blob: 7425b6e1a6c60755915d1eb7bff1880331d1399f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000021#include "llvm/DerivedTypes.h"
Owen Anderson1636de92007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000023#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000028#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000029#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000030#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000031
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032using namespace llvm;
33
Owen Anderson9a184ef2008-01-07 01:35:02 +000034namespace {
35 cl::opt<bool>
36 NoFusing("disable-spill-fusing",
37 cl::desc("Disable fusing of spill code into instructions"));
38 cl::opt<bool>
39 PrintFailedFusing("print-failed-fuse-candidates",
40 cl::desc("Print instructions that the allocator wants to"
41 " fuse, but the X86 backend currently can't"),
42 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000043 cl::opt<bool>
44 ReMatPICStubLoad("remat-pic-stub-load",
45 cl::desc("Re-materialize load from stub in PIC mode"),
46 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000047}
48
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000050 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000052 SmallVector<unsigned,16> AmbEntries;
53 static const unsigned OpTbl2Addr[][2] = {
54 { X86::ADC32ri, X86::ADC32mi },
55 { X86::ADC32ri8, X86::ADC32mi8 },
56 { X86::ADC32rr, X86::ADC32mr },
57 { X86::ADC64ri32, X86::ADC64mi32 },
58 { X86::ADC64ri8, X86::ADC64mi8 },
59 { X86::ADC64rr, X86::ADC64mr },
60 { X86::ADD16ri, X86::ADD16mi },
61 { X86::ADD16ri8, X86::ADD16mi8 },
62 { X86::ADD16rr, X86::ADD16mr },
63 { X86::ADD32ri, X86::ADD32mi },
64 { X86::ADD32ri8, X86::ADD32mi8 },
65 { X86::ADD32rr, X86::ADD32mr },
66 { X86::ADD64ri32, X86::ADD64mi32 },
67 { X86::ADD64ri8, X86::ADD64mi8 },
68 { X86::ADD64rr, X86::ADD64mr },
69 { X86::ADD8ri, X86::ADD8mi },
70 { X86::ADD8rr, X86::ADD8mr },
71 { X86::AND16ri, X86::AND16mi },
72 { X86::AND16ri8, X86::AND16mi8 },
73 { X86::AND16rr, X86::AND16mr },
74 { X86::AND32ri, X86::AND32mi },
75 { X86::AND32ri8, X86::AND32mi8 },
76 { X86::AND32rr, X86::AND32mr },
77 { X86::AND64ri32, X86::AND64mi32 },
78 { X86::AND64ri8, X86::AND64mi8 },
79 { X86::AND64rr, X86::AND64mr },
80 { X86::AND8ri, X86::AND8mi },
81 { X86::AND8rr, X86::AND8mr },
82 { X86::DEC16r, X86::DEC16m },
83 { X86::DEC32r, X86::DEC32m },
84 { X86::DEC64_16r, X86::DEC64_16m },
85 { X86::DEC64_32r, X86::DEC64_32m },
86 { X86::DEC64r, X86::DEC64m },
87 { X86::DEC8r, X86::DEC8m },
88 { X86::INC16r, X86::INC16m },
89 { X86::INC32r, X86::INC32m },
90 { X86::INC64_16r, X86::INC64_16m },
91 { X86::INC64_32r, X86::INC64_32m },
92 { X86::INC64r, X86::INC64m },
93 { X86::INC8r, X86::INC8m },
94 { X86::NEG16r, X86::NEG16m },
95 { X86::NEG32r, X86::NEG32m },
96 { X86::NEG64r, X86::NEG64m },
97 { X86::NEG8r, X86::NEG8m },
98 { X86::NOT16r, X86::NOT16m },
99 { X86::NOT32r, X86::NOT32m },
100 { X86::NOT64r, X86::NOT64m },
101 { X86::NOT8r, X86::NOT8m },
102 { X86::OR16ri, X86::OR16mi },
103 { X86::OR16ri8, X86::OR16mi8 },
104 { X86::OR16rr, X86::OR16mr },
105 { X86::OR32ri, X86::OR32mi },
106 { X86::OR32ri8, X86::OR32mi8 },
107 { X86::OR32rr, X86::OR32mr },
108 { X86::OR64ri32, X86::OR64mi32 },
109 { X86::OR64ri8, X86::OR64mi8 },
110 { X86::OR64rr, X86::OR64mr },
111 { X86::OR8ri, X86::OR8mi },
112 { X86::OR8rr, X86::OR8mr },
113 { X86::ROL16r1, X86::ROL16m1 },
114 { X86::ROL16rCL, X86::ROL16mCL },
115 { X86::ROL16ri, X86::ROL16mi },
116 { X86::ROL32r1, X86::ROL32m1 },
117 { X86::ROL32rCL, X86::ROL32mCL },
118 { X86::ROL32ri, X86::ROL32mi },
119 { X86::ROL64r1, X86::ROL64m1 },
120 { X86::ROL64rCL, X86::ROL64mCL },
121 { X86::ROL64ri, X86::ROL64mi },
122 { X86::ROL8r1, X86::ROL8m1 },
123 { X86::ROL8rCL, X86::ROL8mCL },
124 { X86::ROL8ri, X86::ROL8mi },
125 { X86::ROR16r1, X86::ROR16m1 },
126 { X86::ROR16rCL, X86::ROR16mCL },
127 { X86::ROR16ri, X86::ROR16mi },
128 { X86::ROR32r1, X86::ROR32m1 },
129 { X86::ROR32rCL, X86::ROR32mCL },
130 { X86::ROR32ri, X86::ROR32mi },
131 { X86::ROR64r1, X86::ROR64m1 },
132 { X86::ROR64rCL, X86::ROR64mCL },
133 { X86::ROR64ri, X86::ROR64mi },
134 { X86::ROR8r1, X86::ROR8m1 },
135 { X86::ROR8rCL, X86::ROR8mCL },
136 { X86::ROR8ri, X86::ROR8mi },
137 { X86::SAR16r1, X86::SAR16m1 },
138 { X86::SAR16rCL, X86::SAR16mCL },
139 { X86::SAR16ri, X86::SAR16mi },
140 { X86::SAR32r1, X86::SAR32m1 },
141 { X86::SAR32rCL, X86::SAR32mCL },
142 { X86::SAR32ri, X86::SAR32mi },
143 { X86::SAR64r1, X86::SAR64m1 },
144 { X86::SAR64rCL, X86::SAR64mCL },
145 { X86::SAR64ri, X86::SAR64mi },
146 { X86::SAR8r1, X86::SAR8m1 },
147 { X86::SAR8rCL, X86::SAR8mCL },
148 { X86::SAR8ri, X86::SAR8mi },
149 { X86::SBB32ri, X86::SBB32mi },
150 { X86::SBB32ri8, X86::SBB32mi8 },
151 { X86::SBB32rr, X86::SBB32mr },
152 { X86::SBB64ri32, X86::SBB64mi32 },
153 { X86::SBB64ri8, X86::SBB64mi8 },
154 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL16rCL, X86::SHL16mCL },
156 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL32rCL, X86::SHL32mCL },
158 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL64rCL, X86::SHL64mCL },
160 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000161 { X86::SHL8rCL, X86::SHL8mCL },
162 { X86::SHL8ri, X86::SHL8mi },
163 { X86::SHLD16rrCL, X86::SHLD16mrCL },
164 { X86::SHLD16rri8, X86::SHLD16mri8 },
165 { X86::SHLD32rrCL, X86::SHLD32mrCL },
166 { X86::SHLD32rri8, X86::SHLD32mri8 },
167 { X86::SHLD64rrCL, X86::SHLD64mrCL },
168 { X86::SHLD64rri8, X86::SHLD64mri8 },
169 { X86::SHR16r1, X86::SHR16m1 },
170 { X86::SHR16rCL, X86::SHR16mCL },
171 { X86::SHR16ri, X86::SHR16mi },
172 { X86::SHR32r1, X86::SHR32m1 },
173 { X86::SHR32rCL, X86::SHR32mCL },
174 { X86::SHR32ri, X86::SHR32mi },
175 { X86::SHR64r1, X86::SHR64m1 },
176 { X86::SHR64rCL, X86::SHR64mCL },
177 { X86::SHR64ri, X86::SHR64mi },
178 { X86::SHR8r1, X86::SHR8m1 },
179 { X86::SHR8rCL, X86::SHR8mCL },
180 { X86::SHR8ri, X86::SHR8mi },
181 { X86::SHRD16rrCL, X86::SHRD16mrCL },
182 { X86::SHRD16rri8, X86::SHRD16mri8 },
183 { X86::SHRD32rrCL, X86::SHRD32mrCL },
184 { X86::SHRD32rri8, X86::SHRD32mri8 },
185 { X86::SHRD64rrCL, X86::SHRD64mrCL },
186 { X86::SHRD64rri8, X86::SHRD64mri8 },
187 { X86::SUB16ri, X86::SUB16mi },
188 { X86::SUB16ri8, X86::SUB16mi8 },
189 { X86::SUB16rr, X86::SUB16mr },
190 { X86::SUB32ri, X86::SUB32mi },
191 { X86::SUB32ri8, X86::SUB32mi8 },
192 { X86::SUB32rr, X86::SUB32mr },
193 { X86::SUB64ri32, X86::SUB64mi32 },
194 { X86::SUB64ri8, X86::SUB64mi8 },
195 { X86::SUB64rr, X86::SUB64mr },
196 { X86::SUB8ri, X86::SUB8mi },
197 { X86::SUB8rr, X86::SUB8mr },
198 { X86::XOR16ri, X86::XOR16mi },
199 { X86::XOR16ri8, X86::XOR16mi8 },
200 { X86::XOR16rr, X86::XOR16mr },
201 { X86::XOR32ri, X86::XOR32mi },
202 { X86::XOR32ri8, X86::XOR32mi8 },
203 { X86::XOR32rr, X86::XOR32mr },
204 { X86::XOR64ri32, X86::XOR64mi32 },
205 { X86::XOR64ri8, X86::XOR64mi8 },
206 { X86::XOR64rr, X86::XOR64mr },
207 { X86::XOR8ri, X86::XOR8mi },
208 { X86::XOR8rr, X86::XOR8mr }
209 };
210
211 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
212 unsigned RegOp = OpTbl2Addr[i][0];
213 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000214 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
215 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000216 assert(false && "Duplicated entries?");
217 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
218 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000219 std::make_pair(RegOp,
220 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000221 AmbEntries.push_back(MemOp);
222 }
223
224 // If the third value is 1, then it's folding either a load or a store.
225 static const unsigned OpTbl0[][3] = {
226 { X86::CALL32r, X86::CALL32m, 1 },
227 { X86::CALL64r, X86::CALL64m, 1 },
228 { X86::CMP16ri, X86::CMP16mi, 1 },
229 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000230 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000231 { X86::CMP32ri, X86::CMP32mi, 1 },
232 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000233 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000234 { X86::CMP64ri32, X86::CMP64mi32, 1 },
235 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000238 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000239 { X86::DIV16r, X86::DIV16m, 1 },
240 { X86::DIV32r, X86::DIV32m, 1 },
241 { X86::DIV64r, X86::DIV64m, 1 },
242 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000243 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000244 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
245 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
246 { X86::IDIV16r, X86::IDIV16m, 1 },
247 { X86::IDIV32r, X86::IDIV32m, 1 },
248 { X86::IDIV64r, X86::IDIV64m, 1 },
249 { X86::IDIV8r, X86::IDIV8m, 1 },
250 { X86::IMUL16r, X86::IMUL16m, 1 },
251 { X86::IMUL32r, X86::IMUL32m, 1 },
252 { X86::IMUL64r, X86::IMUL64m, 1 },
253 { X86::IMUL8r, X86::IMUL8m, 1 },
254 { X86::JMP32r, X86::JMP32m, 1 },
255 { X86::JMP64r, X86::JMP64m, 1 },
256 { X86::MOV16ri, X86::MOV16mi, 0 },
257 { X86::MOV16rr, X86::MOV16mr, 0 },
258 { X86::MOV16to16_, X86::MOV16_mr, 0 },
259 { X86::MOV32ri, X86::MOV32mi, 0 },
260 { X86::MOV32rr, X86::MOV32mr, 0 },
261 { X86::MOV32to32_, X86::MOV32_mr, 0 },
262 { X86::MOV64ri32, X86::MOV64mi32, 0 },
263 { X86::MOV64rr, X86::MOV64mr, 0 },
264 { X86::MOV8ri, X86::MOV8mi, 0 },
265 { X86::MOV8rr, X86::MOV8mr, 0 },
266 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
267 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
268 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
269 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
270 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
271 { X86::MOVSDrr, X86::MOVSDmr, 0 },
272 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
273 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
274 { X86::MOVSSrr, X86::MOVSSmr, 0 },
275 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
276 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
277 { X86::MUL16r, X86::MUL16m, 1 },
278 { X86::MUL32r, X86::MUL32m, 1 },
279 { X86::MUL64r, X86::MUL64m, 1 },
280 { X86::MUL8r, X86::MUL8m, 1 },
281 { X86::SETAEr, X86::SETAEm, 0 },
282 { X86::SETAr, X86::SETAm, 0 },
283 { X86::SETBEr, X86::SETBEm, 0 },
284 { X86::SETBr, X86::SETBm, 0 },
285 { X86::SETEr, X86::SETEm, 0 },
286 { X86::SETGEr, X86::SETGEm, 0 },
287 { X86::SETGr, X86::SETGm, 0 },
288 { X86::SETLEr, X86::SETLEm, 0 },
289 { X86::SETLr, X86::SETLm, 0 },
290 { X86::SETNEr, X86::SETNEm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000291 { X86::SETNOr, X86::SETNOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000292 { X86::SETNPr, X86::SETNPm, 0 },
293 { X86::SETNSr, X86::SETNSm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000294 { X86::SETOr, X86::SETOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000295 { X86::SETPr, X86::SETPm, 0 },
296 { X86::SETSr, X86::SETSm, 0 },
297 { X86::TAILJMPr, X86::TAILJMPm, 1 },
298 { X86::TEST16ri, X86::TEST16mi, 1 },
299 { X86::TEST32ri, X86::TEST32mi, 1 },
300 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000301 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000302 };
303
304 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
305 unsigned RegOp = OpTbl0[i][0];
306 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000307 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
308 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000309 assert(false && "Duplicated entries?");
310 unsigned FoldedLoad = OpTbl0[i][2];
311 // Index 0, folded load or store.
312 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
313 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
314 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000315 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000316 AmbEntries.push_back(MemOp);
317 }
318
319 static const unsigned OpTbl1[][2] = {
320 { X86::CMP16rr, X86::CMP16rm },
321 { X86::CMP32rr, X86::CMP32rm },
322 { X86::CMP64rr, X86::CMP64rm },
323 { X86::CMP8rr, X86::CMP8rm },
324 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
325 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
326 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
327 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
328 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
329 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
330 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
331 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
332 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
333 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
334 { X86::FsMOVAPDrr, X86::MOVSDrm },
335 { X86::FsMOVAPSrr, X86::MOVSSrm },
336 { X86::IMUL16rri, X86::IMUL16rmi },
337 { X86::IMUL16rri8, X86::IMUL16rmi8 },
338 { X86::IMUL32rri, X86::IMUL32rmi },
339 { X86::IMUL32rri8, X86::IMUL32rmi8 },
340 { X86::IMUL64rri32, X86::IMUL64rmi32 },
341 { X86::IMUL64rri8, X86::IMUL64rmi8 },
342 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
343 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
344 { X86::Int_COMISDrr, X86::Int_COMISDrm },
345 { X86::Int_COMISSrr, X86::Int_COMISSrm },
346 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
347 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
348 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
349 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
350 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
351 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
352 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
353 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
354 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
355 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
356 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
357 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
358 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
359 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
360 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
361 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
362 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
363 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
364 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
365 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
366 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
367 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
368 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
369 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
370 { X86::MOV16rr, X86::MOV16rm },
371 { X86::MOV16to16_, X86::MOV16_rm },
372 { X86::MOV32rr, X86::MOV32rm },
373 { X86::MOV32to32_, X86::MOV32_rm },
374 { X86::MOV64rr, X86::MOV64rm },
375 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
376 { X86::MOV64toSDrr, X86::MOV64toSDrm },
377 { X86::MOV8rr, X86::MOV8rm },
378 { X86::MOVAPDrr, X86::MOVAPDrm },
379 { X86::MOVAPSrr, X86::MOVAPSrm },
380 { X86::MOVDDUPrr, X86::MOVDDUPrm },
381 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
382 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
383 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
384 { X86::MOVSDrr, X86::MOVSDrm },
385 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
386 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
387 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
388 { X86::MOVSSrr, X86::MOVSSrm },
389 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
390 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
391 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
392 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
393 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
394 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
395 { X86::MOVUPDrr, X86::MOVUPDrm },
396 { X86::MOVUPSrr, X86::MOVUPSrm },
397 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
398 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
399 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
400 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
401 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
402 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
403 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000404 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000405 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
406 { X86::PSHUFDri, X86::PSHUFDmi },
407 { X86::PSHUFHWri, X86::PSHUFHWmi },
408 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000409 { X86::RCPPSr, X86::RCPPSm },
410 { X86::RCPPSr_Int, X86::RCPPSm_Int },
411 { X86::RSQRTPSr, X86::RSQRTPSm },
412 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
413 { X86::RSQRTSSr, X86::RSQRTSSm },
414 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
415 { X86::SQRTPDr, X86::SQRTPDm },
416 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
417 { X86::SQRTPSr, X86::SQRTPSm },
418 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
419 { X86::SQRTSDr, X86::SQRTSDm },
420 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
421 { X86::SQRTSSr, X86::SQRTSSm },
422 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
423 { X86::TEST16rr, X86::TEST16rm },
424 { X86::TEST32rr, X86::TEST32rm },
425 { X86::TEST64rr, X86::TEST64rm },
426 { X86::TEST8rr, X86::TEST8rm },
427 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
428 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000429 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000430 };
431
432 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
433 unsigned RegOp = OpTbl1[i][0];
434 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000435 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
436 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000437 assert(false && "Duplicated entries?");
438 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
439 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
440 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000441 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000442 AmbEntries.push_back(MemOp);
443 }
444
445 static const unsigned OpTbl2[][2] = {
446 { X86::ADC32rr, X86::ADC32rm },
447 { X86::ADC64rr, X86::ADC64rm },
448 { X86::ADD16rr, X86::ADD16rm },
449 { X86::ADD32rr, X86::ADD32rm },
450 { X86::ADD64rr, X86::ADD64rm },
451 { X86::ADD8rr, X86::ADD8rm },
452 { X86::ADDPDrr, X86::ADDPDrm },
453 { X86::ADDPSrr, X86::ADDPSrm },
454 { X86::ADDSDrr, X86::ADDSDrm },
455 { X86::ADDSSrr, X86::ADDSSrm },
456 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
457 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
458 { X86::AND16rr, X86::AND16rm },
459 { X86::AND32rr, X86::AND32rm },
460 { X86::AND64rr, X86::AND64rm },
461 { X86::AND8rr, X86::AND8rm },
462 { X86::ANDNPDrr, X86::ANDNPDrm },
463 { X86::ANDNPSrr, X86::ANDNPSrm },
464 { X86::ANDPDrr, X86::ANDPDrm },
465 { X86::ANDPSrr, X86::ANDPSrm },
466 { X86::CMOVA16rr, X86::CMOVA16rm },
467 { X86::CMOVA32rr, X86::CMOVA32rm },
468 { X86::CMOVA64rr, X86::CMOVA64rm },
469 { X86::CMOVAE16rr, X86::CMOVAE16rm },
470 { X86::CMOVAE32rr, X86::CMOVAE32rm },
471 { X86::CMOVAE64rr, X86::CMOVAE64rm },
472 { X86::CMOVB16rr, X86::CMOVB16rm },
473 { X86::CMOVB32rr, X86::CMOVB32rm },
474 { X86::CMOVB64rr, X86::CMOVB64rm },
475 { X86::CMOVBE16rr, X86::CMOVBE16rm },
476 { X86::CMOVBE32rr, X86::CMOVBE32rm },
477 { X86::CMOVBE64rr, X86::CMOVBE64rm },
478 { X86::CMOVE16rr, X86::CMOVE16rm },
479 { X86::CMOVE32rr, X86::CMOVE32rm },
480 { X86::CMOVE64rr, X86::CMOVE64rm },
481 { X86::CMOVG16rr, X86::CMOVG16rm },
482 { X86::CMOVG32rr, X86::CMOVG32rm },
483 { X86::CMOVG64rr, X86::CMOVG64rm },
484 { X86::CMOVGE16rr, X86::CMOVGE16rm },
485 { X86::CMOVGE32rr, X86::CMOVGE32rm },
486 { X86::CMOVGE64rr, X86::CMOVGE64rm },
487 { X86::CMOVL16rr, X86::CMOVL16rm },
488 { X86::CMOVL32rr, X86::CMOVL32rm },
489 { X86::CMOVL64rr, X86::CMOVL64rm },
490 { X86::CMOVLE16rr, X86::CMOVLE16rm },
491 { X86::CMOVLE32rr, X86::CMOVLE32rm },
492 { X86::CMOVLE64rr, X86::CMOVLE64rm },
493 { X86::CMOVNE16rr, X86::CMOVNE16rm },
494 { X86::CMOVNE32rr, X86::CMOVNE32rm },
495 { X86::CMOVNE64rr, X86::CMOVNE64rm },
496 { X86::CMOVNP16rr, X86::CMOVNP16rm },
497 { X86::CMOVNP32rr, X86::CMOVNP32rm },
498 { X86::CMOVNP64rr, X86::CMOVNP64rm },
499 { X86::CMOVNS16rr, X86::CMOVNS16rm },
500 { X86::CMOVNS32rr, X86::CMOVNS32rm },
501 { X86::CMOVNS64rr, X86::CMOVNS64rm },
Dan Gohman12fd4d72009-01-07 00:35:10 +0000502 { X86::CMOVO16rr, X86::CMOVO16rm },
503 { X86::CMOVO32rr, X86::CMOVO32rm },
504 { X86::CMOVO64rr, X86::CMOVO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000505 { X86::CMOVP16rr, X86::CMOVP16rm },
506 { X86::CMOVP32rr, X86::CMOVP32rm },
507 { X86::CMOVP64rr, X86::CMOVP64rm },
508 { X86::CMOVS16rr, X86::CMOVS16rm },
509 { X86::CMOVS32rr, X86::CMOVS32rm },
510 { X86::CMOVS64rr, X86::CMOVS64rm },
511 { X86::CMPPDrri, X86::CMPPDrmi },
512 { X86::CMPPSrri, X86::CMPPSrmi },
513 { X86::CMPSDrr, X86::CMPSDrm },
514 { X86::CMPSSrr, X86::CMPSSrm },
515 { X86::DIVPDrr, X86::DIVPDrm },
516 { X86::DIVPSrr, X86::DIVPSrm },
517 { X86::DIVSDrr, X86::DIVSDrm },
518 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000519 { X86::FsANDNPDrr, X86::FsANDNPDrm },
520 { X86::FsANDNPSrr, X86::FsANDNPSrm },
521 { X86::FsANDPDrr, X86::FsANDPDrm },
522 { X86::FsANDPSrr, X86::FsANDPSrm },
523 { X86::FsORPDrr, X86::FsORPDrm },
524 { X86::FsORPSrr, X86::FsORPSrm },
525 { X86::FsXORPDrr, X86::FsXORPDrm },
526 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000527 { X86::HADDPDrr, X86::HADDPDrm },
528 { X86::HADDPSrr, X86::HADDPSrm },
529 { X86::HSUBPDrr, X86::HSUBPDrm },
530 { X86::HSUBPSrr, X86::HSUBPSrm },
531 { X86::IMUL16rr, X86::IMUL16rm },
532 { X86::IMUL32rr, X86::IMUL32rm },
533 { X86::IMUL64rr, X86::IMUL64rm },
534 { X86::MAXPDrr, X86::MAXPDrm },
535 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
536 { X86::MAXPSrr, X86::MAXPSrm },
537 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
538 { X86::MAXSDrr, X86::MAXSDrm },
539 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
540 { X86::MAXSSrr, X86::MAXSSrm },
541 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
542 { X86::MINPDrr, X86::MINPDrm },
543 { X86::MINPDrr_Int, X86::MINPDrm_Int },
544 { X86::MINPSrr, X86::MINPSrm },
545 { X86::MINPSrr_Int, X86::MINPSrm_Int },
546 { X86::MINSDrr, X86::MINSDrm },
547 { X86::MINSDrr_Int, X86::MINSDrm_Int },
548 { X86::MINSSrr, X86::MINSSrm },
549 { X86::MINSSrr_Int, X86::MINSSrm_Int },
550 { X86::MULPDrr, X86::MULPDrm },
551 { X86::MULPSrr, X86::MULPSrm },
552 { X86::MULSDrr, X86::MULSDrm },
553 { X86::MULSSrr, X86::MULSSrm },
554 { X86::OR16rr, X86::OR16rm },
555 { X86::OR32rr, X86::OR32rm },
556 { X86::OR64rr, X86::OR64rm },
557 { X86::OR8rr, X86::OR8rm },
558 { X86::ORPDrr, X86::ORPDrm },
559 { X86::ORPSrr, X86::ORPSrm },
560 { X86::PACKSSDWrr, X86::PACKSSDWrm },
561 { X86::PACKSSWBrr, X86::PACKSSWBrm },
562 { X86::PACKUSWBrr, X86::PACKUSWBrm },
563 { X86::PADDBrr, X86::PADDBrm },
564 { X86::PADDDrr, X86::PADDDrm },
565 { X86::PADDQrr, X86::PADDQrm },
566 { X86::PADDSBrr, X86::PADDSBrm },
567 { X86::PADDSWrr, X86::PADDSWrm },
568 { X86::PADDWrr, X86::PADDWrm },
569 { X86::PANDNrr, X86::PANDNrm },
570 { X86::PANDrr, X86::PANDrm },
571 { X86::PAVGBrr, X86::PAVGBrm },
572 { X86::PAVGWrr, X86::PAVGWrm },
573 { X86::PCMPEQBrr, X86::PCMPEQBrm },
574 { X86::PCMPEQDrr, X86::PCMPEQDrm },
575 { X86::PCMPEQWrr, X86::PCMPEQWrm },
576 { X86::PCMPGTBrr, X86::PCMPGTBrm },
577 { X86::PCMPGTDrr, X86::PCMPGTDrm },
578 { X86::PCMPGTWrr, X86::PCMPGTWrm },
579 { X86::PINSRWrri, X86::PINSRWrmi },
580 { X86::PMADDWDrr, X86::PMADDWDrm },
581 { X86::PMAXSWrr, X86::PMAXSWrm },
582 { X86::PMAXUBrr, X86::PMAXUBrm },
583 { X86::PMINSWrr, X86::PMINSWrm },
584 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000585 { X86::PMULDQrr, X86::PMULDQrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000586 { X86::PMULHUWrr, X86::PMULHUWrm },
587 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000588 { X86::PMULLDrr, X86::PMULLDrm },
589 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000590 { X86::PMULLWrr, X86::PMULLWrm },
591 { X86::PMULUDQrr, X86::PMULUDQrm },
592 { X86::PORrr, X86::PORrm },
593 { X86::PSADBWrr, X86::PSADBWrm },
594 { X86::PSLLDrr, X86::PSLLDrm },
595 { X86::PSLLQrr, X86::PSLLQrm },
596 { X86::PSLLWrr, X86::PSLLWrm },
597 { X86::PSRADrr, X86::PSRADrm },
598 { X86::PSRAWrr, X86::PSRAWrm },
599 { X86::PSRLDrr, X86::PSRLDrm },
600 { X86::PSRLQrr, X86::PSRLQrm },
601 { X86::PSRLWrr, X86::PSRLWrm },
602 { X86::PSUBBrr, X86::PSUBBrm },
603 { X86::PSUBDrr, X86::PSUBDrm },
604 { X86::PSUBSBrr, X86::PSUBSBrm },
605 { X86::PSUBSWrr, X86::PSUBSWrm },
606 { X86::PSUBWrr, X86::PSUBWrm },
607 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
608 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
609 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
610 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
611 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
612 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
613 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
614 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
615 { X86::PXORrr, X86::PXORrm },
616 { X86::SBB32rr, X86::SBB32rm },
617 { X86::SBB64rr, X86::SBB64rm },
618 { X86::SHUFPDrri, X86::SHUFPDrmi },
619 { X86::SHUFPSrri, X86::SHUFPSrmi },
620 { X86::SUB16rr, X86::SUB16rm },
621 { X86::SUB32rr, X86::SUB32rm },
622 { X86::SUB64rr, X86::SUB64rm },
623 { X86::SUB8rr, X86::SUB8rm },
624 { X86::SUBPDrr, X86::SUBPDrm },
625 { X86::SUBPSrr, X86::SUBPSrm },
626 { X86::SUBSDrr, X86::SUBSDrm },
627 { X86::SUBSSrr, X86::SUBSSrm },
628 // FIXME: TEST*rr -> swapped operand of TEST*mr.
629 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
630 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
631 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
632 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
633 { X86::XOR16rr, X86::XOR16rm },
634 { X86::XOR32rr, X86::XOR32rm },
635 { X86::XOR64rr, X86::XOR64rm },
636 { X86::XOR8rr, X86::XOR8rm },
637 { X86::XORPDrr, X86::XORPDrm },
638 { X86::XORPSrr, X86::XORPSrm }
639 };
640
641 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
642 unsigned RegOp = OpTbl2[i][0];
643 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000644 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
645 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000646 assert(false && "Duplicated entries?");
647 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
648 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000649 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000650 AmbEntries.push_back(MemOp);
651 }
652
653 // Remove ambiguous entries.
654 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000655}
656
657bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
658 unsigned& sourceReg,
659 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000660 switch (MI.getOpcode()) {
661 default:
662 return false;
663 case X86::MOV8rr:
664 case X86::MOV16rr:
665 case X86::MOV32rr:
666 case X86::MOV64rr:
667 case X86::MOV16to16_:
668 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000669 case X86::MOVSSrr:
670 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000671
672 // FP Stack register class copies
673 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
674 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
675 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
676
Chris Lattnerff195282008-03-11 19:28:17 +0000677 case X86::FsMOVAPSrr:
678 case X86::FsMOVAPDrr:
679 case X86::MOVAPSrr:
680 case X86::MOVAPDrr:
681 case X86::MOVSS2PSrr:
682 case X86::MOVSD2PDrr:
683 case X86::MOVPS2SSrr:
684 case X86::MOVPD2SDrr:
685 case X86::MMX_MOVD64rr:
686 case X86::MMX_MOVQ64rr:
687 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000688 MI.getOperand(0).isReg() &&
689 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000690 "invalid register-register move instruction");
691 sourceReg = MI.getOperand(1).getReg();
692 destReg = MI.getOperand(0).getReg();
693 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000694 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000695}
696
Dan Gohman90feee22008-11-18 19:49:32 +0000697unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000698 int &FrameIndex) const {
699 switch (MI->getOpcode()) {
700 default: break;
701 case X86::MOV8rm:
702 case X86::MOV16rm:
703 case X86::MOV16_rm:
704 case X86::MOV32rm:
705 case X86::MOV32_rm:
706 case X86::MOV64rm:
707 case X86::LD_Fp64m:
708 case X86::MOVSSrm:
709 case X86::MOVSDrm:
710 case X86::MOVAPSrm:
711 case X86::MOVAPDrm:
712 case X86::MMX_MOVD64rm:
713 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000714 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
715 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000716 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000717 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000718 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000719 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000720 return MI->getOperand(0).getReg();
721 }
722 break;
723 }
724 return 0;
725}
726
Dan Gohman90feee22008-11-18 19:49:32 +0000727unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000728 int &FrameIndex) const {
729 switch (MI->getOpcode()) {
730 default: break;
731 case X86::MOV8mr:
732 case X86::MOV16mr:
733 case X86::MOV16_mr:
734 case X86::MOV32mr:
735 case X86::MOV32_mr:
736 case X86::MOV64mr:
737 case X86::ST_FpP64m:
738 case X86::MOVSSmr:
739 case X86::MOVSDmr:
740 case X86::MOVAPSmr:
741 case X86::MOVAPDmr:
742 case X86::MMX_MOVD64mr:
743 case X86::MMX_MOVQ64mr:
744 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000745 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
746 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000747 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000748 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000749 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000750 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000751 return MI->getOperand(4).getReg();
752 }
753 break;
754 }
755 return 0;
756}
757
758
Evan Chengb819a512008-03-27 01:45:11 +0000759/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
760/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000761static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000762 bool isPICBase = false;
763 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
764 E = MRI.def_end(); I != E; ++I) {
765 MachineInstr *DefMI = I.getOperand().getParent();
766 if (DefMI->getOpcode() != X86::MOVPC32r)
767 return false;
768 assert(!isPICBase && "More than one PIC base?");
769 isPICBase = true;
770 }
771 return isPICBase;
772}
Evan Chenge9caab52008-03-31 07:54:19 +0000773
774/// isGVStub - Return true if the GV requires an extra load to get the
775/// real address.
776static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
777 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
778}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000779
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000780bool
781X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000782 switch (MI->getOpcode()) {
783 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000784 case X86::MOV8rm:
785 case X86::MOV16rm:
786 case X86::MOV16_rm:
787 case X86::MOV32rm:
788 case X86::MOV32_rm:
789 case X86::MOV64rm:
790 case X86::LD_Fp64m:
791 case X86::MOVSSrm:
792 case X86::MOVSDrm:
793 case X86::MOVAPSrm:
794 case X86::MOVAPDrm:
795 case X86::MMX_MOVD64rm:
796 case X86::MMX_MOVQ64rm: {
797 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000798 if (MI->getOperand(1).isReg() &&
799 MI->getOperand(2).isImm() &&
800 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
801 (MI->getOperand(4).isCPI() ||
802 (MI->getOperand(4).isGlobal() &&
Evan Chenge9caab52008-03-31 07:54:19 +0000803 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000804 unsigned BaseReg = MI->getOperand(1).getReg();
805 if (BaseReg == 0)
806 return true;
807 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000808 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000809 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000810 const MachineFunction &MF = *MI->getParent()->getParent();
811 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000812 bool isPICBase = false;
813 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
814 E = MRI.def_end(); I != E; ++I) {
815 MachineInstr *DefMI = I.getOperand().getParent();
816 if (DefMI->getOpcode() != X86::MOVPC32r)
817 return false;
818 assert(!isPICBase && "More than one PIC base?");
819 isPICBase = true;
820 }
821 return isPICBase;
822 }
823 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000824 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000825
826 case X86::LEA32r:
827 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000828 if (MI->getOperand(2).isImm() &&
829 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
830 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000831 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000832 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000833 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000834 unsigned BaseReg = MI->getOperand(1).getReg();
835 if (BaseReg == 0)
836 return true;
837 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000838 const MachineFunction &MF = *MI->getParent()->getParent();
839 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000840 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000841 }
842 return false;
843 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000844 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000845
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000846 // All other instructions marked M_REMATERIALIZABLE are always trivially
847 // rematerializable.
848 return true;
849}
850
Evan Chengc564ded2008-06-24 07:10:51 +0000851/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
852/// would clobber the EFLAGS condition register. Note the result may be
853/// conservative. If it cannot definitely determine the safety after visiting
854/// two instructions it assumes it's not safe.
855static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
856 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000857 // It's always safe to clobber EFLAGS at the end of a block.
858 if (I == MBB.end())
859 return true;
860
Evan Chengc564ded2008-06-24 07:10:51 +0000861 // For compile time consideration, if we are not able to determine the
862 // safety after visiting 2 instructions, we will assume it's not safe.
863 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000864 bool SeenDef = false;
865 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
866 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000867 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000868 continue;
869 if (MO.getReg() == X86::EFLAGS) {
870 if (MO.isUse())
871 return false;
872 SeenDef = true;
873 }
874 }
875
876 if (SeenDef)
877 // This instruction defines EFLAGS, no need to look any further.
878 return true;
879 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000880
881 // If we make it to the end of the block, it's safe to clobber EFLAGS.
882 if (I == MBB.end())
883 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000884 }
885
886 // Conservative answer.
887 return false;
888}
889
Evan Cheng7d73efc2008-03-31 20:40:39 +0000890void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
891 MachineBasicBlock::iterator I,
892 unsigned DestReg,
893 const MachineInstr *Orig) const {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000894 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000895 ? Orig->getOperand(0).getSubReg() : 0;
896 bool ChangeSubIdx = SubIdx != 0;
897 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
898 DestReg = RI.getSubReg(DestReg, SubIdx);
899 SubIdx = 0;
900 }
901
Evan Cheng7d73efc2008-03-31 20:40:39 +0000902 // MOV32r0 etc. are implemented with xor which clobbers condition code.
903 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000904 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000905 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000906 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000907 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000908 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000909 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000910 case X86::MOV64r0: {
911 if (!isSafeToClobberEFLAGS(MBB, I)) {
912 unsigned Opc = 0;
913 switch (Orig->getOpcode()) {
914 default: break;
915 case X86::MOV8r0: Opc = X86::MOV8ri; break;
916 case X86::MOV16r0: Opc = X86::MOV16ri; break;
917 case X86::MOV32r0: Opc = X86::MOV32ri; break;
918 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
919 }
920 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
921 Emitted = true;
922 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000923 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000924 }
925 }
926
927 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000928 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000929 MI->getOperand(0).setReg(DestReg);
930 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000931 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000932
933 if (ChangeSubIdx) {
934 MachineInstr *NewMI = prior(I);
935 NewMI->getOperand(0).setSubReg(SubIdx);
936 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000937}
938
Chris Lattnerea3a1812008-01-10 23:08:24 +0000939/// isInvariantLoad - Return true if the specified instruction (which is marked
940/// mayLoad) is loading from a location whose value is invariant across the
941/// function. For example, loading a value from the constant pool or from
942/// from the argument area of a function if it does not change. This should
943/// only return true of *all* loads the instruction does are invariant (if it
944/// does multiple loads).
Dan Gohman90feee22008-11-18 19:49:32 +0000945bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000946 // This code cares about loads from three cases: constant pool entries,
947 // invariant argument slots, and global stubs. In order to handle these cases
948 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000949 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000950 // none of these three cases is ever used as anything other than a load base
951 // and X86 doesn't have any instructions that load from multiple places.
952
953 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
954 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000955 // Loads from constant pools are trivially invariant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000956 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000957 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000958
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000959 if (MO.isGlobal())
Evan Chenge9caab52008-03-31 07:54:19 +0000960 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000961
962 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000963 if (MO.isFI()) {
Chris Lattner0875b572008-01-12 00:35:08 +0000964 const MachineFrameInfo &MFI =
965 *MI->getParent()->getParent()->getFrameInfo();
966 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000967 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
968 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000969 }
Chris Lattner0875b572008-01-12 00:35:08 +0000970
Chris Lattnerea3a1812008-01-10 23:08:24 +0000971 // All other instances of these instructions are presumed to have other
972 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000973 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000974}
975
Evan Chengfa1a4952007-10-05 08:04:01 +0000976/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
977/// is not marked dead.
978static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000979 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
980 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000981 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000982 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
983 return true;
984 }
985 }
986 return false;
987}
988
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000989/// convertToThreeAddress - This method must be implemented by targets that
990/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
991/// may be able to convert a two-address instruction into a true
992/// three-address instruction on demand. This allows the X86 target (for
993/// example) to convert ADD and SHL instructions into LEA instructions if they
994/// would require register copies due to two-addressness.
995///
996/// This method returns a null pointer if the transformation cannot be
997/// performed, otherwise it returns the new instruction.
998///
999MachineInstr *
1000X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1001 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +00001002 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +00001004 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005 // All instructions input are two-addr instructions. Get the known operands.
1006 unsigned Dest = MI->getOperand(0).getReg();
1007 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +00001008 bool isDead = MI->getOperand(0).isDead();
1009 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001010
1011 MachineInstr *NewMI = NULL;
1012 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1013 // we have better subtarget support, enable the 16-bit LEA generation here.
1014 bool DisableLEA16 = true;
1015
Evan Cheng6b96ed32007-10-05 20:34:26 +00001016 unsigned MIOpc = MI->getOpcode();
1017 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 case X86::SHUFPSrri: {
1019 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1020 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1021
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001022 unsigned B = MI->getOperand(1).getReg();
1023 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001024 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001025 unsigned A = MI->getOperand(0).getReg();
1026 unsigned M = MI->getOperand(3).getImm();
Dan Gohman221a4372008-07-07 23:14:23 +00001027 NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001028 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 break;
1030 }
1031 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001032 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1034 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 unsigned ShAmt = MI->getOperand(2).getImm();
1036 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001037
Dan Gohman221a4372008-07-07 23:14:23 +00001038 NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001039 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001040 break;
1041 }
1042 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001043 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001044 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1045 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001046 unsigned ShAmt = MI->getOperand(2).getImm();
1047 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001048
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001049 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1050 X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001051 NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001052 .addReg(0).addImm(1 << ShAmt)
1053 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001054 break;
1055 }
1056 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001057 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001058 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1059 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001060 unsigned ShAmt = MI->getOperand(2).getImm();
1061 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001062
Christopher Lamb380c6272007-08-10 21:18:25 +00001063 if (DisableLEA16) {
1064 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001065 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001066 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1067 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001068 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1069 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001070
Christopher Lamb8d226a22008-03-11 10:27:36 +00001071 // Build and insert into an implicit UNDEF value. This is OK because
1072 // well be shifting and then extracting the lower 16-bits.
Dan Gohman221a4372008-07-07 23:14:23 +00001073 BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1074 MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001075 .addReg(leaInReg).addReg(Src, false, false, isKill)
1076 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001077
Dan Gohman221a4372008-07-07 23:14:23 +00001078 NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001079 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001080
Dan Gohman221a4372008-07-07 23:14:23 +00001081 MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001082 .addReg(Dest, true, false, false, isDead)
1083 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Owen Andersonc6959722008-07-02 23:41:07 +00001084 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001085 // Update live variables
1086 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1087 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1088 if (isKill)
1089 LV->replaceKillInstruction(Src, MI, InsMI);
1090 if (isDead)
1091 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001092 }
Evan Chenge52c1912008-07-03 09:09:37 +00001093 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001094 } else {
Dan Gohman221a4372008-07-07 23:14:23 +00001095 NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001096 .addReg(0).addImm(1 << ShAmt)
1097 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001098 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001099 break;
1100 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001101 default: {
1102 // The following opcodes also sets the condition code register(s). Only
1103 // convert them to equivalent lea if the condition code register def's
1104 // are dead!
1105 if (hasLiveCondCodeDef(MI))
1106 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001107
Evan Chenga28a9562007-10-09 07:14:53 +00001108 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001109 switch (MIOpc) {
1110 default: return 0;
1111 case X86::INC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001112 case X86::INC32r:
1113 case X86::INC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001114 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001115 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1116 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001117 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001118 .addReg(Dest, true, false, false, isDead),
1119 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001120 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001121 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001122 case X86::INC16r:
1123 case X86::INC64_16r:
1124 if (DisableLEA16) return 0;
1125 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001126 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001127 .addReg(Dest, true, false, false, isDead),
1128 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001129 break;
1130 case X86::DEC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001131 case X86::DEC32r:
1132 case X86::DEC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001133 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001134 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1135 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001136 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001137 .addReg(Dest, true, false, false, isDead),
1138 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001139 break;
1140 }
1141 case X86::DEC16r:
1142 case X86::DEC64_16r:
1143 if (DisableLEA16) return 0;
1144 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001145 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001146 .addReg(Dest, true, false, false, isDead),
1147 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001148 break;
1149 case X86::ADD64rr:
1150 case X86::ADD32rr: {
1151 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001152 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1153 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001154 unsigned Src2 = MI->getOperand(2).getReg();
1155 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001156 NewMI = addRegReg(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001157 .addReg(Dest, true, false, false, isDead),
1158 Src, isKill, Src2, isKill2);
1159 if (LV && isKill2)
1160 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001161 break;
1162 }
Evan Chenge52c1912008-07-03 09:09:37 +00001163 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001164 if (DisableLEA16) return 0;
1165 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001166 unsigned Src2 = MI->getOperand(2).getReg();
1167 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001168 NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001169 .addReg(Dest, true, false, false, isDead),
1170 Src, isKill, Src2, isKill2);
1171 if (LV && isKill2)
1172 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001173 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001174 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001175 case X86::ADD64ri32:
1176 case X86::ADD64ri8:
1177 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001178 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001179 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
Evan Chenge52c1912008-07-03 09:09:37 +00001180 .addReg(Dest, true, false, false, isDead),
1181 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001182 break;
1183 case X86::ADD32ri:
1184 case X86::ADD32ri8:
1185 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001186 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001187 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001188 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001189 .addReg(Dest, true, false, false, isDead),
1190 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001191 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001192 break;
1193 case X86::ADD16ri:
1194 case X86::ADD16ri8:
1195 if (DisableLEA16) return 0;
1196 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001197 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001198 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001199 .addReg(Dest, true, false, false, isDead),
1200 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001201 break;
1202 case X86::SHL16ri:
1203 if (DisableLEA16) return 0;
1204 case X86::SHL32ri:
1205 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001206 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001207 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001208 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001209 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1210 X86AddressMode AM;
1211 AM.Scale = 1 << ShAmt;
1212 AM.IndexReg = Src;
1213 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001214 : (MIOpc == X86::SHL32ri
1215 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Dan Gohman221a4372008-07-07 23:14:23 +00001216 NewMI = addFullAddress(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001217 .addReg(Dest, true, false, false, isDead), AM);
1218 if (isKill)
1219 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001220 }
1221 break;
1222 }
1223 }
1224 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001225 }
1226
Evan Chengc3cb24d2008-02-07 08:29:53 +00001227 if (!NewMI) return 0;
1228
Evan Chenge52c1912008-07-03 09:09:37 +00001229 if (LV) { // Update live variables
1230 if (isKill)
1231 LV->replaceKillInstruction(Src, MI, NewMI);
1232 if (isDead)
1233 LV->replaceKillInstruction(Dest, MI, NewMI);
1234 }
1235
Evan Cheng6b96ed32007-10-05 20:34:26 +00001236 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001237 return NewMI;
1238}
1239
1240/// commuteInstruction - We have a few instructions that must be hacked on to
1241/// commute them.
1242///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001243MachineInstr *
1244X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001245 switch (MI->getOpcode()) {
1246 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1247 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1248 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001249 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1250 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1251 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001252 unsigned Opc;
1253 unsigned Size;
1254 switch (MI->getOpcode()) {
1255 default: assert(0 && "Unreachable!");
1256 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1257 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1258 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1259 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001260 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1261 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001262 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001263 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001264 if (NewMI) {
1265 MachineFunction &MF = *MI->getParent()->getParent();
1266 MI = MF.CloneMachineInstr(MI);
1267 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001268 }
Dan Gohman921581d2008-10-17 01:23:35 +00001269 MI->setDesc(get(Opc));
1270 MI->getOperand(3).setImm(Size-Amt);
1271 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001272 }
Evan Cheng926658c2007-10-05 23:13:21 +00001273 case X86::CMOVB16rr:
1274 case X86::CMOVB32rr:
1275 case X86::CMOVB64rr:
1276 case X86::CMOVAE16rr:
1277 case X86::CMOVAE32rr:
1278 case X86::CMOVAE64rr:
1279 case X86::CMOVE16rr:
1280 case X86::CMOVE32rr:
1281 case X86::CMOVE64rr:
1282 case X86::CMOVNE16rr:
1283 case X86::CMOVNE32rr:
1284 case X86::CMOVNE64rr:
1285 case X86::CMOVBE16rr:
1286 case X86::CMOVBE32rr:
1287 case X86::CMOVBE64rr:
1288 case X86::CMOVA16rr:
1289 case X86::CMOVA32rr:
1290 case X86::CMOVA64rr:
1291 case X86::CMOVL16rr:
1292 case X86::CMOVL32rr:
1293 case X86::CMOVL64rr:
1294 case X86::CMOVGE16rr:
1295 case X86::CMOVGE32rr:
1296 case X86::CMOVGE64rr:
1297 case X86::CMOVLE16rr:
1298 case X86::CMOVLE32rr:
1299 case X86::CMOVLE64rr:
1300 case X86::CMOVG16rr:
1301 case X86::CMOVG32rr:
1302 case X86::CMOVG64rr:
1303 case X86::CMOVS16rr:
1304 case X86::CMOVS32rr:
1305 case X86::CMOVS64rr:
1306 case X86::CMOVNS16rr:
1307 case X86::CMOVNS32rr:
1308 case X86::CMOVNS64rr:
1309 case X86::CMOVP16rr:
1310 case X86::CMOVP32rr:
1311 case X86::CMOVP64rr:
1312 case X86::CMOVNP16rr:
1313 case X86::CMOVNP32rr:
Dan Gohman12fd4d72009-01-07 00:35:10 +00001314 case X86::CMOVNP64rr:
1315 case X86::CMOVO16rr:
1316 case X86::CMOVO32rr:
1317 case X86::CMOVO64rr:
1318 case X86::CMOVNO16rr:
1319 case X86::CMOVNO32rr:
1320 case X86::CMOVNO64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001321 unsigned Opc = 0;
1322 switch (MI->getOpcode()) {
1323 default: break;
1324 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1325 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1326 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1327 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1328 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1329 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1330 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1331 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1332 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1333 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1334 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1335 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1336 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1337 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1338 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1339 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1340 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1341 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1342 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1343 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1344 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1345 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1346 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1347 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1348 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1349 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1350 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1351 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1352 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1353 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1354 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1355 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1356 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1357 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1358 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1359 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1360 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1361 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1362 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1363 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1364 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1365 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001366 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1367 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
1368 case X86::CMOVO64rr: Opc = X86::CMOVNO32rr; break;
1369 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1370 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1371 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001372 }
Dan Gohman921581d2008-10-17 01:23:35 +00001373 if (NewMI) {
1374 MachineFunction &MF = *MI->getParent()->getParent();
1375 MI = MF.CloneMachineInstr(MI);
1376 NewMI = false;
1377 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001378 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001379 // Fallthrough intended.
1380 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001381 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001382 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001383 }
1384}
1385
1386static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1387 switch (BrOpc) {
1388 default: return X86::COND_INVALID;
1389 case X86::JE: return X86::COND_E;
1390 case X86::JNE: return X86::COND_NE;
1391 case X86::JL: return X86::COND_L;
1392 case X86::JLE: return X86::COND_LE;
1393 case X86::JG: return X86::COND_G;
1394 case X86::JGE: return X86::COND_GE;
1395 case X86::JB: return X86::COND_B;
1396 case X86::JBE: return X86::COND_BE;
1397 case X86::JA: return X86::COND_A;
1398 case X86::JAE: return X86::COND_AE;
1399 case X86::JS: return X86::COND_S;
1400 case X86::JNS: return X86::COND_NS;
1401 case X86::JP: return X86::COND_P;
1402 case X86::JNP: return X86::COND_NP;
1403 case X86::JO: return X86::COND_O;
1404 case X86::JNO: return X86::COND_NO;
1405 }
1406}
1407
1408unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1409 switch (CC) {
1410 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001411 case X86::COND_E: return X86::JE;
1412 case X86::COND_NE: return X86::JNE;
1413 case X86::COND_L: return X86::JL;
1414 case X86::COND_LE: return X86::JLE;
1415 case X86::COND_G: return X86::JG;
1416 case X86::COND_GE: return X86::JGE;
1417 case X86::COND_B: return X86::JB;
1418 case X86::COND_BE: return X86::JBE;
1419 case X86::COND_A: return X86::JA;
1420 case X86::COND_AE: return X86::JAE;
1421 case X86::COND_S: return X86::JS;
1422 case X86::COND_NS: return X86::JNS;
1423 case X86::COND_P: return X86::JP;
1424 case X86::COND_NP: return X86::JNP;
1425 case X86::COND_O: return X86::JO;
1426 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001427 }
1428}
1429
1430/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1431/// e.g. turning COND_E to COND_NE.
1432X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1433 switch (CC) {
1434 default: assert(0 && "Illegal condition code!");
1435 case X86::COND_E: return X86::COND_NE;
1436 case X86::COND_NE: return X86::COND_E;
1437 case X86::COND_L: return X86::COND_GE;
1438 case X86::COND_LE: return X86::COND_G;
1439 case X86::COND_G: return X86::COND_LE;
1440 case X86::COND_GE: return X86::COND_L;
1441 case X86::COND_B: return X86::COND_AE;
1442 case X86::COND_BE: return X86::COND_A;
1443 case X86::COND_A: return X86::COND_BE;
1444 case X86::COND_AE: return X86::COND_B;
1445 case X86::COND_S: return X86::COND_NS;
1446 case X86::COND_NS: return X86::COND_S;
1447 case X86::COND_P: return X86::COND_NP;
1448 case X86::COND_NP: return X86::COND_P;
1449 case X86::COND_O: return X86::COND_NO;
1450 case X86::COND_NO: return X86::COND_O;
1451 }
1452}
1453
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001454bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001455 const TargetInstrDesc &TID = MI->getDesc();
1456 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001457
1458 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001459 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001460 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001461 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001462 return true;
1463 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001464}
1465
Evan Cheng12515792007-07-26 17:32:14 +00001466// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1467static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1468 const X86InstrInfo &TII) {
1469 if (MI->getOpcode() == X86::FP_REG_KILL)
1470 return false;
1471 return TII.isUnpredicatedTerminator(MI);
1472}
1473
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001474bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1475 MachineBasicBlock *&TBB,
1476 MachineBasicBlock *&FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001477 SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001478 // Start from the bottom of the block and work up, examining the
1479 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001480 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001481 while (I != MBB.begin()) {
1482 --I;
1483 // Working from the bottom, when we see a non-terminator
1484 // instruction, we're done.
1485 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1486 break;
1487 // A terminator that isn't a branch can't easily be handled
1488 // by this analysis.
1489 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001490 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001491 // Handle unconditional branches.
1492 if (I->getOpcode() == X86::JMP) {
1493 // If the block has any instructions after a JMP, delete them.
1494 while (next(I) != MBB.end())
1495 next(I)->eraseFromParent();
1496 Cond.clear();
1497 FBB = 0;
1498 // Delete the JMP if it's equivalent to a fall-through.
1499 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1500 TBB = 0;
1501 I->eraseFromParent();
1502 I = MBB.end();
1503 continue;
1504 }
1505 // TBB is used to indicate the unconditinal destination.
1506 TBB = I->getOperand(0).getMBB();
1507 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001508 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001509 // Handle conditional branches.
1510 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001511 if (BranchCode == X86::COND_INVALID)
1512 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001513 // Working from the bottom, handle the first conditional branch.
1514 if (Cond.empty()) {
1515 FBB = TBB;
1516 TBB = I->getOperand(0).getMBB();
1517 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1518 continue;
1519 }
1520 // Handle subsequent conditional branches. Only handle the case
1521 // where all conditional branches branch to the same destination
1522 // and their condition opcodes fit one of the special
1523 // multi-branch idioms.
1524 assert(Cond.size() == 1);
1525 assert(TBB);
1526 // Only handle the case where all conditional branches branch to
1527 // the same destination.
1528 if (TBB != I->getOperand(0).getMBB())
1529 return true;
1530 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1531 // If the conditions are the same, we can leave them alone.
1532 if (OldBranchCode == BranchCode)
1533 continue;
1534 // If they differ, see if they fit one of the known patterns.
1535 // Theoretically we could handle more patterns here, but
1536 // we shouldn't expect to see them if instruction selection
1537 // has done a reasonable job.
1538 if ((OldBranchCode == X86::COND_NP &&
1539 BranchCode == X86::COND_E) ||
1540 (OldBranchCode == X86::COND_E &&
1541 BranchCode == X86::COND_NP))
1542 BranchCode = X86::COND_NP_OR_E;
1543 else if ((OldBranchCode == X86::COND_P &&
1544 BranchCode == X86::COND_NE) ||
1545 (OldBranchCode == X86::COND_NE &&
1546 BranchCode == X86::COND_P))
1547 BranchCode = X86::COND_NE_OR_P;
1548 else
1549 return true;
1550 // Update the MachineOperand.
1551 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001552 }
1553
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001554 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001555}
1556
1557unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1558 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001559 unsigned Count = 0;
1560
1561 while (I != MBB.begin()) {
1562 --I;
1563 if (I->getOpcode() != X86::JMP &&
1564 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1565 break;
1566 // Remove the branch.
1567 I->eraseFromParent();
1568 I = MBB.end();
1569 ++Count;
1570 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001571
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001572 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001573}
1574
Owen Anderson81875432008-01-01 21:11:32 +00001575static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
Dan Gohman46b948e2008-10-16 01:49:15 +00001576 const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001577 if (MO.isReg())
Owen Anderson81875432008-01-01 21:11:32 +00001578 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001579 MO.isKill(), MO.isDead(), MO.getSubReg());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001580 else if (MO.isImm())
Owen Anderson81875432008-01-01 21:11:32 +00001581 MIB = MIB.addImm(MO.getImm());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001582 else if (MO.isFI())
Owen Anderson81875432008-01-01 21:11:32 +00001583 MIB = MIB.addFrameIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001584 else if (MO.isGlobal())
Owen Anderson81875432008-01-01 21:11:32 +00001585 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001586 else if (MO.isCPI())
Owen Anderson81875432008-01-01 21:11:32 +00001587 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001588 else if (MO.isJTI())
Owen Anderson81875432008-01-01 21:11:32 +00001589 MIB = MIB.addJumpTableIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001590 else if (MO.isSymbol())
Owen Anderson81875432008-01-01 21:11:32 +00001591 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1592 else
1593 assert(0 && "Unknown operand for X86InstrAddOperand!");
1594
1595 return MIB;
1596}
1597
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001598unsigned
1599X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1600 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001601 const SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001602 // Shouldn't be a fall through.
1603 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1604 assert((Cond.size() == 1 || Cond.size() == 0) &&
1605 "X86 branch conditions have one component!");
1606
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001607 if (Cond.empty()) {
1608 // Unconditional branch?
1609 assert(!FBB && "Unconditional branch with multiple successors!");
1610 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001611 return 1;
1612 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001613
1614 // Conditional branch.
1615 unsigned Count = 0;
1616 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1617 switch (CC) {
1618 case X86::COND_NP_OR_E:
1619 // Synthesize NP_OR_E with two branches.
1620 BuildMI(&MBB, get(X86::JNP)).addMBB(TBB);
1621 ++Count;
1622 BuildMI(&MBB, get(X86::JE)).addMBB(TBB);
1623 ++Count;
1624 break;
1625 case X86::COND_NE_OR_P:
1626 // Synthesize NE_OR_P with two branches.
1627 BuildMI(&MBB, get(X86::JNE)).addMBB(TBB);
1628 ++Count;
1629 BuildMI(&MBB, get(X86::JP)).addMBB(TBB);
1630 ++Count;
1631 break;
1632 default: {
1633 unsigned Opc = GetCondBranchFromCond(CC);
1634 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1635 ++Count;
1636 }
1637 }
1638 if (FBB) {
1639 // Two-way Conditional branch. Insert the second branch.
1640 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1641 ++Count;
1642 }
1643 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001644}
1645
Owen Anderson9fa72d92008-08-26 18:03:31 +00001646bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001647 MachineBasicBlock::iterator MI,
1648 unsigned DestReg, unsigned SrcReg,
1649 const TargetRegisterClass *DestRC,
1650 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001651 if (DestRC == SrcRC) {
1652 unsigned Opc;
1653 if (DestRC == &X86::GR64RegClass) {
1654 Opc = X86::MOV64rr;
1655 } else if (DestRC == &X86::GR32RegClass) {
1656 Opc = X86::MOV32rr;
1657 } else if (DestRC == &X86::GR16RegClass) {
1658 Opc = X86::MOV16rr;
1659 } else if (DestRC == &X86::GR8RegClass) {
1660 Opc = X86::MOV8rr;
1661 } else if (DestRC == &X86::GR32_RegClass) {
1662 Opc = X86::MOV32_rr;
1663 } else if (DestRC == &X86::GR16_RegClass) {
1664 Opc = X86::MOV16_rr;
1665 } else if (DestRC == &X86::RFP32RegClass) {
1666 Opc = X86::MOV_Fp3232;
1667 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1668 Opc = X86::MOV_Fp6464;
1669 } else if (DestRC == &X86::RFP80RegClass) {
1670 Opc = X86::MOV_Fp8080;
1671 } else if (DestRC == &X86::FR32RegClass) {
1672 Opc = X86::FsMOVAPSrr;
1673 } else if (DestRC == &X86::FR64RegClass) {
1674 Opc = X86::FsMOVAPDrr;
1675 } else if (DestRC == &X86::VR128RegClass) {
1676 Opc = X86::MOVAPSrr;
1677 } else if (DestRC == &X86::VR64RegClass) {
1678 Opc = X86::MMX_MOVQ64rr;
1679 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001680 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001681 }
Chris Lattner59707122008-03-09 07:58:04 +00001682 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001683 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001684 }
Chris Lattner59707122008-03-09 07:58:04 +00001685
1686 // Moving EFLAGS to / from another register requires a push and a pop.
1687 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001688 if (SrcReg != X86::EFLAGS)
1689 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001690 if (DestRC == &X86::GR64RegClass) {
1691 BuildMI(MBB, MI, get(X86::PUSHFQ));
1692 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001693 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001694 } else if (DestRC == &X86::GR32RegClass) {
1695 BuildMI(MBB, MI, get(X86::PUSHFD));
1696 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001697 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001698 }
1699 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001700 if (DestReg != X86::EFLAGS)
1701 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001702 if (SrcRC == &X86::GR64RegClass) {
1703 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1704 BuildMI(MBB, MI, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001705 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001706 } else if (SrcRC == &X86::GR32RegClass) {
1707 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1708 BuildMI(MBB, MI, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001709 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001710 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001711 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001712
Chris Lattner0d128722008-03-09 09:15:31 +00001713 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001714 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001715 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001716 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1717 // Can only copy from ST(0)/ST(1) right now
1718 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001719 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001720 unsigned Opc;
1721 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001722 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001723 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001724 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001725 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001726 if (DestRC != &X86::RFP80RegClass)
1727 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001728 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001729 }
1730 BuildMI(MBB, MI, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001731 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001732 }
Chris Lattner0d128722008-03-09 09:15:31 +00001733
1734 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1735 if (DestRC == &X86::RSTRegClass) {
1736 // Copying to ST(0). FIXME: handle ST(1) also
Owen Anderson9fa72d92008-08-26 18:03:31 +00001737 if (DestReg != X86::ST0)
1738 // Can only copy to TOS right now
1739 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001740 unsigned Opc;
1741 if (SrcRC == &X86::RFP32RegClass)
1742 Opc = X86::FpSET_ST0_32;
1743 else if (SrcRC == &X86::RFP64RegClass)
1744 Opc = X86::FpSET_ST0_64;
1745 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001746 if (SrcRC != &X86::RFP80RegClass)
1747 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001748 Opc = X86::FpSET_ST0_80;
1749 }
1750 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001751 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001752 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001753
Owen Anderson9fa72d92008-08-26 18:03:31 +00001754 // Not yet supported!
1755 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001756}
1757
Owen Anderson81875432008-01-01 21:11:32 +00001758static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001759 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001760 unsigned Opc = 0;
1761 if (RC == &X86::GR64RegClass) {
1762 Opc = X86::MOV64mr;
1763 } else if (RC == &X86::GR32RegClass) {
1764 Opc = X86::MOV32mr;
1765 } else if (RC == &X86::GR16RegClass) {
1766 Opc = X86::MOV16mr;
1767 } else if (RC == &X86::GR8RegClass) {
1768 Opc = X86::MOV8mr;
1769 } else if (RC == &X86::GR32_RegClass) {
1770 Opc = X86::MOV32_mr;
1771 } else if (RC == &X86::GR16_RegClass) {
1772 Opc = X86::MOV16_mr;
1773 } else if (RC == &X86::RFP80RegClass) {
1774 Opc = X86::ST_FpP80m; // pops
1775 } else if (RC == &X86::RFP64RegClass) {
1776 Opc = X86::ST_Fp64m;
1777 } else if (RC == &X86::RFP32RegClass) {
1778 Opc = X86::ST_Fp32m;
1779 } else if (RC == &X86::FR32RegClass) {
1780 Opc = X86::MOVSSmr;
1781 } else if (RC == &X86::FR64RegClass) {
1782 Opc = X86::MOVSDmr;
1783 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001784 // If stack is realigned we can use aligned stores.
1785 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001786 } else if (RC == &X86::VR64RegClass) {
1787 Opc = X86::MMX_MOVQ64mr;
1788 } else {
1789 assert(0 && "Unknown regclass");
1790 abort();
1791 }
1792
1793 return Opc;
1794}
1795
1796void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1797 MachineBasicBlock::iterator MI,
1798 unsigned SrcReg, bool isKill, int FrameIdx,
1799 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001800 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001801 bool isAligned = (RI.getStackAlignment() >= 16) ||
1802 RI.needsStackRealignment(MF);
1803 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001804 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1805 .addReg(SrcReg, false, false, isKill);
1806}
1807
1808void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1809 bool isKill,
1810 SmallVectorImpl<MachineOperand> &Addr,
1811 const TargetRegisterClass *RC,
1812 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001813 bool isAligned = (RI.getStackAlignment() >= 16) ||
1814 RI.needsStackRealignment(MF);
1815 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001816 MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001817 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1818 MIB = X86InstrAddOperand(MIB, Addr[i]);
1819 MIB.addReg(SrcReg, false, false, isKill);
1820 NewMIs.push_back(MIB);
1821}
1822
1823static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001824 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001825 unsigned Opc = 0;
1826 if (RC == &X86::GR64RegClass) {
1827 Opc = X86::MOV64rm;
1828 } else if (RC == &X86::GR32RegClass) {
1829 Opc = X86::MOV32rm;
1830 } else if (RC == &X86::GR16RegClass) {
1831 Opc = X86::MOV16rm;
1832 } else if (RC == &X86::GR8RegClass) {
1833 Opc = X86::MOV8rm;
1834 } else if (RC == &X86::GR32_RegClass) {
1835 Opc = X86::MOV32_rm;
1836 } else if (RC == &X86::GR16_RegClass) {
1837 Opc = X86::MOV16_rm;
1838 } else if (RC == &X86::RFP80RegClass) {
1839 Opc = X86::LD_Fp80m;
1840 } else if (RC == &X86::RFP64RegClass) {
1841 Opc = X86::LD_Fp64m;
1842 } else if (RC == &X86::RFP32RegClass) {
1843 Opc = X86::LD_Fp32m;
1844 } else if (RC == &X86::FR32RegClass) {
1845 Opc = X86::MOVSSrm;
1846 } else if (RC == &X86::FR64RegClass) {
1847 Opc = X86::MOVSDrm;
1848 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001849 // If stack is realigned we can use aligned loads.
1850 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001851 } else if (RC == &X86::VR64RegClass) {
1852 Opc = X86::MMX_MOVQ64rm;
1853 } else {
1854 assert(0 && "Unknown regclass");
1855 abort();
1856 }
1857
1858 return Opc;
1859}
1860
1861void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001862 MachineBasicBlock::iterator MI,
1863 unsigned DestReg, int FrameIdx,
1864 const TargetRegisterClass *RC) const{
1865 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001866 bool isAligned = (RI.getStackAlignment() >= 16) ||
1867 RI.needsStackRealignment(MF);
1868 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001869 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1870}
1871
1872void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001873 SmallVectorImpl<MachineOperand> &Addr,
1874 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001875 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001876 bool isAligned = (RI.getStackAlignment() >= 16) ||
1877 RI.needsStackRealignment(MF);
1878 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001879 MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001880 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1881 MIB = X86InstrAddOperand(MIB, Addr[i]);
1882 NewMIs.push_back(MIB);
1883}
1884
Owen Anderson6690c7f2008-01-04 23:57:37 +00001885bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001886 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001887 const std::vector<CalleeSavedInfo> &CSI) const {
1888 if (CSI.empty())
1889 return false;
1890
Evan Chengc275cf62008-09-26 19:14:21 +00001891 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001892 unsigned SlotSize = is64Bit ? 8 : 4;
1893
1894 MachineFunction &MF = *MBB.getParent();
1895 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1896 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1897
Owen Anderson6690c7f2008-01-04 23:57:37 +00001898 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1899 for (unsigned i = CSI.size(); i != 0; --i) {
1900 unsigned Reg = CSI[i-1].getReg();
1901 // Add the callee-saved register as live-in. It's killed at the spill.
1902 MBB.addLiveIn(Reg);
Dan Gohman4df0e362008-11-26 06:39:12 +00001903 BuildMI(MBB, MI, get(Opc))
1904 .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
Owen Anderson6690c7f2008-01-04 23:57:37 +00001905 }
1906 return true;
1907}
1908
1909bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001910 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001911 const std::vector<CalleeSavedInfo> &CSI) const {
1912 if (CSI.empty())
1913 return false;
1914
1915 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1916
1917 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1918 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1919 unsigned Reg = CSI[i].getReg();
1920 BuildMI(MBB, MI, get(Opc), Reg);
1921 }
1922 return true;
1923}
1924
Dan Gohman221a4372008-07-07 23:14:23 +00001925static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001926 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001927 MachineInstr *MI, const TargetInstrInfo &TII) {
1928 // Create the base instruction with the memory operand as the first part.
Dan Gohman221a4372008-07-07 23:14:23 +00001929 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001930 MachineInstrBuilder MIB(NewMI);
1931 unsigned NumAddrOps = MOs.size();
1932 for (unsigned i = 0; i != NumAddrOps; ++i)
1933 MIB = X86InstrAddOperand(MIB, MOs[i]);
1934 if (NumAddrOps < 4) // FrameIndex only
1935 MIB.addImm(1).addReg(0).addImm(0);
1936
1937 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001938 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001939 for (unsigned i = 0; i != NumOps; ++i) {
1940 MachineOperand &MO = MI->getOperand(i+2);
1941 MIB = X86InstrAddOperand(MIB, MO);
1942 }
1943 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1944 MachineOperand &MO = MI->getOperand(i);
1945 MIB = X86InstrAddOperand(MIB, MO);
1946 }
1947 return MIB;
1948}
1949
Dan Gohman221a4372008-07-07 23:14:23 +00001950static MachineInstr *FuseInst(MachineFunction &MF,
1951 unsigned Opcode, unsigned OpNo,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001952 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001953 MachineInstr *MI, const TargetInstrInfo &TII) {
Dan Gohman221a4372008-07-07 23:14:23 +00001954 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001955 MachineInstrBuilder MIB(NewMI);
1956
1957 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1958 MachineOperand &MO = MI->getOperand(i);
1959 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001960 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00001961 unsigned NumAddrOps = MOs.size();
1962 for (unsigned i = 0; i != NumAddrOps; ++i)
1963 MIB = X86InstrAddOperand(MIB, MOs[i]);
1964 if (NumAddrOps < 4) // FrameIndex only
1965 MIB.addImm(1).addReg(0).addImm(0);
1966 } else {
1967 MIB = X86InstrAddOperand(MIB, MO);
1968 }
1969 }
1970 return MIB;
1971}
1972
1973static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001974 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001975 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00001976 MachineFunction &MF = *MI->getParent()->getParent();
1977 MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001978
1979 unsigned NumAddrOps = MOs.size();
1980 for (unsigned i = 0; i != NumAddrOps; ++i)
1981 MIB = X86InstrAddOperand(MIB, MOs[i]);
1982 if (NumAddrOps < 4) // FrameIndex only
1983 MIB.addImm(1).addReg(0).addImm(0);
1984 return MIB.addImm(0);
1985}
1986
1987MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00001988X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
1989 MachineInstr *MI, unsigned i,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001990 const SmallVectorImpl<MachineOperand> &MOs) const{
Owen Anderson9a184ef2008-01-07 01:35:02 +00001991 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1992 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001993 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001994 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001995 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001996
1997 MachineInstr *NewMI = NULL;
1998 // Folding a memory location into the two-address part of a two-address
1999 // instruction is different than folding it other places. It requires
2000 // replacing the *two* registers with the memory location.
2001 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002002 MI->getOperand(0).isReg() &&
2003 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00002004 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2005 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2006 isTwoAddrFold = true;
2007 } else if (i == 0) { // If operand 0
2008 if (MI->getOpcode() == X86::MOV16r0)
2009 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2010 else if (MI->getOpcode() == X86::MOV32r0)
2011 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2012 else if (MI->getOpcode() == X86::MOV64r0)
2013 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2014 else if (MI->getOpcode() == X86::MOV8r0)
2015 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002016 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002017 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002018
2019 OpcodeTablePtr = &RegOp2MemOpTable0;
2020 } else if (i == 1) {
2021 OpcodeTablePtr = &RegOp2MemOpTable1;
2022 } else if (i == 2) {
2023 OpcodeTablePtr = &RegOp2MemOpTable2;
2024 }
2025
2026 // If table selected...
2027 if (OpcodeTablePtr) {
2028 // Find the Opcode to fuse
2029 DenseMap<unsigned*, unsigned>::iterator I =
2030 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2031 if (I != OpcodeTablePtr->end()) {
2032 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00002033 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002034 else
Dan Gohman221a4372008-07-07 23:14:23 +00002035 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002036 return NewMI;
2037 }
2038 }
2039
2040 // No fusion
2041 if (PrintFailedFusing)
Dan Gohman5f599f62008-12-23 00:19:20 +00002042 cerr << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002043 return NULL;
2044}
2045
2046
Dan Gohmanedc83d62008-12-03 18:43:12 +00002047MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2048 MachineInstr *MI,
2049 const SmallVectorImpl<unsigned> &Ops,
2050 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002051 // Check switch flag
2052 if (NoFusing) return NULL;
2053
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002054 const MachineFrameInfo *MFI = MF.getFrameInfo();
2055 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2056 // FIXME: Move alignment requirement into tables?
2057 if (Alignment < 16) {
2058 switch (MI->getOpcode()) {
2059 default: break;
2060 // Not always safe to fold movsd into these instructions since their load
2061 // folding variants expects the address to be 16 byte aligned.
2062 case X86::FsANDNPDrr:
2063 case X86::FsANDNPSrr:
2064 case X86::FsANDPDrr:
2065 case X86::FsANDPSrr:
2066 case X86::FsORPDrr:
2067 case X86::FsORPSrr:
2068 case X86::FsXORPDrr:
2069 case X86::FsXORPSrr:
2070 return NULL;
2071 }
2072 }
2073
Owen Anderson9a184ef2008-01-07 01:35:02 +00002074 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2075 unsigned NewOpc = 0;
2076 switch (MI->getOpcode()) {
2077 default: return NULL;
2078 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2079 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2080 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2081 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2082 }
2083 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002084 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002085 MI->getOperand(1).ChangeToImmediate(0);
2086 } else if (Ops.size() != 1)
2087 return NULL;
2088
2089 SmallVector<MachineOperand,4> MOs;
2090 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohmanedc83d62008-12-03 18:43:12 +00002091 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002092}
2093
Dan Gohmanedc83d62008-12-03 18:43:12 +00002094MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2095 MachineInstr *MI,
2096 const SmallVectorImpl<unsigned> &Ops,
2097 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002098 // Check switch flag
2099 if (NoFusing) return NULL;
2100
Dan Gohmand0e8c752008-07-12 00:10:52 +00002101 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002102 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002103 if (LoadMI->hasOneMemOperand())
2104 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002105
2106 // FIXME: Move alignment requirement into tables?
2107 if (Alignment < 16) {
2108 switch (MI->getOpcode()) {
2109 default: break;
2110 // Not always safe to fold movsd into these instructions since their load
2111 // folding variants expects the address to be 16 byte aligned.
2112 case X86::FsANDNPDrr:
2113 case X86::FsANDNPSrr:
2114 case X86::FsANDPDrr:
2115 case X86::FsANDPSrr:
2116 case X86::FsORPDrr:
2117 case X86::FsORPSrr:
2118 case X86::FsXORPDrr:
2119 case X86::FsXORPSrr:
2120 return NULL;
2121 }
2122 }
2123
Owen Anderson9a184ef2008-01-07 01:35:02 +00002124 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2125 unsigned NewOpc = 0;
2126 switch (MI->getOpcode()) {
2127 default: return NULL;
2128 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2129 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2130 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2131 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2132 }
2133 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002134 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002135 MI->getOperand(1).ChangeToImmediate(0);
2136 } else if (Ops.size() != 1)
2137 return NULL;
2138
2139 SmallVector<MachineOperand,4> MOs;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002140 if (LoadMI->getOpcode() == X86::V_SET0 ||
2141 LoadMI->getOpcode() == X86::V_SETALLONES) {
2142 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2143 // Create a constant-pool entry and operands to load from it.
2144
2145 // x86-32 PIC requires a PIC base register for constant pools.
2146 unsigned PICBase = 0;
2147 if (TM.getRelocationModel() == Reloc::PIC_ &&
2148 !TM.getSubtarget<X86Subtarget>().is64Bit())
Evan Chengf95d0fc2008-12-05 17:23:48 +00002149 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2150 // This doesn't work for several reasons.
2151 // 1. GlobalBaseReg may have been spilled.
2152 // 2. It may not be live at MI.
Evan Chengf95d0fc2008-12-05 17:23:48 +00002153 return false;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002154
2155 // Create a v4i32 constant-pool entry.
2156 MachineConstantPool &MCP = *MF.getConstantPool();
2157 const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2158 Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2159 ConstantVector::getNullValue(Ty) :
2160 ConstantVector::getAllOnesValue(Ty);
2161 unsigned CPI = MCP.getConstantPoolIndex(C, /*AlignmentLog2=*/4);
2162
2163 // Create operands to load from the constant pool entry.
2164 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2165 MOs.push_back(MachineOperand::CreateImm(1));
2166 MOs.push_back(MachineOperand::CreateReg(0, false));
2167 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2168 } else {
2169 // Folding a normal load. Just copy the load's address operands.
2170 unsigned NumOps = LoadMI->getDesc().getNumOperands();
2171 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2172 MOs.push_back(LoadMI->getOperand(i));
2173 }
Dan Gohmanedc83d62008-12-03 18:43:12 +00002174 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002175}
2176
2177
Dan Gohman46b948e2008-10-16 01:49:15 +00002178bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2179 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002180 // Check switch flag
2181 if (NoFusing) return 0;
2182
2183 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2184 switch (MI->getOpcode()) {
2185 default: return false;
2186 case X86::TEST8rr:
2187 case X86::TEST16rr:
2188 case X86::TEST32rr:
2189 case X86::TEST64rr:
2190 return true;
2191 }
2192 }
2193
2194 if (Ops.size() != 1)
2195 return false;
2196
2197 unsigned OpNum = Ops[0];
2198 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002199 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002200 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002201 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002202
2203 // Folding a memory location into the two-address part of a two-address
2204 // instruction is different than folding it other places. It requires
2205 // replacing the *two* registers with the memory location.
2206 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2207 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2208 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2209 } else if (OpNum == 0) { // If operand 0
2210 switch (Opc) {
2211 case X86::MOV16r0:
2212 case X86::MOV32r0:
2213 case X86::MOV64r0:
2214 case X86::MOV8r0:
2215 return true;
2216 default: break;
2217 }
2218 OpcodeTablePtr = &RegOp2MemOpTable0;
2219 } else if (OpNum == 1) {
2220 OpcodeTablePtr = &RegOp2MemOpTable1;
2221 } else if (OpNum == 2) {
2222 OpcodeTablePtr = &RegOp2MemOpTable2;
2223 }
2224
2225 if (OpcodeTablePtr) {
2226 // Find the Opcode to fuse
2227 DenseMap<unsigned*, unsigned>::iterator I =
2228 OpcodeTablePtr->find((unsigned*)Opc);
2229 if (I != OpcodeTablePtr->end())
2230 return true;
2231 }
2232 return false;
2233}
2234
2235bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2236 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2237 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2238 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2239 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2240 if (I == MemOp2RegOpTable.end())
2241 return false;
2242 unsigned Opc = I->second.first;
2243 unsigned Index = I->second.second & 0xf;
2244 bool FoldedLoad = I->second.second & (1 << 4);
2245 bool FoldedStore = I->second.second & (1 << 5);
2246 if (UnfoldLoad && !FoldedLoad)
2247 return false;
2248 UnfoldLoad &= FoldedLoad;
2249 if (UnfoldStore && !FoldedStore)
2250 return false;
2251 UnfoldStore &= FoldedStore;
2252
Chris Lattner5b930372008-01-07 07:27:27 +00002253 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002254 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002255 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002256 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2257 SmallVector<MachineOperand,4> AddrOps;
2258 SmallVector<MachineOperand,2> BeforeOps;
2259 SmallVector<MachineOperand,2> AfterOps;
2260 SmallVector<MachineOperand,4> ImpOps;
2261 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2262 MachineOperand &Op = MI->getOperand(i);
2263 if (i >= Index && i < Index+4)
2264 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002265 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002266 ImpOps.push_back(Op);
2267 else if (i < Index)
2268 BeforeOps.push_back(Op);
2269 else if (i > Index)
2270 AfterOps.push_back(Op);
2271 }
2272
2273 // Emit the load instruction.
2274 if (UnfoldLoad) {
2275 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2276 if (UnfoldStore) {
2277 // Address operands cannot be marked isKill.
2278 for (unsigned i = 1; i != 5; ++i) {
2279 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002280 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002281 MO.setIsKill(false);
2282 }
2283 }
2284 }
2285
2286 // Emit the data processing instruction.
Dan Gohman221a4372008-07-07 23:14:23 +00002287 MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002288 MachineInstrBuilder MIB(DataMI);
2289
2290 if (FoldedStore)
2291 MIB.addReg(Reg, true);
2292 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2293 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2294 if (FoldedLoad)
2295 MIB.addReg(Reg);
2296 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2297 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2298 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2299 MachineOperand &MO = ImpOps[i];
2300 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2301 }
2302 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2303 unsigned NewOpc = 0;
2304 switch (DataMI->getOpcode()) {
2305 default: break;
2306 case X86::CMP64ri32:
2307 case X86::CMP32ri:
2308 case X86::CMP16ri:
2309 case X86::CMP8ri: {
2310 MachineOperand &MO0 = DataMI->getOperand(0);
2311 MachineOperand &MO1 = DataMI->getOperand(1);
2312 if (MO1.getImm() == 0) {
2313 switch (DataMI->getOpcode()) {
2314 default: break;
2315 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2316 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2317 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2318 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2319 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002320 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002321 MO1.ChangeToRegister(MO0.getReg(), false);
2322 }
2323 }
2324 }
2325 NewMIs.push_back(DataMI);
2326
2327 // Emit the store instruction.
2328 if (UnfoldStore) {
2329 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002330 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002331 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2332 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2333 }
2334
2335 return true;
2336}
2337
2338bool
2339X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2340 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002341 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002342 return false;
2343
2344 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002345 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002346 if (I == MemOp2RegOpTable.end())
2347 return false;
2348 unsigned Opc = I->second.first;
2349 unsigned Index = I->second.second & 0xf;
2350 bool FoldedLoad = I->second.second & (1 << 4);
2351 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002352 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002353 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002354 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002355 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman8181bd12008-07-27 21:46:04 +00002356 std::vector<SDValue> AddrOps;
2357 std::vector<SDValue> BeforeOps;
2358 std::vector<SDValue> AfterOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002359 unsigned NumOps = N->getNumOperands();
2360 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002361 SDValue Op = N->getOperand(i);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002362 if (i >= Index && i < Index+4)
2363 AddrOps.push_back(Op);
2364 else if (i < Index)
2365 BeforeOps.push_back(Op);
2366 else if (i > Index)
2367 AfterOps.push_back(Op);
2368 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002369 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002370 AddrOps.push_back(Chain);
2371
2372 // Emit the load instruction.
2373 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002374 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002375 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002376 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002377 bool isAligned = (RI.getStackAlignment() >= 16) ||
2378 RI.needsStackRealignment(MF);
2379 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002380 VT, MVT::Other,
2381 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002382 NewNodes.push_back(Load);
2383 }
2384
2385 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002386 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002387 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002388 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002389 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002390 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002391 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2392 VTs.push_back(*DstRC->vt_begin());
2393 }
2394 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002395 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002396 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002397 VTs.push_back(VT);
2398 }
2399 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002400 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002401 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2402 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2403 NewNodes.push_back(NewNode);
2404
2405 // Emit the store instruction.
2406 if (FoldedStore) {
2407 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002408 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002409 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002410 bool isAligned = (RI.getStackAlignment() >= 16) ||
2411 RI.needsStackRealignment(MF);
2412 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2413 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002414 NewNodes.push_back(Store);
2415 }
2416
2417 return true;
2418}
2419
2420unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2421 bool UnfoldLoad, bool UnfoldStore) const {
2422 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2423 MemOp2RegOpTable.find((unsigned*)Opc);
2424 if (I == MemOp2RegOpTable.end())
2425 return 0;
2426 bool FoldedLoad = I->second.second & (1 << 4);
2427 bool FoldedStore = I->second.second & (1 << 5);
2428 if (UnfoldLoad && !FoldedLoad)
2429 return 0;
2430 if (UnfoldStore && !FoldedStore)
2431 return 0;
2432 return I->second.first;
2433}
2434
Dan Gohman46b948e2008-10-16 01:49:15 +00002435bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002436 if (MBB.empty()) return false;
2437
2438 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002439 case X86::TCRETURNri:
2440 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002441 case X86::RET: // Return.
2442 case X86::RETI:
2443 case X86::TAILJMPd:
2444 case X86::TAILJMPr:
2445 case X86::TAILJMPm:
2446 case X86::JMP: // Uncond branch.
2447 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002448 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002449 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002450 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002451 return true;
2452 default: return false;
2453 }
2454}
2455
2456bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002457ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002458 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002459 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002460 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2461 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002462 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002463 return false;
2464}
2465
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002466bool X86InstrInfo::
2467IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const {
2468 // FIXME: Ignore bariers of x87 stack registers for now. We can't
2469 // allow any loads of these registers before FpGet_ST0_80.
2470 return RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2471 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass;
2472}
2473
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002474const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2475 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2476 if (Subtarget->is64Bit())
2477 return &X86::GR64RegClass;
2478 else
2479 return &X86::GR32RegClass;
2480}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002481
2482unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2483 switch (Desc->TSFlags & X86II::ImmMask) {
2484 case X86II::Imm8: return 1;
2485 case X86II::Imm16: return 2;
2486 case X86II::Imm32: return 4;
2487 case X86II::Imm64: return 8;
2488 default: assert(0 && "Immediate size not set!");
2489 return 0;
2490 }
2491}
2492
2493/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2494/// e.g. r8, xmm8, etc.
2495bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002496 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002497 switch (MO.getReg()) {
2498 default: break;
2499 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2500 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2501 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2502 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2503 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2504 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2505 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2506 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2507 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2508 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2509 return true;
2510 }
2511 return false;
2512}
2513
2514
2515/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2516/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2517/// size, and 3) use of X86-64 extended registers.
2518unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2519 unsigned REX = 0;
2520 const TargetInstrDesc &Desc = MI.getDesc();
2521
2522 // Pseudo instructions do not need REX prefix byte.
2523 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2524 return 0;
2525 if (Desc.TSFlags & X86II::REX_W)
2526 REX |= 1 << 3;
2527
2528 unsigned NumOps = Desc.getNumOperands();
2529 if (NumOps) {
2530 bool isTwoAddr = NumOps > 1 &&
2531 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2532
2533 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2534 unsigned i = isTwoAddr ? 1 : 0;
2535 for (unsigned e = NumOps; i != e; ++i) {
2536 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002537 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002538 unsigned Reg = MO.getReg();
2539 if (isX86_64NonExtLowByteReg(Reg))
2540 REX |= 0x40;
2541 }
2542 }
2543
2544 switch (Desc.TSFlags & X86II::FormMask) {
2545 case X86II::MRMInitReg:
2546 if (isX86_64ExtendedReg(MI.getOperand(0)))
2547 REX |= (1 << 0) | (1 << 2);
2548 break;
2549 case X86II::MRMSrcReg: {
2550 if (isX86_64ExtendedReg(MI.getOperand(0)))
2551 REX |= 1 << 2;
2552 i = isTwoAddr ? 2 : 1;
2553 for (unsigned e = NumOps; i != e; ++i) {
2554 const MachineOperand& MO = MI.getOperand(i);
2555 if (isX86_64ExtendedReg(MO))
2556 REX |= 1 << 0;
2557 }
2558 break;
2559 }
2560 case X86II::MRMSrcMem: {
2561 if (isX86_64ExtendedReg(MI.getOperand(0)))
2562 REX |= 1 << 2;
2563 unsigned Bit = 0;
2564 i = isTwoAddr ? 2 : 1;
2565 for (; i != NumOps; ++i) {
2566 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002567 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002568 if (isX86_64ExtendedReg(MO))
2569 REX |= 1 << Bit;
2570 Bit++;
2571 }
2572 }
2573 break;
2574 }
2575 case X86II::MRM0m: case X86II::MRM1m:
2576 case X86II::MRM2m: case X86II::MRM3m:
2577 case X86II::MRM4m: case X86II::MRM5m:
2578 case X86II::MRM6m: case X86II::MRM7m:
2579 case X86II::MRMDestMem: {
2580 unsigned e = isTwoAddr ? 5 : 4;
2581 i = isTwoAddr ? 1 : 0;
2582 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2583 REX |= 1 << 2;
2584 unsigned Bit = 0;
2585 for (; i != e; ++i) {
2586 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002587 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002588 if (isX86_64ExtendedReg(MO))
2589 REX |= 1 << Bit;
2590 Bit++;
2591 }
2592 }
2593 break;
2594 }
2595 default: {
2596 if (isX86_64ExtendedReg(MI.getOperand(0)))
2597 REX |= 1 << 0;
2598 i = isTwoAddr ? 2 : 1;
2599 for (unsigned e = NumOps; i != e; ++i) {
2600 const MachineOperand& MO = MI.getOperand(i);
2601 if (isX86_64ExtendedReg(MO))
2602 REX |= 1 << 2;
2603 }
2604 break;
2605 }
2606 }
2607 }
2608 return REX;
2609}
2610
2611/// sizePCRelativeBlockAddress - This method returns the size of a PC
2612/// relative block address instruction
2613///
2614static unsigned sizePCRelativeBlockAddress() {
2615 return 4;
2616}
2617
2618/// sizeGlobalAddress - Give the size of the emission of this global address
2619///
2620static unsigned sizeGlobalAddress(bool dword) {
2621 return dword ? 8 : 4;
2622}
2623
2624/// sizeConstPoolAddress - Give the size of the emission of this constant
2625/// pool address
2626///
2627static unsigned sizeConstPoolAddress(bool dword) {
2628 return dword ? 8 : 4;
2629}
2630
2631/// sizeExternalSymbolAddress - Give the size of the emission of this external
2632/// symbol
2633///
2634static unsigned sizeExternalSymbolAddress(bool dword) {
2635 return dword ? 8 : 4;
2636}
2637
2638/// sizeJumpTableAddress - Give the size of the emission of this jump
2639/// table address
2640///
2641static unsigned sizeJumpTableAddress(bool dword) {
2642 return dword ? 8 : 4;
2643}
2644
2645static unsigned sizeConstant(unsigned Size) {
2646 return Size;
2647}
2648
2649static unsigned sizeRegModRMByte(){
2650 return 1;
2651}
2652
2653static unsigned sizeSIBByte(){
2654 return 1;
2655}
2656
2657static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2658 unsigned FinalSize = 0;
2659 // If this is a simple integer displacement that doesn't require a relocation.
2660 if (!RelocOp) {
2661 FinalSize += sizeConstant(4);
2662 return FinalSize;
2663 }
2664
2665 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002666 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002667 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002668 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002669 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002670 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002671 FinalSize += sizeJumpTableAddress(false);
2672 } else {
2673 assert(0 && "Unknown value to relocate!");
2674 }
2675 return FinalSize;
2676}
2677
2678static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2679 bool IsPIC, bool Is64BitMode) {
2680 const MachineOperand &Op3 = MI.getOperand(Op+3);
2681 int DispVal = 0;
2682 const MachineOperand *DispForReloc = 0;
2683 unsigned FinalSize = 0;
2684
2685 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002686 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002687 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002688 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002689 if (Is64BitMode || IsPIC) {
2690 DispForReloc = &Op3;
2691 } else {
2692 DispVal = 1;
2693 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002694 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002695 if (Is64BitMode || IsPIC) {
2696 DispForReloc = &Op3;
2697 } else {
2698 DispVal = 1;
2699 }
2700 } else {
2701 DispVal = 1;
2702 }
2703
2704 const MachineOperand &Base = MI.getOperand(Op);
2705 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2706
2707 unsigned BaseReg = Base.getReg();
2708
2709 // Is a SIB byte needed?
2710 if (IndexReg.getReg() == 0 &&
2711 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2712 if (BaseReg == 0) { // Just a displacement?
2713 // Emit special case [disp32] encoding
2714 ++FinalSize;
2715 FinalSize += getDisplacementFieldSize(DispForReloc);
2716 } else {
2717 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2718 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2719 // Emit simple indirect register encoding... [EAX] f.e.
2720 ++FinalSize;
2721 // Be pessimistic and assume it's a disp32, not a disp8
2722 } else {
2723 // Emit the most general non-SIB encoding: [REG+disp32]
2724 ++FinalSize;
2725 FinalSize += getDisplacementFieldSize(DispForReloc);
2726 }
2727 }
2728
2729 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2730 assert(IndexReg.getReg() != X86::ESP &&
2731 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2732
2733 bool ForceDisp32 = false;
2734 if (BaseReg == 0 || DispForReloc) {
2735 // Emit the normal disp32 encoding.
2736 ++FinalSize;
2737 ForceDisp32 = true;
2738 } else {
2739 ++FinalSize;
2740 }
2741
2742 FinalSize += sizeSIBByte();
2743
2744 // Do we need to output a displacement?
2745 if (DispVal != 0 || ForceDisp32) {
2746 FinalSize += getDisplacementFieldSize(DispForReloc);
2747 }
2748 }
2749 return FinalSize;
2750}
2751
2752
2753static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2754 const TargetInstrDesc *Desc,
2755 bool IsPIC, bool Is64BitMode) {
2756
2757 unsigned Opcode = Desc->Opcode;
2758 unsigned FinalSize = 0;
2759
2760 // Emit the lock opcode prefix as needed.
2761 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2762
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002763 // Emit segment overrid opcode prefix as needed.
2764 switch (Desc->TSFlags & X86II::SegOvrMask) {
2765 case X86II::FS:
2766 case X86II::GS:
2767 ++FinalSize;
2768 break;
2769 default: assert(0 && "Invalid segment!");
2770 case 0: break; // No segment override!
2771 }
2772
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002773 // Emit the repeat opcode prefix as needed.
2774 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2775
2776 // Emit the operand size opcode prefix as needed.
2777 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2778
2779 // Emit the address size opcode prefix as needed.
2780 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2781
2782 bool Need0FPrefix = false;
2783 switch (Desc->TSFlags & X86II::Op0Mask) {
2784 case X86II::TB: // Two-byte opcode prefix
2785 case X86II::T8: // 0F 38
2786 case X86II::TA: // 0F 3A
2787 Need0FPrefix = true;
2788 break;
2789 case X86II::REP: break; // already handled.
2790 case X86II::XS: // F3 0F
2791 ++FinalSize;
2792 Need0FPrefix = true;
2793 break;
2794 case X86II::XD: // F2 0F
2795 ++FinalSize;
2796 Need0FPrefix = true;
2797 break;
2798 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2799 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2800 ++FinalSize;
2801 break; // Two-byte opcode prefix
2802 default: assert(0 && "Invalid prefix!");
2803 case 0: break; // No prefix!
2804 }
2805
2806 if (Is64BitMode) {
2807 // REX prefix
2808 unsigned REX = X86InstrInfo::determineREX(MI);
2809 if (REX)
2810 ++FinalSize;
2811 }
2812
2813 // 0x0F escape code must be emitted just before the opcode.
2814 if (Need0FPrefix)
2815 ++FinalSize;
2816
2817 switch (Desc->TSFlags & X86II::Op0Mask) {
2818 case X86II::T8: // 0F 38
2819 ++FinalSize;
2820 break;
2821 case X86II::TA: // 0F 3A
2822 ++FinalSize;
2823 break;
2824 }
2825
2826 // If this is a two-address instruction, skip one of the register operands.
2827 unsigned NumOps = Desc->getNumOperands();
2828 unsigned CurOp = 0;
2829 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2830 CurOp++;
2831
2832 switch (Desc->TSFlags & X86II::FormMask) {
2833 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2834 case X86II::Pseudo:
2835 // Remember the current PC offset, this is the PIC relocation
2836 // base address.
2837 switch (Opcode) {
2838 default:
2839 break;
2840 case TargetInstrInfo::INLINEASM: {
2841 const MachineFunction *MF = MI.getParent()->getParent();
2842 const char *AsmStr = MI.getOperand(0).getSymbolName();
2843 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2844 FinalSize += AI->getInlineAsmLength(AsmStr);
2845 break;
2846 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002847 case TargetInstrInfo::DBG_LABEL:
2848 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002849 break;
2850 case TargetInstrInfo::IMPLICIT_DEF:
2851 case TargetInstrInfo::DECLARE:
2852 case X86::DWARF_LOC:
2853 case X86::FP_REG_KILL:
2854 break;
2855 case X86::MOVPC32r: {
2856 // This emits the "call" portion of this pseudo instruction.
2857 ++FinalSize;
2858 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2859 break;
2860 }
Nicolas Geoffray81580792008-10-25 15:22:06 +00002861 case X86::TLS_tp:
2862 case X86::TLS_gs_ri:
2863 FinalSize += 2;
2864 FinalSize += sizeGlobalAddress(false);
2865 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002866 }
2867 CurOp = NumOps;
2868 break;
2869 case X86II::RawFrm:
2870 ++FinalSize;
2871
2872 if (CurOp != NumOps) {
2873 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002874 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002875 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002876 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002877 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002878 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002879 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002880 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002881 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2882 } else {
2883 assert(0 && "Unknown RawFrm operand!");
2884 }
2885 }
2886 break;
2887
2888 case X86II::AddRegFrm:
2889 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002890 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002891
2892 if (CurOp != NumOps) {
2893 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2894 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002895 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002896 FinalSize += sizeConstant(Size);
2897 else {
2898 bool dword = false;
2899 if (Opcode == X86::MOV64ri)
2900 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002901 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002902 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002903 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002904 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002905 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002906 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002907 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002908 FinalSize += sizeJumpTableAddress(dword);
2909 }
2910 }
2911 break;
2912
2913 case X86II::MRMDestReg: {
2914 ++FinalSize;
2915 FinalSize += sizeRegModRMByte();
2916 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002917 if (CurOp != NumOps) {
2918 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002919 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002920 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002921 break;
2922 }
2923 case X86II::MRMDestMem: {
2924 ++FinalSize;
2925 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2926 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002927 if (CurOp != NumOps) {
2928 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002929 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002930 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002931 break;
2932 }
2933
2934 case X86II::MRMSrcReg:
2935 ++FinalSize;
2936 FinalSize += sizeRegModRMByte();
2937 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002938 if (CurOp != NumOps) {
2939 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002940 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002941 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002942 break;
2943
2944 case X86II::MRMSrcMem: {
2945
2946 ++FinalSize;
2947 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2948 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002949 if (CurOp != NumOps) {
2950 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002951 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002952 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002953 break;
2954 }
2955
2956 case X86II::MRM0r: case X86II::MRM1r:
2957 case X86II::MRM2r: case X86II::MRM3r:
2958 case X86II::MRM4r: case X86II::MRM5r:
2959 case X86II::MRM6r: case X86II::MRM7r:
2960 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002961 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002962 FinalSize += sizeRegModRMByte();
2963
2964 if (CurOp != NumOps) {
2965 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2966 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002967 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002968 FinalSize += sizeConstant(Size);
2969 else {
2970 bool dword = false;
2971 if (Opcode == X86::MOV64ri32)
2972 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002973 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002974 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002975 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002976 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002977 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002978 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002979 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002980 FinalSize += sizeJumpTableAddress(dword);
2981 }
2982 }
2983 break;
2984
2985 case X86II::MRM0m: case X86II::MRM1m:
2986 case X86II::MRM2m: case X86II::MRM3m:
2987 case X86II::MRM4m: case X86II::MRM5m:
2988 case X86II::MRM6m: case X86II::MRM7m: {
2989
2990 ++FinalSize;
2991 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2992 CurOp += 4;
2993
2994 if (CurOp != NumOps) {
2995 const MachineOperand &MO = MI.getOperand(CurOp++);
2996 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002997 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002998 FinalSize += sizeConstant(Size);
2999 else {
3000 bool dword = false;
3001 if (Opcode == X86::MOV64mi32)
3002 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003003 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003004 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003005 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003006 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003007 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003008 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003009 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003010 FinalSize += sizeJumpTableAddress(dword);
3011 }
3012 }
3013 break;
3014 }
3015
3016 case X86II::MRMInitReg:
3017 ++FinalSize;
3018 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3019 FinalSize += sizeRegModRMByte();
3020 ++CurOp;
3021 break;
3022 }
3023
3024 if (!Desc->isVariadic() && CurOp != NumOps) {
3025 cerr << "Cannot determine size: ";
3026 MI.dump();
3027 cerr << '\n';
3028 abort();
3029 }
3030
3031
3032 return FinalSize;
3033}
3034
3035
3036unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3037 const TargetInstrDesc &Desc = MI->getDesc();
3038 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003039 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003040 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3041 if (Desc.getOpcode() == X86::MOVPC32r) {
3042 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3043 }
3044 return Size;
3045}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003046
Dan Gohman882ab732008-09-30 00:58:23 +00003047/// getGlobalBaseReg - Return a virtual register initialized with the
3048/// the global base register value. Output instructions required to
3049/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003050///
Dan Gohman882ab732008-09-30 00:58:23 +00003051unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3052 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3053 "X86-64 PIC uses RIP relative addressing");
3054
3055 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3056 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3057 if (GlobalBaseReg != 0)
3058 return GlobalBaseReg;
3059
Dan Gohmanb60482f2008-09-23 18:22:58 +00003060 // Insert the set of GlobalBaseReg into the first MBB of the function
3061 MachineBasicBlock &FirstMBB = MF->front();
3062 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3063 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3064 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3065
3066 const TargetInstrInfo *TII = TM.getInstrInfo();
3067 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3068 // only used in JIT code emission as displacement to pc.
3069 BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
3070
3071 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3072 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3073 if (TM.getRelocationModel() == Reloc::PIC_ &&
3074 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman882ab732008-09-30 00:58:23 +00003075 GlobalBaseReg =
Dan Gohmanb60482f2008-09-23 18:22:58 +00003076 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3077 BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
3078 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman882ab732008-09-30 00:58:23 +00003079 } else {
3080 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003081 }
3082
Dan Gohman882ab732008-09-30 00:58:23 +00003083 X86FI->setGlobalBaseReg(GlobalBaseReg);
3084 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003085}