blob: 00f98b9f6df1e46eef8a73605bc39205b69a0f47 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
Linus Torvalds1da177e2005-04-16 15:20:36 -070089#include <linux/slab.h>
90#include <linux/mm.h>
Randy Dunlapc9cf5522006-06-27 02:53:52 -070091#include <linux/poison.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070092#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080097#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070098#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700105#include <linux/string.h>
Andrew Morton138ae662006-12-06 20:36:41 -0800106#include <linux/uaccess.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700107#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800108#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800109#include <linux/mutex.h>
Akinobu Mita8a8b6502006-12-08 02:39:44 -0800110#include <linux/fault-inject.h>
Ingo Molnare7eebaf2006-06-27 02:54:55 -0700111#include <linux/rtmutex.h>
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800112#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700113
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
120 * SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 */
128
129#ifdef CONFIG_DEBUG_SLAB
130#define DEBUG 1
131#define STATS 1
132#define FORCED_DEBUG 1
133#else
134#define DEBUG 0
135#define STATS 0
136#define FORCED_DEBUG 0
137#endif
138
Linus Torvalds1da177e2005-04-16 15:20:36 -0700139/* Shouldn't this be in a header file somewhere? */
140#define BYTES_PER_WORD sizeof(void *)
141
142#ifndef cache_line_size
143#define cache_line_size() L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
153 * Note that this flag disables some debug features.
154 */
155#define ARCH_KMALLOC_MINALIGN 0
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
175# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800177 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700207typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212
Linus Torvalds1da177e2005-04-16 15:20:36 -0700213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800246 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800247 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800248 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249};
250
251/*
252 * struct array_cache
253 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700268 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275};
276
Andrew Mortona737b3e2006-03-22 00:08:11 -0800277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800284 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285};
286
287/*
Christoph Lametere498be72005-09-09 13:03:32 -0700288 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 */
290struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800295 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800296 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302};
303
Christoph Lametere498be72005-09-09 13:03:32 -0700304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700312
Christoph Lametered11d9e2006-06-30 01:55:45 -0700313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -0700317static int enable_cpucache(struct kmem_cache *cachep);
David Howells65f27f32006-11-22 14:55:48 +0000318static void cache_reap(struct work_struct *unused);
Christoph Lametered11d9e2006-06-30 01:55:45 -0700319
Christoph Lametere498be72005-09-09 13:03:32 -0700320/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700323 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700324static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700325{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800326 extern void __bad_size(void);
327
Christoph Lametere498be72005-09-09 13:03:32 -0700328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800338 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700339 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800340 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700341 return 0;
342}
343
Ingo Molnare0a42722006-06-23 02:03:46 -0700344static int slab_early_init = 1;
345
Christoph Lametere498be72005-09-09 13:03:32 -0700346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
Pekka Enberg5295a742006-02-01 03:05:48 -0800349static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800356 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
Andrew Mortona737b3e2006-03-22 00:08:11 -0800362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700366 } while (0)
367
Andrew Mortona737b3e2006-03-22 00:08:11 -0800368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374
375/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800376 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377 *
378 * manages a cache.
379 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800380
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800381struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800383 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800384/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800388
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800389 unsigned int buffer_size;
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800390 u32 reciprocal_buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800391/* 3) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800392 struct kmem_list3 *nodelists[MAX_NUMNODES];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800393
Andrew Mortona737b3e2006-03-22 00:08:11 -0800394 unsigned int flags; /* constant flags */
395 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800397/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800399 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700400
401 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800402 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700403
Andrew Mortona737b3e2006-03-22 00:08:11 -0800404 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800405 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800406 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800407 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800408 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700409
410 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800411 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700412
413 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800414 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800416/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800417 const char *name;
418 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800420/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700421#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800422 unsigned long num_active;
423 unsigned long num_allocations;
424 unsigned long high_mark;
425 unsigned long grown;
426 unsigned long reaped;
427 unsigned long errors;
428 unsigned long max_freeable;
429 unsigned long node_allocs;
430 unsigned long node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700431 unsigned long node_overflow;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800432 atomic_t allochit;
433 atomic_t allocmiss;
434 atomic_t freehit;
435 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436#endif
437#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800438 /*
439 * If debugging is enabled, then the allocator can add additional
440 * fields and/or padding to every object. buffer_size contains the total
441 * object size including these internal fields, the following two
442 * variables contain the offset to the user object and its size.
443 */
444 int obj_offset;
445 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700446#endif
447};
448
449#define CFLGS_OFF_SLAB (0x80000000UL)
450#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
451
452#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800453/*
454 * Optimization question: fewer reaps means less probability for unnessary
455 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100457 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458 * which could lock up otherwise freeable slabs.
459 */
460#define REAPTIMEOUT_CPUC (2*HZ)
461#define REAPTIMEOUT_LIST3 (4*HZ)
462
463#if STATS
464#define STATS_INC_ACTIVE(x) ((x)->num_active++)
465#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
466#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
467#define STATS_INC_GROWN(x) ((x)->grown++)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700468#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
Andrew Mortona737b3e2006-03-22 00:08:11 -0800469#define STATS_SET_HIGH(x) \
470 do { \
471 if ((x)->num_active > (x)->high_mark) \
472 (x)->high_mark = (x)->num_active; \
473 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700474#define STATS_INC_ERR(x) ((x)->errors++)
475#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700476#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700477#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800478#define STATS_SET_FREEABLE(x, i) \
479 do { \
480 if ((x)->max_freeable < i) \
481 (x)->max_freeable = i; \
482 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700483#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
484#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
485#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
486#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
487#else
488#define STATS_INC_ACTIVE(x) do { } while (0)
489#define STATS_DEC_ACTIVE(x) do { } while (0)
490#define STATS_INC_ALLOCED(x) do { } while (0)
491#define STATS_INC_GROWN(x) do { } while (0)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700492#define STATS_ADD_REAPED(x,y) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493#define STATS_SET_HIGH(x) do { } while (0)
494#define STATS_INC_ERR(x) do { } while (0)
495#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700496#define STATS_INC_NODEFREES(x) do { } while (0)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700497#define STATS_INC_ACOVERFLOW(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800498#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700499#define STATS_INC_ALLOCHIT(x) do { } while (0)
500#define STATS_INC_ALLOCMISS(x) do { } while (0)
501#define STATS_INC_FREEHIT(x) do { } while (0)
502#define STATS_INC_FREEMISS(x) do { } while (0)
503#endif
504
505#if DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -0700506
Andrew Mortona737b3e2006-03-22 00:08:11 -0800507/*
508 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700511 * the end of an object is aligned with the end of the real
512 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800513 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800515 * cachep->obj_offset: The real object.
516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800520static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800522 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700523}
524
Pekka Enberg343e0d72006-02-01 03:05:50 -0800525static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800527 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528}
529
Pekka Enberg343e0d72006-02-01 03:05:50 -0800530static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531{
532 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800533 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700534}
535
Pekka Enberg343e0d72006-02-01 03:05:50 -0800536static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700537{
538 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800540 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800541 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800542 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700543}
544
Pekka Enberg343e0d72006-02-01 03:05:50 -0800545static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700546{
547 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800548 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549}
550
551#else
552
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800553#define obj_offset(x) 0
554#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700555#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
556#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
557#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
558
559#endif
560
561/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700564 */
565#if defined(CONFIG_LARGE_ALLOCS)
566#define MAX_OBJ_ORDER 13 /* up to 32Mb */
567#define MAX_GFP_ORDER 13 /* up to 32Mb */
568#elif defined(CONFIG_MMU)
569#define MAX_OBJ_ORDER 5 /* 32 pages */
570#define MAX_GFP_ORDER 5 /* 32 pages */
571#else
572#define MAX_OBJ_ORDER 8 /* up to 1Mb */
573#define MAX_GFP_ORDER 8 /* up to 1Mb */
574#endif
575
576/*
577 * Do not go above this order unless 0 objects fit into the slab.
578 */
579#define BREAK_GFP_ORDER_HI 1
580#define BREAK_GFP_ORDER_LO 0
581static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582
Andrew Mortona737b3e2006-03-22 00:08:11 -0800583/*
584 * Functions for storing/retrieving the cachep and or slab from the page
585 * allocator. These are used to find the slab an obj belongs to. With kfree(),
586 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700587 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800588static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
589{
590 page->lru.next = (struct list_head *)cache;
591}
592
593static inline struct kmem_cache *page_get_cache(struct page *page)
594{
Nick Piggin84097512006-03-22 00:08:34 -0800595 if (unlikely(PageCompound(page)))
596 page = (struct page *)page_private(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700597 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800598 return (struct kmem_cache *)page->lru.next;
599}
600
601static inline void page_set_slab(struct page *page, struct slab *slab)
602{
603 page->lru.prev = (struct list_head *)slab;
604}
605
606static inline struct slab *page_get_slab(struct page *page)
607{
Nick Piggin84097512006-03-22 00:08:34 -0800608 if (unlikely(PageCompound(page)))
609 page = (struct page *)page_private(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700610 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800611 return (struct slab *)page->lru.prev;
612}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700613
Pekka Enberg6ed5eb22006-02-01 03:05:49 -0800614static inline struct kmem_cache *virt_to_cache(const void *obj)
615{
616 struct page *page = virt_to_page(obj);
617 return page_get_cache(page);
618}
619
620static inline struct slab *virt_to_slab(const void *obj)
621{
622 struct page *page = virt_to_page(obj);
623 return page_get_slab(page);
624}
625
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800626static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
627 unsigned int idx)
628{
629 return slab->s_mem + cache->buffer_size * idx;
630}
631
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800632/*
633 * We want to avoid an expensive divide : (offset / cache->buffer_size)
634 * Using the fact that buffer_size is a constant for a particular cache,
635 * we can replace (offset / cache->buffer_size) by
636 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
637 */
638static inline unsigned int obj_to_index(const struct kmem_cache *cache,
639 const struct slab *slab, void *obj)
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800640{
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800641 u32 offset = (obj - slab->s_mem);
642 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800643}
644
Andrew Mortona737b3e2006-03-22 00:08:11 -0800645/*
646 * These are the default caches for kmalloc. Custom caches can have other sizes.
647 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648struct cache_sizes malloc_sizes[] = {
649#define CACHE(x) { .cs_size = (x) },
650#include <linux/kmalloc_sizes.h>
651 CACHE(ULONG_MAX)
652#undef CACHE
653};
654EXPORT_SYMBOL(malloc_sizes);
655
656/* Must match cache_sizes above. Out of line to keep cache footprint low. */
657struct cache_names {
658 char *name;
659 char *name_dma;
660};
661
662static struct cache_names __initdata cache_names[] = {
663#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
664#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800665 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700666#undef CACHE
667};
668
669static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800670 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700671static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800672 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673
674/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800675static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800676 .batchcount = 1,
677 .limit = BOOT_CPUCACHE_ENTRIES,
678 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800679 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800680 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700681#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -0800682 .obj_size = sizeof(struct kmem_cache),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700683#endif
684};
685
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700686#define BAD_ALIEN_MAGIC 0x01020304ul
687
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200688#ifdef CONFIG_LOCKDEP
689
690/*
691 * Slab sometimes uses the kmalloc slabs to store the slab headers
692 * for other slabs "off slab".
693 * The locking for this is tricky in that it nests within the locks
694 * of all other slabs in a few places; to deal with this special
695 * locking we put on-slab caches into a separate lock-class.
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700696 *
697 * We set lock class for alien array caches which are up during init.
698 * The lock annotation will be lost if all cpus of a node goes down and
699 * then comes back up during hotplug
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200700 */
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700701static struct lock_class_key on_slab_l3_key;
702static struct lock_class_key on_slab_alc_key;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200703
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700704static inline void init_lock_keys(void)
705
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200706{
707 int q;
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700708 struct cache_sizes *s = malloc_sizes;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200709
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700710 while (s->cs_size != ULONG_MAX) {
711 for_each_node(q) {
712 struct array_cache **alc;
713 int r;
714 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
715 if (!l3 || OFF_SLAB(s->cs_cachep))
716 continue;
717 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
718 alc = l3->alien;
719 /*
720 * FIXME: This check for BAD_ALIEN_MAGIC
721 * should go away when common slab code is taught to
722 * work even without alien caches.
723 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
724 * for alloc_alien_cache,
725 */
726 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
727 continue;
728 for_each_node(r) {
729 if (alc[r])
730 lockdep_set_class(&alc[r]->lock,
731 &on_slab_alc_key);
732 }
733 }
734 s++;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200735 }
736}
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200737#else
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700738static inline void init_lock_keys(void)
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200739{
740}
741#endif
742
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -0800743/*
744 * 1. Guard access to the cache-chain.
745 * 2. Protect sanity of cpu_online_map against cpu hotplug events
746 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800747static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700748static struct list_head cache_chain;
749
750/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700751 * chicken and egg problem: delay the per-cpu array allocation
752 * until the general caches are up.
753 */
754static enum {
755 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700756 PARTIAL_AC,
757 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700758 FULL
759} g_cpucache_up;
760
Mike Kravetz39d24e62006-05-15 09:44:13 -0700761/*
762 * used by boot code to determine if it can use slab based allocator
763 */
764int slab_is_available(void)
765{
766 return g_cpucache_up == FULL;
767}
768
David Howells52bad642006-11-22 14:54:01 +0000769static DEFINE_PER_CPU(struct delayed_work, reap_work);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700770
Pekka Enberg343e0d72006-02-01 03:05:50 -0800771static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700772{
773 return cachep->array[smp_processor_id()];
774}
775
Andrew Mortona737b3e2006-03-22 00:08:11 -0800776static inline struct kmem_cache *__find_general_cachep(size_t size,
777 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700778{
779 struct cache_sizes *csizep = malloc_sizes;
780
781#if DEBUG
782 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800783 * kmem_cache_create(), or __kmalloc(), before
784 * the generic caches are initialized.
785 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700786 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700787#endif
788 while (size > csizep->cs_size)
789 csizep++;
790
791 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700792 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700793 * has cs_{dma,}cachep==NULL. Thus no special case
794 * for large kmalloc calls required.
795 */
Christoph Lameter4b51d662007-02-10 01:43:10 -0800796#ifdef CONFIG_ZONE_DMA
Linus Torvalds1da177e2005-04-16 15:20:36 -0700797 if (unlikely(gfpflags & GFP_DMA))
798 return csizep->cs_dmacachep;
Christoph Lameter4b51d662007-02-10 01:43:10 -0800799#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800 return csizep->cs_cachep;
801}
802
Adrian Bunkb2213852006-09-25 23:31:02 -0700803static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700804{
805 return __find_general_cachep(size, gfpflags);
806}
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700807
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800808static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700809{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800810 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
811}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700812
Andrew Mortona737b3e2006-03-22 00:08:11 -0800813/*
814 * Calculate the number of objects and left-over bytes for a given buffer size.
815 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800816static void cache_estimate(unsigned long gfporder, size_t buffer_size,
817 size_t align, int flags, size_t *left_over,
818 unsigned int *num)
819{
820 int nr_objs;
821 size_t mgmt_size;
822 size_t slab_size = PAGE_SIZE << gfporder;
823
824 /*
825 * The slab management structure can be either off the slab or
826 * on it. For the latter case, the memory allocated for a
827 * slab is used for:
828 *
829 * - The struct slab
830 * - One kmem_bufctl_t for each object
831 * - Padding to respect alignment of @align
832 * - @buffer_size bytes for each object
833 *
834 * If the slab management structure is off the slab, then the
835 * alignment will already be calculated into the size. Because
836 * the slabs are all pages aligned, the objects will be at the
837 * correct alignment when allocated.
838 */
839 if (flags & CFLGS_OFF_SLAB) {
840 mgmt_size = 0;
841 nr_objs = slab_size / buffer_size;
842
843 if (nr_objs > SLAB_LIMIT)
844 nr_objs = SLAB_LIMIT;
845 } else {
846 /*
847 * Ignore padding for the initial guess. The padding
848 * is at most @align-1 bytes, and @buffer_size is at
849 * least @align. In the worst case, this result will
850 * be one greater than the number of objects that fit
851 * into the memory allocation when taking the padding
852 * into account.
853 */
854 nr_objs = (slab_size - sizeof(struct slab)) /
855 (buffer_size + sizeof(kmem_bufctl_t));
856
857 /*
858 * This calculated number will be either the right
859 * amount, or one greater than what we want.
860 */
861 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
862 > slab_size)
863 nr_objs--;
864
865 if (nr_objs > SLAB_LIMIT)
866 nr_objs = SLAB_LIMIT;
867
868 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700869 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800870 *num = nr_objs;
871 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700872}
873
874#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
875
Andrew Mortona737b3e2006-03-22 00:08:11 -0800876static void __slab_error(const char *function, struct kmem_cache *cachep,
877 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700878{
879 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800880 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700881 dump_stack();
882}
883
Paul Menage3395ee02006-12-06 20:32:16 -0800884/*
885 * By default on NUMA we use alien caches to stage the freeing of
886 * objects allocated from other nodes. This causes massive memory
887 * inefficiencies when using fake NUMA setup to split memory into a
888 * large number of small nodes, so it can be disabled on the command
889 * line
890 */
891
892static int use_alien_caches __read_mostly = 1;
893static int __init noaliencache_setup(char *s)
894{
895 use_alien_caches = 0;
896 return 1;
897}
898__setup("noaliencache", noaliencache_setup);
899
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800900#ifdef CONFIG_NUMA
901/*
902 * Special reaping functions for NUMA systems called from cache_reap().
903 * These take care of doing round robin flushing of alien caches (containing
904 * objects freed on different nodes from which they were allocated) and the
905 * flushing of remote pcps by calling drain_node_pages.
906 */
907static DEFINE_PER_CPU(unsigned long, reap_node);
908
909static void init_reap_node(int cpu)
910{
911 int node;
912
913 node = next_node(cpu_to_node(cpu), node_online_map);
914 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800915 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800916
Daniel Yeisley7f6b8872006-11-02 22:07:14 -0800917 per_cpu(reap_node, cpu) = node;
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800918}
919
920static void next_reap_node(void)
921{
922 int node = __get_cpu_var(reap_node);
923
924 /*
925 * Also drain per cpu pages on remote zones
926 */
927 if (node != numa_node_id())
928 drain_node_pages(node);
929
930 node = next_node(node, node_online_map);
931 if (unlikely(node >= MAX_NUMNODES))
932 node = first_node(node_online_map);
933 __get_cpu_var(reap_node) = node;
934}
935
936#else
937#define init_reap_node(cpu) do { } while (0)
938#define next_reap_node(void) do { } while (0)
939#endif
940
Linus Torvalds1da177e2005-04-16 15:20:36 -0700941/*
942 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
943 * via the workqueue/eventd.
944 * Add the CPU number into the expiration time to minimize the possibility of
945 * the CPUs getting into lockstep and contending for the global cache chain
946 * lock.
947 */
948static void __devinit start_cpu_timer(int cpu)
949{
David Howells52bad642006-11-22 14:54:01 +0000950 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700951
952 /*
953 * When this gets called from do_initcalls via cpucache_init(),
954 * init_workqueues() has already run, so keventd will be setup
955 * at that time.
956 */
David Howells52bad642006-11-22 14:54:01 +0000957 if (keventd_up() && reap_work->work.func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800958 init_reap_node(cpu);
David Howells65f27f32006-11-22 14:55:48 +0000959 INIT_DELAYED_WORK(reap_work, cache_reap);
Arjan van de Ven2b284212006-12-10 02:21:28 -0800960 schedule_delayed_work_on(cpu, reap_work,
961 __round_jiffies_relative(HZ, cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700962 }
963}
964
Christoph Lametere498be72005-09-09 13:03:32 -0700965static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800966 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700967{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800968 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700969 struct array_cache *nc = NULL;
970
Christoph Lametere498be72005-09-09 13:03:32 -0700971 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972 if (nc) {
973 nc->avail = 0;
974 nc->limit = entries;
975 nc->batchcount = batchcount;
976 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700977 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700978 }
979 return nc;
980}
981
Christoph Lameter3ded1752006-03-25 03:06:44 -0800982/*
983 * Transfer objects in one arraycache to another.
984 * Locking must be handled by the caller.
985 *
986 * Return the number of entries transferred.
987 */
988static int transfer_objects(struct array_cache *to,
989 struct array_cache *from, unsigned int max)
990{
991 /* Figure out how many entries to transfer */
992 int nr = min(min(from->avail, max), to->limit - to->avail);
993
994 if (!nr)
995 return 0;
996
997 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
998 sizeof(void *) *nr);
999
1000 from->avail -= nr;
1001 to->avail += nr;
1002 to->touched = 1;
1003 return nr;
1004}
1005
Christoph Lameter765c4502006-09-27 01:50:08 -07001006#ifndef CONFIG_NUMA
1007
1008#define drain_alien_cache(cachep, alien) do { } while (0)
1009#define reap_alien(cachep, l3) do { } while (0)
1010
1011static inline struct array_cache **alloc_alien_cache(int node, int limit)
1012{
1013 return (struct array_cache **)BAD_ALIEN_MAGIC;
1014}
1015
1016static inline void free_alien_cache(struct array_cache **ac_ptr)
1017{
1018}
1019
1020static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1021{
1022 return 0;
1023}
1024
1025static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1026 gfp_t flags)
1027{
1028 return NULL;
1029}
1030
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001031static inline void *____cache_alloc_node(struct kmem_cache *cachep,
Christoph Lameter765c4502006-09-27 01:50:08 -07001032 gfp_t flags, int nodeid)
1033{
1034 return NULL;
1035}
1036
1037#else /* CONFIG_NUMA */
1038
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001039static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -08001040static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -08001041
Pekka Enberg5295a742006-02-01 03:05:48 -08001042static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -07001043{
1044 struct array_cache **ac_ptr;
Christoph Lameter8ef82862007-02-20 13:57:52 -08001045 int memsize = sizeof(void *) * nr_node_ids;
Christoph Lametere498be72005-09-09 13:03:32 -07001046 int i;
1047
1048 if (limit > 1)
1049 limit = 12;
1050 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1051 if (ac_ptr) {
1052 for_each_node(i) {
1053 if (i == node || !node_online(i)) {
1054 ac_ptr[i] = NULL;
1055 continue;
1056 }
1057 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1058 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001059 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -07001060 kfree(ac_ptr[i]);
1061 kfree(ac_ptr);
1062 return NULL;
1063 }
1064 }
1065 }
1066 return ac_ptr;
1067}
1068
Pekka Enberg5295a742006-02-01 03:05:48 -08001069static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -07001070{
1071 int i;
1072
1073 if (!ac_ptr)
1074 return;
Christoph Lametere498be72005-09-09 13:03:32 -07001075 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001076 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07001077 kfree(ac_ptr);
1078}
1079
Pekka Enberg343e0d72006-02-01 03:05:50 -08001080static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -08001081 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07001082{
1083 struct kmem_list3 *rl3 = cachep->nodelists[node];
1084
1085 if (ac->avail) {
1086 spin_lock(&rl3->list_lock);
Christoph Lametere00946f2006-03-25 03:06:45 -08001087 /*
1088 * Stuff objects into the remote nodes shared array first.
1089 * That way we could avoid the overhead of putting the objects
1090 * into the free lists and getting them back later.
1091 */
shin, jacob693f7d32006-04-28 10:54:37 -05001092 if (rl3->shared)
1093 transfer_objects(rl3->shared, ac, ac->limit);
Christoph Lametere00946f2006-03-25 03:06:45 -08001094
Christoph Lameterff694162005-09-22 21:44:02 -07001095 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001096 ac->avail = 0;
1097 spin_unlock(&rl3->list_lock);
1098 }
1099}
1100
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001101/*
1102 * Called from cache_reap() to regularly drain alien caches round robin.
1103 */
1104static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1105{
1106 int node = __get_cpu_var(reap_node);
1107
1108 if (l3->alien) {
1109 struct array_cache *ac = l3->alien[node];
Christoph Lametere00946f2006-03-25 03:06:45 -08001110
1111 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001112 __drain_alien_cache(cachep, ac, node);
1113 spin_unlock_irq(&ac->lock);
1114 }
1115 }
1116}
1117
Andrew Mortona737b3e2006-03-22 00:08:11 -08001118static void drain_alien_cache(struct kmem_cache *cachep,
1119 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -07001120{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001121 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001122 struct array_cache *ac;
1123 unsigned long flags;
1124
1125 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001126 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001127 if (ac) {
1128 spin_lock_irqsave(&ac->lock, flags);
1129 __drain_alien_cache(cachep, ac, i);
1130 spin_unlock_irqrestore(&ac->lock, flags);
1131 }
1132 }
1133}
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001134
Ingo Molnar873623d2006-07-13 14:44:38 +02001135static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001136{
1137 struct slab *slabp = virt_to_slab(objp);
1138 int nodeid = slabp->nodeid;
1139 struct kmem_list3 *l3;
1140 struct array_cache *alien = NULL;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001141 int node;
1142
1143 node = numa_node_id();
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001144
1145 /*
1146 * Make sure we are not freeing a object from another node to the array
1147 * cache on this cpu.
1148 */
Siddha, Suresh B62918a02007-05-02 19:27:18 +02001149 if (likely(slabp->nodeid == node))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001150 return 0;
1151
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001152 l3 = cachep->nodelists[node];
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001153 STATS_INC_NODEFREES(cachep);
1154 if (l3->alien && l3->alien[nodeid]) {
1155 alien = l3->alien[nodeid];
Ingo Molnar873623d2006-07-13 14:44:38 +02001156 spin_lock(&alien->lock);
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001157 if (unlikely(alien->avail == alien->limit)) {
1158 STATS_INC_ACOVERFLOW(cachep);
1159 __drain_alien_cache(cachep, alien, nodeid);
1160 }
1161 alien->entry[alien->avail++] = objp;
1162 spin_unlock(&alien->lock);
1163 } else {
1164 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1165 free_block(cachep, &objp, 1, nodeid);
1166 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1167 }
1168 return 1;
1169}
Christoph Lametere498be72005-09-09 13:03:32 -07001170#endif
1171
Chandra Seetharaman8c78f302006-07-30 03:03:35 -07001172static int __cpuinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001173 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001174{
1175 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001176 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001177 struct kmem_list3 *l3 = NULL;
1178 int node = cpu_to_node(cpu);
1179 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001180
1181 switch (action) {
1182 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001183 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001184 /*
1185 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001186 * alloc_arraycache's are going to use this list.
1187 * kmalloc_node allows us to add the slab to the right
1188 * kmem_list3 and not this cpu's kmem_list3
1189 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001190
Christoph Lametere498be72005-09-09 13:03:32 -07001191 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001192 /*
1193 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001194 * begin anything. Make sure some other cpu on this
1195 * node has not already allocated this
1196 */
1197 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001198 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1199 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001200 goto bad;
1201 kmem_list3_init(l3);
1202 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001203 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001204
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001205 /*
1206 * The l3s don't come and go as CPUs come and
1207 * go. cache_chain_mutex is sufficient
1208 * protection here.
1209 */
Christoph Lametere498be72005-09-09 13:03:32 -07001210 cachep->nodelists[node] = l3;
1211 }
1212
1213 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1214 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001215 (1 + nr_cpus_node(node)) *
1216 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001217 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1218 }
1219
Andrew Mortona737b3e2006-03-22 00:08:11 -08001220 /*
1221 * Now we can go ahead with allocating the shared arrays and
1222 * array caches
1223 */
Christoph Lametere498be72005-09-09 13:03:32 -07001224 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001225 struct array_cache *nc;
Eric Dumazet63109842007-05-06 14:49:28 -07001226 struct array_cache *shared = NULL;
Paul Menage3395ee02006-12-06 20:32:16 -08001227 struct array_cache **alien = NULL;
Tobias Klausercd105df2006-01-08 01:00:59 -08001228
Christoph Lametere498be72005-09-09 13:03:32 -07001229 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001230 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001231 if (!nc)
1232 goto bad;
Eric Dumazet63109842007-05-06 14:49:28 -07001233 if (cachep->shared) {
1234 shared = alloc_arraycache(node,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001235 cachep->shared * cachep->batchcount,
1236 0xbaadf00d);
Eric Dumazet63109842007-05-06 14:49:28 -07001237 if (!shared)
1238 goto bad;
1239 }
Paul Menage3395ee02006-12-06 20:32:16 -08001240 if (use_alien_caches) {
1241 alien = alloc_alien_cache(node, cachep->limit);
1242 if (!alien)
1243 goto bad;
1244 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001245 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001246 l3 = cachep->nodelists[node];
1247 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001248
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001249 spin_lock_irq(&l3->list_lock);
1250 if (!l3->shared) {
1251 /*
1252 * We are serialised from CPU_DEAD or
1253 * CPU_UP_CANCELLED by the cpucontrol lock
1254 */
1255 l3->shared = shared;
1256 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001257 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001258#ifdef CONFIG_NUMA
1259 if (!l3->alien) {
1260 l3->alien = alien;
1261 alien = NULL;
1262 }
1263#endif
1264 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001265 kfree(shared);
1266 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001267 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001268 break;
1269 case CPU_ONLINE:
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001270 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001271 start_cpu_timer(cpu);
1272 break;
1273#ifdef CONFIG_HOTPLUG_CPU
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001274 case CPU_DOWN_PREPARE:
1275 mutex_lock(&cache_chain_mutex);
1276 break;
1277 case CPU_DOWN_FAILED:
1278 mutex_unlock(&cache_chain_mutex);
1279 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001280 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001281 /*
1282 * Even if all the cpus of a node are down, we don't free the
1283 * kmem_list3 of any cache. This to avoid a race between
1284 * cpu_down, and a kmalloc allocation from another cpu for
1285 * memory from the node of the cpu going down. The list3
1286 * structure is usually allocated from kmem_cache_create() and
1287 * gets destroyed at kmem_cache_destroy().
1288 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001289 /* fall thru */
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001290#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001291 case CPU_UP_CANCELED:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001292 list_for_each_entry(cachep, &cache_chain, next) {
1293 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001294 struct array_cache *shared;
1295 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001296 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001297
Christoph Lametere498be72005-09-09 13:03:32 -07001298 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001299 /* cpu is dead; no one can alloc from it. */
1300 nc = cachep->array[cpu];
1301 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001302 l3 = cachep->nodelists[node];
1303
1304 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001305 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001306
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001307 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001308
1309 /* Free limit for this kmem_list3 */
1310 l3->free_limit -= cachep->batchcount;
1311 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001312 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001313
1314 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001315 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001316 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001317 }
Christoph Lametere498be72005-09-09 13:03:32 -07001318
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001319 shared = l3->shared;
1320 if (shared) {
Eric Dumazet63109842007-05-06 14:49:28 -07001321 free_block(cachep, shared->entry,
1322 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001323 l3->shared = NULL;
1324 }
Christoph Lametere498be72005-09-09 13:03:32 -07001325
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001326 alien = l3->alien;
1327 l3->alien = NULL;
1328
1329 spin_unlock_irq(&l3->list_lock);
1330
1331 kfree(shared);
1332 if (alien) {
1333 drain_alien_cache(cachep, alien);
1334 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001335 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001336free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001337 kfree(nc);
1338 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001339 /*
1340 * In the previous loop, all the objects were freed to
1341 * the respective cache's slabs, now we can go ahead and
1342 * shrink each nodelist to its limit.
1343 */
1344 list_for_each_entry(cachep, &cache_chain, next) {
1345 l3 = cachep->nodelists[node];
1346 if (!l3)
1347 continue;
Christoph Lametered11d9e2006-06-30 01:55:45 -07001348 drain_freelist(cachep, l3, l3->free_objects);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001349 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001350 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001352 }
1353 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001354bad:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001355 return NOTIFY_BAD;
1356}
1357
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001358static struct notifier_block __cpuinitdata cpucache_notifier = {
1359 &cpuup_callback, NULL, 0
1360};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001361
Christoph Lametere498be72005-09-09 13:03:32 -07001362/*
1363 * swap the static kmem_list3 with kmalloced memory
1364 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001365static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1366 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001367{
1368 struct kmem_list3 *ptr;
1369
Christoph Lametere498be72005-09-09 13:03:32 -07001370 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1371 BUG_ON(!ptr);
1372
1373 local_irq_disable();
1374 memcpy(ptr, list, sizeof(struct kmem_list3));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001375 /*
1376 * Do not assume that spinlocks can be initialized via memcpy:
1377 */
1378 spin_lock_init(&ptr->list_lock);
1379
Christoph Lametere498be72005-09-09 13:03:32 -07001380 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1381 cachep->nodelists[nodeid] = ptr;
1382 local_irq_enable();
1383}
1384
Andrew Mortona737b3e2006-03-22 00:08:11 -08001385/*
1386 * Initialisation. Called after the page allocator have been initialised and
1387 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001388 */
1389void __init kmem_cache_init(void)
1390{
1391 size_t left_over;
1392 struct cache_sizes *sizes;
1393 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001394 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001395 int order;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001396 int node;
Christoph Lametere498be72005-09-09 13:03:32 -07001397
Siddha, Suresh B62918a02007-05-02 19:27:18 +02001398 if (num_possible_nodes() == 1)
1399 use_alien_caches = 0;
1400
Christoph Lametere498be72005-09-09 13:03:32 -07001401 for (i = 0; i < NUM_INIT_LISTS; i++) {
1402 kmem_list3_init(&initkmem_list3[i]);
1403 if (i < MAX_NUMNODES)
1404 cache_cache.nodelists[i] = NULL;
1405 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001406
1407 /*
1408 * Fragmentation resistance on low memory - only use bigger
1409 * page orders on machines with more than 32MB of memory.
1410 */
1411 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1412 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1413
Linus Torvalds1da177e2005-04-16 15:20:36 -07001414 /* Bootstrap is tricky, because several objects are allocated
1415 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001416 * 1) initialize the cache_cache cache: it contains the struct
1417 * kmem_cache structures of all caches, except cache_cache itself:
1418 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001419 * Initially an __init data area is used for the head array and the
1420 * kmem_list3 structures, it's replaced with a kmalloc allocated
1421 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001422 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001423 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001424 * An __init data area is used for the head array.
1425 * 3) Create the remaining kmalloc caches, with minimally sized
1426 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001427 * 4) Replace the __init data head arrays for cache_cache and the first
1428 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001429 * 5) Replace the __init data for kmem_list3 for cache_cache and
1430 * the other cache's with kmalloc allocated memory.
1431 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432 */
1433
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001434 node = numa_node_id();
1435
Linus Torvalds1da177e2005-04-16 15:20:36 -07001436 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001437 INIT_LIST_HEAD(&cache_chain);
1438 list_add(&cache_cache.next, &cache_chain);
1439 cache_cache.colour_off = cache_line_size();
1440 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001441 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001442
Andrew Mortona737b3e2006-03-22 00:08:11 -08001443 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1444 cache_line_size());
Eric Dumazet6a2d7a92006-12-13 00:34:27 -08001445 cache_cache.reciprocal_buffer_size =
1446 reciprocal_value(cache_cache.buffer_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447
Jack Steiner07ed76b2006-03-07 21:55:46 -08001448 for (order = 0; order < MAX_ORDER; order++) {
1449 cache_estimate(order, cache_cache.buffer_size,
1450 cache_line_size(), 0, &left_over, &cache_cache.num);
1451 if (cache_cache.num)
1452 break;
1453 }
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001454 BUG_ON(!cache_cache.num);
Jack Steiner07ed76b2006-03-07 21:55:46 -08001455 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001456 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001457 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1458 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001459
1460 /* 2+3) create the kmalloc caches */
1461 sizes = malloc_sizes;
1462 names = cache_names;
1463
Andrew Mortona737b3e2006-03-22 00:08:11 -08001464 /*
1465 * Initialize the caches that provide memory for the array cache and the
1466 * kmem_list3 structures first. Without this, further allocations will
1467 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001468 */
1469
1470 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001471 sizes[INDEX_AC].cs_size,
1472 ARCH_KMALLOC_MINALIGN,
1473 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1474 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001475
Andrew Mortona737b3e2006-03-22 00:08:11 -08001476 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001477 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001478 kmem_cache_create(names[INDEX_L3].name,
1479 sizes[INDEX_L3].cs_size,
1480 ARCH_KMALLOC_MINALIGN,
1481 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1482 NULL, NULL);
1483 }
Christoph Lametere498be72005-09-09 13:03:32 -07001484
Ingo Molnare0a42722006-06-23 02:03:46 -07001485 slab_early_init = 0;
1486
Linus Torvalds1da177e2005-04-16 15:20:36 -07001487 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001488 /*
1489 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001490 * This should be particularly beneficial on SMP boxes, as it
1491 * eliminates "false sharing".
1492 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001493 * allow tighter packing of the smaller caches.
1494 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001495 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001496 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001497 sizes->cs_size,
1498 ARCH_KMALLOC_MINALIGN,
1499 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1500 NULL, NULL);
1501 }
Christoph Lameter4b51d662007-02-10 01:43:10 -08001502#ifdef CONFIG_ZONE_DMA
1503 sizes->cs_dmacachep = kmem_cache_create(
1504 names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001505 sizes->cs_size,
1506 ARCH_KMALLOC_MINALIGN,
1507 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1508 SLAB_PANIC,
1509 NULL, NULL);
Christoph Lameter4b51d662007-02-10 01:43:10 -08001510#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001511 sizes++;
1512 names++;
1513 }
1514 /* 4) Replace the bootstrap head arrays */
1515 {
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001516 struct array_cache *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001517
Linus Torvalds1da177e2005-04-16 15:20:36 -07001518 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001519
Linus Torvalds1da177e2005-04-16 15:20:36 -07001520 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001521 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1522 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001523 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001524 /*
1525 * Do not assume that spinlocks can be initialized via memcpy:
1526 */
1527 spin_lock_init(&ptr->lock);
1528
Linus Torvalds1da177e2005-04-16 15:20:36 -07001529 cache_cache.array[smp_processor_id()] = ptr;
1530 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001531
Linus Torvalds1da177e2005-04-16 15:20:36 -07001532 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001533
Linus Torvalds1da177e2005-04-16 15:20:36 -07001534 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001535 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001536 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001537 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001538 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001539 /*
1540 * Do not assume that spinlocks can be initialized via memcpy:
1541 */
1542 spin_lock_init(&ptr->lock);
1543
Christoph Lametere498be72005-09-09 13:03:32 -07001544 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001545 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001546 local_irq_enable();
1547 }
Christoph Lametere498be72005-09-09 13:03:32 -07001548 /* 5) Replace the bootstrap kmem_list3's */
1549 {
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001550 int nid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001551
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001552 /* Replace the static kmem_list3 structures for the boot cpu */
1553 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1554
1555 for_each_online_node(nid) {
Christoph Lametere498be72005-09-09 13:03:32 -07001556 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001557 &initkmem_list3[SIZE_AC + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001558
1559 if (INDEX_AC != INDEX_L3) {
1560 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001561 &initkmem_list3[SIZE_L3 + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001562 }
1563 }
1564 }
1565
1566 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001567 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001568 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001569 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001570 list_for_each_entry(cachep, &cache_chain, next)
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001571 if (enable_cpucache(cachep))
1572 BUG();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001573 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001574 }
1575
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -07001576 /* Annotate slab for lockdep -- annotate the malloc caches */
1577 init_lock_keys();
1578
1579
Linus Torvalds1da177e2005-04-16 15:20:36 -07001580 /* Done! */
1581 g_cpucache_up = FULL;
1582
Andrew Mortona737b3e2006-03-22 00:08:11 -08001583 /*
1584 * Register a cpu startup notifier callback that initializes
1585 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001586 */
1587 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001588
Andrew Mortona737b3e2006-03-22 00:08:11 -08001589 /*
1590 * The reap timers are started later, with a module init call: That part
1591 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001592 */
1593}
1594
1595static int __init cpucache_init(void)
1596{
1597 int cpu;
1598
Andrew Mortona737b3e2006-03-22 00:08:11 -08001599 /*
1600 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001601 */
Christoph Lametere498be72005-09-09 13:03:32 -07001602 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001603 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001604 return 0;
1605}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001606__initcall(cpucache_init);
1607
1608/*
1609 * Interface to system's page allocator. No need to hold the cache-lock.
1610 *
1611 * If we requested dmaable memory, we will get it. Even if we
1612 * did not request dmaable memory, we might get it, but that
1613 * would be relatively rare and ignorable.
1614 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001615static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001616{
1617 struct page *page;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001618 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001619 int i;
1620
Luke Yangd6fef9d2006-04-10 22:52:56 -07001621#ifndef CONFIG_MMU
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001622 /*
1623 * Nommu uses slab's for process anonymous memory allocations, and thus
1624 * requires __GFP_COMP to properly refcount higher order allocations
Luke Yangd6fef9d2006-04-10 22:52:56 -07001625 */
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001626 flags |= __GFP_COMP;
Luke Yangd6fef9d2006-04-10 22:52:56 -07001627#endif
Christoph Lameter765c4502006-09-27 01:50:08 -07001628
Christoph Lameter3c517a62006-12-06 20:33:29 -08001629 flags |= cachep->gfpflags;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001630
1631 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001632 if (!page)
1633 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001634
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001635 nr_pages = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001636 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
Christoph Lameter972d1a72006-09-25 23:31:51 -07001637 add_zone_page_state(page_zone(page),
1638 NR_SLAB_RECLAIMABLE, nr_pages);
1639 else
1640 add_zone_page_state(page_zone(page),
1641 NR_SLAB_UNRECLAIMABLE, nr_pages);
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001642 for (i = 0; i < nr_pages; i++)
1643 __SetPageSlab(page + i);
1644 return page_address(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001645}
1646
1647/*
1648 * Interface to system's page release.
1649 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001650static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001651{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001652 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001653 struct page *page = virt_to_page(addr);
1654 const unsigned long nr_freed = i;
1655
Christoph Lameter972d1a72006-09-25 23:31:51 -07001656 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1657 sub_zone_page_state(page_zone(page),
1658 NR_SLAB_RECLAIMABLE, nr_freed);
1659 else
1660 sub_zone_page_state(page_zone(page),
1661 NR_SLAB_UNRECLAIMABLE, nr_freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001662 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001663 BUG_ON(!PageSlab(page));
1664 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001665 page++;
1666 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001667 if (current->reclaim_state)
1668 current->reclaim_state->reclaimed_slab += nr_freed;
1669 free_pages((unsigned long)addr, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001670}
1671
1672static void kmem_rcu_free(struct rcu_head *head)
1673{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001674 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001675 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001676
1677 kmem_freepages(cachep, slab_rcu->addr);
1678 if (OFF_SLAB(cachep))
1679 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1680}
1681
1682#if DEBUG
1683
1684#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001685static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001686 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001687{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001688 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001689
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001690 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001691
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001692 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001693 return;
1694
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001695 *addr++ = 0x12345678;
1696 *addr++ = caller;
1697 *addr++ = smp_processor_id();
1698 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001699 {
1700 unsigned long *sptr = &caller;
1701 unsigned long svalue;
1702
1703 while (!kstack_end(sptr)) {
1704 svalue = *sptr++;
1705 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001706 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001707 size -= sizeof(unsigned long);
1708 if (size <= sizeof(unsigned long))
1709 break;
1710 }
1711 }
1712
1713 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001714 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001715}
1716#endif
1717
Pekka Enberg343e0d72006-02-01 03:05:50 -08001718static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001719{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001720 int size = obj_size(cachep);
1721 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001722
1723 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001724 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001725}
1726
1727static void dump_line(char *data, int offset, int limit)
1728{
1729 int i;
Dave Jonesaa83aa42006-09-29 01:59:51 -07001730 unsigned char error = 0;
1731 int bad_count = 0;
1732
Linus Torvalds1da177e2005-04-16 15:20:36 -07001733 printk(KERN_ERR "%03x:", offset);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001734 for (i = 0; i < limit; i++) {
1735 if (data[offset + i] != POISON_FREE) {
1736 error = data[offset + i];
1737 bad_count++;
1738 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001739 printk(" %02x", (unsigned char)data[offset + i]);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001740 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001741 printk("\n");
Dave Jonesaa83aa42006-09-29 01:59:51 -07001742
1743 if (bad_count == 1) {
1744 error ^= POISON_FREE;
1745 if (!(error & (error - 1))) {
1746 printk(KERN_ERR "Single bit error detected. Probably "
1747 "bad RAM.\n");
1748#ifdef CONFIG_X86
1749 printk(KERN_ERR "Run memtest86+ or a similar memory "
1750 "test tool.\n");
1751#else
1752 printk(KERN_ERR "Run a memory test tool.\n");
1753#endif
1754 }
1755 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001756}
1757#endif
1758
1759#if DEBUG
1760
Pekka Enberg343e0d72006-02-01 03:05:50 -08001761static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001762{
1763 int i, size;
1764 char *realobj;
1765
1766 if (cachep->flags & SLAB_RED_ZONE) {
1767 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001768 *dbg_redzone1(cachep, objp),
1769 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770 }
1771
1772 if (cachep->flags & SLAB_STORE_USER) {
1773 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001774 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001775 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001776 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001777 printk("\n");
1778 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001779 realobj = (char *)objp + obj_offset(cachep);
1780 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001781 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001782 int limit;
1783 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001784 if (i + limit > size)
1785 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001786 dump_line(realobj, i, limit);
1787 }
1788}
1789
Pekka Enberg343e0d72006-02-01 03:05:50 -08001790static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001791{
1792 char *realobj;
1793 int size, i;
1794 int lines = 0;
1795
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001796 realobj = (char *)objp + obj_offset(cachep);
1797 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001798
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001799 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001800 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001801 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001802 exp = POISON_END;
1803 if (realobj[i] != exp) {
1804 int limit;
1805 /* Mismatch ! */
1806 /* Print header */
1807 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001808 printk(KERN_ERR
David Howellse94a40c2007-04-02 23:46:28 +01001809 "Slab corruption: %s start=%p, len=%d\n",
1810 cachep->name, realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001811 print_objinfo(cachep, objp, 0);
1812 }
1813 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001814 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001815 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001816 if (i + limit > size)
1817 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001818 dump_line(realobj, i, limit);
1819 i += 16;
1820 lines++;
1821 /* Limit to 5 lines */
1822 if (lines > 5)
1823 break;
1824 }
1825 }
1826 if (lines != 0) {
1827 /* Print some data about the neighboring objects, if they
1828 * exist:
1829 */
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08001830 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001831 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001832
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001833 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001834 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001835 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001836 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001837 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001838 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001839 print_objinfo(cachep, objp, 2);
1840 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001841 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001842 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001843 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001844 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001845 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001846 print_objinfo(cachep, objp, 2);
1847 }
1848 }
1849}
1850#endif
1851
Linus Torvalds1da177e2005-04-16 15:20:36 -07001852#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001853/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001854 * slab_destroy_objs - destroy a slab and its objects
1855 * @cachep: cache pointer being destroyed
1856 * @slabp: slab pointer being destroyed
1857 *
1858 * Call the registered destructor for each object in a slab that is being
1859 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001860 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001861static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001862{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001863 int i;
1864 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001865 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001866
1867 if (cachep->flags & SLAB_POISON) {
1868#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001869 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1870 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001871 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001872 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001873 else
1874 check_poison_obj(cachep, objp);
1875#else
1876 check_poison_obj(cachep, objp);
1877#endif
1878 }
1879 if (cachep->flags & SLAB_RED_ZONE) {
1880 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1881 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001882 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001883 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1884 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001885 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001886 }
1887 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001888 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001889 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001890}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001891#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001892static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001893{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001894 if (cachep->dtor) {
1895 int i;
1896 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001897 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001898 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001899 }
1900 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001901}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001902#endif
1903
Randy Dunlap911851e2006-03-22 00:08:14 -08001904/**
1905 * slab_destroy - destroy and release all objects in a slab
1906 * @cachep: cache pointer being destroyed
1907 * @slabp: slab pointer being destroyed
1908 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001909 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001910 * Before calling the slab must have been unlinked from the cache. The
1911 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001912 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001913static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001914{
1915 void *addr = slabp->s_mem - slabp->colouroff;
1916
1917 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1919 struct slab_rcu *slab_rcu;
1920
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001921 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001922 slab_rcu->cachep = cachep;
1923 slab_rcu->addr = addr;
1924 call_rcu(&slab_rcu->head, kmem_rcu_free);
1925 } else {
1926 kmem_freepages(cachep, addr);
Ingo Molnar873623d2006-07-13 14:44:38 +02001927 if (OFF_SLAB(cachep))
1928 kmem_cache_free(cachep->slabp_cache, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001929 }
1930}
1931
Andrew Mortona737b3e2006-03-22 00:08:11 -08001932/*
1933 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1934 * size of kmem_list3.
1935 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001936static void set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001937{
1938 int node;
1939
1940 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001941 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001942 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001943 REAPTIMEOUT_LIST3 +
1944 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001945 }
1946}
1947
Christoph Lameter117f6eb2006-09-25 23:31:37 -07001948static void __kmem_cache_destroy(struct kmem_cache *cachep)
1949{
1950 int i;
1951 struct kmem_list3 *l3;
1952
1953 for_each_online_cpu(i)
1954 kfree(cachep->array[i]);
1955
1956 /* NUMA: free the list3 structures */
1957 for_each_online_node(i) {
1958 l3 = cachep->nodelists[i];
1959 if (l3) {
1960 kfree(l3->shared);
1961 free_alien_cache(l3->alien);
1962 kfree(l3);
1963 }
1964 }
1965 kmem_cache_free(&cache_cache, cachep);
1966}
1967
1968
Linus Torvalds1da177e2005-04-16 15:20:36 -07001969/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001970 * calculate_slab_order - calculate size (page order) of slabs
1971 * @cachep: pointer to the cache that is being created
1972 * @size: size of objects to be created in this cache.
1973 * @align: required alignment for the objects.
1974 * @flags: slab allocation flags
1975 *
1976 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001977 *
1978 * This could be made much more intelligent. For now, try to avoid using
1979 * high order pages for slabs. When the gfp() functions are more friendly
1980 * towards high-order requests, this should be changed.
1981 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001982static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001983 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001984{
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001985 unsigned long offslab_limit;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001986 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001987 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001988
Andrew Mortona737b3e2006-03-22 00:08:11 -08001989 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001990 unsigned int num;
1991 size_t remainder;
1992
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001993 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001994 if (!num)
1995 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001996
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001997 if (flags & CFLGS_OFF_SLAB) {
1998 /*
1999 * Max number of objs-per-slab for caches which
2000 * use off-slab slabs. Needed to avoid a possible
2001 * looping condition in cache_grow().
2002 */
2003 offslab_limit = size - sizeof(struct slab);
2004 offslab_limit /= sizeof(kmem_bufctl_t);
2005
2006 if (num > offslab_limit)
2007 break;
2008 }
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002009
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002010 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002011 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002012 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002013 left_over = remainder;
2014
2015 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002016 * A VFS-reclaimable slab tends to have most allocations
2017 * as GFP_NOFS and we really don't want to have to be allocating
2018 * higher-order pages when we are unable to shrink dcache.
2019 */
2020 if (flags & SLAB_RECLAIM_ACCOUNT)
2021 break;
2022
2023 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002024 * Large number of objects is good, but very large slabs are
2025 * currently bad for the gfp()s.
2026 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002027 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002028 break;
2029
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002030 /*
2031 * Acceptable internal fragmentation?
2032 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002033 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002034 break;
2035 }
2036 return left_over;
2037}
2038
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002039static int setup_cpu_cache(struct kmem_cache *cachep)
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002040{
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002041 if (g_cpucache_up == FULL)
2042 return enable_cpucache(cachep);
2043
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002044 if (g_cpucache_up == NONE) {
2045 /*
2046 * Note: the first kmem_cache_create must create the cache
2047 * that's used by kmalloc(24), otherwise the creation of
2048 * further caches will BUG().
2049 */
2050 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2051
2052 /*
2053 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2054 * the first cache, then we need to set up all its list3s,
2055 * otherwise the creation of further caches will BUG().
2056 */
2057 set_up_list3s(cachep, SIZE_AC);
2058 if (INDEX_AC == INDEX_L3)
2059 g_cpucache_up = PARTIAL_L3;
2060 else
2061 g_cpucache_up = PARTIAL_AC;
2062 } else {
2063 cachep->array[smp_processor_id()] =
2064 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2065
2066 if (g_cpucache_up == PARTIAL_AC) {
2067 set_up_list3s(cachep, SIZE_L3);
2068 g_cpucache_up = PARTIAL_L3;
2069 } else {
2070 int node;
2071 for_each_online_node(node) {
2072 cachep->nodelists[node] =
2073 kmalloc_node(sizeof(struct kmem_list3),
2074 GFP_KERNEL, node);
2075 BUG_ON(!cachep->nodelists[node]);
2076 kmem_list3_init(cachep->nodelists[node]);
2077 }
2078 }
2079 }
2080 cachep->nodelists[numa_node_id()]->next_reap =
2081 jiffies + REAPTIMEOUT_LIST3 +
2082 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2083
2084 cpu_cache_get(cachep)->avail = 0;
2085 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2086 cpu_cache_get(cachep)->batchcount = 1;
2087 cpu_cache_get(cachep)->touched = 0;
2088 cachep->batchcount = 1;
2089 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002090 return 0;
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002091}
2092
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002093/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002094 * kmem_cache_create - Create a cache.
2095 * @name: A string which is used in /proc/slabinfo to identify this cache.
2096 * @size: The size of objects to be created in this cache.
2097 * @align: The required alignment for the objects.
2098 * @flags: SLAB flags
2099 * @ctor: A constructor for the objects.
2100 * @dtor: A destructor for the objects.
2101 *
2102 * Returns a ptr to the cache on success, NULL on failure.
2103 * Cannot be called within a int, but can be interrupted.
2104 * The @ctor is run when new pages are allocated by the cache
2105 * and the @dtor is run before the pages are handed back.
2106 *
2107 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08002108 * the module calling this has to destroy the cache before getting unloaded.
2109 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002110 * The flags are
2111 *
2112 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2113 * to catch references to uninitialised memory.
2114 *
2115 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2116 * for buffer overruns.
2117 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002118 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2119 * cacheline. This can be beneficial if you're counting cycles as closely
2120 * as davem.
2121 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002122struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002123kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08002124 unsigned long flags,
2125 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08002126 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002127{
2128 size_t left_over, slab_size, ralign;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002129 struct kmem_cache *cachep = NULL, *pc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002130
2131 /*
2132 * Sanity checks... these are all serious usage bugs.
2133 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002134 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002135 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002136 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2137 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002138 BUG();
2139 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002140
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002141 /*
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002142 * We use cache_chain_mutex to ensure a consistent view of
2143 * cpu_online_map as well. Please see cpuup_callback
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002144 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002145 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002146
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002147 list_for_each_entry(pc, &cache_chain, next) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002148 char tmp;
2149 int res;
2150
2151 /*
2152 * This happens when the module gets unloaded and doesn't
2153 * destroy its slab cache and no-one else reuses the vmalloc
2154 * area of the module. Print a warning.
2155 */
Andrew Morton138ae662006-12-06 20:36:41 -08002156 res = probe_kernel_address(pc->name, tmp);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002157 if (res) {
2158 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002159 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002160 continue;
2161 }
2162
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002163 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002164 printk("kmem_cache_create: duplicate cache %s\n", name);
2165 dump_stack();
2166 goto oops;
2167 }
2168 }
2169
Linus Torvalds1da177e2005-04-16 15:20:36 -07002170#if DEBUG
2171 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2172 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2173 /* No constructor, but inital state check requested */
2174 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002175 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002176 flags &= ~SLAB_DEBUG_INITIAL;
2177 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002178#if FORCED_DEBUG
2179 /*
2180 * Enable redzoning and last user accounting, except for caches with
2181 * large objects, if the increased size would increase the object size
2182 * above the next power of two: caches with object sizes just above a
2183 * power of two have a significant amount of internal fragmentation.
2184 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002185 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002186 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002187 if (!(flags & SLAB_DESTROY_BY_RCU))
2188 flags |= SLAB_POISON;
2189#endif
2190 if (flags & SLAB_DESTROY_BY_RCU)
2191 BUG_ON(flags & SLAB_POISON);
2192#endif
2193 if (flags & SLAB_DESTROY_BY_RCU)
2194 BUG_ON(dtor);
2195
2196 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002197 * Always checks flags, a caller might be expecting debug support which
2198 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002199 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002200 BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002201
Andrew Mortona737b3e2006-03-22 00:08:11 -08002202 /*
2203 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002204 * unaligned accesses for some archs when redzoning is used, and makes
2205 * sure any on-slab bufctl's are also correctly aligned.
2206 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002207 if (size & (BYTES_PER_WORD - 1)) {
2208 size += (BYTES_PER_WORD - 1);
2209 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002210 }
2211
Andrew Mortona737b3e2006-03-22 00:08:11 -08002212 /* calculate the final buffer alignment: */
2213
Linus Torvalds1da177e2005-04-16 15:20:36 -07002214 /* 1) arch recommendation: can be overridden for debug */
2215 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002216 /*
2217 * Default alignment: as specified by the arch code. Except if
2218 * an object is really small, then squeeze multiple objects into
2219 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002220 */
2221 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002222 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002223 ralign /= 2;
2224 } else {
2225 ralign = BYTES_PER_WORD;
2226 }
Pekka Enbergca5f9702006-09-25 23:31:25 -07002227
2228 /*
2229 * Redzoning and user store require word alignment. Note this will be
2230 * overridden by architecture or caller mandated alignment if either
2231 * is greater than BYTES_PER_WORD.
2232 */
2233 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2234 ralign = BYTES_PER_WORD;
2235
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002236 /* 2) arch mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002237 if (ralign < ARCH_SLAB_MINALIGN) {
2238 ralign = ARCH_SLAB_MINALIGN;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002239 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002240 /* 3) caller mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002241 if (ralign < align) {
2242 ralign = align;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002243 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002244 /* disable debug if necessary */
2245 if (ralign > BYTES_PER_WORD)
2246 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002247 /*
Pekka Enbergca5f9702006-09-25 23:31:25 -07002248 * 4) Store it.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002249 */
2250 align = ralign;
2251
2252 /* Get cache's description obj. */
Christoph Lametere94b1762006-12-06 20:33:17 -08002253 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002254 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002255 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002256
2257#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002258 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002259
Pekka Enbergca5f9702006-09-25 23:31:25 -07002260 /*
2261 * Both debugging options require word-alignment which is calculated
2262 * into align above.
2263 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002264 if (flags & SLAB_RED_ZONE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002265 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002266 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002267 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268 }
2269 if (flags & SLAB_STORE_USER) {
Pekka Enbergca5f9702006-09-25 23:31:25 -07002270 /* user store requires one word storage behind the end of
2271 * the real object.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002272 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002273 size += BYTES_PER_WORD;
2274 }
2275#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002276 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002277 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2278 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002279 size = PAGE_SIZE;
2280 }
2281#endif
2282#endif
2283
Ingo Molnare0a42722006-06-23 02:03:46 -07002284 /*
2285 * Determine if the slab management is 'on' or 'off' slab.
2286 * (bootstrapping cannot cope with offslab caches so don't do
2287 * it too early on.)
2288 */
2289 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002290 /*
2291 * Size is large, assume best to place the slab management obj
2292 * off-slab (should allow better packing of objs).
2293 */
2294 flags |= CFLGS_OFF_SLAB;
2295
2296 size = ALIGN(size, align);
2297
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002298 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002299
2300 if (!cachep->num) {
2301 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2302 kmem_cache_free(&cache_cache, cachep);
2303 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002304 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002305 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002306 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2307 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002308
2309 /*
2310 * If the slab has been placed off-slab, and we have enough space then
2311 * move it on-slab. This is at the expense of any extra colouring.
2312 */
2313 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2314 flags &= ~CFLGS_OFF_SLAB;
2315 left_over -= slab_size;
2316 }
2317
2318 if (flags & CFLGS_OFF_SLAB) {
2319 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002320 slab_size =
2321 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002322 }
2323
2324 cachep->colour_off = cache_line_size();
2325 /* Offset must be a multiple of the alignment. */
2326 if (cachep->colour_off < align)
2327 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002328 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002329 cachep->slab_size = slab_size;
2330 cachep->flags = flags;
2331 cachep->gfpflags = 0;
Christoph Lameter4b51d662007-02-10 01:43:10 -08002332 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002333 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002334 cachep->buffer_size = size;
Eric Dumazet6a2d7a92006-12-13 00:34:27 -08002335 cachep->reciprocal_buffer_size = reciprocal_value(size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002336
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002337 if (flags & CFLGS_OFF_SLAB) {
Victor Fuscob2d55072005-09-10 00:26:36 -07002338 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002339 /*
2340 * This is a possibility for one of the malloc_sizes caches.
2341 * But since we go off slab only for object size greater than
2342 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2343 * this should not happen at all.
2344 * But leave a BUG_ON for some lucky dude.
2345 */
2346 BUG_ON(!cachep->slabp_cache);
2347 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002348 cachep->ctor = ctor;
2349 cachep->dtor = dtor;
2350 cachep->name = name;
2351
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002352 if (setup_cpu_cache(cachep)) {
2353 __kmem_cache_destroy(cachep);
2354 cachep = NULL;
2355 goto oops;
2356 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002357
Linus Torvalds1da177e2005-04-16 15:20:36 -07002358 /* cache setup completed, link it into the list */
2359 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002360oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002361 if (!cachep && (flags & SLAB_PANIC))
2362 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002363 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002364 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002365 return cachep;
2366}
2367EXPORT_SYMBOL(kmem_cache_create);
2368
2369#if DEBUG
2370static void check_irq_off(void)
2371{
2372 BUG_ON(!irqs_disabled());
2373}
2374
2375static void check_irq_on(void)
2376{
2377 BUG_ON(irqs_disabled());
2378}
2379
Pekka Enberg343e0d72006-02-01 03:05:50 -08002380static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002381{
2382#ifdef CONFIG_SMP
2383 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002384 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002385#endif
2386}
Christoph Lametere498be72005-09-09 13:03:32 -07002387
Pekka Enberg343e0d72006-02-01 03:05:50 -08002388static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002389{
2390#ifdef CONFIG_SMP
2391 check_irq_off();
2392 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2393#endif
2394}
2395
Linus Torvalds1da177e2005-04-16 15:20:36 -07002396#else
2397#define check_irq_off() do { } while(0)
2398#define check_irq_on() do { } while(0)
2399#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002400#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002401#endif
2402
Christoph Lameteraab22072006-03-22 00:09:06 -08002403static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2404 struct array_cache *ac,
2405 int force, int node);
2406
Linus Torvalds1da177e2005-04-16 15:20:36 -07002407static void do_drain(void *arg)
2408{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002409 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002410 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002411 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002412
2413 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002414 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002415 spin_lock(&cachep->nodelists[node]->list_lock);
2416 free_block(cachep, ac->entry, ac->avail, node);
2417 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002418 ac->avail = 0;
2419}
2420
Pekka Enberg343e0d72006-02-01 03:05:50 -08002421static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002422{
Christoph Lametere498be72005-09-09 13:03:32 -07002423 struct kmem_list3 *l3;
2424 int node;
2425
Andrew Mortona07fa392006-03-22 00:08:17 -08002426 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002427 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002428 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002429 l3 = cachep->nodelists[node];
Roland Dreiera4523a82006-05-15 11:41:00 -07002430 if (l3 && l3->alien)
2431 drain_alien_cache(cachep, l3->alien);
2432 }
2433
2434 for_each_online_node(node) {
2435 l3 = cachep->nodelists[node];
2436 if (l3)
Christoph Lameteraab22072006-03-22 00:09:06 -08002437 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002438 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002439}
2440
Christoph Lametered11d9e2006-06-30 01:55:45 -07002441/*
2442 * Remove slabs from the list of free slabs.
2443 * Specify the number of slabs to drain in tofree.
2444 *
2445 * Returns the actual number of slabs released.
2446 */
2447static int drain_freelist(struct kmem_cache *cache,
2448 struct kmem_list3 *l3, int tofree)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002449{
Christoph Lametered11d9e2006-06-30 01:55:45 -07002450 struct list_head *p;
2451 int nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002452 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002453
Christoph Lametered11d9e2006-06-30 01:55:45 -07002454 nr_freed = 0;
2455 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002456
Christoph Lametered11d9e2006-06-30 01:55:45 -07002457 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002458 p = l3->slabs_free.prev;
Christoph Lametered11d9e2006-06-30 01:55:45 -07002459 if (p == &l3->slabs_free) {
2460 spin_unlock_irq(&l3->list_lock);
2461 goto out;
2462 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002463
Christoph Lametered11d9e2006-06-30 01:55:45 -07002464 slabp = list_entry(p, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002465#if DEBUG
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002466 BUG_ON(slabp->inuse);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002467#endif
2468 list_del(&slabp->list);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002469 /*
2470 * Safe to drop the lock. The slab is no longer linked
2471 * to the cache.
2472 */
2473 l3->free_objects -= cache->num;
Christoph Lametere498be72005-09-09 13:03:32 -07002474 spin_unlock_irq(&l3->list_lock);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002475 slab_destroy(cache, slabp);
2476 nr_freed++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002477 }
Christoph Lametered11d9e2006-06-30 01:55:45 -07002478out:
2479 return nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002480}
2481
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002482/* Called with cache_chain_mutex held to protect against cpu hotplug */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002483static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002484{
2485 int ret = 0, i = 0;
2486 struct kmem_list3 *l3;
2487
2488 drain_cpu_caches(cachep);
2489
2490 check_irq_on();
2491 for_each_online_node(i) {
2492 l3 = cachep->nodelists[i];
Christoph Lametered11d9e2006-06-30 01:55:45 -07002493 if (!l3)
2494 continue;
2495
2496 drain_freelist(cachep, l3, l3->free_objects);
2497
2498 ret += !list_empty(&l3->slabs_full) ||
2499 !list_empty(&l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002500 }
2501 return (ret ? 1 : 0);
2502}
2503
Linus Torvalds1da177e2005-04-16 15:20:36 -07002504/**
2505 * kmem_cache_shrink - Shrink a cache.
2506 * @cachep: The cache to shrink.
2507 *
2508 * Releases as many slabs as possible for a cache.
2509 * To help debugging, a zero exit status indicates all slabs were released.
2510 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002511int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002512{
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002513 int ret;
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002514 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002515
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002516 mutex_lock(&cache_chain_mutex);
2517 ret = __cache_shrink(cachep);
2518 mutex_unlock(&cache_chain_mutex);
2519 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002520}
2521EXPORT_SYMBOL(kmem_cache_shrink);
2522
2523/**
2524 * kmem_cache_destroy - delete a cache
2525 * @cachep: the cache to destroy
2526 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08002527 * Remove a &struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002528 *
2529 * It is expected this function will be called by a module when it is
2530 * unloaded. This will remove the cache completely, and avoid a duplicate
2531 * cache being allocated each time a module is loaded and unloaded, if the
2532 * module doesn't have persistent in-kernel storage across loads and unloads.
2533 *
2534 * The cache must be empty before calling this function.
2535 *
2536 * The caller must guarantee that noone will allocate memory from the cache
2537 * during the kmem_cache_destroy().
2538 */
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002539void kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002540{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002541 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002542
Linus Torvalds1da177e2005-04-16 15:20:36 -07002543 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002544 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002545 /*
2546 * the chain is never empty, cache_cache is never destroyed
2547 */
2548 list_del(&cachep->next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002549 if (__cache_shrink(cachep)) {
2550 slab_error(cachep, "Can't free all objects");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002551 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002552 mutex_unlock(&cache_chain_mutex);
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002553 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002554 }
2555
2556 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002557 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002558
Christoph Lameter117f6eb2006-09-25 23:31:37 -07002559 __kmem_cache_destroy(cachep);
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002560 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002561}
2562EXPORT_SYMBOL(kmem_cache_destroy);
2563
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002564/*
2565 * Get the memory for a slab management obj.
2566 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2567 * always come from malloc_sizes caches. The slab descriptor cannot
2568 * come from the same cache which is getting created because,
2569 * when we are searching for an appropriate cache for these
2570 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2571 * If we are creating a malloc_sizes cache here it would not be visible to
2572 * kmem_find_general_cachep till the initialization is complete.
2573 * Hence we cannot have slabp_cache same as the original cache.
2574 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002575static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002576 int colour_off, gfp_t local_flags,
2577 int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002578{
2579 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002580
Linus Torvalds1da177e2005-04-16 15:20:36 -07002581 if (OFF_SLAB(cachep)) {
2582 /* Slab management obj is off-slab. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002583 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
Christoph Lameter3c517a62006-12-06 20:33:29 -08002584 local_flags & ~GFP_THISNODE, nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002585 if (!slabp)
2586 return NULL;
2587 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002588 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002589 colour_off += cachep->slab_size;
2590 }
2591 slabp->inuse = 0;
2592 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002593 slabp->s_mem = objp + colour_off;
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002594 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002595 return slabp;
2596}
2597
2598static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2599{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002600 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002601}
2602
Pekka Enberg343e0d72006-02-01 03:05:50 -08002603static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002604 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002605{
2606 int i;
2607
2608 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002609 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002610#if DEBUG
2611 /* need to poison the objs? */
2612 if (cachep->flags & SLAB_POISON)
2613 poison_obj(cachep, objp, POISON_FREE);
2614 if (cachep->flags & SLAB_STORE_USER)
2615 *dbg_userword(cachep, objp) = NULL;
2616
2617 if (cachep->flags & SLAB_RED_ZONE) {
2618 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2619 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2620 }
2621 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002622 * Constructors are not allowed to allocate memory from the same
2623 * cache which they are a constructor for. Otherwise, deadlock.
2624 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002625 */
2626 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002627 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002628 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002629
2630 if (cachep->flags & SLAB_RED_ZONE) {
2631 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2632 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002633 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002634 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2635 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002636 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002637 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002638 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2639 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002640 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002641 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002642#else
2643 if (cachep->ctor)
2644 cachep->ctor(objp, cachep, ctor_flags);
2645#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002646 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002647 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002648 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002649 slabp->free = 0;
2650}
2651
Pekka Enberg343e0d72006-02-01 03:05:50 -08002652static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002653{
Christoph Lameter4b51d662007-02-10 01:43:10 -08002654 if (CONFIG_ZONE_DMA_FLAG) {
2655 if (flags & GFP_DMA)
2656 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2657 else
2658 BUG_ON(cachep->gfpflags & GFP_DMA);
2659 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002660}
2661
Andrew Mortona737b3e2006-03-22 00:08:11 -08002662static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2663 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002664{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002665 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002666 kmem_bufctl_t next;
2667
2668 slabp->inuse++;
2669 next = slab_bufctl(slabp)[slabp->free];
2670#if DEBUG
2671 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2672 WARN_ON(slabp->nodeid != nodeid);
2673#endif
2674 slabp->free = next;
2675
2676 return objp;
2677}
2678
Andrew Mortona737b3e2006-03-22 00:08:11 -08002679static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2680 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002681{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002682 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002683
2684#if DEBUG
2685 /* Verify that the slab belongs to the intended node */
2686 WARN_ON(slabp->nodeid != nodeid);
2687
Al Viro871751e2006-03-25 03:06:39 -08002688 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002689 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002690 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002691 BUG();
2692 }
2693#endif
2694 slab_bufctl(slabp)[objnr] = slabp->free;
2695 slabp->free = objnr;
2696 slabp->inuse--;
2697}
2698
Pekka Enberg47768742006-06-23 02:03:07 -07002699/*
2700 * Map pages beginning at addr to the given cache and slab. This is required
2701 * for the slab allocator to be able to lookup the cache and slab of a
2702 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2703 */
2704static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2705 void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002706{
Pekka Enberg47768742006-06-23 02:03:07 -07002707 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002708 struct page *page;
2709
Pekka Enberg47768742006-06-23 02:03:07 -07002710 page = virt_to_page(addr);
Nick Piggin84097512006-03-22 00:08:34 -08002711
Pekka Enberg47768742006-06-23 02:03:07 -07002712 nr_pages = 1;
Nick Piggin84097512006-03-22 00:08:34 -08002713 if (likely(!PageCompound(page)))
Pekka Enberg47768742006-06-23 02:03:07 -07002714 nr_pages <<= cache->gfporder;
2715
Linus Torvalds1da177e2005-04-16 15:20:36 -07002716 do {
Pekka Enberg47768742006-06-23 02:03:07 -07002717 page_set_cache(page, cache);
2718 page_set_slab(page, slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002719 page++;
Pekka Enberg47768742006-06-23 02:03:07 -07002720 } while (--nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002721}
2722
2723/*
2724 * Grow (by 1) the number of slabs within a cache. This is called by
2725 * kmem_cache_alloc() when there are no active objs left in a cache.
2726 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002727static int cache_grow(struct kmem_cache *cachep,
2728 gfp_t flags, int nodeid, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002730 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002731 size_t offset;
2732 gfp_t local_flags;
2733 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002734 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002735
Andrew Mortona737b3e2006-03-22 00:08:11 -08002736 /*
2737 * Be lazy and only check for valid flags here, keeping it out of the
2738 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002739 */
Christoph Lameter441e1432006-12-06 20:33:19 -08002740 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
Christoph Lameter6e0eaa42006-12-06 20:33:10 -08002741 if (flags & __GFP_NO_GROW)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742 return 0;
2743
2744 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Christoph Lametera06d72c2006-12-06 20:33:12 -08002745 local_flags = (flags & GFP_LEVEL_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002746 if (!(local_flags & __GFP_WAIT))
2747 /*
2748 * Not allowed to sleep. Need to tell a constructor about
2749 * this - it might need to know...
2750 */
2751 ctor_flags |= SLAB_CTOR_ATOMIC;
2752
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002753 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002754 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002755 l3 = cachep->nodelists[nodeid];
2756 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002757
2758 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002759 offset = l3->colour_next;
2760 l3->colour_next++;
2761 if (l3->colour_next >= cachep->colour)
2762 l3->colour_next = 0;
2763 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002764
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002765 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002766
2767 if (local_flags & __GFP_WAIT)
2768 local_irq_enable();
2769
2770 /*
2771 * The test for missing atomic flag is performed here, rather than
2772 * the more obvious place, simply to reduce the critical path length
2773 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2774 * will eventually be caught here (where it matters).
2775 */
2776 kmem_flagcheck(cachep, flags);
2777
Andrew Mortona737b3e2006-03-22 00:08:11 -08002778 /*
2779 * Get mem for the objs. Attempt to allocate a physical page from
2780 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002781 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002782 if (!objp)
2783 objp = kmem_getpages(cachep, flags, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002784 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002785 goto failed;
2786
2787 /* Get slab management. */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002788 slabp = alloc_slabmgmt(cachep, objp, offset,
2789 local_flags & ~GFP_THISNODE, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002790 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002791 goto opps1;
2792
Christoph Lametere498be72005-09-09 13:03:32 -07002793 slabp->nodeid = nodeid;
Pekka Enberg47768742006-06-23 02:03:07 -07002794 slab_map_pages(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002795
2796 cache_init_objs(cachep, slabp, ctor_flags);
2797
2798 if (local_flags & __GFP_WAIT)
2799 local_irq_disable();
2800 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002801 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002802
2803 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002804 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002805 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002806 l3->free_objects += cachep->num;
2807 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002808 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002809opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002810 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002811failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002812 if (local_flags & __GFP_WAIT)
2813 local_irq_disable();
2814 return 0;
2815}
2816
2817#if DEBUG
2818
2819/*
2820 * Perform extra freeing checks:
2821 * - detect bad pointers.
2822 * - POISON/RED_ZONE checking
2823 * - destructor calls, for caches with POISON+dtor
2824 */
2825static void kfree_debugcheck(const void *objp)
2826{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002827 if (!virt_addr_valid(objp)) {
2828 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002829 (unsigned long)objp);
2830 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002831 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002832}
2833
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002834static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2835{
2836 unsigned long redzone1, redzone2;
2837
2838 redzone1 = *dbg_redzone1(cache, obj);
2839 redzone2 = *dbg_redzone2(cache, obj);
2840
2841 /*
2842 * Redzone is ok.
2843 */
2844 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2845 return;
2846
2847 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2848 slab_error(cache, "double free detected");
2849 else
2850 slab_error(cache, "memory outside object was overwritten");
2851
2852 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2853 obj, redzone1, redzone2);
2854}
2855
Pekka Enberg343e0d72006-02-01 03:05:50 -08002856static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002857 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002858{
2859 struct page *page;
2860 unsigned int objnr;
2861 struct slab *slabp;
2862
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002863 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002864 kfree_debugcheck(objp);
2865 page = virt_to_page(objp);
2866
Pekka Enberg065d41c2005-11-13 16:06:46 -08002867 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002868
2869 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002870 verify_redzone_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002871 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2872 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2873 }
2874 if (cachep->flags & SLAB_STORE_USER)
2875 *dbg_userword(cachep, objp) = caller;
2876
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002877 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002878
2879 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002880 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002881
2882 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002883 /*
2884 * Need to call the slab's constructor so the caller can
2885 * perform a verify of its state (debugging). Called without
2886 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002887 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002888 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002889 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002890 }
2891 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2892 /* we want to cache poison the object,
2893 * call the destruction callback
2894 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002895 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002896 }
Al Viro871751e2006-03-25 03:06:39 -08002897#ifdef CONFIG_DEBUG_SLAB_LEAK
2898 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2899#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002900 if (cachep->flags & SLAB_POISON) {
2901#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002902 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002903 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002904 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002905 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002906 } else {
2907 poison_obj(cachep, objp, POISON_FREE);
2908 }
2909#else
2910 poison_obj(cachep, objp, POISON_FREE);
2911#endif
2912 }
2913 return objp;
2914}
2915
Pekka Enberg343e0d72006-02-01 03:05:50 -08002916static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002917{
2918 kmem_bufctl_t i;
2919 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002920
Linus Torvalds1da177e2005-04-16 15:20:36 -07002921 /* Check slab's freelist to see if this obj is there. */
2922 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2923 entries++;
2924 if (entries > cachep->num || i >= cachep->num)
2925 goto bad;
2926 }
2927 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002928bad:
2929 printk(KERN_ERR "slab: Internal list corruption detected in "
2930 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2931 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002932 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002933 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002934 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002935 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002936 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002937 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002938 }
2939 printk("\n");
2940 BUG();
2941 }
2942}
2943#else
2944#define kfree_debugcheck(x) do { } while(0)
2945#define cache_free_debugcheck(x,objp,z) (objp)
2946#define check_slabp(x,y) do { } while(0)
2947#endif
2948
Pekka Enberg343e0d72006-02-01 03:05:50 -08002949static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002950{
2951 int batchcount;
2952 struct kmem_list3 *l3;
2953 struct array_cache *ac;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002954 int node;
2955
2956 node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002957
2958 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002959 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002960retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002961 batchcount = ac->batchcount;
2962 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002963 /*
2964 * If there was little recent activity on this cache, then
2965 * perform only a partial refill. Otherwise we could generate
2966 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002967 */
2968 batchcount = BATCHREFILL_LIMIT;
2969 }
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002970 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002971
Christoph Lametere498be72005-09-09 13:03:32 -07002972 BUG_ON(ac->avail > 0 || !l3);
2973 spin_lock(&l3->list_lock);
2974
Christoph Lameter3ded1752006-03-25 03:06:44 -08002975 /* See if we can refill from the shared array */
2976 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2977 goto alloc_done;
2978
Linus Torvalds1da177e2005-04-16 15:20:36 -07002979 while (batchcount > 0) {
2980 struct list_head *entry;
2981 struct slab *slabp;
2982 /* Get slab alloc is to come from. */
2983 entry = l3->slabs_partial.next;
2984 if (entry == &l3->slabs_partial) {
2985 l3->free_touched = 1;
2986 entry = l3->slabs_free.next;
2987 if (entry == &l3->slabs_free)
2988 goto must_grow;
2989 }
2990
2991 slabp = list_entry(entry, struct slab, list);
2992 check_slabp(cachep, slabp);
2993 check_spinlock_acquired(cachep);
Pekka Enberg714b8172007-05-06 14:49:03 -07002994
2995 /*
2996 * The slab was either on partial or free list so
2997 * there must be at least one object available for
2998 * allocation.
2999 */
3000 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3001
Linus Torvalds1da177e2005-04-16 15:20:36 -07003002 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003003 STATS_INC_ALLOCED(cachep);
3004 STATS_INC_ACTIVE(cachep);
3005 STATS_SET_HIGH(cachep);
3006
Matthew Dobson78d382d2006-02-01 03:05:47 -08003007 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07003008 node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003009 }
3010 check_slabp(cachep, slabp);
3011
3012 /* move slabp to correct slabp list: */
3013 list_del(&slabp->list);
3014 if (slabp->free == BUFCTL_END)
3015 list_add(&slabp->list, &l3->slabs_full);
3016 else
3017 list_add(&slabp->list, &l3->slabs_partial);
3018 }
3019
Andrew Mortona737b3e2006-03-22 00:08:11 -08003020must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003021 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003022alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07003023 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003024
3025 if (unlikely(!ac->avail)) {
3026 int x;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003027 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07003028
Andrew Mortona737b3e2006-03-22 00:08:11 -08003029 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003030 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003031 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003032 return NULL;
3033
Andrew Mortona737b3e2006-03-22 00:08:11 -08003034 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003035 goto retry;
3036 }
3037 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003038 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003039}
3040
Andrew Mortona737b3e2006-03-22 00:08:11 -08003041static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3042 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003043{
3044 might_sleep_if(flags & __GFP_WAIT);
3045#if DEBUG
3046 kmem_flagcheck(cachep, flags);
3047#endif
3048}
3049
3050#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003051static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3052 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003053{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003054 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003055 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003056 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003057#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003058 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003059 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003060 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003061 else
3062 check_poison_obj(cachep, objp);
3063#else
3064 check_poison_obj(cachep, objp);
3065#endif
3066 poison_obj(cachep, objp, POISON_INUSE);
3067 }
3068 if (cachep->flags & SLAB_STORE_USER)
3069 *dbg_userword(cachep, objp) = caller;
3070
3071 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003072 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3073 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3074 slab_error(cachep, "double free, or memory outside"
3075 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003076 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08003077 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3078 objp, *dbg_redzone1(cachep, objp),
3079 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003080 }
3081 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3082 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3083 }
Al Viro871751e2006-03-25 03:06:39 -08003084#ifdef CONFIG_DEBUG_SLAB_LEAK
3085 {
3086 struct slab *slabp;
3087 unsigned objnr;
3088
3089 slabp = page_get_slab(virt_to_page(objp));
3090 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3091 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3092 }
3093#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003094 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003095 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003096 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003097
3098 if (!(flags & __GFP_WAIT))
3099 ctor_flags |= SLAB_CTOR_ATOMIC;
3100
3101 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003102 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08003103#if ARCH_SLAB_MINALIGN
3104 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3105 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3106 objp, ARCH_SLAB_MINALIGN);
3107 }
3108#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003109 return objp;
3110}
3111#else
3112#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3113#endif
3114
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003115#ifdef CONFIG_FAILSLAB
3116
3117static struct failslab_attr {
3118
3119 struct fault_attr attr;
3120
3121 u32 ignore_gfp_wait;
3122#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3123 struct dentry *ignore_gfp_wait_file;
3124#endif
3125
3126} failslab = {
3127 .attr = FAULT_ATTR_INITIALIZER,
Don Mullis6b1b60f2006-12-08 02:39:53 -08003128 .ignore_gfp_wait = 1,
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003129};
3130
3131static int __init setup_failslab(char *str)
3132{
3133 return setup_fault_attr(&failslab.attr, str);
3134}
3135__setup("failslab=", setup_failslab);
3136
3137static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3138{
3139 if (cachep == &cache_cache)
3140 return 0;
3141 if (flags & __GFP_NOFAIL)
3142 return 0;
3143 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3144 return 0;
3145
3146 return should_fail(&failslab.attr, obj_size(cachep));
3147}
3148
3149#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3150
3151static int __init failslab_debugfs(void)
3152{
3153 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3154 struct dentry *dir;
3155 int err;
3156
3157 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3158 if (err)
3159 return err;
3160 dir = failslab.attr.dentries.dir;
3161
3162 failslab.ignore_gfp_wait_file =
3163 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3164 &failslab.ignore_gfp_wait);
3165
3166 if (!failslab.ignore_gfp_wait_file) {
3167 err = -ENOMEM;
3168 debugfs_remove(failslab.ignore_gfp_wait_file);
3169 cleanup_fault_attr_dentries(&failslab.attr);
3170 }
3171
3172 return err;
3173}
3174
3175late_initcall(failslab_debugfs);
3176
3177#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3178
3179#else /* CONFIG_FAILSLAB */
3180
3181static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3182{
3183 return 0;
3184}
3185
3186#endif /* CONFIG_FAILSLAB */
3187
Pekka Enberg343e0d72006-02-01 03:05:50 -08003188static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003189{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003190 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003191 struct array_cache *ac;
3192
Alok N Kataria5c382302005-09-27 21:45:46 -07003193 check_irq_off();
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003194
3195 if (should_failslab(cachep, flags))
3196 return NULL;
3197
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003198 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003199 if (likely(ac->avail)) {
3200 STATS_INC_ALLOCHIT(cachep);
3201 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003202 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003203 } else {
3204 STATS_INC_ALLOCMISS(cachep);
3205 objp = cache_alloc_refill(cachep, flags);
3206 }
Alok N Kataria5c382302005-09-27 21:45:46 -07003207 return objp;
3208}
3209
Christoph Lametere498be72005-09-09 13:03:32 -07003210#ifdef CONFIG_NUMA
3211/*
Paul Jacksonb2455392006-03-24 03:16:12 -08003212 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08003213 *
3214 * If we are in_interrupt, then process context, including cpusets and
3215 * mempolicy, may not apply and should not be used for allocation policy.
3216 */
3217static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3218{
3219 int nid_alloc, nid_here;
3220
Christoph Lameter765c4502006-09-27 01:50:08 -07003221 if (in_interrupt() || (flags & __GFP_THISNODE))
Paul Jacksonc61afb12006-03-24 03:16:08 -08003222 return NULL;
3223 nid_alloc = nid_here = numa_node_id();
3224 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3225 nid_alloc = cpuset_mem_spread_node();
3226 else if (current->mempolicy)
3227 nid_alloc = slab_node(current->mempolicy);
3228 if (nid_alloc != nid_here)
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003229 return ____cache_alloc_node(cachep, flags, nid_alloc);
Paul Jacksonc61afb12006-03-24 03:16:08 -08003230 return NULL;
3231}
3232
3233/*
Christoph Lameter765c4502006-09-27 01:50:08 -07003234 * Fallback function if there was no memory available and no objects on a
Christoph Lameter3c517a62006-12-06 20:33:29 -08003235 * certain node and fall back is permitted. First we scan all the
3236 * available nodelists for available objects. If that fails then we
3237 * perform an allocation without specifying a node. This allows the page
3238 * allocator to do its reclaim / fallback magic. We then insert the
3239 * slab into the proper nodelist and then allocate from it.
Christoph Lameter765c4502006-09-27 01:50:08 -07003240 */
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003241static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
Christoph Lameter765c4502006-09-27 01:50:08 -07003242{
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003243 struct zonelist *zonelist;
3244 gfp_t local_flags;
Christoph Lameter765c4502006-09-27 01:50:08 -07003245 struct zone **z;
3246 void *obj = NULL;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003247 int nid;
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003248
3249 if (flags & __GFP_THISNODE)
3250 return NULL;
3251
3252 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3253 ->node_zonelists[gfp_zone(flags)];
3254 local_flags = (flags & GFP_LEVEL_MASK);
Christoph Lameter765c4502006-09-27 01:50:08 -07003255
Christoph Lameter3c517a62006-12-06 20:33:29 -08003256retry:
3257 /*
3258 * Look through allowed nodes for objects available
3259 * from existing per node queues.
3260 */
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003261 for (z = zonelist->zones; *z && !obj; z++) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003262 nid = zone_to_nid(*z);
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003263
Paul Jackson02a0e532006-12-13 00:34:25 -08003264 if (cpuset_zone_allowed_hardwall(*z, flags) &&
Christoph Lameter3c517a62006-12-06 20:33:29 -08003265 cache->nodelists[nid] &&
3266 cache->nodelists[nid]->free_objects)
3267 obj = ____cache_alloc_node(cache,
3268 flags | GFP_THISNODE, nid);
3269 }
3270
Hugh Dickinsb6a60452007-01-05 16:36:36 -08003271 if (!obj && !(flags & __GFP_NO_GROW)) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003272 /*
3273 * This allocation will be performed within the constraints
3274 * of the current cpuset / memory policy requirements.
3275 * We may trigger various forms of reclaim on the allowed
3276 * set and go into memory reserves if necessary.
3277 */
Christoph Lameterdd47ea72006-12-13 00:34:11 -08003278 if (local_flags & __GFP_WAIT)
3279 local_irq_enable();
3280 kmem_flagcheck(cache, flags);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003281 obj = kmem_getpages(cache, flags, -1);
Christoph Lameterdd47ea72006-12-13 00:34:11 -08003282 if (local_flags & __GFP_WAIT)
3283 local_irq_disable();
Christoph Lameter3c517a62006-12-06 20:33:29 -08003284 if (obj) {
3285 /*
3286 * Insert into the appropriate per node queues
3287 */
3288 nid = page_to_nid(virt_to_page(obj));
3289 if (cache_grow(cache, flags, nid, obj)) {
3290 obj = ____cache_alloc_node(cache,
3291 flags | GFP_THISNODE, nid);
3292 if (!obj)
3293 /*
3294 * Another processor may allocate the
3295 * objects in the slab since we are
3296 * not holding any locks.
3297 */
3298 goto retry;
3299 } else {
Hugh Dickinsb6a60452007-01-05 16:36:36 -08003300 /* cache_grow already freed obj */
Christoph Lameter3c517a62006-12-06 20:33:29 -08003301 obj = NULL;
3302 }
3303 }
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003304 }
Christoph Lameter765c4502006-09-27 01:50:08 -07003305 return obj;
3306}
3307
3308/*
Christoph Lametere498be72005-09-09 13:03:32 -07003309 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07003310 */
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003311static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003312 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07003313{
3314 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003315 struct slab *slabp;
3316 struct kmem_list3 *l3;
3317 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003318 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003319
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003320 l3 = cachep->nodelists[nodeid];
3321 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07003322
Andrew Mortona737b3e2006-03-22 00:08:11 -08003323retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003324 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003325 spin_lock(&l3->list_lock);
3326 entry = l3->slabs_partial.next;
3327 if (entry == &l3->slabs_partial) {
3328 l3->free_touched = 1;
3329 entry = l3->slabs_free.next;
3330 if (entry == &l3->slabs_free)
3331 goto must_grow;
3332 }
Christoph Lametere498be72005-09-09 13:03:32 -07003333
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003334 slabp = list_entry(entry, struct slab, list);
3335 check_spinlock_acquired_node(cachep, nodeid);
3336 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003337
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003338 STATS_INC_NODEALLOCS(cachep);
3339 STATS_INC_ACTIVE(cachep);
3340 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003341
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003342 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07003343
Matthew Dobson78d382d2006-02-01 03:05:47 -08003344 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003345 check_slabp(cachep, slabp);
3346 l3->free_objects--;
3347 /* move slabp to correct slabp list: */
3348 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07003349
Andrew Mortona737b3e2006-03-22 00:08:11 -08003350 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003351 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003352 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003353 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07003354
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003355 spin_unlock(&l3->list_lock);
3356 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07003357
Andrew Mortona737b3e2006-03-22 00:08:11 -08003358must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003359 spin_unlock(&l3->list_lock);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003360 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
Christoph Lameter765c4502006-09-27 01:50:08 -07003361 if (x)
3362 goto retry;
Christoph Lametere498be72005-09-09 13:03:32 -07003363
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003364 return fallback_alloc(cachep, flags);
Christoph Lameter765c4502006-09-27 01:50:08 -07003365
Andrew Mortona737b3e2006-03-22 00:08:11 -08003366done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003367 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07003368}
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003369
3370/**
3371 * kmem_cache_alloc_node - Allocate an object on the specified node
3372 * @cachep: The cache to allocate from.
3373 * @flags: See kmalloc().
3374 * @nodeid: node number of the target node.
3375 * @caller: return address of caller, used for debug information
3376 *
3377 * Identical to kmem_cache_alloc but it will allocate memory on the given
3378 * node, which can improve the performance for cpu bound structures.
3379 *
3380 * Fallback to other node is possible if __GFP_THISNODE is not set.
3381 */
3382static __always_inline void *
3383__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3384 void *caller)
3385{
3386 unsigned long save_flags;
3387 void *ptr;
3388
3389 cache_alloc_debugcheck_before(cachep, flags);
3390 local_irq_save(save_flags);
3391
3392 if (unlikely(nodeid == -1))
3393 nodeid = numa_node_id();
3394
3395 if (unlikely(!cachep->nodelists[nodeid])) {
3396 /* Node not bootstrapped yet */
3397 ptr = fallback_alloc(cachep, flags);
3398 goto out;
3399 }
3400
3401 if (nodeid == numa_node_id()) {
3402 /*
3403 * Use the locally cached objects if possible.
3404 * However ____cache_alloc does not allow fallback
3405 * to other nodes. It may fail while we still have
3406 * objects on other nodes available.
3407 */
3408 ptr = ____cache_alloc(cachep, flags);
3409 if (ptr)
3410 goto out;
3411 }
3412 /* ___cache_alloc_node can fall back to other nodes */
3413 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3414 out:
3415 local_irq_restore(save_flags);
3416 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3417
3418 return ptr;
3419}
3420
3421static __always_inline void *
3422__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3423{
3424 void *objp;
3425
3426 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3427 objp = alternate_node_alloc(cache, flags);
3428 if (objp)
3429 goto out;
3430 }
3431 objp = ____cache_alloc(cache, flags);
3432
3433 /*
3434 * We may just have run out of memory on the local node.
3435 * ____cache_alloc_node() knows how to locate memory on other nodes
3436 */
3437 if (!objp)
3438 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3439
3440 out:
3441 return objp;
3442}
3443#else
3444
3445static __always_inline void *
3446__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3447{
3448 return ____cache_alloc(cachep, flags);
3449}
3450
3451#endif /* CONFIG_NUMA */
3452
3453static __always_inline void *
3454__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3455{
3456 unsigned long save_flags;
3457 void *objp;
3458
3459 cache_alloc_debugcheck_before(cachep, flags);
3460 local_irq_save(save_flags);
3461 objp = __do_cache_alloc(cachep, flags);
3462 local_irq_restore(save_flags);
3463 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3464 prefetchw(objp);
3465
3466 return objp;
3467}
Christoph Lametere498be72005-09-09 13:03:32 -07003468
3469/*
3470 * Caller needs to acquire correct kmem_list's list_lock
3471 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003472static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003473 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003474{
3475 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07003476 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003477
3478 for (i = 0; i < nr_objects; i++) {
3479 void *objp = objpp[i];
3480 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003481
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003482 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07003483 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003484 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07003485 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003486 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08003487 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003488 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003489 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003490 check_slabp(cachep, slabp);
3491
3492 /* fixup slab chains */
3493 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003494 if (l3->free_objects > l3->free_limit) {
3495 l3->free_objects -= cachep->num;
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07003496 /* No need to drop any previously held
3497 * lock here, even if we have a off-slab slab
3498 * descriptor it is guaranteed to come from
3499 * a different cache, refer to comments before
3500 * alloc_slabmgmt.
3501 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003502 slab_destroy(cachep, slabp);
3503 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003504 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003505 }
3506 } else {
3507 /* Unconditionally move a slab to the end of the
3508 * partial list on free - maximum time for the
3509 * other objects to be freed, too.
3510 */
Christoph Lametere498be72005-09-09 13:03:32 -07003511 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003512 }
3513 }
3514}
3515
Pekka Enberg343e0d72006-02-01 03:05:50 -08003516static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003517{
3518 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003519 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003520 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003521
3522 batchcount = ac->batchcount;
3523#if DEBUG
3524 BUG_ON(!batchcount || batchcount > ac->avail);
3525#endif
3526 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003527 l3 = cachep->nodelists[node];
Ingo Molnar873623d2006-07-13 14:44:38 +02003528 spin_lock(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003529 if (l3->shared) {
3530 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003531 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003532 if (max) {
3533 if (batchcount > max)
3534 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003535 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003536 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003537 shared_array->avail += batchcount;
3538 goto free_done;
3539 }
3540 }
3541
Christoph Lameterff694162005-09-22 21:44:02 -07003542 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003543free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003544#if STATS
3545 {
3546 int i = 0;
3547 struct list_head *p;
3548
Christoph Lametere498be72005-09-09 13:03:32 -07003549 p = l3->slabs_free.next;
3550 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003551 struct slab *slabp;
3552
3553 slabp = list_entry(p, struct slab, list);
3554 BUG_ON(slabp->inuse);
3555
3556 i++;
3557 p = p->next;
3558 }
3559 STATS_SET_FREEABLE(cachep, i);
3560 }
3561#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003562 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003563 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003564 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003565}
3566
3567/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003568 * Release an obj back to its cache. If the obj has a constructed state, it must
3569 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003570 */
Ingo Molnar873623d2006-07-13 14:44:38 +02003571static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003572{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003573 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003574
3575 check_irq_off();
3576 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3577
Siddha, Suresh B62918a02007-05-02 19:27:18 +02003578 if (use_alien_caches && cache_free_alien(cachep, objp))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07003579 return;
Christoph Lametere498be72005-09-09 13:03:32 -07003580
Linus Torvalds1da177e2005-04-16 15:20:36 -07003581 if (likely(ac->avail < ac->limit)) {
3582 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003583 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003584 return;
3585 } else {
3586 STATS_INC_FREEMISS(cachep);
3587 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003588 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003589 }
3590}
3591
3592/**
3593 * kmem_cache_alloc - Allocate an object
3594 * @cachep: The cache to allocate from.
3595 * @flags: See kmalloc().
3596 *
3597 * Allocate an object from this cache. The flags are only relevant
3598 * if the cache has no available objects.
3599 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003600void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003601{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003602 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003603}
3604EXPORT_SYMBOL(kmem_cache_alloc);
3605
3606/**
Rolf Eike Beerb8008b22006-07-30 03:04:04 -07003607 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003608 * @cache: The cache to allocate from.
3609 * @flags: See kmalloc().
3610 *
3611 * Allocate an object from this cache and set the allocated memory to zero.
3612 * The flags are only relevant if the cache has no available objects.
3613 */
3614void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3615{
3616 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3617 if (ret)
3618 memset(ret, 0, obj_size(cache));
3619 return ret;
3620}
3621EXPORT_SYMBOL(kmem_cache_zalloc);
3622
3623/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003624 * kmem_ptr_validate - check if an untrusted pointer might
3625 * be a slab entry.
3626 * @cachep: the cache we're checking against
3627 * @ptr: pointer to validate
3628 *
3629 * This verifies that the untrusted pointer looks sane:
3630 * it is _not_ a guarantee that the pointer is actually
3631 * part of the slab cache in question, but it at least
3632 * validates that the pointer can be dereferenced and
3633 * looks half-way sane.
3634 *
3635 * Currently only used for dentry validation.
3636 */
Christoph Lameterb7f869a2006-12-22 01:06:44 -08003637int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003638{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003639 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003640 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003641 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003642 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003643 struct page *page;
3644
3645 if (unlikely(addr < min_addr))
3646 goto out;
3647 if (unlikely(addr > (unsigned long)high_memory - size))
3648 goto out;
3649 if (unlikely(addr & align_mask))
3650 goto out;
3651 if (unlikely(!kern_addr_valid(addr)))
3652 goto out;
3653 if (unlikely(!kern_addr_valid(addr + size - 1)))
3654 goto out;
3655 page = virt_to_page(ptr);
3656 if (unlikely(!PageSlab(page)))
3657 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003658 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003659 goto out;
3660 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003661out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003662 return 0;
3663}
3664
3665#ifdef CONFIG_NUMA
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003666void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3667{
3668 return __cache_alloc_node(cachep, flags, nodeid,
3669 __builtin_return_address(0));
3670}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003671EXPORT_SYMBOL(kmem_cache_alloc_node);
3672
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003673static __always_inline void *
3674__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003675{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003676 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003677
3678 cachep = kmem_find_general_cachep(size, flags);
3679 if (unlikely(cachep == NULL))
3680 return NULL;
3681 return kmem_cache_alloc_node(cachep, flags, node);
3682}
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003683
3684#ifdef CONFIG_DEBUG_SLAB
3685void *__kmalloc_node(size_t size, gfp_t flags, int node)
3686{
3687 return __do_kmalloc_node(size, flags, node,
3688 __builtin_return_address(0));
3689}
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003690EXPORT_SYMBOL(__kmalloc_node);
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003691
3692void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3693 int node, void *caller)
3694{
3695 return __do_kmalloc_node(size, flags, node, caller);
3696}
3697EXPORT_SYMBOL(__kmalloc_node_track_caller);
3698#else
3699void *__kmalloc_node(size_t size, gfp_t flags, int node)
3700{
3701 return __do_kmalloc_node(size, flags, node, NULL);
3702}
3703EXPORT_SYMBOL(__kmalloc_node);
3704#endif /* CONFIG_DEBUG_SLAB */
3705#endif /* CONFIG_NUMA */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003706
3707/**
Paul Drynoff800590f2006-06-23 02:03:48 -07003708 * __do_kmalloc - allocate memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07003709 * @size: how many bytes of memory are required.
Paul Drynoff800590f2006-06-23 02:03:48 -07003710 * @flags: the type of memory to allocate (see kmalloc).
Randy Dunlap911851e2006-03-22 00:08:14 -08003711 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003712 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003713static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3714 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003715{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003716 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003717
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003718 /* If you want to save a few bytes .text space: replace
3719 * __ with kmem_.
3720 * Then kmalloc uses the uninlined functions instead of the inline
3721 * functions.
3722 */
3723 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003724 if (unlikely(cachep == NULL))
3725 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003726 return __cache_alloc(cachep, flags, caller);
3727}
3728
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003729
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003730#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003731void *__kmalloc(size_t size, gfp_t flags)
3732{
Al Viro871751e2006-03-25 03:06:39 -08003733 return __do_kmalloc(size, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003734}
3735EXPORT_SYMBOL(__kmalloc);
3736
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003737void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3738{
3739 return __do_kmalloc(size, flags, caller);
3740}
3741EXPORT_SYMBOL(__kmalloc_track_caller);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003742
3743#else
3744void *__kmalloc(size_t size, gfp_t flags)
3745{
3746 return __do_kmalloc(size, flags, NULL);
3747}
3748EXPORT_SYMBOL(__kmalloc);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003749#endif
3750
Linus Torvalds1da177e2005-04-16 15:20:36 -07003751/**
Pekka Enbergfd76bab2007-05-06 14:48:40 -07003752 * krealloc - reallocate memory. The contents will remain unchanged.
3753 *
3754 * @p: object to reallocate memory for.
3755 * @new_size: how many bytes of memory are required.
3756 * @flags: the type of memory to allocate.
3757 *
3758 * The contents of the object pointed to are preserved up to the
3759 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3760 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3761 * %NULL pointer, the object pointed to is freed.
3762 */
3763void *krealloc(const void *p, size_t new_size, gfp_t flags)
3764{
3765 struct kmem_cache *cache, *new_cache;
3766 void *ret;
3767
3768 if (unlikely(!p))
3769 return kmalloc_track_caller(new_size, flags);
3770
3771 if (unlikely(!new_size)) {
3772 kfree(p);
3773 return NULL;
3774 }
3775
3776 cache = virt_to_cache(p);
3777 new_cache = __find_general_cachep(new_size, flags);
3778
3779 /*
3780 * If new size fits in the current cache, bail out.
3781 */
3782 if (likely(cache == new_cache))
3783 return (void *)p;
3784
3785 /*
3786 * We are on the slow-path here so do not use __cache_alloc
3787 * because it bloats kernel text.
3788 */
3789 ret = kmalloc_track_caller(new_size, flags);
3790 if (ret) {
3791 memcpy(ret, p, min(new_size, ksize(p)));
3792 kfree(p);
3793 }
3794 return ret;
3795}
3796EXPORT_SYMBOL(krealloc);
3797
3798/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003799 * kmem_cache_free - Deallocate an object
3800 * @cachep: The cache the allocation was from.
3801 * @objp: The previously allocated object.
3802 *
3803 * Free an object which was previously allocated from this
3804 * cache.
3805 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003806void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003807{
3808 unsigned long flags;
3809
Pekka Enbergddc2e812006-06-23 02:03:40 -07003810 BUG_ON(virt_to_cache(objp) != cachep);
3811
Linus Torvalds1da177e2005-04-16 15:20:36 -07003812 local_irq_save(flags);
Ingo Molnar898552c2007-02-10 01:44:57 -08003813 debug_check_no_locks_freed(objp, obj_size(cachep));
Ingo Molnar873623d2006-07-13 14:44:38 +02003814 __cache_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003815 local_irq_restore(flags);
3816}
3817EXPORT_SYMBOL(kmem_cache_free);
3818
3819/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003820 * kfree - free previously allocated memory
3821 * @objp: pointer returned by kmalloc.
3822 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003823 * If @objp is NULL, no operation is performed.
3824 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003825 * Don't free memory not originally allocated by kmalloc()
3826 * or you will run into trouble.
3827 */
3828void kfree(const void *objp)
3829{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003830 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003831 unsigned long flags;
3832
3833 if (unlikely(!objp))
3834 return;
3835 local_irq_save(flags);
3836 kfree_debugcheck(objp);
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003837 c = virt_to_cache(objp);
Ingo Molnarf9b84042006-06-27 02:54:49 -07003838 debug_check_no_locks_freed(objp, obj_size(c));
Ingo Molnar873623d2006-07-13 14:44:38 +02003839 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003840 local_irq_restore(flags);
3841}
3842EXPORT_SYMBOL(kfree);
3843
Pekka Enberg343e0d72006-02-01 03:05:50 -08003844unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003845{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003846 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003847}
3848EXPORT_SYMBOL(kmem_cache_size);
3849
Pekka Enberg343e0d72006-02-01 03:05:50 -08003850const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003851{
3852 return cachep->name;
3853}
3854EXPORT_SYMBOL_GPL(kmem_cache_name);
3855
Christoph Lametere498be72005-09-09 13:03:32 -07003856/*
Christoph Lameter0718dc22006-03-25 03:06:47 -08003857 * This initializes kmem_list3 or resizes varioius caches for all nodes.
Christoph Lametere498be72005-09-09 13:03:32 -07003858 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003859static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003860{
3861 int node;
3862 struct kmem_list3 *l3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003863 struct array_cache *new_shared;
Paul Menage3395ee02006-12-06 20:32:16 -08003864 struct array_cache **new_alien = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003865
3866 for_each_online_node(node) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003867
Paul Menage3395ee02006-12-06 20:32:16 -08003868 if (use_alien_caches) {
3869 new_alien = alloc_alien_cache(node, cachep->limit);
3870 if (!new_alien)
3871 goto fail;
3872 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003873
Eric Dumazet63109842007-05-06 14:49:28 -07003874 new_shared = NULL;
3875 if (cachep->shared) {
3876 new_shared = alloc_arraycache(node,
Christoph Lameter0718dc22006-03-25 03:06:47 -08003877 cachep->shared*cachep->batchcount,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003878 0xbaadf00d);
Eric Dumazet63109842007-05-06 14:49:28 -07003879 if (!new_shared) {
3880 free_alien_cache(new_alien);
3881 goto fail;
3882 }
Christoph Lameter0718dc22006-03-25 03:06:47 -08003883 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003884
Andrew Mortona737b3e2006-03-22 00:08:11 -08003885 l3 = cachep->nodelists[node];
3886 if (l3) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003887 struct array_cache *shared = l3->shared;
3888
Christoph Lametere498be72005-09-09 13:03:32 -07003889 spin_lock_irq(&l3->list_lock);
3890
Christoph Lametercafeb022006-03-25 03:06:46 -08003891 if (shared)
Christoph Lameter0718dc22006-03-25 03:06:47 -08003892 free_block(cachep, shared->entry,
3893 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003894
Christoph Lametercafeb022006-03-25 03:06:46 -08003895 l3->shared = new_shared;
3896 if (!l3->alien) {
Christoph Lametere498be72005-09-09 13:03:32 -07003897 l3->alien = new_alien;
3898 new_alien = NULL;
3899 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003900 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003901 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003902 spin_unlock_irq(&l3->list_lock);
Christoph Lametercafeb022006-03-25 03:06:46 -08003903 kfree(shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003904 free_alien_cache(new_alien);
3905 continue;
3906 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003907 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003908 if (!l3) {
3909 free_alien_cache(new_alien);
3910 kfree(new_shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003911 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003912 }
Christoph Lametere498be72005-09-09 13:03:32 -07003913
3914 kmem_list3_init(l3);
3915 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003916 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003917 l3->shared = new_shared;
Christoph Lametere498be72005-09-09 13:03:32 -07003918 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003919 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003920 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003921 cachep->nodelists[node] = l3;
3922 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003923 return 0;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003924
Andrew Mortona737b3e2006-03-22 00:08:11 -08003925fail:
Christoph Lameter0718dc22006-03-25 03:06:47 -08003926 if (!cachep->next.next) {
3927 /* Cache is not active yet. Roll back what we did */
3928 node--;
3929 while (node >= 0) {
3930 if (cachep->nodelists[node]) {
3931 l3 = cachep->nodelists[node];
3932
3933 kfree(l3->shared);
3934 free_alien_cache(l3->alien);
3935 kfree(l3);
3936 cachep->nodelists[node] = NULL;
3937 }
3938 node--;
3939 }
3940 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003941 return -ENOMEM;
Christoph Lametere498be72005-09-09 13:03:32 -07003942}
3943
Linus Torvalds1da177e2005-04-16 15:20:36 -07003944struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003945 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003946 struct array_cache *new[NR_CPUS];
3947};
3948
3949static void do_ccupdate_local(void *info)
3950{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003951 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003952 struct array_cache *old;
3953
3954 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003955 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003956
Linus Torvalds1da177e2005-04-16 15:20:36 -07003957 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3958 new->new[smp_processor_id()] = old;
3959}
3960
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003961/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003962static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3963 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003964{
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003965 struct ccupdate_struct *new;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003966 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003967
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003968 new = kzalloc(sizeof(*new), GFP_KERNEL);
3969 if (!new)
3970 return -ENOMEM;
3971
Christoph Lametere498be72005-09-09 13:03:32 -07003972 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003973 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003974 batchcount);
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003975 if (!new->new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003976 for (i--; i >= 0; i--)
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003977 kfree(new->new[i]);
3978 kfree(new);
Christoph Lametere498be72005-09-09 13:03:32 -07003979 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003980 }
3981 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003982 new->cachep = cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003983
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003984 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003985
Linus Torvalds1da177e2005-04-16 15:20:36 -07003986 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003987 cachep->batchcount = batchcount;
3988 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003989 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003990
Christoph Lametere498be72005-09-09 13:03:32 -07003991 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003992 struct array_cache *ccold = new->new[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003993 if (!ccold)
3994 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003995 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003996 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003997 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003998 kfree(ccold);
3999 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004000 kfree(new);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004001 return alloc_kmemlist(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004002}
4003
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08004004/* Called with cache_chain_mutex held always */
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004005static int enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004006{
4007 int err;
4008 int limit, shared;
4009
Andrew Mortona737b3e2006-03-22 00:08:11 -08004010 /*
4011 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004012 * - create a LIFO ordering, i.e. return objects that are cache-warm
4013 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08004014 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07004015 * bufctl chains: array operations are cheaper.
4016 * The numbers are guessed, we should auto-tune as described by
4017 * Bonwick.
4018 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004019 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004020 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004021 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004022 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004023 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004024 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004025 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004026 limit = 54;
4027 else
4028 limit = 120;
4029
Andrew Mortona737b3e2006-03-22 00:08:11 -08004030 /*
4031 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07004032 * allocation behaviour: Most allocs on one cpu, most free operations
4033 * on another cpu. For these cases, an efficient object passing between
4034 * cpus is necessary. This is provided by a shared array. The array
4035 * replaces Bonwick's magazine layer.
4036 * On uniprocessor, it's functionally equivalent (but less efficient)
4037 * to a larger limit. Thus disabled by default.
4038 */
4039 shared = 0;
Eric Dumazet364fbb22007-05-06 14:49:27 -07004040 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004041 shared = 8;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004042
4043#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08004044 /*
4045 * With debugging enabled, large batchcount lead to excessively long
4046 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07004047 */
4048 if (limit > 32)
4049 limit = 32;
4050#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004051 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004052 if (err)
4053 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004054 cachep->name, -err);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004055 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004056}
4057
Christoph Lameter1b552532006-03-22 00:09:07 -08004058/*
4059 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004060 * necessary. Note that the l3 listlock also protects the array_cache
4061 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08004062 */
4063void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4064 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004065{
4066 int tofree;
4067
Christoph Lameter1b552532006-03-22 00:09:07 -08004068 if (!ac || !ac->avail)
4069 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004070 if (ac->touched && !force) {
4071 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004072 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08004073 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004074 if (ac->avail) {
4075 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4076 if (tofree > ac->avail)
4077 tofree = (ac->avail + 1) / 2;
4078 free_block(cachep, ac->entry, tofree, node);
4079 ac->avail -= tofree;
4080 memmove(ac->entry, &(ac->entry[tofree]),
4081 sizeof(void *) * ac->avail);
4082 }
Christoph Lameter1b552532006-03-22 00:09:07 -08004083 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004084 }
4085}
4086
4087/**
4088 * cache_reap - Reclaim memory from caches.
Randy Dunlap05fb6bf2007-02-28 20:12:13 -08004089 * @w: work descriptor
Linus Torvalds1da177e2005-04-16 15:20:36 -07004090 *
4091 * Called from workqueue/eventd every few seconds.
4092 * Purpose:
4093 * - clear the per-cpu caches for this CPU.
4094 * - return freeable pages to the main free memory pool.
4095 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08004096 * If we cannot acquire the cache chain mutex then just give up - we'll try
4097 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004098 */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004099static void cache_reap(struct work_struct *w)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004100{
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004101 struct kmem_cache *searchp;
Christoph Lametere498be72005-09-09 13:03:32 -07004102 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08004103 int node = numa_node_id();
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004104 struct delayed_work *work =
4105 container_of(w, struct delayed_work, work);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004106
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004107 if (!mutex_trylock(&cache_chain_mutex))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004108 /* Give up. Setup the next iteration. */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004109 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004110
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004111 list_for_each_entry(searchp, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004112 check_irq_on();
4113
Christoph Lameter35386e32006-03-22 00:09:05 -08004114 /*
4115 * We only take the l3 lock if absolutely necessary and we
4116 * have established with reasonable certainty that
4117 * we can do some work if the lock was obtained.
4118 */
Christoph Lameteraab22072006-03-22 00:09:06 -08004119 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08004120
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004121 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004122
Christoph Lameteraab22072006-03-22 00:09:06 -08004123 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004124
Christoph Lameter35386e32006-03-22 00:09:05 -08004125 /*
4126 * These are racy checks but it does not matter
4127 * if we skip one check or scan twice.
4128 */
Christoph Lametere498be72005-09-09 13:03:32 -07004129 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08004130 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004131
Christoph Lametere498be72005-09-09 13:03:32 -07004132 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004133
Christoph Lameteraab22072006-03-22 00:09:06 -08004134 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004135
Christoph Lametered11d9e2006-06-30 01:55:45 -07004136 if (l3->free_touched)
Christoph Lametere498be72005-09-09 13:03:32 -07004137 l3->free_touched = 0;
Christoph Lametered11d9e2006-06-30 01:55:45 -07004138 else {
4139 int freed;
4140
4141 freed = drain_freelist(searchp, l3, (l3->free_limit +
4142 5 * searchp->num - 1) / (5 * searchp->num));
4143 STATS_ADD_REAPED(searchp, freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004144 }
Christoph Lameter35386e32006-03-22 00:09:05 -08004145next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004146 cond_resched();
4147 }
4148 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004149 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004150 next_reap_node();
Christoph Lameter2244b952006-06-30 01:55:33 -07004151 refresh_cpu_vm_stats(smp_processor_id());
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004152out:
Andrew Mortona737b3e2006-03-22 00:08:11 -08004153 /* Set up the next iteration */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004154 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004155}
4156
4157#ifdef CONFIG_PROC_FS
4158
Pekka Enberg85289f92006-01-08 01:00:36 -08004159static void print_slabinfo_header(struct seq_file *m)
4160{
4161 /*
4162 * Output format version, so at least we can change it
4163 * without _too_ many complaints.
4164 */
4165#if STATS
4166 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4167#else
4168 seq_puts(m, "slabinfo - version: 2.1\n");
4169#endif
4170 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4171 "<objperslab> <pagesperslab>");
4172 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4173 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4174#if STATS
4175 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004176 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
Pekka Enberg85289f92006-01-08 01:00:36 -08004177 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4178#endif
4179 seq_putc(m, '\n');
4180}
4181
Linus Torvalds1da177e2005-04-16 15:20:36 -07004182static void *s_start(struct seq_file *m, loff_t *pos)
4183{
4184 loff_t n = *pos;
4185 struct list_head *p;
4186
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004187 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08004188 if (!n)
4189 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004190 p = cache_chain.next;
4191 while (n--) {
4192 p = p->next;
4193 if (p == &cache_chain)
4194 return NULL;
4195 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08004196 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004197}
4198
4199static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4200{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004201 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004202 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08004203 return cachep->next.next == &cache_chain ?
4204 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004205}
4206
4207static void s_stop(struct seq_file *m, void *p)
4208{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004209 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004210}
4211
4212static int s_show(struct seq_file *m, void *p)
4213{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004214 struct kmem_cache *cachep = p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004215 struct slab *slabp;
4216 unsigned long active_objs;
4217 unsigned long num_objs;
4218 unsigned long active_slabs = 0;
4219 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004220 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004221 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07004222 int node;
4223 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004224
Linus Torvalds1da177e2005-04-16 15:20:36 -07004225 active_objs = 0;
4226 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004227 for_each_online_node(node) {
4228 l3 = cachep->nodelists[node];
4229 if (!l3)
4230 continue;
4231
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004232 check_irq_on();
4233 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07004234
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004235 list_for_each_entry(slabp, &l3->slabs_full, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004236 if (slabp->inuse != cachep->num && !error)
4237 error = "slabs_full accounting error";
4238 active_objs += cachep->num;
4239 active_slabs++;
4240 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004241 list_for_each_entry(slabp, &l3->slabs_partial, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004242 if (slabp->inuse == cachep->num && !error)
4243 error = "slabs_partial inuse accounting error";
4244 if (!slabp->inuse && !error)
4245 error = "slabs_partial/inuse accounting error";
4246 active_objs += slabp->inuse;
4247 active_slabs++;
4248 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004249 list_for_each_entry(slabp, &l3->slabs_free, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004250 if (slabp->inuse && !error)
4251 error = "slabs_free/inuse accounting error";
4252 num_slabs++;
4253 }
4254 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08004255 if (l3->shared)
4256 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07004257
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004258 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004259 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004260 num_slabs += active_slabs;
4261 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07004262 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004263 error = "free_objects accounting error";
4264
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004265 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004266 if (error)
4267 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4268
4269 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004270 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004271 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004272 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004273 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07004274 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004275 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004276#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004277 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004278 unsigned long high = cachep->high_mark;
4279 unsigned long allocs = cachep->num_allocations;
4280 unsigned long grown = cachep->grown;
4281 unsigned long reaped = cachep->reaped;
4282 unsigned long errors = cachep->errors;
4283 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004284 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07004285 unsigned long node_frees = cachep->node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004286 unsigned long overflows = cachep->node_overflow;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004287
Christoph Lametere498be72005-09-09 13:03:32 -07004288 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004289 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
Andrew Mortona737b3e2006-03-22 00:08:11 -08004290 reaped, errors, max_freeable, node_allocs,
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004291 node_frees, overflows);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004292 }
4293 /* cpu stats */
4294 {
4295 unsigned long allochit = atomic_read(&cachep->allochit);
4296 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4297 unsigned long freehit = atomic_read(&cachep->freehit);
4298 unsigned long freemiss = atomic_read(&cachep->freemiss);
4299
4300 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004301 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004302 }
4303#endif
4304 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004305 return 0;
4306}
4307
4308/*
4309 * slabinfo_op - iterator that generates /proc/slabinfo
4310 *
4311 * Output layout:
4312 * cache-name
4313 * num-active-objs
4314 * total-objs
4315 * object size
4316 * num-active-slabs
4317 * total-slabs
4318 * num-pages-per-slab
4319 * + further values on SMP and with statistics enabled
4320 */
4321
Helge Deller15ad7cd2006-12-06 20:40:36 -08004322const struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004323 .start = s_start,
4324 .next = s_next,
4325 .stop = s_stop,
4326 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004327};
4328
4329#define MAX_SLABINFO_WRITE 128
4330/**
4331 * slabinfo_write - Tuning for the slab allocator
4332 * @file: unused
4333 * @buffer: user buffer
4334 * @count: data length
4335 * @ppos: unused
4336 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004337ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4338 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004339{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004340 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004341 int limit, batchcount, shared, res;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004342 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004343
Linus Torvalds1da177e2005-04-16 15:20:36 -07004344 if (count > MAX_SLABINFO_WRITE)
4345 return -EINVAL;
4346 if (copy_from_user(&kbuf, buffer, count))
4347 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004348 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07004349
4350 tmp = strchr(kbuf, ' ');
4351 if (!tmp)
4352 return -EINVAL;
4353 *tmp = '\0';
4354 tmp++;
4355 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4356 return -EINVAL;
4357
4358 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004359 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004360 res = -EINVAL;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004361 list_for_each_entry(cachep, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004362 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08004363 if (limit < 1 || batchcount < 1 ||
4364 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07004365 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004366 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07004367 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004368 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004369 }
4370 break;
4371 }
4372 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004373 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004374 if (res >= 0)
4375 res = count;
4376 return res;
4377}
Al Viro871751e2006-03-25 03:06:39 -08004378
4379#ifdef CONFIG_DEBUG_SLAB_LEAK
4380
4381static void *leaks_start(struct seq_file *m, loff_t *pos)
4382{
4383 loff_t n = *pos;
4384 struct list_head *p;
4385
4386 mutex_lock(&cache_chain_mutex);
4387 p = cache_chain.next;
4388 while (n--) {
4389 p = p->next;
4390 if (p == &cache_chain)
4391 return NULL;
4392 }
4393 return list_entry(p, struct kmem_cache, next);
4394}
4395
4396static inline int add_caller(unsigned long *n, unsigned long v)
4397{
4398 unsigned long *p;
4399 int l;
4400 if (!v)
4401 return 1;
4402 l = n[1];
4403 p = n + 2;
4404 while (l) {
4405 int i = l/2;
4406 unsigned long *q = p + 2 * i;
4407 if (*q == v) {
4408 q[1]++;
4409 return 1;
4410 }
4411 if (*q > v) {
4412 l = i;
4413 } else {
4414 p = q + 2;
4415 l -= i + 1;
4416 }
4417 }
4418 if (++n[1] == n[0])
4419 return 0;
4420 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4421 p[0] = v;
4422 p[1] = 1;
4423 return 1;
4424}
4425
4426static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4427{
4428 void *p;
4429 int i;
4430 if (n[0] == n[1])
4431 return;
4432 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4433 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4434 continue;
4435 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4436 return;
4437 }
4438}
4439
4440static void show_symbol(struct seq_file *m, unsigned long address)
4441{
4442#ifdef CONFIG_KALLSYMS
4443 char *modname;
4444 const char *name;
4445 unsigned long offset, size;
4446 char namebuf[KSYM_NAME_LEN+1];
4447
4448 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4449
4450 if (name) {
4451 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4452 if (modname)
4453 seq_printf(m, " [%s]", modname);
4454 return;
4455 }
4456#endif
4457 seq_printf(m, "%p", (void *)address);
4458}
4459
4460static int leaks_show(struct seq_file *m, void *p)
4461{
4462 struct kmem_cache *cachep = p;
Al Viro871751e2006-03-25 03:06:39 -08004463 struct slab *slabp;
4464 struct kmem_list3 *l3;
4465 const char *name;
4466 unsigned long *n = m->private;
4467 int node;
4468 int i;
4469
4470 if (!(cachep->flags & SLAB_STORE_USER))
4471 return 0;
4472 if (!(cachep->flags & SLAB_RED_ZONE))
4473 return 0;
4474
4475 /* OK, we can do it */
4476
4477 n[1] = 0;
4478
4479 for_each_online_node(node) {
4480 l3 = cachep->nodelists[node];
4481 if (!l3)
4482 continue;
4483
4484 check_irq_on();
4485 spin_lock_irq(&l3->list_lock);
4486
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004487 list_for_each_entry(slabp, &l3->slabs_full, list)
Al Viro871751e2006-03-25 03:06:39 -08004488 handle_slab(n, cachep, slabp);
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004489 list_for_each_entry(slabp, &l3->slabs_partial, list)
Al Viro871751e2006-03-25 03:06:39 -08004490 handle_slab(n, cachep, slabp);
Al Viro871751e2006-03-25 03:06:39 -08004491 spin_unlock_irq(&l3->list_lock);
4492 }
4493 name = cachep->name;
4494 if (n[0] == n[1]) {
4495 /* Increase the buffer size */
4496 mutex_unlock(&cache_chain_mutex);
4497 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4498 if (!m->private) {
4499 /* Too bad, we are really out */
4500 m->private = n;
4501 mutex_lock(&cache_chain_mutex);
4502 return -ENOMEM;
4503 }
4504 *(unsigned long *)m->private = n[0] * 2;
4505 kfree(n);
4506 mutex_lock(&cache_chain_mutex);
4507 /* Now make sure this entry will be retried */
4508 m->count = m->size;
4509 return 0;
4510 }
4511 for (i = 0; i < n[1]; i++) {
4512 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4513 show_symbol(m, n[2*i+2]);
4514 seq_putc(m, '\n');
4515 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004516
Al Viro871751e2006-03-25 03:06:39 -08004517 return 0;
4518}
4519
Helge Deller15ad7cd2006-12-06 20:40:36 -08004520const struct seq_operations slabstats_op = {
Al Viro871751e2006-03-25 03:06:39 -08004521 .start = leaks_start,
4522 .next = s_next,
4523 .stop = s_stop,
4524 .show = leaks_show,
4525};
4526#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004527#endif
4528
Manfred Spraul00e145b2005-09-03 15:55:07 -07004529/**
4530 * ksize - get the actual amount of memory allocated for a given object
4531 * @objp: Pointer to the object
4532 *
4533 * kmalloc may internally round up allocations and return more memory
4534 * than requested. ksize() can be used to determine the actual amount of
4535 * memory allocated. The caller may use this additional memory, even though
4536 * a smaller amount of memory was initially specified with the kmalloc call.
4537 * The caller must guarantee that objp points to a valid object previously
4538 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4539 * must not be freed during the duration of the call.
4540 */
Pekka Enbergfd76bab2007-05-06 14:48:40 -07004541size_t ksize(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004542{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004543 if (unlikely(objp == NULL))
4544 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004545
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08004546 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004547}