blob: baf566906b6632627cb51a124cbc5f26c26a5b73 [file] [log] [blame]
Dan Gohman2d1be872009-04-16 03:18:22 +00001//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
Nate Begemaneaa13852004-10-18 21:08:22 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
Nate Begemaneaa13852004-10-18 21:08:22 +00008//===----------------------------------------------------------------------===//
9//
Dan Gohmancec8f9d2009-05-19 20:37:36 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
Nate Begemaneaa13852004-10-18 21:08:22 +000014// This pass performs a strength reduction on array references inside loops that
Dan Gohmancec8f9d2009-05-19 20:37:36 +000015// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
Nate Begemaneaa13852004-10-18 21:08:22 +000019//
Dan Gohman572645c2010-02-12 10:34:29 +000020// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24// %i = phi [ 0, %entry ], [ %i.next, %latch ]
25// ...
26// %i.next = add %i, 1
27// %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41// instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44// smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47// multiple base registers, or as the increment expression in an addrec),
48// we may not actually need both reg and (-1 * reg) in registers; the
49// negation can be implemented by using a sub instead of an add. The
50// lack of support for taking this into consideration when making
51// register pressure decisions is partly worked around by the "Special"
52// use kind.
53//
Nate Begemaneaa13852004-10-18 21:08:22 +000054//===----------------------------------------------------------------------===//
55
Chris Lattnerbe3e5212005-08-03 23:30:08 +000056#define DEBUG_TYPE "loop-reduce"
Nate Begemaneaa13852004-10-18 21:08:22 +000057#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
Dan Gohmane5b01be2007-05-04 14:59:09 +000060#include "llvm/IntrinsicInst.h"
Jeff Cohen2f3c9b72005-03-04 04:04:26 +000061#include "llvm/DerivedTypes.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000062#include "llvm/Analysis/IVUsers.h"
Dan Gohman572645c2010-02-12 10:34:29 +000063#include "llvm/Analysis/Dominators.h"
Devang Patel0f54dcb2007-03-06 21:14:09 +000064#include "llvm/Analysis/LoopPass.h"
Nate Begeman16997482005-07-30 00:15:07 +000065#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chris Lattner9fc5cdf2011-01-02 22:09:33 +000066#include "llvm/Assembly/Writer.h"
Chris Lattnere0391be2005-08-12 22:06:11 +000067#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Nate Begemaneaa13852004-10-18 21:08:22 +000068#include "llvm/Transforms/Utils/Local.h"
Dan Gohman572645c2010-02-12 10:34:29 +000069#include "llvm/ADT/SmallBitVector.h"
70#include "llvm/ADT/SetVector.h"
71#include "llvm/ADT/DenseSet.h"
Nate Begeman16997482005-07-30 00:15:07 +000072#include "llvm/Support/Debug.h"
Andrew Trick80ef1b22011-09-27 00:44:14 +000073#include "llvm/Support/CommandLine.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000074#include "llvm/Support/ValueHandle.h"
Daniel Dunbar460f6562009-07-26 09:48:23 +000075#include "llvm/Support/raw_ostream.h"
Evan Chengd277f2c2006-03-13 23:14:23 +000076#include "llvm/Target/TargetLowering.h"
Jeff Cohencfb1d422005-07-30 18:22:27 +000077#include <algorithm>
Nate Begemaneaa13852004-10-18 21:08:22 +000078using namespace llvm;
79
Benjamin Kramer0861f572011-11-26 23:01:57 +000080static cl::opt<bool> EnableNested(
Andrew Trick0c01bc32011-09-29 01:33:38 +000081 "enable-lsr-nested", cl::Hidden, cl::desc("Enable LSR on nested loops"));
82
Benjamin Kramer0861f572011-11-26 23:01:57 +000083static cl::opt<bool> EnableRetry(
84 "enable-lsr-retry", cl::Hidden, cl::desc("Enable LSR retry"));
Andrew Tricka02bfce2011-10-11 02:30:45 +000085
86// Temporary flag to cleanup congruent phis after LSR phi expansion.
87// It's currently disabled until we can determine whether it's truly useful or
88// not. The flag should be removed after the v3.0 release.
Andrew Trick24f670f2012-01-07 07:08:17 +000089// This is now needed for ivchains.
Benjamin Kramer0861f572011-11-26 23:01:57 +000090static cl::opt<bool> EnablePhiElim(
Andrew Trick24f670f2012-01-07 07:08:17 +000091 "enable-lsr-phielim", cl::Hidden, cl::init(true),
92 cl::desc("Enable LSR phi elimination"));
Andrew Trick80ef1b22011-09-27 00:44:14 +000093
Andrew Trick22d20c22012-01-09 21:18:52 +000094#ifndef NDEBUG
95// Stress test IV chain generation.
96static cl::opt<bool> StressIVChain(
97 "stress-ivchain", cl::Hidden, cl::init(false),
98 cl::desc("Stress test LSR IV chains"));
99#else
100static bool StressIVChain = false;
101#endif
102
Dan Gohman572645c2010-02-12 10:34:29 +0000103namespace {
Nate Begemaneaa13852004-10-18 21:08:22 +0000104
Dan Gohman572645c2010-02-12 10:34:29 +0000105/// RegSortData - This class holds data which is used to order reuse candidates.
106class RegSortData {
107public:
108 /// UsedByIndices - This represents the set of LSRUse indices which reference
109 /// a particular register.
110 SmallBitVector UsedByIndices;
111
112 RegSortData() {}
113
114 void print(raw_ostream &OS) const;
115 void dump() const;
116};
117
118}
119
120void RegSortData::print(raw_ostream &OS) const {
121 OS << "[NumUses=" << UsedByIndices.count() << ']';
122}
123
124void RegSortData::dump() const {
125 print(errs()); errs() << '\n';
126}
Dan Gohmanc17e0cf2009-02-20 04:17:46 +0000127
Chris Lattner0e5f4992006-12-19 21:40:18 +0000128namespace {
Dale Johannesendc42f482007-03-20 00:47:50 +0000129
Dan Gohman572645c2010-02-12 10:34:29 +0000130/// RegUseTracker - Map register candidates to information about how they are
131/// used.
132class RegUseTracker {
133 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
Dale Johannesendc42f482007-03-20 00:47:50 +0000134
Dan Gohman90bb3552010-05-18 22:33:00 +0000135 RegUsesTy RegUsesMap;
Dan Gohman572645c2010-02-12 10:34:29 +0000136 SmallVector<const SCEV *, 16> RegSequence;
Evan Chengd1d6b5c2006-03-16 21:53:05 +0000137
Dan Gohman572645c2010-02-12 10:34:29 +0000138public:
139 void CountRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000140 void DropRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmanc6897702010-10-07 23:33:43 +0000141 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000142
Dan Gohman572645c2010-02-12 10:34:29 +0000143 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000144
Dan Gohman572645c2010-02-12 10:34:29 +0000145 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000146
Dan Gohman572645c2010-02-12 10:34:29 +0000147 void clear();
Dan Gohmana10756e2010-01-21 02:09:26 +0000148
Dan Gohman572645c2010-02-12 10:34:29 +0000149 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
150 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
151 iterator begin() { return RegSequence.begin(); }
152 iterator end() { return RegSequence.end(); }
153 const_iterator begin() const { return RegSequence.begin(); }
154 const_iterator end() const { return RegSequence.end(); }
155};
Dan Gohmana10756e2010-01-21 02:09:26 +0000156
Dan Gohmana10756e2010-01-21 02:09:26 +0000157}
158
Dan Gohman572645c2010-02-12 10:34:29 +0000159void
160RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
161 std::pair<RegUsesTy::iterator, bool> Pair =
Dan Gohman90bb3552010-05-18 22:33:00 +0000162 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
Dan Gohman572645c2010-02-12 10:34:29 +0000163 RegSortData &RSD = Pair.first->second;
164 if (Pair.second)
165 RegSequence.push_back(Reg);
166 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
167 RSD.UsedByIndices.set(LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000168}
169
Dan Gohmanb2df4332010-05-18 23:42:37 +0000170void
171RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
172 RegUsesTy::iterator It = RegUsesMap.find(Reg);
173 assert(It != RegUsesMap.end());
174 RegSortData &RSD = It->second;
175 assert(RSD.UsedByIndices.size() > LUIdx);
176 RSD.UsedByIndices.reset(LUIdx);
177}
178
Dan Gohmana2086b32010-05-19 23:43:12 +0000179void
Dan Gohmanc6897702010-10-07 23:33:43 +0000180RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
181 assert(LUIdx <= LastLUIdx);
182
183 // Update RegUses. The data structure is not optimized for this purpose;
184 // we must iterate through it and update each of the bit vectors.
Dan Gohmana2086b32010-05-19 23:43:12 +0000185 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
Dan Gohmanc6897702010-10-07 23:33:43 +0000186 I != E; ++I) {
187 SmallBitVector &UsedByIndices = I->second.UsedByIndices;
188 if (LUIdx < UsedByIndices.size())
189 UsedByIndices[LUIdx] =
190 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
191 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
192 }
Dan Gohmana2086b32010-05-19 23:43:12 +0000193}
194
Dan Gohman572645c2010-02-12 10:34:29 +0000195bool
196RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
Dan Gohman46fd7a62010-08-29 15:18:49 +0000197 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
198 if (I == RegUsesMap.end())
199 return false;
200 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
Dan Gohman572645c2010-02-12 10:34:29 +0000201 int i = UsedByIndices.find_first();
202 if (i == -1) return false;
203 if ((size_t)i != LUIdx) return true;
204 return UsedByIndices.find_next(i) != -1;
205}
Dan Gohmana10756e2010-01-21 02:09:26 +0000206
Dan Gohman572645c2010-02-12 10:34:29 +0000207const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000208 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
209 assert(I != RegUsesMap.end() && "Unknown register!");
Dan Gohman572645c2010-02-12 10:34:29 +0000210 return I->second.UsedByIndices;
211}
Dan Gohmana10756e2010-01-21 02:09:26 +0000212
Dan Gohman572645c2010-02-12 10:34:29 +0000213void RegUseTracker::clear() {
Dan Gohman90bb3552010-05-18 22:33:00 +0000214 RegUsesMap.clear();
Dan Gohman572645c2010-02-12 10:34:29 +0000215 RegSequence.clear();
216}
Dan Gohmana10756e2010-01-21 02:09:26 +0000217
Dan Gohman572645c2010-02-12 10:34:29 +0000218namespace {
219
220/// Formula - This class holds information that describes a formula for
221/// computing satisfying a use. It may include broken-out immediates and scaled
222/// registers.
223struct Formula {
224 /// AM - This is used to represent complex addressing, as well as other kinds
225 /// of interesting uses.
226 TargetLowering::AddrMode AM;
227
228 /// BaseRegs - The list of "base" registers for this use. When this is
229 /// non-empty, AM.HasBaseReg should be set to true.
230 SmallVector<const SCEV *, 2> BaseRegs;
231
232 /// ScaledReg - The 'scaled' register for this use. This should be non-null
233 /// when AM.Scale is not zero.
234 const SCEV *ScaledReg;
235
Dan Gohmancca82142011-05-03 00:46:49 +0000236 /// UnfoldedOffset - An additional constant offset which added near the
237 /// use. This requires a temporary register, but the offset itself can
238 /// live in an add immediate field rather than a register.
239 int64_t UnfoldedOffset;
240
241 Formula() : ScaledReg(0), UnfoldedOffset(0) {}
Dan Gohman572645c2010-02-12 10:34:29 +0000242
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000243 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
Dan Gohman572645c2010-02-12 10:34:29 +0000244
245 unsigned getNumRegs() const;
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000246 Type *getType() const;
Dan Gohman572645c2010-02-12 10:34:29 +0000247
Dan Gohman5ce6d052010-05-20 15:17:54 +0000248 void DeleteBaseReg(const SCEV *&S);
249
Dan Gohman572645c2010-02-12 10:34:29 +0000250 bool referencesReg(const SCEV *S) const;
251 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
252 const RegUseTracker &RegUses) const;
253
254 void print(raw_ostream &OS) const;
255 void dump() const;
256};
257
258}
259
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000260/// DoInitialMatch - Recursion helper for InitialMatch.
Dan Gohman572645c2010-02-12 10:34:29 +0000261static void DoInitialMatch(const SCEV *S, Loop *L,
262 SmallVectorImpl<const SCEV *> &Good,
263 SmallVectorImpl<const SCEV *> &Bad,
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000264 ScalarEvolution &SE) {
Dan Gohman572645c2010-02-12 10:34:29 +0000265 // Collect expressions which properly dominate the loop header.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000266 if (SE.properlyDominates(S, L->getHeader())) {
Dan Gohman572645c2010-02-12 10:34:29 +0000267 Good.push_back(S);
268 return;
Dan Gohmana10756e2010-01-21 02:09:26 +0000269 }
Dan Gohman572645c2010-02-12 10:34:29 +0000270
271 // Look at add operands.
272 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
273 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
274 I != E; ++I)
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000275 DoInitialMatch(*I, L, Good, Bad, SE);
Dan Gohman572645c2010-02-12 10:34:29 +0000276 return;
277 }
278
279 // Look at addrec operands.
280 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
281 if (!AR->getStart()->isZero()) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000282 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
Dan Gohmandeff6212010-05-03 22:09:21 +0000283 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +0000284 AR->getStepRecurrence(SE),
Andrew Trick3228cc22011-03-14 16:50:06 +0000285 // FIXME: AR->getNoWrapFlags()
286 AR->getLoop(), SCEV::FlagAnyWrap),
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000287 L, Good, Bad, SE);
Dan Gohman572645c2010-02-12 10:34:29 +0000288 return;
289 }
290
291 // Handle a multiplication by -1 (negation) if it didn't fold.
292 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
293 if (Mul->getOperand(0)->isAllOnesValue()) {
294 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
295 const SCEV *NewMul = SE.getMulExpr(Ops);
296
297 SmallVector<const SCEV *, 4> MyGood;
298 SmallVector<const SCEV *, 4> MyBad;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000299 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
Dan Gohman572645c2010-02-12 10:34:29 +0000300 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
301 SE.getEffectiveSCEVType(NewMul->getType())));
302 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
303 E = MyGood.end(); I != E; ++I)
304 Good.push_back(SE.getMulExpr(NegOne, *I));
305 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
306 E = MyBad.end(); I != E; ++I)
307 Bad.push_back(SE.getMulExpr(NegOne, *I));
308 return;
309 }
310
311 // Ok, we can't do anything interesting. Just stuff the whole thing into a
312 // register and hope for the best.
313 Bad.push_back(S);
314}
315
316/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
317/// attempting to keep all loop-invariant and loop-computable values in a
318/// single base register.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000319void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
Dan Gohman572645c2010-02-12 10:34:29 +0000320 SmallVector<const SCEV *, 4> Good;
321 SmallVector<const SCEV *, 4> Bad;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000322 DoInitialMatch(S, L, Good, Bad, SE);
Dan Gohman572645c2010-02-12 10:34:29 +0000323 if (!Good.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000324 const SCEV *Sum = SE.getAddExpr(Good);
325 if (!Sum->isZero())
326 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000327 AM.HasBaseReg = true;
328 }
329 if (!Bad.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000330 const SCEV *Sum = SE.getAddExpr(Bad);
331 if (!Sum->isZero())
332 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000333 AM.HasBaseReg = true;
334 }
335}
336
337/// getNumRegs - Return the total number of register operands used by this
338/// formula. This does not include register uses implied by non-constant
339/// addrec strides.
340unsigned Formula::getNumRegs() const {
341 return !!ScaledReg + BaseRegs.size();
342}
343
344/// getType - Return the type of this formula, if it has one, or null
345/// otherwise. This type is meaningless except for the bit size.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000346Type *Formula::getType() const {
Dan Gohman572645c2010-02-12 10:34:29 +0000347 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
348 ScaledReg ? ScaledReg->getType() :
349 AM.BaseGV ? AM.BaseGV->getType() :
350 0;
351}
352
Dan Gohman5ce6d052010-05-20 15:17:54 +0000353/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
354void Formula::DeleteBaseReg(const SCEV *&S) {
355 if (&S != &BaseRegs.back())
356 std::swap(S, BaseRegs.back());
357 BaseRegs.pop_back();
358}
359
Dan Gohman572645c2010-02-12 10:34:29 +0000360/// referencesReg - Test if this formula references the given register.
361bool Formula::referencesReg(const SCEV *S) const {
362 return S == ScaledReg ||
363 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
364}
365
366/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
367/// which are used by uses other than the use with the given index.
368bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
369 const RegUseTracker &RegUses) const {
370 if (ScaledReg)
371 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
372 return true;
373 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
374 E = BaseRegs.end(); I != E; ++I)
375 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
376 return true;
377 return false;
378}
379
380void Formula::print(raw_ostream &OS) const {
381 bool First = true;
382 if (AM.BaseGV) {
383 if (!First) OS << " + "; else First = false;
384 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
385 }
386 if (AM.BaseOffs != 0) {
387 if (!First) OS << " + "; else First = false;
388 OS << AM.BaseOffs;
389 }
390 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
391 E = BaseRegs.end(); I != E; ++I) {
392 if (!First) OS << " + "; else First = false;
393 OS << "reg(" << **I << ')';
394 }
Dan Gohmanc4cfbaf2010-05-18 22:35:55 +0000395 if (AM.HasBaseReg && BaseRegs.empty()) {
396 if (!First) OS << " + "; else First = false;
397 OS << "**error: HasBaseReg**";
398 } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
399 if (!First) OS << " + "; else First = false;
400 OS << "**error: !HasBaseReg**";
401 }
Dan Gohman572645c2010-02-12 10:34:29 +0000402 if (AM.Scale != 0) {
403 if (!First) OS << " + "; else First = false;
404 OS << AM.Scale << "*reg(";
405 if (ScaledReg)
406 OS << *ScaledReg;
407 else
408 OS << "<unknown>";
409 OS << ')';
410 }
Dan Gohmancca82142011-05-03 00:46:49 +0000411 if (UnfoldedOffset != 0) {
412 if (!First) OS << " + "; else First = false;
413 OS << "imm(" << UnfoldedOffset << ')';
414 }
Dan Gohman572645c2010-02-12 10:34:29 +0000415}
416
417void Formula::dump() const {
418 print(errs()); errs() << '\n';
419}
420
Dan Gohmanaae01f12010-02-19 19:32:49 +0000421/// isAddRecSExtable - Return true if the given addrec can be sign-extended
422/// without changing its value.
423static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000424 Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000425 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000426 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
427}
428
429/// isAddSExtable - Return true if the given add can be sign-extended
430/// without changing its value.
431static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000432 Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000433 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000434 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
435}
436
Dan Gohman473e6352010-06-24 16:45:11 +0000437/// isMulSExtable - Return true if the given mul can be sign-extended
Dan Gohmanaae01f12010-02-19 19:32:49 +0000438/// without changing its value.
Dan Gohman473e6352010-06-24 16:45:11 +0000439static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000440 Type *WideTy =
Dan Gohman473e6352010-06-24 16:45:11 +0000441 IntegerType::get(SE.getContext(),
442 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
443 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
Dan Gohmanaae01f12010-02-19 19:32:49 +0000444}
445
Dan Gohmanf09b7122010-02-19 19:35:48 +0000446/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
447/// and if the remainder is known to be zero, or null otherwise. If
448/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
449/// to Y, ignoring that the multiplication may overflow, which is useful when
450/// the result will be used in a context where the most significant bits are
451/// ignored.
452static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
453 ScalarEvolution &SE,
454 bool IgnoreSignificantBits = false) {
Dan Gohman572645c2010-02-12 10:34:29 +0000455 // Handle the trivial case, which works for any SCEV type.
456 if (LHS == RHS)
Dan Gohmandeff6212010-05-03 22:09:21 +0000457 return SE.getConstant(LHS->getType(), 1);
Dan Gohman572645c2010-02-12 10:34:29 +0000458
Dan Gohmand42819a2010-06-24 16:51:25 +0000459 // Handle a few RHS special cases.
460 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
461 if (RC) {
462 const APInt &RA = RC->getValue()->getValue();
463 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
464 // some folding.
465 if (RA.isAllOnesValue())
466 return SE.getMulExpr(LHS, RC);
467 // Handle x /s 1 as x.
468 if (RA == 1)
469 return LHS;
470 }
Dan Gohman572645c2010-02-12 10:34:29 +0000471
472 // Check for a division of a constant by a constant.
473 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000474 if (!RC)
475 return 0;
Dan Gohmand42819a2010-06-24 16:51:25 +0000476 const APInt &LA = C->getValue()->getValue();
477 const APInt &RA = RC->getValue()->getValue();
478 if (LA.srem(RA) != 0)
Dan Gohman572645c2010-02-12 10:34:29 +0000479 return 0;
Dan Gohmand42819a2010-06-24 16:51:25 +0000480 return SE.getConstant(LA.sdiv(RA));
Dan Gohman572645c2010-02-12 10:34:29 +0000481 }
482
Dan Gohmanaae01f12010-02-19 19:32:49 +0000483 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000484 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000485 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000486 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
487 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000488 if (!Step) return 0;
Dan Gohman694a15e2010-08-19 01:02:31 +0000489 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
490 IgnoreSignificantBits);
491 if (!Start) return 0;
Andrew Trick3228cc22011-03-14 16:50:06 +0000492 // FlagNW is independent of the start value, step direction, and is
493 // preserved with smaller magnitude steps.
494 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
495 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000496 }
Dan Gohman2ea09e02010-06-24 16:57:52 +0000497 return 0;
Dan Gohman572645c2010-02-12 10:34:29 +0000498 }
499
Dan Gohmanaae01f12010-02-19 19:32:49 +0000500 // Distribute the sdiv over add operands, if the add doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000501 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000502 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
503 SmallVector<const SCEV *, 8> Ops;
504 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
505 I != E; ++I) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000506 const SCEV *Op = getExactSDiv(*I, RHS, SE,
507 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000508 if (!Op) return 0;
509 Ops.push_back(Op);
510 }
511 return SE.getAddExpr(Ops);
Dan Gohman572645c2010-02-12 10:34:29 +0000512 }
Dan Gohman2ea09e02010-06-24 16:57:52 +0000513 return 0;
Dan Gohman572645c2010-02-12 10:34:29 +0000514 }
515
516 // Check for a multiply operand that we can pull RHS out of.
Dan Gohman2ea09e02010-06-24 16:57:52 +0000517 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000518 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000519 SmallVector<const SCEV *, 4> Ops;
520 bool Found = false;
521 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
522 I != E; ++I) {
Dan Gohman47667442010-05-20 16:23:28 +0000523 const SCEV *S = *I;
Dan Gohman572645c2010-02-12 10:34:29 +0000524 if (!Found)
Dan Gohman47667442010-05-20 16:23:28 +0000525 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
Dan Gohmanf09b7122010-02-19 19:35:48 +0000526 IgnoreSignificantBits)) {
Dan Gohman47667442010-05-20 16:23:28 +0000527 S = Q;
Dan Gohman572645c2010-02-12 10:34:29 +0000528 Found = true;
Dan Gohman572645c2010-02-12 10:34:29 +0000529 }
Dan Gohman47667442010-05-20 16:23:28 +0000530 Ops.push_back(S);
Dan Gohman572645c2010-02-12 10:34:29 +0000531 }
532 return Found ? SE.getMulExpr(Ops) : 0;
533 }
Dan Gohman2ea09e02010-06-24 16:57:52 +0000534 return 0;
535 }
Dan Gohman572645c2010-02-12 10:34:29 +0000536
537 // Otherwise we don't know.
538 return 0;
539}
540
541/// ExtractImmediate - If S involves the addition of a constant integer value,
542/// return that integer value, and mutate S to point to a new SCEV with that
543/// value excluded.
544static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
545 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
546 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000547 S = SE.getConstant(C->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000548 return C->getValue()->getSExtValue();
549 }
550 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
551 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
552 int64_t Result = ExtractImmediate(NewOps.front(), SE);
Dan Gohmane62d5882010-08-13 21:17:19 +0000553 if (Result != 0)
554 S = SE.getAddExpr(NewOps);
Dan Gohman572645c2010-02-12 10:34:29 +0000555 return Result;
556 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
557 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
558 int64_t Result = ExtractImmediate(NewOps.front(), SE);
Dan Gohmane62d5882010-08-13 21:17:19 +0000559 if (Result != 0)
Andrew Trick3228cc22011-03-14 16:50:06 +0000560 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
561 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
562 SCEV::FlagAnyWrap);
Dan Gohman572645c2010-02-12 10:34:29 +0000563 return Result;
564 }
565 return 0;
566}
567
568/// ExtractSymbol - If S involves the addition of a GlobalValue address,
569/// return that symbol, and mutate S to point to a new SCEV with that
570/// value excluded.
571static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
572 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
573 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000574 S = SE.getConstant(GV->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000575 return GV;
576 }
577 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
578 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
579 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
Dan Gohmane62d5882010-08-13 21:17:19 +0000580 if (Result)
581 S = SE.getAddExpr(NewOps);
Dan Gohman572645c2010-02-12 10:34:29 +0000582 return Result;
583 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
584 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
585 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
Dan Gohmane62d5882010-08-13 21:17:19 +0000586 if (Result)
Andrew Trick3228cc22011-03-14 16:50:06 +0000587 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
588 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
589 SCEV::FlagAnyWrap);
Dan Gohman572645c2010-02-12 10:34:29 +0000590 return Result;
591 }
592 return 0;
Nate Begemaneaa13852004-10-18 21:08:22 +0000593}
594
Dan Gohmanf284ce22009-02-18 00:08:39 +0000595/// isAddressUse - Returns true if the specified instruction is using the
Dale Johannesen203af582008-12-05 21:47:27 +0000596/// specified value as an address.
597static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
598 bool isAddress = isa<LoadInst>(Inst);
599 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
600 if (SI->getOperand(1) == OperandVal)
601 isAddress = true;
602 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
603 // Addressing modes can also be folded into prefetches and a variety
604 // of intrinsics.
605 switch (II->getIntrinsicID()) {
606 default: break;
607 case Intrinsic::prefetch:
Dale Johannesen203af582008-12-05 21:47:27 +0000608 case Intrinsic::x86_sse_storeu_ps:
609 case Intrinsic::x86_sse2_storeu_pd:
610 case Intrinsic::x86_sse2_storeu_dq:
611 case Intrinsic::x86_sse2_storel_dq:
Gabor Greifad72e732010-06-30 09:15:28 +0000612 if (II->getArgOperand(0) == OperandVal)
Dale Johannesen203af582008-12-05 21:47:27 +0000613 isAddress = true;
614 break;
615 }
616 }
617 return isAddress;
618}
Chris Lattner0ae33eb2005-10-03 01:04:44 +0000619
Dan Gohman21e77222009-03-09 21:01:17 +0000620/// getAccessType - Return the type of the memory being accessed.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000621static Type *getAccessType(const Instruction *Inst) {
622 Type *AccessTy = Inst->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000623 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
Dan Gohmana537bf82009-05-18 16:45:28 +0000624 AccessTy = SI->getOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000625 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
626 // Addressing modes can also be folded into prefetches and a variety
627 // of intrinsics.
628 switch (II->getIntrinsicID()) {
629 default: break;
630 case Intrinsic::x86_sse_storeu_ps:
631 case Intrinsic::x86_sse2_storeu_pd:
632 case Intrinsic::x86_sse2_storeu_dq:
633 case Intrinsic::x86_sse2_storel_dq:
Gabor Greifad72e732010-06-30 09:15:28 +0000634 AccessTy = II->getArgOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000635 break;
636 }
637 }
Dan Gohman572645c2010-02-12 10:34:29 +0000638
639 // All pointers have the same requirements, so canonicalize them to an
640 // arbitrary pointer type to minimize variation.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000641 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +0000642 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
643 PTy->getAddressSpace());
644
Dan Gohmana537bf82009-05-18 16:45:28 +0000645 return AccessTy;
Dan Gohman21e77222009-03-09 21:01:17 +0000646}
647
Andrew Trick8a5d7922011-12-06 03:13:31 +0000648/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
649static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
650 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
651 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
652 if (SE.isSCEVable(PN->getType()) &&
653 (SE.getEffectiveSCEVType(PN->getType()) ==
654 SE.getEffectiveSCEVType(AR->getType())) &&
655 SE.getSCEV(PN) == AR)
656 return true;
657 }
658 return false;
659}
660
Andrew Trick64925c52012-01-10 01:45:08 +0000661/// Check if expanding this expression is likely to incur significant cost. This
662/// is tricky because SCEV doesn't track which expressions are actually computed
663/// by the current IR.
664///
665/// We currently allow expansion of IV increments that involve adds,
666/// multiplication by constants, and AddRecs from existing phis.
667///
668/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
669/// obvious multiple of the UDivExpr.
670static bool isHighCostExpansion(const SCEV *S,
671 SmallPtrSet<const SCEV*, 8> &Processed,
672 ScalarEvolution &SE) {
673 // Zero/One operand expressions
674 switch (S->getSCEVType()) {
675 case scUnknown:
676 case scConstant:
677 return false;
678 case scTruncate:
679 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
680 Processed, SE);
681 case scZeroExtend:
682 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
683 Processed, SE);
684 case scSignExtend:
685 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
686 Processed, SE);
687 }
688
689 if (!Processed.insert(S))
690 return false;
691
692 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
693 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
694 I != E; ++I) {
695 if (isHighCostExpansion(*I, Processed, SE))
696 return true;
697 }
698 return false;
699 }
700
701 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
702 if (Mul->getNumOperands() == 2) {
703 // Multiplication by a constant is ok
704 if (isa<SCEVConstant>(Mul->getOperand(0)))
705 return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
706
707 // If we have the value of one operand, check if an existing
708 // multiplication already generates this expression.
709 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
710 Value *UVal = U->getValue();
711 for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
712 UI != UE; ++UI) {
713 Instruction *User = cast<Instruction>(*UI);
714 if (User->getOpcode() == Instruction::Mul
715 && SE.isSCEVable(User->getType())) {
716 return SE.getSCEV(User) == Mul;
717 }
718 }
719 }
720 }
721 }
722
723 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
724 if (isExistingPhi(AR, SE))
725 return false;
726 }
727
728 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
729 return true;
730}
731
Dan Gohman572645c2010-02-12 10:34:29 +0000732/// DeleteTriviallyDeadInstructions - If any of the instructions is the
733/// specified set are trivially dead, delete them and see if this makes any of
734/// their operands subsequently dead.
735static bool
736DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
737 bool Changed = false;
738
739 while (!DeadInsts.empty()) {
Gabor Greiff097b592010-09-18 11:55:34 +0000740 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
Dan Gohman572645c2010-02-12 10:34:29 +0000741
742 if (I == 0 || !isInstructionTriviallyDead(I))
743 continue;
744
745 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
746 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
747 *OI = 0;
748 if (U->use_empty())
749 DeadInsts.push_back(U);
750 }
751
752 I->eraseFromParent();
753 Changed = true;
754 }
755
756 return Changed;
757}
758
Dan Gohman7979b722010-01-22 00:46:49 +0000759namespace {
Jim Grosbach56a1f802009-11-17 17:53:56 +0000760
Dan Gohman572645c2010-02-12 10:34:29 +0000761/// Cost - This class is used to measure and compare candidate formulae.
762class Cost {
763 /// TODO: Some of these could be merged. Also, a lexical ordering
764 /// isn't always optimal.
765 unsigned NumRegs;
766 unsigned AddRecCost;
767 unsigned NumIVMuls;
768 unsigned NumBaseAdds;
769 unsigned ImmCost;
770 unsigned SetupCost;
Nate Begeman16997482005-07-30 00:15:07 +0000771
Dan Gohman572645c2010-02-12 10:34:29 +0000772public:
773 Cost()
774 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
775 SetupCost(0) {}
Jim Grosbach56a1f802009-11-17 17:53:56 +0000776
Dan Gohman572645c2010-02-12 10:34:29 +0000777 bool operator<(const Cost &Other) const;
Dan Gohman7979b722010-01-22 00:46:49 +0000778
Dan Gohman572645c2010-02-12 10:34:29 +0000779 void Loose();
Dan Gohman7979b722010-01-22 00:46:49 +0000780
Andrew Trick7d11bd82011-09-26 23:11:04 +0000781#ifndef NDEBUG
782 // Once any of the metrics loses, they must all remain losers.
783 bool isValid() {
784 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
785 | ImmCost | SetupCost) != ~0u)
786 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
787 & ImmCost & SetupCost) == ~0u);
788 }
789#endif
790
791 bool isLoser() {
792 assert(isValid() && "invalid cost");
793 return NumRegs == ~0u;
794 }
795
Dan Gohman572645c2010-02-12 10:34:29 +0000796 void RateFormula(const Formula &F,
797 SmallPtrSet<const SCEV *, 16> &Regs,
798 const DenseSet<const SCEV *> &VisitedRegs,
799 const Loop *L,
800 const SmallVectorImpl<int64_t> &Offsets,
Andrew Trick8a5d7922011-12-06 03:13:31 +0000801 ScalarEvolution &SE, DominatorTree &DT,
802 SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
Dan Gohman7979b722010-01-22 00:46:49 +0000803
Dan Gohman572645c2010-02-12 10:34:29 +0000804 void print(raw_ostream &OS) const;
805 void dump() const;
Dan Gohman7979b722010-01-22 00:46:49 +0000806
Dan Gohman572645c2010-02-12 10:34:29 +0000807private:
808 void RateRegister(const SCEV *Reg,
809 SmallPtrSet<const SCEV *, 16> &Regs,
810 const Loop *L,
811 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman9214b822010-02-13 02:06:02 +0000812 void RatePrimaryRegister(const SCEV *Reg,
813 SmallPtrSet<const SCEV *, 16> &Regs,
814 const Loop *L,
Andrew Trick8a5d7922011-12-06 03:13:31 +0000815 ScalarEvolution &SE, DominatorTree &DT,
816 SmallPtrSet<const SCEV *, 16> *LoserRegs);
Dan Gohman572645c2010-02-12 10:34:29 +0000817};
818
819}
820
821/// RateRegister - Tally up interesting quantities from the given register.
822void Cost::RateRegister(const SCEV *Reg,
823 SmallPtrSet<const SCEV *, 16> &Regs,
824 const Loop *L,
825 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000826 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
827 if (AR->getLoop() == L)
828 AddRecCost += 1; /// TODO: This should be a function of the stride.
Dan Gohman572645c2010-02-12 10:34:29 +0000829
Andrew Trick0c01bc32011-09-29 01:33:38 +0000830 // If this is an addrec for another loop, don't second-guess its addrec phi
831 // nodes. LSR isn't currently smart enough to reason about more than one
832 // loop at a time. LSR has either already run on inner loops, will not run
833 // on other loops, and cannot be expected to change sibling loops. If the
834 // AddRec exists, consider it's register free and leave it alone. Otherwise,
835 // do not consider this formula at all.
Andrew Trick0c01bc32011-09-29 01:33:38 +0000836 else if (!EnableNested || L->contains(AR->getLoop()) ||
Dan Gohman9214b822010-02-13 02:06:02 +0000837 (!AR->getLoop()->contains(L) &&
838 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
Andrew Trick8a5d7922011-12-06 03:13:31 +0000839 if (isExistingPhi(AR, SE))
840 return;
841
842 // For !EnableNested, never rewrite IVs in other loops.
Andrew Trick0c01bc32011-09-29 01:33:38 +0000843 if (!EnableNested) {
844 Loose();
845 return;
846 }
Dan Gohman9214b822010-02-13 02:06:02 +0000847 // If this isn't one of the addrecs that the loop already has, it
848 // would require a costly new phi and add. TODO: This isn't
849 // precisely modeled right now.
850 ++NumBaseAdds;
Andrew Trick7d11bd82011-09-26 23:11:04 +0000851 if (!Regs.count(AR->getStart())) {
Dan Gohman572645c2010-02-12 10:34:29 +0000852 RateRegister(AR->getStart(), Regs, L, SE, DT);
Andrew Trick7d11bd82011-09-26 23:11:04 +0000853 if (isLoser())
854 return;
855 }
Dan Gohman572645c2010-02-12 10:34:29 +0000856 }
Dan Gohman572645c2010-02-12 10:34:29 +0000857
Dan Gohman9214b822010-02-13 02:06:02 +0000858 // Add the step value register, if it needs one.
859 // TODO: The non-affine case isn't precisely modeled here.
Andrew Trick25b689e2011-09-26 23:35:25 +0000860 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
861 if (!Regs.count(AR->getOperand(1))) {
Dan Gohman9214b822010-02-13 02:06:02 +0000862 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
Andrew Trick25b689e2011-09-26 23:35:25 +0000863 if (isLoser())
864 return;
865 }
866 }
Dan Gohman572645c2010-02-12 10:34:29 +0000867 }
Dan Gohman9214b822010-02-13 02:06:02 +0000868 ++NumRegs;
869
870 // Rough heuristic; favor registers which don't require extra setup
871 // instructions in the preheader.
872 if (!isa<SCEVUnknown>(Reg) &&
873 !isa<SCEVConstant>(Reg) &&
874 !(isa<SCEVAddRecExpr>(Reg) &&
875 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
876 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
877 ++SetupCost;
Dan Gohman23c3fde2010-10-07 23:41:58 +0000878
879 NumIVMuls += isa<SCEVMulExpr>(Reg) &&
Dan Gohman17ead4f2010-11-17 21:23:15 +0000880 SE.hasComputableLoopEvolution(Reg, L);
Dan Gohman9214b822010-02-13 02:06:02 +0000881}
882
883/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
Andrew Trick8a5d7922011-12-06 03:13:31 +0000884/// before, rate it. Optional LoserRegs provides a way to declare any formula
885/// that refers to one of those regs an instant loser.
Dan Gohman9214b822010-02-13 02:06:02 +0000886void Cost::RatePrimaryRegister(const SCEV *Reg,
Dan Gohman7fca2292010-02-16 19:42:34 +0000887 SmallPtrSet<const SCEV *, 16> &Regs,
888 const Loop *L,
Andrew Trick8a5d7922011-12-06 03:13:31 +0000889 ScalarEvolution &SE, DominatorTree &DT,
890 SmallPtrSet<const SCEV *, 16> *LoserRegs) {
891 if (LoserRegs && LoserRegs->count(Reg)) {
892 Loose();
893 return;
894 }
895 if (Regs.insert(Reg)) {
Dan Gohman9214b822010-02-13 02:06:02 +0000896 RateRegister(Reg, Regs, L, SE, DT);
Andrew Trick8a5d7922011-12-06 03:13:31 +0000897 if (isLoser())
898 LoserRegs->insert(Reg);
899 }
Dan Gohman572645c2010-02-12 10:34:29 +0000900}
901
902void Cost::RateFormula(const Formula &F,
903 SmallPtrSet<const SCEV *, 16> &Regs,
904 const DenseSet<const SCEV *> &VisitedRegs,
905 const Loop *L,
906 const SmallVectorImpl<int64_t> &Offsets,
Andrew Trick8a5d7922011-12-06 03:13:31 +0000907 ScalarEvolution &SE, DominatorTree &DT,
908 SmallPtrSet<const SCEV *, 16> *LoserRegs) {
Dan Gohman572645c2010-02-12 10:34:29 +0000909 // Tally up the registers.
910 if (const SCEV *ScaledReg = F.ScaledReg) {
911 if (VisitedRegs.count(ScaledReg)) {
912 Loose();
913 return;
914 }
Andrew Trick8a5d7922011-12-06 03:13:31 +0000915 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
Andrew Trick7d11bd82011-09-26 23:11:04 +0000916 if (isLoser())
917 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000918 }
919 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
920 E = F.BaseRegs.end(); I != E; ++I) {
921 const SCEV *BaseReg = *I;
922 if (VisitedRegs.count(BaseReg)) {
923 Loose();
924 return;
925 }
Andrew Trick8a5d7922011-12-06 03:13:31 +0000926 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
Andrew Trick7d11bd82011-09-26 23:11:04 +0000927 if (isLoser())
928 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000929 }
930
Dan Gohmancca82142011-05-03 00:46:49 +0000931 // Determine how many (unfolded) adds we'll need inside the loop.
932 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
933 if (NumBaseParts > 1)
934 NumBaseAdds += NumBaseParts - 1;
Dan Gohman572645c2010-02-12 10:34:29 +0000935
936 // Tally up the non-zero immediates.
937 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
938 E = Offsets.end(); I != E; ++I) {
939 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
940 if (F.AM.BaseGV)
941 ImmCost += 64; // Handle symbolic values conservatively.
942 // TODO: This should probably be the pointer size.
943 else if (Offset != 0)
944 ImmCost += APInt(64, Offset, true).getMinSignedBits();
945 }
Andrew Trick7d11bd82011-09-26 23:11:04 +0000946 assert(isValid() && "invalid cost");
Dan Gohman572645c2010-02-12 10:34:29 +0000947}
948
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000949/// Loose - Set this cost to a losing value.
Dan Gohman572645c2010-02-12 10:34:29 +0000950void Cost::Loose() {
951 NumRegs = ~0u;
952 AddRecCost = ~0u;
953 NumIVMuls = ~0u;
954 NumBaseAdds = ~0u;
955 ImmCost = ~0u;
956 SetupCost = ~0u;
957}
958
959/// operator< - Choose the lower cost.
960bool Cost::operator<(const Cost &Other) const {
961 if (NumRegs != Other.NumRegs)
962 return NumRegs < Other.NumRegs;
963 if (AddRecCost != Other.AddRecCost)
964 return AddRecCost < Other.AddRecCost;
965 if (NumIVMuls != Other.NumIVMuls)
966 return NumIVMuls < Other.NumIVMuls;
967 if (NumBaseAdds != Other.NumBaseAdds)
968 return NumBaseAdds < Other.NumBaseAdds;
969 if (ImmCost != Other.ImmCost)
970 return ImmCost < Other.ImmCost;
971 if (SetupCost != Other.SetupCost)
972 return SetupCost < Other.SetupCost;
973 return false;
974}
975
976void Cost::print(raw_ostream &OS) const {
977 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
978 if (AddRecCost != 0)
979 OS << ", with addrec cost " << AddRecCost;
980 if (NumIVMuls != 0)
981 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
982 if (NumBaseAdds != 0)
983 OS << ", plus " << NumBaseAdds << " base add"
984 << (NumBaseAdds == 1 ? "" : "s");
985 if (ImmCost != 0)
986 OS << ", plus " << ImmCost << " imm cost";
987 if (SetupCost != 0)
988 OS << ", plus " << SetupCost << " setup cost";
989}
990
991void Cost::dump() const {
992 print(errs()); errs() << '\n';
993}
994
995namespace {
996
997/// LSRFixup - An operand value in an instruction which is to be replaced
998/// with some equivalent, possibly strength-reduced, replacement.
999struct LSRFixup {
1000 /// UserInst - The instruction which will be updated.
1001 Instruction *UserInst;
1002
1003 /// OperandValToReplace - The operand of the instruction which will
1004 /// be replaced. The operand may be used more than once; every instance
1005 /// will be replaced.
1006 Value *OperandValToReplace;
1007
Dan Gohman448db1c2010-04-07 22:27:08 +00001008 /// PostIncLoops - If this user is to use the post-incremented value of an
Dan Gohman572645c2010-02-12 10:34:29 +00001009 /// induction variable, this variable is non-null and holds the loop
1010 /// associated with the induction variable.
Dan Gohman448db1c2010-04-07 22:27:08 +00001011 PostIncLoopSet PostIncLoops;
Dan Gohman572645c2010-02-12 10:34:29 +00001012
1013 /// LUIdx - The index of the LSRUse describing the expression which
1014 /// this fixup needs, minus an offset (below).
1015 size_t LUIdx;
1016
1017 /// Offset - A constant offset to be added to the LSRUse expression.
1018 /// This allows multiple fixups to share the same LSRUse with different
1019 /// offsets, for example in an unrolled loop.
1020 int64_t Offset;
1021
Dan Gohman448db1c2010-04-07 22:27:08 +00001022 bool isUseFullyOutsideLoop(const Loop *L) const;
1023
Dan Gohman572645c2010-02-12 10:34:29 +00001024 LSRFixup();
1025
1026 void print(raw_ostream &OS) const;
1027 void dump() const;
1028};
1029
1030}
1031
1032LSRFixup::LSRFixup()
Dan Gohmanea507f52010-05-20 19:44:23 +00001033 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
Dan Gohman572645c2010-02-12 10:34:29 +00001034
Dan Gohman448db1c2010-04-07 22:27:08 +00001035/// isUseFullyOutsideLoop - Test whether this fixup always uses its
1036/// value outside of the given loop.
1037bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1038 // PHI nodes use their value in their incoming blocks.
1039 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1040 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1041 if (PN->getIncomingValue(i) == OperandValToReplace &&
1042 L->contains(PN->getIncomingBlock(i)))
1043 return false;
1044 return true;
1045 }
1046
1047 return !L->contains(UserInst);
1048}
1049
Dan Gohman572645c2010-02-12 10:34:29 +00001050void LSRFixup::print(raw_ostream &OS) const {
1051 OS << "UserInst=";
1052 // Store is common and interesting enough to be worth special-casing.
1053 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1054 OS << "store ";
1055 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
1056 } else if (UserInst->getType()->isVoidTy())
1057 OS << UserInst->getOpcodeName();
1058 else
1059 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
1060
1061 OS << ", OperandValToReplace=";
1062 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
1063
Dan Gohman448db1c2010-04-07 22:27:08 +00001064 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
1065 E = PostIncLoops.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +00001066 OS << ", PostIncLoop=";
Dan Gohman448db1c2010-04-07 22:27:08 +00001067 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
Dan Gohman572645c2010-02-12 10:34:29 +00001068 }
1069
1070 if (LUIdx != ~size_t(0))
1071 OS << ", LUIdx=" << LUIdx;
1072
1073 if (Offset != 0)
1074 OS << ", Offset=" << Offset;
1075}
1076
1077void LSRFixup::dump() const {
1078 print(errs()); errs() << '\n';
1079}
1080
1081namespace {
1082
1083/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
1084/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
1085struct UniquifierDenseMapInfo {
1086 static SmallVector<const SCEV *, 2> getEmptyKey() {
1087 SmallVector<const SCEV *, 2> V;
1088 V.push_back(reinterpret_cast<const SCEV *>(-1));
1089 return V;
1090 }
1091
1092 static SmallVector<const SCEV *, 2> getTombstoneKey() {
1093 SmallVector<const SCEV *, 2> V;
1094 V.push_back(reinterpret_cast<const SCEV *>(-2));
1095 return V;
1096 }
1097
1098 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
1099 unsigned Result = 0;
1100 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
1101 E = V.end(); I != E; ++I)
1102 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
1103 return Result;
1104 }
1105
1106 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
1107 const SmallVector<const SCEV *, 2> &RHS) {
1108 return LHS == RHS;
1109 }
1110};
1111
1112/// LSRUse - This class holds the state that LSR keeps for each use in
1113/// IVUsers, as well as uses invented by LSR itself. It includes information
1114/// about what kinds of things can be folded into the user, information about
1115/// the user itself, and information about how the use may be satisfied.
1116/// TODO: Represent multiple users of the same expression in common?
1117class LSRUse {
1118 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
1119
1120public:
1121 /// KindType - An enum for a kind of use, indicating what types of
1122 /// scaled and immediate operands it might support.
1123 enum KindType {
1124 Basic, ///< A normal use, with no folding.
1125 Special, ///< A special case of basic, allowing -1 scales.
1126 Address, ///< An address use; folding according to TargetLowering
1127 ICmpZero ///< An equality icmp with both operands folded into one.
1128 // TODO: Add a generic icmp too?
Dan Gohman7979b722010-01-22 00:46:49 +00001129 };
Dan Gohman572645c2010-02-12 10:34:29 +00001130
1131 KindType Kind;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001132 Type *AccessTy;
Dan Gohman572645c2010-02-12 10:34:29 +00001133
1134 SmallVector<int64_t, 8> Offsets;
1135 int64_t MinOffset;
1136 int64_t MaxOffset;
1137
1138 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
1139 /// LSRUse are outside of the loop, in which case some special-case heuristics
1140 /// may be used.
1141 bool AllFixupsOutsideLoop;
1142
Dan Gohmana9db1292010-07-15 20:24:58 +00001143 /// WidestFixupType - This records the widest use type for any fixup using
1144 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
1145 /// max fixup widths to be equivalent, because the narrower one may be relying
1146 /// on the implicit truncation to truncate away bogus bits.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001147 Type *WidestFixupType;
Dan Gohmana9db1292010-07-15 20:24:58 +00001148
Dan Gohman572645c2010-02-12 10:34:29 +00001149 /// Formulae - A list of ways to build a value that can satisfy this user.
1150 /// After the list is populated, one of these is selected heuristically and
1151 /// used to formulate a replacement for OperandValToReplace in UserInst.
1152 SmallVector<Formula, 12> Formulae;
1153
1154 /// Regs - The set of register candidates used by all formulae in this LSRUse.
1155 SmallPtrSet<const SCEV *, 4> Regs;
1156
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001157 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
Dan Gohman572645c2010-02-12 10:34:29 +00001158 MinOffset(INT64_MAX),
1159 MaxOffset(INT64_MIN),
Dan Gohmana9db1292010-07-15 20:24:58 +00001160 AllFixupsOutsideLoop(true),
1161 WidestFixupType(0) {}
Dan Gohman572645c2010-02-12 10:34:29 +00001162
Dan Gohmana2086b32010-05-19 23:43:12 +00001163 bool HasFormulaWithSameRegs(const Formula &F) const;
Dan Gohman454d26d2010-02-22 04:11:59 +00001164 bool InsertFormula(const Formula &F);
Dan Gohmand69d6282010-05-18 22:39:15 +00001165 void DeleteFormula(Formula &F);
Dan Gohmanb2df4332010-05-18 23:42:37 +00001166 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
Dan Gohman572645c2010-02-12 10:34:29 +00001167
Dan Gohman572645c2010-02-12 10:34:29 +00001168 void print(raw_ostream &OS) const;
1169 void dump() const;
1170};
1171
Dan Gohmanb6211712010-06-19 21:21:39 +00001172}
1173
Dan Gohmana2086b32010-05-19 23:43:12 +00001174/// HasFormula - Test whether this use as a formula which has the same
1175/// registers as the given formula.
1176bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1177 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1178 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1179 // Unstable sort by host order ok, because this is only used for uniquifying.
1180 std::sort(Key.begin(), Key.end());
1181 return Uniquifier.count(Key);
1182}
1183
Dan Gohman572645c2010-02-12 10:34:29 +00001184/// InsertFormula - If the given formula has not yet been inserted, add it to
1185/// the list, and return true. Return false otherwise.
Dan Gohman454d26d2010-02-22 04:11:59 +00001186bool LSRUse::InsertFormula(const Formula &F) {
Dan Gohman572645c2010-02-12 10:34:29 +00001187 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1188 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1189 // Unstable sort by host order ok, because this is only used for uniquifying.
1190 std::sort(Key.begin(), Key.end());
1191
1192 if (!Uniquifier.insert(Key).second)
1193 return false;
1194
1195 // Using a register to hold the value of 0 is not profitable.
1196 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1197 "Zero allocated in a scaled register!");
1198#ifndef NDEBUG
1199 for (SmallVectorImpl<const SCEV *>::const_iterator I =
1200 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1201 assert(!(*I)->isZero() && "Zero allocated in a base register!");
1202#endif
1203
1204 // Add the formula to the list.
1205 Formulae.push_back(F);
1206
1207 // Record registers now being used by this use.
Dan Gohman572645c2010-02-12 10:34:29 +00001208 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1209
1210 return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001211}
1212
Dan Gohmand69d6282010-05-18 22:39:15 +00001213/// DeleteFormula - Remove the given formula from this use's list.
1214void LSRUse::DeleteFormula(Formula &F) {
Dan Gohman5ce6d052010-05-20 15:17:54 +00001215 if (&F != &Formulae.back())
1216 std::swap(F, Formulae.back());
Dan Gohmand69d6282010-05-18 22:39:15 +00001217 Formulae.pop_back();
1218}
1219
Dan Gohmanb2df4332010-05-18 23:42:37 +00001220/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1221void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1222 // Now that we've filtered out some formulae, recompute the Regs set.
1223 SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1224 Regs.clear();
Dan Gohman402d4352010-05-20 20:33:18 +00001225 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1226 E = Formulae.end(); I != E; ++I) {
1227 const Formula &F = *I;
Dan Gohmanb2df4332010-05-18 23:42:37 +00001228 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1229 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1230 }
1231
1232 // Update the RegTracker.
1233 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1234 E = OldRegs.end(); I != E; ++I)
1235 if (!Regs.count(*I))
1236 RegUses.DropRegister(*I, LUIdx);
1237}
1238
Dan Gohman572645c2010-02-12 10:34:29 +00001239void LSRUse::print(raw_ostream &OS) const {
1240 OS << "LSR Use: Kind=";
1241 switch (Kind) {
1242 case Basic: OS << "Basic"; break;
1243 case Special: OS << "Special"; break;
1244 case ICmpZero: OS << "ICmpZero"; break;
1245 case Address:
1246 OS << "Address of ";
Duncan Sands1df98592010-02-16 11:11:14 +00001247 if (AccessTy->isPointerTy())
Dan Gohman572645c2010-02-12 10:34:29 +00001248 OS << "pointer"; // the full pointer type could be really verbose
1249 else
1250 OS << *AccessTy;
Evan Chengcdf43b12007-10-25 09:11:16 +00001251 }
1252
Dan Gohman572645c2010-02-12 10:34:29 +00001253 OS << ", Offsets={";
1254 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1255 E = Offsets.end(); I != E; ++I) {
1256 OS << *I;
Oscar Fuentesee56c422010-08-02 06:00:15 +00001257 if (llvm::next(I) != E)
Dan Gohman572645c2010-02-12 10:34:29 +00001258 OS << ',';
Dan Gohman7979b722010-01-22 00:46:49 +00001259 }
Dan Gohman572645c2010-02-12 10:34:29 +00001260 OS << '}';
Dan Gohman7979b722010-01-22 00:46:49 +00001261
Dan Gohman572645c2010-02-12 10:34:29 +00001262 if (AllFixupsOutsideLoop)
1263 OS << ", all-fixups-outside-loop";
Dan Gohmana9db1292010-07-15 20:24:58 +00001264
1265 if (WidestFixupType)
1266 OS << ", widest fixup type: " << *WidestFixupType;
Dan Gohman7979b722010-01-22 00:46:49 +00001267}
1268
Dan Gohman572645c2010-02-12 10:34:29 +00001269void LSRUse::dump() const {
1270 print(errs()); errs() << '\n';
1271}
Dan Gohman7979b722010-01-22 00:46:49 +00001272
Dan Gohman572645c2010-02-12 10:34:29 +00001273/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1274/// be completely folded into the user instruction at isel time. This includes
1275/// address-mode folding and special icmp tricks.
1276static bool isLegalUse(const TargetLowering::AddrMode &AM,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001277 LSRUse::KindType Kind, Type *AccessTy,
Dan Gohman572645c2010-02-12 10:34:29 +00001278 const TargetLowering *TLI) {
1279 switch (Kind) {
1280 case LSRUse::Address:
1281 // If we have low-level target information, ask the target if it can
1282 // completely fold this address.
1283 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1284
1285 // Otherwise, just guess that reg+reg addressing is legal.
1286 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1287
1288 case LSRUse::ICmpZero:
1289 // There's not even a target hook for querying whether it would be legal to
1290 // fold a GV into an ICmp.
1291 if (AM.BaseGV)
1292 return false;
1293
1294 // ICmp only has two operands; don't allow more than two non-trivial parts.
1295 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1296 return false;
1297
1298 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1299 // putting the scaled register in the other operand of the icmp.
1300 if (AM.Scale != 0 && AM.Scale != -1)
1301 return false;
1302
1303 // If we have low-level target information, ask the target if it can fold an
1304 // integer immediate on an icmp.
1305 if (AM.BaseOffs != 0) {
Eli Friedmandae36ba2011-10-13 23:48:33 +00001306 if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs);
Dan Gohman572645c2010-02-12 10:34:29 +00001307 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001308 }
Dan Gohman572645c2010-02-12 10:34:29 +00001309
1310 return true;
1311
1312 case LSRUse::Basic:
1313 // Only handle single-register values.
1314 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1315
1316 case LSRUse::Special:
1317 // Only handle -1 scales, or no scale.
1318 return AM.Scale == 0 || AM.Scale == -1;
Dan Gohman7979b722010-01-22 00:46:49 +00001319 }
1320
Dan Gohman7979b722010-01-22 00:46:49 +00001321 return false;
1322}
1323
Dan Gohman572645c2010-02-12 10:34:29 +00001324static bool isLegalUse(TargetLowering::AddrMode AM,
1325 int64_t MinOffset, int64_t MaxOffset,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001326 LSRUse::KindType Kind, Type *AccessTy,
Dan Gohman572645c2010-02-12 10:34:29 +00001327 const TargetLowering *TLI) {
1328 // Check for overflow.
1329 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1330 (MinOffset > 0))
1331 return false;
1332 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1333 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1334 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1335 // Check for overflow.
1336 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1337 (MaxOffset > 0))
1338 return false;
1339 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1340 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001341 }
Dan Gohman572645c2010-02-12 10:34:29 +00001342 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001343}
1344
Dan Gohman572645c2010-02-12 10:34:29 +00001345static bool isAlwaysFoldable(int64_t BaseOffs,
1346 GlobalValue *BaseGV,
1347 bool HasBaseReg,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001348 LSRUse::KindType Kind, Type *AccessTy,
Dan Gohman454d26d2010-02-22 04:11:59 +00001349 const TargetLowering *TLI) {
Dan Gohman572645c2010-02-12 10:34:29 +00001350 // Fast-path: zero is always foldable.
1351 if (BaseOffs == 0 && !BaseGV) return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001352
Dan Gohman572645c2010-02-12 10:34:29 +00001353 // Conservatively, create an address with an immediate and a
1354 // base and a scale.
1355 TargetLowering::AddrMode AM;
1356 AM.BaseOffs = BaseOffs;
1357 AM.BaseGV = BaseGV;
1358 AM.HasBaseReg = HasBaseReg;
1359 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001360
Dan Gohmana2086b32010-05-19 23:43:12 +00001361 // Canonicalize a scale of 1 to a base register if the formula doesn't
1362 // already have a base register.
1363 if (!AM.HasBaseReg && AM.Scale == 1) {
1364 AM.Scale = 0;
1365 AM.HasBaseReg = true;
1366 }
1367
Dan Gohman572645c2010-02-12 10:34:29 +00001368 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001369}
1370
Dan Gohman572645c2010-02-12 10:34:29 +00001371static bool isAlwaysFoldable(const SCEV *S,
1372 int64_t MinOffset, int64_t MaxOffset,
1373 bool HasBaseReg,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001374 LSRUse::KindType Kind, Type *AccessTy,
Dan Gohman572645c2010-02-12 10:34:29 +00001375 const TargetLowering *TLI,
1376 ScalarEvolution &SE) {
1377 // Fast-path: zero is always foldable.
1378 if (S->isZero()) return true;
1379
1380 // Conservatively, create an address with an immediate and a
1381 // base and a scale.
1382 int64_t BaseOffs = ExtractImmediate(S, SE);
1383 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1384
1385 // If there's anything else involved, it's not foldable.
1386 if (!S->isZero()) return false;
1387
1388 // Fast-path: zero is always foldable.
1389 if (BaseOffs == 0 && !BaseGV) return true;
1390
1391 // Conservatively, create an address with an immediate and a
1392 // base and a scale.
1393 TargetLowering::AddrMode AM;
1394 AM.BaseOffs = BaseOffs;
1395 AM.BaseGV = BaseGV;
1396 AM.HasBaseReg = HasBaseReg;
1397 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1398
1399 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001400}
1401
Dan Gohmanb6211712010-06-19 21:21:39 +00001402namespace {
1403
Dan Gohman1e3121c2010-06-19 21:29:59 +00001404/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1405/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1406struct UseMapDenseMapInfo {
1407 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1408 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1409 }
1410
1411 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1412 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1413 }
1414
1415 static unsigned
1416 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1417 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1418 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1419 return Result;
1420 }
1421
1422 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1423 const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1424 return LHS == RHS;
1425 }
1426};
1427
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00001428/// IVInc - An individual increment in a Chain of IV increments.
1429/// Relate an IV user to an expression that computes the IV it uses from the IV
1430/// used by the previous link in the Chain.
1431///
1432/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1433/// original IVOperand. The head of the chain's IVOperand is only valid during
1434/// chain collection, before LSR replaces IV users. During chain generation,
1435/// IncExpr can be used to find the new IVOperand that computes the same
1436/// expression.
1437struct IVInc {
1438 Instruction *UserInst;
1439 Value* IVOperand;
1440 const SCEV *IncExpr;
1441
1442 IVInc(Instruction *U, Value *O, const SCEV *E):
1443 UserInst(U), IVOperand(O), IncExpr(E) {}
1444};
1445
1446// IVChain - The list of IV increments in program order.
1447// We typically add the head of a chain without finding subsequent links.
1448typedef SmallVector<IVInc,1> IVChain;
1449
1450/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
1451/// Distinguish between FarUsers that definitely cross IV increments and
1452/// NearUsers that may be used between IV increments.
1453struct ChainUsers {
1454 SmallPtrSet<Instruction*, 4> FarUsers;
1455 SmallPtrSet<Instruction*, 4> NearUsers;
1456};
1457
Dan Gohman572645c2010-02-12 10:34:29 +00001458/// LSRInstance - This class holds state for the main loop strength reduction
1459/// logic.
1460class LSRInstance {
1461 IVUsers &IU;
1462 ScalarEvolution &SE;
1463 DominatorTree &DT;
Dan Gohmane5f76872010-04-09 22:07:05 +00001464 LoopInfo &LI;
Dan Gohman572645c2010-02-12 10:34:29 +00001465 const TargetLowering *const TLI;
1466 Loop *const L;
1467 bool Changed;
1468
1469 /// IVIncInsertPos - This is the insert position that the current loop's
1470 /// induction variable increment should be placed. In simple loops, this is
1471 /// the latch block's terminator. But in more complicated cases, this is a
1472 /// position which will dominate all the in-loop post-increment users.
1473 Instruction *IVIncInsertPos;
1474
1475 /// Factors - Interesting factors between use strides.
1476 SmallSetVector<int64_t, 8> Factors;
1477
1478 /// Types - Interesting use types, to facilitate truncation reuse.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001479 SmallSetVector<Type *, 4> Types;
Dan Gohman572645c2010-02-12 10:34:29 +00001480
1481 /// Fixups - The list of operands which are to be replaced.
1482 SmallVector<LSRFixup, 16> Fixups;
1483
1484 /// Uses - The list of interesting uses.
1485 SmallVector<LSRUse, 16> Uses;
1486
1487 /// RegUses - Track which uses use which register candidates.
1488 RegUseTracker RegUses;
1489
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00001490 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1491 // have more than a few IV increment chains in a loop. Missing a Chain falls
1492 // back to normal LSR behavior for those uses.
1493 static const unsigned MaxChains = 8;
1494
1495 /// IVChainVec - IV users can form a chain of IV increments.
1496 SmallVector<IVChain, MaxChains> IVChainVec;
1497
Andrew Trick22d20c22012-01-09 21:18:52 +00001498 /// IVIncSet - IV users that belong to profitable IVChains.
1499 SmallPtrSet<Use*, MaxChains> IVIncSet;
1500
Dan Gohman572645c2010-02-12 10:34:29 +00001501 void OptimizeShadowIV();
1502 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1503 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
Dan Gohmanc6519f92010-05-20 20:05:31 +00001504 void OptimizeLoopTermCond();
Dan Gohman572645c2010-02-12 10:34:29 +00001505
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00001506 void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1507 SmallVectorImpl<ChainUsers> &ChainUsersVec);
Andrew Trick22d20c22012-01-09 21:18:52 +00001508 void FinalizeChain(IVChain &Chain);
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00001509 void CollectChains();
Andrew Trick22d20c22012-01-09 21:18:52 +00001510 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1511 SmallVectorImpl<WeakVH> &DeadInsts);
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00001512
Dan Gohman572645c2010-02-12 10:34:29 +00001513 void CollectInterestingTypesAndFactors();
1514 void CollectFixupsAndInitialFormulae();
1515
1516 LSRFixup &getNewFixup() {
1517 Fixups.push_back(LSRFixup());
1518 return Fixups.back();
1519 }
1520
1521 // Support for sharing of LSRUses between LSRFixups.
Dan Gohman1e3121c2010-06-19 21:29:59 +00001522 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1523 size_t,
1524 UseMapDenseMapInfo> UseMapTy;
Dan Gohman572645c2010-02-12 10:34:29 +00001525 UseMapTy UseMap;
1526
Dan Gohman191bd642010-09-01 01:45:53 +00001527 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001528 LSRUse::KindType Kind, Type *AccessTy);
Dan Gohman572645c2010-02-12 10:34:29 +00001529
1530 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1531 LSRUse::KindType Kind,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001532 Type *AccessTy);
Dan Gohman572645c2010-02-12 10:34:29 +00001533
Dan Gohmanc6897702010-10-07 23:33:43 +00001534 void DeleteUse(LSRUse &LU, size_t LUIdx);
Dan Gohman5ce6d052010-05-20 15:17:54 +00001535
Dan Gohman191bd642010-09-01 01:45:53 +00001536 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
Dan Gohmana2086b32010-05-19 23:43:12 +00001537
Dan Gohman454d26d2010-02-22 04:11:59 +00001538 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001539 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1540 void CountRegisters(const Formula &F, size_t LUIdx);
1541 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1542
1543 void CollectLoopInvariantFixupsAndFormulae();
1544
1545 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1546 unsigned Depth = 0);
1547 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1548 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1549 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1550 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1551 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1552 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1553 void GenerateCrossUseConstantOffsets();
1554 void GenerateAllReuseFormulae();
1555
1556 void FilterOutUndesirableDedicatedRegisters();
Dan Gohmand079c302010-05-18 22:51:59 +00001557
1558 size_t EstimateSearchSpaceComplexity() const;
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00001559 void NarrowSearchSpaceByDetectingSupersets();
1560 void NarrowSearchSpaceByCollapsingUnrolledCode();
Dan Gohman4f7e18d2010-08-29 16:39:22 +00001561 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00001562 void NarrowSearchSpaceByPickingWinnerRegs();
Dan Gohman572645c2010-02-12 10:34:29 +00001563 void NarrowSearchSpaceUsingHeuristics();
1564
1565 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1566 Cost &SolutionCost,
1567 SmallVectorImpl<const Formula *> &Workspace,
1568 const Cost &CurCost,
1569 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1570 DenseSet<const SCEV *> &VisitedRegs) const;
1571 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1572
Dan Gohmane5f76872010-04-09 22:07:05 +00001573 BasicBlock::iterator
1574 HoistInsertPosition(BasicBlock::iterator IP,
1575 const SmallVectorImpl<Instruction *> &Inputs) const;
1576 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1577 const LSRFixup &LF,
1578 const LSRUse &LU) const;
Dan Gohmand96eae82010-04-09 02:00:38 +00001579
Dan Gohman572645c2010-02-12 10:34:29 +00001580 Value *Expand(const LSRFixup &LF,
1581 const Formula &F,
Dan Gohman454d26d2010-02-22 04:11:59 +00001582 BasicBlock::iterator IP,
Dan Gohman572645c2010-02-12 10:34:29 +00001583 SCEVExpander &Rewriter,
Dan Gohman454d26d2010-02-22 04:11:59 +00001584 SmallVectorImpl<WeakVH> &DeadInsts) const;
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001585 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1586 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001587 SCEVExpander &Rewriter,
1588 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001589 Pass *P) const;
Dan Gohman572645c2010-02-12 10:34:29 +00001590 void Rewrite(const LSRFixup &LF,
1591 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00001592 SCEVExpander &Rewriter,
1593 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00001594 Pass *P) const;
1595 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1596 Pass *P);
1597
Andrew Trickd56ef8d2011-12-13 00:55:33 +00001598public:
Dan Gohman572645c2010-02-12 10:34:29 +00001599 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1600
1601 bool getChanged() const { return Changed; }
1602
1603 void print_factors_and_types(raw_ostream &OS) const;
1604 void print_fixups(raw_ostream &OS) const;
1605 void print_uses(raw_ostream &OS) const;
1606 void print(raw_ostream &OS) const;
1607 void dump() const;
1608};
1609
1610}
1611
1612/// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001613/// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00001614void LSRInstance::OptimizeShadowIV() {
1615 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1616 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1617 return;
1618
1619 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1620 UI != E; /* empty */) {
1621 IVUsers::const_iterator CandidateUI = UI;
1622 ++UI;
1623 Instruction *ShadowUse = CandidateUI->getUser();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001624 Type *DestTy = NULL;
Andrew Trickc2c988e2011-07-21 01:05:01 +00001625 bool IsSigned = false;
Dan Gohman572645c2010-02-12 10:34:29 +00001626
1627 /* If shadow use is a int->float cast then insert a second IV
1628 to eliminate this cast.
1629
1630 for (unsigned i = 0; i < n; ++i)
1631 foo((double)i);
1632
1633 is transformed into
1634
1635 double d = 0.0;
1636 for (unsigned i = 0; i < n; ++i, ++d)
1637 foo(d);
1638 */
Andrew Trickc2c988e2011-07-21 01:05:01 +00001639 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1640 IsSigned = false;
Dan Gohman572645c2010-02-12 10:34:29 +00001641 DestTy = UCast->getDestTy();
Andrew Trickc2c988e2011-07-21 01:05:01 +00001642 }
1643 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1644 IsSigned = true;
Dan Gohman572645c2010-02-12 10:34:29 +00001645 DestTy = SCast->getDestTy();
Andrew Trickc2c988e2011-07-21 01:05:01 +00001646 }
Dan Gohman572645c2010-02-12 10:34:29 +00001647 if (!DestTy) continue;
1648
1649 if (TLI) {
1650 // If target does not support DestTy natively then do not apply
1651 // this transformation.
1652 EVT DVT = TLI->getValueType(DestTy);
1653 if (!TLI->isTypeLegal(DVT)) continue;
1654 }
1655
1656 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1657 if (!PH) continue;
1658 if (PH->getNumIncomingValues() != 2) continue;
1659
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001660 Type *SrcTy = PH->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00001661 int Mantissa = DestTy->getFPMantissaWidth();
1662 if (Mantissa == -1) continue;
1663 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1664 continue;
1665
1666 unsigned Entry, Latch;
1667 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1668 Entry = 0;
1669 Latch = 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001670 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001671 Entry = 1;
1672 Latch = 0;
Dan Gohman7979b722010-01-22 00:46:49 +00001673 }
Dan Gohman7979b722010-01-22 00:46:49 +00001674
Dan Gohman572645c2010-02-12 10:34:29 +00001675 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1676 if (!Init) continue;
Andrew Trickc2c988e2011-07-21 01:05:01 +00001677 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
Andrew Trickc205a092011-07-21 01:45:54 +00001678 (double)Init->getSExtValue() :
1679 (double)Init->getZExtValue());
Dan Gohman7979b722010-01-22 00:46:49 +00001680
Dan Gohman572645c2010-02-12 10:34:29 +00001681 BinaryOperator *Incr =
1682 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1683 if (!Incr) continue;
1684 if (Incr->getOpcode() != Instruction::Add
1685 && Incr->getOpcode() != Instruction::Sub)
Dan Gohman7979b722010-01-22 00:46:49 +00001686 continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001687
Dan Gohman572645c2010-02-12 10:34:29 +00001688 /* Initialize new IV, double d = 0.0 in above example. */
1689 ConstantInt *C = NULL;
1690 if (Incr->getOperand(0) == PH)
1691 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1692 else if (Incr->getOperand(1) == PH)
1693 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001694 else
Dan Gohman7979b722010-01-22 00:46:49 +00001695 continue;
1696
Dan Gohman572645c2010-02-12 10:34:29 +00001697 if (!C) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001698
Dan Gohman572645c2010-02-12 10:34:29 +00001699 // Ignore negative constants, as the code below doesn't handle them
1700 // correctly. TODO: Remove this restriction.
1701 if (!C->getValue().isStrictlyPositive()) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001702
Dan Gohman572645c2010-02-12 10:34:29 +00001703 /* Add new PHINode. */
Jay Foad3ecfc862011-03-30 11:28:46 +00001704 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
Dan Gohman7979b722010-01-22 00:46:49 +00001705
Dan Gohman572645c2010-02-12 10:34:29 +00001706 /* create new increment. '++d' in above example. */
1707 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1708 BinaryOperator *NewIncr =
1709 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1710 Instruction::FAdd : Instruction::FSub,
1711 NewPH, CFP, "IV.S.next.", Incr);
Dan Gohman7979b722010-01-22 00:46:49 +00001712
Dan Gohman572645c2010-02-12 10:34:29 +00001713 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1714 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
Dan Gohman7979b722010-01-22 00:46:49 +00001715
Dan Gohman572645c2010-02-12 10:34:29 +00001716 /* Remove cast operation */
1717 ShadowUse->replaceAllUsesWith(NewPH);
1718 ShadowUse->eraseFromParent();
Dan Gohmanc6519f92010-05-20 20:05:31 +00001719 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00001720 break;
Dan Gohman7979b722010-01-22 00:46:49 +00001721 }
1722}
1723
1724/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1725/// set the IV user and stride information and return true, otherwise return
1726/// false.
Dan Gohmanea507f52010-05-20 19:44:23 +00001727bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
Dan Gohman572645c2010-02-12 10:34:29 +00001728 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1729 if (UI->getUser() == Cond) {
1730 // NOTE: we could handle setcc instructions with multiple uses here, but
1731 // InstCombine does it as well for simple uses, it's not clear that it
1732 // occurs enough in real life to handle.
1733 CondUse = UI;
1734 return true;
1735 }
Dan Gohman7979b722010-01-22 00:46:49 +00001736 return false;
Evan Chengcdf43b12007-10-25 09:11:16 +00001737}
1738
Dan Gohman7979b722010-01-22 00:46:49 +00001739/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1740/// a max computation.
1741///
1742/// This is a narrow solution to a specific, but acute, problem. For loops
1743/// like this:
1744///
1745/// i = 0;
1746/// do {
1747/// p[i] = 0.0;
1748/// } while (++i < n);
1749///
1750/// the trip count isn't just 'n', because 'n' might not be positive. And
1751/// unfortunately this can come up even for loops where the user didn't use
1752/// a C do-while loop. For example, seemingly well-behaved top-test loops
1753/// will commonly be lowered like this:
1754//
1755/// if (n > 0) {
1756/// i = 0;
1757/// do {
1758/// p[i] = 0.0;
1759/// } while (++i < n);
1760/// }
1761///
1762/// and then it's possible for subsequent optimization to obscure the if
1763/// test in such a way that indvars can't find it.
1764///
1765/// When indvars can't find the if test in loops like this, it creates a
1766/// max expression, which allows it to give the loop a canonical
1767/// induction variable:
1768///
1769/// i = 0;
1770/// max = n < 1 ? 1 : n;
1771/// do {
1772/// p[i] = 0.0;
1773/// } while (++i != max);
1774///
1775/// Canonical induction variables are necessary because the loop passes
1776/// are designed around them. The most obvious example of this is the
1777/// LoopInfo analysis, which doesn't remember trip count values. It
1778/// expects to be able to rediscover the trip count each time it is
Dan Gohman572645c2010-02-12 10:34:29 +00001779/// needed, and it does this using a simple analysis that only succeeds if
Dan Gohman7979b722010-01-22 00:46:49 +00001780/// the loop has a canonical induction variable.
1781///
1782/// However, when it comes time to generate code, the maximum operation
1783/// can be quite costly, especially if it's inside of an outer loop.
1784///
1785/// This function solves this problem by detecting this type of loop and
1786/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1787/// the instructions for the maximum computation.
1788///
Dan Gohman572645c2010-02-12 10:34:29 +00001789ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
Dan Gohman7979b722010-01-22 00:46:49 +00001790 // Check that the loop matches the pattern we're looking for.
1791 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1792 Cond->getPredicate() != CmpInst::ICMP_NE)
1793 return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001794
Dan Gohman7979b722010-01-22 00:46:49 +00001795 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1796 if (!Sel || !Sel->hasOneUse()) return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001797
Dan Gohman572645c2010-02-12 10:34:29 +00001798 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
Dan Gohman7979b722010-01-22 00:46:49 +00001799 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1800 return Cond;
Dan Gohmandeff6212010-05-03 22:09:21 +00001801 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
Dan Gohmana10756e2010-01-21 02:09:26 +00001802
Dan Gohman7979b722010-01-22 00:46:49 +00001803 // Add one to the backedge-taken count to get the trip count.
Dan Gohman4065f602010-08-16 15:39:27 +00001804 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
Dan Gohman1d367982010-04-24 03:13:44 +00001805 if (IterationCount != SE.getSCEV(Sel)) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001806
Dan Gohman1d367982010-04-24 03:13:44 +00001807 // Check for a max calculation that matches the pattern. There's no check
1808 // for ICMP_ULE here because the comparison would be with zero, which
1809 // isn't interesting.
1810 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1811 const SCEVNAryExpr *Max = 0;
1812 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1813 Pred = ICmpInst::ICMP_SLE;
1814 Max = S;
1815 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1816 Pred = ICmpInst::ICMP_SLT;
1817 Max = S;
1818 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1819 Pred = ICmpInst::ICMP_ULT;
1820 Max = U;
1821 } else {
1822 // No match; bail.
Dan Gohman7979b722010-01-22 00:46:49 +00001823 return Cond;
Dan Gohman1d367982010-04-24 03:13:44 +00001824 }
Dan Gohman7979b722010-01-22 00:46:49 +00001825
1826 // To handle a max with more than two operands, this optimization would
1827 // require additional checking and setup.
1828 if (Max->getNumOperands() != 2)
1829 return Cond;
1830
1831 const SCEV *MaxLHS = Max->getOperand(0);
1832 const SCEV *MaxRHS = Max->getOperand(1);
Dan Gohman1d367982010-04-24 03:13:44 +00001833
1834 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1835 // for a comparison with 1. For <= and >=, a comparison with zero.
1836 if (!MaxLHS ||
1837 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1838 return Cond;
1839
Dan Gohman7979b722010-01-22 00:46:49 +00001840 // Check the relevant induction variable for conformance to
1841 // the pattern.
Dan Gohman572645c2010-02-12 10:34:29 +00001842 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001843 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1844 if (!AR || !AR->isAffine() ||
1845 AR->getStart() != One ||
Dan Gohman572645c2010-02-12 10:34:29 +00001846 AR->getStepRecurrence(SE) != One)
Dan Gohman7979b722010-01-22 00:46:49 +00001847 return Cond;
1848
1849 assert(AR->getLoop() == L &&
1850 "Loop condition operand is an addrec in a different loop!");
1851
1852 // Check the right operand of the select, and remember it, as it will
1853 // be used in the new comparison instruction.
1854 Value *NewRHS = 0;
Dan Gohman1d367982010-04-24 03:13:44 +00001855 if (ICmpInst::isTrueWhenEqual(Pred)) {
1856 // Look for n+1, and grab n.
1857 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1858 if (isa<ConstantInt>(BO->getOperand(1)) &&
1859 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1860 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1861 NewRHS = BO->getOperand(0);
1862 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1863 if (isa<ConstantInt>(BO->getOperand(1)) &&
1864 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1865 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1866 NewRHS = BO->getOperand(0);
1867 if (!NewRHS)
1868 return Cond;
1869 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001870 NewRHS = Sel->getOperand(1);
Dan Gohman572645c2010-02-12 10:34:29 +00001871 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001872 NewRHS = Sel->getOperand(2);
Dan Gohmancaf71ab2010-06-22 23:07:13 +00001873 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1874 NewRHS = SU->getValue();
Dan Gohman1d367982010-04-24 03:13:44 +00001875 else
Dan Gohmancaf71ab2010-06-22 23:07:13 +00001876 // Max doesn't match expected pattern.
1877 return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001878
1879 // Determine the new comparison opcode. It may be signed or unsigned,
1880 // and the original comparison may be either equality or inequality.
Dan Gohman7979b722010-01-22 00:46:49 +00001881 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1882 Pred = CmpInst::getInversePredicate(Pred);
1883
1884 // Ok, everything looks ok to change the condition into an SLT or SGE and
1885 // delete the max calculation.
1886 ICmpInst *NewCond =
1887 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1888
1889 // Delete the max calculation instructions.
1890 Cond->replaceAllUsesWith(NewCond);
1891 CondUse->setUser(NewCond);
1892 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1893 Cond->eraseFromParent();
1894 Sel->eraseFromParent();
1895 if (Cmp->use_empty())
1896 Cmp->eraseFromParent();
1897 return NewCond;
Dan Gohmanad7321f2008-09-15 21:22:06 +00001898}
1899
Jim Grosbach56a1f802009-11-17 17:53:56 +00001900/// OptimizeLoopTermCond - Change loop terminating condition to use the
Evan Cheng586f69a2009-11-12 07:35:05 +00001901/// postinc iv when possible.
Dan Gohmanc6519f92010-05-20 20:05:31 +00001902void
Dan Gohman572645c2010-02-12 10:34:29 +00001903LSRInstance::OptimizeLoopTermCond() {
1904 SmallPtrSet<Instruction *, 4> PostIncs;
1905
Evan Cheng586f69a2009-11-12 07:35:05 +00001906 BasicBlock *LatchBlock = L->getLoopLatch();
Evan Cheng076e0852009-11-17 18:10:11 +00001907 SmallVector<BasicBlock*, 8> ExitingBlocks;
1908 L->getExitingBlocks(ExitingBlocks);
Jim Grosbach56a1f802009-11-17 17:53:56 +00001909
Evan Cheng076e0852009-11-17 18:10:11 +00001910 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1911 BasicBlock *ExitingBlock = ExitingBlocks[i];
Evan Cheng586f69a2009-11-12 07:35:05 +00001912
Dan Gohman572645c2010-02-12 10:34:29 +00001913 // Get the terminating condition for the loop if possible. If we
Evan Cheng076e0852009-11-17 18:10:11 +00001914 // can, we want to change it to use a post-incremented version of its
1915 // induction variable, to allow coalescing the live ranges for the IV into
1916 // one register value.
Evan Cheng586f69a2009-11-12 07:35:05 +00001917
Evan Cheng076e0852009-11-17 18:10:11 +00001918 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1919 if (!TermBr)
1920 continue;
1921 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1922 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1923 continue;
Evan Cheng586f69a2009-11-12 07:35:05 +00001924
Evan Cheng076e0852009-11-17 18:10:11 +00001925 // Search IVUsesByStride to find Cond's IVUse if there is one.
1926 IVStrideUse *CondUse = 0;
Evan Cheng076e0852009-11-17 18:10:11 +00001927 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
Dan Gohman572645c2010-02-12 10:34:29 +00001928 if (!FindIVUserForCond(Cond, CondUse))
Evan Cheng076e0852009-11-17 18:10:11 +00001929 continue;
1930
Evan Cheng076e0852009-11-17 18:10:11 +00001931 // If the trip count is computed in terms of a max (due to ScalarEvolution
1932 // being unable to find a sufficient guard, for example), change the loop
1933 // comparison to use SLT or ULT instead of NE.
Dan Gohman572645c2010-02-12 10:34:29 +00001934 // One consequence of doing this now is that it disrupts the count-down
1935 // optimization. That's not always a bad thing though, because in such
1936 // cases it may still be worthwhile to avoid a max.
1937 Cond = OptimizeMax(Cond, CondUse);
Evan Cheng076e0852009-11-17 18:10:11 +00001938
Dan Gohman572645c2010-02-12 10:34:29 +00001939 // If this exiting block dominates the latch block, it may also use
1940 // the post-inc value if it won't be shared with other uses.
1941 // Check for dominance.
1942 if (!DT.dominates(ExitingBlock, LatchBlock))
Dan Gohman7979b722010-01-22 00:46:49 +00001943 continue;
Evan Cheng076e0852009-11-17 18:10:11 +00001944
Dan Gohman572645c2010-02-12 10:34:29 +00001945 // Conservatively avoid trying to use the post-inc value in non-latch
1946 // exits if there may be pre-inc users in intervening blocks.
Dan Gohman590bfe82010-02-14 03:21:49 +00001947 if (LatchBlock != ExitingBlock)
Dan Gohman572645c2010-02-12 10:34:29 +00001948 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1949 // Test if the use is reachable from the exiting block. This dominator
1950 // query is a conservative approximation of reachability.
1951 if (&*UI != CondUse &&
1952 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1953 // Conservatively assume there may be reuse if the quotient of their
1954 // strides could be a legal scale.
Dan Gohmanc0564542010-04-19 21:48:58 +00001955 const SCEV *A = IU.getStride(*CondUse, L);
1956 const SCEV *B = IU.getStride(*UI, L);
Dan Gohman448db1c2010-04-07 22:27:08 +00001957 if (!A || !B) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001958 if (SE.getTypeSizeInBits(A->getType()) !=
1959 SE.getTypeSizeInBits(B->getType())) {
1960 if (SE.getTypeSizeInBits(A->getType()) >
1961 SE.getTypeSizeInBits(B->getType()))
1962 B = SE.getSignExtendExpr(B, A->getType());
1963 else
1964 A = SE.getSignExtendExpr(A, B->getType());
1965 }
1966 if (const SCEVConstant *D =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001967 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
Dan Gohman9f383eb2010-05-20 22:25:20 +00001968 const ConstantInt *C = D->getValue();
Dan Gohman572645c2010-02-12 10:34:29 +00001969 // Stride of one or negative one can have reuse with non-addresses.
Dan Gohman9f383eb2010-05-20 22:25:20 +00001970 if (C->isOne() || C->isAllOnesValue())
Dan Gohman572645c2010-02-12 10:34:29 +00001971 goto decline_post_inc;
1972 // Avoid weird situations.
Dan Gohman9f383eb2010-05-20 22:25:20 +00001973 if (C->getValue().getMinSignedBits() >= 64 ||
1974 C->getValue().isMinSignedValue())
Dan Gohman572645c2010-02-12 10:34:29 +00001975 goto decline_post_inc;
Dan Gohman590bfe82010-02-14 03:21:49 +00001976 // Without TLI, assume that any stride might be valid, and so any
1977 // use might be shared.
1978 if (!TLI)
1979 goto decline_post_inc;
Dan Gohman572645c2010-02-12 10:34:29 +00001980 // Check for possible scaled-address reuse.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001981 Type *AccessTy = getAccessType(UI->getUser());
Dan Gohman572645c2010-02-12 10:34:29 +00001982 TargetLowering::AddrMode AM;
Dan Gohman9f383eb2010-05-20 22:25:20 +00001983 AM.Scale = C->getSExtValue();
Dan Gohman2763dfd2010-02-14 02:45:21 +00001984 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001985 goto decline_post_inc;
1986 AM.Scale = -AM.Scale;
Dan Gohman2763dfd2010-02-14 02:45:21 +00001987 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001988 goto decline_post_inc;
1989 }
1990 }
1991
David Greene63c94632009-12-23 22:58:38 +00001992 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
Dan Gohman572645c2010-02-12 10:34:29 +00001993 << *Cond << '\n');
Evan Cheng076e0852009-11-17 18:10:11 +00001994
1995 // It's possible for the setcc instruction to be anywhere in the loop, and
1996 // possible for it to have multiple users. If it is not immediately before
1997 // the exiting block branch, move it.
Dan Gohman572645c2010-02-12 10:34:29 +00001998 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1999 if (Cond->hasOneUse()) {
Evan Cheng076e0852009-11-17 18:10:11 +00002000 Cond->moveBefore(TermBr);
2001 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00002002 // Clone the terminating condition and insert into the loopend.
2003 ICmpInst *OldCond = Cond;
Evan Cheng076e0852009-11-17 18:10:11 +00002004 Cond = cast<ICmpInst>(Cond->clone());
2005 Cond->setName(L->getHeader()->getName() + ".termcond");
2006 ExitingBlock->getInstList().insert(TermBr, Cond);
2007
2008 // Clone the IVUse, as the old use still exists!
Andrew Trick4417e532011-06-21 15:43:52 +00002009 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
Dan Gohman572645c2010-02-12 10:34:29 +00002010 TermBr->replaceUsesOfWith(OldCond, Cond);
Evan Cheng076e0852009-11-17 18:10:11 +00002011 }
Evan Cheng586f69a2009-11-12 07:35:05 +00002012 }
2013
Evan Cheng076e0852009-11-17 18:10:11 +00002014 // If we get to here, we know that we can transform the setcc instruction to
2015 // use the post-incremented version of the IV, allowing us to coalesce the
2016 // live ranges for the IV correctly.
Dan Gohman448db1c2010-04-07 22:27:08 +00002017 CondUse->transformToPostInc(L);
Evan Cheng076e0852009-11-17 18:10:11 +00002018 Changed = true;
2019
Dan Gohman572645c2010-02-12 10:34:29 +00002020 PostIncs.insert(Cond);
2021 decline_post_inc:;
Dan Gohmana10756e2010-01-21 02:09:26 +00002022 }
Dan Gohman572645c2010-02-12 10:34:29 +00002023
2024 // Determine an insertion point for the loop induction variable increment. It
2025 // must dominate all the post-inc comparisons we just set up, and it must
2026 // dominate the loop latch edge.
2027 IVIncInsertPos = L->getLoopLatch()->getTerminator();
2028 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
2029 E = PostIncs.end(); I != E; ++I) {
2030 BasicBlock *BB =
2031 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2032 (*I)->getParent());
2033 if (BB == (*I)->getParent())
2034 IVIncInsertPos = *I;
2035 else if (BB != IVIncInsertPos->getParent())
2036 IVIncInsertPos = BB->getTerminator();
2037 }
Dan Gohmana10756e2010-01-21 02:09:26 +00002038}
2039
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002040/// reconcileNewOffset - Determine if the given use can accommodate a fixup
Dan Gohman76c315a2010-05-20 20:52:00 +00002041/// at the given offset and other details. If so, update the use and
2042/// return true.
Dan Gohman572645c2010-02-12 10:34:29 +00002043bool
Dan Gohman191bd642010-09-01 01:45:53 +00002044LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002045 LSRUse::KindType Kind, Type *AccessTy) {
Dan Gohman191bd642010-09-01 01:45:53 +00002046 int64_t NewMinOffset = LU.MinOffset;
2047 int64_t NewMaxOffset = LU.MaxOffset;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002048 Type *NewAccessTy = AccessTy;
Dan Gohman7979b722010-01-22 00:46:49 +00002049
Dan Gohman572645c2010-02-12 10:34:29 +00002050 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2051 // something conservative, however this can pessimize in the case that one of
2052 // the uses will have all its uses outside the loop, for example.
2053 if (LU.Kind != Kind)
Dan Gohman7979b722010-01-22 00:46:49 +00002054 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00002055 // Conservatively assume HasBaseReg is true for now.
Dan Gohman191bd642010-09-01 01:45:53 +00002056 if (NewOffset < LU.MinOffset) {
2057 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00002058 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00002059 return false;
Dan Gohman191bd642010-09-01 01:45:53 +00002060 NewMinOffset = NewOffset;
2061 } else if (NewOffset > LU.MaxOffset) {
2062 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00002063 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00002064 return false;
Dan Gohman191bd642010-09-01 01:45:53 +00002065 NewMaxOffset = NewOffset;
Dan Gohmana10756e2010-01-21 02:09:26 +00002066 }
Dan Gohman572645c2010-02-12 10:34:29 +00002067 // Check for a mismatched access type, and fall back conservatively as needed.
Dan Gohman74e5ef02010-06-19 21:30:18 +00002068 // TODO: Be less conservative when the type is similar and can use the same
2069 // addressing modes.
Dan Gohman572645c2010-02-12 10:34:29 +00002070 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
Dan Gohman191bd642010-09-01 01:45:53 +00002071 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
Dan Gohmana10756e2010-01-21 02:09:26 +00002072
Dan Gohman572645c2010-02-12 10:34:29 +00002073 // Update the use.
Dan Gohman191bd642010-09-01 01:45:53 +00002074 LU.MinOffset = NewMinOffset;
2075 LU.MaxOffset = NewMaxOffset;
2076 LU.AccessTy = NewAccessTy;
2077 if (NewOffset != LU.Offsets.back())
2078 LU.Offsets.push_back(NewOffset);
Dan Gohman8b0ade32010-01-21 22:42:49 +00002079 return true;
2080}
2081
Dan Gohman572645c2010-02-12 10:34:29 +00002082/// getUse - Return an LSRUse index and an offset value for a fixup which
2083/// needs the given expression, with the given kind and optional access type.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002084/// Either reuse an existing use or create a new one, as needed.
Dan Gohman572645c2010-02-12 10:34:29 +00002085std::pair<size_t, int64_t>
2086LSRInstance::getUse(const SCEV *&Expr,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002087 LSRUse::KindType Kind, Type *AccessTy) {
Dan Gohman572645c2010-02-12 10:34:29 +00002088 const SCEV *Copy = Expr;
2089 int64_t Offset = ExtractImmediate(Expr, SE);
Evan Cheng586f69a2009-11-12 07:35:05 +00002090
Dan Gohman572645c2010-02-12 10:34:29 +00002091 // Basic uses can't accept any offset, for example.
Dan Gohman454d26d2010-02-22 04:11:59 +00002092 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
Dan Gohman572645c2010-02-12 10:34:29 +00002093 Expr = Copy;
2094 Offset = 0;
2095 }
2096
2097 std::pair<UseMapTy::iterator, bool> P =
Dan Gohman1e3121c2010-06-19 21:29:59 +00002098 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
Dan Gohman572645c2010-02-12 10:34:29 +00002099 if (!P.second) {
2100 // A use already existed with this base.
2101 size_t LUIdx = P.first->second;
2102 LSRUse &LU = Uses[LUIdx];
Dan Gohman191bd642010-09-01 01:45:53 +00002103 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00002104 // Reuse this use.
2105 return std::make_pair(LUIdx, Offset);
2106 }
2107
2108 // Create a new use.
2109 size_t LUIdx = Uses.size();
2110 P.first->second = LUIdx;
2111 Uses.push_back(LSRUse(Kind, AccessTy));
2112 LSRUse &LU = Uses[LUIdx];
2113
Dan Gohman191bd642010-09-01 01:45:53 +00002114 // We don't need to track redundant offsets, but we don't need to go out
2115 // of our way here to avoid them.
2116 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2117 LU.Offsets.push_back(Offset);
2118
Dan Gohman572645c2010-02-12 10:34:29 +00002119 LU.MinOffset = Offset;
2120 LU.MaxOffset = Offset;
2121 return std::make_pair(LUIdx, Offset);
2122}
2123
Dan Gohman5ce6d052010-05-20 15:17:54 +00002124/// DeleteUse - Delete the given use from the Uses list.
Dan Gohmanc6897702010-10-07 23:33:43 +00002125void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
Dan Gohman191bd642010-09-01 01:45:53 +00002126 if (&LU != &Uses.back())
Dan Gohman5ce6d052010-05-20 15:17:54 +00002127 std::swap(LU, Uses.back());
2128 Uses.pop_back();
Dan Gohmanc6897702010-10-07 23:33:43 +00002129
2130 // Update RegUses.
2131 RegUses.SwapAndDropUse(LUIdx, Uses.size());
Dan Gohman5ce6d052010-05-20 15:17:54 +00002132}
2133
Dan Gohmana2086b32010-05-19 23:43:12 +00002134/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
2135/// a formula that has the same registers as the given formula.
2136LSRUse *
2137LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
Dan Gohman191bd642010-09-01 01:45:53 +00002138 const LSRUse &OrigLU) {
2139 // Search all uses for the formula. This could be more clever.
Dan Gohmana2086b32010-05-19 23:43:12 +00002140 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2141 LSRUse &LU = Uses[LUIdx];
Dan Gohman6a832712010-08-29 15:27:08 +00002142 // Check whether this use is close enough to OrigLU, to see whether it's
2143 // worthwhile looking through its formulae.
2144 // Ignore ICmpZero uses because they may contain formulae generated by
2145 // GenerateICmpZeroScales, in which case adding fixup offsets may
2146 // be invalid.
Dan Gohmana2086b32010-05-19 23:43:12 +00002147 if (&LU != &OrigLU &&
2148 LU.Kind != LSRUse::ICmpZero &&
2149 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
Dan Gohmana9db1292010-07-15 20:24:58 +00002150 LU.WidestFixupType == OrigLU.WidestFixupType &&
Dan Gohmana2086b32010-05-19 23:43:12 +00002151 LU.HasFormulaWithSameRegs(OrigF)) {
Dan Gohman6a832712010-08-29 15:27:08 +00002152 // Scan through this use's formulae.
Dan Gohman402d4352010-05-20 20:33:18 +00002153 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2154 E = LU.Formulae.end(); I != E; ++I) {
2155 const Formula &F = *I;
Dan Gohman6a832712010-08-29 15:27:08 +00002156 // Check to see if this formula has the same registers and symbols
2157 // as OrigF.
Dan Gohmana2086b32010-05-19 23:43:12 +00002158 if (F.BaseRegs == OrigF.BaseRegs &&
2159 F.ScaledReg == OrigF.ScaledReg &&
2160 F.AM.BaseGV == OrigF.AM.BaseGV &&
Dan Gohmancca82142011-05-03 00:46:49 +00002161 F.AM.Scale == OrigF.AM.Scale &&
2162 F.UnfoldedOffset == OrigF.UnfoldedOffset) {
Dan Gohman191bd642010-09-01 01:45:53 +00002163 if (F.AM.BaseOffs == 0)
Dan Gohmana2086b32010-05-19 23:43:12 +00002164 return &LU;
Dan Gohman6a832712010-08-29 15:27:08 +00002165 // This is the formula where all the registers and symbols matched;
2166 // there aren't going to be any others. Since we declined it, we
2167 // can skip the rest of the formulae and procede to the next LSRUse.
Dan Gohmana2086b32010-05-19 23:43:12 +00002168 break;
2169 }
2170 }
2171 }
2172 }
2173
Dan Gohman6a832712010-08-29 15:27:08 +00002174 // Nothing looked good.
Dan Gohmana2086b32010-05-19 23:43:12 +00002175 return 0;
2176}
2177
Dan Gohman572645c2010-02-12 10:34:29 +00002178void LSRInstance::CollectInterestingTypesAndFactors() {
2179 SmallSetVector<const SCEV *, 4> Strides;
2180
Dan Gohman1b7bf182010-02-19 00:05:23 +00002181 // Collect interesting types and strides.
Dan Gohman448db1c2010-04-07 22:27:08 +00002182 SmallVector<const SCEV *, 4> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00002183 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
Dan Gohmanc0564542010-04-19 21:48:58 +00002184 const SCEV *Expr = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00002185
2186 // Collect interesting types.
Dan Gohman448db1c2010-04-07 22:27:08 +00002187 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
Dan Gohman572645c2010-02-12 10:34:29 +00002188
Dan Gohman448db1c2010-04-07 22:27:08 +00002189 // Add strides for mentioned loops.
2190 Worklist.push_back(Expr);
2191 do {
2192 const SCEV *S = Worklist.pop_back_val();
2193 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
Andrew Trickfa1948a2011-12-10 00:25:00 +00002194 if (EnableNested || AR->getLoop() == L)
2195 Strides.insert(AR->getStepRecurrence(SE));
Dan Gohman448db1c2010-04-07 22:27:08 +00002196 Worklist.push_back(AR->getStart());
2197 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002198 Worklist.append(Add->op_begin(), Add->op_end());
Dan Gohman448db1c2010-04-07 22:27:08 +00002199 }
2200 } while (!Worklist.empty());
Dan Gohman1b7bf182010-02-19 00:05:23 +00002201 }
2202
2203 // Compute interesting factors from the set of interesting strides.
2204 for (SmallSetVector<const SCEV *, 4>::const_iterator
2205 I = Strides.begin(), E = Strides.end(); I != E; ++I)
Dan Gohman572645c2010-02-12 10:34:29 +00002206 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
Oscar Fuentesee56c422010-08-02 06:00:15 +00002207 llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
Dan Gohman1b7bf182010-02-19 00:05:23 +00002208 const SCEV *OldStride = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00002209 const SCEV *NewStride = *NewStrideIter;
Dan Gohman572645c2010-02-12 10:34:29 +00002210
2211 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2212 SE.getTypeSizeInBits(NewStride->getType())) {
2213 if (SE.getTypeSizeInBits(OldStride->getType()) >
2214 SE.getTypeSizeInBits(NewStride->getType()))
2215 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2216 else
2217 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2218 }
2219 if (const SCEVConstant *Factor =
Dan Gohmanf09b7122010-02-19 19:35:48 +00002220 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2221 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00002222 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2223 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2224 } else if (const SCEVConstant *Factor =
Dan Gohman454d26d2010-02-22 04:11:59 +00002225 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2226 NewStride,
Dan Gohmanf09b7122010-02-19 19:35:48 +00002227 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00002228 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2229 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2230 }
2231 }
Dan Gohman572645c2010-02-12 10:34:29 +00002232
2233 // If all uses use the same type, don't bother looking for truncation-based
2234 // reuse.
2235 if (Types.size() == 1)
2236 Types.clear();
2237
2238 DEBUG(print_factors_and_types(dbgs()));
2239}
2240
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00002241/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
2242/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
2243/// Instructions to IVStrideUses, we could partially skip this.
2244static User::op_iterator
2245findIVOperand(User::op_iterator OI, User::op_iterator OE,
2246 Loop *L, ScalarEvolution &SE) {
2247 for(; OI != OE; ++OI) {
2248 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2249 if (!SE.isSCEVable(Oper->getType()))
2250 continue;
2251
2252 if (const SCEVAddRecExpr *AR =
2253 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2254 if (AR->getLoop() == L)
2255 break;
2256 }
2257 }
2258 }
2259 return OI;
2260}
2261
2262/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
2263/// operands, so wrap it in a convenient helper.
2264static Value *getWideOperand(Value *Oper) {
2265 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2266 return Trunc->getOperand(0);
2267 return Oper;
2268}
2269
2270/// isCompatibleIVType - Return true if we allow an IV chain to include both
2271/// types.
2272static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2273 Type *LType = LVal->getType();
2274 Type *RType = RVal->getType();
2275 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2276}
2277
Andrew Trick64925c52012-01-10 01:45:08 +00002278/// getExprBase - Return an approximation of this SCEV expression's "base", or
2279/// NULL for any constant. Returning the expression itself is
2280/// conservative. Returning a deeper subexpression is more precise and valid as
2281/// long as it isn't less complex than another subexpression. For expressions
2282/// involving multiple unscaled values, we need to return the pointer-type
2283/// SCEVUnknown. This avoids forming chains across objects, such as:
2284/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
2285///
2286/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2287/// SCEVUnknown, we simply return the rightmost SCEV operand.
2288static const SCEV *getExprBase(const SCEV *S) {
2289 switch (S->getSCEVType()) {
2290 default: // uncluding scUnknown.
2291 return S;
2292 case scConstant:
2293 return 0;
2294 case scTruncate:
2295 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2296 case scZeroExtend:
2297 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2298 case scSignExtend:
2299 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2300 case scAddExpr: {
2301 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2302 // there's nothing more complex.
2303 // FIXME: not sure if we want to recognize negation.
2304 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2305 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2306 E(Add->op_begin()); I != E; ++I) {
2307 const SCEV *SubExpr = *I;
2308 if (SubExpr->getSCEVType() == scAddExpr)
2309 return getExprBase(SubExpr);
2310
2311 if (SubExpr->getSCEVType() != scMulExpr)
2312 return SubExpr;
2313 }
2314 return S; // all operands are scaled, be conservative.
2315 }
2316 case scAddRecExpr:
2317 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2318 }
2319}
2320
Andrew Trick22d20c22012-01-09 21:18:52 +00002321/// Return true if the chain increment is profitable to expand into a loop
2322/// invariant value, which may require its own register. A profitable chain
2323/// increment will be an offset relative to the same base. We allow such offsets
2324/// to potentially be used as chain increment as long as it's not obviously
2325/// expensive to expand using real instructions.
2326static const SCEV *
2327getProfitableChainIncrement(Value *NextIV, Value *PrevIV,
2328 const IVChain &Chain, Loop *L,
2329 ScalarEvolution &SE, const TargetLowering *TLI) {
Andrew Trick64925c52012-01-10 01:45:08 +00002330 // Prune the solution space aggressively by checking that both IV operands
2331 // are expressions that operate on the same unscaled SCEVUnknown. This
2332 // "base" will be canceled by the subsequent getMinusSCEV call. Checking first
2333 // avoids creating extra SCEV expressions.
2334 const SCEV *OperExpr = SE.getSCEV(NextIV);
2335 const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2336 if (getExprBase(OperExpr) != getExprBase(PrevExpr) && !StressIVChain)
2337 return 0;
2338
2339 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
Andrew Trick22d20c22012-01-09 21:18:52 +00002340 if (!SE.isLoopInvariant(IncExpr, L))
2341 return 0;
2342
2343 // We are not able to expand an increment unless it is loop invariant,
2344 // however, the following checks are purely for profitability.
2345 if (StressIVChain)
2346 return IncExpr;
2347
Andrew Trick64925c52012-01-10 01:45:08 +00002348 // Do not replace a constant offset from IV head with a nonconstant IV
2349 // increment.
2350 if (!isa<SCEVConstant>(IncExpr)) {
2351 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Chain[0].IVOperand));
2352 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2353 return 0;
2354 }
2355
2356 SmallPtrSet<const SCEV*, 8> Processed;
2357 if (isHighCostExpansion(IncExpr, Processed, SE))
2358 return 0;
2359
2360 return IncExpr;
Andrew Trick22d20c22012-01-09 21:18:52 +00002361}
2362
2363/// Return true if the number of registers needed for the chain is estimated to
2364/// be less than the number required for the individual IV users. First prohibit
2365/// any IV users that keep the IV live across increments (the Users set should
2366/// be empty). Next count the number and type of increments in the chain.
2367///
2368/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2369/// effectively use postinc addressing modes. Only consider it profitable it the
2370/// increments can be computed in fewer registers when chained.
2371///
2372/// TODO: Consider IVInc free if it's already used in another chains.
2373static bool
2374isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
2375 ScalarEvolution &SE, const TargetLowering *TLI) {
2376 if (StressIVChain)
2377 return true;
2378
Andrew Trick64925c52012-01-10 01:45:08 +00002379 if (Chain.size() <= 2)
2380 return false;
2381
2382 if (!Users.empty()) {
2383 DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " users:\n";
2384 for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
2385 E = Users.end(); I != E; ++I) {
2386 dbgs() << " " << **I << "\n";
2387 });
2388 return false;
2389 }
2390 assert(!Chain.empty() && "empty IV chains are not allowed");
2391
2392 // The chain itself may require a register, so intialize cost to 1.
2393 int cost = 1;
2394
2395 // A complete chain likely eliminates the need for keeping the original IV in
2396 // a register. LSR does not currently know how to form a complete chain unless
2397 // the header phi already exists.
2398 if (isa<PHINode>(Chain.back().UserInst)
2399 && SE.getSCEV(Chain.back().UserInst) == Chain[0].IncExpr) {
2400 --cost;
2401 }
2402 const SCEV *LastIncExpr = 0;
2403 unsigned NumConstIncrements = 0;
2404 unsigned NumVarIncrements = 0;
2405 unsigned NumReusedIncrements = 0;
2406 for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
2407 I != E; ++I) {
2408
2409 if (I->IncExpr->isZero())
2410 continue;
2411
2412 // Incrementing by zero or some constant is neutral. We assume constants can
2413 // be folded into an addressing mode or an add's immediate operand.
2414 if (isa<SCEVConstant>(I->IncExpr)) {
2415 ++NumConstIncrements;
2416 continue;
2417 }
2418
2419 if (I->IncExpr == LastIncExpr)
2420 ++NumReusedIncrements;
2421 else
2422 ++NumVarIncrements;
2423
2424 LastIncExpr = I->IncExpr;
2425 }
2426 // An IV chain with a single increment is handled by LSR's postinc
2427 // uses. However, a chain with multiple increments requires keeping the IV's
2428 // value live longer than it needs to be if chained.
2429 if (NumConstIncrements > 1)
2430 --cost;
2431
2432 // Materializing increment expressions in the preheader that didn't exist in
2433 // the original code may cost a register. For example, sign-extended array
2434 // indices can produce ridiculous increments like this:
2435 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2436 cost += NumVarIncrements;
2437
2438 // Reusing variable increments likely saves a register to hold the multiple of
2439 // the stride.
2440 cost -= NumReusedIncrements;
2441
2442 DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " Cost: " << cost << "\n");
2443
2444 return cost < 0;
Andrew Trick22d20c22012-01-09 21:18:52 +00002445}
2446
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00002447/// ChainInstruction - Add this IV user to an existing chain or make it the head
2448/// of a new chain.
2449void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2450 SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2451 // When IVs are used as types of varying widths, they are generally converted
2452 // to a wider type with some uses remaining narrow under a (free) trunc.
2453 Value *NextIV = getWideOperand(IVOper);
2454
2455 // Visit all existing chains. Check if its IVOper can be computed as a
2456 // profitable loop invariant increment from the last link in the Chain.
2457 unsigned ChainIdx = 0, NChains = IVChainVec.size();
2458 const SCEV *LastIncExpr = 0;
2459 for (; ChainIdx < NChains; ++ChainIdx) {
2460 Value *PrevIV = getWideOperand(IVChainVec[ChainIdx].back().IVOperand);
2461 if (!isCompatibleIVType(PrevIV, NextIV))
2462 continue;
2463
2464 // A phi nodes terminates a chain.
2465 if (isa<PHINode>(UserInst)
2466 && isa<PHINode>(IVChainVec[ChainIdx].back().UserInst))
2467 continue;
2468
Andrew Trick22d20c22012-01-09 21:18:52 +00002469 if (const SCEV *IncExpr =
2470 getProfitableChainIncrement(NextIV, PrevIV, IVChainVec[ChainIdx],
2471 L, SE, TLI)) {
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00002472 LastIncExpr = IncExpr;
2473 break;
2474 }
2475 }
2476 // If we haven't found a chain, create a new one, unless we hit the max. Don't
2477 // bother for phi nodes, because they must be last in the chain.
2478 if (ChainIdx == NChains) {
2479 if (isa<PHINode>(UserInst))
2480 return;
Andrew Trick22d20c22012-01-09 21:18:52 +00002481 if (NChains >= MaxChains && !StressIVChain) {
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00002482 DEBUG(dbgs() << "IV Chain Limit\n");
2483 return;
2484 }
2485 ++NChains;
2486 IVChainVec.resize(NChains);
2487 ChainUsersVec.resize(NChains);
2488 LastIncExpr = SE.getSCEV(NextIV);
2489 assert(isa<SCEVAddRecExpr>(LastIncExpr) && "expect recurrence at IV user");
2490 DEBUG(dbgs() << "IV Head: (" << *UserInst << ") IV=" << *LastIncExpr
2491 << "\n");
2492 }
2493 else
2494 DEBUG(dbgs() << "IV Inc: (" << *UserInst << ") IV+" << *LastIncExpr
2495 << "\n");
2496
2497 // Add this IV user to the end of the chain.
2498 IVChainVec[ChainIdx].push_back(IVInc(UserInst, IVOper, LastIncExpr));
2499
2500 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2501 // This chain's NearUsers become FarUsers.
2502 if (!LastIncExpr->isZero()) {
2503 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2504 NearUsers.end());
2505 NearUsers.clear();
2506 }
2507
2508 // All other uses of IVOperand become near uses of the chain.
2509 // We currently ignore intermediate values within SCEV expressions, assuming
2510 // they will eventually be used be the current chain, or can be computed
2511 // from one of the chain increments. To be more precise we could
2512 // transitively follow its user and only add leaf IV users to the set.
2513 for (Value::use_iterator UseIter = IVOper->use_begin(),
2514 UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
2515 Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
2516 if (SE.isSCEVable(OtherUse->getType())
2517 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2518 && IU.isIVUserOrOperand(OtherUse)) {
2519 continue;
2520 }
2521 if (OtherUse && OtherUse != UserInst)
2522 NearUsers.insert(OtherUse);
2523 }
2524
2525 // Since this user is part of the chain, it's no longer considered a use
2526 // of the chain.
2527 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2528}
2529
2530/// CollectChains - Populate the vector of Chains.
2531///
2532/// This decreases ILP at the architecture level. Targets with ample registers,
2533/// multiple memory ports, and no register renaming probably don't want
2534/// this. However, such targets should probably disable LSR altogether.
2535///
2536/// The job of LSR is to make a reasonable choice of induction variables across
2537/// the loop. Subsequent passes can easily "unchain" computation exposing more
2538/// ILP *within the loop* if the target wants it.
2539///
2540/// Finding the best IV chain is potentially a scheduling problem. Since LSR
2541/// will not reorder memory operations, it will recognize this as a chain, but
2542/// will generate redundant IV increments. Ideally this would be corrected later
2543/// by a smart scheduler:
2544/// = A[i]
2545/// = A[i+x]
2546/// A[i] =
2547/// A[i+x] =
2548///
2549/// TODO: Walk the entire domtree within this loop, not just the path to the
2550/// loop latch. This will discover chains on side paths, but requires
2551/// maintaining multiple copies of the Chains state.
2552void LSRInstance::CollectChains() {
2553 SmallVector<ChainUsers, 8> ChainUsersVec;
2554
2555 SmallVector<BasicBlock *,8> LatchPath;
2556 BasicBlock *LoopHeader = L->getHeader();
2557 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2558 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2559 LatchPath.push_back(Rung->getBlock());
2560 }
2561 LatchPath.push_back(LoopHeader);
2562
2563 // Walk the instruction stream from the loop header to the loop latch.
2564 for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2565 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2566 BBIter != BBEnd; ++BBIter) {
2567 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2568 I != E; ++I) {
2569 // Skip instructions that weren't seen by IVUsers analysis.
2570 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
2571 continue;
2572
2573 // Ignore users that are part of a SCEV expression. This way we only
2574 // consider leaf IV Users. This effectively rediscovers a portion of
2575 // IVUsers analysis but in program order this time.
2576 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
2577 continue;
2578
2579 // Remove this instruction from any NearUsers set it may be in.
2580 for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2581 ChainIdx < NChains; ++ChainIdx) {
2582 ChainUsersVec[ChainIdx].NearUsers.erase(I);
2583 }
2584 // Search for operands that can be chained.
2585 SmallPtrSet<Instruction*, 4> UniqueOperands;
2586 User::op_iterator IVOpEnd = I->op_end();
2587 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2588 while (IVOpIter != IVOpEnd) {
2589 Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2590 if (UniqueOperands.insert(IVOpInst))
2591 ChainInstruction(I, IVOpInst, ChainUsersVec);
2592 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2593 }
2594 } // Continue walking down the instructions.
2595 } // Continue walking down the domtree.
2596 // Visit phi backedges to determine if the chain can generate the IV postinc.
2597 for (BasicBlock::iterator I = L->getHeader()->begin();
2598 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2599 if (!SE.isSCEVable(PN->getType()))
2600 continue;
2601
2602 Instruction *IncV =
2603 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2604 if (IncV)
2605 ChainInstruction(PN, IncV, ChainUsersVec);
2606 }
Andrew Trick22d20c22012-01-09 21:18:52 +00002607 // Remove any unprofitable chains.
2608 unsigned ChainIdx = 0;
2609 for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2610 UsersIdx < NChains; ++UsersIdx) {
2611 if (!isProfitableChain(IVChainVec[UsersIdx],
2612 ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
2613 continue;
2614 // Preserve the chain at UsesIdx.
2615 if (ChainIdx != UsersIdx)
2616 IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2617 FinalizeChain(IVChainVec[ChainIdx]);
2618 ++ChainIdx;
2619 }
2620 IVChainVec.resize(ChainIdx);
2621}
2622
2623void LSRInstance::FinalizeChain(IVChain &Chain) {
2624 assert(!Chain.empty() && "empty IV chains are not allowed");
2625 DEBUG(dbgs() << "Final Chain: " << *Chain[0].UserInst << "\n");
2626
2627 for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
2628 I != E; ++I) {
2629 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n");
2630 User::op_iterator UseI =
2631 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
2632 assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
2633 IVIncSet.insert(UseI);
2634 }
2635}
2636
2637/// Return true if the IVInc can be folded into an addressing mode.
2638static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2639 Value *Operand, const TargetLowering *TLI) {
2640 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2641 if (!IncConst || !isAddressUse(UserInst, Operand))
2642 return false;
2643
2644 if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
2645 return false;
2646
2647 int64_t IncOffset = IncConst->getValue()->getSExtValue();
2648 if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
2649 LSRUse::Address, getAccessType(UserInst), TLI))
2650 return false;
2651
2652 return true;
2653}
2654
2655/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
2656/// materialize the IV user's operand from the previous IV user's operand.
2657void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2658 SmallVectorImpl<WeakVH> &DeadInsts) {
2659 // Find the new IVOperand for the head of the chain. It may have been replaced
2660 // by LSR.
2661 const IVInc &Head = Chain[0];
2662 User::op_iterator IVOpEnd = Head.UserInst->op_end();
2663 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2664 IVOpEnd, L, SE);
2665 Value *IVSrc = 0;
2666 while (IVOpIter != IVOpEnd) {
2667 IVSrc = getWideOperand(*IVOpIter);
2668
2669 // If this operand computes the expression that the chain needs, we may use
2670 // it. (Check this after setting IVSrc which is used below.)
2671 //
2672 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2673 // narrow for the chain, so we can no longer use it. We do allow using a
2674 // wider phi, assuming the LSR checked for free truncation. In that case we
2675 // should already have a truncate on this operand such that
2676 // getSCEV(IVSrc) == IncExpr.
2677 if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2678 || SE.getSCEV(IVSrc) == Head.IncExpr) {
2679 break;
2680 }
2681 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2682 }
2683 if (IVOpIter == IVOpEnd) {
2684 // Gracefully give up on this chain.
2685 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2686 return;
2687 }
2688
2689 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2690 Type *IVTy = IVSrc->getType();
2691 Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2692 const SCEV *LeftOverExpr = 0;
2693 for (IVChain::const_iterator IncI = llvm::next(Chain.begin()),
2694 IncE = Chain.end(); IncI != IncE; ++IncI) {
2695
2696 Instruction *InsertPt = IncI->UserInst;
2697 if (isa<PHINode>(InsertPt))
2698 InsertPt = L->getLoopLatch()->getTerminator();
2699
2700 // IVOper will replace the current IV User's operand. IVSrc is the IV
2701 // value currently held in a register.
2702 Value *IVOper = IVSrc;
2703 if (!IncI->IncExpr->isZero()) {
2704 // IncExpr was the result of subtraction of two narrow values, so must
2705 // be signed.
2706 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
2707 LeftOverExpr = LeftOverExpr ?
2708 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2709 }
2710 if (LeftOverExpr && !LeftOverExpr->isZero()) {
2711 // Expand the IV increment.
2712 Rewriter.clearPostInc();
2713 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2714 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2715 SE.getUnknown(IncV));
2716 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2717
2718 // If an IV increment can't be folded, use it as the next IV value.
2719 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
2720 TLI)) {
2721 assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2722 IVSrc = IVOper;
2723 LeftOverExpr = 0;
2724 }
2725 }
2726 Type *OperTy = IncI->IVOperand->getType();
2727 if (IVTy != OperTy) {
2728 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2729 "cannot extend a chained IV");
2730 IRBuilder<> Builder(InsertPt);
2731 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2732 }
2733 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
2734 DeadInsts.push_back(IncI->IVOperand);
2735 }
2736 // If LSR created a new, wider phi, we may also replace its postinc. We only
2737 // do this if we also found a wide value for the head of the chain.
2738 if (isa<PHINode>(Chain.back().UserInst)) {
2739 for (BasicBlock::iterator I = L->getHeader()->begin();
2740 PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2741 if (!isCompatibleIVType(Phi, IVSrc))
2742 continue;
2743 Instruction *PostIncV = dyn_cast<Instruction>(
2744 Phi->getIncomingValueForBlock(L->getLoopLatch()));
2745 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2746 continue;
2747 Value *IVOper = IVSrc;
2748 Type *PostIncTy = PostIncV->getType();
2749 if (IVTy != PostIncTy) {
2750 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2751 IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2752 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2753 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2754 }
2755 Phi->replaceUsesOfWith(PostIncV, IVOper);
2756 DeadInsts.push_back(PostIncV);
2757 }
2758 }
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00002759}
2760
Dan Gohman572645c2010-02-12 10:34:29 +00002761void LSRInstance::CollectFixupsAndInitialFormulae() {
2762 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
Andrew Trick22d20c22012-01-09 21:18:52 +00002763 Instruction *UserInst = UI->getUser();
2764 // Skip IV users that are part of profitable IV Chains.
2765 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2766 UI->getOperandValToReplace());
2767 assert(UseI != UserInst->op_end() && "cannot find IV operand");
2768 if (IVIncSet.count(UseI))
2769 continue;
2770
Dan Gohman572645c2010-02-12 10:34:29 +00002771 // Record the uses.
2772 LSRFixup &LF = getNewFixup();
Andrew Trick22d20c22012-01-09 21:18:52 +00002773 LF.UserInst = UserInst;
Dan Gohman572645c2010-02-12 10:34:29 +00002774 LF.OperandValToReplace = UI->getOperandValToReplace();
Dan Gohman448db1c2010-04-07 22:27:08 +00002775 LF.PostIncLoops = UI->getPostIncLoops();
Dan Gohman572645c2010-02-12 10:34:29 +00002776
2777 LSRUse::KindType Kind = LSRUse::Basic;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002778 Type *AccessTy = 0;
Dan Gohman572645c2010-02-12 10:34:29 +00002779 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2780 Kind = LSRUse::Address;
2781 AccessTy = getAccessType(LF.UserInst);
2782 }
2783
Dan Gohmanc0564542010-04-19 21:48:58 +00002784 const SCEV *S = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00002785
2786 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2787 // (N - i == 0), and this allows (N - i) to be the expression that we work
2788 // with rather than just N or i, so we can consider the register
2789 // requirements for both N and i at the same time. Limiting this code to
2790 // equality icmps is not a problem because all interesting loops use
2791 // equality icmps, thanks to IndVarSimplify.
2792 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2793 if (CI->isEquality()) {
2794 // Swap the operands if needed to put the OperandValToReplace on the
2795 // left, for consistency.
2796 Value *NV = CI->getOperand(1);
2797 if (NV == LF.OperandValToReplace) {
2798 CI->setOperand(1, CI->getOperand(0));
2799 CI->setOperand(0, NV);
Dan Gohmanf182b232010-05-20 19:26:52 +00002800 NV = CI->getOperand(1);
Dan Gohman9da1bf42010-05-20 19:16:03 +00002801 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002802 }
2803
2804 // x == y --> x - y == 0
2805 const SCEV *N = SE.getSCEV(NV);
Dan Gohman17ead4f2010-11-17 21:23:15 +00002806 if (SE.isLoopInvariant(N, L)) {
Dan Gohman673968a2011-05-18 21:02:18 +00002807 // S is normalized, so normalize N before folding it into S
2808 // to keep the result normalized.
2809 N = TransformForPostIncUse(Normalize, N, CI, 0,
2810 LF.PostIncLoops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00002811 Kind = LSRUse::ICmpZero;
2812 S = SE.getMinusSCEV(N, S);
2813 }
2814
2815 // -1 and the negations of all interesting strides (except the negation
2816 // of -1) are now also interesting.
2817 for (size_t i = 0, e = Factors.size(); i != e; ++i)
2818 if (Factors[i] != -1)
2819 Factors.insert(-(uint64_t)Factors[i]);
2820 Factors.insert(-1);
2821 }
2822
2823 // Set up the initial formula for this use.
2824 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2825 LF.LUIdx = P.first;
2826 LF.Offset = P.second;
2827 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002828 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohmana9db1292010-07-15 20:24:58 +00002829 if (!LU.WidestFixupType ||
2830 SE.getTypeSizeInBits(LU.WidestFixupType) <
2831 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2832 LU.WidestFixupType = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00002833
2834 // If this is the first use of this LSRUse, give it a formula.
2835 if (LU.Formulae.empty()) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002836 InsertInitialFormula(S, LU, LF.LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00002837 CountRegisters(LU.Formulae.back(), LF.LUIdx);
2838 }
2839 }
2840
2841 DEBUG(print_fixups(dbgs()));
2842}
2843
Dan Gohman76c315a2010-05-20 20:52:00 +00002844/// InsertInitialFormula - Insert a formula for the given expression into
2845/// the given use, separating out loop-variant portions from loop-invariant
2846/// and loop-computable portions.
Dan Gohman572645c2010-02-12 10:34:29 +00002847void
Dan Gohman454d26d2010-02-22 04:11:59 +00002848LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Dan Gohman572645c2010-02-12 10:34:29 +00002849 Formula F;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00002850 F.InitialMatch(S, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002851 bool Inserted = InsertFormula(LU, LUIdx, F);
2852 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2853}
2854
Dan Gohman76c315a2010-05-20 20:52:00 +00002855/// InsertSupplementalFormula - Insert a simple single-register formula for
2856/// the given expression into the given use.
Dan Gohman572645c2010-02-12 10:34:29 +00002857void
2858LSRInstance::InsertSupplementalFormula(const SCEV *S,
2859 LSRUse &LU, size_t LUIdx) {
2860 Formula F;
2861 F.BaseRegs.push_back(S);
2862 F.AM.HasBaseReg = true;
2863 bool Inserted = InsertFormula(LU, LUIdx, F);
2864 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2865}
2866
2867/// CountRegisters - Note which registers are used by the given formula,
2868/// updating RegUses.
2869void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2870 if (F.ScaledReg)
2871 RegUses.CountRegister(F.ScaledReg, LUIdx);
2872 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2873 E = F.BaseRegs.end(); I != E; ++I)
2874 RegUses.CountRegister(*I, LUIdx);
2875}
2876
2877/// InsertFormula - If the given formula has not yet been inserted, add it to
2878/// the list, and return true. Return false otherwise.
2879bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002880 if (!LU.InsertFormula(F))
Dan Gohman572645c2010-02-12 10:34:29 +00002881 return false;
2882
2883 CountRegisters(F, LUIdx);
2884 return true;
2885}
2886
2887/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2888/// loop-invariant values which we're tracking. These other uses will pin these
2889/// values in registers, making them less profitable for elimination.
2890/// TODO: This currently misses non-constant addrec step registers.
2891/// TODO: Should this give more weight to users inside the loop?
2892void
2893LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2894 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2895 SmallPtrSet<const SCEV *, 8> Inserted;
2896
2897 while (!Worklist.empty()) {
2898 const SCEV *S = Worklist.pop_back_val();
2899
2900 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
Dan Gohman403a8cd2010-06-21 19:47:52 +00002901 Worklist.append(N->op_begin(), N->op_end());
Dan Gohman572645c2010-02-12 10:34:29 +00002902 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2903 Worklist.push_back(C->getOperand());
2904 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2905 Worklist.push_back(D->getLHS());
2906 Worklist.push_back(D->getRHS());
2907 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2908 if (!Inserted.insert(U)) continue;
2909 const Value *V = U->getValue();
Dan Gohmana15ec5d2010-06-04 23:16:05 +00002910 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2911 // Look for instructions defined outside the loop.
Dan Gohman572645c2010-02-12 10:34:29 +00002912 if (L->contains(Inst)) continue;
Dan Gohmana15ec5d2010-06-04 23:16:05 +00002913 } else if (isa<UndefValue>(V))
2914 // Undef doesn't have a live range, so it doesn't matter.
2915 continue;
Gabor Greif60ad7812010-03-25 23:06:16 +00002916 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
Dan Gohman572645c2010-02-12 10:34:29 +00002917 UI != UE; ++UI) {
2918 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2919 // Ignore non-instructions.
2920 if (!UserInst)
Dan Gohman7979b722010-01-22 00:46:49 +00002921 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002922 // Ignore instructions in other functions (as can happen with
2923 // Constants).
2924 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
Dan Gohman7979b722010-01-22 00:46:49 +00002925 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002926 // Ignore instructions not dominated by the loop.
2927 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2928 UserInst->getParent() :
2929 cast<PHINode>(UserInst)->getIncomingBlock(
2930 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2931 if (!DT.dominates(L->getHeader(), UseBB))
2932 continue;
2933 // Ignore uses which are part of other SCEV expressions, to avoid
2934 // analyzing them multiple times.
Dan Gohman4a2a6832010-04-09 19:12:34 +00002935 if (SE.isSCEVable(UserInst->getType())) {
2936 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2937 // If the user is a no-op, look through to its uses.
2938 if (!isa<SCEVUnknown>(UserS))
2939 continue;
2940 if (UserS == U) {
2941 Worklist.push_back(
2942 SE.getUnknown(const_cast<Instruction *>(UserInst)));
2943 continue;
2944 }
2945 }
Dan Gohman572645c2010-02-12 10:34:29 +00002946 // Ignore icmp instructions which are already being analyzed.
2947 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2948 unsigned OtherIdx = !UI.getOperandNo();
2949 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
Dan Gohman17ead4f2010-11-17 21:23:15 +00002950 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
Dan Gohman572645c2010-02-12 10:34:29 +00002951 continue;
2952 }
2953
2954 LSRFixup &LF = getNewFixup();
2955 LF.UserInst = const_cast<Instruction *>(UserInst);
2956 LF.OperandValToReplace = UI.getUse();
2957 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2958 LF.LUIdx = P.first;
2959 LF.Offset = P.second;
2960 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002961 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohmana9db1292010-07-15 20:24:58 +00002962 if (!LU.WidestFixupType ||
2963 SE.getTypeSizeInBits(LU.WidestFixupType) <
2964 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2965 LU.WidestFixupType = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00002966 InsertSupplementalFormula(U, LU, LF.LUIdx);
2967 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2968 break;
2969 }
2970 }
2971 }
2972}
2973
2974/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2975/// separate registers. If C is non-null, multiply each subexpression by C.
2976static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2977 SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman3e3f15b2010-06-25 22:32:18 +00002978 const Loop *L,
Dan Gohman572645c2010-02-12 10:34:29 +00002979 ScalarEvolution &SE) {
2980 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2981 // Break out add operands.
2982 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2983 I != E; ++I)
Dan Gohman3e22b7c2010-08-16 15:50:00 +00002984 CollectSubexprs(*I, C, Ops, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002985 return;
2986 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2987 // Split a non-zero base out of an addrec.
2988 if (!AR->getStart()->isZero()) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002989 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +00002990 AR->getStepRecurrence(SE),
Andrew Trick3228cc22011-03-14 16:50:06 +00002991 AR->getLoop(),
2992 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
2993 SCEV::FlagAnyWrap),
Dan Gohman3e22b7c2010-08-16 15:50:00 +00002994 C, Ops, L, SE);
2995 CollectSubexprs(AR->getStart(), C, Ops, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002996 return;
2997 }
2998 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2999 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3000 if (Mul->getNumOperands() == 2)
3001 if (const SCEVConstant *Op0 =
3002 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3003 CollectSubexprs(Mul->getOperand(1),
3004 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
Dan Gohman3e22b7c2010-08-16 15:50:00 +00003005 Ops, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00003006 return;
3007 }
3008 }
3009
Dan Gohman3e22b7c2010-08-16 15:50:00 +00003010 // Otherwise use the value itself, optionally with a scale applied.
3011 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
Dan Gohman572645c2010-02-12 10:34:29 +00003012}
3013
3014/// GenerateReassociations - Split out subexpressions from adds and the bases of
3015/// addrecs.
3016void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3017 Formula Base,
3018 unsigned Depth) {
3019 // Arbitrarily cap recursion to protect compile time.
3020 if (Depth >= 3) return;
3021
3022 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3023 const SCEV *BaseReg = Base.BaseRegs[i];
3024
Dan Gohman3e22b7c2010-08-16 15:50:00 +00003025 SmallVector<const SCEV *, 8> AddOps;
3026 CollectSubexprs(BaseReg, 0, AddOps, L, SE);
Dan Gohman3e3f15b2010-06-25 22:32:18 +00003027
Dan Gohman572645c2010-02-12 10:34:29 +00003028 if (AddOps.size() == 1) continue;
3029
3030 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3031 JE = AddOps.end(); J != JE; ++J) {
Dan Gohman3e22b7c2010-08-16 15:50:00 +00003032
3033 // Loop-variant "unknown" values are uninteresting; we won't be able to
3034 // do anything meaningful with them.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003035 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
Dan Gohman3e22b7c2010-08-16 15:50:00 +00003036 continue;
3037
Dan Gohman572645c2010-02-12 10:34:29 +00003038 // Don't pull a constant into a register if the constant could be folded
3039 // into an immediate field.
3040 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
3041 Base.getNumRegs() > 1,
3042 LU.Kind, LU.AccessTy, TLI, SE))
3043 continue;
3044
3045 // Collect all operands except *J.
Dan Gohman403a8cd2010-06-21 19:47:52 +00003046 SmallVector<const SCEV *, 8> InnerAddOps
Dan Gohman4eaee282010-08-04 17:43:57 +00003047 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
Dan Gohman403a8cd2010-06-21 19:47:52 +00003048 InnerAddOps.append
Oscar Fuentesee56c422010-08-02 06:00:15 +00003049 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
Dan Gohman572645c2010-02-12 10:34:29 +00003050
3051 // Don't leave just a constant behind in a register if the constant could
3052 // be folded into an immediate field.
3053 if (InnerAddOps.size() == 1 &&
3054 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
3055 Base.getNumRegs() > 1,
3056 LU.Kind, LU.AccessTy, TLI, SE))
3057 continue;
3058
Dan Gohmanfafb8902010-04-23 01:55:05 +00003059 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3060 if (InnerSum->isZero())
3061 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00003062 Formula F = Base;
Dan Gohmancca82142011-05-03 00:46:49 +00003063
3064 // Add the remaining pieces of the add back into the new formula.
3065 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3066 if (TLI && InnerSumSC &&
3067 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3068 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3069 InnerSumSC->getValue()->getZExtValue())) {
3070 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3071 InnerSumSC->getValue()->getZExtValue();
3072 F.BaseRegs.erase(F.BaseRegs.begin() + i);
3073 } else
3074 F.BaseRegs[i] = InnerSum;
3075
3076 // Add J as its own register, or an unfolded immediate.
3077 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3078 if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3079 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3080 SC->getValue()->getZExtValue()))
3081 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3082 SC->getValue()->getZExtValue();
3083 else
3084 F.BaseRegs.push_back(*J);
3085
Dan Gohman572645c2010-02-12 10:34:29 +00003086 if (InsertFormula(LU, LUIdx, F))
3087 // If that formula hadn't been seen before, recurse to find more like
3088 // it.
3089 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
3090 }
3091 }
3092}
3093
3094/// GenerateCombinations - Generate a formula consisting of all of the
3095/// loop-dominating registers added into a single register.
3096void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Dan Gohman441a3892010-02-14 18:51:39 +00003097 Formula Base) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003098 // This method is only interesting on a plurality of registers.
Dan Gohman572645c2010-02-12 10:34:29 +00003099 if (Base.BaseRegs.size() <= 1) return;
3100
3101 Formula F = Base;
3102 F.BaseRegs.clear();
3103 SmallVector<const SCEV *, 4> Ops;
3104 for (SmallVectorImpl<const SCEV *>::const_iterator
3105 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
3106 const SCEV *BaseReg = *I;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00003107 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
Dan Gohman17ead4f2010-11-17 21:23:15 +00003108 !SE.hasComputableLoopEvolution(BaseReg, L))
Dan Gohman572645c2010-02-12 10:34:29 +00003109 Ops.push_back(BaseReg);
3110 else
3111 F.BaseRegs.push_back(BaseReg);
3112 }
3113 if (Ops.size() > 1) {
Dan Gohmance947362010-02-14 18:50:49 +00003114 const SCEV *Sum = SE.getAddExpr(Ops);
3115 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3116 // opportunity to fold something. For now, just ignore such cases
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003117 // rather than proceed with zero in a register.
Dan Gohmance947362010-02-14 18:50:49 +00003118 if (!Sum->isZero()) {
3119 F.BaseRegs.push_back(Sum);
3120 (void)InsertFormula(LU, LUIdx, F);
3121 }
Dan Gohman572645c2010-02-12 10:34:29 +00003122 }
3123}
3124
3125/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
3126void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3127 Formula Base) {
3128 // We can't add a symbolic offset if the address already contains one.
3129 if (Base.AM.BaseGV) return;
3130
3131 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3132 const SCEV *G = Base.BaseRegs[i];
3133 GlobalValue *GV = ExtractSymbol(G, SE);
3134 if (G->isZero() || !GV)
3135 continue;
3136 Formula F = Base;
3137 F.AM.BaseGV = GV;
3138 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3139 LU.Kind, LU.AccessTy, TLI))
3140 continue;
3141 F.BaseRegs[i] = G;
3142 (void)InsertFormula(LU, LUIdx, F);
3143 }
3144}
3145
3146/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3147void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3148 Formula Base) {
3149 // TODO: For now, just add the min and max offset, because it usually isn't
3150 // worthwhile looking at everything inbetween.
Dan Gohmanc88c1a42010-07-15 15:14:45 +00003151 SmallVector<int64_t, 2> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00003152 Worklist.push_back(LU.MinOffset);
3153 if (LU.MaxOffset != LU.MinOffset)
3154 Worklist.push_back(LU.MaxOffset);
3155
3156 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3157 const SCEV *G = Base.BaseRegs[i];
3158
3159 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
3160 E = Worklist.end(); I != E; ++I) {
3161 Formula F = Base;
3162 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
3163 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
3164 LU.Kind, LU.AccessTy, TLI)) {
Dan Gohmanc88c1a42010-07-15 15:14:45 +00003165 // Add the offset to the base register.
Dan Gohman4065f602010-08-16 15:39:27 +00003166 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
Dan Gohmanc88c1a42010-07-15 15:14:45 +00003167 // If it cancelled out, drop the base register, otherwise update it.
3168 if (NewG->isZero()) {
3169 std::swap(F.BaseRegs[i], F.BaseRegs.back());
3170 F.BaseRegs.pop_back();
3171 } else
3172 F.BaseRegs[i] = NewG;
Dan Gohman572645c2010-02-12 10:34:29 +00003173
3174 (void)InsertFormula(LU, LUIdx, F);
3175 }
3176 }
3177
3178 int64_t Imm = ExtractImmediate(G, SE);
3179 if (G->isZero() || Imm == 0)
3180 continue;
3181 Formula F = Base;
3182 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
3183 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3184 LU.Kind, LU.AccessTy, TLI))
3185 continue;
3186 F.BaseRegs[i] = G;
3187 (void)InsertFormula(LU, LUIdx, F);
3188 }
3189}
3190
3191/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
3192/// the comparison. For example, x == y -> x*c == y*c.
3193void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3194 Formula Base) {
3195 if (LU.Kind != LSRUse::ICmpZero) return;
3196
3197 // Determine the integer type for the base formula.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003198 Type *IntTy = Base.getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003199 if (!IntTy) return;
3200 if (SE.getTypeSizeInBits(IntTy) > 64) return;
3201
3202 // Don't do this if there is more than one offset.
3203 if (LU.MinOffset != LU.MaxOffset) return;
3204
3205 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
3206
3207 // Check each interesting stride.
3208 for (SmallSetVector<int64_t, 8>::const_iterator
3209 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3210 int64_t Factor = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00003211
3212 // Check that the multiplication doesn't overflow.
Dan Gohman2ea09e02010-06-24 16:57:52 +00003213 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
Dan Gohman968cb932010-02-17 00:41:53 +00003214 continue;
Dan Gohman2ea09e02010-06-24 16:57:52 +00003215 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
3216 if (NewBaseOffs / Factor != Base.AM.BaseOffs)
Dan Gohman572645c2010-02-12 10:34:29 +00003217 continue;
3218
3219 // Check that multiplying with the use offset doesn't overflow.
3220 int64_t Offset = LU.MinOffset;
Dan Gohman968cb932010-02-17 00:41:53 +00003221 if (Offset == INT64_MIN && Factor == -1)
3222 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00003223 Offset = (uint64_t)Offset * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00003224 if (Offset / Factor != LU.MinOffset)
Dan Gohman572645c2010-02-12 10:34:29 +00003225 continue;
3226
Dan Gohman2ea09e02010-06-24 16:57:52 +00003227 Formula F = Base;
3228 F.AM.BaseOffs = NewBaseOffs;
3229
Dan Gohman572645c2010-02-12 10:34:29 +00003230 // Check that this scale is legal.
3231 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
3232 continue;
3233
3234 // Compensate for the use having MinOffset built into it.
3235 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
3236
Dan Gohmandeff6212010-05-03 22:09:21 +00003237 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00003238
3239 // Check that multiplying with each base register doesn't overflow.
3240 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3241 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00003242 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
Dan Gohman572645c2010-02-12 10:34:29 +00003243 goto next;
3244 }
3245
3246 // Check that multiplying with the scaled register doesn't overflow.
3247 if (F.ScaledReg) {
3248 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00003249 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
Dan Gohman572645c2010-02-12 10:34:29 +00003250 continue;
3251 }
3252
Dan Gohmancca82142011-05-03 00:46:49 +00003253 // Check that multiplying with the unfolded offset doesn't overflow.
3254 if (F.UnfoldedOffset != 0) {
Dan Gohman1b58d452011-05-23 21:07:39 +00003255 if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3256 continue;
Dan Gohmancca82142011-05-03 00:46:49 +00003257 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3258 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3259 continue;
3260 }
3261
Dan Gohman572645c2010-02-12 10:34:29 +00003262 // If we make it here and it's legal, add it.
3263 (void)InsertFormula(LU, LUIdx, F);
3264 next:;
3265 }
3266}
3267
3268/// GenerateScales - Generate stride factor reuse formulae by making use of
3269/// scaled-offset address modes, for example.
Dan Gohmanea507f52010-05-20 19:44:23 +00003270void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00003271 // Determine the integer type for the base formula.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003272 Type *IntTy = Base.getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003273 if (!IntTy) return;
3274
3275 // If this Formula already has a scaled register, we can't add another one.
3276 if (Base.AM.Scale != 0) return;
3277
3278 // Check each interesting stride.
3279 for (SmallSetVector<int64_t, 8>::const_iterator
3280 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3281 int64_t Factor = *I;
3282
3283 Base.AM.Scale = Factor;
3284 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
3285 // Check whether this scale is going to be legal.
3286 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3287 LU.Kind, LU.AccessTy, TLI)) {
3288 // As a special-case, handle special out-of-loop Basic users specially.
3289 // TODO: Reconsider this special case.
3290 if (LU.Kind == LSRUse::Basic &&
3291 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3292 LSRUse::Special, LU.AccessTy, TLI) &&
3293 LU.AllFixupsOutsideLoop)
3294 LU.Kind = LSRUse::Special;
3295 else
3296 continue;
3297 }
3298 // For an ICmpZero, negating a solitary base register won't lead to
3299 // new solutions.
3300 if (LU.Kind == LSRUse::ICmpZero &&
3301 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
3302 continue;
3303 // For each addrec base reg, apply the scale, if possible.
3304 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3305 if (const SCEVAddRecExpr *AR =
3306 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
Dan Gohmandeff6212010-05-03 22:09:21 +00003307 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00003308 if (FactorS->isZero())
3309 continue;
3310 // Divide out the factor, ignoring high bits, since we'll be
3311 // scaling the value back up in the end.
Dan Gohmanf09b7122010-02-19 19:35:48 +00003312 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
Dan Gohman572645c2010-02-12 10:34:29 +00003313 // TODO: This could be optimized to avoid all the copying.
3314 Formula F = Base;
3315 F.ScaledReg = Quotient;
Dan Gohman5ce6d052010-05-20 15:17:54 +00003316 F.DeleteBaseReg(F.BaseRegs[i]);
Dan Gohman572645c2010-02-12 10:34:29 +00003317 (void)InsertFormula(LU, LUIdx, F);
3318 }
3319 }
3320 }
3321}
3322
3323/// GenerateTruncates - Generate reuse formulae from different IV types.
Dan Gohmanea507f52010-05-20 19:44:23 +00003324void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00003325 // This requires TargetLowering to tell us which truncates are free.
3326 if (!TLI) return;
3327
3328 // Don't bother truncating symbolic values.
3329 if (Base.AM.BaseGV) return;
3330
3331 // Determine the integer type for the base formula.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003332 Type *DstTy = Base.getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003333 if (!DstTy) return;
3334 DstTy = SE.getEffectiveSCEVType(DstTy);
3335
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003336 for (SmallSetVector<Type *, 4>::const_iterator
Dan Gohman572645c2010-02-12 10:34:29 +00003337 I = Types.begin(), E = Types.end(); I != E; ++I) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003338 Type *SrcTy = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00003339 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
3340 Formula F = Base;
3341
3342 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
3343 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
3344 JE = F.BaseRegs.end(); J != JE; ++J)
3345 *J = SE.getAnyExtendExpr(*J, SrcTy);
3346
3347 // TODO: This assumes we've done basic processing on all uses and
3348 // have an idea what the register usage is.
3349 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3350 continue;
3351
3352 (void)InsertFormula(LU, LUIdx, F);
3353 }
3354 }
3355}
3356
3357namespace {
3358
Dan Gohman6020d852010-02-14 18:51:20 +00003359/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
Dan Gohman572645c2010-02-12 10:34:29 +00003360/// defer modifications so that the search phase doesn't have to worry about
3361/// the data structures moving underneath it.
3362struct WorkItem {
3363 size_t LUIdx;
3364 int64_t Imm;
3365 const SCEV *OrigReg;
3366
3367 WorkItem(size_t LI, int64_t I, const SCEV *R)
3368 : LUIdx(LI), Imm(I), OrigReg(R) {}
3369
3370 void print(raw_ostream &OS) const;
3371 void dump() const;
3372};
3373
3374}
3375
3376void WorkItem::print(raw_ostream &OS) const {
3377 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3378 << " , add offset " << Imm;
3379}
3380
3381void WorkItem::dump() const {
3382 print(errs()); errs() << '\n';
3383}
3384
3385/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
3386/// distance apart and try to form reuse opportunities between them.
3387void LSRInstance::GenerateCrossUseConstantOffsets() {
3388 // Group the registers by their value without any added constant offset.
3389 typedef std::map<int64_t, const SCEV *> ImmMapTy;
3390 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
3391 RegMapTy Map;
3392 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3393 SmallVector<const SCEV *, 8> Sequence;
3394 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3395 I != E; ++I) {
3396 const SCEV *Reg = *I;
3397 int64_t Imm = ExtractImmediate(Reg, SE);
3398 std::pair<RegMapTy::iterator, bool> Pair =
3399 Map.insert(std::make_pair(Reg, ImmMapTy()));
3400 if (Pair.second)
3401 Sequence.push_back(Reg);
3402 Pair.first->second.insert(std::make_pair(Imm, *I));
3403 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
3404 }
3405
3406 // Now examine each set of registers with the same base value. Build up
3407 // a list of work to do and do the work in a separate step so that we're
3408 // not adding formulae and register counts while we're searching.
Dan Gohman191bd642010-09-01 01:45:53 +00003409 SmallVector<WorkItem, 32> WorkItems;
3410 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
Dan Gohman572645c2010-02-12 10:34:29 +00003411 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
3412 E = Sequence.end(); I != E; ++I) {
3413 const SCEV *Reg = *I;
3414 const ImmMapTy &Imms = Map.find(Reg)->second;
3415
Dan Gohmancd045c02010-02-12 19:20:37 +00003416 // It's not worthwhile looking for reuse if there's only one offset.
3417 if (Imms.size() == 1)
3418 continue;
3419
Dan Gohman572645c2010-02-12 10:34:29 +00003420 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3421 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3422 J != JE; ++J)
3423 dbgs() << ' ' << J->first;
3424 dbgs() << '\n');
3425
3426 // Examine each offset.
3427 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3428 J != JE; ++J) {
3429 const SCEV *OrigReg = J->second;
3430
3431 int64_t JImm = J->first;
3432 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3433
3434 if (!isa<SCEVConstant>(OrigReg) &&
3435 UsedByIndicesMap[Reg].count() == 1) {
3436 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3437 continue;
3438 }
3439
3440 // Conservatively examine offsets between this orig reg a few selected
3441 // other orig regs.
3442 ImmMapTy::const_iterator OtherImms[] = {
3443 Imms.begin(), prior(Imms.end()),
Dan Gohmancca82142011-05-03 00:46:49 +00003444 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
Dan Gohman572645c2010-02-12 10:34:29 +00003445 };
3446 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3447 ImmMapTy::const_iterator M = OtherImms[i];
Dan Gohmancd045c02010-02-12 19:20:37 +00003448 if (M == J || M == JE) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00003449
3450 // Compute the difference between the two.
3451 int64_t Imm = (uint64_t)JImm - M->first;
3452 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
Dan Gohman191bd642010-09-01 01:45:53 +00003453 LUIdx = UsedByIndices.find_next(LUIdx))
Dan Gohman572645c2010-02-12 10:34:29 +00003454 // Make a memo of this use, offset, and register tuple.
Dan Gohman191bd642010-09-01 01:45:53 +00003455 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
3456 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
Evan Cheng586f69a2009-11-12 07:35:05 +00003457 }
3458 }
3459 }
3460
Dan Gohman572645c2010-02-12 10:34:29 +00003461 Map.clear();
3462 Sequence.clear();
3463 UsedByIndicesMap.clear();
Dan Gohman191bd642010-09-01 01:45:53 +00003464 UniqueItems.clear();
Dan Gohman572645c2010-02-12 10:34:29 +00003465
3466 // Now iterate through the worklist and add new formulae.
3467 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
3468 E = WorkItems.end(); I != E; ++I) {
3469 const WorkItem &WI = *I;
3470 size_t LUIdx = WI.LUIdx;
3471 LSRUse &LU = Uses[LUIdx];
3472 int64_t Imm = WI.Imm;
3473 const SCEV *OrigReg = WI.OrigReg;
3474
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003475 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
Dan Gohman572645c2010-02-12 10:34:29 +00003476 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3477 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3478
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003479 // TODO: Use a more targeted data structure.
Dan Gohman572645c2010-02-12 10:34:29 +00003480 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
Dan Gohman9f383eb2010-05-20 22:25:20 +00003481 const Formula &F = LU.Formulae[L];
Dan Gohman572645c2010-02-12 10:34:29 +00003482 // Use the immediate in the scaled register.
3483 if (F.ScaledReg == OrigReg) {
3484 int64_t Offs = (uint64_t)F.AM.BaseOffs +
3485 Imm * (uint64_t)F.AM.Scale;
3486 // Don't create 50 + reg(-50).
3487 if (F.referencesReg(SE.getSCEV(
3488 ConstantInt::get(IntTy, -(uint64_t)Offs))))
3489 continue;
3490 Formula NewF = F;
3491 NewF.AM.BaseOffs = Offs;
3492 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
3493 LU.Kind, LU.AccessTy, TLI))
3494 continue;
3495 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3496
3497 // If the new scale is a constant in a register, and adding the constant
3498 // value to the immediate would produce a value closer to zero than the
3499 // immediate itself, then the formula isn't worthwhile.
3500 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
Chris Lattnerc73b24d2011-07-15 06:08:15 +00003501 if (C->getValue()->isNegative() !=
Dan Gohman572645c2010-02-12 10:34:29 +00003502 (NewF.AM.BaseOffs < 0) &&
3503 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
Dan Gohmane0567812010-04-08 23:03:40 +00003504 .ule(abs64(NewF.AM.BaseOffs)))
Dan Gohman572645c2010-02-12 10:34:29 +00003505 continue;
3506
3507 // OK, looks good.
3508 (void)InsertFormula(LU, LUIdx, NewF);
3509 } else {
3510 // Use the immediate in a base register.
3511 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3512 const SCEV *BaseReg = F.BaseRegs[N];
3513 if (BaseReg != OrigReg)
3514 continue;
3515 Formula NewF = F;
3516 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
3517 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
Dan Gohmancca82142011-05-03 00:46:49 +00003518 LU.Kind, LU.AccessTy, TLI)) {
3519 if (!TLI ||
3520 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3521 continue;
3522 NewF = F;
3523 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3524 }
Dan Gohman572645c2010-02-12 10:34:29 +00003525 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3526
3527 // If the new formula has a constant in a register, and adding the
3528 // constant value to the immediate would produce a value closer to
3529 // zero than the immediate itself, then the formula isn't worthwhile.
3530 for (SmallVectorImpl<const SCEV *>::const_iterator
3531 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
3532 J != JE; ++J)
3533 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
Dan Gohman360026f2010-05-18 23:48:08 +00003534 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
3535 abs64(NewF.AM.BaseOffs)) &&
3536 (C->getValue()->getValue() +
3537 NewF.AM.BaseOffs).countTrailingZeros() >=
3538 CountTrailingZeros_64(NewF.AM.BaseOffs))
Dan Gohman572645c2010-02-12 10:34:29 +00003539 goto skip_formula;
3540
3541 // Ok, looks good.
3542 (void)InsertFormula(LU, LUIdx, NewF);
3543 break;
3544 skip_formula:;
3545 }
3546 }
3547 }
3548 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00003549}
3550
Dan Gohman572645c2010-02-12 10:34:29 +00003551/// GenerateAllReuseFormulae - Generate formulae for each use.
3552void
3553LSRInstance::GenerateAllReuseFormulae() {
Dan Gohmanc2385a02010-02-16 01:42:53 +00003554 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
Dan Gohman572645c2010-02-12 10:34:29 +00003555 // queries are more precise.
3556 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3557 LSRUse &LU = Uses[LUIdx];
3558 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3559 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3560 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3561 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3562 }
3563 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3564 LSRUse &LU = Uses[LUIdx];
3565 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3566 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3567 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3568 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3569 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3570 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3571 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3572 GenerateScales(LU, LUIdx, LU.Formulae[i]);
Dan Gohmanc2385a02010-02-16 01:42:53 +00003573 }
3574 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3575 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00003576 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3577 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3578 }
3579
3580 GenerateCrossUseConstantOffsets();
Dan Gohman3902f9f2010-08-29 15:21:38 +00003581
3582 DEBUG(dbgs() << "\n"
3583 "After generating reuse formulae:\n";
3584 print_uses(dbgs()));
Dan Gohman572645c2010-02-12 10:34:29 +00003585}
3586
Dan Gohmanf63d70f2010-10-07 23:43:09 +00003587/// If there are multiple formulae with the same set of registers used
Dan Gohman572645c2010-02-12 10:34:29 +00003588/// by other uses, pick the best one and delete the others.
3589void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
Dan Gohmanfc7744b2010-10-07 23:52:18 +00003590 DenseSet<const SCEV *> VisitedRegs;
3591 SmallPtrSet<const SCEV *, 16> Regs;
Andrew Trick8a5d7922011-12-06 03:13:31 +00003592 SmallPtrSet<const SCEV *, 16> LoserRegs;
Dan Gohman572645c2010-02-12 10:34:29 +00003593#ifndef NDEBUG
Dan Gohmanc6519f92010-05-20 20:05:31 +00003594 bool ChangedFormulae = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003595#endif
3596
3597 // Collect the best formula for each unique set of shared registers. This
3598 // is reset for each use.
3599 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
3600 BestFormulaeTy;
3601 BestFormulaeTy BestFormulae;
3602
3603 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3604 LSRUse &LU = Uses[LUIdx];
Dan Gohmanea507f52010-05-20 19:44:23 +00003605 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
Dan Gohman572645c2010-02-12 10:34:29 +00003606
Dan Gohmanb2df4332010-05-18 23:42:37 +00003607 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003608 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3609 FIdx != NumForms; ++FIdx) {
3610 Formula &F = LU.Formulae[FIdx];
3611
Andrew Trick8a5d7922011-12-06 03:13:31 +00003612 // Some formulas are instant losers. For example, they may depend on
3613 // nonexistent AddRecs from other loops. These need to be filtered
3614 // immediately, otherwise heuristics could choose them over others leading
3615 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3616 // avoids the need to recompute this information across formulae using the
3617 // same bad AddRec. Passing LoserRegs is also essential unless we remove
3618 // the corresponding bad register from the Regs set.
3619 Cost CostF;
3620 Regs.clear();
3621 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT,
3622 &LoserRegs);
3623 if (CostF.isLoser()) {
3624 // During initial formula generation, undesirable formulae are generated
3625 // by uses within other loops that have some non-trivial address mode or
3626 // use the postinc form of the IV. LSR needs to provide these formulae
3627 // as the basis of rediscovering the desired formula that uses an AddRec
3628 // corresponding to the existing phi. Once all formulae have been
3629 // generated, these initial losers may be pruned.
3630 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
3631 dbgs() << "\n");
Dan Gohman572645c2010-02-12 10:34:29 +00003632 }
Andrew Trick8a5d7922011-12-06 03:13:31 +00003633 else {
3634 SmallVector<const SCEV *, 2> Key;
3635 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
3636 JE = F.BaseRegs.end(); J != JE; ++J) {
3637 const SCEV *Reg = *J;
3638 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3639 Key.push_back(Reg);
3640 }
3641 if (F.ScaledReg &&
3642 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3643 Key.push_back(F.ScaledReg);
3644 // Unstable sort by host order ok, because this is only used for
3645 // uniquifying.
3646 std::sort(Key.begin(), Key.end());
Dan Gohman572645c2010-02-12 10:34:29 +00003647
Andrew Trick8a5d7922011-12-06 03:13:31 +00003648 std::pair<BestFormulaeTy::const_iterator, bool> P =
3649 BestFormulae.insert(std::make_pair(Key, FIdx));
3650 if (P.second)
3651 continue;
3652
Dan Gohman572645c2010-02-12 10:34:29 +00003653 Formula &Best = LU.Formulae[P.first->second];
Dan Gohmanfc7744b2010-10-07 23:52:18 +00003654
Dan Gohmanfc7744b2010-10-07 23:52:18 +00003655 Cost CostBest;
Dan Gohmanfc7744b2010-10-07 23:52:18 +00003656 Regs.clear();
Andrew Trick8a5d7922011-12-06 03:13:31 +00003657 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
Dan Gohmanfc7744b2010-10-07 23:52:18 +00003658 if (CostF < CostBest)
Dan Gohman572645c2010-02-12 10:34:29 +00003659 std::swap(F, Best);
Dan Gohman6458ff92010-05-18 22:37:37 +00003660 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00003661 dbgs() << "\n"
Dan Gohman6458ff92010-05-18 22:37:37 +00003662 " in favor of formula "; Best.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00003663 dbgs() << '\n');
Dan Gohman572645c2010-02-12 10:34:29 +00003664 }
Andrew Trick8a5d7922011-12-06 03:13:31 +00003665#ifndef NDEBUG
3666 ChangedFormulae = true;
3667#endif
3668 LU.DeleteFormula(F);
3669 --FIdx;
3670 --NumForms;
3671 Any = true;
Dan Gohman59dc6032010-05-07 23:36:59 +00003672 }
3673
Dan Gohman57aaa0b2010-05-18 23:55:57 +00003674 // Now that we've filtered out some formulae, recompute the Regs set.
Dan Gohmanb2df4332010-05-18 23:42:37 +00003675 if (Any)
3676 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman59dc6032010-05-07 23:36:59 +00003677
3678 // Reset this to prepare for the next use.
Dan Gohman572645c2010-02-12 10:34:29 +00003679 BestFormulae.clear();
3680 }
3681
Dan Gohmanc6519f92010-05-20 20:05:31 +00003682 DEBUG(if (ChangedFormulae) {
Dan Gohman9214b822010-02-13 02:06:02 +00003683 dbgs() << "\n"
3684 "After filtering out undesirable candidates:\n";
Dan Gohman572645c2010-02-12 10:34:29 +00003685 print_uses(dbgs());
3686 });
3687}
3688
Dan Gohmand079c302010-05-18 22:51:59 +00003689// This is a rough guess that seems to work fairly well.
3690static const size_t ComplexityLimit = UINT16_MAX;
3691
3692/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
3693/// solutions the solver might have to consider. It almost never considers
3694/// this many solutions because it prune the search space, but the pruning
3695/// isn't always sufficient.
3696size_t LSRInstance::EstimateSearchSpaceComplexity() const {
Dan Gohman0d6715a2010-10-07 23:37:58 +00003697 size_t Power = 1;
Dan Gohmand079c302010-05-18 22:51:59 +00003698 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3699 E = Uses.end(); I != E; ++I) {
3700 size_t FSize = I->Formulae.size();
3701 if (FSize >= ComplexityLimit) {
3702 Power = ComplexityLimit;
3703 break;
3704 }
3705 Power *= FSize;
3706 if (Power >= ComplexityLimit)
3707 break;
3708 }
3709 return Power;
3710}
3711
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003712/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
3713/// of the registers of another formula, it won't help reduce register
3714/// pressure (though it may not necessarily hurt register pressure); remove
3715/// it to simplify the system.
3716void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
Dan Gohmana2086b32010-05-19 23:43:12 +00003717 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3718 DEBUG(dbgs() << "The search space is too complex.\n");
3719
3720 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3721 "which use a superset of registers used by other "
3722 "formulae.\n");
3723
3724 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3725 LSRUse &LU = Uses[LUIdx];
3726 bool Any = false;
3727 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3728 Formula &F = LU.Formulae[i];
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00003729 // Look for a formula with a constant or GV in a register. If the use
3730 // also has a formula with that same value in an immediate field,
3731 // delete the one that uses a register.
Dan Gohmana2086b32010-05-19 23:43:12 +00003732 for (SmallVectorImpl<const SCEV *>::const_iterator
3733 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
3734 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
3735 Formula NewF = F;
3736 NewF.AM.BaseOffs += C->getValue()->getSExtValue();
3737 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3738 (I - F.BaseRegs.begin()));
3739 if (LU.HasFormulaWithSameRegs(NewF)) {
3740 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
3741 LU.DeleteFormula(F);
3742 --i;
3743 --e;
3744 Any = true;
3745 break;
3746 }
3747 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
3748 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
3749 if (!F.AM.BaseGV) {
3750 Formula NewF = F;
3751 NewF.AM.BaseGV = GV;
3752 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3753 (I - F.BaseRegs.begin()));
3754 if (LU.HasFormulaWithSameRegs(NewF)) {
3755 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
3756 dbgs() << '\n');
3757 LU.DeleteFormula(F);
3758 --i;
3759 --e;
3760 Any = true;
3761 break;
3762 }
3763 }
3764 }
3765 }
3766 }
3767 if (Any)
3768 LU.RecomputeRegs(LUIdx, RegUses);
3769 }
3770
3771 DEBUG(dbgs() << "After pre-selection:\n";
3772 print_uses(dbgs()));
3773 }
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003774}
Dan Gohmana2086b32010-05-19 23:43:12 +00003775
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003776/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
3777/// for expressions like A, A+1, A+2, etc., allocate a single register for
3778/// them.
3779void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
Dan Gohmana2086b32010-05-19 23:43:12 +00003780 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3781 DEBUG(dbgs() << "The search space is too complex.\n");
3782
3783 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
3784 "separated by a constant offset will use the same "
3785 "registers.\n");
3786
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00003787 // This is especially useful for unrolled loops.
3788
Dan Gohmana2086b32010-05-19 23:43:12 +00003789 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3790 LSRUse &LU = Uses[LUIdx];
Dan Gohman402d4352010-05-20 20:33:18 +00003791 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3792 E = LU.Formulae.end(); I != E; ++I) {
3793 const Formula &F = *I;
Dan Gohmana2086b32010-05-19 23:43:12 +00003794 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
Dan Gohman191bd642010-09-01 01:45:53 +00003795 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
3796 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
Dan Gohmana2086b32010-05-19 23:43:12 +00003797 /*HasBaseReg=*/false,
3798 LU.Kind, LU.AccessTy)) {
3799 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
3800 dbgs() << '\n');
3801
3802 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
3803
Dan Gohman191bd642010-09-01 01:45:53 +00003804 // Update the relocs to reference the new use.
3805 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
3806 E = Fixups.end(); I != E; ++I) {
3807 LSRFixup &Fixup = *I;
3808 if (Fixup.LUIdx == LUIdx) {
3809 Fixup.LUIdx = LUThatHas - &Uses.front();
3810 Fixup.Offset += F.AM.BaseOffs;
Dan Gohmandd3db0e2010-10-07 23:36:45 +00003811 // Add the new offset to LUThatHas' offset list.
3812 if (LUThatHas->Offsets.back() != Fixup.Offset) {
3813 LUThatHas->Offsets.push_back(Fixup.Offset);
3814 if (Fixup.Offset > LUThatHas->MaxOffset)
3815 LUThatHas->MaxOffset = Fixup.Offset;
3816 if (Fixup.Offset < LUThatHas->MinOffset)
3817 LUThatHas->MinOffset = Fixup.Offset;
3818 }
Dan Gohman191bd642010-09-01 01:45:53 +00003819 DEBUG(dbgs() << "New fixup has offset "
3820 << Fixup.Offset << '\n');
3821 }
3822 if (Fixup.LUIdx == NumUses-1)
3823 Fixup.LUIdx = LUIdx;
3824 }
3825
Dan Gohmanc2921ea2010-10-08 19:33:26 +00003826 // Delete formulae from the new use which are no longer legal.
3827 bool Any = false;
3828 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3829 Formula &F = LUThatHas->Formulae[i];
3830 if (!isLegalUse(F.AM,
3831 LUThatHas->MinOffset, LUThatHas->MaxOffset,
3832 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3833 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
3834 dbgs() << '\n');
3835 LUThatHas->DeleteFormula(F);
3836 --i;
3837 --e;
3838 Any = true;
3839 }
3840 }
3841 if (Any)
3842 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3843
Dan Gohmana2086b32010-05-19 23:43:12 +00003844 // Delete the old use.
Dan Gohmanc6897702010-10-07 23:33:43 +00003845 DeleteUse(LU, LUIdx);
Dan Gohmana2086b32010-05-19 23:43:12 +00003846 --LUIdx;
3847 --NumUses;
3848 break;
3849 }
3850 }
3851 }
3852 }
3853 }
3854
3855 DEBUG(dbgs() << "After pre-selection:\n";
3856 print_uses(dbgs()));
3857 }
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003858}
Dan Gohmana2086b32010-05-19 23:43:12 +00003859
Andrew Trick3228cc22011-03-14 16:50:06 +00003860/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
Dan Gohman4f7e18d2010-08-29 16:39:22 +00003861/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3862/// we've done more filtering, as it may be able to find more formulae to
3863/// eliminate.
3864void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3865 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3866 DEBUG(dbgs() << "The search space is too complex.\n");
3867
3868 DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3869 "undesirable dedicated registers.\n");
3870
3871 FilterOutUndesirableDedicatedRegisters();
3872
3873 DEBUG(dbgs() << "After pre-selection:\n";
3874 print_uses(dbgs()));
3875 }
3876}
3877
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003878/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3879/// to be profitable, and then in any use which has any reference to that
3880/// register, delete all formulae which do not reference that register.
3881void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
Dan Gohman76c315a2010-05-20 20:52:00 +00003882 // With all other options exhausted, loop until the system is simple
3883 // enough to handle.
Dan Gohman572645c2010-02-12 10:34:29 +00003884 SmallPtrSet<const SCEV *, 4> Taken;
Dan Gohmand079c302010-05-18 22:51:59 +00003885 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
Dan Gohman572645c2010-02-12 10:34:29 +00003886 // Ok, we have too many of formulae on our hands to conveniently handle.
3887 // Use a rough heuristic to thin out the list.
Dan Gohman0da751b2010-05-18 22:41:32 +00003888 DEBUG(dbgs() << "The search space is too complex.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00003889
3890 // Pick the register which is used by the most LSRUses, which is likely
3891 // to be a good reuse register candidate.
3892 const SCEV *Best = 0;
3893 unsigned BestNum = 0;
3894 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3895 I != E; ++I) {
3896 const SCEV *Reg = *I;
3897 if (Taken.count(Reg))
3898 continue;
3899 if (!Best)
3900 Best = Reg;
3901 else {
3902 unsigned Count = RegUses.getUsedByIndices(Reg).count();
3903 if (Count > BestNum) {
3904 Best = Reg;
3905 BestNum = Count;
3906 }
3907 }
3908 }
3909
3910 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003911 << " will yield profitable reuse.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00003912 Taken.insert(Best);
3913
3914 // In any use with formulae which references this register, delete formulae
3915 // which don't reference it.
Dan Gohmanb2df4332010-05-18 23:42:37 +00003916 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3917 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00003918 if (!LU.Regs.count(Best)) continue;
3919
Dan Gohmanb2df4332010-05-18 23:42:37 +00003920 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003921 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3922 Formula &F = LU.Formulae[i];
3923 if (!F.referencesReg(Best)) {
3924 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
Dan Gohmand69d6282010-05-18 22:39:15 +00003925 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00003926 --e;
3927 --i;
Dan Gohmanb2df4332010-05-18 23:42:37 +00003928 Any = true;
Dan Gohman59dc6032010-05-07 23:36:59 +00003929 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
Dan Gohman572645c2010-02-12 10:34:29 +00003930 continue;
3931 }
Dan Gohman572645c2010-02-12 10:34:29 +00003932 }
Dan Gohmanb2df4332010-05-18 23:42:37 +00003933
3934 if (Any)
3935 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman572645c2010-02-12 10:34:29 +00003936 }
3937
3938 DEBUG(dbgs() << "After pre-selection:\n";
3939 print_uses(dbgs()));
3940 }
3941}
3942
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003943/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3944/// formulae to choose from, use some rough heuristics to prune down the number
3945/// of formulae. This keeps the main solver from taking an extraordinary amount
3946/// of time in some worst-case scenarios.
3947void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3948 NarrowSearchSpaceByDetectingSupersets();
3949 NarrowSearchSpaceByCollapsingUnrolledCode();
Dan Gohman4f7e18d2010-08-29 16:39:22 +00003950 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003951 NarrowSearchSpaceByPickingWinnerRegs();
3952}
3953
Dan Gohman572645c2010-02-12 10:34:29 +00003954/// SolveRecurse - This is the recursive solver.
3955void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3956 Cost &SolutionCost,
3957 SmallVectorImpl<const Formula *> &Workspace,
3958 const Cost &CurCost,
3959 const SmallPtrSet<const SCEV *, 16> &CurRegs,
3960 DenseSet<const SCEV *> &VisitedRegs) const {
3961 // Some ideas:
3962 // - prune more:
3963 // - use more aggressive filtering
3964 // - sort the formula so that the most profitable solutions are found first
3965 // - sort the uses too
3966 // - search faster:
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003967 // - don't compute a cost, and then compare. compare while computing a cost
Dan Gohman572645c2010-02-12 10:34:29 +00003968 // and bail early.
3969 // - track register sets with SmallBitVector
3970
3971 const LSRUse &LU = Uses[Workspace.size()];
3972
3973 // If this use references any register that's already a part of the
3974 // in-progress solution, consider it a requirement that a formula must
3975 // reference that register in order to be considered. This prunes out
3976 // unprofitable searching.
3977 SmallSetVector<const SCEV *, 4> ReqRegs;
3978 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3979 E = CurRegs.end(); I != E; ++I)
Dan Gohman9214b822010-02-13 02:06:02 +00003980 if (LU.Regs.count(*I))
Dan Gohman572645c2010-02-12 10:34:29 +00003981 ReqRegs.insert(*I);
Dan Gohman572645c2010-02-12 10:34:29 +00003982
Dan Gohman9214b822010-02-13 02:06:02 +00003983 bool AnySatisfiedReqRegs = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003984 SmallPtrSet<const SCEV *, 16> NewRegs;
3985 Cost NewCost;
Dan Gohman9214b822010-02-13 02:06:02 +00003986retry:
Dan Gohman572645c2010-02-12 10:34:29 +00003987 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3988 E = LU.Formulae.end(); I != E; ++I) {
3989 const Formula &F = *I;
3990
3991 // Ignore formulae which do not use any of the required registers.
3992 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3993 JE = ReqRegs.end(); J != JE; ++J) {
3994 const SCEV *Reg = *J;
3995 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3996 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3997 F.BaseRegs.end())
3998 goto skip;
3999 }
Dan Gohman9214b822010-02-13 02:06:02 +00004000 AnySatisfiedReqRegs = true;
Dan Gohman572645c2010-02-12 10:34:29 +00004001
4002 // Evaluate the cost of the current formula. If it's already worse than
4003 // the current best, prune the search at that point.
4004 NewCost = CurCost;
4005 NewRegs = CurRegs;
4006 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
4007 if (NewCost < SolutionCost) {
4008 Workspace.push_back(&F);
4009 if (Workspace.size() != Uses.size()) {
4010 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4011 NewRegs, VisitedRegs);
4012 if (F.getNumRegs() == 1 && Workspace.size() == 1)
4013 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4014 } else {
4015 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
Andrew Trick8bf295b2012-01-09 18:58:16 +00004016 dbgs() << ".\n Regs:";
Dan Gohman572645c2010-02-12 10:34:29 +00004017 for (SmallPtrSet<const SCEV *, 16>::const_iterator
4018 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
4019 dbgs() << ' ' << **I;
4020 dbgs() << '\n');
4021
4022 SolutionCost = NewCost;
4023 Solution = Workspace;
4024 }
4025 Workspace.pop_back();
4026 }
4027 skip:;
4028 }
Dan Gohman9214b822010-02-13 02:06:02 +00004029
Andrew Trick80ef1b22011-09-27 00:44:14 +00004030 if (!EnableRetry && !AnySatisfiedReqRegs)
4031 return;
4032
Dan Gohman9214b822010-02-13 02:06:02 +00004033 // If none of the formulae had all of the required registers, relax the
4034 // constraint so that we don't exclude all formulae.
4035 if (!AnySatisfiedReqRegs) {
Dan Gohman59dc6032010-05-07 23:36:59 +00004036 assert(!ReqRegs.empty() && "Solver failed even without required registers");
Dan Gohman9214b822010-02-13 02:06:02 +00004037 ReqRegs.clear();
4038 goto retry;
4039 }
Dan Gohman572645c2010-02-12 10:34:29 +00004040}
4041
Dan Gohman76c315a2010-05-20 20:52:00 +00004042/// Solve - Choose one formula from each use. Return the results in the given
4043/// Solution vector.
Dan Gohman572645c2010-02-12 10:34:29 +00004044void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4045 SmallVector<const Formula *, 8> Workspace;
4046 Cost SolutionCost;
4047 SolutionCost.Loose();
4048 Cost CurCost;
4049 SmallPtrSet<const SCEV *, 16> CurRegs;
4050 DenseSet<const SCEV *> VisitedRegs;
4051 Workspace.reserve(Uses.size());
4052
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00004053 // SolveRecurse does all the work.
Dan Gohman572645c2010-02-12 10:34:29 +00004054 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4055 CurRegs, VisitedRegs);
Andrew Trick80ef1b22011-09-27 00:44:14 +00004056 if (Solution.empty()) {
4057 DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4058 return;
4059 }
Dan Gohman572645c2010-02-12 10:34:29 +00004060
4061 // Ok, we've now made all our decisions.
4062 DEBUG(dbgs() << "\n"
4063 "The chosen solution requires "; SolutionCost.print(dbgs());
4064 dbgs() << ":\n";
4065 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4066 dbgs() << " ";
4067 Uses[i].print(dbgs());
4068 dbgs() << "\n"
4069 " ";
4070 Solution[i]->print(dbgs());
4071 dbgs() << '\n';
4072 });
Dan Gohmana5528782010-05-20 20:59:23 +00004073
4074 assert(Solution.size() == Uses.size() && "Malformed solution!");
Dan Gohman572645c2010-02-12 10:34:29 +00004075}
4076
Dan Gohmane5f76872010-04-09 22:07:05 +00004077/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
4078/// the dominator tree far as we can go while still being dominated by the
4079/// input positions. This helps canonicalize the insert position, which
4080/// encourages sharing.
4081BasicBlock::iterator
4082LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4083 const SmallVectorImpl<Instruction *> &Inputs)
4084 const {
4085 for (;;) {
4086 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4087 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4088
4089 BasicBlock *IDom;
Dan Gohmand974a0e2010-05-20 20:00:25 +00004090 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
Dan Gohman0fe46d92010-05-20 22:46:54 +00004091 if (!Rung) return IP;
Dan Gohmand974a0e2010-05-20 20:00:25 +00004092 Rung = Rung->getIDom();
4093 if (!Rung) return IP;
4094 IDom = Rung->getBlock();
Dan Gohmane5f76872010-04-09 22:07:05 +00004095
4096 // Don't climb into a loop though.
4097 const Loop *IDomLoop = LI.getLoopFor(IDom);
4098 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4099 if (IDomDepth <= IPLoopDepth &&
4100 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4101 break;
4102 }
4103
4104 bool AllDominate = true;
4105 Instruction *BetterPos = 0;
4106 Instruction *Tentative = IDom->getTerminator();
4107 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
4108 E = Inputs.end(); I != E; ++I) {
4109 Instruction *Inst = *I;
4110 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4111 AllDominate = false;
4112 break;
4113 }
4114 // Attempt to find an insert position in the middle of the block,
4115 // instead of at the end, so that it can be used for other expansions.
4116 if (IDom == Inst->getParent() &&
4117 (!BetterPos || DT.dominates(BetterPos, Inst)))
Douglas Gregor7d9663c2010-05-11 06:17:44 +00004118 BetterPos = llvm::next(BasicBlock::iterator(Inst));
Dan Gohmane5f76872010-04-09 22:07:05 +00004119 }
4120 if (!AllDominate)
4121 break;
4122 if (BetterPos)
4123 IP = BetterPos;
4124 else
4125 IP = Tentative;
4126 }
4127
4128 return IP;
4129}
4130
4131/// AdjustInsertPositionForExpand - Determine an input position which will be
Dan Gohmand96eae82010-04-09 02:00:38 +00004132/// dominated by the operands and which will dominate the result.
4133BasicBlock::iterator
Dan Gohmane5f76872010-04-09 22:07:05 +00004134LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
4135 const LSRFixup &LF,
4136 const LSRUse &LU) const {
Dan Gohmand96eae82010-04-09 02:00:38 +00004137 // Collect some instructions which must be dominated by the
Dan Gohman448db1c2010-04-07 22:27:08 +00004138 // expanding replacement. These must be dominated by any operands that
Dan Gohman572645c2010-02-12 10:34:29 +00004139 // will be required in the expansion.
4140 SmallVector<Instruction *, 4> Inputs;
4141 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4142 Inputs.push_back(I);
4143 if (LU.Kind == LSRUse::ICmpZero)
4144 if (Instruction *I =
4145 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4146 Inputs.push_back(I);
Dan Gohman448db1c2010-04-07 22:27:08 +00004147 if (LF.PostIncLoops.count(L)) {
4148 if (LF.isUseFullyOutsideLoop(L))
Dan Gohman069d6f32010-03-02 01:59:21 +00004149 Inputs.push_back(L->getLoopLatch()->getTerminator());
4150 else
4151 Inputs.push_back(IVIncInsertPos);
4152 }
Dan Gohman701a4ae2010-04-08 05:57:57 +00004153 // The expansion must also be dominated by the increment positions of any
4154 // loops it for which it is using post-inc mode.
4155 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
4156 E = LF.PostIncLoops.end(); I != E; ++I) {
4157 const Loop *PIL = *I;
4158 if (PIL == L) continue;
4159
Dan Gohmane5f76872010-04-09 22:07:05 +00004160 // Be dominated by the loop exit.
Dan Gohman701a4ae2010-04-08 05:57:57 +00004161 SmallVector<BasicBlock *, 4> ExitingBlocks;
4162 PIL->getExitingBlocks(ExitingBlocks);
4163 if (!ExitingBlocks.empty()) {
4164 BasicBlock *BB = ExitingBlocks[0];
4165 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4166 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4167 Inputs.push_back(BB->getTerminator());
4168 }
4169 }
Dan Gohman572645c2010-02-12 10:34:29 +00004170
4171 // Then, climb up the immediate dominator tree as far as we can go while
4172 // still being dominated by the input positions.
Dan Gohmane5f76872010-04-09 22:07:05 +00004173 IP = HoistInsertPosition(IP, Inputs);
Dan Gohmand96eae82010-04-09 02:00:38 +00004174
4175 // Don't insert instructions before PHI nodes.
Dan Gohman572645c2010-02-12 10:34:29 +00004176 while (isa<PHINode>(IP)) ++IP;
Dan Gohmand96eae82010-04-09 02:00:38 +00004177
Bill Wendlinga4c86ab2011-08-24 21:06:46 +00004178 // Ignore landingpad instructions.
4179 while (isa<LandingPadInst>(IP)) ++IP;
4180
Dan Gohmand96eae82010-04-09 02:00:38 +00004181 // Ignore debug intrinsics.
Dan Gohman449f31c2010-03-26 00:33:27 +00004182 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
Dan Gohman572645c2010-02-12 10:34:29 +00004183
Dan Gohmand96eae82010-04-09 02:00:38 +00004184 return IP;
4185}
4186
Dan Gohman76c315a2010-05-20 20:52:00 +00004187/// Expand - Emit instructions for the leading candidate expression for this
4188/// LSRUse (this is called "expanding").
Dan Gohmand96eae82010-04-09 02:00:38 +00004189Value *LSRInstance::Expand(const LSRFixup &LF,
4190 const Formula &F,
4191 BasicBlock::iterator IP,
4192 SCEVExpander &Rewriter,
4193 SmallVectorImpl<WeakVH> &DeadInsts) const {
4194 const LSRUse &LU = Uses[LF.LUIdx];
4195
4196 // Determine an input position which will be dominated by the operands and
4197 // which will dominate the result.
Dan Gohmane5f76872010-04-09 22:07:05 +00004198 IP = AdjustInsertPositionForExpand(IP, LF, LU);
Dan Gohmand96eae82010-04-09 02:00:38 +00004199
Dan Gohman572645c2010-02-12 10:34:29 +00004200 // Inform the Rewriter if we have a post-increment use, so that it can
4201 // perform an advantageous expansion.
Dan Gohman448db1c2010-04-07 22:27:08 +00004202 Rewriter.setPostInc(LF.PostIncLoops);
Dan Gohman572645c2010-02-12 10:34:29 +00004203
4204 // This is the type that the user actually needs.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004205 Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00004206 // This will be the type that we'll initially expand to.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004207 Type *Ty = F.getType();
Dan Gohman572645c2010-02-12 10:34:29 +00004208 if (!Ty)
4209 // No type known; just expand directly to the ultimate type.
4210 Ty = OpTy;
4211 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4212 // Expand directly to the ultimate type if it's the right size.
4213 Ty = OpTy;
4214 // This is the type to do integer arithmetic in.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004215 Type *IntTy = SE.getEffectiveSCEVType(Ty);
Dan Gohman572645c2010-02-12 10:34:29 +00004216
4217 // Build up a list of operands to add together to form the full base.
4218 SmallVector<const SCEV *, 8> Ops;
4219
4220 // Expand the BaseRegs portion.
4221 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
4222 E = F.BaseRegs.end(); I != E; ++I) {
4223 const SCEV *Reg = *I;
4224 assert(!Reg->isZero() && "Zero allocated in a base register!");
4225
Dan Gohman448db1c2010-04-07 22:27:08 +00004226 // If we're expanding for a post-inc user, make the post-inc adjustment.
4227 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4228 Reg = TransformForPostIncUse(Denormalize, Reg,
4229 LF.UserInst, LF.OperandValToReplace,
4230 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00004231
4232 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
4233 }
4234
Dan Gohman087bd1e2010-03-03 05:29:13 +00004235 // Flush the operand list to suppress SCEVExpander hoisting.
4236 if (!Ops.empty()) {
4237 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4238 Ops.clear();
4239 Ops.push_back(SE.getUnknown(FullV));
4240 }
4241
Dan Gohman572645c2010-02-12 10:34:29 +00004242 // Expand the ScaledReg portion.
4243 Value *ICmpScaledV = 0;
4244 if (F.AM.Scale != 0) {
4245 const SCEV *ScaledS = F.ScaledReg;
4246
Dan Gohman448db1c2010-04-07 22:27:08 +00004247 // If we're expanding for a post-inc user, make the post-inc adjustment.
4248 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4249 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4250 LF.UserInst, LF.OperandValToReplace,
4251 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00004252
4253 if (LU.Kind == LSRUse::ICmpZero) {
4254 // An interesting way of "folding" with an icmp is to use a negated
4255 // scale, which we'll implement by inserting it into the other operand
4256 // of the icmp.
4257 assert(F.AM.Scale == -1 &&
4258 "The only scale supported by ICmpZero uses is -1!");
4259 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
4260 } else {
4261 // Otherwise just expand the scaled register and an explicit scale,
4262 // which is expected to be matched as part of the address.
4263 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
4264 ScaledS = SE.getMulExpr(ScaledS,
Dan Gohmandeff6212010-05-03 22:09:21 +00004265 SE.getConstant(ScaledS->getType(), F.AM.Scale));
Dan Gohman572645c2010-02-12 10:34:29 +00004266 Ops.push_back(ScaledS);
Dan Gohman087bd1e2010-03-03 05:29:13 +00004267
4268 // Flush the operand list to suppress SCEVExpander hoisting.
4269 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4270 Ops.clear();
4271 Ops.push_back(SE.getUnknown(FullV));
Dan Gohman572645c2010-02-12 10:34:29 +00004272 }
4273 }
4274
Dan Gohman087bd1e2010-03-03 05:29:13 +00004275 // Expand the GV portion.
4276 if (F.AM.BaseGV) {
4277 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
4278
4279 // Flush the operand list to suppress SCEVExpander hoisting.
4280 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4281 Ops.clear();
4282 Ops.push_back(SE.getUnknown(FullV));
4283 }
4284
4285 // Expand the immediate portion.
Dan Gohman572645c2010-02-12 10:34:29 +00004286 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
4287 if (Offset != 0) {
4288 if (LU.Kind == LSRUse::ICmpZero) {
4289 // The other interesting way of "folding" with an ICmpZero is to use a
4290 // negated immediate.
4291 if (!ICmpScaledV)
Eli Friedmandae36ba2011-10-13 23:48:33 +00004292 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
Dan Gohman572645c2010-02-12 10:34:29 +00004293 else {
4294 Ops.push_back(SE.getUnknown(ICmpScaledV));
4295 ICmpScaledV = ConstantInt::get(IntTy, Offset);
4296 }
4297 } else {
4298 // Just add the immediate values. These again are expected to be matched
4299 // as part of the address.
Dan Gohman087bd1e2010-03-03 05:29:13 +00004300 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
Dan Gohman572645c2010-02-12 10:34:29 +00004301 }
4302 }
4303
Dan Gohmancca82142011-05-03 00:46:49 +00004304 // Expand the unfolded offset portion.
4305 int64_t UnfoldedOffset = F.UnfoldedOffset;
4306 if (UnfoldedOffset != 0) {
4307 // Just add the immediate values.
4308 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4309 UnfoldedOffset)));
4310 }
4311
Dan Gohman572645c2010-02-12 10:34:29 +00004312 // Emit instructions summing all the operands.
4313 const SCEV *FullS = Ops.empty() ?
Dan Gohmandeff6212010-05-03 22:09:21 +00004314 SE.getConstant(IntTy, 0) :
Dan Gohman572645c2010-02-12 10:34:29 +00004315 SE.getAddExpr(Ops);
4316 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
4317
4318 // We're done expanding now, so reset the rewriter.
Dan Gohman448db1c2010-04-07 22:27:08 +00004319 Rewriter.clearPostInc();
Dan Gohman572645c2010-02-12 10:34:29 +00004320
4321 // An ICmpZero Formula represents an ICmp which we're handling as a
4322 // comparison against zero. Now that we've expanded an expression for that
4323 // form, update the ICmp's other operand.
4324 if (LU.Kind == LSRUse::ICmpZero) {
4325 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4326 DeadInsts.push_back(CI->getOperand(1));
4327 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
4328 "a scale at the same time!");
4329 if (F.AM.Scale == -1) {
4330 if (ICmpScaledV->getType() != OpTy) {
4331 Instruction *Cast =
4332 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4333 OpTy, false),
4334 ICmpScaledV, OpTy, "tmp", CI);
4335 ICmpScaledV = Cast;
4336 }
4337 CI->setOperand(1, ICmpScaledV);
4338 } else {
4339 assert(F.AM.Scale == 0 &&
4340 "ICmp does not support folding a global value and "
4341 "a scale at the same time!");
4342 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4343 -(uint64_t)Offset);
4344 if (C->getType() != OpTy)
4345 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4346 OpTy, false),
4347 C, OpTy);
4348
4349 CI->setOperand(1, C);
4350 }
4351 }
4352
4353 return FullV;
4354}
4355
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004356/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
4357/// of their operands effectively happens in their predecessor blocks, so the
4358/// expression may need to be expanded in multiple places.
4359void LSRInstance::RewriteForPHI(PHINode *PN,
4360 const LSRFixup &LF,
4361 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004362 SCEVExpander &Rewriter,
4363 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004364 Pass *P) const {
4365 DenseMap<BasicBlock *, Value *> Inserted;
4366 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4367 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4368 BasicBlock *BB = PN->getIncomingBlock(i);
4369
4370 // If this is a critical edge, split the edge so that we do not insert
4371 // the code on all predecessor/successor paths. We do this unless this
4372 // is the canonical backedge for this loop, which complicates post-inc
4373 // users.
4374 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
Dan Gohman3ef98382011-02-08 00:55:13 +00004375 !isa<IndirectBrInst>(BB->getTerminator())) {
Bill Wendling89d44112011-08-25 01:08:34 +00004376 BasicBlock *Parent = PN->getParent();
4377 Loop *PNLoop = LI.getLoopFor(Parent);
4378 if (!PNLoop || Parent != PNLoop->getHeader()) {
Dan Gohman3ef98382011-02-08 00:55:13 +00004379 // Split the critical edge.
Bill Wendling8b6af8a2011-08-25 05:55:40 +00004380 BasicBlock *NewBB = 0;
4381 if (!Parent->isLandingPad()) {
Andrew Trickf143b792011-10-04 03:50:44 +00004382 NewBB = SplitCriticalEdge(BB, Parent, P,
4383 /*MergeIdenticalEdges=*/true,
4384 /*DontDeleteUselessPhis=*/true);
Bill Wendling8b6af8a2011-08-25 05:55:40 +00004385 } else {
4386 SmallVector<BasicBlock*, 2> NewBBs;
4387 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
4388 NewBB = NewBBs[0];
4389 }
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004390
Dan Gohman3ef98382011-02-08 00:55:13 +00004391 // If PN is outside of the loop and BB is in the loop, we want to
4392 // move the block to be immediately before the PHI block, not
4393 // immediately after BB.
4394 if (L->contains(BB) && !L->contains(PN))
4395 NewBB->moveBefore(PN->getParent());
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004396
Dan Gohman3ef98382011-02-08 00:55:13 +00004397 // Splitting the edge can reduce the number of PHI entries we have.
4398 e = PN->getNumIncomingValues();
4399 BB = NewBB;
4400 i = PN->getBasicBlockIndex(BB);
4401 }
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004402 }
4403
4404 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4405 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
4406 if (!Pair.second)
4407 PN->setIncomingValue(i, Pair.first->second);
4408 else {
Dan Gohman454d26d2010-02-22 04:11:59 +00004409 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004410
4411 // If this is reuse-by-noop-cast, insert the noop cast.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004412 Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004413 if (FullV->getType() != OpTy)
4414 FullV =
4415 CastInst::Create(CastInst::getCastOpcode(FullV, false,
4416 OpTy, false),
4417 FullV, LF.OperandValToReplace->getType(),
4418 "tmp", BB->getTerminator());
4419
4420 PN->setIncomingValue(i, FullV);
4421 Pair.first->second = FullV;
4422 }
4423 }
4424}
4425
Dan Gohman572645c2010-02-12 10:34:29 +00004426/// Rewrite - Emit instructions for the leading candidate expression for this
4427/// LSRUse (this is called "expanding"), and update the UserInst to reference
4428/// the newly expanded value.
4429void LSRInstance::Rewrite(const LSRFixup &LF,
4430 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00004431 SCEVExpander &Rewriter,
4432 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00004433 Pass *P) const {
Dan Gohman572645c2010-02-12 10:34:29 +00004434 // First, find an insertion point that dominates UserInst. For PHI nodes,
4435 // find the nearest block which dominates all the relevant uses.
4436 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
Dan Gohman454d26d2010-02-22 04:11:59 +00004437 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00004438 } else {
Dan Gohman454d26d2010-02-22 04:11:59 +00004439 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
Dan Gohman572645c2010-02-12 10:34:29 +00004440
4441 // If this is reuse-by-noop-cast, insert the noop cast.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004442 Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00004443 if (FullV->getType() != OpTy) {
4444 Instruction *Cast =
4445 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4446 FullV, OpTy, "tmp", LF.UserInst);
4447 FullV = Cast;
4448 }
4449
4450 // Update the user. ICmpZero is handled specially here (for now) because
4451 // Expand may have updated one of the operands of the icmp already, and
4452 // its new value may happen to be equal to LF.OperandValToReplace, in
4453 // which case doing replaceUsesOfWith leads to replacing both operands
4454 // with the same value. TODO: Reorganize this.
4455 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4456 LF.UserInst->setOperand(0, FullV);
4457 else
4458 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4459 }
4460
4461 DeadInsts.push_back(LF.OperandValToReplace);
4462}
4463
Dan Gohman76c315a2010-05-20 20:52:00 +00004464/// ImplementSolution - Rewrite all the fixup locations with new values,
4465/// following the chosen solution.
Dan Gohman572645c2010-02-12 10:34:29 +00004466void
4467LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
4468 Pass *P) {
4469 // Keep track of instructions we may have made dead, so that
4470 // we can remove them after we are done working.
4471 SmallVector<WeakVH, 16> DeadInsts;
4472
Andrew Trick5e7645b2011-06-28 05:07:32 +00004473 SCEVExpander Rewriter(SE, "lsr");
Andrew Trick8bf295b2012-01-09 18:58:16 +00004474#ifndef NDEBUG
4475 Rewriter.setDebugType(DEBUG_TYPE);
4476#endif
Dan Gohman572645c2010-02-12 10:34:29 +00004477 Rewriter.disableCanonicalMode();
Andrew Trickc5701912011-10-07 23:46:21 +00004478 Rewriter.enableLSRMode();
Dan Gohman572645c2010-02-12 10:34:29 +00004479 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4480
Andrew Trick64925c52012-01-10 01:45:08 +00004481 // Mark phi nodes that terminate chains so the expander tries to reuse them.
4482 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4483 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4484 if (PHINode *PN = dyn_cast<PHINode>(ChainI->back().UserInst))
4485 Rewriter.setChainedPhi(PN);
4486 }
4487
Dan Gohman572645c2010-02-12 10:34:29 +00004488 // Expand the new value definitions and update the users.
Dan Gohman402d4352010-05-20 20:33:18 +00004489 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4490 E = Fixups.end(); I != E; ++I) {
4491 const LSRFixup &Fixup = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00004492
Dan Gohman402d4352010-05-20 20:33:18 +00004493 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00004494
4495 Changed = true;
4496 }
4497
Andrew Trick22d20c22012-01-09 21:18:52 +00004498 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4499 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4500 GenerateIVChain(*ChainI, Rewriter, DeadInsts);
4501 Changed = true;
4502 }
Dan Gohman572645c2010-02-12 10:34:29 +00004503 // Clean up after ourselves. This must be done before deleting any
4504 // instructions.
4505 Rewriter.clear();
4506
4507 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4508}
4509
4510LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
4511 : IU(P->getAnalysis<IVUsers>()),
4512 SE(P->getAnalysis<ScalarEvolution>()),
4513 DT(P->getAnalysis<DominatorTree>()),
Dan Gohmane5f76872010-04-09 22:07:05 +00004514 LI(P->getAnalysis<LoopInfo>()),
Dan Gohman572645c2010-02-12 10:34:29 +00004515 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
Devang Patel0f54dcb2007-03-06 21:14:09 +00004516
Dan Gohman03e896b2009-11-05 21:11:53 +00004517 // If LoopSimplify form is not available, stay out of trouble.
Andrew Trickacdb4aa2012-01-07 03:16:50 +00004518 if (!L->isLoopSimplifyForm())
4519 return;
Dan Gohman03e896b2009-11-05 21:11:53 +00004520
Andrew Trick0f080912012-01-17 06:45:52 +00004521 // All dominating loops must have preheaders, or SCEVExpander may not be able
4522 // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4523 //
4524 // FIXME: This is a little absurd. I think LoopSimplify should be taught
4525 // to create a preheader under any circumstance.
4526 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4527 Rung; Rung = Rung->getIDom()) {
4528 BasicBlock *BB = Rung->getBlock();
4529 const Loop *DomLoop = LI.getLoopFor(BB);
4530 if (DomLoop && DomLoop->getHeader() == BB) {
4531 if (!DomLoop->getLoopPreheader())
4532 return;
4533 }
Andrew Trickacdb4aa2012-01-07 03:16:50 +00004534 }
Dan Gohman572645c2010-02-12 10:34:29 +00004535 // If there's no interesting work to be done, bail early.
4536 if (IU.empty()) return;
Dan Gohman80b0f8c2009-03-09 20:34:59 +00004537
Dan Gohman572645c2010-02-12 10:34:29 +00004538 DEBUG(dbgs() << "\nLSR on loop ";
4539 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
4540 dbgs() << ":\n");
Dan Gohmanf7912df2009-03-09 20:46:50 +00004541
Dan Gohman402d4352010-05-20 20:33:18 +00004542 // First, perform some low-level loop optimizations.
Dan Gohman572645c2010-02-12 10:34:29 +00004543 OptimizeShadowIV();
Dan Gohmanc6519f92010-05-20 20:05:31 +00004544 OptimizeLoopTermCond();
Evan Cheng5792f512009-05-11 22:33:01 +00004545
Andrew Trick37eb38d2011-07-21 00:40:04 +00004546 // If loop preparation eliminates all interesting IV users, bail.
4547 if (IU.empty()) return;
4548
Andrew Trick5219f862011-09-29 01:53:08 +00004549 // Skip nested loops until we can model them better with formulae.
Andrew Trick0c01bc32011-09-29 01:33:38 +00004550 if (!EnableNested && !L->empty()) {
4551 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
Andrew Trick5219f862011-09-29 01:53:08 +00004552 return;
Andrew Trick0c01bc32011-09-29 01:33:38 +00004553 }
4554
Dan Gohman402d4352010-05-20 20:33:18 +00004555 // Start collecting data and preparing for the solver.
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00004556 CollectChains();
Dan Gohman572645c2010-02-12 10:34:29 +00004557 CollectInterestingTypesAndFactors();
4558 CollectFixupsAndInitialFormulae();
4559 CollectLoopInvariantFixupsAndFormulae();
Chris Lattner010de252005-08-08 05:28:22 +00004560
Andrew Trick22d20c22012-01-09 21:18:52 +00004561 assert(!Uses.empty() && "IVUsers reported at least one use");
Dan Gohman572645c2010-02-12 10:34:29 +00004562 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4563 print_uses(dbgs()));
Misha Brukmanfd939082005-04-21 23:48:37 +00004564
Dan Gohman572645c2010-02-12 10:34:29 +00004565 // Now use the reuse data to generate a bunch of interesting ways
4566 // to formulate the values needed for the uses.
4567 GenerateAllReuseFormulae();
Evan Chengd1d6b5c2006-03-16 21:53:05 +00004568
Dan Gohman572645c2010-02-12 10:34:29 +00004569 FilterOutUndesirableDedicatedRegisters();
4570 NarrowSearchSpaceUsingHeuristics();
Dan Gohman6bec5bb2009-12-18 00:06:20 +00004571
Dan Gohman572645c2010-02-12 10:34:29 +00004572 SmallVector<const Formula *, 8> Solution;
4573 Solve(Solution);
Dan Gohman6bec5bb2009-12-18 00:06:20 +00004574
Dan Gohman572645c2010-02-12 10:34:29 +00004575 // Release memory that is no longer needed.
4576 Factors.clear();
4577 Types.clear();
4578 RegUses.clear();
4579
Andrew Trick80ef1b22011-09-27 00:44:14 +00004580 if (Solution.empty())
4581 return;
4582
Dan Gohman572645c2010-02-12 10:34:29 +00004583#ifndef NDEBUG
4584 // Formulae should be legal.
4585 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4586 E = Uses.end(); I != E; ++I) {
4587 const LSRUse &LU = *I;
4588 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4589 JE = LU.Formulae.end(); J != JE; ++J)
4590 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
4591 LU.Kind, LU.AccessTy, TLI) &&
4592 "Illegal formula generated!");
4593 };
4594#endif
4595
4596 // Now that we've decided what we want, make it so.
4597 ImplementSolution(Solution, P);
4598}
4599
4600void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4601 if (Factors.empty() && Types.empty()) return;
4602
4603 OS << "LSR has identified the following interesting factors and types: ";
4604 bool First = true;
4605
4606 for (SmallSetVector<int64_t, 8>::const_iterator
4607 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
4608 if (!First) OS << ", ";
4609 First = false;
4610 OS << '*' << *I;
Evan Cheng81ebdcf2009-11-10 21:14:05 +00004611 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00004612
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004613 for (SmallSetVector<Type *, 4>::const_iterator
Dan Gohman572645c2010-02-12 10:34:29 +00004614 I = Types.begin(), E = Types.end(); I != E; ++I) {
4615 if (!First) OS << ", ";
4616 First = false;
4617 OS << '(' << **I << ')';
4618 }
4619 OS << '\n';
4620}
4621
4622void LSRInstance::print_fixups(raw_ostream &OS) const {
4623 OS << "LSR is examining the following fixup sites:\n";
4624 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4625 E = Fixups.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +00004626 dbgs() << " ";
Dan Gohman9f383eb2010-05-20 22:25:20 +00004627 I->print(OS);
Dan Gohman572645c2010-02-12 10:34:29 +00004628 OS << '\n';
4629 }
4630}
4631
4632void LSRInstance::print_uses(raw_ostream &OS) const {
4633 OS << "LSR is examining the following uses:\n";
4634 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4635 E = Uses.end(); I != E; ++I) {
4636 const LSRUse &LU = *I;
4637 dbgs() << " ";
4638 LU.print(OS);
4639 OS << '\n';
4640 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4641 JE = LU.Formulae.end(); J != JE; ++J) {
4642 OS << " ";
4643 J->print(OS);
4644 OS << '\n';
4645 }
4646 }
4647}
4648
4649void LSRInstance::print(raw_ostream &OS) const {
4650 print_factors_and_types(OS);
4651 print_fixups(OS);
4652 print_uses(OS);
4653}
4654
4655void LSRInstance::dump() const {
4656 print(errs()); errs() << '\n';
4657}
4658
4659namespace {
4660
4661class LoopStrengthReduce : public LoopPass {
4662 /// TLI - Keep a pointer of a TargetLowering to consult for determining
4663 /// transformation profitability.
4664 const TargetLowering *const TLI;
4665
4666public:
4667 static char ID; // Pass ID, replacement for typeid
4668 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
4669
4670private:
4671 bool runOnLoop(Loop *L, LPPassManager &LPM);
4672 void getAnalysisUsage(AnalysisUsage &AU) const;
4673};
4674
4675}
4676
4677char LoopStrengthReduce::ID = 0;
Owen Anderson2ab36d32010-10-12 19:48:12 +00004678INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
Owen Andersonce665bd2010-10-07 22:25:06 +00004679 "Loop Strength Reduction", false, false)
Owen Anderson2ab36d32010-10-12 19:48:12 +00004680INITIALIZE_PASS_DEPENDENCY(DominatorTree)
4681INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4682INITIALIZE_PASS_DEPENDENCY(IVUsers)
Owen Anderson205942a2010-10-19 20:08:44 +00004683INITIALIZE_PASS_DEPENDENCY(LoopInfo)
4684INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
Owen Anderson2ab36d32010-10-12 19:48:12 +00004685INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4686 "Loop Strength Reduction", false, false)
4687
Dan Gohman572645c2010-02-12 10:34:29 +00004688
4689Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
4690 return new LoopStrengthReduce(TLI);
4691}
4692
4693LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
Owen Anderson081c34b2010-10-19 17:21:58 +00004694 : LoopPass(ID), TLI(tli) {
4695 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4696 }
Dan Gohman572645c2010-02-12 10:34:29 +00004697
4698void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4699 // We split critical edges, so we change the CFG. However, we do update
4700 // many analyses if they are around.
Eric Christopher6793c492011-02-10 01:48:24 +00004701 AU.addPreservedID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00004702
Eric Christopher6793c492011-02-10 01:48:24 +00004703 AU.addRequired<LoopInfo>();
4704 AU.addPreserved<LoopInfo>();
4705 AU.addRequiredID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00004706 AU.addRequired<DominatorTree>();
4707 AU.addPreserved<DominatorTree>();
4708 AU.addRequired<ScalarEvolution>();
4709 AU.addPreserved<ScalarEvolution>();
Cameron Zwarich2c2b9332011-02-10 23:53:14 +00004710 // Requiring LoopSimplify a second time here prevents IVUsers from running
4711 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4712 AU.addRequiredID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00004713 AU.addRequired<IVUsers>();
4714 AU.addPreserved<IVUsers>();
4715}
4716
4717bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4718 bool Changed = false;
4719
4720 // Run the main LSR transformation.
4721 Changed |= LSRInstance(TLI, L, this).getChanged();
4722
Andrew Trickf231a6d2012-01-07 01:36:44 +00004723 // Remove any extra phis created by processing inner loops.
Dan Gohman9fff2182010-01-05 16:31:45 +00004724 Changed |= DeleteDeadPHIs(L->getHeader());
Andrew Trickf231a6d2012-01-07 01:36:44 +00004725 if (EnablePhiElim) {
4726 SmallVector<WeakVH, 16> DeadInsts;
4727 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
4728#ifndef NDEBUG
4729 Rewriter.setDebugType(DEBUG_TYPE);
4730#endif
4731 unsigned numFolded = Rewriter.
4732 replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
4733 if (numFolded) {
4734 Changed = true;
4735 DeleteTriviallyDeadInstructions(DeadInsts);
4736 DeleteDeadPHIs(L->getHeader());
4737 }
4738 }
Evan Cheng1ce75dc2008-07-07 19:51:32 +00004739 return Changed;
Nate Begemaneaa13852004-10-18 21:08:22 +00004740}