blob: ae5adac3733f0b1654e40013a4ebce231c0e4066 [file] [log] [blame]
Doug Thompson2bc65412009-05-04 20:11:14 +02001#include "amd64_edac.h"
Andreas Herrmann23ac4ae2010-09-17 18:03:43 +02002#include <asm/amd_nb.h>
Doug Thompson2bc65412009-05-04 20:11:14 +02003
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
Tejun Heoa29d8b82010-02-02 14:39:15 +090016static struct msr __percpu *msrs;
Borislav Petkov50542252009-12-11 18:14:40 +010017
Borislav Petkov360b7f32010-10-15 19:25:38 +020018/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
Borislav Petkovcc4d8862010-10-13 16:11:59 +020023/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
Borislav Petkovae7bb7c2010-10-14 16:01:30 +020025static struct ecc_settings **ecc_stngs;
Doug Thompson2bc65412009-05-04 20:11:14 +020026
27/*
Borislav Petkov1433eb92009-10-21 13:44:36 +020028 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
Borislav Petkovb70ef012009-06-25 19:32:38 +020030 */
Borislav Petkov1433eb92009-10-21 13:44:36 +020031static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
39};
40
41static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
51};
52
53static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
60};
61
62static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
Borislav Petkov24f9a7f2010-10-07 18:29:15 +020069 [11] = 8192,
Borislav Petkovb70ef012009-06-25 19:32:38 +020070};
71
72/*
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
76 *
77 *FIXME: Produce a better mapping/linearisation.
78 */
79
Borislav Petkov39094442010-11-24 19:52:09 +010080
81struct scrubrate {
82 u32 scrubval; /* bit pattern for scrub rate */
83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
84} scrubrates[] = {
Borislav Petkovb70ef012009-06-25 19:32:38 +020085 { 0x01, 1600000000UL},
86 { 0x02, 800000000UL},
87 { 0x03, 400000000UL},
88 { 0x04, 200000000UL},
89 { 0x05, 100000000UL},
90 { 0x06, 50000000UL},
91 { 0x07, 25000000UL},
92 { 0x08, 12284069UL},
93 { 0x09, 6274509UL},
94 { 0x0A, 3121951UL},
95 { 0x0B, 1560975UL},
96 { 0x0C, 781440UL},
97 { 0x0D, 390720UL},
98 { 0x0E, 195300UL},
99 { 0x0F, 97650UL},
100 { 0x10, 48854UL},
101 { 0x11, 24427UL},
102 { 0x12, 12213UL},
103 { 0x13, 6101UL},
104 { 0x14, 3051UL},
105 { 0x15, 1523UL},
106 { 0x16, 761UL},
107 { 0x00, 0UL}, /* scrubbing off */
108};
109
Borislav Petkovb2b0c602010-10-08 18:32:29 +0200110static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
111 u32 *val, const char *func)
112{
113 int err = 0;
114
115 err = pci_read_config_dword(pdev, offset, val);
116 if (err)
117 amd64_warn("%s: error reading F%dx%03x.\n",
118 func, PCI_FUNC(pdev->devfn), offset);
119
120 return err;
121}
122
123int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
124 u32 val, const char *func)
125{
126 int err = 0;
127
128 err = pci_write_config_dword(pdev, offset, val);
129 if (err)
130 amd64_warn("%s: error writing to F%dx%03x.\n",
131 func, PCI_FUNC(pdev->devfn), offset);
132
133 return err;
134}
135
136/*
137 *
138 * Depending on the family, F2 DCT reads need special handling:
139 *
140 * K8: has a single DCT only
141 *
142 * F10h: each DCT has its own set of regs
143 * DCT0 -> F2x040..
144 * DCT1 -> F2x140..
145 *
146 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
147 *
148 */
149static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
150 const char *func)
151{
152 if (addr >= 0x100)
153 return -EINVAL;
154
155 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
156}
157
158static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
159 const char *func)
160{
161 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
162}
163
164static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
165 const char *func)
166{
167 u32 reg = 0;
168 u8 dct = 0;
169
170 if (addr >= 0x140 && addr <= 0x1a0) {
171 dct = 1;
172 addr -= 0x100;
173 }
174
175 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
176 reg &= 0xfffffffe;
177 reg |= dct;
178 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
179
180 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
181}
182
Borislav Petkovb70ef012009-06-25 19:32:38 +0200183/*
Doug Thompson2bc65412009-05-04 20:11:14 +0200184 * Memory scrubber control interface. For K8, memory scrubbing is handled by
185 * hardware and can involve L2 cache, dcache as well as the main memory. With
186 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
187 * functionality.
188 *
189 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
190 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
191 * bytes/sec for the setting.
192 *
193 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
194 * other archs, we might not have access to the caches directly.
195 */
196
197/*
198 * scan the scrub rate mapping table for a close or matching bandwidth value to
199 * issue. If requested is too big, then use last maximum value found.
200 */
Borislav Petkov395ae782010-10-01 18:38:19 +0200201static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
Doug Thompson2bc65412009-05-04 20:11:14 +0200202{
203 u32 scrubval;
204 int i;
205
206 /*
207 * map the configured rate (new_bw) to a value specific to the AMD64
208 * memory controller and apply to register. Search for the first
209 * bandwidth entry that is greater or equal than the setting requested
210 * and program that. If at last entry, turn off DRAM scrubbing.
211 */
212 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
213 /*
214 * skip scrub rates which aren't recommended
215 * (see F10 BKDG, F3x58)
216 */
Borislav Petkov395ae782010-10-01 18:38:19 +0200217 if (scrubrates[i].scrubval < min_rate)
Doug Thompson2bc65412009-05-04 20:11:14 +0200218 continue;
219
220 if (scrubrates[i].bandwidth <= new_bw)
221 break;
222
223 /*
224 * if no suitable bandwidth found, turn off DRAM scrubbing
225 * entirely by falling back to the last element in the
226 * scrubrates array.
227 */
228 }
229
230 scrubval = scrubrates[i].scrubval;
Doug Thompson2bc65412009-05-04 20:11:14 +0200231
232 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
233
Borislav Petkov39094442010-11-24 19:52:09 +0100234 if (scrubval)
235 return scrubrates[i].bandwidth;
236
Doug Thompson2bc65412009-05-04 20:11:14 +0200237 return 0;
238}
239
Borislav Petkov395ae782010-10-01 18:38:19 +0200240static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
Doug Thompson2bc65412009-05-04 20:11:14 +0200241{
242 struct amd64_pvt *pvt = mci->pvt_info;
Doug Thompson2bc65412009-05-04 20:11:14 +0200243
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200244 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
Doug Thompson2bc65412009-05-04 20:11:14 +0200245}
246
Borislav Petkov39094442010-11-24 19:52:09 +0100247static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
Doug Thompson2bc65412009-05-04 20:11:14 +0200248{
249 struct amd64_pvt *pvt = mci->pvt_info;
250 u32 scrubval = 0;
Borislav Petkov39094442010-11-24 19:52:09 +0100251 int i, retval = -EINVAL;
Doug Thompson2bc65412009-05-04 20:11:14 +0200252
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200253 amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
Doug Thompson2bc65412009-05-04 20:11:14 +0200254
255 scrubval = scrubval & 0x001F;
256
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200257 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
Doug Thompson2bc65412009-05-04 20:11:14 +0200258
Roel Kluin926311f2010-01-11 20:58:21 +0100259 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
Doug Thompson2bc65412009-05-04 20:11:14 +0200260 if (scrubrates[i].scrubval == scrubval) {
Borislav Petkov39094442010-11-24 19:52:09 +0100261 retval = scrubrates[i].bandwidth;
Doug Thompson2bc65412009-05-04 20:11:14 +0200262 break;
263 }
264 }
Borislav Petkov39094442010-11-24 19:52:09 +0100265 return retval;
Doug Thompson2bc65412009-05-04 20:11:14 +0200266}
267
Doug Thompson67757632009-04-27 15:53:22 +0200268/* Map from a CSROW entry to the mask entry that operates on it */
269static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
270{
Borislav Petkov1433eb92009-10-21 13:44:36 +0200271 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200272 return csrow;
273 else
274 return csrow >> 1;
Doug Thompson67757632009-04-27 15:53:22 +0200275}
276
277/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
278static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
279{
280 if (dct == 0)
281 return pvt->dcsb0[csrow];
282 else
283 return pvt->dcsb1[csrow];
284}
285
286/*
287 * Return the 'mask' address the i'th CS entry. This function is needed because
288 * there number of DCSM registers on Rev E and prior vs Rev F and later is
289 * different.
290 */
291static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
292{
293 if (dct == 0)
294 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
295 else
296 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
297}
298
299
300/*
301 * In *base and *limit, pass back the full 40-bit base and limit physical
302 * addresses for the node given by node_id. This information is obtained from
303 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
304 * base and limit addresses are of type SysAddr, as defined at the start of
305 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
306 * in the address range they represent.
307 */
308static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
309 u64 *base, u64 *limit)
310{
311 *base = pvt->dram_base[node_id];
312 *limit = pvt->dram_limit[node_id];
313}
314
315/*
316 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
317 * with node_id
318 */
319static int amd64_base_limit_match(struct amd64_pvt *pvt,
320 u64 sys_addr, int node_id)
321{
322 u64 base, limit, addr;
323
324 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
325
326 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
327 * all ones if the most significant implemented address bit is 1.
328 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
329 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
330 * Application Programming.
331 */
332 addr = sys_addr & 0x000000ffffffffffull;
333
334 return (addr >= base) && (addr <= limit);
335}
336
337/*
338 * Attempt to map a SysAddr to a node. On success, return a pointer to the
339 * mem_ctl_info structure for the node that the SysAddr maps to.
340 *
341 * On failure, return NULL.
342 */
343static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
344 u64 sys_addr)
345{
346 struct amd64_pvt *pvt;
347 int node_id;
348 u32 intlv_en, bits;
349
350 /*
351 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
352 * 3.4.4.2) registers to map the SysAddr to a node ID.
353 */
354 pvt = mci->pvt_info;
355
356 /*
357 * The value of this field should be the same for all DRAM Base
358 * registers. Therefore we arbitrarily choose to read it from the
359 * register for node 0.
360 */
361 intlv_en = pvt->dram_IntlvEn[0];
362
363 if (intlv_en == 0) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200364 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
Doug Thompson67757632009-04-27 15:53:22 +0200365 if (amd64_base_limit_match(pvt, sys_addr, node_id))
Borislav Petkov8edc5442009-09-18 12:39:19 +0200366 goto found;
Doug Thompson67757632009-04-27 15:53:22 +0200367 }
Borislav Petkov8edc5442009-09-18 12:39:19 +0200368 goto err_no_match;
Doug Thompson67757632009-04-27 15:53:22 +0200369 }
370
Borislav Petkov72f158f2009-09-18 12:27:27 +0200371 if (unlikely((intlv_en != 0x01) &&
372 (intlv_en != 0x03) &&
373 (intlv_en != 0x07))) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200374 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
Doug Thompson67757632009-04-27 15:53:22 +0200375 return NULL;
376 }
377
378 bits = (((u32) sys_addr) >> 12) & intlv_en;
379
380 for (node_id = 0; ; ) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200381 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
Doug Thompson67757632009-04-27 15:53:22 +0200382 break; /* intlv_sel field matches */
383
384 if (++node_id >= DRAM_REG_COUNT)
385 goto err_no_match;
386 }
387
388 /* sanity test for sys_addr */
389 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200390 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
391 "range for node %d with node interleaving enabled.\n",
392 __func__, sys_addr, node_id);
Doug Thompson67757632009-04-27 15:53:22 +0200393 return NULL;
394 }
395
396found:
397 return edac_mc_find(node_id);
398
399err_no_match:
400 debugf2("sys_addr 0x%lx doesn't match any node\n",
401 (unsigned long)sys_addr);
402
403 return NULL;
404}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200405
406/*
407 * Extract the DRAM CS base address from selected csrow register.
408 */
409static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
410{
411 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
412 pvt->dcs_shift;
413}
414
415/*
416 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
417 */
418static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
419{
420 u64 dcsm_bits, other_bits;
421 u64 mask;
422
423 /* Extract bits from DRAM CS Mask. */
424 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
425
426 other_bits = pvt->dcsm_mask;
427 other_bits = ~(other_bits << pvt->dcs_shift);
428
429 /*
430 * The extracted bits from DCSM belong in the spaces represented by
431 * the cleared bits in other_bits.
432 */
433 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
434
435 return mask;
436}
437
438/*
439 * @input_addr is an InputAddr associated with the node given by mci. Return the
440 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
441 */
442static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
443{
444 struct amd64_pvt *pvt;
445 int csrow;
446 u64 base, mask;
447
448 pvt = mci->pvt_info;
449
450 /*
451 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
452 * base/mask register pair, test the condition shown near the start of
453 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
454 */
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200455 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200456
457 /* This DRAM chip select is disabled on this node */
458 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
459 continue;
460
461 base = base_from_dct_base(pvt, csrow);
462 mask = ~mask_from_dct_mask(pvt, csrow);
463
464 if ((input_addr & mask) == (base & mask)) {
465 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
466 (unsigned long)input_addr, csrow,
467 pvt->mc_node_id);
468
469 return csrow;
470 }
471 }
472
473 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
474 (unsigned long)input_addr, pvt->mc_node_id);
475
476 return -1;
477}
478
479/*
480 * Return the base value defined by the DRAM Base register for the node
481 * represented by mci. This function returns the full 40-bit value despite the
482 * fact that the register only stores bits 39-24 of the value. See section
483 * 3.4.4.1 (BKDG #26094, K8, revA-E)
484 */
485static inline u64 get_dram_base(struct mem_ctl_info *mci)
486{
487 struct amd64_pvt *pvt = mci->pvt_info;
488
489 return pvt->dram_base[pvt->mc_node_id];
490}
491
492/*
493 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
494 * for the node represented by mci. Info is passed back in *hole_base,
495 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
496 * info is invalid. Info may be invalid for either of the following reasons:
497 *
498 * - The revision of the node is not E or greater. In this case, the DRAM Hole
499 * Address Register does not exist.
500 *
501 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
502 * indicating that its contents are not valid.
503 *
504 * The values passed back in *hole_base, *hole_offset, and *hole_size are
505 * complete 32-bit values despite the fact that the bitfields in the DHAR
506 * only represent bits 31-24 of the base and offset values.
507 */
508int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
509 u64 *hole_offset, u64 *hole_size)
510{
511 struct amd64_pvt *pvt = mci->pvt_info;
512 u64 base;
513
514 /* only revE and later have the DRAM Hole Address Register */
Borislav Petkov1433eb92009-10-21 13:44:36 +0200515 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200516 debugf1(" revision %d for node %d does not support DHAR\n",
517 pvt->ext_model, pvt->mc_node_id);
518 return 1;
519 }
520
521 /* only valid for Fam10h */
522 if (boot_cpu_data.x86 == 0x10 &&
523 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
524 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
525 return 1;
526 }
527
528 if ((pvt->dhar & DHAR_VALID) == 0) {
529 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
530 pvt->mc_node_id);
531 return 1;
532 }
533
534 /* This node has Memory Hoisting */
535
536 /* +------------------+--------------------+--------------------+-----
537 * | memory | DRAM hole | relocated |
538 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
539 * | | | DRAM hole |
540 * | | | [0x100000000, |
541 * | | | (0x100000000+ |
542 * | | | (0xffffffff-x))] |
543 * +------------------+--------------------+--------------------+-----
544 *
545 * Above is a diagram of physical memory showing the DRAM hole and the
546 * relocated addresses from the DRAM hole. As shown, the DRAM hole
547 * starts at address x (the base address) and extends through address
548 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
549 * addresses in the hole so that they start at 0x100000000.
550 */
551
552 base = dhar_base(pvt->dhar);
553
554 *hole_base = base;
555 *hole_size = (0x1ull << 32) - base;
556
557 if (boot_cpu_data.x86 > 0xf)
558 *hole_offset = f10_dhar_offset(pvt->dhar);
559 else
560 *hole_offset = k8_dhar_offset(pvt->dhar);
561
562 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
563 pvt->mc_node_id, (unsigned long)*hole_base,
564 (unsigned long)*hole_offset, (unsigned long)*hole_size);
565
566 return 0;
567}
568EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
569
Doug Thompson93c2df52009-05-04 20:46:50 +0200570/*
571 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
572 * assumed that sys_addr maps to the node given by mci.
573 *
574 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
575 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
576 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
577 * then it is also involved in translating a SysAddr to a DramAddr. Sections
578 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
579 * These parts of the documentation are unclear. I interpret them as follows:
580 *
581 * When node n receives a SysAddr, it processes the SysAddr as follows:
582 *
583 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
584 * Limit registers for node n. If the SysAddr is not within the range
585 * specified by the base and limit values, then node n ignores the Sysaddr
586 * (since it does not map to node n). Otherwise continue to step 2 below.
587 *
588 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
589 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
590 * the range of relocated addresses (starting at 0x100000000) from the DRAM
591 * hole. If not, skip to step 3 below. Else get the value of the
592 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
593 * offset defined by this value from the SysAddr.
594 *
595 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
596 * Base register for node n. To obtain the DramAddr, subtract the base
597 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
598 */
599static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
600{
601 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
602 int ret = 0;
603
604 dram_base = get_dram_base(mci);
605
606 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
607 &hole_size);
608 if (!ret) {
609 if ((sys_addr >= (1ull << 32)) &&
610 (sys_addr < ((1ull << 32) + hole_size))) {
611 /* use DHAR to translate SysAddr to DramAddr */
612 dram_addr = sys_addr - hole_offset;
613
614 debugf2("using DHAR to translate SysAddr 0x%lx to "
615 "DramAddr 0x%lx\n",
616 (unsigned long)sys_addr,
617 (unsigned long)dram_addr);
618
619 return dram_addr;
620 }
621 }
622
623 /*
624 * Translate the SysAddr to a DramAddr as shown near the start of
625 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
626 * only deals with 40-bit values. Therefore we discard bits 63-40 of
627 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
628 * discard are all 1s. Otherwise the bits we discard are all 0s. See
629 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
630 * Programmer's Manual Volume 1 Application Programming.
631 */
632 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
633
634 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
635 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
636 (unsigned long)dram_addr);
637 return dram_addr;
638}
639
640/*
641 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
642 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
643 * for node interleaving.
644 */
645static int num_node_interleave_bits(unsigned intlv_en)
646{
647 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
648 int n;
649
650 BUG_ON(intlv_en > 7);
651 n = intlv_shift_table[intlv_en];
652 return n;
653}
654
655/* Translate the DramAddr given by @dram_addr to an InputAddr. */
656static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
657{
658 struct amd64_pvt *pvt;
659 int intlv_shift;
660 u64 input_addr;
661
662 pvt = mci->pvt_info;
663
664 /*
665 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
666 * concerning translating a DramAddr to an InputAddr.
667 */
668 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
669 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
670 (dram_addr & 0xfff);
671
672 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
673 intlv_shift, (unsigned long)dram_addr,
674 (unsigned long)input_addr);
675
676 return input_addr;
677}
678
679/*
680 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
681 * assumed that @sys_addr maps to the node given by mci.
682 */
683static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
684{
685 u64 input_addr;
686
687 input_addr =
688 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
689
690 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
691 (unsigned long)sys_addr, (unsigned long)input_addr);
692
693 return input_addr;
694}
695
696
697/*
698 * @input_addr is an InputAddr associated with the node represented by mci.
699 * Translate @input_addr to a DramAddr and return the result.
700 */
701static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
702{
703 struct amd64_pvt *pvt;
704 int node_id, intlv_shift;
705 u64 bits, dram_addr;
706 u32 intlv_sel;
707
708 /*
709 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
710 * shows how to translate a DramAddr to an InputAddr. Here we reverse
711 * this procedure. When translating from a DramAddr to an InputAddr, the
712 * bits used for node interleaving are discarded. Here we recover these
713 * bits from the IntlvSel field of the DRAM Limit register (section
714 * 3.4.4.2) for the node that input_addr is associated with.
715 */
716 pvt = mci->pvt_info;
717 node_id = pvt->mc_node_id;
718 BUG_ON((node_id < 0) || (node_id > 7));
719
720 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
721
722 if (intlv_shift == 0) {
723 debugf1(" InputAddr 0x%lx translates to DramAddr of "
724 "same value\n", (unsigned long)input_addr);
725
726 return input_addr;
727 }
728
729 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
730 (input_addr & 0xfff);
731
732 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
733 dram_addr = bits + (intlv_sel << 12);
734
735 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
736 "(%d node interleave bits)\n", (unsigned long)input_addr,
737 (unsigned long)dram_addr, intlv_shift);
738
739 return dram_addr;
740}
741
742/*
743 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
744 * @dram_addr to a SysAddr.
745 */
746static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
747{
748 struct amd64_pvt *pvt = mci->pvt_info;
749 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
750 int ret = 0;
751
752 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
753 &hole_size);
754 if (!ret) {
755 if ((dram_addr >= hole_base) &&
756 (dram_addr < (hole_base + hole_size))) {
757 sys_addr = dram_addr + hole_offset;
758
759 debugf1("using DHAR to translate DramAddr 0x%lx to "
760 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
761 (unsigned long)sys_addr);
762
763 return sys_addr;
764 }
765 }
766
767 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
768 sys_addr = dram_addr + base;
769
770 /*
771 * The sys_addr we have computed up to this point is a 40-bit value
772 * because the k8 deals with 40-bit values. However, the value we are
773 * supposed to return is a full 64-bit physical address. The AMD
774 * x86-64 architecture specifies that the most significant implemented
775 * address bit through bit 63 of a physical address must be either all
776 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
777 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
778 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
779 * Programming.
780 */
781 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
782
783 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
784 pvt->mc_node_id, (unsigned long)dram_addr,
785 (unsigned long)sys_addr);
786
787 return sys_addr;
788}
789
790/*
791 * @input_addr is an InputAddr associated with the node given by mci. Translate
792 * @input_addr to a SysAddr.
793 */
794static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
795 u64 input_addr)
796{
797 return dram_addr_to_sys_addr(mci,
798 input_addr_to_dram_addr(mci, input_addr));
799}
800
801/*
802 * Find the minimum and maximum InputAddr values that map to the given @csrow.
803 * Pass back these values in *input_addr_min and *input_addr_max.
804 */
805static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
806 u64 *input_addr_min, u64 *input_addr_max)
807{
808 struct amd64_pvt *pvt;
809 u64 base, mask;
810
811 pvt = mci->pvt_info;
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200812 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
Doug Thompson93c2df52009-05-04 20:46:50 +0200813
814 base = base_from_dct_base(pvt, csrow);
815 mask = mask_from_dct_mask(pvt, csrow);
816
817 *input_addr_min = base & ~mask;
818 *input_addr_max = base | mask | pvt->dcs_mask_notused;
819}
820
Doug Thompson93c2df52009-05-04 20:46:50 +0200821/* Map the Error address to a PAGE and PAGE OFFSET. */
822static inline void error_address_to_page_and_offset(u64 error_address,
823 u32 *page, u32 *offset)
824{
825 *page = (u32) (error_address >> PAGE_SHIFT);
826 *offset = ((u32) error_address) & ~PAGE_MASK;
827}
828
829/*
830 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
831 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
832 * of a node that detected an ECC memory error. mci represents the node that
833 * the error address maps to (possibly different from the node that detected
834 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
835 * error.
836 */
837static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
838{
839 int csrow;
840
841 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
842
843 if (csrow == -1)
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200844 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
845 "address 0x%lx\n", (unsigned long)sys_addr);
Doug Thompson93c2df52009-05-04 20:46:50 +0200846 return csrow;
847}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200848
Borislav Petkovbfc04ae2009-11-12 19:05:07 +0100849static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
Doug Thompson2da11652009-04-27 16:09:09 +0200850
Borislav Petkovad6a32e2010-03-09 12:46:00 +0100851static u16 extract_syndrome(struct err_regs *err)
852{
853 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
854}
855
Doug Thompson2da11652009-04-27 16:09:09 +0200856/*
857 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
858 * are ECC capable.
859 */
860static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
861{
862 int bit;
Borislav Petkov584fcff2009-06-10 18:29:54 +0200863 enum dev_type edac_cap = EDAC_FLAG_NONE;
Doug Thompson2da11652009-04-27 16:09:09 +0200864
Borislav Petkov1433eb92009-10-21 13:44:36 +0200865 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
Doug Thompson2da11652009-04-27 16:09:09 +0200866 ? 19
867 : 17;
868
Borislav Petkov584fcff2009-06-10 18:29:54 +0200869 if (pvt->dclr0 & BIT(bit))
Doug Thompson2da11652009-04-27 16:09:09 +0200870 edac_cap = EDAC_FLAG_SECDED;
871
872 return edac_cap;
873}
874
875
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200876static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200877
Borislav Petkov68798e12009-11-03 16:18:33 +0100878static void amd64_dump_dramcfg_low(u32 dclr, int chan)
879{
880 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
881
882 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
883 (dclr & BIT(16)) ? "un" : "",
884 (dclr & BIT(19)) ? "yes" : "no");
885
886 debugf1(" PAR/ERR parity: %s\n",
887 (dclr & BIT(8)) ? "enabled" : "disabled");
888
889 debugf1(" DCT 128bit mode width: %s\n",
890 (dclr & BIT(11)) ? "128b" : "64b");
891
892 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
893 (dclr & BIT(12)) ? "yes" : "no",
894 (dclr & BIT(13)) ? "yes" : "no",
895 (dclr & BIT(14)) ? "yes" : "no",
896 (dclr & BIT(15)) ? "yes" : "no");
897}
898
Doug Thompson2da11652009-04-27 16:09:09 +0200899/* Display and decode various NB registers for debug purposes. */
Borislav Petkovb2b0c602010-10-08 18:32:29 +0200900static void dump_misc_regs(struct amd64_pvt *pvt)
Doug Thompson2da11652009-04-27 16:09:09 +0200901{
Borislav Petkov68798e12009-11-03 16:18:33 +0100902 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
Doug Thompson2da11652009-04-27 16:09:09 +0200903
Borislav Petkov68798e12009-11-03 16:18:33 +0100904 debugf1(" NB two channel DRAM capable: %s\n",
905 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
906
907 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
908 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
909 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
910
911 amd64_dump_dramcfg_low(pvt->dclr0, 0);
Doug Thompson2da11652009-04-27 16:09:09 +0200912
Borislav Petkov8de1d912009-10-16 13:39:30 +0200913 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
Doug Thompson2da11652009-04-27 16:09:09 +0200914
Borislav Petkov8de1d912009-10-16 13:39:30 +0200915 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
916 "offset: 0x%08x\n",
917 pvt->dhar,
918 dhar_base(pvt->dhar),
919 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
920 : f10_dhar_offset(pvt->dhar));
Doug Thompson2da11652009-04-27 16:09:09 +0200921
Borislav Petkov8de1d912009-10-16 13:39:30 +0200922 debugf1(" DramHoleValid: %s\n",
923 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
Doug Thompson2da11652009-04-27 16:09:09 +0200924
Borislav Petkov4d796362011-02-03 15:59:57 +0100925 amd64_debug_display_dimm_sizes(0, pvt);
926
Borislav Petkov8de1d912009-10-16 13:39:30 +0200927 /* everything below this point is Fam10h and above */
Borislav Petkov4d796362011-02-03 15:59:57 +0100928 if (boot_cpu_data.x86 == 0xf)
Doug Thompson2da11652009-04-27 16:09:09 +0200929 return;
Borislav Petkov4d796362011-02-03 15:59:57 +0100930
931 amd64_debug_display_dimm_sizes(1, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200932
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200933 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
Borislav Petkovad6a32e2010-03-09 12:46:00 +0100934
Borislav Petkov8de1d912009-10-16 13:39:30 +0200935 /* Only if NOT ganged does dclr1 have valid info */
Borislav Petkov68798e12009-11-03 16:18:33 +0100936 if (!dct_ganging_enabled(pvt))
937 amd64_dump_dramcfg_low(pvt->dclr1, 1);
Doug Thompson2da11652009-04-27 16:09:09 +0200938}
939
Doug Thompson2da11652009-04-27 16:09:09 +0200940static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
941{
Borislav Petkovb2b0c602010-10-08 18:32:29 +0200942 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
943 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
Doug Thompson2da11652009-04-27 16:09:09 +0200944}
945
Doug Thompson94be4bf2009-04-27 16:12:00 +0200946/*
947 * NOTE: CPU Revision Dependent code: Rev E and Rev F
948 *
949 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
950 * set the shift factor for the DCSB and DCSM values.
951 *
952 * ->dcs_mask_notused, RevE:
953 *
954 * To find the max InputAddr for the csrow, start with the base address and set
955 * all bits that are "don't care" bits in the test at the start of section
956 * 3.5.4 (p. 84).
957 *
958 * The "don't care" bits are all set bits in the mask and all bits in the gaps
959 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
960 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
961 * gaps.
962 *
963 * ->dcs_mask_notused, RevF and later:
964 *
965 * To find the max InputAddr for the csrow, start with the base address and set
966 * all bits that are "don't care" bits in the test at the start of NPT section
967 * 4.5.4 (p. 87).
968 *
969 * The "don't care" bits are all set bits in the mask and all bits in the gaps
970 * between bit ranges [36:27] and [21:13].
971 *
972 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
973 * which are all bits in the above-mentioned gaps.
974 */
975static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
976{
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200977
Borislav Petkov1433eb92009-10-21 13:44:36 +0200978 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200979 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
980 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
981 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
982 pvt->dcs_shift = REV_E_DCS_SHIFT;
983 pvt->cs_count = 8;
984 pvt->num_dcsm = 8;
985 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200986 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
987 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
988 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
989 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
Borislav Petkov3ab0e7d2010-10-01 18:19:06 +0200990 pvt->cs_count = 8;
991 pvt->num_dcsm = 4;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200992 }
993}
994
995/*
996 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
997 */
Borislav Petkovb2b0c602010-10-08 18:32:29 +0200998static void read_dct_base_mask(struct amd64_pvt *pvt)
Doug Thompson94be4bf2009-04-27 16:12:00 +0200999{
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001000 int cs, reg;
Doug Thompson94be4bf2009-04-27 16:12:00 +02001001
1002 amd64_set_dct_base_and_mask(pvt);
1003
Borislav Petkov9d858bb2009-09-21 14:35:51 +02001004 for (cs = 0; cs < pvt->cs_count; cs++) {
Doug Thompson94be4bf2009-04-27 16:12:00 +02001005 reg = K8_DCSB0 + (cs * 4);
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001006
1007 if (!amd64_read_dct_pci_cfg(pvt, reg, &pvt->dcsb0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +02001008 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
1009 cs, pvt->dcsb0[cs], reg);
1010
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001011 if (!dct_ganging_enabled(pvt)) {
Doug Thompson94be4bf2009-04-27 16:12:00 +02001012 reg = F10_DCSB1 + (cs * 4);
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001013
1014 if (!amd64_read_dct_pci_cfg(pvt, reg, &pvt->dcsb1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +02001015 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
1016 cs, pvt->dcsb1[cs], reg);
Doug Thompson94be4bf2009-04-27 16:12:00 +02001017 }
1018 }
1019
1020 for (cs = 0; cs < pvt->num_dcsm; cs++) {
Wan Wei4afcd2d2009-07-27 14:34:15 +02001021 reg = K8_DCSM0 + (cs * 4);
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001022
1023 if (!amd64_read_dct_pci_cfg(pvt, reg, &pvt->dcsm0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +02001024 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1025 cs, pvt->dcsm0[cs], reg);
1026
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001027 if (!dct_ganging_enabled(pvt)) {
Doug Thompson94be4bf2009-04-27 16:12:00 +02001028 reg = F10_DCSM1 + (cs * 4);
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001029
1030 if (!amd64_read_dct_pci_cfg(pvt, reg, &pvt->dcsm1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +02001031 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1032 cs, pvt->dcsm1[cs], reg);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001033 }
Doug Thompson94be4bf2009-04-27 16:12:00 +02001034 }
1035}
1036
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001037static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
Doug Thompson94be4bf2009-04-27 16:12:00 +02001038{
1039 enum mem_type type;
1040
Borislav Petkov1433eb92009-10-21 13:44:36 +02001041 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
Borislav Petkov6b4c0bd2009-11-12 15:37:57 +01001042 if (pvt->dchr0 & DDR3_MODE)
1043 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1044 else
1045 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
Doug Thompson94be4bf2009-04-27 16:12:00 +02001046 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +02001047 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1048 }
1049
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001050 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
Doug Thompson94be4bf2009-04-27 16:12:00 +02001051
1052 return type;
1053}
1054
Doug Thompsonddff8762009-04-27 16:14:52 +02001055/*
1056 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1057 * and the later RevF memory controllers (DDR vs DDR2)
1058 *
1059 * Return:
1060 * number of memory channels in operation
1061 * Pass back:
1062 * contents of the DCL0_LOW register
1063 */
1064static int k8_early_channel_count(struct amd64_pvt *pvt)
1065{
1066 int flag, err = 0;
1067
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001068 err = amd64_read_dct_pci_cfg(pvt, F10_DCLR_0, &pvt->dclr0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001069 if (err)
1070 return err;
1071
Borislav Petkov9f56da02010-10-01 19:44:53 +02001072 if (pvt->ext_model >= K8_REV_F)
Doug Thompsonddff8762009-04-27 16:14:52 +02001073 /* RevF (NPT) and later */
1074 flag = pvt->dclr0 & F10_WIDTH_128;
Borislav Petkov9f56da02010-10-01 19:44:53 +02001075 else
Doug Thompsonddff8762009-04-27 16:14:52 +02001076 /* RevE and earlier */
1077 flag = pvt->dclr0 & REVE_WIDTH_128;
Doug Thompsonddff8762009-04-27 16:14:52 +02001078
1079 /* not used */
1080 pvt->dclr1 = 0;
1081
1082 return (flag) ? 2 : 1;
1083}
1084
1085/* extract the ERROR ADDRESS for the K8 CPUs */
1086static u64 k8_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001087 struct err_regs *info)
Doug Thompsonddff8762009-04-27 16:14:52 +02001088{
1089 return (((u64) (info->nbeah & 0xff)) << 32) +
1090 (info->nbeal & ~0x03);
1091}
1092
1093/*
1094 * Read the Base and Limit registers for K8 based Memory controllers; extract
1095 * fields from the 'raw' reg into separate data fields
1096 *
1097 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1098 */
1099static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1100{
1101 u32 low;
1102 u32 off = dram << 3; /* 8 bytes between DRAM entries */
Doug Thompsonddff8762009-04-27 16:14:52 +02001103
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001104 amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001105
1106 /* Extract parts into separate data entries */
Borislav Petkov49978112009-10-12 17:23:03 +02001107 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
Doug Thompsonddff8762009-04-27 16:14:52 +02001108 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1109 pvt->dram_rw_en[dram] = (low & 0x3);
1110
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001111 amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001112
1113 /*
1114 * Extract parts into separate data entries. Limit is the HIGHEST memory
1115 * location of the region, so lower 24 bits need to be all ones
1116 */
Borislav Petkov49978112009-10-12 17:23:03 +02001117 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
Doug Thompsonddff8762009-04-27 16:14:52 +02001118 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1119 pvt->dram_DstNode[dram] = (low & 0x7);
1120}
1121
1122static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001123 struct err_regs *err_info, u64 sys_addr)
Doug Thompsonddff8762009-04-27 16:14:52 +02001124{
1125 struct mem_ctl_info *src_mci;
Doug Thompsonddff8762009-04-27 16:14:52 +02001126 int channel, csrow;
1127 u32 page, offset;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001128 u16 syndrome;
Doug Thompsonddff8762009-04-27 16:14:52 +02001129
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001130 syndrome = extract_syndrome(err_info);
Doug Thompsonddff8762009-04-27 16:14:52 +02001131
1132 /* CHIPKILL enabled */
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001133 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001134 channel = get_channel_from_ecc_syndrome(mci, syndrome);
Doug Thompsonddff8762009-04-27 16:14:52 +02001135 if (channel < 0) {
1136 /*
1137 * Syndrome didn't map, so we don't know which of the
1138 * 2 DIMMs is in error. So we need to ID 'both' of them
1139 * as suspect.
1140 */
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001141 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1142 "error reporting race\n", syndrome);
Doug Thompsonddff8762009-04-27 16:14:52 +02001143 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1144 return;
1145 }
1146 } else {
1147 /*
1148 * non-chipkill ecc mode
1149 *
1150 * The k8 documentation is unclear about how to determine the
1151 * channel number when using non-chipkill memory. This method
1152 * was obtained from email communication with someone at AMD.
1153 * (Wish the email was placed in this comment - norsk)
1154 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001155 channel = ((sys_addr & BIT(3)) != 0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001156 }
1157
1158 /*
1159 * Find out which node the error address belongs to. This may be
1160 * different from the node that detected the error.
1161 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001162 src_mci = find_mc_by_sys_addr(mci, sys_addr);
Keith Mannthey2cff18c2009-09-18 14:35:23 +02001163 if (!src_mci) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001164 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001165 (unsigned long)sys_addr);
Doug Thompsonddff8762009-04-27 16:14:52 +02001166 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1167 return;
1168 }
1169
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001170 /* Now map the sys_addr to a CSROW */
1171 csrow = sys_addr_to_csrow(src_mci, sys_addr);
Doug Thompsonddff8762009-04-27 16:14:52 +02001172 if (csrow < 0) {
1173 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1174 } else {
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001175 error_address_to_page_and_offset(sys_addr, &page, &offset);
Doug Thompsonddff8762009-04-27 16:14:52 +02001176
1177 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1178 channel, EDAC_MOD_STR);
1179 }
1180}
1181
Borislav Petkov1433eb92009-10-21 13:44:36 +02001182static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
Doug Thompsonddff8762009-04-27 16:14:52 +02001183{
Borislav Petkov1433eb92009-10-21 13:44:36 +02001184 int *dbam_map;
Doug Thompsonddff8762009-04-27 16:14:52 +02001185
Borislav Petkov1433eb92009-10-21 13:44:36 +02001186 if (pvt->ext_model >= K8_REV_F)
1187 dbam_map = ddr2_dbam;
1188 else if (pvt->ext_model >= K8_REV_D)
1189 dbam_map = ddr2_dbam_revD;
1190 else
1191 dbam_map = ddr2_dbam_revCG;
Doug Thompsonddff8762009-04-27 16:14:52 +02001192
Borislav Petkov1433eb92009-10-21 13:44:36 +02001193 return dbam_map[cs_mode];
Doug Thompsonddff8762009-04-27 16:14:52 +02001194}
1195
Doug Thompson1afd3c92009-04-27 16:16:50 +02001196/*
1197 * Get the number of DCT channels in use.
1198 *
1199 * Return:
1200 * number of Memory Channels in operation
1201 * Pass back:
1202 * contents of the DCL0_LOW register
1203 */
1204static int f10_early_channel_count(struct amd64_pvt *pvt)
1205{
Wan Wei57a30852009-08-07 17:04:49 +02001206 int dbams[] = { DBAM0, DBAM1 };
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001207 int i, j, channels = 0;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001208 u32 dbam;
Doug Thompsonddff8762009-04-27 16:14:52 +02001209
Doug Thompson1afd3c92009-04-27 16:16:50 +02001210 /* If we are in 128 bit mode, then we are using 2 channels */
1211 if (pvt->dclr0 & F10_WIDTH_128) {
Doug Thompson1afd3c92009-04-27 16:16:50 +02001212 channels = 2;
1213 return channels;
1214 }
1215
1216 /*
Borislav Petkovd16149e2009-10-16 19:55:49 +02001217 * Need to check if in unganged mode: In such, there are 2 channels,
1218 * but they are not in 128 bit mode and thus the above 'dclr0' status
1219 * bit will be OFF.
Doug Thompson1afd3c92009-04-27 16:16:50 +02001220 *
1221 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1222 * their CSEnable bit on. If so, then SINGLE DIMM case.
1223 */
Borislav Petkovd16149e2009-10-16 19:55:49 +02001224 debugf0("Data width is not 128 bits - need more decoding\n");
Doug Thompson1afd3c92009-04-27 16:16:50 +02001225
1226 /*
1227 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1228 * is more than just one DIMM present in unganged mode. Need to check
1229 * both controllers since DIMMs can be placed in either one.
1230 */
Wan Wei57a30852009-08-07 17:04:49 +02001231 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001232 if (amd64_read_dct_pci_cfg(pvt, dbams[i], &dbam))
Doug Thompson1afd3c92009-04-27 16:16:50 +02001233 goto err_reg;
1234
Wan Wei57a30852009-08-07 17:04:49 +02001235 for (j = 0; j < 4; j++) {
1236 if (DBAM_DIMM(j, dbam) > 0) {
1237 channels++;
1238 break;
1239 }
1240 }
Doug Thompson1afd3c92009-04-27 16:16:50 +02001241 }
1242
Borislav Petkovd16149e2009-10-16 19:55:49 +02001243 if (channels > 2)
1244 channels = 2;
1245
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001246 amd64_info("MCT channel count: %d\n", channels);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001247
1248 return channels;
1249
1250err_reg:
1251 return -1;
1252
1253}
1254
Borislav Petkov1433eb92009-10-21 13:44:36 +02001255static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001256{
Borislav Petkov1433eb92009-10-21 13:44:36 +02001257 int *dbam_map;
1258
1259 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1260 dbam_map = ddr3_dbam;
1261 else
1262 dbam_map = ddr2_dbam;
1263
1264 return dbam_map[cs_mode];
Doug Thompson1afd3c92009-04-27 16:16:50 +02001265}
1266
Doug Thompson1afd3c92009-04-27 16:16:50 +02001267static u64 f10_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001268 struct err_regs *info)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001269{
1270 return (((u64) (info->nbeah & 0xffff)) << 32) +
1271 (info->nbeal & ~0x01);
1272}
1273
1274/*
1275 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1276 * fields from the 'raw' reg into separate data fields.
1277 *
1278 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1279 */
1280static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1281{
1282 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1283
1284 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1285 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1286
1287 /* read the 'raw' DRAM BASE Address register */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001288 amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001289 amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001290
1291 /* Extract parts into separate data entries */
1292 pvt->dram_rw_en[dram] = (low_base & 0x3);
1293
1294 if (pvt->dram_rw_en[dram] == 0)
1295 return;
1296
1297 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1298
Borislav Petkov66216a72009-09-22 16:48:37 +02001299 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001300 (((u64)low_base & 0xFFFF0000) << 8);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001301
1302 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1303 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1304
1305 /* read the 'raw' LIMIT registers */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001306 amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001307 amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001308
Doug Thompson1afd3c92009-04-27 16:16:50 +02001309 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1310 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1311
1312 /*
1313 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1314 * memory location of the region, so low 24 bits need to be all ones.
1315 */
Borislav Petkov66216a72009-09-22 16:48:37 +02001316 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001317 (((u64) low_limit & 0xFFFF0000) << 8) |
Borislav Petkov66216a72009-09-22 16:48:37 +02001318 0x00FFFFFF;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001319}
Doug Thompson6163b5d2009-04-27 16:20:17 +02001320
1321static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1322{
Doug Thompson6163b5d2009-04-27 16:20:17 +02001323
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001324 if (!amd64_read_dct_pci_cfg(pvt, F10_DCTL_SEL_LOW, &pvt->dct_sel_low)) {
1325 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, High range addrs at: 0x%x\n",
1326 pvt->dct_sel_low, dct_sel_baseaddr(pvt));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001327
Borislav Petkov72381bd2009-10-09 19:14:43 +02001328 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1329 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1330 (dct_dram_enabled(pvt) ? "yes" : "no"));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001331
Borislav Petkov72381bd2009-10-09 19:14:43 +02001332 if (!dct_ganging_enabled(pvt))
1333 debugf0(" Address range split per DCT: %s\n",
1334 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1335
1336 debugf0(" DCT data interleave for ECC: %s, "
1337 "DRAM cleared since last warm reset: %s\n",
1338 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1339 (dct_memory_cleared(pvt) ? "yes" : "no"));
1340
1341 debugf0(" DCT channel interleave: %s, "
1342 "DCT interleave bits selector: 0x%x\n",
1343 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
Doug Thompson6163b5d2009-04-27 16:20:17 +02001344 dct_sel_interleave_addr(pvt));
1345 }
1346
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001347 amd64_read_dct_pci_cfg(pvt, F10_DCTL_SEL_HIGH, &pvt->dct_sel_hi);
Doug Thompson6163b5d2009-04-27 16:20:17 +02001348}
1349
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001350/*
1351 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1352 * Interleaving Modes.
1353 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001354static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1355 int hi_range_sel, u32 intlv_en)
1356{
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001357 u32 cs, temp, dct_sel_high = (pvt->dct_sel_low >> 1) & 1;
Doug Thompson6163b5d2009-04-27 16:20:17 +02001358
1359 if (dct_ganging_enabled(pvt))
1360 cs = 0;
1361 else if (hi_range_sel)
1362 cs = dct_sel_high;
1363 else if (dct_interleave_enabled(pvt)) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001364 /*
1365 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1366 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001367 if (dct_sel_interleave_addr(pvt) == 0)
1368 cs = sys_addr >> 6 & 1;
1369 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1370 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1371
1372 if (dct_sel_interleave_addr(pvt) & 1)
1373 cs = (sys_addr >> 9 & 1) ^ temp;
1374 else
1375 cs = (sys_addr >> 6 & 1) ^ temp;
1376 } else if (intlv_en & 4)
1377 cs = sys_addr >> 15 & 1;
1378 else if (intlv_en & 2)
1379 cs = sys_addr >> 14 & 1;
1380 else if (intlv_en & 1)
1381 cs = sys_addr >> 13 & 1;
1382 else
1383 cs = sys_addr >> 12 & 1;
1384 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1385 cs = ~dct_sel_high & 1;
1386 else
1387 cs = 0;
1388
1389 return cs;
1390}
1391
1392static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1393{
1394 if (intlv_en == 1)
1395 return 1;
1396 else if (intlv_en == 3)
1397 return 2;
1398 else if (intlv_en == 7)
1399 return 3;
1400
1401 return 0;
1402}
1403
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001404/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1405static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001406 u32 dct_sel_base_addr,
1407 u64 dct_sel_base_off,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001408 u32 hole_valid, u32 hole_off,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001409 u64 dram_base)
1410{
1411 u64 chan_off;
1412
1413 if (hi_range_sel) {
Borislav Petkov9975a5f2010-03-08 18:29:35 +01001414 if (!(dct_sel_base_addr & 0xFFFF0000) &&
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001415 hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001416 chan_off = hole_off << 16;
1417 else
1418 chan_off = dct_sel_base_off;
1419 } else {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001420 if (hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001421 chan_off = hole_off << 16;
1422 else
1423 chan_off = dram_base & 0xFFFFF8000000ULL;
1424 }
1425
1426 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1427 (chan_off & 0x0000FFFFFF800000ULL);
1428}
1429
1430/* Hack for the time being - Can we get this from BIOS?? */
1431#define CH0SPARE_RANK 0
1432#define CH1SPARE_RANK 1
1433
1434/*
1435 * checks if the csrow passed in is marked as SPARED, if so returns the new
1436 * spare row
1437 */
1438static inline int f10_process_possible_spare(int csrow,
1439 u32 cs, struct amd64_pvt *pvt)
1440{
1441 u32 swap_done;
1442 u32 bad_dram_cs;
1443
1444 /* Depending on channel, isolate respective SPARING info */
1445 if (cs) {
1446 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1447 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1448 if (swap_done && (csrow == bad_dram_cs))
1449 csrow = CH1SPARE_RANK;
1450 } else {
1451 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1452 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1453 if (swap_done && (csrow == bad_dram_cs))
1454 csrow = CH0SPARE_RANK;
1455 }
1456 return csrow;
1457}
1458
1459/*
1460 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1461 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1462 *
1463 * Return:
1464 * -EINVAL: NOT FOUND
1465 * 0..csrow = Chip-Select Row
1466 */
1467static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1468{
1469 struct mem_ctl_info *mci;
1470 struct amd64_pvt *pvt;
1471 u32 cs_base, cs_mask;
1472 int cs_found = -EINVAL;
1473 int csrow;
1474
Borislav Petkovcc4d8862010-10-13 16:11:59 +02001475 mci = mcis[nid];
Doug Thompson6163b5d2009-04-27 16:20:17 +02001476 if (!mci)
1477 return cs_found;
1478
1479 pvt = mci->pvt_info;
1480
1481 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1482
Borislav Petkov9d858bb2009-09-21 14:35:51 +02001483 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompson6163b5d2009-04-27 16:20:17 +02001484
1485 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1486 if (!(cs_base & K8_DCSB_CS_ENABLE))
1487 continue;
1488
1489 /*
1490 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1491 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1492 * of the actual address.
1493 */
1494 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1495
1496 /*
1497 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1498 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1499 */
1500 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1501
1502 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1503 csrow, cs_base, cs_mask);
1504
1505 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1506
1507 debugf1(" Final CSMask=0x%x\n", cs_mask);
1508 debugf1(" (InputAddr & ~CSMask)=0x%x "
1509 "(CSBase & ~CSMask)=0x%x\n",
1510 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1511
1512 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1513 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1514
1515 debugf1(" MATCH csrow=%d\n", cs_found);
1516 break;
1517 }
1518 }
1519 return cs_found;
1520}
1521
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001522/* For a given @dram_range, check if @sys_addr falls within it. */
1523static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1524 u64 sys_addr, int *nid, int *chan_sel)
1525{
1526 int node_id, cs_found = -EINVAL, high_range = 0;
1527 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1528 u32 hole_valid, tmp, dct_sel_base, channel;
1529 u64 dram_base, chan_addr, dct_sel_base_off;
1530
1531 dram_base = pvt->dram_base[dram_range];
1532 intlv_en = pvt->dram_IntlvEn[dram_range];
1533
1534 node_id = pvt->dram_DstNode[dram_range];
1535 intlv_sel = pvt->dram_IntlvSel[dram_range];
1536
1537 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1538 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1539
1540 /*
1541 * This assumes that one node's DHAR is the same as all the other
1542 * nodes' DHAR.
1543 */
1544 hole_off = (pvt->dhar & 0x0000FF80);
1545 hole_valid = (pvt->dhar & 0x1);
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001546 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001547
1548 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1549 hole_off, hole_valid, intlv_sel);
1550
Borislav Petkove726f3c2010-12-06 16:20:25 +01001551 if (intlv_en &&
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001552 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1553 return -EINVAL;
1554
1555 dct_sel_base = dct_sel_baseaddr(pvt);
1556
1557 /*
1558 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1559 * select between DCT0 and DCT1.
1560 */
1561 if (dct_high_range_enabled(pvt) &&
1562 !dct_ganging_enabled(pvt) &&
1563 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1564 high_range = 1;
1565
1566 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1567
1568 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1569 dct_sel_base_off, hole_valid,
1570 hole_off, dram_base);
1571
1572 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1573
1574 /* remove Node ID (in case of memory interleaving) */
1575 tmp = chan_addr & 0xFC0;
1576
1577 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1578
1579 /* remove channel interleave and hash */
1580 if (dct_interleave_enabled(pvt) &&
1581 !dct_high_range_enabled(pvt) &&
1582 !dct_ganging_enabled(pvt)) {
1583 if (dct_sel_interleave_addr(pvt) != 1)
1584 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1585 else {
1586 tmp = chan_addr & 0xFC0;
1587 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1588 | tmp;
1589 }
1590 }
1591
1592 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1593 chan_addr, (u32)(chan_addr >> 8));
1594
1595 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1596
1597 if (cs_found >= 0) {
1598 *nid = node_id;
1599 *chan_sel = channel;
1600 }
1601 return cs_found;
1602}
1603
1604static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1605 int *node, int *chan_sel)
1606{
1607 int dram_range, cs_found = -EINVAL;
1608 u64 dram_base, dram_limit;
1609
1610 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1611
1612 if (!pvt->dram_rw_en[dram_range])
1613 continue;
1614
1615 dram_base = pvt->dram_base[dram_range];
1616 dram_limit = pvt->dram_limit[dram_range];
1617
1618 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1619
1620 cs_found = f10_match_to_this_node(pvt, dram_range,
1621 sys_addr, node,
1622 chan_sel);
1623 if (cs_found >= 0)
1624 break;
1625 }
1626 }
1627 return cs_found;
1628}
1629
1630/*
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001631 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1632 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001633 *
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001634 * The @sys_addr is usually an error address received from the hardware
1635 * (MCX_ADDR).
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001636 */
1637static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001638 struct err_regs *err_info,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001639 u64 sys_addr)
1640{
1641 struct amd64_pvt *pvt = mci->pvt_info;
1642 u32 page, offset;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001643 int nid, csrow, chan = 0;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001644 u16 syndrome;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001645
1646 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1647
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001648 if (csrow < 0) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001649 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001650 return;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001651 }
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001652
1653 error_address_to_page_and_offset(sys_addr, &page, &offset);
1654
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001655 syndrome = extract_syndrome(err_info);
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001656
1657 /*
1658 * We need the syndromes for channel detection only when we're
1659 * ganged. Otherwise @chan should already contain the channel at
1660 * this point.
1661 */
Borislav Petkov962b70a2010-08-03 16:51:28 +02001662 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001663 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1664
1665 if (chan >= 0)
1666 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1667 EDAC_MOD_STR);
1668 else
1669 /*
1670 * Channel unknown, report all channels on this CSROW as failed.
1671 */
1672 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1673 edac_mc_handle_ce(mci, page, offset, syndrome,
1674 csrow, chan, EDAC_MOD_STR);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001675}
1676
1677/*
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001678 * debug routine to display the memory sizes of all logical DIMMs and its
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001679 * CSROWs as well
1680 */
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001681static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001682{
Borislav Petkov603adaf2009-12-21 14:52:53 +01001683 int dimm, size0, size1, factor = 0;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001684 u32 dbam;
1685 u32 *dcsb;
1686
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001687 if (boot_cpu_data.x86 == 0xf) {
Borislav Petkov603adaf2009-12-21 14:52:53 +01001688 if (pvt->dclr0 & F10_WIDTH_128)
1689 factor = 1;
1690
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001691 /* K8 families < revF not supported yet */
Borislav Petkov1433eb92009-10-21 13:44:36 +02001692 if (pvt->ext_model < K8_REV_F)
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001693 return;
1694 else
1695 WARN_ON(ctrl != 0);
1696 }
1697
Borislav Petkov4d796362011-02-03 15:59:57 +01001698 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1699 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dcsb1 : pvt->dcsb0;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001700
Borislav Petkov4d796362011-02-03 15:59:57 +01001701 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001702
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001703 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1704
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001705 /* Dump memory sizes for DIMM and its CSROWs */
1706 for (dimm = 0; dimm < 4; dimm++) {
1707
1708 size0 = 0;
1709 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
Borislav Petkov1433eb92009-10-21 13:44:36 +02001710 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001711
1712 size1 = 0;
1713 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
Borislav Petkov1433eb92009-10-21 13:44:36 +02001714 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001715
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001716 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1717 dimm * 2, size0 << factor,
1718 dimm * 2 + 1, size1 << factor);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001719 }
1720}
1721
Doug Thompson4d376072009-04-27 16:25:05 +02001722static struct amd64_family_type amd64_family_types[] = {
1723 [K8_CPUS] = {
Borislav Petkov0092b202010-10-01 19:20:05 +02001724 .ctl_name = "K8",
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001725 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1726 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
Doug Thompson4d376072009-04-27 16:25:05 +02001727 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001728 .early_channel_count = k8_early_channel_count,
1729 .get_error_address = k8_get_error_address,
1730 .read_dram_base_limit = k8_read_dram_base_limit,
1731 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1732 .dbam_to_cs = k8_dbam_to_chip_select,
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001733 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
Doug Thompson4d376072009-04-27 16:25:05 +02001734 }
1735 },
1736 [F10_CPUS] = {
Borislav Petkov0092b202010-10-01 19:20:05 +02001737 .ctl_name = "F10h",
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001738 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1739 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
Doug Thompson4d376072009-04-27 16:25:05 +02001740 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001741 .early_channel_count = f10_early_channel_count,
1742 .get_error_address = f10_get_error_address,
1743 .read_dram_base_limit = f10_read_dram_base_limit,
1744 .read_dram_ctl_register = f10_read_dram_ctl_register,
1745 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1746 .dbam_to_cs = f10_dbam_to_chip_select,
Borislav Petkovb2b0c602010-10-08 18:32:29 +02001747 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1748 }
1749 },
1750 [F15_CPUS] = {
1751 .ctl_name = "F15h",
1752 .ops = {
1753 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
Doug Thompson4d376072009-04-27 16:25:05 +02001754 }
1755 },
Doug Thompson4d376072009-04-27 16:25:05 +02001756};
1757
1758static struct pci_dev *pci_get_related_function(unsigned int vendor,
1759 unsigned int device,
1760 struct pci_dev *related)
1761{
1762 struct pci_dev *dev = NULL;
1763
1764 dev = pci_get_device(vendor, device, dev);
1765 while (dev) {
1766 if ((dev->bus->number == related->bus->number) &&
1767 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1768 break;
1769 dev = pci_get_device(vendor, device, dev);
1770 }
1771
1772 return dev;
1773}
1774
Doug Thompsonb1289d62009-04-27 16:37:05 +02001775/*
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001776 * These are tables of eigenvectors (one per line) which can be used for the
1777 * construction of the syndrome tables. The modified syndrome search algorithm
1778 * uses those to find the symbol in error and thus the DIMM.
Doug Thompsonb1289d62009-04-27 16:37:05 +02001779 *
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001780 * Algorithm courtesy of Ross LaFetra from AMD.
Doug Thompsonb1289d62009-04-27 16:37:05 +02001781 */
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001782static u16 x4_vectors[] = {
1783 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1784 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1785 0x0001, 0x0002, 0x0004, 0x0008,
1786 0x1013, 0x3032, 0x4044, 0x8088,
1787 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1788 0x4857, 0xc4fe, 0x13cc, 0x3288,
1789 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1790 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1791 0x15c1, 0x2a42, 0x89ac, 0x4758,
1792 0x2b03, 0x1602, 0x4f0c, 0xca08,
1793 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1794 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1795 0x2b87, 0x164e, 0x642c, 0xdc18,
1796 0x40b9, 0x80de, 0x1094, 0x20e8,
1797 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1798 0x11c1, 0x2242, 0x84ac, 0x4c58,
1799 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1800 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1801 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1802 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1803 0x16b3, 0x3d62, 0x4f34, 0x8518,
1804 0x1e2f, 0x391a, 0x5cac, 0xf858,
1805 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1806 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1807 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1808 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1809 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1810 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1811 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1812 0x185d, 0x2ca6, 0x7914, 0x9e28,
1813 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1814 0x4199, 0x82ee, 0x19f4, 0x2e58,
1815 0x4807, 0xc40e, 0x130c, 0x3208,
1816 0x1905, 0x2e0a, 0x5804, 0xac08,
1817 0x213f, 0x132a, 0xadfc, 0x5ba8,
1818 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
Doug Thompsonb1289d62009-04-27 16:37:05 +02001819};
1820
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001821static u16 x8_vectors[] = {
1822 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1823 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1824 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1825 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1826 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1827 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1828 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1829 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1830 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1831 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1832 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1833 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1834 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1835 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1836 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1837 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1838 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1839 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1840 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1841};
1842
1843static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001844 int v_dim)
Doug Thompsonb1289d62009-04-27 16:37:05 +02001845{
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001846 unsigned int i, err_sym;
Doug Thompsonb1289d62009-04-27 16:37:05 +02001847
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001848 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1849 u16 s = syndrome;
1850 int v_idx = err_sym * v_dim;
1851 int v_end = (err_sym + 1) * v_dim;
Doug Thompsonb1289d62009-04-27 16:37:05 +02001852
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001853 /* walk over all 16 bits of the syndrome */
1854 for (i = 1; i < (1U << 16); i <<= 1) {
1855
1856 /* if bit is set in that eigenvector... */
1857 if (v_idx < v_end && vectors[v_idx] & i) {
1858 u16 ev_comp = vectors[v_idx++];
1859
1860 /* ... and bit set in the modified syndrome, */
1861 if (s & i) {
1862 /* remove it. */
1863 s ^= ev_comp;
1864
1865 if (!s)
1866 return err_sym;
1867 }
1868
1869 } else if (s & i)
1870 /* can't get to zero, move to next symbol */
1871 break;
1872 }
Doug Thompsonb1289d62009-04-27 16:37:05 +02001873 }
1874
1875 debugf0("syndrome(%x) not found\n", syndrome);
1876 return -1;
1877}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001878
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001879static int map_err_sym_to_channel(int err_sym, int sym_size)
1880{
1881 if (sym_size == 4)
1882 switch (err_sym) {
1883 case 0x20:
1884 case 0x21:
1885 return 0;
1886 break;
1887 case 0x22:
1888 case 0x23:
1889 return 1;
1890 break;
1891 default:
1892 return err_sym >> 4;
1893 break;
1894 }
1895 /* x8 symbols */
1896 else
1897 switch (err_sym) {
1898 /* imaginary bits not in a DIMM */
1899 case 0x10:
1900 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1901 err_sym);
1902 return -1;
1903 break;
1904
1905 case 0x11:
1906 return 0;
1907 break;
1908 case 0x12:
1909 return 1;
1910 break;
1911 default:
1912 return err_sym >> 3;
1913 break;
1914 }
1915 return -1;
1916}
1917
1918static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1919{
1920 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001921 int err_sym = -1;
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001922
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001923 if (pvt->syn_type == 8)
1924 err_sym = decode_syndrome(syndrome, x8_vectors,
1925 ARRAY_SIZE(x8_vectors),
1926 pvt->syn_type);
1927 else if (pvt->syn_type == 4)
1928 err_sym = decode_syndrome(syndrome, x4_vectors,
1929 ARRAY_SIZE(x4_vectors),
1930 pvt->syn_type);
1931 else {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001932 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001933 return err_sym;
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001934 }
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001935
1936 return map_err_sym_to_channel(err_sym, pvt->syn_type);
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001937}
1938
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001939/*
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001940 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1941 * ADDRESS and process.
1942 */
1943static void amd64_handle_ce(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001944 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001945{
1946 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001947 u64 sys_addr;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001948
1949 /* Ensure that the Error Address is VALID */
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001950 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1951 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001952 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1953 return;
1954 }
1955
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01001956 sys_addr = pvt->ops->get_error_address(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001957
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001958 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001959
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001960 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001961}
1962
1963/* Handle any Un-correctable Errors (UEs) */
1964static void amd64_handle_ue(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001965 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001966{
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01001967 struct amd64_pvt *pvt = mci->pvt_info;
1968 struct mem_ctl_info *log_mci, *src_mci = NULL;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001969 int csrow;
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001970 u64 sys_addr;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001971 u32 page, offset;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001972
1973 log_mci = mci;
1974
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001975 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1976 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001977 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1978 return;
1979 }
1980
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01001981 sys_addr = pvt->ops->get_error_address(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001982
1983 /*
1984 * Find out which node the error address belongs to. This may be
1985 * different from the node that detected the error.
1986 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001987 src_mci = find_mc_by_sys_addr(mci, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001988 if (!src_mci) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001989 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1990 (unsigned long)sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001991 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1992 return;
1993 }
1994
1995 log_mci = src_mci;
1996
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001997 csrow = sys_addr_to_csrow(log_mci, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001998 if (csrow < 0) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001999 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
2000 (unsigned long)sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002001 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2002 } else {
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002003 error_address_to_page_and_offset(sys_addr, &page, &offset);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002004 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2005 }
2006}
2007
Borislav Petkov549d0422009-07-24 13:51:42 +02002008static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
Borislav Petkovb69b29d2009-07-27 16:21:14 +02002009 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002010{
Borislav Petkov62452882010-09-22 16:08:37 +02002011 u16 ec = EC(info->nbsl);
2012 u8 xec = XEC(info->nbsl, 0x1f);
Borislav Petkov17adea02009-11-04 14:04:06 +01002013 int ecc_type = (info->nbsh >> 13) & 0x3;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002014
Borislav Petkovb70ef012009-06-25 19:32:38 +02002015 /* Bail early out if this was an 'observed' error */
2016 if (PP(ec) == K8_NBSL_PP_OBS)
2017 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002018
Borislav Petkovecaf5602009-07-23 16:32:01 +02002019 /* Do only ECC errors */
2020 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002021 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002022
Borislav Petkovecaf5602009-07-23 16:32:01 +02002023 if (ecc_type == 2)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002024 amd64_handle_ce(mci, info);
Borislav Petkovecaf5602009-07-23 16:32:01 +02002025 else if (ecc_type == 1)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002026 amd64_handle_ue(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002027}
2028
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02002029void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002030{
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002031 struct mem_ctl_info *mci = mcis[node_id];
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02002032 struct err_regs regs;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002033
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02002034 regs.nbsl = (u32) m->status;
2035 regs.nbsh = (u32)(m->status >> 32);
2036 regs.nbeal = (u32) m->addr;
2037 regs.nbeah = (u32)(m->addr >> 32);
2038 regs.nbcfg = nbcfg;
2039
2040 __amd64_decode_bus_error(mci, &regs);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002041
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002042 /*
2043 * Check the UE bit of the NB status high register, if set generate some
2044 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2045 * If it was a GART error, skip that process.
Borislav Petkov549d0422009-07-24 13:51:42 +02002046 *
2047 * FIXME: this should go somewhere else, if at all.
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002048 */
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02002049 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
Borislav Petkov5110dbd2009-06-25 19:51:04 +02002050 edac_mc_handle_ue_no_info(mci, "UE bit is set");
Borislav Petkov549d0422009-07-24 13:51:42 +02002051
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002052}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002053
Doug Thompson0ec449e2009-04-27 19:41:25 +02002054/*
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002055 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
Borislav Petkovbbd0c1f2010-10-01 19:27:58 +02002056 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
Doug Thompson0ec449e2009-04-27 19:41:25 +02002057 */
Borislav Petkov360b7f32010-10-15 19:25:38 +02002058static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002059{
Doug Thompson0ec449e2009-04-27 19:41:25 +02002060 /* Reserve the ADDRESS MAP Device */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002061 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2062 if (!pvt->F1) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002063 amd64_err("error address map device not found: "
2064 "vendor %x device 0x%x (broken BIOS?)\n",
2065 PCI_VENDOR_ID_AMD, f1_id);
Borislav Petkovbbd0c1f2010-10-01 19:27:58 +02002066 return -ENODEV;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002067 }
2068
2069 /* Reserve the MISC Device */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002070 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2071 if (!pvt->F3) {
2072 pci_dev_put(pvt->F1);
2073 pvt->F1 = NULL;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002074
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002075 amd64_err("error F3 device not found: "
2076 "vendor %x device 0x%x (broken BIOS?)\n",
2077 PCI_VENDOR_ID_AMD, f3_id);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002078
Borislav Petkovbbd0c1f2010-10-01 19:27:58 +02002079 return -ENODEV;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002080 }
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002081 debugf1("F1: %s\n", pci_name(pvt->F1));
2082 debugf1("F2: %s\n", pci_name(pvt->F2));
2083 debugf1("F3: %s\n", pci_name(pvt->F3));
Doug Thompson0ec449e2009-04-27 19:41:25 +02002084
2085 return 0;
2086}
2087
Borislav Petkov360b7f32010-10-15 19:25:38 +02002088static void free_mc_sibling_devs(struct amd64_pvt *pvt)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002089{
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002090 pci_dev_put(pvt->F1);
2091 pci_dev_put(pvt->F3);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002092}
2093
2094/*
2095 * Retrieve the hardware registers of the memory controller (this includes the
2096 * 'Address Map' and 'Misc' device regs)
2097 */
Borislav Petkov360b7f32010-10-15 19:25:38 +02002098static void read_mc_regs(struct amd64_pvt *pvt)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002099{
2100 u64 msr_val;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002101 u32 tmp;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002102 int dram;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002103
2104 /*
2105 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2106 * those are Read-As-Zero
2107 */
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002108 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2109 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002110
2111 /* check first whether TOP_MEM2 is enabled */
2112 rdmsrl(MSR_K8_SYSCFG, msr_val);
2113 if (msr_val & (1U << 21)) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002114 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2115 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002116 } else
2117 debugf0(" TOP_MEM2 disabled.\n");
2118
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002119 amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002120
2121 if (pvt->ops->read_dram_ctl_register)
2122 pvt->ops->read_dram_ctl_register(pvt);
2123
2124 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2125 /*
2126 * Call CPU specific READ function to get the DRAM Base and
2127 * Limit values from the DCT.
2128 */
2129 pvt->ops->read_dram_base_limit(pvt, dram);
2130
2131 /*
2132 * Only print out debug info on rows with both R and W Enabled.
2133 * Normal processing, compiler should optimize this whole 'if'
2134 * debug output block away.
2135 */
2136 if (pvt->dram_rw_en[dram] != 0) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002137 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2138 "DRAM-LIMIT: 0x%016llx\n",
Doug Thompson0ec449e2009-04-27 19:41:25 +02002139 dram,
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002140 pvt->dram_base[dram],
2141 pvt->dram_limit[dram]);
2142
Doug Thompson0ec449e2009-04-27 19:41:25 +02002143 debugf1(" IntlvEn=%s %s %s "
2144 "IntlvSel=%d DstNode=%d\n",
2145 pvt->dram_IntlvEn[dram] ?
2146 "Enabled" : "Disabled",
2147 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2148 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2149 pvt->dram_IntlvSel[dram],
2150 pvt->dram_DstNode[dram]);
2151 }
2152 }
2153
Borislav Petkovb2b0c602010-10-08 18:32:29 +02002154 read_dct_base_mask(pvt);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002155
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002156 amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002157 amd64_read_dbam_reg(pvt);
2158
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002159 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002160
Borislav Petkovb2b0c602010-10-08 18:32:29 +02002161 amd64_read_dct_pci_cfg(pvt, F10_DCLR_0, &pvt->dclr0);
2162 amd64_read_dct_pci_cfg(pvt, F10_DCHR_0, &pvt->dchr0);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002163
Borislav Petkovb2b0c602010-10-08 18:32:29 +02002164 if (!dct_ganging_enabled(pvt)) {
2165 amd64_read_dct_pci_cfg(pvt, F10_DCLR_1, &pvt->dclr1);
2166 amd64_read_dct_pci_cfg(pvt, F10_DCHR_1, &pvt->dchr1);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002167 }
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002168
Borislav Petkovb2b0c602010-10-08 18:32:29 +02002169 if (boot_cpu_data.x86 >= 0x10)
2170 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2171
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002172 if (boot_cpu_data.x86 == 0x10 &&
2173 boot_cpu_data.x86_model > 7 &&
2174 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2175 tmp & BIT(25))
2176 pvt->syn_type = 8;
2177 else
2178 pvt->syn_type = 4;
2179
Borislav Petkovb2b0c602010-10-08 18:32:29 +02002180 dump_misc_regs(pvt);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002181}
2182
2183/*
2184 * NOTE: CPU Revision Dependent code
2185 *
2186 * Input:
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002187 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002188 * k8 private pointer to -->
2189 * DRAM Bank Address mapping register
2190 * node_id
2191 * DCL register where dual_channel_active is
2192 *
2193 * The DBAM register consists of 4 sets of 4 bits each definitions:
2194 *
2195 * Bits: CSROWs
2196 * 0-3 CSROWs 0 and 1
2197 * 4-7 CSROWs 2 and 3
2198 * 8-11 CSROWs 4 and 5
2199 * 12-15 CSROWs 6 and 7
2200 *
2201 * Values range from: 0 to 15
2202 * The meaning of the values depends on CPU revision and dual-channel state,
2203 * see relevant BKDG more info.
2204 *
2205 * The memory controller provides for total of only 8 CSROWs in its current
2206 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2207 * single channel or two (2) DIMMs in dual channel mode.
2208 *
2209 * The following code logic collapses the various tables for CSROW based on CPU
2210 * revision.
2211 *
2212 * Returns:
2213 * The number of PAGE_SIZE pages on the specified CSROW number it
2214 * encompasses
2215 *
2216 */
2217static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2218{
Borislav Petkov1433eb92009-10-21 13:44:36 +02002219 u32 cs_mode, nr_pages;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002220
2221 /*
2222 * The math on this doesn't look right on the surface because x/2*4 can
2223 * be simplified to x*2 but this expression makes use of the fact that
2224 * it is integral math where 1/2=0. This intermediate value becomes the
2225 * number of bits to shift the DBAM register to extract the proper CSROW
2226 * field.
2227 */
Borislav Petkov1433eb92009-10-21 13:44:36 +02002228 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002229
Borislav Petkov1433eb92009-10-21 13:44:36 +02002230 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002231
2232 /*
2233 * If dual channel then double the memory size of single channel.
2234 * Channel count is 1 or 2
2235 */
2236 nr_pages <<= (pvt->channel_count - 1);
2237
Borislav Petkov1433eb92009-10-21 13:44:36 +02002238 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002239 debugf0(" nr_pages= %u channel-count = %d\n",
2240 nr_pages, pvt->channel_count);
2241
2242 return nr_pages;
2243}
2244
2245/*
2246 * Initialize the array of csrow attribute instances, based on the values
2247 * from pci config hardware registers.
2248 */
Borislav Petkov360b7f32010-10-15 19:25:38 +02002249static int init_csrows(struct mem_ctl_info *mci)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002250{
2251 struct csrow_info *csrow;
Borislav Petkov2299ef72010-10-15 17:44:04 +02002252 struct amd64_pvt *pvt = mci->pvt_info;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002253 u64 input_addr_min, input_addr_max, sys_addr;
Borislav Petkov2299ef72010-10-15 17:44:04 +02002254 u32 val;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002255 int i, empty = 1;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002256
Borislav Petkov2299ef72010-10-15 17:44:04 +02002257 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002258
Borislav Petkov2299ef72010-10-15 17:44:04 +02002259 pvt->nbcfg = val;
2260 pvt->ctl_error_info.nbcfg = val;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002261
Borislav Petkov2299ef72010-10-15 17:44:04 +02002262 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2263 pvt->mc_node_id, val,
2264 !!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
Doug Thompson0ec449e2009-04-27 19:41:25 +02002265
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002266 for (i = 0; i < pvt->cs_count; i++) {
Doug Thompson0ec449e2009-04-27 19:41:25 +02002267 csrow = &mci->csrows[i];
2268
2269 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2270 debugf1("----CSROW %d EMPTY for node %d\n", i,
2271 pvt->mc_node_id);
2272 continue;
2273 }
2274
2275 debugf1("----CSROW %d VALID for MC node %d\n",
2276 i, pvt->mc_node_id);
2277
2278 empty = 0;
2279 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2280 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2281 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2282 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2283 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2284 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2285 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2286 /* 8 bytes of resolution */
2287
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002288 csrow->mtype = amd64_determine_memory_type(pvt, i);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002289
2290 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2291 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2292 (unsigned long)input_addr_min,
2293 (unsigned long)input_addr_max);
2294 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2295 (unsigned long)sys_addr, csrow->page_mask);
2296 debugf1(" nr_pages: %u first_page: 0x%lx "
2297 "last_page: 0x%lx\n",
2298 (unsigned)csrow->nr_pages,
2299 csrow->first_page, csrow->last_page);
2300
2301 /*
2302 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2303 */
2304 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2305 csrow->edac_mode =
2306 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2307 EDAC_S4ECD4ED : EDAC_SECDED;
2308 else
2309 csrow->edac_mode = EDAC_NONE;
2310 }
2311
2312 return empty;
2313}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002314
Borislav Petkov06724532009-09-16 13:05:46 +02002315/* get all cores on this DCT */
Rusty Russellba578cb2009-11-03 14:56:35 +10302316static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002317{
Borislav Petkov06724532009-09-16 13:05:46 +02002318 int cpu;
Doug Thompsonf9431992009-04-27 19:46:08 +02002319
Borislav Petkov06724532009-09-16 13:05:46 +02002320 for_each_online_cpu(cpu)
2321 if (amd_get_nb_id(cpu) == nid)
2322 cpumask_set_cpu(cpu, mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002323}
2324
2325/* check MCG_CTL on all the cpus on this node */
Borislav Petkov06724532009-09-16 13:05:46 +02002326static bool amd64_nb_mce_bank_enabled_on_node(int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002327{
Rusty Russellba578cb2009-11-03 14:56:35 +10302328 cpumask_var_t mask;
Borislav Petkov50542252009-12-11 18:14:40 +01002329 int cpu, nbe;
Borislav Petkov06724532009-09-16 13:05:46 +02002330 bool ret = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002331
Rusty Russellba578cb2009-11-03 14:56:35 +10302332 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002333 amd64_warn("%s: Error allocating mask\n", __func__);
Rusty Russellba578cb2009-11-03 14:56:35 +10302334 return false;
2335 }
Borislav Petkov06724532009-09-16 13:05:46 +02002336
Rusty Russellba578cb2009-11-03 14:56:35 +10302337 get_cpus_on_this_dct_cpumask(mask, nid);
Borislav Petkov06724532009-09-16 13:05:46 +02002338
Rusty Russellba578cb2009-11-03 14:56:35 +10302339 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
Borislav Petkov06724532009-09-16 13:05:46 +02002340
Rusty Russellba578cb2009-11-03 14:56:35 +10302341 for_each_cpu(cpu, mask) {
Borislav Petkov50542252009-12-11 18:14:40 +01002342 struct msr *reg = per_cpu_ptr(msrs, cpu);
2343 nbe = reg->l & K8_MSR_MCGCTL_NBE;
Borislav Petkov06724532009-09-16 13:05:46 +02002344
2345 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
Borislav Petkov50542252009-12-11 18:14:40 +01002346 cpu, reg->q,
Borislav Petkov06724532009-09-16 13:05:46 +02002347 (nbe ? "enabled" : "disabled"));
2348
2349 if (!nbe)
2350 goto out;
Borislav Petkov06724532009-09-16 13:05:46 +02002351 }
2352 ret = true;
2353
2354out:
Rusty Russellba578cb2009-11-03 14:56:35 +10302355 free_cpumask_var(mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002356 return ret;
2357}
2358
Borislav Petkov2299ef72010-10-15 17:44:04 +02002359static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002360{
2361 cpumask_var_t cmask;
Borislav Petkov50542252009-12-11 18:14:40 +01002362 int cpu;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002363
2364 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002365 amd64_warn("%s: error allocating mask\n", __func__);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002366 return false;
2367 }
2368
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002369 get_cpus_on_this_dct_cpumask(cmask, nid);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002370
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002371 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2372
2373 for_each_cpu(cpu, cmask) {
2374
Borislav Petkov50542252009-12-11 18:14:40 +01002375 struct msr *reg = per_cpu_ptr(msrs, cpu);
2376
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002377 if (on) {
Borislav Petkov50542252009-12-11 18:14:40 +01002378 if (reg->l & K8_MSR_MCGCTL_NBE)
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002379 s->flags.nb_mce_enable = 1;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002380
Borislav Petkov50542252009-12-11 18:14:40 +01002381 reg->l |= K8_MSR_MCGCTL_NBE;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002382 } else {
2383 /*
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002384 * Turn off NB MCE reporting only when it was off before
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002385 */
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002386 if (!s->flags.nb_mce_enable)
Borislav Petkov50542252009-12-11 18:14:40 +01002387 reg->l &= ~K8_MSR_MCGCTL_NBE;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002388 }
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002389 }
2390 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2391
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002392 free_cpumask_var(cmask);
2393
2394 return 0;
2395}
2396
Borislav Petkov2299ef72010-10-15 17:44:04 +02002397static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2398 struct pci_dev *F3)
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002399{
Borislav Petkov2299ef72010-10-15 17:44:04 +02002400 bool ret = true;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002401 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2402
Borislav Petkov2299ef72010-10-15 17:44:04 +02002403 if (toggle_ecc_err_reporting(s, nid, ON)) {
2404 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2405 return false;
2406 }
2407
2408 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002409
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002410 /* turn on UECCEn and CECCEn bits */
2411 s->old_nbctl = value & mask;
2412 s->nbctl_valid = true;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002413
2414 value |= mask;
Borislav Petkovb2b0c602010-10-08 18:32:29 +02002415 amd64_write_pci_cfg(F3, K8_NBCTL, value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002416
Borislav Petkov2299ef72010-10-15 17:44:04 +02002417 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002418
Borislav Petkov2299ef72010-10-15 17:44:04 +02002419 debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2420 nid, value,
2421 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002422
2423 if (!(value & K8_NBCFG_ECC_ENABLE)) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002424 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002425
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002426 s->flags.nb_ecc_prev = 0;
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002427
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002428 /* Attempt to turn on DRAM ECC Enable */
2429 value |= K8_NBCFG_ECC_ENABLE;
Borislav Petkovb2b0c602010-10-08 18:32:29 +02002430 amd64_write_pci_cfg(F3, K8_NBCFG, value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002431
Borislav Petkov2299ef72010-10-15 17:44:04 +02002432 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002433
2434 if (!(value & K8_NBCFG_ECC_ENABLE)) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002435 amd64_warn("Hardware rejected DRAM ECC enable,"
2436 "check memory DIMM configuration.\n");
Borislav Petkov2299ef72010-10-15 17:44:04 +02002437 ret = false;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002438 } else {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002439 amd64_info("Hardware accepted DRAM ECC Enable\n");
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002440 }
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002441 } else {
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002442 s->flags.nb_ecc_prev = 1;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002443 }
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002444
Borislav Petkov2299ef72010-10-15 17:44:04 +02002445 debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2446 nid, value,
2447 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002448
Borislav Petkov2299ef72010-10-15 17:44:04 +02002449 return ret;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002450}
2451
Borislav Petkov360b7f32010-10-15 19:25:38 +02002452static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2453 struct pci_dev *F3)
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002454{
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002455 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2456
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002457 if (!s->nbctl_valid)
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002458 return;
2459
Borislav Petkov360b7f32010-10-15 19:25:38 +02002460 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002461 value &= ~mask;
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002462 value |= s->old_nbctl;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002463
Borislav Petkovb2b0c602010-10-08 18:32:29 +02002464 amd64_write_pci_cfg(F3, K8_NBCTL, value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002465
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002466 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2467 if (!s->flags.nb_ecc_prev) {
Borislav Petkov360b7f32010-10-15 19:25:38 +02002468 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002469 value &= ~K8_NBCFG_ECC_ENABLE;
Borislav Petkovb2b0c602010-10-08 18:32:29 +02002470 amd64_write_pci_cfg(F3, K8_NBCFG, value);
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002471 }
2472
2473 /* restore the NB Enable MCGCTL bit */
Borislav Petkov2299ef72010-10-15 17:44:04 +02002474 if (toggle_ecc_err_reporting(s, nid, OFF))
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002475 amd64_warn("Error restoring NB MCGCTL settings!\n");
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002476}
2477
Doug Thompsonf9431992009-04-27 19:46:08 +02002478/*
Borislav Petkov2299ef72010-10-15 17:44:04 +02002479 * EDAC requires that the BIOS have ECC enabled before
2480 * taking over the processing of ECC errors. A command line
2481 * option allows to force-enable hardware ECC later in
2482 * enable_ecc_error_reporting().
Doug Thompsonf9431992009-04-27 19:46:08 +02002483 */
Borislav Petkovcab4d272010-02-11 17:15:57 +01002484static const char *ecc_msg =
2485 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2486 " Either enable ECC checking or force module loading by setting "
2487 "'ecc_enable_override'.\n"
2488 " (Note that use of the override may cause unknown side effects.)\n";
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002489
Borislav Petkov2299ef72010-10-15 17:44:04 +02002490static bool ecc_enabled(struct pci_dev *F3, u8 nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002491{
2492 u32 value;
Borislav Petkov2299ef72010-10-15 17:44:04 +02002493 u8 ecc_en = 0;
Borislav Petkov06724532009-09-16 13:05:46 +02002494 bool nb_mce_en = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002495
Borislav Petkov2299ef72010-10-15 17:44:04 +02002496 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
Doug Thompsonf9431992009-04-27 19:46:08 +02002497
Borislav Petkov2299ef72010-10-15 17:44:04 +02002498 ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
2499 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
Doug Thompsonf9431992009-04-27 19:46:08 +02002500
Borislav Petkov2299ef72010-10-15 17:44:04 +02002501 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
Borislav Petkov06724532009-09-16 13:05:46 +02002502 if (!nb_mce_en)
Borislav Petkov2299ef72010-10-15 17:44:04 +02002503 amd64_notice("NB MCE bank disabled, set MSR "
2504 "0x%08x[4] on node %d to enable.\n",
2505 MSR_IA32_MCG_CTL, nid);
Doug Thompsonf9431992009-04-27 19:46:08 +02002506
Borislav Petkov2299ef72010-10-15 17:44:04 +02002507 if (!ecc_en || !nb_mce_en) {
2508 amd64_notice("%s", ecc_msg);
2509 return false;
Borislav Petkov43f5e682009-12-21 18:55:18 +01002510 }
Borislav Petkov2299ef72010-10-15 17:44:04 +02002511 return true;
Doug Thompsonf9431992009-04-27 19:46:08 +02002512}
2513
Doug Thompson7d6034d2009-04-27 20:01:01 +02002514struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2515 ARRAY_SIZE(amd64_inj_attrs) +
2516 1];
2517
2518struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2519
Borislav Petkov360b7f32010-10-15 19:25:38 +02002520static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
Doug Thompson7d6034d2009-04-27 20:01:01 +02002521{
2522 unsigned int i = 0, j = 0;
2523
2524 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2525 sysfs_attrs[i] = amd64_dbg_attrs[i];
2526
Borislav Petkova135cef2010-11-26 19:24:44 +01002527 if (boot_cpu_data.x86 >= 0x10)
2528 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2529 sysfs_attrs[i] = amd64_inj_attrs[j];
Doug Thompson7d6034d2009-04-27 20:01:01 +02002530
2531 sysfs_attrs[i] = terminator;
2532
2533 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2534}
2535
Borislav Petkov360b7f32010-10-15 19:25:38 +02002536static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
Doug Thompson7d6034d2009-04-27 20:01:01 +02002537{
2538 struct amd64_pvt *pvt = mci->pvt_info;
2539
2540 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2541 mci->edac_ctl_cap = EDAC_FLAG_NONE;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002542
2543 if (pvt->nbcap & K8_NBCAP_SECDED)
2544 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2545
2546 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2547 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2548
2549 mci->edac_cap = amd64_determine_edac_cap(pvt);
2550 mci->mod_name = EDAC_MOD_STR;
2551 mci->mod_ver = EDAC_AMD64_VERSION;
Borislav Petkov0092b202010-10-01 19:20:05 +02002552 mci->ctl_name = pvt->ctl_name;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002553 mci->dev_name = pci_name(pvt->F2);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002554 mci->ctl_page_to_phys = NULL;
2555
Doug Thompson7d6034d2009-04-27 20:01:01 +02002556 /* memory scrubber interface */
2557 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2558 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2559}
2560
Borislav Petkov0092b202010-10-01 19:20:05 +02002561/*
2562 * returns a pointer to the family descriptor on success, NULL otherwise.
2563 */
2564static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
Borislav Petkov395ae782010-10-01 18:38:19 +02002565{
Borislav Petkov0092b202010-10-01 19:20:05 +02002566 u8 fam = boot_cpu_data.x86;
2567 struct amd64_family_type *fam_type = NULL;
2568
2569 switch (fam) {
Borislav Petkov395ae782010-10-01 18:38:19 +02002570 case 0xf:
Borislav Petkov0092b202010-10-01 19:20:05 +02002571 fam_type = &amd64_family_types[K8_CPUS];
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002572 pvt->ops = &amd64_family_types[K8_CPUS].ops;
Borislav Petkov0092b202010-10-01 19:20:05 +02002573 pvt->ctl_name = fam_type->ctl_name;
2574 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
Borislav Petkov395ae782010-10-01 18:38:19 +02002575 break;
2576 case 0x10:
Borislav Petkov0092b202010-10-01 19:20:05 +02002577 fam_type = &amd64_family_types[F10_CPUS];
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002578 pvt->ops = &amd64_family_types[F10_CPUS].ops;
Borislav Petkov0092b202010-10-01 19:20:05 +02002579 pvt->ctl_name = fam_type->ctl_name;
2580 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
Borislav Petkov395ae782010-10-01 18:38:19 +02002581 break;
2582
2583 default:
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002584 amd64_err("Unsupported family!\n");
Borislav Petkov0092b202010-10-01 19:20:05 +02002585 return NULL;
Borislav Petkov395ae782010-10-01 18:38:19 +02002586 }
Borislav Petkov0092b202010-10-01 19:20:05 +02002587
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002588 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2589
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002590 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
Borislav Petkov0092b202010-10-01 19:20:05 +02002591 (fam == 0xf ?
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002592 (pvt->ext_model >= K8_REV_F ? "revF or later "
2593 : "revE or earlier ")
2594 : ""), pvt->mc_node_id);
Borislav Petkov0092b202010-10-01 19:20:05 +02002595 return fam_type;
Borislav Petkov395ae782010-10-01 18:38:19 +02002596}
2597
Borislav Petkov2299ef72010-10-15 17:44:04 +02002598static int amd64_init_one_instance(struct pci_dev *F2)
Doug Thompson7d6034d2009-04-27 20:01:01 +02002599{
2600 struct amd64_pvt *pvt = NULL;
Borislav Petkov0092b202010-10-01 19:20:05 +02002601 struct amd64_family_type *fam_type = NULL;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002602 struct mem_ctl_info *mci = NULL;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002603 int err = 0, ret;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002604 u8 nid = get_node_id(F2);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002605
2606 ret = -ENOMEM;
2607 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2608 if (!pvt)
Borislav Petkov360b7f32010-10-15 19:25:38 +02002609 goto err_ret;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002610
Borislav Petkov360b7f32010-10-15 19:25:38 +02002611 pvt->mc_node_id = nid;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002612 pvt->F2 = F2;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002613
Borislav Petkov395ae782010-10-01 18:38:19 +02002614 ret = -EINVAL;
Borislav Petkov0092b202010-10-01 19:20:05 +02002615 fam_type = amd64_per_family_init(pvt);
2616 if (!fam_type)
Borislav Petkov395ae782010-10-01 18:38:19 +02002617 goto err_free;
2618
Doug Thompson7d6034d2009-04-27 20:01:01 +02002619 ret = -ENODEV;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002620 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002621 if (err)
2622 goto err_free;
2623
Borislav Petkov360b7f32010-10-15 19:25:38 +02002624 read_mc_regs(pvt);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002625
Doug Thompson7d6034d2009-04-27 20:01:01 +02002626 /*
2627 * We need to determine how many memory channels there are. Then use
2628 * that information for calculating the size of the dynamic instance
Borislav Petkov360b7f32010-10-15 19:25:38 +02002629 * tables in the 'mci' structure.
Doug Thompson7d6034d2009-04-27 20:01:01 +02002630 */
Borislav Petkov360b7f32010-10-15 19:25:38 +02002631 ret = -EINVAL;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002632 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2633 if (pvt->channel_count < 0)
Borislav Petkov360b7f32010-10-15 19:25:38 +02002634 goto err_siblings;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002635
2636 ret = -ENOMEM;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002637 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, nid);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002638 if (!mci)
Borislav Petkov360b7f32010-10-15 19:25:38 +02002639 goto err_siblings;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002640
2641 mci->pvt_info = pvt;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002642 mci->dev = &pvt->F2->dev;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002643
Borislav Petkov360b7f32010-10-15 19:25:38 +02002644 setup_mci_misc_attrs(mci);
2645
2646 if (init_csrows(mci))
Doug Thompson7d6034d2009-04-27 20:01:01 +02002647 mci->edac_cap = EDAC_FLAG_NONE;
2648
Borislav Petkov360b7f32010-10-15 19:25:38 +02002649 set_mc_sysfs_attrs(mci);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002650
2651 ret = -ENODEV;
2652 if (edac_mc_add_mc(mci)) {
2653 debugf1("failed edac_mc_add_mc()\n");
2654 goto err_add_mc;
2655 }
2656
Borislav Petkov549d0422009-07-24 13:51:42 +02002657 /* register stuff with EDAC MCE */
2658 if (report_gart_errors)
2659 amd_report_gart_errors(true);
2660
2661 amd_register_ecc_decoder(amd64_decode_bus_error);
2662
Borislav Petkov360b7f32010-10-15 19:25:38 +02002663 mcis[nid] = mci;
2664
2665 atomic_inc(&drv_instances);
2666
Doug Thompson7d6034d2009-04-27 20:01:01 +02002667 return 0;
2668
2669err_add_mc:
2670 edac_mc_free(mci);
2671
Borislav Petkov360b7f32010-10-15 19:25:38 +02002672err_siblings:
2673 free_mc_sibling_devs(pvt);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002674
Borislav Petkov360b7f32010-10-15 19:25:38 +02002675err_free:
2676 kfree(pvt);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002677
Borislav Petkov360b7f32010-10-15 19:25:38 +02002678err_ret:
Doug Thompson7d6034d2009-04-27 20:01:01 +02002679 return ret;
2680}
2681
Borislav Petkov2299ef72010-10-15 17:44:04 +02002682static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002683 const struct pci_device_id *mc_type)
Doug Thompson7d6034d2009-04-27 20:01:01 +02002684{
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002685 u8 nid = get_node_id(pdev);
Borislav Petkov2299ef72010-10-15 17:44:04 +02002686 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002687 struct ecc_settings *s;
Borislav Petkov2299ef72010-10-15 17:44:04 +02002688 int ret = 0;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002689
Doug Thompson7d6034d2009-04-27 20:01:01 +02002690 ret = pci_enable_device(pdev);
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002691 if (ret < 0) {
Doug Thompson7d6034d2009-04-27 20:01:01 +02002692 debugf0("ret=%d\n", ret);
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002693 return -EIO;
2694 }
2695
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002696 ret = -ENOMEM;
2697 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2698 if (!s)
Borislav Petkov2299ef72010-10-15 17:44:04 +02002699 goto err_out;
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002700
2701 ecc_stngs[nid] = s;
2702
Borislav Petkov2299ef72010-10-15 17:44:04 +02002703 if (!ecc_enabled(F3, nid)) {
2704 ret = -ENODEV;
2705
2706 if (!ecc_enable_override)
2707 goto err_enable;
2708
2709 amd64_warn("Forcing ECC on!\n");
2710
2711 if (!enable_ecc_error_reporting(s, nid, F3))
2712 goto err_enable;
2713 }
2714
2715 ret = amd64_init_one_instance(pdev);
Borislav Petkov360b7f32010-10-15 19:25:38 +02002716 if (ret < 0) {
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002717 amd64_err("Error probing instance: %d\n", nid);
Borislav Petkov360b7f32010-10-15 19:25:38 +02002718 restore_ecc_error_reporting(s, nid, F3);
2719 }
Doug Thompson7d6034d2009-04-27 20:01:01 +02002720
2721 return ret;
Borislav Petkov2299ef72010-10-15 17:44:04 +02002722
2723err_enable:
2724 kfree(s);
2725 ecc_stngs[nid] = NULL;
2726
2727err_out:
2728 return ret;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002729}
2730
2731static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2732{
2733 struct mem_ctl_info *mci;
2734 struct amd64_pvt *pvt;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002735 u8 nid = get_node_id(pdev);
2736 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2737 struct ecc_settings *s = ecc_stngs[nid];
Doug Thompson7d6034d2009-04-27 20:01:01 +02002738
2739 /* Remove from EDAC CORE tracking list */
2740 mci = edac_mc_del_mc(&pdev->dev);
2741 if (!mci)
2742 return;
2743
2744 pvt = mci->pvt_info;
2745
Borislav Petkov360b7f32010-10-15 19:25:38 +02002746 restore_ecc_error_reporting(s, nid, F3);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002747
Borislav Petkov360b7f32010-10-15 19:25:38 +02002748 free_mc_sibling_devs(pvt);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002749
Borislav Petkov549d0422009-07-24 13:51:42 +02002750 /* unregister from EDAC MCE */
2751 amd_report_gart_errors(false);
2752 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2753
Borislav Petkov360b7f32010-10-15 19:25:38 +02002754 kfree(ecc_stngs[nid]);
2755 ecc_stngs[nid] = NULL;
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002756
Doug Thompson7d6034d2009-04-27 20:01:01 +02002757 /* Free the EDAC CORE resources */
Borislav Petkov8f68ed92009-12-21 15:15:59 +01002758 mci->pvt_info = NULL;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002759 mcis[nid] = NULL;
Borislav Petkov8f68ed92009-12-21 15:15:59 +01002760
2761 kfree(pvt);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002762 edac_mc_free(mci);
2763}
2764
2765/*
2766 * This table is part of the interface for loading drivers for PCI devices. The
2767 * PCI core identifies what devices are on a system during boot, and then
2768 * inquiry this table to see if this driver is for a given device found.
2769 */
2770static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2771 {
2772 .vendor = PCI_VENDOR_ID_AMD,
2773 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2774 .subvendor = PCI_ANY_ID,
2775 .subdevice = PCI_ANY_ID,
2776 .class = 0,
2777 .class_mask = 0,
Doug Thompson7d6034d2009-04-27 20:01:01 +02002778 },
2779 {
2780 .vendor = PCI_VENDOR_ID_AMD,
2781 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2782 .subvendor = PCI_ANY_ID,
2783 .subdevice = PCI_ANY_ID,
2784 .class = 0,
2785 .class_mask = 0,
Doug Thompson7d6034d2009-04-27 20:01:01 +02002786 },
Doug Thompson7d6034d2009-04-27 20:01:01 +02002787 {0, }
2788};
2789MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2790
2791static struct pci_driver amd64_pci_driver = {
2792 .name = EDAC_MOD_STR,
Borislav Petkov2299ef72010-10-15 17:44:04 +02002793 .probe = amd64_probe_one_instance,
Doug Thompson7d6034d2009-04-27 20:01:01 +02002794 .remove = __devexit_p(amd64_remove_one_instance),
2795 .id_table = amd64_pci_table,
2796};
2797
Borislav Petkov360b7f32010-10-15 19:25:38 +02002798static void setup_pci_device(void)
Doug Thompson7d6034d2009-04-27 20:01:01 +02002799{
2800 struct mem_ctl_info *mci;
2801 struct amd64_pvt *pvt;
2802
2803 if (amd64_ctl_pci)
2804 return;
2805
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002806 mci = mcis[0];
Doug Thompson7d6034d2009-04-27 20:01:01 +02002807 if (mci) {
2808
2809 pvt = mci->pvt_info;
2810 amd64_ctl_pci =
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002811 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002812
2813 if (!amd64_ctl_pci) {
2814 pr_warning("%s(): Unable to create PCI control\n",
2815 __func__);
2816
2817 pr_warning("%s(): PCI error report via EDAC not set\n",
2818 __func__);
2819 }
2820 }
2821}
2822
2823static int __init amd64_edac_init(void)
2824{
Borislav Petkov360b7f32010-10-15 19:25:38 +02002825 int err = -ENODEV;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002826
2827 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2828
2829 opstate_init();
2830
Hans Rosenfeld9653a5c2010-10-29 17:14:31 +02002831 if (amd_cache_northbridges() < 0)
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002832 goto err_ret;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002833
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002834 err = -ENOMEM;
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002835 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2836 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
Borislav Petkov360b7f32010-10-15 19:25:38 +02002837 if (!(mcis && ecc_stngs))
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002838 goto err_ret;
2839
Borislav Petkov50542252009-12-11 18:14:40 +01002840 msrs = msrs_alloc();
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002841 if (!msrs)
Borislav Petkov360b7f32010-10-15 19:25:38 +02002842 goto err_free;
Borislav Petkov50542252009-12-11 18:14:40 +01002843
Doug Thompson7d6034d2009-04-27 20:01:01 +02002844 err = pci_register_driver(&amd64_pci_driver);
2845 if (err)
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002846 goto err_pci;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002847
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002848 err = -ENODEV;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002849 if (!atomic_read(&drv_instances))
2850 goto err_no_instances;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002851
Borislav Petkov360b7f32010-10-15 19:25:38 +02002852 setup_pci_device();
2853 return 0;
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002854
Borislav Petkov360b7f32010-10-15 19:25:38 +02002855err_no_instances:
Doug Thompson7d6034d2009-04-27 20:01:01 +02002856 pci_unregister_driver(&amd64_pci_driver);
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002857
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002858err_pci:
2859 msrs_free(msrs);
2860 msrs = NULL;
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002861
Borislav Petkov360b7f32010-10-15 19:25:38 +02002862err_free:
2863 kfree(mcis);
2864 mcis = NULL;
2865
2866 kfree(ecc_stngs);
2867 ecc_stngs = NULL;
2868
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002869err_ret:
Doug Thompson7d6034d2009-04-27 20:01:01 +02002870 return err;
2871}
2872
2873static void __exit amd64_edac_exit(void)
2874{
2875 if (amd64_ctl_pci)
2876 edac_pci_release_generic_ctl(amd64_ctl_pci);
2877
2878 pci_unregister_driver(&amd64_pci_driver);
Borislav Petkov50542252009-12-11 18:14:40 +01002879
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002880 kfree(ecc_stngs);
2881 ecc_stngs = NULL;
2882
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002883 kfree(mcis);
2884 mcis = NULL;
2885
Borislav Petkov50542252009-12-11 18:14:40 +01002886 msrs_free(msrs);
2887 msrs = NULL;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002888}
2889
2890module_init(amd64_edac_init);
2891module_exit(amd64_edac_exit);
2892
2893MODULE_LICENSE("GPL");
2894MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2895 "Dave Peterson, Thayne Harbaugh");
2896MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2897 EDAC_AMD64_VERSION);
2898
2899module_param(edac_op_state, int, 0444);
2900MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");