42009-02-11 21:51:19 +00003107 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
Dan Gohmanb60482f2008-09-23 18:22:58 +00003108 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman882ab732008-09-30 00:58:23 +00003109 } else {
3110 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003111 }
3112
Dan Gohman882ab732008-09-30 00:58:23 +00003113 X86FI->setGlobalBaseReg(GlobalBaseReg);
3114 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003115}