blob: 04a7a8e1f4909f7ab85457a2101499eda400b071 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Nicolas Geoffrayf3e2cc42014-02-18 18:37:26 +000017#include <string>
18#include <inttypes.h>
19
Brian Carlstrom7940e442013-07-12 13:46:57 -070020#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
Mark Mendelle19c91f2014-02-25 08:19:08 -080023#include "mirror/array.h"
24#include "mirror/string.h"
Brian Carlstrom7940e442013-07-12 13:46:57 -070025#include "x86_lir.h"
26
Brian Carlstrom7940e442013-07-12 13:46:57 -070027namespace art {
28
Vladimir Marko089142c2014-06-05 10:57:05 +010029static constexpr RegStorage core_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070030 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
31};
Vladimir Marko089142c2014-06-05 10:57:05 +010032static constexpr RegStorage core_regs_arr_64[] = {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +070033 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
buzbee091cc402014-03-31 10:14:40 -070034 rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
Brian Carlstrom7940e442013-07-12 13:46:57 -070035};
Vladimir Marko089142c2014-06-05 10:57:05 +010036static constexpr RegStorage core_regs_arr_64q[] = {
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070037 rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
Dmitry Petrochenkoa20468c2014-04-30 13:40:19 +070038 rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070039};
Vladimir Marko089142c2014-06-05 10:57:05 +010040static constexpr RegStorage sp_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070041 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
42};
Vladimir Marko089142c2014-06-05 10:57:05 +010043static constexpr RegStorage sp_regs_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070044 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
buzbee091cc402014-03-31 10:14:40 -070045 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
Brian Carlstrom7940e442013-07-12 13:46:57 -070046};
Vladimir Marko089142c2014-06-05 10:57:05 +010047static constexpr RegStorage dp_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070048 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
49};
Vladimir Marko089142c2014-06-05 10:57:05 +010050static constexpr RegStorage dp_regs_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070051 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
buzbee091cc402014-03-31 10:14:40 -070052 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
Brian Carlstrom7940e442013-07-12 13:46:57 -070053};
Vladimir Marko089142c2014-06-05 10:57:05 +010054static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +070055static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
Vladimir Marko089142c2014-06-05 10:57:05 +010056static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
57static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
58static constexpr RegStorage core_temps_arr_64[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070059 rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070060 rs_r8, rs_r9, rs_r10, rs_r11
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070061};
Vladimir Marko089142c2014-06-05 10:57:05 +010062static constexpr RegStorage core_temps_arr_64q[] = {
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070063 rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070064 rs_r8q, rs_r9q, rs_r10q, rs_r11q
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070065};
Vladimir Marko089142c2014-06-05 10:57:05 +010066static constexpr RegStorage sp_temps_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070067 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
68};
Vladimir Marko089142c2014-06-05 10:57:05 +010069static constexpr RegStorage sp_temps_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070070 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
buzbee091cc402014-03-31 10:14:40 -070071 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
buzbee091cc402014-03-31 10:14:40 -070072};
Vladimir Marko089142c2014-06-05 10:57:05 +010073static constexpr RegStorage dp_temps_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070074 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
75};
Vladimir Marko089142c2014-06-05 10:57:05 +010076static constexpr RegStorage dp_temps_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070077 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
buzbee091cc402014-03-31 10:14:40 -070078 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
buzbee091cc402014-03-31 10:14:40 -070079};
80
Vladimir Marko089142c2014-06-05 10:57:05 +010081static constexpr RegStorage xp_temps_arr_32[] = {
Mark Mendellfe945782014-05-22 09:52:36 -040082 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
83};
Vladimir Marko089142c2014-06-05 10:57:05 +010084static constexpr RegStorage xp_temps_arr_64[] = {
Mark Mendellfe945782014-05-22 09:52:36 -040085 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
Mark Mendellfe945782014-05-22 09:52:36 -040086 rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
Mark Mendellfe945782014-05-22 09:52:36 -040087};
88
Vladimir Marko089142c2014-06-05 10:57:05 +010089static constexpr ArrayRef<const RegStorage> empty_pool;
90static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
91static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
92static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
93static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
94static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
95static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
96static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
97static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
98static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
99static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
100static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
101static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
102static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
103static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
104static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
105static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
106static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700107
Vladimir Marko089142c2014-06-05 10:57:05 +0100108static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
109static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
Mark Mendellfe945782014-05-22 09:52:36 -0400110
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700111RegStorage rs_rX86_SP;
112
113X86NativeRegisterPool rX86_ARG0;
114X86NativeRegisterPool rX86_ARG1;
115X86NativeRegisterPool rX86_ARG2;
116X86NativeRegisterPool rX86_ARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700117X86NativeRegisterPool rX86_ARG4;
118X86NativeRegisterPool rX86_ARG5;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700119X86NativeRegisterPool rX86_FARG0;
120X86NativeRegisterPool rX86_FARG1;
121X86NativeRegisterPool rX86_FARG2;
122X86NativeRegisterPool rX86_FARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700123X86NativeRegisterPool rX86_FARG4;
124X86NativeRegisterPool rX86_FARG5;
125X86NativeRegisterPool rX86_FARG6;
126X86NativeRegisterPool rX86_FARG7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700127X86NativeRegisterPool rX86_RET0;
128X86NativeRegisterPool rX86_RET1;
129X86NativeRegisterPool rX86_INVOKE_TGT;
130X86NativeRegisterPool rX86_COUNT;
131
132RegStorage rs_rX86_ARG0;
133RegStorage rs_rX86_ARG1;
134RegStorage rs_rX86_ARG2;
135RegStorage rs_rX86_ARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700136RegStorage rs_rX86_ARG4;
137RegStorage rs_rX86_ARG5;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700138RegStorage rs_rX86_FARG0;
139RegStorage rs_rX86_FARG1;
140RegStorage rs_rX86_FARG2;
141RegStorage rs_rX86_FARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700142RegStorage rs_rX86_FARG4;
143RegStorage rs_rX86_FARG5;
144RegStorage rs_rX86_FARG6;
145RegStorage rs_rX86_FARG7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700146RegStorage rs_rX86_RET0;
147RegStorage rs_rX86_RET1;
148RegStorage rs_rX86_INVOKE_TGT;
149RegStorage rs_rX86_COUNT;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700150
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700151RegLocation X86Mir2Lir::LocCReturn() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000152 return x86_loc_c_return;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700153}
154
buzbeea0cd2d72014-06-01 09:33:49 -0700155RegLocation X86Mir2Lir::LocCReturnRef() {
156 // FIXME: return x86_loc_c_return_wide for x86_64 when wide refs supported.
157 return x86_loc_c_return;
158}
159
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700160RegLocation X86Mir2Lir::LocCReturnWide() {
Chao-ying Fua0147762014-06-06 18:38:49 -0700161 return Gen64Bit() ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162}
163
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700164RegLocation X86Mir2Lir::LocCReturnFloat() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000165 return x86_loc_c_return_float;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700166}
167
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700168RegLocation X86Mir2Lir::LocCReturnDouble() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000169 return x86_loc_c_return_double;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700170}
171
172// Return a target-dependent special register.
buzbee2700f7e2014-03-07 09:46:20 -0800173RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
buzbee091cc402014-03-31 10:14:40 -0700174 RegStorage res_reg = RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700175 switch (reg) {
buzbee091cc402014-03-31 10:14:40 -0700176 case kSelf: res_reg = RegStorage::InvalidReg(); break;
177 case kSuspend: res_reg = RegStorage::InvalidReg(); break;
178 case kLr: res_reg = RegStorage::InvalidReg(); break;
179 case kPc: res_reg = RegStorage::InvalidReg(); break;
180 case kSp: res_reg = rs_rX86_SP; break;
181 case kArg0: res_reg = rs_rX86_ARG0; break;
182 case kArg1: res_reg = rs_rX86_ARG1; break;
183 case kArg2: res_reg = rs_rX86_ARG2; break;
184 case kArg3: res_reg = rs_rX86_ARG3; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700185 case kArg4: res_reg = rs_rX86_ARG4; break;
186 case kArg5: res_reg = rs_rX86_ARG5; break;
buzbee091cc402014-03-31 10:14:40 -0700187 case kFArg0: res_reg = rs_rX86_FARG0; break;
188 case kFArg1: res_reg = rs_rX86_FARG1; break;
189 case kFArg2: res_reg = rs_rX86_FARG2; break;
190 case kFArg3: res_reg = rs_rX86_FARG3; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700191 case kFArg4: res_reg = rs_rX86_FARG4; break;
192 case kFArg5: res_reg = rs_rX86_FARG5; break;
193 case kFArg6: res_reg = rs_rX86_FARG6; break;
194 case kFArg7: res_reg = rs_rX86_FARG7; break;
buzbee091cc402014-03-31 10:14:40 -0700195 case kRet0: res_reg = rs_rX86_RET0; break;
196 case kRet1: res_reg = rs_rX86_RET1; break;
197 case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
198 case kHiddenArg: res_reg = rs_rAX; break;
Mark Mendelld3703d82014-06-09 15:10:50 -0400199 case kHiddenFpArg: DCHECK(!Gen64Bit()); res_reg = rs_fr0; break;
buzbee091cc402014-03-31 10:14:40 -0700200 case kCount: res_reg = rs_rX86_COUNT; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700201 default: res_reg = RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700202 }
buzbee091cc402014-03-31 10:14:40 -0700203 return res_reg;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700204}
205
Brian Carlstrom7940e442013-07-12 13:46:57 -0700206/*
207 * Decode the register id.
208 */
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100209ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
210 /* Double registers in x86 are just a single FP register. This is always just a single bit. */
211 return ResourceMask::Bit(
212 /* FP register starts at bit position 16 */
213 ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700214}
215
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100216ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700217 /*
218 * FIXME: might make sense to use a virtual resource encoding bit for pc. Might be
219 * able to clean up some of the x86/Arm_Mips differences
220 */
221 LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100222 return kEncodeNone;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700223}
224
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100225void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
226 ResourceMask* use_mask, ResourceMask* def_mask) {
Dmitry Petrochenko6a58cb12014-04-02 17:27:59 +0700227 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
buzbeeb48819d2013-09-14 16:15:25 -0700228 DCHECK(!lir->flags.use_def_invalid);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700229
230 // X86-specific resource map setup here.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700231 if (flags & REG_USE_SP) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100232 use_mask->SetBit(kX86RegSP);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700233 }
234
235 if (flags & REG_DEF_SP) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100236 def_mask->SetBit(kX86RegSP);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700237 }
238
239 if (flags & REG_DEFA) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100240 SetupRegMask(def_mask, rs_rAX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700241 }
242
243 if (flags & REG_DEFD) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100244 SetupRegMask(def_mask, rs_rDX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700245 }
246 if (flags & REG_USEA) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100247 SetupRegMask(use_mask, rs_rAX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700248 }
249
250 if (flags & REG_USEC) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100251 SetupRegMask(use_mask, rs_rCX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700252 }
253
254 if (flags & REG_USED) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100255 SetupRegMask(use_mask, rs_rDX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700256 }
Vladimir Marko70b797d2013-12-03 15:25:24 +0000257
258 if (flags & REG_USEB) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100259 SetupRegMask(use_mask, rs_rBX.GetReg());
Vladimir Marko70b797d2013-12-03 15:25:24 +0000260 }
Mark Mendell4028a6c2014-02-19 20:06:20 -0800261
262 // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
263 if (lir->opcode == kX86RepneScasw) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100264 SetupRegMask(use_mask, rs_rAX.GetReg());
265 SetupRegMask(use_mask, rs_rCX.GetReg());
266 SetupRegMask(use_mask, rs_rDI.GetReg());
267 SetupRegMask(def_mask, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -0800268 }
Serguei Katkove90501d2014-03-12 15:56:54 +0700269
270 if (flags & USE_FP_STACK) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100271 use_mask->SetBit(kX86FPStack);
272 def_mask->SetBit(kX86FPStack);
Serguei Katkove90501d2014-03-12 15:56:54 +0700273 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700274}
275
276/* For dumping instructions */
277static const char* x86RegName[] = {
278 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
279 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
280};
281
282static const char* x86CondName[] = {
283 "O",
284 "NO",
285 "B/NAE/C",
286 "NB/AE/NC",
287 "Z/EQ",
288 "NZ/NE",
289 "BE/NA",
290 "NBE/A",
291 "S",
292 "NS",
293 "P/PE",
294 "NP/PO",
295 "L/NGE",
296 "NL/GE",
297 "LE/NG",
298 "NLE/G"
299};
300
301/*
302 * Interpret a format string and build a string no longer than size
303 * See format key in Assemble.cc.
304 */
305std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
306 std::string buf;
307 size_t i = 0;
308 size_t fmt_len = strlen(fmt);
309 while (i < fmt_len) {
310 if (fmt[i] != '!') {
311 buf += fmt[i];
312 i++;
313 } else {
314 i++;
315 DCHECK_LT(i, fmt_len);
316 char operand_number_ch = fmt[i];
317 i++;
318 if (operand_number_ch == '!') {
319 buf += "!";
320 } else {
321 int operand_number = operand_number_ch - '0';
322 DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands.
323 DCHECK_LT(i, fmt_len);
324 int operand = lir->operands[operand_number];
325 switch (fmt[i]) {
326 case 'c':
327 DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
328 buf += x86CondName[operand];
329 break;
330 case 'd':
331 buf += StringPrintf("%d", operand);
332 break;
Yixin Shou5192cbb2014-07-01 13:48:17 -0400333 case 'q': {
334 int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
335 static_cast<uint32_t>(lir->operands[operand_number+1]));
336 buf +=StringPrintf("%" PRId64, value);
337 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700338 case 'p': {
buzbee0d829482013-10-11 15:24:55 -0700339 EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700340 buf += StringPrintf("0x%08x", tab_rec->offset);
341 break;
342 }
343 case 'r':
buzbee091cc402014-03-31 10:14:40 -0700344 if (RegStorage::IsFloat(operand)) {
345 int fp_reg = RegStorage::RegNum(operand);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700346 buf += StringPrintf("xmm%d", fp_reg);
347 } else {
buzbee091cc402014-03-31 10:14:40 -0700348 int reg_num = RegStorage::RegNum(operand);
349 DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
350 buf += x86RegName[reg_num];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700351 }
352 break;
353 case 't':
Ian Rogers107c31e2014-01-23 20:55:29 -0800354 buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
355 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
356 lir->target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700357 break;
358 default:
359 buf += StringPrintf("DecodeError '%c'", fmt[i]);
360 break;
361 }
362 i++;
363 }
364 }
365 }
366 return buf;
367}
368
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100369void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700370 char buf[256];
371 buf[0] = 0;
372
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100373 if (mask.Equals(kEncodeAll)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700374 strcpy(buf, "all");
375 } else {
376 char num[8];
377 int i;
378
379 for (i = 0; i < kX86RegEnd; i++) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100380 if (mask.HasBit(i)) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800381 snprintf(num, arraysize(num), "%d ", i);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700382 strcat(buf, num);
383 }
384 }
385
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100386 if (mask.HasBit(ResourceMask::kCCode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700387 strcat(buf, "cc ");
388 }
389 /* Memory bits */
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100390 if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800391 snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
392 DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
393 (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
Brian Carlstrom7940e442013-07-12 13:46:57 -0700394 }
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100395 if (mask.HasBit(ResourceMask::kLiteral)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700396 strcat(buf, "lit ");
397 }
398
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100399 if (mask.HasBit(ResourceMask::kHeapRef)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700400 strcat(buf, "heap ");
401 }
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100402 if (mask.HasBit(ResourceMask::kMustNotAlias)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700403 strcat(buf, "noalias ");
404 }
405 }
406 if (buf[0]) {
407 LOG(INFO) << prefix << ": " << buf;
408 }
409}
410
411void X86Mir2Lir::AdjustSpillMask() {
412 // Adjustment for LR spilling, x86 has no LR so nothing to do here
buzbee091cc402014-03-31 10:14:40 -0700413 core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700414 num_core_spills_++;
415}
416
417/*
418 * Mark a callee-save fp register as promoted. Note that
419 * vpush/vpop uses contiguous register lists so we must
420 * include any holes in the mask. Associate holes with
421 * Dalvik register INVALID_VREG (0xFFFFU).
422 */
buzbee091cc402014-03-31 10:14:40 -0700423void X86Mir2Lir::MarkPreservedSingle(int v_reg, RegStorage reg) {
424 UNIMPLEMENTED(FATAL) << "MarkPreservedSingle";
Brian Carlstrom7940e442013-07-12 13:46:57 -0700425}
426
buzbee091cc402014-03-31 10:14:40 -0700427void X86Mir2Lir::MarkPreservedDouble(int v_reg, RegStorage reg) {
428 UNIMPLEMENTED(FATAL) << "MarkPreservedDouble";
buzbee2700f7e2014-03-07 09:46:20 -0800429}
430
Mark Mendelle87f9b52014-04-30 14:13:18 -0400431RegStorage X86Mir2Lir::AllocateByteRegister() {
Chao-ying Fu7e399fd2014-06-10 18:11:11 -0700432 RegStorage reg = AllocTypedTemp(false, kCoreReg);
433 if (!Gen64Bit()) {
434 DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
435 }
436 return reg;
437}
438
439bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
440 return Gen64Bit() || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
Mark Mendelle87f9b52014-04-30 14:13:18 -0400441}
442
Brian Carlstrom7940e442013-07-12 13:46:57 -0700443/* Clobber all regs that might be used by an external C call */
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000444void X86Mir2Lir::ClobberCallerSave() {
buzbee091cc402014-03-31 10:14:40 -0700445 Clobber(rs_rAX);
446 Clobber(rs_rCX);
447 Clobber(rs_rDX);
448 Clobber(rs_rBX);
Chao-ying Fu35ec2b52014-06-16 16:40:31 -0700449
450 Clobber(rs_fr0);
451 Clobber(rs_fr1);
452 Clobber(rs_fr2);
453 Clobber(rs_fr3);
454 Clobber(rs_fr4);
455 Clobber(rs_fr5);
456 Clobber(rs_fr6);
457 Clobber(rs_fr7);
458
459 if (Gen64Bit()) {
460 Clobber(rs_r8);
461 Clobber(rs_r9);
462 Clobber(rs_r10);
463 Clobber(rs_r11);
464
465 Clobber(rs_fr8);
466 Clobber(rs_fr9);
467 Clobber(rs_fr10);
468 Clobber(rs_fr11);
469 Clobber(rs_fr12);
470 Clobber(rs_fr13);
471 Clobber(rs_fr14);
472 Clobber(rs_fr15);
473 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700474}
475
476RegLocation X86Mir2Lir::GetReturnWideAlt() {
477 RegLocation res = LocCReturnWide();
buzbee091cc402014-03-31 10:14:40 -0700478 DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
479 DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
480 Clobber(rs_rAX);
481 Clobber(rs_rDX);
482 MarkInUse(rs_rAX);
483 MarkInUse(rs_rDX);
484 MarkWide(res.reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700485 return res;
486}
487
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700488RegLocation X86Mir2Lir::GetReturnAlt() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700489 RegLocation res = LocCReturn();
buzbee091cc402014-03-31 10:14:40 -0700490 res.reg.SetReg(rs_rDX.GetReg());
491 Clobber(rs_rDX);
492 MarkInUse(rs_rDX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700493 return res;
494}
495
Brian Carlstrom7940e442013-07-12 13:46:57 -0700496/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700497void X86Mir2Lir::LockCallTemps() {
buzbee091cc402014-03-31 10:14:40 -0700498 LockTemp(rs_rX86_ARG0);
499 LockTemp(rs_rX86_ARG1);
500 LockTemp(rs_rX86_ARG2);
501 LockTemp(rs_rX86_ARG3);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700502 if (Gen64Bit()) {
503 LockTemp(rs_rX86_ARG4);
504 LockTemp(rs_rX86_ARG5);
505 LockTemp(rs_rX86_FARG0);
506 LockTemp(rs_rX86_FARG1);
507 LockTemp(rs_rX86_FARG2);
508 LockTemp(rs_rX86_FARG3);
509 LockTemp(rs_rX86_FARG4);
510 LockTemp(rs_rX86_FARG5);
511 LockTemp(rs_rX86_FARG6);
512 LockTemp(rs_rX86_FARG7);
513 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700514}
515
516/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700517void X86Mir2Lir::FreeCallTemps() {
buzbee091cc402014-03-31 10:14:40 -0700518 FreeTemp(rs_rX86_ARG0);
519 FreeTemp(rs_rX86_ARG1);
520 FreeTemp(rs_rX86_ARG2);
521 FreeTemp(rs_rX86_ARG3);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700522 if (Gen64Bit()) {
523 FreeTemp(rs_rX86_ARG4);
524 FreeTemp(rs_rX86_ARG5);
525 FreeTemp(rs_rX86_FARG0);
526 FreeTemp(rs_rX86_FARG1);
527 FreeTemp(rs_rX86_FARG2);
528 FreeTemp(rs_rX86_FARG3);
529 FreeTemp(rs_rX86_FARG4);
530 FreeTemp(rs_rX86_FARG5);
531 FreeTemp(rs_rX86_FARG6);
532 FreeTemp(rs_rX86_FARG7);
533 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700534}
535
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800536bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
537 switch (opcode) {
538 case kX86LockCmpxchgMR:
539 case kX86LockCmpxchgAR:
Ian Rogers0f9b9c52014-06-09 01:32:12 -0700540 case kX86LockCmpxchg64M:
541 case kX86LockCmpxchg64A:
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800542 case kX86XchgMR:
543 case kX86Mfence:
544 // Atomic memory instructions provide full barrier.
545 return true;
546 default:
547 break;
548 }
549
550 // Conservative if cannot prove it provides full barrier.
551 return false;
552}
553
Andreas Gampeb14329f2014-05-15 11:16:06 -0700554bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700555#if ANDROID_SMP != 0
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800556 // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
557 LIR* mem_barrier = last_lir_insn_;
558
Andreas Gampeb14329f2014-05-15 11:16:06 -0700559 bool ret = false;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800560 /*
561 * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
562 * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
563 * to ensure is that there is a scheduling barrier in place.
564 */
565 if (barrier_kind == kStoreLoad) {
566 // If no LIR exists already that can be used a barrier, then generate an mfence.
567 if (mem_barrier == nullptr) {
568 mem_barrier = NewLIR0(kX86Mfence);
Andreas Gampeb14329f2014-05-15 11:16:06 -0700569 ret = true;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800570 }
571
572 // If last instruction does not provide full barrier, then insert an mfence.
573 if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
574 mem_barrier = NewLIR0(kX86Mfence);
Andreas Gampeb14329f2014-05-15 11:16:06 -0700575 ret = true;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800576 }
577 }
578
579 // Now ensure that a scheduling barrier is in place.
580 if (mem_barrier == nullptr) {
581 GenBarrier();
582 } else {
583 // Mark as a scheduling barrier.
584 DCHECK(!mem_barrier->flags.use_def_invalid);
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100585 mem_barrier->u.m.def_mask = &kEncodeAll;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800586 }
Andreas Gampeb14329f2014-05-15 11:16:06 -0700587 return ret;
588#else
589 return false;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700590#endif
591}
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000592
Brian Carlstrom7940e442013-07-12 13:46:57 -0700593void X86Mir2Lir::CompilerInitializeRegAlloc() {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700594 if (Gen64Bit()) {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700595 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
596 dp_regs_64, reserved_regs_64, reserved_regs_64q,
597 core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700598 } else {
buzbeeb01bf152014-05-13 15:59:07 -0700599 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
600 dp_regs_32, reserved_regs_32, empty_pool,
601 core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700602 }
buzbee091cc402014-03-31 10:14:40 -0700603
604 // Target-specific adjustments.
605
Mark Mendellfe945782014-05-22 09:52:36 -0400606 // Add in XMM registers.
Vladimir Marko089142c2014-06-05 10:57:05 +0100607 const ArrayRef<const RegStorage> *xp_temps = Gen64Bit() ? &xp_temps_64 : &xp_temps_32;
Mark Mendellfe945782014-05-22 09:52:36 -0400608 for (RegStorage reg : *xp_temps) {
609 RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
610 reginfo_map_.Put(reg.GetReg(), info);
611 info->SetIsTemp(true);
612 }
613
buzbee091cc402014-03-31 10:14:40 -0700614 // Alias single precision xmm to double xmms.
615 // TODO: as needed, add larger vector sizes - alias all to the largest.
616 GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
617 for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
618 int sp_reg_num = info->GetReg().GetRegNum();
Mark Mendellfe945782014-05-22 09:52:36 -0400619 RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
620 RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
621 // 128-bit xmm vector register's master storage should refer to itself.
622 DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
623
624 // Redirect 32-bit vector's master storage to 128-bit vector.
625 info->SetMaster(xp_reg_info);
626
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700627 RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
buzbee091cc402014-03-31 10:14:40 -0700628 RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
Mark Mendellfe945782014-05-22 09:52:36 -0400629 // Redirect 64-bit vector's master storage to 128-bit vector.
630 dp_reg_info->SetMaster(xp_reg_info);
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700631 // Singles should show a single 32-bit mask bit, at first referring to the low half.
632 DCHECK_EQ(info->StorageMask(), 0x1U);
633 }
634
635 if (Gen64Bit()) {
636 // Alias 32bit W registers to corresponding 64bit X registers.
637 GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
638 for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
639 int x_reg_num = info->GetReg().GetRegNum();
640 RegStorage x_reg = RegStorage::Solo64(x_reg_num);
641 RegisterInfo* x_reg_info = GetRegInfo(x_reg);
642 // 64bit X register's master storage should refer to itself.
643 DCHECK_EQ(x_reg_info, x_reg_info->Master());
644 // Redirect 32bit W master storage to 64bit X.
645 info->SetMaster(x_reg_info);
646 // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
647 DCHECK_EQ(info->StorageMask(), 0x1U);
648 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700649 }
buzbee091cc402014-03-31 10:14:40 -0700650
651 // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
652 // TODO: adjust for x86/hard float calling convention.
653 reg_pool_->next_core_reg_ = 2;
654 reg_pool_->next_sp_reg_ = 2;
655 reg_pool_->next_dp_reg_ = 1;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700656}
657
Brian Carlstrom7940e442013-07-12 13:46:57 -0700658void X86Mir2Lir::SpillCoreRegs() {
659 if (num_core_spills_ == 0) {
660 return;
661 }
662 // Spill mask not including fake return address register
buzbee091cc402014-03-31 10:14:40 -0700663 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700664 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700665 for (int reg = 0; mask; mask >>= 1, reg++) {
666 if (mask & 0x1) {
buzbee2700f7e2014-03-07 09:46:20 -0800667 StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700668 offset += GetInstructionSetPointerSize(cu_->instruction_set);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700669 }
670 }
671}
672
673void X86Mir2Lir::UnSpillCoreRegs() {
674 if (num_core_spills_ == 0) {
675 return;
676 }
677 // Spill mask not including fake return address register
buzbee091cc402014-03-31 10:14:40 -0700678 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700679 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700680 for (int reg = 0; mask; mask >>= 1, reg++) {
681 if (mask & 0x1) {
buzbee2700f7e2014-03-07 09:46:20 -0800682 LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700683 offset += GetInstructionSetPointerSize(cu_->instruction_set);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700684 }
685 }
686}
687
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700688bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700689 return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
690}
691
Vladimir Marko674744e2014-04-24 15:18:26 +0100692bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
693 return true;
694}
695
696RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
Chao-ying Fue0ccdc02014-06-06 17:32:37 -0700697 // X86_64 can handle any size.
698 if (Gen64Bit()) {
699 if (size == kReference) {
700 return kRefReg;
701 }
702 return kCoreReg;
703 }
704
Vladimir Marko674744e2014-04-24 15:18:26 +0100705 if (UNLIKELY(is_volatile)) {
706 // On x86, atomic 64-bit load/store requires an fp register.
707 // Smaller aligned load/store is atomic for both core and fp registers.
708 if (size == k64 || size == kDouble) {
709 return kFPReg;
710 }
711 }
712 return RegClassBySize(size);
713}
714
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700715X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena, bool gen64bit)
Mark Mendell55d0eac2014-02-06 11:02:52 -0800716 : Mir2Lir(cu, mir_graph, arena),
Ian Rogersdd7624d2014-03-14 17:43:00 -0700717 base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800718 method_address_insns_(arena, 100, kGrowableArrayMisc),
719 class_type_address_insns_(arena, 100, kGrowableArrayMisc),
Mark Mendellae9fd932014-02-10 16:14:35 -0800720 call_method_insns_(arena, 100, kGrowableArrayMisc),
Mark Mendelld65c51a2014-04-29 16:55:20 -0400721 stack_decrement_(nullptr), stack_increment_(nullptr), gen64bit_(gen64bit),
722 const_vectors_(nullptr) {
723 store_method_addr_used_ = false;
Ian Rogersdd7624d2014-03-14 17:43:00 -0700724 if (kIsDebugBuild) {
725 for (int i = 0; i < kX86Last; i++) {
726 if (X86Mir2Lir::EncodingMap[i].opcode != i) {
727 LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
Mark Mendelld65c51a2014-04-29 16:55:20 -0400728 << " is wrong: expecting " << i << ", seeing "
729 << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
Ian Rogersdd7624d2014-03-14 17:43:00 -0700730 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700731 }
732 }
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700733 if (Gen64Bit()) {
734 rs_rX86_SP = rs_rX86_SP_64;
735
736 rs_rX86_ARG0 = rs_rDI;
737 rs_rX86_ARG1 = rs_rSI;
738 rs_rX86_ARG2 = rs_rDX;
739 rs_rX86_ARG3 = rs_rCX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700740 rs_rX86_ARG4 = rs_r8;
741 rs_rX86_ARG5 = rs_r9;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700742 rs_rX86_FARG0 = rs_fr0;
743 rs_rX86_FARG1 = rs_fr1;
744 rs_rX86_FARG2 = rs_fr2;
745 rs_rX86_FARG3 = rs_fr3;
746 rs_rX86_FARG4 = rs_fr4;
747 rs_rX86_FARG5 = rs_fr5;
748 rs_rX86_FARG6 = rs_fr6;
749 rs_rX86_FARG7 = rs_fr7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700750 rX86_ARG0 = rDI;
751 rX86_ARG1 = rSI;
752 rX86_ARG2 = rDX;
753 rX86_ARG3 = rCX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700754 rX86_ARG4 = r8;
755 rX86_ARG5 = r9;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700756 rX86_FARG0 = fr0;
757 rX86_FARG1 = fr1;
758 rX86_FARG2 = fr2;
759 rX86_FARG3 = fr3;
760 rX86_FARG4 = fr4;
761 rX86_FARG5 = fr5;
762 rX86_FARG6 = fr6;
763 rX86_FARG7 = fr7;
Mark Mendell55884bc2014-06-10 10:21:29 -0400764 rs_rX86_INVOKE_TGT = rs_rDI;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700765 } else {
766 rs_rX86_SP = rs_rX86_SP_32;
767
768 rs_rX86_ARG0 = rs_rAX;
769 rs_rX86_ARG1 = rs_rCX;
770 rs_rX86_ARG2 = rs_rDX;
771 rs_rX86_ARG3 = rs_rBX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700772 rs_rX86_ARG4 = RegStorage::InvalidReg();
773 rs_rX86_ARG5 = RegStorage::InvalidReg();
774 rs_rX86_FARG0 = rs_rAX;
775 rs_rX86_FARG1 = rs_rCX;
776 rs_rX86_FARG2 = rs_rDX;
777 rs_rX86_FARG3 = rs_rBX;
778 rs_rX86_FARG4 = RegStorage::InvalidReg();
779 rs_rX86_FARG5 = RegStorage::InvalidReg();
780 rs_rX86_FARG6 = RegStorage::InvalidReg();
781 rs_rX86_FARG7 = RegStorage::InvalidReg();
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700782 rX86_ARG0 = rAX;
783 rX86_ARG1 = rCX;
784 rX86_ARG2 = rDX;
785 rX86_ARG3 = rBX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700786 rX86_FARG0 = rAX;
787 rX86_FARG1 = rCX;
788 rX86_FARG2 = rDX;
789 rX86_FARG3 = rBX;
Mark Mendell55884bc2014-06-10 10:21:29 -0400790 rs_rX86_INVOKE_TGT = rs_rAX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700791 // TODO(64): Initialize with invalid reg
792// rX86_ARG4 = RegStorage::InvalidReg();
793// rX86_ARG5 = RegStorage::InvalidReg();
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700794 }
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700795 rs_rX86_RET0 = rs_rAX;
796 rs_rX86_RET1 = rs_rDX;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700797 rs_rX86_COUNT = rs_rCX;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700798 rX86_RET0 = rAX;
799 rX86_RET1 = rDX;
800 rX86_INVOKE_TGT = rAX;
801 rX86_COUNT = rCX;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700802}
803
804Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
805 ArenaAllocator* const arena) {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700806 return new X86Mir2Lir(cu, mir_graph, arena, false);
807}
808
809Mir2Lir* X86_64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
810 ArenaAllocator* const arena) {
811 return new X86Mir2Lir(cu, mir_graph, arena, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700812}
813
814// Not used in x86
Ian Rogersdd7624d2014-03-14 17:43:00 -0700815RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700816 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
buzbee2700f7e2014-03-07 09:46:20 -0800817 return RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700818}
819
Andreas Gampe2f244e92014-05-08 03:35:25 -0700820// Not used in x86
821RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
822 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
823 return RegStorage::InvalidReg();
824}
825
Dave Allisonb373e092014-02-20 16:06:36 -0800826LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
827 LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
828 return nullptr;
829}
830
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700831uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700832 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700833 return X86Mir2Lir::EncodingMap[opcode].flags;
834}
835
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700836const char* X86Mir2Lir::GetTargetInstName(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700837 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700838 return X86Mir2Lir::EncodingMap[opcode].name;
839}
840
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700841const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700842 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700843 return X86Mir2Lir::EncodingMap[opcode].fmt;
844}
845
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000846void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
847 // Can we do this directly to memory?
848 rl_dest = UpdateLocWide(rl_dest);
849 if ((rl_dest.location == kLocDalvikFrame) ||
850 (rl_dest.location == kLocCompilerTemp)) {
851 int32_t val_lo = Low32Bits(value);
852 int32_t val_hi = High32Bits(value);
buzbee2700f7e2014-03-07 09:46:20 -0800853 int r_base = TargetReg(kSp).GetReg();
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000854 int displacement = SRegOffset(rl_dest.s_reg_low);
855
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100856 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
buzbee2700f7e2014-03-07 09:46:20 -0800857 LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000858 AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
859 false /* is_load */, true /* is64bit */);
buzbee2700f7e2014-03-07 09:46:20 -0800860 store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000861 AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
862 false /* is_load */, true /* is64bit */);
863 return;
864 }
865
866 // Just use the standard code to do the generation.
867 Mir2Lir::GenConstWide(rl_dest, value);
868}
Mark Mendelle02d48f2014-01-15 11:19:23 -0800869
870// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
871void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
872 LOG(INFO) << "location: " << loc.location << ','
873 << (loc.wide ? " w" : " ")
874 << (loc.defined ? " D" : " ")
875 << (loc.is_const ? " c" : " ")
876 << (loc.fp ? " F" : " ")
877 << (loc.core ? " C" : " ")
878 << (loc.ref ? " r" : " ")
879 << (loc.high_word ? " h" : " ")
880 << (loc.home ? " H" : " ")
buzbee2700f7e2014-03-07 09:46:20 -0800881 << ", low: " << static_cast<int>(loc.reg.GetLowReg())
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000882 << ", high: " << static_cast<int>(loc.reg.GetHighReg())
Mark Mendelle02d48f2014-01-15 11:19:23 -0800883 << ", s_reg: " << loc.s_reg_low
884 << ", orig: " << loc.orig_sreg;
885}
886
Mark Mendell67c39c42014-01-31 17:28:00 -0800887void X86Mir2Lir::Materialize() {
888 // A good place to put the analysis before starting.
889 AnalyzeMIR();
890
891 // Now continue with regular code generation.
892 Mir2Lir::Materialize();
893}
894
Jeff Hao49161ce2014-03-12 11:05:25 -0700895void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
Mark Mendell55d0eac2014-02-06 11:02:52 -0800896 SpecialTargetRegister symbolic_reg) {
897 /*
898 * For x86, just generate a 32 bit move immediate instruction, that will be filled
899 * in at 'link time'. For now, put a unique value based on target to ensure that
900 * code deduplication works.
901 */
Jeff Hao49161ce2014-03-12 11:05:25 -0700902 int target_method_idx = target_method.dex_method_index;
903 const DexFile* target_dex_file = target_method.dex_file;
904 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
905 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800906
Jeff Hao49161ce2014-03-12 11:05:25 -0700907 // Generate the move instruction with the unique pointer and save index, dex_file, and type.
buzbee2700f7e2014-03-07 09:46:20 -0800908 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
Jeff Hao49161ce2014-03-12 11:05:25 -0700909 static_cast<int>(target_method_id_ptr), target_method_idx,
910 WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800911 AppendLIR(move);
912 method_address_insns_.Insert(move);
913}
914
915void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
916 /*
917 * For x86, just generate a 32 bit move immediate instruction, that will be filled
918 * in at 'link time'. For now, put a unique value based on target to ensure that
919 * code deduplication works.
920 */
921 const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
922 uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
923
924 // Generate the move instruction with the unique pointer and save index and type.
buzbee2700f7e2014-03-07 09:46:20 -0800925 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800926 static_cast<int>(ptr), type_idx);
927 AppendLIR(move);
928 class_type_address_insns_.Insert(move);
929}
930
Jeff Hao49161ce2014-03-12 11:05:25 -0700931LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800932 /*
933 * For x86, just generate a 32 bit call relative instruction, that will be filled
934 * in at 'link time'. For now, put a unique value based on target to ensure that
935 * code deduplication works.
936 */
Jeff Hao49161ce2014-03-12 11:05:25 -0700937 int target_method_idx = target_method.dex_method_index;
938 const DexFile* target_dex_file = target_method.dex_file;
939 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
940 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800941
Jeff Hao49161ce2014-03-12 11:05:25 -0700942 // Generate the call instruction with the unique pointer and save index, dex_file, and type.
943 LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
944 target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800945 AppendLIR(call);
946 call_method_insns_.Insert(call);
947 return call;
948}
949
Mark Mendelld65c51a2014-04-29 16:55:20 -0400950/*
951 * @brief Enter a 32 bit quantity into a buffer
952 * @param buf buffer.
953 * @param data Data value.
954 */
955
956static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
957 buf.push_back(data & 0xff);
958 buf.push_back((data >> 8) & 0xff);
959 buf.push_back((data >> 16) & 0xff);
960 buf.push_back((data >> 24) & 0xff);
961}
962
Mark Mendell55d0eac2014-02-06 11:02:52 -0800963void X86Mir2Lir::InstallLiteralPools() {
964 // These are handled differently for x86.
965 DCHECK(code_literal_list_ == nullptr);
966 DCHECK(method_literal_list_ == nullptr);
967 DCHECK(class_literal_list_ == nullptr);
968
Mark Mendelld65c51a2014-04-29 16:55:20 -0400969 // Align to 16 byte boundary. We have implicit knowledge that the start of the method is
970 // on a 4 byte boundary. How can I check this if it changes (other than aligned loads
971 // will fail at runtime)?
972 if (const_vectors_ != nullptr) {
973 int align_size = (16-4) - (code_buffer_.size() & 0xF);
974 if (align_size < 0) {
975 align_size += 16;
976 }
977
978 while (align_size > 0) {
979 code_buffer_.push_back(0);
980 align_size--;
981 }
982 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
983 PushWord(code_buffer_, p->operands[0]);
984 PushWord(code_buffer_, p->operands[1]);
985 PushWord(code_buffer_, p->operands[2]);
986 PushWord(code_buffer_, p->operands[3]);
987 }
988 }
989
Mark Mendell55d0eac2014-02-06 11:02:52 -0800990 // Handle the fixups for methods.
991 for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
992 LIR* p = method_address_insns_.Get(i);
993 DCHECK_EQ(p->opcode, kX86Mov32RI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700994 uint32_t target_method_idx = p->operands[2];
995 const DexFile* target_dex_file =
996 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
Mark Mendell55d0eac2014-02-06 11:02:52 -0800997
998 // The offset to patch is the last 4 bytes of the instruction.
999 int patch_offset = p->offset + p->flags.size - 4;
1000 cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
1001 cu_->method_idx, cu_->invoke_type,
Jeff Hao49161ce2014-03-12 11:05:25 -07001002 target_method_idx, target_dex_file,
1003 static_cast<InvokeType>(p->operands[4]),
Mark Mendell55d0eac2014-02-06 11:02:52 -08001004 patch_offset);
1005 }
1006
1007 // Handle the fixups for class types.
1008 for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
1009 LIR* p = class_type_address_insns_.Get(i);
1010 DCHECK_EQ(p->opcode, kX86Mov32RI);
Jeff Hao49161ce2014-03-12 11:05:25 -07001011 uint32_t target_method_idx = p->operands[2];
Mark Mendell55d0eac2014-02-06 11:02:52 -08001012
1013 // The offset to patch is the last 4 bytes of the instruction.
1014 int patch_offset = p->offset + p->flags.size - 4;
1015 cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
Jeff Hao49161ce2014-03-12 11:05:25 -07001016 cu_->method_idx, target_method_idx, patch_offset);
Mark Mendell55d0eac2014-02-06 11:02:52 -08001017 }
1018
1019 // And now the PC-relative calls to methods.
1020 for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
1021 LIR* p = call_method_insns_.Get(i);
1022 DCHECK_EQ(p->opcode, kX86CallI);
Jeff Hao49161ce2014-03-12 11:05:25 -07001023 uint32_t target_method_idx = p->operands[1];
1024 const DexFile* target_dex_file =
1025 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
Mark Mendell55d0eac2014-02-06 11:02:52 -08001026
1027 // The offset to patch is the last 4 bytes of the instruction.
1028 int patch_offset = p->offset + p->flags.size - 4;
1029 cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
Jeff Hao49161ce2014-03-12 11:05:25 -07001030 cu_->method_idx, cu_->invoke_type,
1031 target_method_idx, target_dex_file,
1032 static_cast<InvokeType>(p->operands[3]),
Mark Mendell55d0eac2014-02-06 11:02:52 -08001033 patch_offset, -4 /* offset */);
1034 }
1035
1036 // And do the normal processing.
1037 Mir2Lir::InstallLiteralPools();
1038}
1039
Mark Mendell4028a6c2014-02-19 20:06:20 -08001040/*
1041 * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff,
1042 * otherwise bails to standard library code.
1043 */
1044bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1045 ClobberCallerSave();
1046 LockCallTemps(); // Using fixed registers
1047
1048 // EAX: 16 bit character being searched.
1049 // ECX: count: number of words to be searched.
1050 // EDI: String being searched.
1051 // EDX: temporary during execution.
1052 // EBX: temporary during execution.
1053
1054 RegLocation rl_obj = info->args[0];
1055 RegLocation rl_char = info->args[1];
buzbeea44d4f52014-03-05 11:26:39 -08001056 RegLocation rl_start; // Note: only present in III flavor or IndexOf.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001057
1058 uint32_t char_value =
1059 rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1060
1061 if (char_value > 0xFFFF) {
1062 // We have to punt to the real String.indexOf.
1063 return false;
1064 }
1065
1066 // Okay, we are commited to inlining this.
buzbeea0cd2d72014-06-01 09:33:49 -07001067 RegLocation rl_return = GetReturn(kCoreReg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001068 RegLocation rl_dest = InlineTarget(info);
1069
1070 // Is the string non-NULL?
buzbee2700f7e2014-03-07 09:46:20 -08001071 LoadValueDirectFixed(rl_obj, rs_rDX);
1072 GenNullCheck(rs_rDX, info->opt_flags);
Vladimir Marko3bc86152014-03-13 14:11:28 +00001073 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001074
1075 // Does the character fit in 16 bits?
Mingyao Yang3a74d152014-04-21 15:39:44 -07001076 LIR* slowpath_branch = nullptr;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001077 if (rl_char.is_const) {
1078 // We need the value in EAX.
buzbee2700f7e2014-03-07 09:46:20 -08001079 LoadConstantNoClobber(rs_rAX, char_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001080 } else {
1081 // Character is not a constant; compare at runtime.
buzbee2700f7e2014-03-07 09:46:20 -08001082 LoadValueDirectFixed(rl_char, rs_rAX);
Mingyao Yang3a74d152014-04-21 15:39:44 -07001083 slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001084 }
1085
1086 // From here down, we know that we are looking for a char that fits in 16 bits.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001087 // Location of reference to data array within the String object.
1088 int value_offset = mirror::String::ValueOffset().Int32Value();
1089 // Location of count within the String object.
1090 int count_offset = mirror::String::CountOffset().Int32Value();
1091 // Starting offset within data array.
1092 int offset_offset = mirror::String::OffsetOffset().Int32Value();
1093 // Start of char data with array_.
1094 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
Mark Mendell4028a6c2014-02-19 20:06:20 -08001095
1096 // Character is in EAX.
1097 // Object pointer is in EDX.
1098
1099 // We need to preserve EDI, but have no spare registers, so push it on the stack.
1100 // We have to remember that all stack addresses after this are offset by sizeof(EDI).
buzbee091cc402014-03-31 10:14:40 -07001101 NewLIR1(kX86Push32R, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -08001102
1103 // Compute the number of words to search in to rCX.
buzbee695d13a2014-04-19 13:32:20 -07001104 Load32Disp(rs_rDX, count_offset, rs_rCX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001105 LIR *length_compare = nullptr;
1106 int start_value = 0;
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001107 bool is_index_on_stack = false;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001108 if (zero_based) {
1109 // We have to handle an empty string. Use special instruction JECXZ.
1110 length_compare = NewLIR0(kX86Jecxz8);
1111 } else {
buzbeea44d4f52014-03-05 11:26:39 -08001112 rl_start = info->args[2];
Mark Mendell4028a6c2014-02-19 20:06:20 -08001113 // We have to offset by the start index.
1114 if (rl_start.is_const) {
1115 start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1116 start_value = std::max(start_value, 0);
1117
1118 // Is the start > count?
buzbee2700f7e2014-03-07 09:46:20 -08001119 length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001120
1121 if (start_value != 0) {
buzbee2700f7e2014-03-07 09:46:20 -08001122 OpRegImm(kOpSub, rs_rCX, start_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001123 }
1124 } else {
1125 // Runtime start index.
buzbee30adc732014-05-09 15:10:18 -07001126 rl_start = UpdateLocTyped(rl_start, kCoreReg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001127 if (rl_start.location == kLocPhysReg) {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001128 // Handle "start index < 0" case.
1129 OpRegReg(kOpXor, rs_rBX, rs_rBX);
1130 OpRegReg(kOpCmp, rl_start.reg, rs_rBX);
1131 OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX);
1132
1133 // The length of the string should be greater than the start index.
buzbee2700f7e2014-03-07 09:46:20 -08001134 length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1135 OpRegReg(kOpSub, rs_rCX, rl_start.reg);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001136 if (rl_start.reg == rs_rDI) {
1137 // The special case. We will use EDI further, so lets put start index to stack.
buzbee091cc402014-03-31 10:14:40 -07001138 NewLIR1(kX86Push32R, rs_rDI.GetReg());
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001139 is_index_on_stack = true;
1140 }
Mark Mendell4028a6c2014-02-19 20:06:20 -08001141 } else {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001142 // Load the start index from stack, remembering that we pushed EDI.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001143 int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
Vladimir Marko8dea81c2014-06-06 14:50:36 +01001144 {
1145 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1146 Load32Disp(rs_rX86_SP, displacement, rs_rBX);
1147 }
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001148 OpRegReg(kOpXor, rs_rDI, rs_rDI);
1149 OpRegReg(kOpCmp, rs_rBX, rs_rDI);
1150 OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI);
1151
1152 length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr);
1153 OpRegReg(kOpSub, rs_rCX, rs_rBX);
1154 // Put the start index to stack.
buzbee091cc402014-03-31 10:14:40 -07001155 NewLIR1(kX86Push32R, rs_rBX.GetReg());
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001156 is_index_on_stack = true;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001157 }
1158 }
1159 }
1160 DCHECK(length_compare != nullptr);
1161
1162 // ECX now contains the count in words to be searched.
1163
1164 // Load the address of the string into EBX.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001165 // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
buzbee695d13a2014-04-19 13:32:20 -07001166 Load32Disp(rs_rDX, value_offset, rs_rDI);
1167 Load32Disp(rs_rDX, offset_offset, rs_rBX);
buzbee2700f7e2014-03-07 09:46:20 -08001168 OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001169
1170 // Now compute into EDI where the search will start.
1171 if (zero_based || rl_start.is_const) {
1172 if (start_value == 0) {
buzbee2700f7e2014-03-07 09:46:20 -08001173 OpRegCopy(rs_rDI, rs_rBX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001174 } else {
buzbee091cc402014-03-31 10:14:40 -07001175 NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001176 }
1177 } else {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001178 if (is_index_on_stack == true) {
1179 // Load the start index from stack.
buzbee091cc402014-03-31 10:14:40 -07001180 NewLIR1(kX86Pop32R, rs_rDX.GetReg());
buzbee2700f7e2014-03-07 09:46:20 -08001181 OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001182 } else {
1183 OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001184 }
1185 }
1186
1187 // EDI now contains the start of the string to be searched.
1188 // We are all prepared to do the search for the character.
1189 NewLIR0(kX86RepneScasw);
1190
1191 // Did we find a match?
1192 LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1193
1194 // yes, we matched. Compute the index of the result.
1195 // index = ((curr_ptr - orig_ptr) / 2) - 1.
buzbee2700f7e2014-03-07 09:46:20 -08001196 OpRegReg(kOpSub, rs_rDI, rs_rBX);
1197 OpRegImm(kOpAsr, rs_rDI, 1);
buzbee091cc402014-03-31 10:14:40 -07001198 NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001199 LIR *all_done = NewLIR1(kX86Jmp8, 0);
1200
1201 // Failed to match; return -1.
1202 LIR *not_found = NewLIR0(kPseudoTargetLabel);
1203 length_compare->target = not_found;
1204 failed_branch->target = not_found;
buzbee2700f7e2014-03-07 09:46:20 -08001205 LoadConstantNoClobber(rl_return.reg, -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001206
1207 // And join up at the end.
1208 all_done->target = NewLIR0(kPseudoTargetLabel);
1209 // Restore EDI from the stack.
buzbee091cc402014-03-31 10:14:40 -07001210 NewLIR1(kX86Pop32R, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -08001211
1212 // Out of line code returns here.
Mingyao Yang3a74d152014-04-21 15:39:44 -07001213 if (slowpath_branch != nullptr) {
Mark Mendell4028a6c2014-02-19 20:06:20 -08001214 LIR *return_point = NewLIR0(kPseudoTargetLabel);
Mingyao Yang3a74d152014-04-21 15:39:44 -07001215 AddIntrinsicSlowPath(info, slowpath_branch, return_point);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001216 }
1217
1218 StoreValue(rl_dest, rl_return);
1219 return true;
1220}
1221
Mark Mendellae9fd932014-02-10 16:14:35 -08001222/*
Mark Mendellae9fd932014-02-10 16:14:35 -08001223 * @brief Enter an 'advance LOC' into the FDE buffer
1224 * @param buf FDE buffer.
1225 * @param increment Amount by which to increase the current location.
1226 */
1227static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1228 if (increment < 64) {
1229 // Encoding in opcode.
1230 buf.push_back(0x1 << 6 | increment);
1231 } else if (increment < 256) {
1232 // Single byte delta.
1233 buf.push_back(0x02);
1234 buf.push_back(increment);
1235 } else if (increment < 256 * 256) {
1236 // Two byte delta.
1237 buf.push_back(0x03);
1238 buf.push_back(increment & 0xff);
1239 buf.push_back((increment >> 8) & 0xff);
1240 } else {
1241 // Four byte delta.
1242 buf.push_back(0x04);
1243 PushWord(buf, increment);
1244 }
1245}
1246
1247
1248std::vector<uint8_t>* X86CFIInitialization() {
1249 return X86Mir2Lir::ReturnCommonCallFrameInformation();
1250}
1251
1252std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1253 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1254
1255 // Length of the CIE (except for this field).
1256 PushWord(*cfi_info, 16);
1257
1258 // CIE id.
1259 PushWord(*cfi_info, 0xFFFFFFFFU);
1260
1261 // Version: 3.
1262 cfi_info->push_back(0x03);
1263
1264 // Augmentation: empty string.
1265 cfi_info->push_back(0x0);
1266
1267 // Code alignment: 1.
1268 cfi_info->push_back(0x01);
1269
1270 // Data alignment: -4.
1271 cfi_info->push_back(0x7C);
1272
1273 // Return address register (R8).
1274 cfi_info->push_back(0x08);
1275
1276 // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1277 cfi_info->push_back(0x0C);
1278 cfi_info->push_back(0x04);
1279 cfi_info->push_back(0x04);
1280
1281 // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1282 cfi_info->push_back(0x2 << 6 | 0x08);
1283 cfi_info->push_back(0x01);
1284
1285 // And 2 Noops to align to 4 byte boundary.
1286 cfi_info->push_back(0x0);
1287 cfi_info->push_back(0x0);
1288
1289 DCHECK_EQ(cfi_info->size() & 3, 0U);
1290 return cfi_info;
1291}
1292
1293static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1294 uint8_t buffer[12];
1295 uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1296 for (uint8_t *p = buffer; p < ptr; p++) {
1297 buf.push_back(*p);
1298 }
1299}
1300
1301std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1302 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1303
1304 // Generate the FDE for the method.
1305 DCHECK_NE(data_offset_, 0U);
1306
1307 // Length (will be filled in later in this routine).
1308 PushWord(*cfi_info, 0);
1309
1310 // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1311 // one CIE for the whole debug_frame section.
1312 PushWord(*cfi_info, 0);
1313
1314 // 'initial_location' (filled in by linker).
1315 PushWord(*cfi_info, 0);
1316
1317 // 'address_range' (number of bytes in the method).
1318 PushWord(*cfi_info, data_offset_);
1319
1320 // The instructions in the FDE.
1321 if (stack_decrement_ != nullptr) {
1322 // Advance LOC to just past the stack decrement.
1323 uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1324 AdvanceLoc(*cfi_info, pc);
1325
1326 // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1327 cfi_info->push_back(0x0e);
1328 EncodeUnsignedLeb128(*cfi_info, frame_size_);
1329
1330 // We continue with that stack until the epilogue.
1331 if (stack_increment_ != nullptr) {
1332 uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1333 AdvanceLoc(*cfi_info, new_pc - pc);
1334
1335 // We probably have code snippets after the epilogue, so save the
1336 // current state: DW_CFA_remember_state.
1337 cfi_info->push_back(0x0a);
1338
1339 // We have now popped the stack: DW_CFA_def_cfa_offset 4. There is only the return
1340 // PC on the stack now.
1341 cfi_info->push_back(0x0e);
1342 EncodeUnsignedLeb128(*cfi_info, 4);
1343
1344 // Everything after that is the same as before the epilogue.
1345 // Stack bump was followed by RET instruction.
1346 LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1347 if (post_ret_insn != nullptr) {
1348 pc = new_pc;
1349 new_pc = post_ret_insn->offset;
1350 AdvanceLoc(*cfi_info, new_pc - pc);
1351 // Restore the state: DW_CFA_restore_state.
1352 cfi_info->push_back(0x0b);
1353 }
1354 }
1355 }
1356
1357 // Padding to a multiple of 4
1358 while ((cfi_info->size() & 3) != 0) {
1359 // DW_CFA_nop is encoded as 0.
1360 cfi_info->push_back(0);
1361 }
1362
1363 // Set the length of the FDE inside the generated bytes.
1364 uint32_t length = cfi_info->size() - 4;
1365 (*cfi_info)[0] = length;
1366 (*cfi_info)[1] = length >> 8;
1367 (*cfi_info)[2] = length >> 16;
1368 (*cfi_info)[3] = length >> 24;
1369 return cfi_info;
1370}
1371
Mark Mendelld65c51a2014-04-29 16:55:20 -04001372void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1373 switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1374 case kMirOpConstVector:
1375 GenConst128(bb, mir);
1376 break;
Mark Mendellfe945782014-05-22 09:52:36 -04001377 case kMirOpMoveVector:
1378 GenMoveVector(bb, mir);
1379 break;
1380 case kMirOpPackedMultiply:
1381 GenMultiplyVector(bb, mir);
1382 break;
1383 case kMirOpPackedAddition:
1384 GenAddVector(bb, mir);
1385 break;
1386 case kMirOpPackedSubtract:
1387 GenSubtractVector(bb, mir);
1388 break;
1389 case kMirOpPackedShiftLeft:
1390 GenShiftLeftVector(bb, mir);
1391 break;
1392 case kMirOpPackedSignedShiftRight:
1393 GenSignedShiftRightVector(bb, mir);
1394 break;
1395 case kMirOpPackedUnsignedShiftRight:
1396 GenUnsignedShiftRightVector(bb, mir);
1397 break;
1398 case kMirOpPackedAnd:
1399 GenAndVector(bb, mir);
1400 break;
1401 case kMirOpPackedOr:
1402 GenOrVector(bb, mir);
1403 break;
1404 case kMirOpPackedXor:
1405 GenXorVector(bb, mir);
1406 break;
1407 case kMirOpPackedAddReduce:
1408 GenAddReduceVector(bb, mir);
1409 break;
1410 case kMirOpPackedReduce:
1411 GenReduceVector(bb, mir);
1412 break;
1413 case kMirOpPackedSet:
1414 GenSetVector(bb, mir);
1415 break;
Mark Mendelld65c51a2014-04-29 16:55:20 -04001416 default:
1417 break;
1418 }
1419}
1420
1421void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1422 int type_size = mir->dalvikInsn.vA;
1423 // We support 128 bit vectors.
1424 DCHECK_EQ(type_size & 0xFFFF, 128);
Mark Mendellfe945782014-05-22 09:52:36 -04001425 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
Mark Mendelld65c51a2014-04-29 16:55:20 -04001426 uint32_t *args = mir->dalvikInsn.arg;
Mark Mendellfe945782014-05-22 09:52:36 -04001427 int reg = rs_dest.GetReg();
Mark Mendelld65c51a2014-04-29 16:55:20 -04001428 // Check for all 0 case.
1429 if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1430 NewLIR2(kX86XorpsRR, reg, reg);
1431 return;
1432 }
1433 // Okay, load it from the constant vector area.
1434 LIR *data_target = ScanVectorLiteral(mir);
1435 if (data_target == nullptr) {
1436 data_target = AddVectorLiteral(mir);
1437 }
1438
1439 // Address the start of the method.
1440 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
Chao-ying Fue0ccdc02014-06-06 17:32:37 -07001441 if (rl_method.wide) {
1442 rl_method = LoadValueWide(rl_method, kCoreReg);
1443 } else {
1444 rl_method = LoadValue(rl_method, kCoreReg);
1445 }
Mark Mendelld65c51a2014-04-29 16:55:20 -04001446
1447 // Load the proper value from the literal area.
1448 // We don't know the proper offset for the value, so pick one that will force
1449 // 4 byte offset. We will fix this up in the assembler later to have the right
1450 // value.
Vladimir Marko8dea81c2014-06-06 14:50:36 +01001451 ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
Mark Mendelld65c51a2014-04-29 16:55:20 -04001452 LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(), 256 /* bogus */);
1453 load->flags.fixup = kFixupLoad;
1454 load->target = data_target;
Mark Mendelld65c51a2014-04-29 16:55:20 -04001455}
1456
Mark Mendellfe945782014-05-22 09:52:36 -04001457void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1458 // We only support 128 bit registers.
1459 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1460 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1461 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
1462 NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1463}
1464
1465void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1466 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1467 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1468 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1469 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1470 int opcode = 0;
1471 switch (opsize) {
1472 case k32:
1473 opcode = kX86PmulldRR;
1474 break;
1475 case kSignedHalf:
1476 opcode = kX86PmullwRR;
1477 break;
1478 case kSingle:
1479 opcode = kX86MulpsRR;
1480 break;
1481 case kDouble:
1482 opcode = kX86MulpdRR;
1483 break;
1484 default:
1485 LOG(FATAL) << "Unsupported vector multiply " << opsize;
1486 break;
1487 }
1488 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1489}
1490
1491void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1492 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1493 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1494 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1495 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1496 int opcode = 0;
1497 switch (opsize) {
1498 case k32:
1499 opcode = kX86PadddRR;
1500 break;
1501 case kSignedHalf:
1502 case kUnsignedHalf:
1503 opcode = kX86PaddwRR;
1504 break;
1505 case kUnsignedByte:
1506 case kSignedByte:
1507 opcode = kX86PaddbRR;
1508 break;
1509 case kSingle:
1510 opcode = kX86AddpsRR;
1511 break;
1512 case kDouble:
1513 opcode = kX86AddpdRR;
1514 break;
1515 default:
1516 LOG(FATAL) << "Unsupported vector addition " << opsize;
1517 break;
1518 }
1519 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1520}
1521
1522void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1523 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1524 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1525 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1526 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1527 int opcode = 0;
1528 switch (opsize) {
1529 case k32:
1530 opcode = kX86PsubdRR;
1531 break;
1532 case kSignedHalf:
1533 case kUnsignedHalf:
1534 opcode = kX86PsubwRR;
1535 break;
1536 case kUnsignedByte:
1537 case kSignedByte:
1538 opcode = kX86PsubbRR;
1539 break;
1540 case kSingle:
1541 opcode = kX86SubpsRR;
1542 break;
1543 case kDouble:
1544 opcode = kX86SubpdRR;
1545 break;
1546 default:
1547 LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1548 break;
1549 }
1550 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1551}
1552
1553void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1554 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1555 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1556 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1557 int imm = mir->dalvikInsn.vC;
1558 int opcode = 0;
1559 switch (opsize) {
1560 case k32:
1561 opcode = kX86PslldRI;
1562 break;
1563 case k64:
1564 opcode = kX86PsllqRI;
1565 break;
1566 case kSignedHalf:
1567 case kUnsignedHalf:
1568 opcode = kX86PsllwRI;
1569 break;
1570 default:
1571 LOG(FATAL) << "Unsupported vector shift left " << opsize;
1572 break;
1573 }
1574 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1575}
1576
1577void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1578 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1579 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1580 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1581 int imm = mir->dalvikInsn.vC;
1582 int opcode = 0;
1583 switch (opsize) {
1584 case k32:
1585 opcode = kX86PsradRI;
1586 break;
1587 case kSignedHalf:
1588 case kUnsignedHalf:
1589 opcode = kX86PsrawRI;
1590 break;
1591 default:
1592 LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1593 break;
1594 }
1595 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1596}
1597
1598void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1599 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1600 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1601 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1602 int imm = mir->dalvikInsn.vC;
1603 int opcode = 0;
1604 switch (opsize) {
1605 case k32:
1606 opcode = kX86PsrldRI;
1607 break;
1608 case k64:
1609 opcode = kX86PsrlqRI;
1610 break;
1611 case kSignedHalf:
1612 case kUnsignedHalf:
1613 opcode = kX86PsrlwRI;
1614 break;
1615 default:
1616 LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1617 break;
1618 }
1619 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1620}
1621
1622void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1623 // We only support 128 bit registers.
1624 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1625 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1626 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1627 NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1628}
1629
1630void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1631 // We only support 128 bit registers.
1632 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1633 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1634 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1635 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1636}
1637
1638void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1639 // We only support 128 bit registers.
1640 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1641 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1642 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1643 NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1644}
1645
1646void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1647 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1648 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1649 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1650 int imm = mir->dalvikInsn.vC;
1651 int opcode = 0;
1652 switch (opsize) {
1653 case k32:
1654 opcode = kX86PhadddRR;
1655 break;
1656 case kSignedHalf:
1657 case kUnsignedHalf:
1658 opcode = kX86PhaddwRR;
1659 break;
1660 default:
1661 LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1662 break;
1663 }
1664 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1665}
1666
1667void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1668 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1669 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1670 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1671 int index = mir->dalvikInsn.arg[0];
1672 int opcode = 0;
1673 switch (opsize) {
1674 case k32:
1675 opcode = kX86PextrdRRI;
1676 break;
1677 case kSignedHalf:
1678 case kUnsignedHalf:
1679 opcode = kX86PextrwRRI;
1680 break;
1681 case kUnsignedByte:
1682 case kSignedByte:
1683 opcode = kX86PextrbRRI;
1684 break;
1685 default:
1686 LOG(FATAL) << "Unsupported vector reduce " << opsize;
1687 break;
1688 }
1689 // We need to extract to a GPR.
1690 RegStorage temp = AllocTemp();
1691 NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
1692
1693 // Assume that the destination VR is in the def for the mir.
1694 RegLocation rl_dest = mir_graph_->GetDest(mir);
1695 RegLocation rl_temp =
1696 {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
1697 StoreValue(rl_dest, rl_temp);
1698}
1699
1700void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1701 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1702 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1703 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1704 int op_low = 0, op_high = 0;
1705 switch (opsize) {
1706 case k32:
1707 op_low = kX86PshufdRRI;
1708 break;
1709 case kSignedHalf:
1710 case kUnsignedHalf:
1711 // Handles low quadword.
1712 op_low = kX86PshuflwRRI;
1713 // Handles upper quadword.
1714 op_high = kX86PshufdRRI;
1715 break;
1716 default:
1717 LOG(FATAL) << "Unsupported vector set " << opsize;
1718 break;
1719 }
1720
1721 // Load the value from the VR into a GPR.
1722 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
1723 rl_src = LoadValue(rl_src, kCoreReg);
1724
1725 // Load the value into the XMM register.
1726 NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
1727
1728 // Now shuffle the value across the destination.
1729 NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1730
1731 // And then repeat as needed.
1732 if (op_high != 0) {
1733 NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1734 }
1735}
1736
1737
Mark Mendelld65c51a2014-04-29 16:55:20 -04001738LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
1739 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1740 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1741 if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
1742 args[2] == p->operands[2] && args[3] == p->operands[3]) {
1743 return p;
1744 }
1745 }
1746 return nullptr;
1747}
1748
1749LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
1750 LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
1751 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1752 new_value->operands[0] = args[0];
1753 new_value->operands[1] = args[1];
1754 new_value->operands[2] = args[2];
1755 new_value->operands[3] = args[3];
1756 new_value->next = const_vectors_;
1757 if (const_vectors_ == nullptr) {
1758 estimated_native_code_size_ += 12; // Amount needed to align to 16 byte boundary.
1759 }
1760 estimated_native_code_size_ += 16; // Space for one vector.
1761 const_vectors_ = new_value;
1762 return new_value;
1763}
1764
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001765// ------------ ABI support: mapping of args to physical registers -------------
1766RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
1767 const RegStorage coreArgMappingToPhysicalReg[] = {rs_rX86_ARG1, rs_rX86_ARG2, rs_rX86_ARG3, rs_rX86_ARG4, rs_rX86_ARG5};
1768 const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
1769 const RegStorage fpArgMappingToPhysicalReg[] = {rs_rX86_FARG0, rs_rX86_FARG1, rs_rX86_FARG2, rs_rX86_FARG3,
1770 rs_rX86_FARG4, rs_rX86_FARG5, rs_rX86_FARG6, rs_rX86_FARG7};
1771 const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
1772
1773 RegStorage result = RegStorage::InvalidReg();
1774 if (is_double_or_float) {
1775 if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
1776 result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
1777 if (result.Valid()) {
1778 result = is_wide ? RegStorage::FloatSolo64(result.GetReg()) : RegStorage::FloatSolo32(result.GetReg());
1779 }
1780 }
1781 } else {
1782 if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
1783 result = coreArgMappingToPhysicalReg[cur_core_reg_++];
1784 if (result.Valid()) {
1785 result = is_wide ? RegStorage::Solo64(result.GetReg()) : RegStorage::Solo32(result.GetReg());
1786 }
1787 }
1788 }
1789 return result;
1790}
1791
1792RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
1793 DCHECK(IsInitialized());
1794 auto res = mapping_.find(in_position);
1795 return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
1796}
1797
1798void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
1799 DCHECK(mapper != nullptr);
1800 max_mapped_in_ = -1;
1801 is_there_stack_mapped_ = false;
1802 for (int in_position = 0; in_position < count; in_position++) {
1803 RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
1804 if (reg.Valid()) {
1805 mapping_[in_position] = reg;
1806 max_mapped_in_ = std::max(max_mapped_in_, in_position);
1807 if (reg.Is64BitSolo()) {
1808 // We covered 2 args, so skip the next one
1809 in_position++;
1810 }
1811 } else {
1812 is_there_stack_mapped_ = true;
1813 }
1814 }
1815 initialized_ = true;
1816}
1817
1818RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
1819 if (!Gen64Bit()) {
1820 return GetCoreArgMappingToPhysicalReg(arg_num);
1821 }
1822
1823 if (!in_to_reg_storage_mapping_.IsInitialized()) {
1824 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1825 RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
1826
1827 InToRegStorageX86_64Mapper mapper;
1828 in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
1829 }
1830 return in_to_reg_storage_mapping_.Get(arg_num);
1831}
1832
1833RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
1834 // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
1835 // Not used for 64-bit, TODO: Move X86_32 to the same framework
1836 switch (core_arg_num) {
1837 case 0:
1838 return rs_rX86_ARG1;
1839 case 1:
1840 return rs_rX86_ARG2;
1841 case 2:
1842 return rs_rX86_ARG3;
1843 default:
1844 return RegStorage::InvalidReg();
1845 }
1846}
1847
1848// ---------End of ABI support: mapping of args to physical registers -------------
1849
1850/*
1851 * If there are any ins passed in registers that have not been promoted
1852 * to a callee-save register, flush them to the frame. Perform initial
1853 * assignment of promoted arguments.
1854 *
1855 * ArgLocs is an array of location records describing the incoming arguments
1856 * with one location record per word of argument.
1857 */
1858void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
1859 if (!Gen64Bit()) return Mir2Lir::FlushIns(ArgLocs, rl_method);
1860 /*
1861 * Dummy up a RegLocation for the incoming Method*
1862 * It will attempt to keep kArg0 live (or copy it to home location
1863 * if promoted).
1864 */
1865
1866 RegLocation rl_src = rl_method;
1867 rl_src.location = kLocPhysReg;
1868 rl_src.reg = TargetReg(kArg0);
1869 rl_src.home = false;
1870 MarkLive(rl_src);
1871 StoreValue(rl_method, rl_src);
1872 // If Method* has been promoted, explicitly flush
1873 if (rl_method.location == kLocPhysReg) {
Andreas Gampe3c12c512014-06-24 18:46:29 +00001874 StoreRefDisp(TargetReg(kSp), 0, TargetReg(kArg0), kNotVolatile);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001875 }
1876
1877 if (cu_->num_ins == 0) {
1878 return;
1879 }
1880
1881 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1882 /*
1883 * Copy incoming arguments to their proper home locations.
1884 * NOTE: an older version of dx had an issue in which
1885 * it would reuse static method argument registers.
1886 * This could result in the same Dalvik virtual register
1887 * being promoted to both core and fp regs. To account for this,
1888 * we only copy to the corresponding promoted physical register
1889 * if it matches the type of the SSA name for the incoming
1890 * argument. It is also possible that long and double arguments
1891 * end up half-promoted. In those cases, we must flush the promoted
1892 * half to memory as well.
1893 */
Vladimir Marko8dea81c2014-06-06 14:50:36 +01001894 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001895 for (int i = 0; i < cu_->num_ins; i++) {
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001896 // get reg corresponding to input
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001897 RegStorage reg = GetArgMappingToPhysicalReg(i);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001898
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001899 RegLocation* t_loc = &ArgLocs[i];
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001900 if (reg.Valid()) {
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001901 // If arriving in register.
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001902
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001903 // We have already updated the arg location with promoted info
1904 // so we can be based on it.
1905 if (t_loc->location == kLocPhysReg) {
1906 // Just copy it.
1907 OpRegCopy(t_loc->reg, reg);
1908 } else {
1909 // Needs flush.
1910 if (t_loc->ref) {
1911 StoreRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, kNotVolatile);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001912 } else {
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001913 StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
1914 kNotVolatile);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001915 }
1916 }
1917 } else {
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001918 // If arriving in frame & promoted.
1919 if (t_loc->location == kLocPhysReg) {
1920 if (t_loc->ref) {
1921 LoadRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
1922 } else {
1923 LoadBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg,
1924 t_loc->wide ? k64 : k32, kNotVolatile);
1925 }
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001926 }
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001927 }
1928 if (t_loc->wide) {
1929 // Increment i to skip the next one.
1930 i++;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001931 }
1932 }
1933}
1934
1935/*
1936 * Load up to 5 arguments, the first three of which will be in
1937 * kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
1938 * and as part of the load sequence, it must be replaced with
1939 * the target method pointer. Note, this may also be called
1940 * for "range" variants if the number of arguments is 5 or fewer.
1941 */
1942int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
1943 int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
1944 const MethodReference& target_method,
1945 uint32_t vtable_idx, uintptr_t direct_code,
1946 uintptr_t direct_method, InvokeType type, bool skip_this) {
1947 if (!Gen64Bit()) {
1948 return Mir2Lir::GenDalvikArgsNoRange(info,
1949 call_state, pcrLabel, next_call_insn,
1950 target_method,
1951 vtable_idx, direct_code,
1952 direct_method, type, skip_this);
1953 }
1954 return GenDalvikArgsRange(info,
1955 call_state, pcrLabel, next_call_insn,
1956 target_method,
1957 vtable_idx, direct_code,
1958 direct_method, type, skip_this);
1959}
1960
1961/*
1962 * May have 0+ arguments (also used for jumbo). Note that
1963 * source virtual registers may be in physical registers, so may
1964 * need to be flushed to home location before copying. This
1965 * applies to arg3 and above (see below).
1966 *
1967 * Two general strategies:
1968 * If < 20 arguments
1969 * Pass args 3-18 using vldm/vstm block copy
1970 * Pass arg0, arg1 & arg2 in kArg1-kArg3
1971 * If 20+ arguments
1972 * Pass args arg19+ using memcpy block copy
1973 * Pass arg0, arg1 & arg2 in kArg1-kArg3
1974 *
1975 */
1976int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
1977 LIR** pcrLabel, NextCallInsn next_call_insn,
1978 const MethodReference& target_method,
1979 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
1980 InvokeType type, bool skip_this) {
1981 if (!Gen64Bit()) {
1982 return Mir2Lir::GenDalvikArgsRange(info, call_state,
1983 pcrLabel, next_call_insn,
1984 target_method,
1985 vtable_idx, direct_code, direct_method,
1986 type, skip_this);
1987 }
1988
1989 /* If no arguments, just return */
1990 if (info->num_arg_words == 0)
1991 return call_state;
1992
1993 const int start_index = skip_this ? 1 : 0;
1994
1995 InToRegStorageX86_64Mapper mapper;
1996 InToRegStorageMapping in_to_reg_storage_mapping;
1997 in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
1998 const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
1999 const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
2000 in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
2001 int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
2002
2003 // Fisrt of all, check whether it make sense to use bulk copying
2004 // Optimization is aplicable only for range case
2005 // TODO: make a constant instead of 2
2006 if (info->is_range && regs_left_to_pass_via_stack >= 2) {
2007 // Scan the rest of the args - if in phys_reg flush to memory
2008 for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
2009 RegLocation loc = info->args[next_arg];
2010 if (loc.wide) {
2011 loc = UpdateLocWide(loc);
2012 if (loc.location == kLocPhysReg) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002013 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Andreas Gampe3c12c512014-06-24 18:46:29 +00002014 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002015 }
2016 next_arg += 2;
2017 } else {
2018 loc = UpdateLoc(loc);
2019 if (loc.location == kLocPhysReg) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002020 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Andreas Gampe3c12c512014-06-24 18:46:29 +00002021 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002022 }
2023 next_arg++;
2024 }
2025 }
2026
2027 // Logic below assumes that Method pointer is at offset zero from SP.
2028 DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2029
2030 // The rest can be copied together
2031 int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2032 int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
2033
2034 int current_src_offset = start_offset;
2035 int current_dest_offset = outs_offset;
2036
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002037 // Only davik regs are accessed in this loop; no next_call_insn() calls.
2038 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002039 while (regs_left_to_pass_via_stack > 0) {
2040 // This is based on the knowledge that the stack itself is 16-byte aligned.
2041 bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2042 bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2043 size_t bytes_to_move;
2044
2045 /*
2046 * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2047 * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2048 * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2049 * We do this because we could potentially do a smaller move to align.
2050 */
2051 if (regs_left_to_pass_via_stack == 4 ||
2052 (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2053 // Moving 128-bits via xmm register.
2054 bytes_to_move = sizeof(uint32_t) * 4;
2055
2056 // Allocate a free xmm temp. Since we are working through the calling sequence,
2057 // we expect to have an xmm temporary available. AllocTempDouble will abort if
2058 // there are no free registers.
2059 RegStorage temp = AllocTempDouble();
2060
2061 LIR* ld1 = nullptr;
2062 LIR* ld2 = nullptr;
2063 LIR* st1 = nullptr;
2064 LIR* st2 = nullptr;
2065
2066 /*
2067 * The logic is similar for both loads and stores. If we have 16-byte alignment,
2068 * do an aligned move. If we have 8-byte alignment, then do the move in two
2069 * parts. This approach prevents possible cache line splits. Finally, fall back
2070 * to doing an unaligned move. In most cases we likely won't split the cache
2071 * line but we cannot prove it and thus take a conservative approach.
2072 */
2073 bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2074 bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2075
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002076 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002077 if (src_is_16b_aligned) {
2078 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
2079 } else if (src_is_8b_aligned) {
2080 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
2081 ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1),
2082 kMovHi128FP);
2083 } else {
2084 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
2085 }
2086
2087 if (dest_is_16b_aligned) {
2088 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
2089 } else if (dest_is_8b_aligned) {
2090 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
2091 st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1),
2092 temp, kMovHi128FP);
2093 } else {
2094 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
2095 }
2096
2097 // TODO If we could keep track of aliasing information for memory accesses that are wider
2098 // than 64-bit, we wouldn't need to set up a barrier.
2099 if (ld1 != nullptr) {
2100 if (ld2 != nullptr) {
2101 // For 64-bit load we can actually set up the aliasing information.
2102 AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2103 AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2104 } else {
2105 // Set barrier for 128-bit load.
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002106 ld1->u.m.def_mask = &kEncodeAll;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002107 }
2108 }
2109 if (st1 != nullptr) {
2110 if (st2 != nullptr) {
2111 // For 64-bit store we can actually set up the aliasing information.
2112 AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2113 AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2114 } else {
2115 // Set barrier for 128-bit store.
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002116 st1->u.m.def_mask = &kEncodeAll;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002117 }
2118 }
2119
2120 // Free the temporary used for the data movement.
2121 FreeTemp(temp);
2122 } else {
2123 // Moving 32-bits via general purpose register.
2124 bytes_to_move = sizeof(uint32_t);
2125
2126 // Instead of allocating a new temp, simply reuse one of the registers being used
2127 // for argument passing.
2128 RegStorage temp = TargetReg(kArg3);
2129
2130 // Now load the argument VR and store to the outs.
2131 Load32Disp(TargetReg(kSp), current_src_offset, temp);
2132 Store32Disp(TargetReg(kSp), current_dest_offset, temp);
2133 }
2134
2135 current_src_offset += bytes_to_move;
2136 current_dest_offset += bytes_to_move;
2137 regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2138 }
2139 DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2140 }
2141
2142 // Now handle rest not registers if they are
2143 if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2144 RegStorage regSingle = TargetReg(kArg2);
2145 RegStorage regWide = RegStorage::Solo64(TargetReg(kArg3).GetReg());
Chao-ying Fub6564c12014-06-24 13:24:36 -07002146 for (int i = start_index;
2147 i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002148 RegLocation rl_arg = info->args[i];
2149 rl_arg = UpdateRawLoc(rl_arg);
2150 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2151 if (!reg.Valid()) {
2152 int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2153
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002154 {
2155 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2156 if (rl_arg.wide) {
2157 if (rl_arg.location == kLocPhysReg) {
Andreas Gampe3c12c512014-06-24 18:46:29 +00002158 StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002159 } else {
2160 LoadValueDirectWideFixed(rl_arg, regWide);
Andreas Gampe3c12c512014-06-24 18:46:29 +00002161 StoreBaseDisp(TargetReg(kSp), out_offset, regWide, k64, kNotVolatile);
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002162 }
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002163 } else {
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002164 if (rl_arg.location == kLocPhysReg) {
Andreas Gampe3c12c512014-06-24 18:46:29 +00002165 StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002166 } else {
2167 LoadValueDirectFixed(rl_arg, regSingle);
Andreas Gampe3c12c512014-06-24 18:46:29 +00002168 StoreBaseDisp(TargetReg(kSp), out_offset, regSingle, k32, kNotVolatile);
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002169 }
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002170 }
2171 }
2172 call_state = next_call_insn(cu_, info, call_state, target_method,
2173 vtable_idx, direct_code, direct_method, type);
2174 }
Chao-ying Fub6564c12014-06-24 13:24:36 -07002175 if (rl_arg.wide) {
2176 i++;
2177 }
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002178 }
2179 }
2180
2181 // Finish with mapped registers
2182 for (int i = start_index; i <= last_mapped_in; i++) {
2183 RegLocation rl_arg = info->args[i];
2184 rl_arg = UpdateRawLoc(rl_arg);
2185 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2186 if (reg.Valid()) {
2187 if (rl_arg.wide) {
2188 LoadValueDirectWideFixed(rl_arg, reg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002189 } else {
2190 LoadValueDirectFixed(rl_arg, reg);
2191 }
2192 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2193 direct_code, direct_method, type);
2194 }
Chao-ying Fub6564c12014-06-24 13:24:36 -07002195 if (rl_arg.wide) {
2196 i++;
2197 }
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002198 }
2199
2200 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2201 direct_code, direct_method, type);
2202 if (pcrLabel) {
Andreas Gampe5655e842014-06-17 16:36:07 -07002203 if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002204 *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags);
2205 } else {
2206 *pcrLabel = nullptr;
2207 // In lieu of generating a check for kArg1 being null, we need to
2208 // perform a load when doing implicit checks.
2209 RegStorage tmp = AllocTemp();
2210 Load32Disp(TargetReg(kArg1), 0, tmp);
2211 MarkPossibleNullPointerException(info->opt_flags);
2212 FreeTemp(tmp);
2213 }
2214 }
2215 return call_state;
2216}
2217
Brian Carlstrom7934ac22013-07-26 10:54:15 -07002218} // namespace art
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002219