blob: 7ad75d24b486e4e88c44b46463ccf023deb2fbb9 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner0631ea72008-11-16 05:06:21 +0000183 Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000184 Instruction *visitAnd(BinaryOperator &I);
Chris Lattner0c678e52008-11-16 05:20:07 +0000185 Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Bill Wendling9912f712008-12-01 08:32:40 +0000186 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
Bill Wendlingdae376a2008-12-01 08:23:25 +0000187 Value *A, Value *B, Value *C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188 Instruction *visitOr (BinaryOperator &I);
189 Instruction *visitXor(BinaryOperator &I);
190 Instruction *visitShl(BinaryOperator &I);
191 Instruction *visitAShr(BinaryOperator &I);
192 Instruction *visitLShr(BinaryOperator &I);
193 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000194 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
195 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 Instruction *visitFCmpInst(FCmpInst &I);
197 Instruction *visitICmpInst(ICmpInst &I);
198 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
199 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
200 Instruction *LHS,
201 ConstantInt *RHS);
202 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
203 ConstantInt *DivRHS);
204
205 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
206 ICmpInst::Predicate Cond, Instruction &I);
207 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
208 BinaryOperator &I);
209 Instruction *commonCastTransforms(CastInst &CI);
210 Instruction *commonIntCastTransforms(CastInst &CI);
211 Instruction *commonPointerCastTransforms(CastInst &CI);
212 Instruction *visitTrunc(TruncInst &CI);
213 Instruction *visitZExt(ZExtInst &CI);
214 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000215 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000217 Instruction *visitFPToUI(FPToUIInst &FI);
218 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 Instruction *visitUIToFP(CastInst &CI);
220 Instruction *visitSIToFP(CastInst &CI);
221 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000222 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223 Instruction *visitBitCast(BitCastInst &CI);
224 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
225 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000226 Instruction *visitSelectInst(SelectInst &SI);
227 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228 Instruction *visitCallInst(CallInst &CI);
229 Instruction *visitInvokeInst(InvokeInst &II);
230 Instruction *visitPHINode(PHINode &PN);
231 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
232 Instruction *visitAllocationInst(AllocationInst &AI);
233 Instruction *visitFreeInst(FreeInst &FI);
234 Instruction *visitLoadInst(LoadInst &LI);
235 Instruction *visitStoreInst(StoreInst &SI);
236 Instruction *visitBranchInst(BranchInst &BI);
237 Instruction *visitSwitchInst(SwitchInst &SI);
238 Instruction *visitInsertElementInst(InsertElementInst &IE);
239 Instruction *visitExtractElementInst(ExtractElementInst &EI);
240 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000241 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242
243 // visitInstruction - Specify what to return for unhandled instructions...
244 Instruction *visitInstruction(Instruction &I) { return 0; }
245
246 private:
247 Instruction *visitCallSite(CallSite CS);
248 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000249 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000250 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
251 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000252 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000253
254 public:
255 // InsertNewInstBefore - insert an instruction New before instruction Old
256 // in the program. Add the new instruction to the worklist.
257 //
258 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
259 assert(New && New->getParent() == 0 &&
260 "New instruction already inserted into a basic block!");
261 BasicBlock *BB = Old.getParent();
262 BB->getInstList().insert(&Old, New); // Insert inst
263 AddToWorkList(New);
264 return New;
265 }
266
267 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
268 /// This also adds the cast to the worklist. Finally, this returns the
269 /// cast.
270 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
271 Instruction &Pos) {
272 if (V->getType() == Ty) return V;
273
274 if (Constant *CV = dyn_cast<Constant>(V))
275 return ConstantExpr::getCast(opc, CV, Ty);
276
Gabor Greifa645dd32008-05-16 19:29:10 +0000277 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278 AddToWorkList(C);
279 return C;
280 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000281
282 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
283 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
284 }
285
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286
287 // ReplaceInstUsesWith - This method is to be used when an instruction is
288 // found to be dead, replacable with another preexisting expression. Here
289 // we add all uses of I to the worklist, replace all uses of I with the new
290 // value, then return I, so that the inst combiner will know that I was
291 // modified.
292 //
293 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
294 AddUsersToWorkList(I); // Add all modified instrs to worklist
295 if (&I != V) {
296 I.replaceAllUsesWith(V);
297 return &I;
298 } else {
299 // If we are replacing the instruction with itself, this must be in a
300 // segment of unreachable code, so just clobber the instruction.
301 I.replaceAllUsesWith(UndefValue::get(I.getType()));
302 return &I;
303 }
304 }
305
306 // UpdateValueUsesWith - This method is to be used when an value is
307 // found to be replacable with another preexisting expression or was
308 // updated. Here we add all uses of I to the worklist, replace all uses of
309 // I with the new value (unless the instruction was just updated), then
310 // return true, so that the inst combiner will know that I was modified.
311 //
312 bool UpdateValueUsesWith(Value *Old, Value *New) {
313 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
314 if (Old != New)
315 Old->replaceAllUsesWith(New);
316 if (Instruction *I = dyn_cast<Instruction>(Old))
317 AddToWorkList(I);
318 if (Instruction *I = dyn_cast<Instruction>(New))
319 AddToWorkList(I);
320 return true;
321 }
322
323 // EraseInstFromFunction - When dealing with an instruction that has side
324 // effects or produces a void value, we can't rely on DCE to delete the
325 // instruction. Instead, visit methods should return the value returned by
326 // this function.
327 Instruction *EraseInstFromFunction(Instruction &I) {
328 assert(I.use_empty() && "Cannot erase instruction that is used!");
329 AddUsesToWorkList(I);
330 RemoveFromWorkList(&I);
331 I.eraseFromParent();
332 return 0; // Don't do anything with FI
333 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000334
335 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
336 APInt &KnownOne, unsigned Depth = 0) const {
337 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
338 }
339
340 bool MaskedValueIsZero(Value *V, const APInt &Mask,
341 unsigned Depth = 0) const {
342 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
343 }
344 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
345 return llvm::ComputeNumSignBits(Op, TD, Depth);
346 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000347
348 private:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349
350 /// SimplifyCommutative - This performs a few simplifications for
351 /// commutative operators.
352 bool SimplifyCommutative(BinaryOperator &I);
353
354 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
355 /// most-complex to least-complex order.
356 bool SimplifyCompare(CmpInst &I);
357
358 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
359 /// on the demanded bits.
360 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
361 APInt& KnownZero, APInt& KnownOne,
362 unsigned Depth = 0);
363
364 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
365 uint64_t &UndefElts, unsigned Depth = 0);
366
367 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
368 // PHI node as operand #0, see if we can fold the instruction into the PHI
369 // (which is only possible if all operands to the PHI are constants).
370 Instruction *FoldOpIntoPhi(Instruction &I);
371
372 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
373 // operator and they all are only used by the PHI, PHI together their
374 // inputs, and do the operation once, to the result of the PHI.
375 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
376 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
Chris Lattner9e1916e2008-12-01 02:34:36 +0000377 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
378
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379
380 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
381 ConstantInt *AndRHS, BinaryOperator &TheAnd);
382
383 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
384 bool isSub, Instruction &I);
385 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
386 bool isSigned, bool Inside, Instruction &IB);
387 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
388 Instruction *MatchBSwap(BinaryOperator &I);
389 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000390 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000391 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000392
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393
394 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000395
Dan Gohman2d648bb2008-04-10 18:43:06 +0000396 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
397 unsigned CastOpc,
398 int &NumCastsRemoved);
399 unsigned GetOrEnforceKnownAlignment(Value *V,
400 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000401
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403}
404
Dan Gohman089efff2008-05-13 00:00:25 +0000405char InstCombiner::ID = 0;
406static RegisterPass<InstCombiner>
407X("instcombine", "Combine redundant instructions");
408
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409// getComplexity: Assign a complexity or rank value to LLVM Values...
410// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
411static unsigned getComplexity(Value *V) {
412 if (isa<Instruction>(V)) {
413 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
414 return 3;
415 return 4;
416 }
417 if (isa<Argument>(V)) return 3;
418 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
419}
420
421// isOnlyUse - Return true if this instruction will be deleted if we stop using
422// it.
423static bool isOnlyUse(Value *V) {
424 return V->hasOneUse() || isa<Constant>(V);
425}
426
427// getPromotedType - Return the specified type promoted as it would be to pass
428// though a va_arg area...
429static const Type *getPromotedType(const Type *Ty) {
430 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
431 if (ITy->getBitWidth() < 32)
432 return Type::Int32Ty;
433 }
434 return Ty;
435}
436
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000437/// getBitCastOperand - If the specified operand is a CastInst, a constant
438/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
439/// operand value, otherwise return null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440static Value *getBitCastOperand(Value *V) {
441 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000442 // BitCastInst?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000443 return I->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000444 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
445 // GetElementPtrInst?
446 if (GEP->hasAllZeroIndices())
447 return GEP->getOperand(0);
448 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000450 // BitCast ConstantExp?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 return CE->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000452 else if (CE->getOpcode() == Instruction::GetElementPtr) {
453 // GetElementPtr ConstantExp?
454 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
455 I != E; ++I) {
456 ConstantInt *CI = dyn_cast<ConstantInt>(I);
457 if (!CI || !CI->isZero())
458 // Any non-zero indices? Not cast-like.
459 return 0;
460 }
461 // All-zero indices? This is just like casting.
462 return CE->getOperand(0);
463 }
464 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000465 return 0;
466}
467
468/// This function is a wrapper around CastInst::isEliminableCastPair. It
469/// simply extracts arguments and returns what that function returns.
470static Instruction::CastOps
471isEliminableCastPair(
472 const CastInst *CI, ///< The first cast instruction
473 unsigned opcode, ///< The opcode of the second cast instruction
474 const Type *DstTy, ///< The target type for the second cast instruction
475 TargetData *TD ///< The target data for pointer size
476) {
477
478 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
479 const Type *MidTy = CI->getType(); // B from above
480
481 // Get the opcodes of the two Cast instructions
482 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
483 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
484
485 return Instruction::CastOps(
486 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
487 DstTy, TD->getIntPtrType()));
488}
489
490/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
491/// in any code being generated. It does not require codegen if V is simple
492/// enough or if the cast can be folded into other casts.
493static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
494 const Type *Ty, TargetData *TD) {
495 if (V->getType() == Ty || isa<Constant>(V)) return false;
496
497 // If this is another cast that can be eliminated, it isn't codegen either.
498 if (const CastInst *CI = dyn_cast<CastInst>(V))
499 if (isEliminableCastPair(CI, opcode, Ty, TD))
500 return false;
501 return true;
502}
503
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504// SimplifyCommutative - This performs a few simplifications for commutative
505// operators:
506//
507// 1. Order operands such that they are listed from right (least complex) to
508// left (most complex). This puts constants before unary operators before
509// binary operators.
510//
511// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
512// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
513//
514bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
515 bool Changed = false;
516 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
517 Changed = !I.swapOperands();
518
519 if (!I.isAssociative()) return Changed;
520 Instruction::BinaryOps Opcode = I.getOpcode();
521 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
522 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
523 if (isa<Constant>(I.getOperand(1))) {
524 Constant *Folded = ConstantExpr::get(I.getOpcode(),
525 cast<Constant>(I.getOperand(1)),
526 cast<Constant>(Op->getOperand(1)));
527 I.setOperand(0, Op->getOperand(0));
528 I.setOperand(1, Folded);
529 return true;
530 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
531 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
532 isOnlyUse(Op) && isOnlyUse(Op1)) {
533 Constant *C1 = cast<Constant>(Op->getOperand(1));
534 Constant *C2 = cast<Constant>(Op1->getOperand(1));
535
536 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
537 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000538 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000539 Op1->getOperand(0),
540 Op1->getName(), &I);
541 AddToWorkList(New);
542 I.setOperand(0, New);
543 I.setOperand(1, Folded);
544 return true;
545 }
546 }
547 return Changed;
548}
549
550/// SimplifyCompare - For a CmpInst this function just orders the operands
551/// so that theyare listed from right (least complex) to left (most complex).
552/// This puts constants before unary operators before binary operators.
553bool InstCombiner::SimplifyCompare(CmpInst &I) {
554 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
555 return false;
556 I.swapOperands();
557 // Compare instructions are not associative so there's nothing else we can do.
558 return true;
559}
560
561// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
562// if the LHS is a constant zero (which is the 'negate' form).
563//
564static inline Value *dyn_castNegVal(Value *V) {
565 if (BinaryOperator::isNeg(V))
566 return BinaryOperator::getNegArgument(V);
567
568 // Constants can be considered to be negated values if they can be folded.
569 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
570 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000571
572 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
573 if (C->getType()->getElementType()->isInteger())
574 return ConstantExpr::getNeg(C);
575
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000576 return 0;
577}
578
579static inline Value *dyn_castNotVal(Value *V) {
580 if (BinaryOperator::isNot(V))
581 return BinaryOperator::getNotArgument(V);
582
583 // Constants can be considered to be not'ed values...
584 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
585 return ConstantInt::get(~C->getValue());
586 return 0;
587}
588
589// dyn_castFoldableMul - If this value is a multiply that can be folded into
590// other computations (because it has a constant operand), return the
591// non-constant operand of the multiply, and set CST to point to the multiplier.
592// Otherwise, return null.
593//
594static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
595 if (V->hasOneUse() && V->getType()->isInteger())
596 if (Instruction *I = dyn_cast<Instruction>(V)) {
597 if (I->getOpcode() == Instruction::Mul)
598 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
599 return I->getOperand(0);
600 if (I->getOpcode() == Instruction::Shl)
601 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
602 // The multiplier is really 1 << CST.
603 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
604 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
605 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
606 return I->getOperand(0);
607 }
608 }
609 return 0;
610}
611
612/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
613/// expression, return it.
614static User *dyn_castGetElementPtr(Value *V) {
615 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
616 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
617 if (CE->getOpcode() == Instruction::GetElementPtr)
618 return cast<User>(V);
619 return false;
620}
621
Dan Gohman2d648bb2008-04-10 18:43:06 +0000622/// getOpcode - If this is an Instruction or a ConstantExpr, return the
623/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000624static unsigned getOpcode(const Value *V) {
625 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000626 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000627 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000628 return CE->getOpcode();
629 // Use UserOp1 to mean there's no opcode.
630 return Instruction::UserOp1;
631}
632
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000633/// AddOne - Add one to a ConstantInt
634static ConstantInt *AddOne(ConstantInt *C) {
635 APInt Val(C->getValue());
636 return ConstantInt::get(++Val);
637}
638/// SubOne - Subtract one from a ConstantInt
639static ConstantInt *SubOne(ConstantInt *C) {
640 APInt Val(C->getValue());
641 return ConstantInt::get(--Val);
642}
643/// Add - Add two ConstantInts together
644static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
645 return ConstantInt::get(C1->getValue() + C2->getValue());
646}
647/// And - Bitwise AND two ConstantInts together
648static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
649 return ConstantInt::get(C1->getValue() & C2->getValue());
650}
651/// Subtract - Subtract one ConstantInt from another
652static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
653 return ConstantInt::get(C1->getValue() - C2->getValue());
654}
655/// Multiply - Multiply two ConstantInts together
656static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
657 return ConstantInt::get(C1->getValue() * C2->getValue());
658}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000659/// MultiplyOverflows - True if the multiply can not be expressed in an int
660/// this size.
661static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
662 uint32_t W = C1->getBitWidth();
663 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
664 if (sign) {
665 LHSExt.sext(W * 2);
666 RHSExt.sext(W * 2);
667 } else {
668 LHSExt.zext(W * 2);
669 RHSExt.zext(W * 2);
670 }
671
672 APInt MulExt = LHSExt * RHSExt;
673
674 if (sign) {
675 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
676 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
677 return MulExt.slt(Min) || MulExt.sgt(Max);
678 } else
679 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
680}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000682
683/// ShrinkDemandedConstant - Check to see if the specified operand of the
684/// specified instruction is a constant integer. If so, check to see if there
685/// are any bits set in the constant that are not demanded. If so, shrink the
686/// constant and return true.
687static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
688 APInt Demanded) {
689 assert(I && "No instruction?");
690 assert(OpNo < I->getNumOperands() && "Operand index too large");
691
692 // If the operand is not a constant integer, nothing to do.
693 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
694 if (!OpC) return false;
695
696 // If there are no bits set that aren't demanded, nothing to do.
697 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
698 if ((~Demanded & OpC->getValue()) == 0)
699 return false;
700
701 // This instruction is producing bits that are not demanded. Shrink the RHS.
702 Demanded &= OpC->getValue();
703 I->setOperand(OpNo, ConstantInt::get(Demanded));
704 return true;
705}
706
707// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
708// set of known zero and one bits, compute the maximum and minimum values that
709// could have the specified known zero and known one bits, returning them in
710// min/max.
711static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
712 const APInt& KnownZero,
713 const APInt& KnownOne,
714 APInt& Min, APInt& Max) {
715 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
716 assert(KnownZero.getBitWidth() == BitWidth &&
717 KnownOne.getBitWidth() == BitWidth &&
718 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
719 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
720 APInt UnknownBits = ~(KnownZero|KnownOne);
721
722 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
723 // bit if it is unknown.
724 Min = KnownOne;
725 Max = KnownOne|UnknownBits;
726
727 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
728 Min.set(BitWidth-1);
729 Max.clear(BitWidth-1);
730 }
731}
732
733// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
734// a set of known zero and one bits, compute the maximum and minimum values that
735// could have the specified known zero and known one bits, returning them in
736// min/max.
737static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000738 const APInt &KnownZero,
739 const APInt &KnownOne,
740 APInt &Min, APInt &Max) {
741 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 assert(KnownZero.getBitWidth() == BitWidth &&
743 KnownOne.getBitWidth() == BitWidth &&
744 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
745 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
746 APInt UnknownBits = ~(KnownZero|KnownOne);
747
748 // The minimum value is when the unknown bits are all zeros.
749 Min = KnownOne;
750 // The maximum value is when the unknown bits are all ones.
751 Max = KnownOne|UnknownBits;
752}
753
754/// SimplifyDemandedBits - This function attempts to replace V with a simpler
755/// value based on the demanded bits. When this function is called, it is known
756/// that only the bits set in DemandedMask of the result of V are ever used
757/// downstream. Consequently, depending on the mask and V, it may be possible
758/// to replace V with a constant or one of its operands. In such cases, this
759/// function does the replacement and returns true. In all other cases, it
760/// returns false after analyzing the expression and setting KnownOne and known
761/// to be one in the expression. KnownZero contains all the bits that are known
762/// to be zero in the expression. These are provided to potentially allow the
763/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
764/// the expression. KnownOne and KnownZero always follow the invariant that
765/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
766/// the bits in KnownOne and KnownZero may only be accurate for those bits set
767/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
768/// and KnownOne must all be the same.
769bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
770 APInt& KnownZero, APInt& KnownOne,
771 unsigned Depth) {
772 assert(V != 0 && "Null pointer of Value???");
773 assert(Depth <= 6 && "Limit Search Depth");
774 uint32_t BitWidth = DemandedMask.getBitWidth();
775 const IntegerType *VTy = cast<IntegerType>(V->getType());
776 assert(VTy->getBitWidth() == BitWidth &&
777 KnownZero.getBitWidth() == BitWidth &&
778 KnownOne.getBitWidth() == BitWidth &&
779 "Value *V, DemandedMask, KnownZero and KnownOne \
780 must have same BitWidth");
781 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
782 // We know all of the bits for a constant!
783 KnownOne = CI->getValue() & DemandedMask;
784 KnownZero = ~KnownOne & DemandedMask;
785 return false;
786 }
787
788 KnownZero.clear();
789 KnownOne.clear();
790 if (!V->hasOneUse()) { // Other users may use these bits.
791 if (Depth != 0) { // Not at the root.
792 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
793 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
794 return false;
795 }
796 // If this is the root being simplified, allow it to have multiple uses,
797 // just set the DemandedMask to all bits.
798 DemandedMask = APInt::getAllOnesValue(BitWidth);
799 } else if (DemandedMask == 0) { // Not demanding any bits from V.
800 if (V != UndefValue::get(VTy))
801 return UpdateValueUsesWith(V, UndefValue::get(VTy));
802 return false;
803 } else if (Depth == 6) { // Limit search depth.
804 return false;
805 }
806
807 Instruction *I = dyn_cast<Instruction>(V);
808 if (!I) return false; // Only analyze instructions.
809
810 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
811 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
812 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000813 default:
814 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
815 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816 case Instruction::And:
817 // If either the LHS or the RHS are Zero, the result is zero.
818 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
819 RHSKnownZero, RHSKnownOne, Depth+1))
820 return true;
821 assert((RHSKnownZero & RHSKnownOne) == 0 &&
822 "Bits known to be one AND zero?");
823
824 // If something is known zero on the RHS, the bits aren't demanded on the
825 // LHS.
826 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
827 LHSKnownZero, LHSKnownOne, Depth+1))
828 return true;
829 assert((LHSKnownZero & LHSKnownOne) == 0 &&
830 "Bits known to be one AND zero?");
831
832 // If all of the demanded bits are known 1 on one side, return the other.
833 // These bits cannot contribute to the result of the 'and'.
834 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
835 (DemandedMask & ~LHSKnownZero))
836 return UpdateValueUsesWith(I, I->getOperand(0));
837 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
838 (DemandedMask & ~RHSKnownZero))
839 return UpdateValueUsesWith(I, I->getOperand(1));
840
841 // If all of the demanded bits in the inputs are known zeros, return zero.
842 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
843 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
844
845 // If the RHS is a constant, see if we can simplify it.
846 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
847 return UpdateValueUsesWith(I, I);
848
849 // Output known-1 bits are only known if set in both the LHS & RHS.
850 RHSKnownOne &= LHSKnownOne;
851 // Output known-0 are known to be clear if zero in either the LHS | RHS.
852 RHSKnownZero |= LHSKnownZero;
853 break;
854 case Instruction::Or:
855 // If either the LHS or the RHS are One, the result is One.
856 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
857 RHSKnownZero, RHSKnownOne, Depth+1))
858 return true;
859 assert((RHSKnownZero & RHSKnownOne) == 0 &&
860 "Bits known to be one AND zero?");
861 // If something is known one on the RHS, the bits aren't demanded on the
862 // LHS.
863 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
864 LHSKnownZero, LHSKnownOne, Depth+1))
865 return true;
866 assert((LHSKnownZero & LHSKnownOne) == 0 &&
867 "Bits known to be one AND zero?");
868
869 // If all of the demanded bits are known zero on one side, return the other.
870 // These bits cannot contribute to the result of the 'or'.
871 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
872 (DemandedMask & ~LHSKnownOne))
873 return UpdateValueUsesWith(I, I->getOperand(0));
874 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
875 (DemandedMask & ~RHSKnownOne))
876 return UpdateValueUsesWith(I, I->getOperand(1));
877
878 // If all of the potentially set bits on one side are known to be set on
879 // the other side, just use the 'other' side.
880 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
881 (DemandedMask & (~RHSKnownZero)))
882 return UpdateValueUsesWith(I, I->getOperand(0));
883 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
884 (DemandedMask & (~LHSKnownZero)))
885 return UpdateValueUsesWith(I, I->getOperand(1));
886
887 // If the RHS is a constant, see if we can simplify it.
888 if (ShrinkDemandedConstant(I, 1, DemandedMask))
889 return UpdateValueUsesWith(I, I);
890
891 // Output known-0 bits are only known if clear in both the LHS & RHS.
892 RHSKnownZero &= LHSKnownZero;
893 // Output known-1 are known to be set if set in either the LHS | RHS.
894 RHSKnownOne |= LHSKnownOne;
895 break;
896 case Instruction::Xor: {
897 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
898 RHSKnownZero, RHSKnownOne, Depth+1))
899 return true;
900 assert((RHSKnownZero & RHSKnownOne) == 0 &&
901 "Bits known to be one AND zero?");
902 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
903 LHSKnownZero, LHSKnownOne, Depth+1))
904 return true;
905 assert((LHSKnownZero & LHSKnownOne) == 0 &&
906 "Bits known to be one AND zero?");
907
908 // If all of the demanded bits are known zero on one side, return the other.
909 // These bits cannot contribute to the result of the 'xor'.
910 if ((DemandedMask & RHSKnownZero) == DemandedMask)
911 return UpdateValueUsesWith(I, I->getOperand(0));
912 if ((DemandedMask & LHSKnownZero) == DemandedMask)
913 return UpdateValueUsesWith(I, I->getOperand(1));
914
915 // Output known-0 bits are known if clear or set in both the LHS & RHS.
916 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
917 (RHSKnownOne & LHSKnownOne);
918 // Output known-1 are known to be set if set in only one of the LHS, RHS.
919 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
920 (RHSKnownOne & LHSKnownZero);
921
922 // If all of the demanded bits are known to be zero on one side or the
923 // other, turn this into an *inclusive* or.
924 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
925 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
926 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000927 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000928 I->getName());
929 InsertNewInstBefore(Or, *I);
930 return UpdateValueUsesWith(I, Or);
931 }
932
933 // If all of the demanded bits on one side are known, and all of the set
934 // bits on that side are also known to be set on the other side, turn this
935 // into an AND, as we know the bits will be cleared.
936 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
937 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
938 // all known
939 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
940 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
941 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000942 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 InsertNewInstBefore(And, *I);
944 return UpdateValueUsesWith(I, And);
945 }
946 }
947
948 // If the RHS is a constant, see if we can simplify it.
949 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
950 if (ShrinkDemandedConstant(I, 1, DemandedMask))
951 return UpdateValueUsesWith(I, I);
952
953 RHSKnownZero = KnownZeroOut;
954 RHSKnownOne = KnownOneOut;
955 break;
956 }
957 case Instruction::Select:
958 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
959 RHSKnownZero, RHSKnownOne, Depth+1))
960 return true;
961 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
962 LHSKnownZero, LHSKnownOne, Depth+1))
963 return true;
964 assert((RHSKnownZero & RHSKnownOne) == 0 &&
965 "Bits known to be one AND zero?");
966 assert((LHSKnownZero & LHSKnownOne) == 0 &&
967 "Bits known to be one AND zero?");
968
969 // If the operands are constants, see if we can simplify them.
970 if (ShrinkDemandedConstant(I, 1, DemandedMask))
971 return UpdateValueUsesWith(I, I);
972 if (ShrinkDemandedConstant(I, 2, DemandedMask))
973 return UpdateValueUsesWith(I, I);
974
975 // Only known if known in both the LHS and RHS.
976 RHSKnownOne &= LHSKnownOne;
977 RHSKnownZero &= LHSKnownZero;
978 break;
979 case Instruction::Trunc: {
980 uint32_t truncBf =
981 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
982 DemandedMask.zext(truncBf);
983 RHSKnownZero.zext(truncBf);
984 RHSKnownOne.zext(truncBf);
985 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
986 RHSKnownZero, RHSKnownOne, Depth+1))
987 return true;
988 DemandedMask.trunc(BitWidth);
989 RHSKnownZero.trunc(BitWidth);
990 RHSKnownOne.trunc(BitWidth);
991 assert((RHSKnownZero & RHSKnownOne) == 0 &&
992 "Bits known to be one AND zero?");
993 break;
994 }
995 case Instruction::BitCast:
996 if (!I->getOperand(0)->getType()->isInteger())
997 return false;
998
999 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1000 RHSKnownZero, RHSKnownOne, Depth+1))
1001 return true;
1002 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1003 "Bits known to be one AND zero?");
1004 break;
1005 case Instruction::ZExt: {
1006 // Compute the bits in the result that are not present in the input.
1007 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1008 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1009
1010 DemandedMask.trunc(SrcBitWidth);
1011 RHSKnownZero.trunc(SrcBitWidth);
1012 RHSKnownOne.trunc(SrcBitWidth);
1013 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1014 RHSKnownZero, RHSKnownOne, Depth+1))
1015 return true;
1016 DemandedMask.zext(BitWidth);
1017 RHSKnownZero.zext(BitWidth);
1018 RHSKnownOne.zext(BitWidth);
1019 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1020 "Bits known to be one AND zero?");
1021 // The top bits are known to be zero.
1022 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1023 break;
1024 }
1025 case Instruction::SExt: {
1026 // Compute the bits in the result that are not present in the input.
1027 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1028 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1029
1030 APInt InputDemandedBits = DemandedMask &
1031 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1032
1033 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1034 // If any of the sign extended bits are demanded, we know that the sign
1035 // bit is demanded.
1036 if ((NewBits & DemandedMask) != 0)
1037 InputDemandedBits.set(SrcBitWidth-1);
1038
1039 InputDemandedBits.trunc(SrcBitWidth);
1040 RHSKnownZero.trunc(SrcBitWidth);
1041 RHSKnownOne.trunc(SrcBitWidth);
1042 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1043 RHSKnownZero, RHSKnownOne, Depth+1))
1044 return true;
1045 InputDemandedBits.zext(BitWidth);
1046 RHSKnownZero.zext(BitWidth);
1047 RHSKnownOne.zext(BitWidth);
1048 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1049 "Bits known to be one AND zero?");
1050
1051 // If the sign bit of the input is known set or clear, then we know the
1052 // top bits of the result.
1053
1054 // If the input sign bit is known zero, or if the NewBits are not demanded
1055 // convert this into a zero extension.
1056 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1057 {
1058 // Convert to ZExt cast
1059 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1060 return UpdateValueUsesWith(I, NewCast);
1061 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1062 RHSKnownOne |= NewBits;
1063 }
1064 break;
1065 }
1066 case Instruction::Add: {
1067 // Figure out what the input bits are. If the top bits of the and result
1068 // are not demanded, then the add doesn't demand them from its input
1069 // either.
1070 uint32_t NLZ = DemandedMask.countLeadingZeros();
1071
1072 // If there is a constant on the RHS, there are a variety of xformations
1073 // we can do.
1074 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1075 // If null, this should be simplified elsewhere. Some of the xforms here
1076 // won't work if the RHS is zero.
1077 if (RHS->isZero())
1078 break;
1079
1080 // If the top bit of the output is demanded, demand everything from the
1081 // input. Otherwise, we demand all the input bits except NLZ top bits.
1082 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1083
1084 // Find information about known zero/one bits in the input.
1085 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1086 LHSKnownZero, LHSKnownOne, Depth+1))
1087 return true;
1088
1089 // If the RHS of the add has bits set that can't affect the input, reduce
1090 // the constant.
1091 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1092 return UpdateValueUsesWith(I, I);
1093
1094 // Avoid excess work.
1095 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1096 break;
1097
1098 // Turn it into OR if input bits are zero.
1099 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1100 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001101 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001102 I->getName());
1103 InsertNewInstBefore(Or, *I);
1104 return UpdateValueUsesWith(I, Or);
1105 }
1106
1107 // We can say something about the output known-zero and known-one bits,
1108 // depending on potential carries from the input constant and the
1109 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1110 // bits set and the RHS constant is 0x01001, then we know we have a known
1111 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1112
1113 // To compute this, we first compute the potential carry bits. These are
1114 // the bits which may be modified. I'm not aware of a better way to do
1115 // this scan.
1116 const APInt& RHSVal = RHS->getValue();
1117 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1118
1119 // Now that we know which bits have carries, compute the known-1/0 sets.
1120
1121 // Bits are known one if they are known zero in one operand and one in the
1122 // other, and there is no input carry.
1123 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1124 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1125
1126 // Bits are known zero if they are known zero in both operands and there
1127 // is no input carry.
1128 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1129 } else {
1130 // If the high-bits of this ADD are not demanded, then it does not demand
1131 // the high bits of its LHS or RHS.
1132 if (DemandedMask[BitWidth-1] == 0) {
1133 // Right fill the mask of bits for this ADD to demand the most
1134 // significant bit and all those below it.
1135 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1136 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1137 LHSKnownZero, LHSKnownOne, Depth+1))
1138 return true;
1139 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1140 LHSKnownZero, LHSKnownOne, Depth+1))
1141 return true;
1142 }
1143 }
1144 break;
1145 }
1146 case Instruction::Sub:
1147 // If the high-bits of this SUB are not demanded, then it does not demand
1148 // the high bits of its LHS or RHS.
1149 if (DemandedMask[BitWidth-1] == 0) {
1150 // Right fill the mask of bits for this SUB to demand the most
1151 // significant bit and all those below it.
1152 uint32_t NLZ = DemandedMask.countLeadingZeros();
1153 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1154 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1155 LHSKnownZero, LHSKnownOne, Depth+1))
1156 return true;
1157 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1158 LHSKnownZero, LHSKnownOne, Depth+1))
1159 return true;
1160 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001161 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1162 // the known zeros and ones.
1163 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001164 break;
1165 case Instruction::Shl:
1166 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1167 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1168 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1169 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1170 RHSKnownZero, RHSKnownOne, Depth+1))
1171 return true;
1172 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1173 "Bits known to be one AND zero?");
1174 RHSKnownZero <<= ShiftAmt;
1175 RHSKnownOne <<= ShiftAmt;
1176 // low bits known zero.
1177 if (ShiftAmt)
1178 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1179 }
1180 break;
1181 case Instruction::LShr:
1182 // For a logical shift right
1183 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1184 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1185
1186 // Unsigned shift right.
1187 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1188 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1189 RHSKnownZero, RHSKnownOne, Depth+1))
1190 return true;
1191 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1192 "Bits known to be one AND zero?");
1193 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1194 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1195 if (ShiftAmt) {
1196 // Compute the new bits that are at the top now.
1197 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1198 RHSKnownZero |= HighBits; // high bits known zero.
1199 }
1200 }
1201 break;
1202 case Instruction::AShr:
1203 // If this is an arithmetic shift right and only the low-bit is set, we can
1204 // always convert this into a logical shr, even if the shift amount is
1205 // variable. The low bit of the shift cannot be an input sign bit unless
1206 // the shift amount is >= the size of the datatype, which is undefined.
1207 if (DemandedMask == 1) {
1208 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001209 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001210 I->getOperand(0), I->getOperand(1), I->getName());
1211 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1212 return UpdateValueUsesWith(I, NewVal);
1213 }
1214
1215 // If the sign bit is the only bit demanded by this ashr, then there is no
1216 // need to do it, the shift doesn't change the high bit.
1217 if (DemandedMask.isSignBit())
1218 return UpdateValueUsesWith(I, I->getOperand(0));
1219
1220 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1221 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1222
1223 // Signed shift right.
1224 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1225 // If any of the "high bits" are demanded, we should set the sign bit as
1226 // demanded.
1227 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1228 DemandedMaskIn.set(BitWidth-1);
1229 if (SimplifyDemandedBits(I->getOperand(0),
1230 DemandedMaskIn,
1231 RHSKnownZero, RHSKnownOne, Depth+1))
1232 return true;
1233 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1234 "Bits known to be one AND zero?");
1235 // Compute the new bits that are at the top now.
1236 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1237 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1238 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1239
1240 // Handle the sign bits.
1241 APInt SignBit(APInt::getSignBit(BitWidth));
1242 // Adjust to where it is now in the mask.
1243 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1244
1245 // If the input sign bit is known to be zero, or if none of the top bits
1246 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001247 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 (HighBits & ~DemandedMask) == HighBits) {
1249 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001250 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001251 I->getOperand(0), SA, I->getName());
1252 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1253 return UpdateValueUsesWith(I, NewVal);
1254 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1255 RHSKnownOne |= HighBits;
1256 }
1257 }
1258 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001259 case Instruction::SRem:
1260 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001261 APInt RA = Rem->getValue().abs();
1262 if (RA.isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001263 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1264 return UpdateValueUsesWith(I, I->getOperand(0));
1265
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001266 APInt LowBits = RA - 1;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001267 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1268 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1269 LHSKnownZero, LHSKnownOne, Depth+1))
1270 return true;
1271
1272 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1273 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001274
1275 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001276
1277 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1278 }
1279 }
1280 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001281 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001282 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1283 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001284 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1285 KnownZero2, KnownOne2, Depth+1))
1286 return true;
1287
Dan Gohmanbec16052008-04-28 17:02:21 +00001288 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001289 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001290 KnownZero2, KnownOne2, Depth+1))
1291 return true;
1292
1293 Leaders = std::max(Leaders,
1294 KnownZero2.countLeadingOnes());
1295 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001296 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001297 }
Chris Lattner989ba312008-06-18 04:33:20 +00001298 case Instruction::Call:
1299 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1300 switch (II->getIntrinsicID()) {
1301 default: break;
1302 case Intrinsic::bswap: {
1303 // If the only bits demanded come from one byte of the bswap result,
1304 // just shift the input byte into position to eliminate the bswap.
1305 unsigned NLZ = DemandedMask.countLeadingZeros();
1306 unsigned NTZ = DemandedMask.countTrailingZeros();
1307
1308 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1309 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1310 // have 14 leading zeros, round to 8.
1311 NLZ &= ~7;
1312 NTZ &= ~7;
1313 // If we need exactly one byte, we can do this transformation.
1314 if (BitWidth-NLZ-NTZ == 8) {
1315 unsigned ResultBit = NTZ;
1316 unsigned InputBit = BitWidth-NTZ-8;
1317
1318 // Replace this with either a left or right shift to get the byte into
1319 // the right place.
1320 Instruction *NewVal;
1321 if (InputBit > ResultBit)
1322 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1323 ConstantInt::get(I->getType(), InputBit-ResultBit));
1324 else
1325 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1326 ConstantInt::get(I->getType(), ResultBit-InputBit));
1327 NewVal->takeName(I);
1328 InsertNewInstBefore(NewVal, *I);
1329 return UpdateValueUsesWith(I, NewVal);
1330 }
1331
1332 // TODO: Could compute known zero/one bits based on the input.
1333 break;
1334 }
1335 }
1336 }
Chris Lattner4946e222008-06-18 18:11:55 +00001337 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001338 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001339 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001340
1341 // If the client is only demanding bits that we know, return the known
1342 // constant.
1343 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1344 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1345 return false;
1346}
1347
1348
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001349/// SimplifyDemandedVectorElts - The specified value produces a vector with
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001350/// 64 or fewer elements. DemandedElts contains the set of elements that are
1351/// actually used by the caller. This method analyzes which elements of the
1352/// operand are undef and returns that information in UndefElts.
1353///
1354/// If the information about demanded elements can be used to simplify the
1355/// operation, the operation is simplified, then the resultant value is
1356/// returned. This returns null if no change was made.
1357Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1358 uint64_t &UndefElts,
1359 unsigned Depth) {
1360 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1361 assert(VWidth <= 64 && "Vector too wide to analyze!");
1362 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001363 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001364
1365 if (isa<UndefValue>(V)) {
1366 // If the entire vector is undefined, just return this info.
1367 UndefElts = EltMask;
1368 return 0;
1369 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1370 UndefElts = EltMask;
1371 return UndefValue::get(V->getType());
1372 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001373
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001374 UndefElts = 0;
1375 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1376 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1377 Constant *Undef = UndefValue::get(EltTy);
1378
1379 std::vector<Constant*> Elts;
1380 for (unsigned i = 0; i != VWidth; ++i)
1381 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1382 Elts.push_back(Undef);
1383 UndefElts |= (1ULL << i);
1384 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1385 Elts.push_back(Undef);
1386 UndefElts |= (1ULL << i);
1387 } else { // Otherwise, defined.
1388 Elts.push_back(CP->getOperand(i));
1389 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001390
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001391 // If we changed the constant, return it.
1392 Constant *NewCP = ConstantVector::get(Elts);
1393 return NewCP != CP ? NewCP : 0;
1394 } else if (isa<ConstantAggregateZero>(V)) {
1395 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1396 // set to undef.
Mon P Wang927daf52008-11-06 22:52:21 +00001397
1398 // Check if this is identity. If so, return 0 since we are not simplifying
1399 // anything.
1400 if (DemandedElts == ((1ULL << VWidth) -1))
1401 return 0;
1402
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001403 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1404 Constant *Zero = Constant::getNullValue(EltTy);
1405 Constant *Undef = UndefValue::get(EltTy);
1406 std::vector<Constant*> Elts;
1407 for (unsigned i = 0; i != VWidth; ++i)
1408 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1409 UndefElts = DemandedElts ^ EltMask;
1410 return ConstantVector::get(Elts);
1411 }
1412
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001413 // Limit search depth.
1414 if (Depth == 10)
1415 return false;
1416
1417 // If multiple users are using the root value, procede with
1418 // simplification conservatively assuming that all elements
1419 // are needed.
1420 if (!V->hasOneUse()) {
1421 // Quit if we find multiple users of a non-root value though.
1422 // They'll be handled when it's their turn to be visited by
1423 // the main instcombine process.
1424 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001425 // TODO: Just compute the UndefElts information recursively.
1426 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001427
1428 // Conservatively assume that all elements are needed.
1429 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001430 }
1431
1432 Instruction *I = dyn_cast<Instruction>(V);
1433 if (!I) return false; // Only analyze instructions.
1434
1435 bool MadeChange = false;
1436 uint64_t UndefElts2;
1437 Value *TmpV;
1438 switch (I->getOpcode()) {
1439 default: break;
1440
1441 case Instruction::InsertElement: {
1442 // If this is a variable index, we don't know which element it overwrites.
1443 // demand exactly the same input as we produce.
1444 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1445 if (Idx == 0) {
1446 // Note that we can't propagate undef elt info, because we don't know
1447 // which elt is getting updated.
1448 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1449 UndefElts2, Depth+1);
1450 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1451 break;
1452 }
1453
1454 // If this is inserting an element that isn't demanded, remove this
1455 // insertelement.
1456 unsigned IdxNo = Idx->getZExtValue();
1457 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1458 return AddSoonDeadInstToWorklist(*I, 0);
1459
1460 // Otherwise, the element inserted overwrites whatever was there, so the
1461 // input demanded set is simpler than the output set.
1462 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1463 DemandedElts & ~(1ULL << IdxNo),
1464 UndefElts, Depth+1);
1465 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1466
1467 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001468 UndefElts &= ~(1ULL << IdxNo);
1469 break;
1470 }
1471 case Instruction::ShuffleVector: {
1472 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001473 uint64_t LHSVWidth =
1474 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001475 uint64_t LeftDemanded = 0, RightDemanded = 0;
1476 for (unsigned i = 0; i < VWidth; i++) {
1477 if (DemandedElts & (1ULL << i)) {
1478 unsigned MaskVal = Shuffle->getMaskValue(i);
1479 if (MaskVal != -1u) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001480 assert(MaskVal < LHSVWidth * 2 &&
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001481 "shufflevector mask index out of range!");
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001482 if (MaskVal < LHSVWidth)
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001483 LeftDemanded |= 1ULL << MaskVal;
1484 else
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001485 RightDemanded |= 1ULL << (MaskVal - LHSVWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001486 }
1487 }
1488 }
1489
1490 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1491 UndefElts2, Depth+1);
1492 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1493
1494 uint64_t UndefElts3;
1495 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1496 UndefElts3, Depth+1);
1497 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1498
1499 bool NewUndefElts = false;
1500 for (unsigned i = 0; i < VWidth; i++) {
1501 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001502 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001503 uint64_t NewBit = 1ULL << i;
1504 UndefElts |= NewBit;
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001505 } else if (MaskVal < LHSVWidth) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001506 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1507 NewUndefElts |= NewBit;
1508 UndefElts |= NewBit;
1509 } else {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001510 uint64_t NewBit = ((UndefElts3 >> (MaskVal - LHSVWidth)) & 1) << i;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001511 NewUndefElts |= NewBit;
1512 UndefElts |= NewBit;
1513 }
1514 }
1515
1516 if (NewUndefElts) {
1517 // Add additional discovered undefs.
1518 std::vector<Constant*> Elts;
1519 for (unsigned i = 0; i < VWidth; ++i) {
1520 if (UndefElts & (1ULL << i))
1521 Elts.push_back(UndefValue::get(Type::Int32Ty));
1522 else
1523 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1524 Shuffle->getMaskValue(i)));
1525 }
1526 I->setOperand(2, ConstantVector::get(Elts));
1527 MadeChange = true;
1528 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001529 break;
1530 }
1531 case Instruction::BitCast: {
1532 // Vector->vector casts only.
1533 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1534 if (!VTy) break;
1535 unsigned InVWidth = VTy->getNumElements();
1536 uint64_t InputDemandedElts = 0;
1537 unsigned Ratio;
1538
1539 if (VWidth == InVWidth) {
1540 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1541 // elements as are demanded of us.
1542 Ratio = 1;
1543 InputDemandedElts = DemandedElts;
1544 } else if (VWidth > InVWidth) {
1545 // Untested so far.
1546 break;
1547
1548 // If there are more elements in the result than there are in the source,
1549 // then an input element is live if any of the corresponding output
1550 // elements are live.
1551 Ratio = VWidth/InVWidth;
1552 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1553 if (DemandedElts & (1ULL << OutIdx))
1554 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1555 }
1556 } else {
1557 // Untested so far.
1558 break;
1559
1560 // If there are more elements in the source than there are in the result,
1561 // then an input element is live if the corresponding output element is
1562 // live.
1563 Ratio = InVWidth/VWidth;
1564 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1565 if (DemandedElts & (1ULL << InIdx/Ratio))
1566 InputDemandedElts |= 1ULL << InIdx;
1567 }
1568
1569 // div/rem demand all inputs, because they don't want divide by zero.
1570 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1571 UndefElts2, Depth+1);
1572 if (TmpV) {
1573 I->setOperand(0, TmpV);
1574 MadeChange = true;
1575 }
1576
1577 UndefElts = UndefElts2;
1578 if (VWidth > InVWidth) {
1579 assert(0 && "Unimp");
1580 // If there are more elements in the result than there are in the source,
1581 // then an output element is undef if the corresponding input element is
1582 // undef.
1583 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1584 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1585 UndefElts |= 1ULL << OutIdx;
1586 } else if (VWidth < InVWidth) {
1587 assert(0 && "Unimp");
1588 // If there are more elements in the source than there are in the result,
1589 // then a result element is undef if all of the corresponding input
1590 // elements are undef.
1591 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1592 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1593 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1594 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1595 }
1596 break;
1597 }
1598 case Instruction::And:
1599 case Instruction::Or:
1600 case Instruction::Xor:
1601 case Instruction::Add:
1602 case Instruction::Sub:
1603 case Instruction::Mul:
1604 // div/rem demand all inputs, because they don't want divide by zero.
1605 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1606 UndefElts, Depth+1);
1607 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1608 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1609 UndefElts2, Depth+1);
1610 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1611
1612 // Output elements are undefined if both are undefined. Consider things
1613 // like undef&0. The result is known zero, not undef.
1614 UndefElts &= UndefElts2;
1615 break;
1616
1617 case Instruction::Call: {
1618 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1619 if (!II) break;
1620 switch (II->getIntrinsicID()) {
1621 default: break;
1622
1623 // Binary vector operations that work column-wise. A dest element is a
1624 // function of the corresponding input elements from the two inputs.
1625 case Intrinsic::x86_sse_sub_ss:
1626 case Intrinsic::x86_sse_mul_ss:
1627 case Intrinsic::x86_sse_min_ss:
1628 case Intrinsic::x86_sse_max_ss:
1629 case Intrinsic::x86_sse2_sub_sd:
1630 case Intrinsic::x86_sse2_mul_sd:
1631 case Intrinsic::x86_sse2_min_sd:
1632 case Intrinsic::x86_sse2_max_sd:
1633 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1634 UndefElts, Depth+1);
1635 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1636 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1637 UndefElts2, Depth+1);
1638 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1639
1640 // If only the low elt is demanded and this is a scalarizable intrinsic,
1641 // scalarize it now.
1642 if (DemandedElts == 1) {
1643 switch (II->getIntrinsicID()) {
1644 default: break;
1645 case Intrinsic::x86_sse_sub_ss:
1646 case Intrinsic::x86_sse_mul_ss:
1647 case Intrinsic::x86_sse2_sub_sd:
1648 case Intrinsic::x86_sse2_mul_sd:
1649 // TODO: Lower MIN/MAX/ABS/etc
1650 Value *LHS = II->getOperand(1);
1651 Value *RHS = II->getOperand(2);
1652 // Extract the element as scalars.
1653 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1654 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1655
1656 switch (II->getIntrinsicID()) {
1657 default: assert(0 && "Case stmts out of sync!");
1658 case Intrinsic::x86_sse_sub_ss:
1659 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001660 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001661 II->getName()), *II);
1662 break;
1663 case Intrinsic::x86_sse_mul_ss:
1664 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001665 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001666 II->getName()), *II);
1667 break;
1668 }
1669
1670 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001671 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1672 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001673 InsertNewInstBefore(New, *II);
1674 AddSoonDeadInstToWorklist(*II, 0);
1675 return New;
1676 }
1677 }
1678
1679 // Output elements are undefined if both are undefined. Consider things
1680 // like undef&0. The result is known zero, not undef.
1681 UndefElts &= UndefElts2;
1682 break;
1683 }
1684 break;
1685 }
1686 }
1687 return MadeChange ? I : 0;
1688}
1689
Dan Gohman5d56fd42008-05-19 22:14:15 +00001690
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001691/// AssociativeOpt - Perform an optimization on an associative operator. This
1692/// function is designed to check a chain of associative operators for a
1693/// potential to apply a certain optimization. Since the optimization may be
1694/// applicable if the expression was reassociated, this checks the chain, then
1695/// reassociates the expression as necessary to expose the optimization
1696/// opportunity. This makes use of a special Functor, which must define
1697/// 'shouldApply' and 'apply' methods.
1698///
1699template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001700static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001701 unsigned Opcode = Root.getOpcode();
1702 Value *LHS = Root.getOperand(0);
1703
1704 // Quick check, see if the immediate LHS matches...
1705 if (F.shouldApply(LHS))
1706 return F.apply(Root);
1707
1708 // Otherwise, if the LHS is not of the same opcode as the root, return.
1709 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1710 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1711 // Should we apply this transform to the RHS?
1712 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1713
1714 // If not to the RHS, check to see if we should apply to the LHS...
1715 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1716 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1717 ShouldApply = true;
1718 }
1719
1720 // If the functor wants to apply the optimization to the RHS of LHSI,
1721 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1722 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001723 // Now all of the instructions are in the current basic block, go ahead
1724 // and perform the reassociation.
1725 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1726
1727 // First move the selected RHS to the LHS of the root...
1728 Root.setOperand(0, LHSI->getOperand(1));
1729
1730 // Make what used to be the LHS of the root be the user of the root...
1731 Value *ExtraOperand = TmpLHSI->getOperand(1);
1732 if (&Root == TmpLHSI) {
1733 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1734 return 0;
1735 }
1736 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1737 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001738 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001739 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001740 ARI = Root;
1741
1742 // Now propagate the ExtraOperand down the chain of instructions until we
1743 // get to LHSI.
1744 while (TmpLHSI != LHSI) {
1745 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1746 // Move the instruction to immediately before the chain we are
1747 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001748 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749 ARI = NextLHSI;
1750
1751 Value *NextOp = NextLHSI->getOperand(1);
1752 NextLHSI->setOperand(1, ExtraOperand);
1753 TmpLHSI = NextLHSI;
1754 ExtraOperand = NextOp;
1755 }
1756
1757 // Now that the instructions are reassociated, have the functor perform
1758 // the transformation...
1759 return F.apply(Root);
1760 }
1761
1762 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1763 }
1764 return 0;
1765}
1766
Dan Gohman089efff2008-05-13 00:00:25 +00001767namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768
Nick Lewycky27f6c132008-05-23 04:34:58 +00001769// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001770struct AddRHS {
1771 Value *RHS;
1772 AddRHS(Value *rhs) : RHS(rhs) {}
1773 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1774 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001775 return BinaryOperator::CreateShl(Add.getOperand(0),
1776 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001777 }
1778};
1779
1780// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1781// iff C1&C2 == 0
1782struct AddMaskingAnd {
1783 Constant *C2;
1784 AddMaskingAnd(Constant *c) : C2(c) {}
1785 bool shouldApply(Value *LHS) const {
1786 ConstantInt *C1;
1787 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1788 ConstantExpr::getAnd(C1, C2)->isNullValue();
1789 }
1790 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001791 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001792 }
1793};
1794
Dan Gohman089efff2008-05-13 00:00:25 +00001795}
1796
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001797static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1798 InstCombiner *IC) {
1799 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Eli Friedman722b4792008-11-30 21:09:11 +00001800 return IC->InsertCastBefore(CI->getOpcode(), SO, I.getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001801 }
1802
1803 // Figure out if the constant is the left or the right argument.
1804 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1805 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1806
1807 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1808 if (ConstIsRHS)
1809 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1810 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1811 }
1812
1813 Value *Op0 = SO, *Op1 = ConstOperand;
1814 if (!ConstIsRHS)
1815 std::swap(Op0, Op1);
1816 Instruction *New;
1817 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001818 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001819 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001820 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001821 SO->getName()+".cmp");
1822 else {
1823 assert(0 && "Unknown binary instruction type!");
1824 abort();
1825 }
1826 return IC->InsertNewInstBefore(New, I);
1827}
1828
1829// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1830// constant as the other operand, try to fold the binary operator into the
1831// select arguments. This also works for Cast instructions, which obviously do
1832// not have a second operand.
1833static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1834 InstCombiner *IC) {
1835 // Don't modify shared select instructions
1836 if (!SI->hasOneUse()) return 0;
1837 Value *TV = SI->getOperand(1);
1838 Value *FV = SI->getOperand(2);
1839
1840 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1841 // Bool selects with constant operands can be folded to logical ops.
1842 if (SI->getType() == Type::Int1Ty) return 0;
1843
1844 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1845 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1846
Gabor Greifd6da1d02008-04-06 20:25:17 +00001847 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1848 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001849 }
1850 return 0;
1851}
1852
1853
1854/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1855/// node as operand #0, see if we can fold the instruction into the PHI (which
1856/// is only possible if all operands to the PHI are constants).
1857Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1858 PHINode *PN = cast<PHINode>(I.getOperand(0));
1859 unsigned NumPHIValues = PN->getNumIncomingValues();
1860 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1861
1862 // Check to see if all of the operands of the PHI are constants. If there is
1863 // one non-constant value, remember the BB it is. If there is more than one
1864 // or if *it* is a PHI, bail out.
1865 BasicBlock *NonConstBB = 0;
1866 for (unsigned i = 0; i != NumPHIValues; ++i)
1867 if (!isa<Constant>(PN->getIncomingValue(i))) {
1868 if (NonConstBB) return 0; // More than one non-const value.
1869 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1870 NonConstBB = PN->getIncomingBlock(i);
1871
1872 // If the incoming non-constant value is in I's block, we have an infinite
1873 // loop.
1874 if (NonConstBB == I.getParent())
1875 return 0;
1876 }
1877
1878 // If there is exactly one non-constant value, we can insert a copy of the
1879 // operation in that block. However, if this is a critical edge, we would be
1880 // inserting the computation one some other paths (e.g. inside a loop). Only
1881 // do this if the pred block is unconditionally branching into the phi block.
1882 if (NonConstBB) {
1883 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1884 if (!BI || !BI->isUnconditional()) return 0;
1885 }
1886
1887 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001888 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001889 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1890 InsertNewInstBefore(NewPN, *PN);
1891 NewPN->takeName(PN);
1892
1893 // Next, add all of the operands to the PHI.
1894 if (I.getNumOperands() == 2) {
1895 Constant *C = cast<Constant>(I.getOperand(1));
1896 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001897 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001898 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1899 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1900 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1901 else
1902 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1903 } else {
1904 assert(PN->getIncomingBlock(i) == NonConstBB);
1905 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001906 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001907 PN->getIncomingValue(i), C, "phitmp",
1908 NonConstBB->getTerminator());
1909 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001910 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001911 CI->getPredicate(),
1912 PN->getIncomingValue(i), C, "phitmp",
1913 NonConstBB->getTerminator());
1914 else
1915 assert(0 && "Unknown binop!");
1916
1917 AddToWorkList(cast<Instruction>(InV));
1918 }
1919 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1920 }
1921 } else {
1922 CastInst *CI = cast<CastInst>(&I);
1923 const Type *RetTy = CI->getType();
1924 for (unsigned i = 0; i != NumPHIValues; ++i) {
1925 Value *InV;
1926 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1927 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1928 } else {
1929 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001930 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001931 I.getType(), "phitmp",
1932 NonConstBB->getTerminator());
1933 AddToWorkList(cast<Instruction>(InV));
1934 }
1935 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1936 }
1937 }
1938 return ReplaceInstUsesWith(I, NewPN);
1939}
1940
Chris Lattner55476162008-01-29 06:52:45 +00001941
Chris Lattner3554f972008-05-20 05:46:13 +00001942/// WillNotOverflowSignedAdd - Return true if we can prove that:
1943/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1944/// This basically requires proving that the add in the original type would not
1945/// overflow to change the sign bit or have a carry out.
1946bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1947 // There are different heuristics we can use for this. Here are some simple
1948 // ones.
1949
1950 // Add has the property that adding any two 2's complement numbers can only
1951 // have one carry bit which can change a sign. As such, if LHS and RHS each
1952 // have at least two sign bits, we know that the addition of the two values will
1953 // sign extend fine.
1954 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1955 return true;
1956
1957
1958 // If one of the operands only has one non-zero bit, and if the other operand
1959 // has a known-zero bit in a more significant place than it (not including the
1960 // sign bit) the ripple may go up to and fill the zero, but won't change the
1961 // sign. For example, (X & ~4) + 1.
1962
1963 // TODO: Implement.
1964
1965 return false;
1966}
1967
Chris Lattner55476162008-01-29 06:52:45 +00001968
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001969Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1970 bool Changed = SimplifyCommutative(I);
1971 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1972
1973 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1974 // X + undef -> undef
1975 if (isa<UndefValue>(RHS))
1976 return ReplaceInstUsesWith(I, RHS);
1977
1978 // X + 0 --> X
1979 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1980 if (RHSC->isNullValue())
1981 return ReplaceInstUsesWith(I, LHS);
1982 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00001983 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
1984 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001985 return ReplaceInstUsesWith(I, LHS);
1986 }
1987
1988 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
1989 // X + (signbit) --> X ^ signbit
1990 const APInt& Val = CI->getValue();
1991 uint32_t BitWidth = Val.getBitWidth();
1992 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00001993 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001994
1995 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1996 // (X & 254)+1 -> (X&254)|1
1997 if (!isa<VectorType>(I.getType())) {
1998 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1999 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2000 KnownZero, KnownOne))
2001 return &I;
2002 }
Dan Gohman35b76162008-10-30 20:40:10 +00002003
2004 // zext(i1) - 1 -> select i1, 0, -1
2005 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2006 if (CI->isAllOnesValue() &&
2007 ZI->getOperand(0)->getType() == Type::Int1Ty)
2008 return SelectInst::Create(ZI->getOperand(0),
2009 Constant::getNullValue(I.getType()),
2010 ConstantInt::getAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002011 }
2012
2013 if (isa<PHINode>(LHS))
2014 if (Instruction *NV = FoldOpIntoPhi(I))
2015 return NV;
2016
2017 ConstantInt *XorRHS = 0;
2018 Value *XorLHS = 0;
2019 if (isa<ConstantInt>(RHSC) &&
2020 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2021 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2022 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2023
2024 uint32_t Size = TySizeBits / 2;
2025 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2026 APInt CFF80Val(-C0080Val);
2027 do {
2028 if (TySizeBits > Size) {
2029 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2030 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2031 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2032 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2033 // This is a sign extend if the top bits are known zero.
2034 if (!MaskedValueIsZero(XorLHS,
2035 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2036 Size = 0; // Not a sign ext, but can't be any others either.
2037 break;
2038 }
2039 }
2040 Size >>= 1;
2041 C0080Val = APIntOps::lshr(C0080Val, Size);
2042 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2043 } while (Size >= 1);
2044
2045 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002046 // with funny bit widths then this switch statement should be removed. It
2047 // is just here to get the size of the "middle" type back up to something
2048 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002049 const Type *MiddleType = 0;
2050 switch (Size) {
2051 default: break;
2052 case 32: MiddleType = Type::Int32Ty; break;
2053 case 16: MiddleType = Type::Int16Ty; break;
2054 case 8: MiddleType = Type::Int8Ty; break;
2055 }
2056 if (MiddleType) {
2057 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2058 InsertNewInstBefore(NewTrunc, I);
2059 return new SExtInst(NewTrunc, I.getType(), I.getName());
2060 }
2061 }
2062 }
2063
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002064 if (I.getType() == Type::Int1Ty)
2065 return BinaryOperator::CreateXor(LHS, RHS);
2066
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002067 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002068 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002069 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2070
2071 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2072 if (RHSI->getOpcode() == Instruction::Sub)
2073 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2074 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2075 }
2076 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2077 if (LHSI->getOpcode() == Instruction::Sub)
2078 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2079 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2080 }
2081 }
2082
2083 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002084 // -A + -B --> -(A + B)
2085 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002086 if (LHS->getType()->isIntOrIntVector()) {
2087 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002088 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002089 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002090 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002091 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002092 }
2093
Gabor Greifa645dd32008-05-16 19:29:10 +00002094 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002095 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002096
2097 // A + -B --> A - B
2098 if (!isa<Constant>(RHS))
2099 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002100 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002101
2102
2103 ConstantInt *C2;
2104 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2105 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002106 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002107
2108 // X*C1 + X*C2 --> X * (C1+C2)
2109 ConstantInt *C1;
2110 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002111 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002112 }
2113
2114 // X + X*C --> X * (C+1)
2115 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002116 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002117
2118 // X + ~X --> -1 since ~X = -X-1
2119 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2120 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2121
2122
2123 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2124 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2125 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2126 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002127
2128 // A+B --> A|B iff A and B have no bits set in common.
2129 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2130 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2131 APInt LHSKnownOne(IT->getBitWidth(), 0);
2132 APInt LHSKnownZero(IT->getBitWidth(), 0);
2133 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2134 if (LHSKnownZero != 0) {
2135 APInt RHSKnownOne(IT->getBitWidth(), 0);
2136 APInt RHSKnownZero(IT->getBitWidth(), 0);
2137 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2138
2139 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002140 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002141 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002142 }
2143 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002144
Nick Lewycky83598a72008-02-03 07:42:09 +00002145 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002146 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002147 Value *W, *X, *Y, *Z;
2148 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2149 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2150 if (W != Y) {
2151 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002152 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002153 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002154 std::swap(W, X);
2155 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002156 std::swap(Y, Z);
2157 std::swap(W, X);
2158 }
2159 }
2160
2161 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002162 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002163 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002164 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002165 }
2166 }
2167 }
2168
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002169 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2170 Value *X = 0;
2171 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002172 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002173
2174 // (X & FF00) + xx00 -> (X+xx00) & FF00
2175 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2176 Constant *Anded = And(CRHS, C2);
2177 if (Anded == CRHS) {
2178 // See if all bits from the first bit set in the Add RHS up are included
2179 // in the mask. First, get the rightmost bit.
2180 const APInt& AddRHSV = CRHS->getValue();
2181
2182 // Form a mask of all bits from the lowest bit added through the top.
2183 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2184
2185 // See if the and mask includes all of these bits.
2186 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2187
2188 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2189 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002190 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002191 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002192 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002193 }
2194 }
2195 }
2196
2197 // Try to fold constant add into select arguments.
2198 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2199 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2200 return R;
2201 }
2202
2203 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002204 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002205 {
2206 CastInst *CI = dyn_cast<CastInst>(LHS);
2207 Value *Other = RHS;
2208 if (!CI) {
2209 CI = dyn_cast<CastInst>(RHS);
2210 Other = LHS;
2211 }
2212 if (CI && CI->getType()->isSized() &&
2213 (CI->getType()->getPrimitiveSizeInBits() ==
2214 TD->getIntPtrType()->getPrimitiveSizeInBits())
2215 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002216 unsigned AS =
2217 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002218 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2219 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002220 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002221 return new PtrToIntInst(I2, CI->getType());
2222 }
2223 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002224
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002225 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002226 {
2227 SelectInst *SI = dyn_cast<SelectInst>(LHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002228 Value *A = RHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002229 if (!SI) {
2230 SI = dyn_cast<SelectInst>(RHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002231 A = LHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002232 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002233 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002234 Value *TV = SI->getTrueValue();
2235 Value *FV = SI->getFalseValue();
Chris Lattner641ea462008-11-16 04:46:19 +00002236 Value *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002237
2238 // Can we fold the add into the argument of the select?
2239 // We check both true and false select arguments for a matching subtract.
Chris Lattner641ea462008-11-16 04:46:19 +00002240 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
2241 // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002242 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattner641ea462008-11-16 04:46:19 +00002243 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
2244 // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002245 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002246 }
2247 }
Chris Lattner55476162008-01-29 06:52:45 +00002248
2249 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2250 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2251 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2252 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002253
Chris Lattner3554f972008-05-20 05:46:13 +00002254 // Check for (add (sext x), y), see if we can merge this into an
2255 // integer add followed by a sext.
2256 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2257 // (add (sext x), cst) --> (sext (add x, cst'))
2258 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2259 Constant *CI =
2260 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2261 if (LHSConv->hasOneUse() &&
2262 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2263 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2264 // Insert the new, smaller add.
2265 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2266 CI, "addconv");
2267 InsertNewInstBefore(NewAdd, I);
2268 return new SExtInst(NewAdd, I.getType());
2269 }
2270 }
2271
2272 // (add (sext x), (sext y)) --> (sext (add int x, y))
2273 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2274 // Only do this if x/y have the same type, if at last one of them has a
2275 // single use (so we don't increase the number of sexts), and if the
2276 // integer add will not overflow.
2277 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2278 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2279 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2280 RHSConv->getOperand(0))) {
2281 // Insert the new integer add.
2282 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2283 RHSConv->getOperand(0),
2284 "addconv");
2285 InsertNewInstBefore(NewAdd, I);
2286 return new SExtInst(NewAdd, I.getType());
2287 }
2288 }
2289 }
2290
2291 // Check for (add double (sitofp x), y), see if we can merge this into an
2292 // integer add followed by a promotion.
2293 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2294 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2295 // ... if the constant fits in the integer value. This is useful for things
2296 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2297 // requires a constant pool load, and generally allows the add to be better
2298 // instcombined.
2299 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2300 Constant *CI =
2301 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2302 if (LHSConv->hasOneUse() &&
2303 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2304 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2305 // Insert the new integer add.
2306 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2307 CI, "addconv");
2308 InsertNewInstBefore(NewAdd, I);
2309 return new SIToFPInst(NewAdd, I.getType());
2310 }
2311 }
2312
2313 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2314 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2315 // Only do this if x/y have the same type, if at last one of them has a
2316 // single use (so we don't increase the number of int->fp conversions),
2317 // and if the integer add will not overflow.
2318 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2319 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2320 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2321 RHSConv->getOperand(0))) {
2322 // Insert the new integer add.
2323 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2324 RHSConv->getOperand(0),
2325 "addconv");
2326 InsertNewInstBefore(NewAdd, I);
2327 return new SIToFPInst(NewAdd, I.getType());
2328 }
2329 }
2330 }
2331
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002332 return Changed ? &I : 0;
2333}
2334
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002335Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2336 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2337
Chris Lattner27fbef42008-07-17 06:07:20 +00002338 if (Op0 == Op1 && // sub X, X -> 0
2339 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002340 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2341
2342 // If this is a 'B = x-(-A)', change to B = x+A...
2343 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002344 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002345
2346 if (isa<UndefValue>(Op0))
2347 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2348 if (isa<UndefValue>(Op1))
2349 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2350
2351 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2352 // Replace (-1 - A) with (~A)...
2353 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002354 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002355
2356 // C - ~X == X + (1+C)
2357 Value *X = 0;
2358 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002359 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002360
2361 // -(X >>u 31) -> (X >>s 31)
2362 // -(X >>s 31) -> (X >>u 31)
2363 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002364 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002365 if (SI->getOpcode() == Instruction::LShr) {
2366 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2367 // Check to see if we are shifting out everything but the sign bit.
2368 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2369 SI->getType()->getPrimitiveSizeInBits()-1) {
2370 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002371 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002372 SI->getOperand(0), CU, SI->getName());
2373 }
2374 }
2375 }
2376 else if (SI->getOpcode() == Instruction::AShr) {
2377 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2378 // Check to see if we are shifting out everything but the sign bit.
2379 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2380 SI->getType()->getPrimitiveSizeInBits()-1) {
2381 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002382 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002383 SI->getOperand(0), CU, SI->getName());
2384 }
2385 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002386 }
2387 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002388 }
2389
2390 // Try to fold constant sub into select arguments.
2391 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2392 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2393 return R;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394 }
2395
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002396 if (I.getType() == Type::Int1Ty)
2397 return BinaryOperator::CreateXor(Op0, Op1);
2398
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002399 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2400 if (Op1I->getOpcode() == Instruction::Add &&
2401 !Op0->getType()->isFPOrFPVector()) {
2402 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002403 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002405 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002406 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2407 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2408 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002409 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002410 Op1I->getOperand(0));
2411 }
2412 }
2413
2414 if (Op1I->hasOneUse()) {
2415 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2416 // is not used by anyone else...
2417 //
2418 if (Op1I->getOpcode() == Instruction::Sub &&
2419 !Op1I->getType()->isFPOrFPVector()) {
2420 // Swap the two operands of the subexpr...
2421 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2422 Op1I->setOperand(0, IIOp1);
2423 Op1I->setOperand(1, IIOp0);
2424
2425 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002426 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002427 }
2428
2429 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2430 //
2431 if (Op1I->getOpcode() == Instruction::And &&
2432 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2433 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2434
2435 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002436 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2437 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002438 }
2439
2440 // 0 - (X sdiv C) -> (X sdiv -C)
2441 if (Op1I->getOpcode() == Instruction::SDiv)
2442 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2443 if (CSI->isZero())
2444 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002445 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002446 ConstantExpr::getNeg(DivRHS));
2447
2448 // X - X*C --> X * (1-C)
2449 ConstantInt *C2 = 0;
2450 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2451 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002452 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002453 }
2454 }
2455 }
2456
2457 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002458 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002459 if (Op0I->getOpcode() == Instruction::Add) {
2460 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2461 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2462 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2463 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2464 } else if (Op0I->getOpcode() == Instruction::Sub) {
2465 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002466 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002467 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002468 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002469
2470 ConstantInt *C1;
2471 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2472 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002473 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002474
2475 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2476 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002477 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002478 }
2479 return 0;
2480}
2481
2482/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2483/// comparison only checks the sign bit. If it only checks the sign bit, set
2484/// TrueIfSigned if the result of the comparison is true when the input value is
2485/// signed.
2486static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2487 bool &TrueIfSigned) {
2488 switch (pred) {
2489 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2490 TrueIfSigned = true;
2491 return RHS->isZero();
2492 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2493 TrueIfSigned = true;
2494 return RHS->isAllOnesValue();
2495 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2496 TrueIfSigned = false;
2497 return RHS->isAllOnesValue();
2498 case ICmpInst::ICMP_UGT:
2499 // True if LHS u> RHS and RHS == high-bit-mask - 1
2500 TrueIfSigned = true;
2501 return RHS->getValue() ==
2502 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2503 case ICmpInst::ICMP_UGE:
2504 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2505 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002506 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002507 default:
2508 return false;
2509 }
2510}
2511
2512Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2513 bool Changed = SimplifyCommutative(I);
2514 Value *Op0 = I.getOperand(0);
2515
2516 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2517 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2518
2519 // Simplify mul instructions with a constant RHS...
2520 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2521 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2522
2523 // ((X << C1)*C2) == (X * (C2 << C1))
2524 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2525 if (SI->getOpcode() == Instruction::Shl)
2526 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002527 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002528 ConstantExpr::getShl(CI, ShOp));
2529
2530 if (CI->isZero())
2531 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2532 if (CI->equalsInt(1)) // X * 1 == X
2533 return ReplaceInstUsesWith(I, Op0);
2534 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002535 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002536
2537 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2538 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002539 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002540 ConstantInt::get(Op0->getType(), Val.logBase2()));
2541 }
2542 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2543 if (Op1F->isNullValue())
2544 return ReplaceInstUsesWith(I, Op1);
2545
2546 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2547 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002548 if (Op1F->isExactlyValue(1.0))
2549 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2550 } else if (isa<VectorType>(Op1->getType())) {
2551 if (isa<ConstantAggregateZero>(Op1))
2552 return ReplaceInstUsesWith(I, Op1);
Nick Lewycky94418732008-11-27 20:21:08 +00002553
2554 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2555 if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
2556 return BinaryOperator::CreateNeg(Op0, I.getName());
2557
2558 // As above, vector X*splat(1.0) -> X in all defined cases.
2559 if (Constant *Splat = Op1V->getSplatValue()) {
2560 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
2561 if (F->isExactlyValue(1.0))
2562 return ReplaceInstUsesWith(I, Op0);
2563 if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
2564 if (CI->equalsInt(1))
2565 return ReplaceInstUsesWith(I, Op0);
2566 }
2567 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002568 }
2569
2570 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2571 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002572 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002573 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002574 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002575 Op1, "tmp");
2576 InsertNewInstBefore(Add, I);
2577 Value *C1C2 = ConstantExpr::getMul(Op1,
2578 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002579 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002580
2581 }
2582
2583 // Try to fold constant mul into select arguments.
2584 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2585 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2586 return R;
2587
2588 if (isa<PHINode>(Op0))
2589 if (Instruction *NV = FoldOpIntoPhi(I))
2590 return NV;
2591 }
2592
2593 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2594 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002595 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002596
Nick Lewycky1c246402008-11-21 07:33:58 +00002597 // (X / Y) * Y = X - (X % Y)
2598 // (X / Y) * -Y = (X % Y) - X
2599 {
2600 Value *Op1 = I.getOperand(1);
2601 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
2602 if (!BO ||
2603 (BO->getOpcode() != Instruction::UDiv &&
2604 BO->getOpcode() != Instruction::SDiv)) {
2605 Op1 = Op0;
2606 BO = dyn_cast<BinaryOperator>(I.getOperand(1));
2607 }
2608 Value *Neg = dyn_castNegVal(Op1);
2609 if (BO && BO->hasOneUse() &&
2610 (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) &&
2611 (BO->getOpcode() == Instruction::UDiv ||
2612 BO->getOpcode() == Instruction::SDiv)) {
2613 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
2614
2615 Instruction *Rem;
2616 if (BO->getOpcode() == Instruction::UDiv)
2617 Rem = BinaryOperator::CreateURem(Op0BO, Op1BO);
2618 else
2619 Rem = BinaryOperator::CreateSRem(Op0BO, Op1BO);
2620
2621 InsertNewInstBefore(Rem, I);
2622 Rem->takeName(BO);
2623
2624 if (Op1BO == Op1)
2625 return BinaryOperator::CreateSub(Op0BO, Rem);
2626 else
2627 return BinaryOperator::CreateSub(Rem, Op0BO);
2628 }
2629 }
2630
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002631 if (I.getType() == Type::Int1Ty)
2632 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2633
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002634 // If one of the operands of the multiply is a cast from a boolean value, then
2635 // we know the bool is either zero or one, so this is a 'masking' multiply.
2636 // See if we can simplify things based on how the boolean was originally
2637 // formed.
2638 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002639 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002640 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2641 BoolCast = CI;
2642 if (!BoolCast)
2643 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2644 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2645 BoolCast = CI;
2646 if (BoolCast) {
2647 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2648 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2649 const Type *SCOpTy = SCIOp0->getType();
2650 bool TIS = false;
2651
2652 // If the icmp is true iff the sign bit of X is set, then convert this
2653 // multiply into a shift/and combination.
2654 if (isa<ConstantInt>(SCIOp1) &&
2655 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2656 TIS) {
2657 // Shift the X value right to turn it into "all signbits".
2658 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2659 SCOpTy->getPrimitiveSizeInBits()-1);
2660 Value *V =
2661 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002662 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002663 BoolCast->getOperand(0)->getName()+
2664 ".mask"), I);
2665
2666 // If the multiply type is not the same as the source type, sign extend
2667 // or truncate to the multiply type.
2668 if (I.getType() != V->getType()) {
2669 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2670 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2671 Instruction::CastOps opcode =
2672 (SrcBits == DstBits ? Instruction::BitCast :
2673 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2674 V = InsertCastBefore(opcode, V, I.getType(), I);
2675 }
2676
2677 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002678 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002679 }
2680 }
2681 }
2682
2683 return Changed ? &I : 0;
2684}
2685
Chris Lattner76972db2008-07-14 00:15:52 +00002686/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2687/// instruction.
2688bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2689 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2690
2691 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2692 int NonNullOperand = -1;
2693 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2694 if (ST->isNullValue())
2695 NonNullOperand = 2;
2696 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2697 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2698 if (ST->isNullValue())
2699 NonNullOperand = 1;
2700
2701 if (NonNullOperand == -1)
2702 return false;
2703
2704 Value *SelectCond = SI->getOperand(0);
2705
2706 // Change the div/rem to use 'Y' instead of the select.
2707 I.setOperand(1, SI->getOperand(NonNullOperand));
2708
2709 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2710 // problem. However, the select, or the condition of the select may have
2711 // multiple uses. Based on our knowledge that the operand must be non-zero,
2712 // propagate the known value for the select into other uses of it, and
2713 // propagate a known value of the condition into its other users.
2714
2715 // If the select and condition only have a single use, don't bother with this,
2716 // early exit.
2717 if (SI->use_empty() && SelectCond->hasOneUse())
2718 return true;
2719
2720 // Scan the current block backward, looking for other uses of SI.
2721 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2722
2723 while (BBI != BBFront) {
2724 --BBI;
2725 // If we found a call to a function, we can't assume it will return, so
2726 // information from below it cannot be propagated above it.
2727 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2728 break;
2729
2730 // Replace uses of the select or its condition with the known values.
2731 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2732 I != E; ++I) {
2733 if (*I == SI) {
2734 *I = SI->getOperand(NonNullOperand);
2735 AddToWorkList(BBI);
2736 } else if (*I == SelectCond) {
2737 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2738 ConstantInt::getFalse();
2739 AddToWorkList(BBI);
2740 }
2741 }
2742
2743 // If we past the instruction, quit looking for it.
2744 if (&*BBI == SI)
2745 SI = 0;
2746 if (&*BBI == SelectCond)
2747 SelectCond = 0;
2748
2749 // If we ran out of things to eliminate, break out of the loop.
2750 if (SelectCond == 0 && SI == 0)
2751 break;
2752
2753 }
2754 return true;
2755}
2756
2757
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002758/// This function implements the transforms on div instructions that work
2759/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2760/// used by the visitors to those instructions.
2761/// @brief Transforms common to all three div instructions
2762Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2763 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2764
Chris Lattner653ef3c2008-02-19 06:12:18 +00002765 // undef / X -> 0 for integer.
2766 // undef / X -> undef for FP (the undef could be a snan).
2767 if (isa<UndefValue>(Op0)) {
2768 if (Op0->getType()->isFPOrFPVector())
2769 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002770 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002771 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002772
2773 // X / undef -> undef
2774 if (isa<UndefValue>(Op1))
2775 return ReplaceInstUsesWith(I, Op1);
2776
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002777 return 0;
2778}
2779
2780/// This function implements the transforms common to both integer division
2781/// instructions (udiv and sdiv). It is called by the visitors to those integer
2782/// division instructions.
2783/// @brief Common integer divide transforms
2784Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2785 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2786
Chris Lattnercefb36c2008-05-16 02:59:42 +00002787 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002788 if (Op0 == Op1) {
2789 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2790 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2791 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2792 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2793 }
2794
2795 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2796 return ReplaceInstUsesWith(I, CI);
2797 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002798
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002799 if (Instruction *Common = commonDivTransforms(I))
2800 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002801
2802 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2803 // This does not apply for fdiv.
2804 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2805 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002806
2807 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2808 // div X, 1 == X
2809 if (RHS->equalsInt(1))
2810 return ReplaceInstUsesWith(I, Op0);
2811
2812 // (X / C1) / C2 -> X / (C1*C2)
2813 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2814 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2815 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002816 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2817 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2818 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002819 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002820 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002821 }
2822
2823 if (!RHS->isZero()) { // avoid X udiv 0
2824 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2825 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2826 return R;
2827 if (isa<PHINode>(Op0))
2828 if (Instruction *NV = FoldOpIntoPhi(I))
2829 return NV;
2830 }
2831 }
2832
2833 // 0 / X == 0, we don't need to preserve faults!
2834 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2835 if (LHS->equalsInt(0))
2836 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2837
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002838 // It can't be division by zero, hence it must be division by one.
2839 if (I.getType() == Type::Int1Ty)
2840 return ReplaceInstUsesWith(I, Op0);
2841
Nick Lewycky94418732008-11-27 20:21:08 +00002842 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2843 if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
2844 // div X, 1 == X
2845 if (X->isOne())
2846 return ReplaceInstUsesWith(I, Op0);
2847 }
2848
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002849 return 0;
2850}
2851
2852Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2853 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2854
2855 // Handle the integer div common cases
2856 if (Instruction *Common = commonIDivTransforms(I))
2857 return Common;
2858
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002859 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky240182a2008-11-27 22:41:10 +00002860 // X udiv C^2 -> X >> C
2861 // Check to see if this is an unsigned division with an exact power of 2,
2862 // if so, convert to a right shift.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002863 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002864 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002865 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
Nick Lewycky240182a2008-11-27 22:41:10 +00002866
2867 // X udiv C, where C >= signbit
2868 if (C->getValue().isNegative()) {
2869 Value *IC = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT, Op0, C),
2870 I);
2871 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
2872 ConstantInt::get(I.getType(), 1));
2873 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002874 }
2875
2876 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2877 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2878 if (RHSI->getOpcode() == Instruction::Shl &&
2879 isa<ConstantInt>(RHSI->getOperand(0))) {
2880 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2881 if (C1.isPowerOf2()) {
2882 Value *N = RHSI->getOperand(1);
2883 const Type *NTy = N->getType();
2884 if (uint32_t C2 = C1.logBase2()) {
2885 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002886 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002887 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002888 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002889 }
2890 }
2891 }
2892
2893 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2894 // where C1&C2 are powers of two.
2895 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2896 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2897 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2898 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2899 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2900 // Compute the shift amounts
2901 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2902 // Construct the "on true" case of the select
2903 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002904 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002905 Op0, TC, SI->getName()+".t");
2906 TSI = InsertNewInstBefore(TSI, I);
2907
2908 // Construct the "on false" case of the select
2909 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002910 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002911 Op0, FC, SI->getName()+".f");
2912 FSI = InsertNewInstBefore(FSI, I);
2913
2914 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002915 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002916 }
2917 }
2918 return 0;
2919}
2920
2921Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2922 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2923
2924 // Handle the integer div common cases
2925 if (Instruction *Common = commonIDivTransforms(I))
2926 return Common;
2927
2928 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2929 // sdiv X, -1 == -X
2930 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002931 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002932
Bill Wendling8fd57592008-11-30 03:42:12 +00002933 // -X/C -> X/-C, if and only if negation doesn't overflow.
Bill Wendlingf2e0efd2008-12-01 07:47:02 +00002934 if (Value *LHSNeg = dyn_castNegVal(Op0)) {
2935 if (ConstantInt *CI = dyn_cast<ConstantInt>(LHSNeg)) {
Bill Wendling478617a2008-12-01 21:03:43 +00002936 Constant *RHSNeg = ConstantExpr::getNeg(RHS);
2937 if (RHS != RHSNeg) { // Check that there is no overflow.
2938 Constant *CINeg = ConstantExpr::getNeg(CI);
2939 if (CI != CINeg) // Check that there is no overflow.
Bill Wendling1e4cff52008-12-01 21:06:30 +00002940 return BinaryOperator::CreateSDiv(LHSNeg, RHSNeg);
Bill Wendling8fd57592008-11-30 03:42:12 +00002941 }
2942 }
2943 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002944 }
2945
2946 // If the sign bits of both operands are zero (i.e. we can prove they are
2947 // unsigned inputs), turn this into a udiv.
2948 if (I.getType()->isInteger()) {
2949 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2950 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002951 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002952 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002953 }
2954 }
2955
2956 return 0;
2957}
2958
2959Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2960 return commonDivTransforms(I);
2961}
2962
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002963/// This function implements the transforms on rem instructions that work
2964/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2965/// is used by the visitors to those instructions.
2966/// @brief Transforms common to all three rem instructions
2967Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2968 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2969
Chris Lattner653ef3c2008-02-19 06:12:18 +00002970 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002971 if (Constant *LHS = dyn_cast<Constant>(Op0))
2972 if (LHS->isNullValue())
2973 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2974
Chris Lattner653ef3c2008-02-19 06:12:18 +00002975 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2976 if (I.getType()->isFPOrFPVector())
2977 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002978 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002979 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002980 if (isa<UndefValue>(Op1))
2981 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2982
2983 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002984 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2985 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002986
2987 return 0;
2988}
2989
2990/// This function implements the transforms common to both integer remainder
2991/// instructions (urem and srem). It is called by the visitors to those integer
2992/// remainder instructions.
2993/// @brief Common integer remainder transforms
2994Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2995 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2996
2997 if (Instruction *common = commonRemTransforms(I))
2998 return common;
2999
3000 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3001 // X % 0 == undef, we don't need to preserve faults!
3002 if (RHS->equalsInt(0))
3003 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3004
3005 if (RHS->equalsInt(1)) // X % 1 == 0
3006 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3007
3008 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
3009 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
3010 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3011 return R;
3012 } else if (isa<PHINode>(Op0I)) {
3013 if (Instruction *NV = FoldOpIntoPhi(I))
3014 return NV;
3015 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00003016
3017 // See if we can fold away this rem instruction.
3018 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3019 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3020 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3021 KnownZero, KnownOne))
3022 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003023 }
3024 }
3025
3026 return 0;
3027}
3028
3029Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3030 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3031
3032 if (Instruction *common = commonIRemTransforms(I))
3033 return common;
3034
3035 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3036 // X urem C^2 -> X and C
3037 // Check to see if this is an unsigned remainder with an exact power of 2,
3038 // if so, convert to a bitwise and.
3039 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3040 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00003041 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003042 }
3043
3044 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3045 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3046 if (RHSI->getOpcode() == Instruction::Shl &&
3047 isa<ConstantInt>(RHSI->getOperand(0))) {
3048 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3049 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003050 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003051 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003052 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003053 }
3054 }
3055 }
3056
3057 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3058 // where C1&C2 are powers of two.
3059 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3060 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3061 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3062 // STO == 0 and SFO == 0 handled above.
3063 if ((STO->getValue().isPowerOf2()) &&
3064 (SFO->getValue().isPowerOf2())) {
3065 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003066 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003067 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003068 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003069 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003070 }
3071 }
3072 }
3073
3074 return 0;
3075}
3076
3077Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3078 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3079
Dan Gohmandb3dd962007-11-05 23:16:33 +00003080 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003081 if (Instruction *common = commonIRemTransforms(I))
3082 return common;
3083
3084 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003085 if (!isa<Constant>(RHSNeg) ||
3086 (isa<ConstantInt>(RHSNeg) &&
3087 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003088 // X % -Y -> X % Y
3089 AddUsesToWorkList(I);
3090 I.setOperand(1, RHSNeg);
3091 return &I;
3092 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003093
Dan Gohmandb3dd962007-11-05 23:16:33 +00003094 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003095 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003096 if (I.getType()->isInteger()) {
3097 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3098 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3099 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003100 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003101 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003102 }
3103
3104 return 0;
3105}
3106
3107Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3108 return commonRemTransforms(I);
3109}
3110
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003111// isOneBitSet - Return true if there is exactly one bit set in the specified
3112// constant.
3113static bool isOneBitSet(const ConstantInt *CI) {
3114 return CI->getValue().isPowerOf2();
3115}
3116
3117// isHighOnes - Return true if the constant is of the form 1+0+.
3118// This is the same as lowones(~X).
3119static bool isHighOnes(const ConstantInt *CI) {
3120 return (~CI->getValue() + 1).isPowerOf2();
3121}
3122
3123/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3124/// are carefully arranged to allow folding of expressions such as:
3125///
3126/// (A < B) | (A > B) --> (A != B)
3127///
3128/// Note that this is only valid if the first and second predicates have the
3129/// same sign. Is illegal to do: (A u< B) | (A s> B)
3130///
3131/// Three bits are used to represent the condition, as follows:
3132/// 0 A > B
3133/// 1 A == B
3134/// 2 A < B
3135///
3136/// <=> Value Definition
3137/// 000 0 Always false
3138/// 001 1 A > B
3139/// 010 2 A == B
3140/// 011 3 A >= B
3141/// 100 4 A < B
3142/// 101 5 A != B
3143/// 110 6 A <= B
3144/// 111 7 Always true
3145///
3146static unsigned getICmpCode(const ICmpInst *ICI) {
3147 switch (ICI->getPredicate()) {
3148 // False -> 0
3149 case ICmpInst::ICMP_UGT: return 1; // 001
3150 case ICmpInst::ICMP_SGT: return 1; // 001
3151 case ICmpInst::ICMP_EQ: return 2; // 010
3152 case ICmpInst::ICMP_UGE: return 3; // 011
3153 case ICmpInst::ICMP_SGE: return 3; // 011
3154 case ICmpInst::ICMP_ULT: return 4; // 100
3155 case ICmpInst::ICMP_SLT: return 4; // 100
3156 case ICmpInst::ICMP_NE: return 5; // 101
3157 case ICmpInst::ICMP_ULE: return 6; // 110
3158 case ICmpInst::ICMP_SLE: return 6; // 110
3159 // True -> 7
3160 default:
3161 assert(0 && "Invalid ICmp predicate!");
3162 return 0;
3163 }
3164}
3165
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003166/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3167/// predicate into a three bit mask. It also returns whether it is an ordered
3168/// predicate by reference.
3169static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3170 isOrdered = false;
3171 switch (CC) {
3172 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3173 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Chengf1f2cea2008-10-14 18:13:38 +00003174 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3175 case FCmpInst::FCMP_UGT: return 1; // 001
3176 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3177 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003178 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3179 case FCmpInst::FCMP_UGE: return 3; // 011
3180 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3181 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Chengf1f2cea2008-10-14 18:13:38 +00003182 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3183 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003184 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3185 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng72988052008-10-14 18:44:08 +00003186 // True -> 7
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003187 default:
3188 // Not expecting FCMP_FALSE and FCMP_TRUE;
3189 assert(0 && "Unexpected FCmp predicate!");
3190 return 0;
3191 }
3192}
3193
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003194/// getICmpValue - This is the complement of getICmpCode, which turns an
3195/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003196/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003197/// of predicate to use in the new icmp instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003198static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3199 switch (code) {
3200 default: assert(0 && "Illegal ICmp code!");
3201 case 0: return ConstantInt::getFalse();
3202 case 1:
3203 if (sign)
3204 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3205 else
3206 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3207 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3208 case 3:
3209 if (sign)
3210 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3211 else
3212 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3213 case 4:
3214 if (sign)
3215 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3216 else
3217 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3218 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3219 case 6:
3220 if (sign)
3221 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3222 else
3223 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3224 case 7: return ConstantInt::getTrue();
3225 }
3226}
3227
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003228/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3229/// opcode and two operands into either a FCmp instruction. isordered is passed
3230/// in to determine which kind of predicate to use in the new fcmp instruction.
3231static Value *getFCmpValue(bool isordered, unsigned code,
3232 Value *LHS, Value *RHS) {
3233 switch (code) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003234 default: assert(0 && "Illegal FCmp code!");
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003235 case 0:
3236 if (isordered)
3237 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3238 else
3239 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3240 case 1:
3241 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003242 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3243 else
3244 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Chengf1f2cea2008-10-14 18:13:38 +00003245 case 2:
3246 if (isordered)
3247 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3248 else
3249 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003250 case 3:
3251 if (isordered)
3252 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3253 else
3254 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3255 case 4:
3256 if (isordered)
3257 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3258 else
3259 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3260 case 5:
3261 if (isordered)
Evan Chengf1f2cea2008-10-14 18:13:38 +00003262 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3263 else
3264 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3265 case 6:
3266 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003267 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3268 else
3269 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng72988052008-10-14 18:44:08 +00003270 case 7: return ConstantInt::getTrue();
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003271 }
3272}
3273
Chris Lattner2972b822008-11-16 04:55:20 +00003274/// PredicatesFoldable - Return true if both predicates match sign or if at
3275/// least one of them is an equality comparison (which is signless).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003276static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3277 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
Chris Lattner2972b822008-11-16 04:55:20 +00003278 (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) ||
3279 (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003280}
3281
3282namespace {
3283// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3284struct FoldICmpLogical {
3285 InstCombiner &IC;
3286 Value *LHS, *RHS;
3287 ICmpInst::Predicate pred;
3288 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3289 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3290 pred(ICI->getPredicate()) {}
3291 bool shouldApply(Value *V) const {
3292 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3293 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003294 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3295 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003296 return false;
3297 }
3298 Instruction *apply(Instruction &Log) const {
3299 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3300 if (ICI->getOperand(0) != LHS) {
3301 assert(ICI->getOperand(1) == LHS);
3302 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3303 }
3304
3305 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3306 unsigned LHSCode = getICmpCode(ICI);
3307 unsigned RHSCode = getICmpCode(RHSICI);
3308 unsigned Code;
3309 switch (Log.getOpcode()) {
3310 case Instruction::And: Code = LHSCode & RHSCode; break;
3311 case Instruction::Or: Code = LHSCode | RHSCode; break;
3312 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3313 default: assert(0 && "Illegal logical opcode!"); return 0;
3314 }
3315
3316 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3317 ICmpInst::isSignedPredicate(ICI->getPredicate());
3318
3319 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3320 if (Instruction *I = dyn_cast<Instruction>(RV))
3321 return I;
3322 // Otherwise, it's a constant boolean value...
3323 return IC.ReplaceInstUsesWith(Log, RV);
3324 }
3325};
3326} // end anonymous namespace
3327
3328// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3329// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3330// guaranteed to be a binary operator.
3331Instruction *InstCombiner::OptAndOp(Instruction *Op,
3332 ConstantInt *OpRHS,
3333 ConstantInt *AndRHS,
3334 BinaryOperator &TheAnd) {
3335 Value *X = Op->getOperand(0);
3336 Constant *Together = 0;
3337 if (!Op->isShift())
3338 Together = And(AndRHS, OpRHS);
3339
3340 switch (Op->getOpcode()) {
3341 case Instruction::Xor:
3342 if (Op->hasOneUse()) {
3343 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003344 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003345 InsertNewInstBefore(And, TheAnd);
3346 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003347 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003348 }
3349 break;
3350 case Instruction::Or:
3351 if (Together == AndRHS) // (X | C) & C --> C
3352 return ReplaceInstUsesWith(TheAnd, AndRHS);
3353
3354 if (Op->hasOneUse() && Together != OpRHS) {
3355 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003356 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003357 InsertNewInstBefore(Or, TheAnd);
3358 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003359 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003360 }
3361 break;
3362 case Instruction::Add:
3363 if (Op->hasOneUse()) {
3364 // Adding a one to a single bit bit-field should be turned into an XOR
3365 // of the bit. First thing to check is to see if this AND is with a
3366 // single bit constant.
3367 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3368
3369 // If there is only one bit set...
3370 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3371 // Ok, at this point, we know that we are masking the result of the
3372 // ADD down to exactly one bit. If the constant we are adding has
3373 // no bits set below this bit, then we can eliminate the ADD.
3374 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3375
3376 // Check to see if any bits below the one bit set in AndRHSV are set.
3377 if ((AddRHS & (AndRHSV-1)) == 0) {
3378 // If not, the only thing that can effect the output of the AND is
3379 // the bit specified by AndRHSV. If that bit is set, the effect of
3380 // the XOR is to toggle the bit. If it is clear, then the ADD has
3381 // no effect.
3382 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3383 TheAnd.setOperand(0, X);
3384 return &TheAnd;
3385 } else {
3386 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003387 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003388 InsertNewInstBefore(NewAnd, TheAnd);
3389 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003390 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003391 }
3392 }
3393 }
3394 }
3395 break;
3396
3397 case Instruction::Shl: {
3398 // We know that the AND will not produce any of the bits shifted in, so if
3399 // the anded constant includes them, clear them now!
3400 //
3401 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3402 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3403 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3404 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3405
3406 if (CI->getValue() == ShlMask) {
3407 // Masking out bits that the shift already masks
3408 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3409 } else if (CI != AndRHS) { // Reducing bits set in and.
3410 TheAnd.setOperand(1, CI);
3411 return &TheAnd;
3412 }
3413 break;
3414 }
3415 case Instruction::LShr:
3416 {
3417 // We know that the AND will not produce any of the bits shifted in, so if
3418 // the anded constant includes them, clear them now! This only applies to
3419 // unsigned shifts, because a signed shr may bring in set bits!
3420 //
3421 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3422 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3423 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3424 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3425
3426 if (CI->getValue() == ShrMask) {
3427 // Masking out bits that the shift already masks.
3428 return ReplaceInstUsesWith(TheAnd, Op);
3429 } else if (CI != AndRHS) {
3430 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3431 return &TheAnd;
3432 }
3433 break;
3434 }
3435 case Instruction::AShr:
3436 // Signed shr.
3437 // See if this is shifting in some sign extension, then masking it out
3438 // with an and.
3439 if (Op->hasOneUse()) {
3440 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3441 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3442 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3443 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3444 if (C == AndRHS) { // Masking out bits shifted in.
3445 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3446 // Make the argument unsigned.
3447 Value *ShVal = Op->getOperand(0);
3448 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003449 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003450 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003451 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003452 }
3453 }
3454 break;
3455 }
3456 return 0;
3457}
3458
3459
3460/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3461/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3462/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3463/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3464/// insert new instructions.
3465Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3466 bool isSigned, bool Inside,
3467 Instruction &IB) {
3468 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3469 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3470 "Lo is not <= Hi in range emission code!");
3471
3472 if (Inside) {
3473 if (Lo == Hi) // Trivially false.
3474 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3475
3476 // V >= Min && V < Hi --> V < Hi
3477 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3478 ICmpInst::Predicate pred = (isSigned ?
3479 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3480 return new ICmpInst(pred, V, Hi);
3481 }
3482
3483 // Emit V-Lo <u Hi-Lo
3484 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003485 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003486 InsertNewInstBefore(Add, IB);
3487 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3488 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3489 }
3490
3491 if (Lo == Hi) // Trivially true.
3492 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3493
3494 // V < Min || V >= Hi -> V > Hi-1
3495 Hi = SubOne(cast<ConstantInt>(Hi));
3496 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3497 ICmpInst::Predicate pred = (isSigned ?
3498 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3499 return new ICmpInst(pred, V, Hi);
3500 }
3501
3502 // Emit V-Lo >u Hi-1-Lo
3503 // Note that Hi has already had one subtracted from it, above.
3504 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003505 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003506 InsertNewInstBefore(Add, IB);
3507 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3508 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3509}
3510
3511// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3512// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3513// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3514// not, since all 1s are not contiguous.
3515static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3516 const APInt& V = Val->getValue();
3517 uint32_t BitWidth = Val->getType()->getBitWidth();
3518 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3519
3520 // look for the first zero bit after the run of ones
3521 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3522 // look for the first non-zero bit
3523 ME = V.getActiveBits();
3524 return true;
3525}
3526
3527/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3528/// where isSub determines whether the operator is a sub. If we can fold one of
3529/// the following xforms:
3530///
3531/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3532/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3533/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3534///
3535/// return (A +/- B).
3536///
3537Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3538 ConstantInt *Mask, bool isSub,
3539 Instruction &I) {
3540 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3541 if (!LHSI || LHSI->getNumOperands() != 2 ||
3542 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3543
3544 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3545
3546 switch (LHSI->getOpcode()) {
3547 default: return 0;
3548 case Instruction::And:
3549 if (And(N, Mask) == Mask) {
3550 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3551 if ((Mask->getValue().countLeadingZeros() +
3552 Mask->getValue().countPopulation()) ==
3553 Mask->getValue().getBitWidth())
3554 break;
3555
3556 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3557 // part, we don't need any explicit masks to take them out of A. If that
3558 // is all N is, ignore it.
3559 uint32_t MB = 0, ME = 0;
3560 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3561 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3562 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3563 if (MaskedValueIsZero(RHS, Mask))
3564 break;
3565 }
3566 }
3567 return 0;
3568 case Instruction::Or:
3569 case Instruction::Xor:
3570 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3571 if ((Mask->getValue().countLeadingZeros() +
3572 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3573 && And(N, Mask)->isZero())
3574 break;
3575 return 0;
3576 }
3577
3578 Instruction *New;
3579 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003580 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003581 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003582 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003583 return InsertNewInstBefore(New, I);
3584}
3585
Chris Lattner0631ea72008-11-16 05:06:21 +00003586/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
3587Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
3588 ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattnerf3803482008-11-16 05:10:52 +00003589 Value *Val, *Val2;
Chris Lattner0631ea72008-11-16 05:06:21 +00003590 ConstantInt *LHSCst, *RHSCst;
3591 ICmpInst::Predicate LHSCC, RHSCC;
3592
Chris Lattnerf3803482008-11-16 05:10:52 +00003593 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Chris Lattner0631ea72008-11-16 05:06:21 +00003594 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
Chris Lattnerf3803482008-11-16 05:10:52 +00003595 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
Chris Lattner0631ea72008-11-16 05:06:21 +00003596 return 0;
Chris Lattnerf3803482008-11-16 05:10:52 +00003597
3598 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3599 // where C is a power of 2
3600 if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3601 LHSCst->getValue().isPowerOf2()) {
3602 Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2);
3603 InsertNewInstBefore(NewOr, I);
3604 return new ICmpInst(LHSCC, NewOr, LHSCst);
3605 }
3606
3607 // From here on, we only handle:
3608 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
3609 if (Val != Val2) return 0;
3610
Chris Lattner0631ea72008-11-16 05:06:21 +00003611 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
3612 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
3613 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
3614 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
3615 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
3616 return 0;
3617
3618 // We can't fold (ugt x, C) & (sgt x, C2).
3619 if (!PredicatesFoldable(LHSCC, RHSCC))
3620 return 0;
3621
3622 // Ensure that the larger constant is on the RHS.
Chris Lattner665298f2008-11-16 05:14:43 +00003623 bool ShouldSwap;
Chris Lattner0631ea72008-11-16 05:06:21 +00003624 if (ICmpInst::isSignedPredicate(LHSCC) ||
3625 (ICmpInst::isEquality(LHSCC) &&
3626 ICmpInst::isSignedPredicate(RHSCC)))
Chris Lattner665298f2008-11-16 05:14:43 +00003627 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
Chris Lattner0631ea72008-11-16 05:06:21 +00003628 else
Chris Lattner665298f2008-11-16 05:14:43 +00003629 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3630
3631 if (ShouldSwap) {
Chris Lattner0631ea72008-11-16 05:06:21 +00003632 std::swap(LHS, RHS);
3633 std::swap(LHSCst, RHSCst);
3634 std::swap(LHSCC, RHSCC);
3635 }
3636
3637 // At this point, we know we have have two icmp instructions
3638 // comparing a value against two constants and and'ing the result
3639 // together. Because of the above check, we know that we only have
3640 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3641 // (from the FoldICmpLogical check above), that the two constants
3642 // are not equal and that the larger constant is on the RHS
3643 assert(LHSCst != RHSCst && "Compares not folded above?");
3644
3645 switch (LHSCC) {
3646 default: assert(0 && "Unknown integer condition code!");
3647 case ICmpInst::ICMP_EQ:
3648 switch (RHSCC) {
3649 default: assert(0 && "Unknown integer condition code!");
3650 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3651 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3652 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3653 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3654 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3655 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3656 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3657 return ReplaceInstUsesWith(I, LHS);
3658 }
3659 case ICmpInst::ICMP_NE:
3660 switch (RHSCC) {
3661 default: assert(0 && "Unknown integer condition code!");
3662 case ICmpInst::ICMP_ULT:
3663 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3664 return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
3665 break; // (X != 13 & X u< 15) -> no change
3666 case ICmpInst::ICMP_SLT:
3667 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3668 return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
3669 break; // (X != 13 & X s< 15) -> no change
3670 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3671 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3672 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3673 return ReplaceInstUsesWith(I, RHS);
3674 case ICmpInst::ICMP_NE:
3675 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3676 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3677 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
3678 Val->getName()+".off");
3679 InsertNewInstBefore(Add, I);
3680 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3681 ConstantInt::get(Add->getType(), 1));
3682 }
3683 break; // (X != 13 & X != 15) -> no change
3684 }
3685 break;
3686 case ICmpInst::ICMP_ULT:
3687 switch (RHSCC) {
3688 default: assert(0 && "Unknown integer condition code!");
3689 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3690 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3691 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3692 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3693 break;
3694 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3695 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3696 return ReplaceInstUsesWith(I, LHS);
3697 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3698 break;
3699 }
3700 break;
3701 case ICmpInst::ICMP_SLT:
3702 switch (RHSCC) {
3703 default: assert(0 && "Unknown integer condition code!");
3704 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3705 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3706 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3707 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3708 break;
3709 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3710 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3711 return ReplaceInstUsesWith(I, LHS);
3712 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3713 break;
3714 }
3715 break;
3716 case ICmpInst::ICMP_UGT:
3717 switch (RHSCC) {
3718 default: assert(0 && "Unknown integer condition code!");
3719 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
3720 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3721 return ReplaceInstUsesWith(I, RHS);
3722 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3723 break;
3724 case ICmpInst::ICMP_NE:
3725 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3726 return new ICmpInst(LHSCC, Val, RHSCst);
3727 break; // (X u> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003728 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003729 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true, I);
3730 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3731 break;
3732 }
3733 break;
3734 case ICmpInst::ICMP_SGT:
3735 switch (RHSCC) {
3736 default: assert(0 && "Unknown integer condition code!");
3737 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
3738 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3739 return ReplaceInstUsesWith(I, RHS);
3740 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3741 break;
3742 case ICmpInst::ICMP_NE:
3743 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3744 return new ICmpInst(LHSCC, Val, RHSCst);
3745 break; // (X s> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003746 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003747 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true, I);
3748 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3749 break;
3750 }
3751 break;
3752 }
Chris Lattner0631ea72008-11-16 05:06:21 +00003753
3754 return 0;
3755}
3756
3757
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003758Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3759 bool Changed = SimplifyCommutative(I);
3760 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3761
3762 if (isa<UndefValue>(Op1)) // X & undef -> 0
3763 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3764
3765 // and X, X = X
3766 if (Op0 == Op1)
3767 return ReplaceInstUsesWith(I, Op1);
3768
3769 // See if we can simplify any instructions used by the instruction whose sole
3770 // purpose is to compute bits we don't care about.
3771 if (!isa<VectorType>(I.getType())) {
3772 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3773 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3774 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3775 KnownZero, KnownOne))
3776 return &I;
3777 } else {
3778 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3779 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3780 return ReplaceInstUsesWith(I, I.getOperand(0));
3781 } else if (isa<ConstantAggregateZero>(Op1)) {
3782 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3783 }
3784 }
3785
3786 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3787 const APInt& AndRHSMask = AndRHS->getValue();
3788 APInt NotAndRHS(~AndRHSMask);
3789
3790 // Optimize a variety of ((val OP C1) & C2) combinations...
3791 if (isa<BinaryOperator>(Op0)) {
3792 Instruction *Op0I = cast<Instruction>(Op0);
3793 Value *Op0LHS = Op0I->getOperand(0);
3794 Value *Op0RHS = Op0I->getOperand(1);
3795 switch (Op0I->getOpcode()) {
3796 case Instruction::Xor:
3797 case Instruction::Or:
3798 // If the mask is only needed on one incoming arm, push it up.
3799 if (Op0I->hasOneUse()) {
3800 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3801 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003802 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003803 Op0RHS->getName()+".masked");
3804 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003805 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003806 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3807 }
3808 if (!isa<Constant>(Op0RHS) &&
3809 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3810 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003811 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003812 Op0LHS->getName()+".masked");
3813 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003814 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003815 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3816 }
3817 }
3818
3819 break;
3820 case Instruction::Add:
3821 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3822 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3823 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3824 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003825 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003826 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003827 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003828 break;
3829
3830 case Instruction::Sub:
3831 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3832 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3833 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3834 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003835 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003836
Nick Lewyckya349ba42008-07-10 05:51:40 +00003837 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3838 // has 1's for all bits that the subtraction with A might affect.
3839 if (Op0I->hasOneUse()) {
3840 uint32_t BitWidth = AndRHSMask.getBitWidth();
3841 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3842 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3843
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003844 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003845 if (!(A && A->isZero()) && // avoid infinite recursion.
3846 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003847 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3848 InsertNewInstBefore(NewNeg, I);
3849 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3850 }
3851 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003852 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003853
3854 case Instruction::Shl:
3855 case Instruction::LShr:
3856 // (1 << x) & 1 --> zext(x == 0)
3857 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003858 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003859 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3860 Constant::getNullValue(I.getType()));
3861 InsertNewInstBefore(NewICmp, I);
3862 return new ZExtInst(NewICmp, I.getType());
3863 }
3864 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003865 }
3866
3867 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3868 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3869 return Res;
3870 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3871 // If this is an integer truncation or change from signed-to-unsigned, and
3872 // if the source is an and/or with immediate, transform it. This
3873 // frequently occurs for bitfield accesses.
3874 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3875 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3876 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003877 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003878 if (CastOp->getOpcode() == Instruction::And) {
3879 // Change: and (cast (and X, C1) to T), C2
3880 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3881 // This will fold the two constants together, which may allow
3882 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003883 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003884 CastOp->getOperand(0), I.getType(),
3885 CastOp->getName()+".shrunk");
3886 NewCast = InsertNewInstBefore(NewCast, I);
3887 // trunc_or_bitcast(C1)&C2
3888 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3889 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003890 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891 } else if (CastOp->getOpcode() == Instruction::Or) {
3892 // Change: and (cast (or X, C1) to T), C2
3893 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3894 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3895 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3896 return ReplaceInstUsesWith(I, AndRHS);
3897 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003898 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003899 }
3900 }
3901
3902 // Try to fold constant and into select arguments.
3903 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3904 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3905 return R;
3906 if (isa<PHINode>(Op0))
3907 if (Instruction *NV = FoldOpIntoPhi(I))
3908 return NV;
3909 }
3910
3911 Value *Op0NotVal = dyn_castNotVal(Op0);
3912 Value *Op1NotVal = dyn_castNotVal(Op1);
3913
3914 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3915 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3916
3917 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3918 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003919 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003920 I.getName()+".demorgan");
3921 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003922 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003923 }
3924
3925 {
3926 Value *A = 0, *B = 0, *C = 0, *D = 0;
3927 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3928 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3929 return ReplaceInstUsesWith(I, Op1);
3930
3931 // (A|B) & ~(A&B) -> A^B
3932 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3933 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003934 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003935 }
3936 }
3937
3938 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3939 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3940 return ReplaceInstUsesWith(I, Op0);
3941
3942 // ~(A&B) & (A|B) -> A^B
3943 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3944 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003945 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003946 }
3947 }
3948
3949 if (Op0->hasOneUse() &&
3950 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3951 if (A == Op1) { // (A^B)&A -> A&(A^B)
3952 I.swapOperands(); // Simplify below
3953 std::swap(Op0, Op1);
3954 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3955 cast<BinaryOperator>(Op0)->swapOperands();
3956 I.swapOperands(); // Simplify below
3957 std::swap(Op0, Op1);
3958 }
3959 }
Bill Wendlingce5e0af2008-11-30 13:08:13 +00003960
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003961 if (Op1->hasOneUse() &&
3962 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3963 if (B == Op0) { // B&(A^B) -> B&(B^A)
3964 cast<BinaryOperator>(Op1)->swapOperands();
3965 std::swap(A, B);
3966 }
3967 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003968 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003969 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003970 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003971 }
3972 }
Bill Wendlingce5e0af2008-11-30 13:08:13 +00003973
3974 // (A&((~A)|B)) -> A&B
Chris Lattner9db479f2008-12-01 05:16:26 +00003975 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
3976 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
3977 return BinaryOperator::CreateAnd(A, Op1);
3978 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
3979 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
3980 return BinaryOperator::CreateAnd(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003981 }
3982
3983 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3984 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3985 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3986 return R;
3987
Chris Lattner0631ea72008-11-16 05:06:21 +00003988 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
3989 if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
3990 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003991 }
3992
3993 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3994 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3995 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3996 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3997 const Type *SrcTy = Op0C->getOperand(0)->getType();
3998 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3999 // Only do this if the casts both really cause code to be generated.
4000 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4001 I.getType(), TD) &&
4002 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4003 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004004 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004005 Op1C->getOperand(0),
4006 I.getName());
4007 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004008 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004009 }
4010 }
4011
4012 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
4013 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4014 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4015 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4016 SI0->getOperand(1) == SI1->getOperand(1) &&
4017 (SI0->hasOneUse() || SI1->hasOneUse())) {
4018 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004019 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004020 SI1->getOperand(0),
4021 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004022 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004023 SI1->getOperand(1));
4024 }
4025 }
4026
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004027 // If and'ing two fcmp, try combine them into one.
Chris Lattner91882432007-10-24 05:38:08 +00004028 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4029 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4030 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004031 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
4032 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner91882432007-10-24 05:38:08 +00004033 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4034 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4035 // If either of the constants are nans, then the whole thing returns
4036 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004037 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004038 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4039 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4040 RHS->getOperand(0));
4041 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004042 } else {
4043 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4044 FCmpInst::Predicate Op0CC, Op1CC;
4045 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4046 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00004047 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4048 // Swap RHS operands to match LHS.
4049 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4050 std::swap(Op1LHS, Op1RHS);
4051 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004052 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4053 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4054 if (Op0CC == Op1CC)
4055 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4056 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4057 Op1CC == FCmpInst::FCMP_FALSE)
4058 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4059 else if (Op0CC == FCmpInst::FCMP_TRUE)
4060 return ReplaceInstUsesWith(I, Op1);
4061 else if (Op1CC == FCmpInst::FCMP_TRUE)
4062 return ReplaceInstUsesWith(I, Op0);
4063 bool Op0Ordered;
4064 bool Op1Ordered;
4065 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4066 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4067 if (Op1Pred == 0) {
4068 std::swap(Op0, Op1);
4069 std::swap(Op0Pred, Op1Pred);
4070 std::swap(Op0Ordered, Op1Ordered);
4071 }
4072 if (Op0Pred == 0) {
4073 // uno && ueq -> uno && (uno || eq) -> ueq
4074 // ord && olt -> ord && (ord && lt) -> olt
4075 if (Op0Ordered == Op1Ordered)
4076 return ReplaceInstUsesWith(I, Op1);
4077 // uno && oeq -> uno && (ord && eq) -> false
4078 // uno && ord -> false
4079 if (!Op0Ordered)
4080 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4081 // ord && ueq -> ord && (uno || eq) -> oeq
4082 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4083 Op0LHS, Op0RHS));
4084 }
4085 }
4086 }
4087 }
Chris Lattner91882432007-10-24 05:38:08 +00004088 }
4089 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00004090
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004091 return Changed ? &I : 0;
4092}
4093
Chris Lattner567f5112008-10-05 02:13:19 +00004094/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4095/// capable of providing pieces of a bswap. The subexpression provides pieces
4096/// of a bswap if it is proven that each of the non-zero bytes in the output of
4097/// the expression came from the corresponding "byte swapped" byte in some other
4098/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4099/// we know that the expression deposits the low byte of %X into the high byte
4100/// of the bswap result and that all other bytes are zero. This expression is
4101/// accepted, the high byte of ByteValues is set to X to indicate a correct
4102/// match.
4103///
4104/// This function returns true if the match was unsuccessful and false if so.
4105/// On entry to the function the "OverallLeftShift" is a signed integer value
4106/// indicating the number of bytes that the subexpression is later shifted. For
4107/// example, if the expression is later right shifted by 16 bits, the
4108/// OverallLeftShift value would be -2 on entry. This is used to specify which
4109/// byte of ByteValues is actually being set.
4110///
4111/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4112/// byte is masked to zero by a user. For example, in (X & 255), X will be
4113/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4114/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4115/// always in the local (OverallLeftShift) coordinate space.
4116///
4117static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4118 SmallVector<Value*, 8> &ByteValues) {
4119 if (Instruction *I = dyn_cast<Instruction>(V)) {
4120 // If this is an or instruction, it may be an inner node of the bswap.
4121 if (I->getOpcode() == Instruction::Or) {
4122 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4123 ByteValues) ||
4124 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4125 ByteValues);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004126 }
Chris Lattner567f5112008-10-05 02:13:19 +00004127
4128 // If this is a logical shift by a constant multiple of 8, recurse with
4129 // OverallLeftShift and ByteMask adjusted.
4130 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4131 unsigned ShAmt =
4132 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4133 // Ensure the shift amount is defined and of a byte value.
4134 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4135 return true;
4136
4137 unsigned ByteShift = ShAmt >> 3;
4138 if (I->getOpcode() == Instruction::Shl) {
4139 // X << 2 -> collect(X, +2)
4140 OverallLeftShift += ByteShift;
4141 ByteMask >>= ByteShift;
4142 } else {
4143 // X >>u 2 -> collect(X, -2)
4144 OverallLeftShift -= ByteShift;
4145 ByteMask <<= ByteShift;
Chris Lattner44448592008-10-08 06:42:28 +00004146 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner567f5112008-10-05 02:13:19 +00004147 }
4148
4149 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4150 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4151
4152 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4153 ByteValues);
4154 }
4155
4156 // If this is a logical 'and' with a mask that clears bytes, clear the
4157 // corresponding bytes in ByteMask.
4158 if (I->getOpcode() == Instruction::And &&
4159 isa<ConstantInt>(I->getOperand(1))) {
4160 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4161 unsigned NumBytes = ByteValues.size();
4162 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4163 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4164
4165 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4166 // If this byte is masked out by a later operation, we don't care what
4167 // the and mask is.
4168 if ((ByteMask & (1 << i)) == 0)
4169 continue;
4170
4171 // If the AndMask is all zeros for this byte, clear the bit.
4172 APInt MaskB = AndMask & Byte;
4173 if (MaskB == 0) {
4174 ByteMask &= ~(1U << i);
4175 continue;
4176 }
4177
4178 // If the AndMask is not all ones for this byte, it's not a bytezap.
4179 if (MaskB != Byte)
4180 return true;
4181
4182 // Otherwise, this byte is kept.
4183 }
4184
4185 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4186 ByteValues);
4187 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004188 }
4189
Chris Lattner567f5112008-10-05 02:13:19 +00004190 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4191 // the input value to the bswap. Some observations: 1) if more than one byte
4192 // is demanded from this input, then it could not be successfully assembled
4193 // into a byteswap. At least one of the two bytes would not be aligned with
4194 // their ultimate destination.
4195 if (!isPowerOf2_32(ByteMask)) return true;
4196 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004197
Chris Lattner567f5112008-10-05 02:13:19 +00004198 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4199 // is demanded, it needs to go into byte 0 of the result. This means that the
4200 // byte needs to be shifted until it lands in the right byte bucket. The
4201 // shift amount depends on the position: if the byte is coming from the high
4202 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4203 // low part, it must be shifted left.
4204 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4205 if (InputByteNo < ByteValues.size()/2) {
4206 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4207 return true;
4208 } else {
4209 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4210 return true;
4211 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004212
4213 // If the destination byte value is already defined, the values are or'd
4214 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner567f5112008-10-05 02:13:19 +00004215 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004216 return true;
Chris Lattner567f5112008-10-05 02:13:19 +00004217 ByteValues[DestByteNo] = V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004218 return false;
4219}
4220
4221/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4222/// If so, insert the new bswap intrinsic and return it.
4223Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4224 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner567f5112008-10-05 02:13:19 +00004225 if (!ITy || ITy->getBitWidth() % 16 ||
4226 // ByteMask only allows up to 32-byte values.
4227 ITy->getBitWidth() > 32*8)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004228 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4229
4230 /// ByteValues - For each byte of the result, we keep track of which value
4231 /// defines each byte.
4232 SmallVector<Value*, 8> ByteValues;
4233 ByteValues.resize(ITy->getBitWidth()/8);
4234
4235 // Try to find all the pieces corresponding to the bswap.
Chris Lattner567f5112008-10-05 02:13:19 +00004236 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4237 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004238 return 0;
4239
4240 // Check to see if all of the bytes come from the same value.
4241 Value *V = ByteValues[0];
4242 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4243
4244 // Check to make sure that all of the bytes come from the same value.
4245 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4246 if (ByteValues[i] != V)
4247 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004248 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004249 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004250 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004251 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004252}
4253
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004254/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4255/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4256/// we can simplify this expression to "cond ? C : D or B".
4257static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
4258 Value *C, Value *D) {
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004259 // If A is not a select of -1/0, this cannot match.
Chris Lattner641ea462008-11-16 04:46:19 +00004260 Value *Cond = 0;
Chris Lattnerd8640f62008-11-16 04:33:38 +00004261 if (!match(A, m_SelectCst(m_Value(Cond), -1, 0)))
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004262 return 0;
4263
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004264 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattner641ea462008-11-16 04:46:19 +00004265 if (match(D, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004266 return SelectInst::Create(Cond, C, B);
Chris Lattner641ea462008-11-16 04:46:19 +00004267 if (match(D, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004268 return SelectInst::Create(Cond, C, B);
4269 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattner641ea462008-11-16 04:46:19 +00004270 if (match(B, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004271 return SelectInst::Create(Cond, C, D);
Chris Lattner641ea462008-11-16 04:46:19 +00004272 if (match(B, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004273 return SelectInst::Create(Cond, C, D);
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004274 return 0;
4275}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004276
Chris Lattner0c678e52008-11-16 05:20:07 +00004277/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
4278Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
4279 ICmpInst *LHS, ICmpInst *RHS) {
4280 Value *Val, *Val2;
4281 ConstantInt *LHSCst, *RHSCst;
4282 ICmpInst::Predicate LHSCC, RHSCC;
4283
4284 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
4285 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
4286 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
4287 return 0;
4288
4289 // From here on, we only handle:
4290 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
4291 if (Val != Val2) return 0;
4292
4293 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
4294 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
4295 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
4296 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
4297 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
4298 return 0;
4299
4300 // We can't fold (ugt x, C) | (sgt x, C2).
4301 if (!PredicatesFoldable(LHSCC, RHSCC))
4302 return 0;
4303
4304 // Ensure that the larger constant is on the RHS.
4305 bool ShouldSwap;
4306 if (ICmpInst::isSignedPredicate(LHSCC) ||
4307 (ICmpInst::isEquality(LHSCC) &&
4308 ICmpInst::isSignedPredicate(RHSCC)))
4309 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4310 else
4311 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4312
4313 if (ShouldSwap) {
4314 std::swap(LHS, RHS);
4315 std::swap(LHSCst, RHSCst);
4316 std::swap(LHSCC, RHSCC);
4317 }
4318
4319 // At this point, we know we have have two icmp instructions
4320 // comparing a value against two constants and or'ing the result
4321 // together. Because of the above check, we know that we only have
4322 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4323 // FoldICmpLogical check above), that the two constants are not
4324 // equal.
4325 assert(LHSCst != RHSCst && "Compares not folded above?");
4326
4327 switch (LHSCC) {
4328 default: assert(0 && "Unknown integer condition code!");
4329 case ICmpInst::ICMP_EQ:
4330 switch (RHSCC) {
4331 default: assert(0 && "Unknown integer condition code!");
4332 case ICmpInst::ICMP_EQ:
4333 if (LHSCst == SubOne(RHSCst)) { // (X == 13 | X == 14) -> X-13 <u 2
4334 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4335 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
4336 Val->getName()+".off");
4337 InsertNewInstBefore(Add, I);
4338 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4339 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4340 }
4341 break; // (X == 13 | X == 15) -> no change
4342 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4343 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4344 break;
4345 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4346 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4347 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4348 return ReplaceInstUsesWith(I, RHS);
4349 }
4350 break;
4351 case ICmpInst::ICMP_NE:
4352 switch (RHSCC) {
4353 default: assert(0 && "Unknown integer condition code!");
4354 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4355 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4356 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4357 return ReplaceInstUsesWith(I, LHS);
4358 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4359 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4360 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4361 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4362 }
4363 break;
4364 case ICmpInst::ICMP_ULT:
4365 switch (RHSCC) {
4366 default: assert(0 && "Unknown integer condition code!");
4367 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4368 break;
4369 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
4370 // If RHSCst is [us]MAXINT, it is always false. Not handling
4371 // this can cause overflow.
4372 if (RHSCst->isMaxValue(false))
4373 return ReplaceInstUsesWith(I, LHS);
4374 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false, I);
4375 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4376 break;
4377 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4378 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4379 return ReplaceInstUsesWith(I, RHS);
4380 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4381 break;
4382 }
4383 break;
4384 case ICmpInst::ICMP_SLT:
4385 switch (RHSCC) {
4386 default: assert(0 && "Unknown integer condition code!");
4387 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4388 break;
4389 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
4390 // If RHSCst is [us]MAXINT, it is always false. Not handling
4391 // this can cause overflow.
4392 if (RHSCst->isMaxValue(true))
4393 return ReplaceInstUsesWith(I, LHS);
4394 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false, I);
4395 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4396 break;
4397 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4398 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4399 return ReplaceInstUsesWith(I, RHS);
4400 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4401 break;
4402 }
4403 break;
4404 case ICmpInst::ICMP_UGT:
4405 switch (RHSCC) {
4406 default: assert(0 && "Unknown integer condition code!");
4407 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4408 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4409 return ReplaceInstUsesWith(I, LHS);
4410 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4411 break;
4412 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4413 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4414 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4415 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4416 break;
4417 }
4418 break;
4419 case ICmpInst::ICMP_SGT:
4420 switch (RHSCC) {
4421 default: assert(0 && "Unknown integer condition code!");
4422 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4423 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4424 return ReplaceInstUsesWith(I, LHS);
4425 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4426 break;
4427 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4428 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4429 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4430 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4431 break;
4432 }
4433 break;
4434 }
4435 return 0;
4436}
4437
Bill Wendlingdae376a2008-12-01 08:23:25 +00004438/// FoldOrWithConstants - This helper function folds:
4439///
Bill Wendling236a1192008-12-02 05:09:00 +00004440/// ((A | B) & C1) | (B & C2)
Bill Wendlingdae376a2008-12-01 08:23:25 +00004441///
4442/// into:
4443///
Bill Wendling236a1192008-12-02 05:09:00 +00004444/// (A & C1) | B
Bill Wendling9912f712008-12-01 08:32:40 +00004445///
Bill Wendling236a1192008-12-02 05:09:00 +00004446/// when the XOR of the two constants is "all ones" (-1).
Bill Wendling9912f712008-12-01 08:32:40 +00004447Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
Bill Wendlingdae376a2008-12-01 08:23:25 +00004448 Value *A, Value *B, Value *C) {
Bill Wendlingfc5b8e62008-12-02 05:06:43 +00004449 ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
4450 if (!CI1) return 0;
Bill Wendlingdae376a2008-12-01 08:23:25 +00004451
Bill Wendlingfc5b8e62008-12-02 05:06:43 +00004452 Value *V1 = 0, *C2 = 0;
4453 if (match(Op, m_And(m_Value(V1), m_Value(C2)))) {
4454 ConstantInt *CI2 = dyn_cast<ConstantInt>(C2);
4455 if (!CI2) return 0;
Bill Wendlingdae376a2008-12-01 08:23:25 +00004456
Bill Wendlingfc5b8e62008-12-02 05:06:43 +00004457 APInt Xor = CI1->getValue() ^ CI2->getValue();
4458 if (Xor.isAllOnesValue()) {
4459 if (V1 == B) {
4460 Instruction *NewOp =
4461 InsertNewInstBefore(BinaryOperator::CreateAnd(A, CI1), I);
4462 return BinaryOperator::CreateOr(NewOp, B);
4463 } else if (V1 == A) {
4464 Instruction *NewOp =
4465 InsertNewInstBefore(BinaryOperator::CreateAnd(B, CI1), I);
4466 return BinaryOperator::CreateOr(NewOp, A);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004467 }
4468 }
4469 }
4470
4471 return 0;
4472}
4473
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004474Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4475 bool Changed = SimplifyCommutative(I);
4476 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4477
4478 if (isa<UndefValue>(Op1)) // X | undef -> -1
4479 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4480
4481 // or X, X = X
4482 if (Op0 == Op1)
4483 return ReplaceInstUsesWith(I, Op0);
4484
4485 // See if we can simplify any instructions used by the instruction whose sole
4486 // purpose is to compute bits we don't care about.
4487 if (!isa<VectorType>(I.getType())) {
4488 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4489 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4490 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4491 KnownZero, KnownOne))
4492 return &I;
4493 } else if (isa<ConstantAggregateZero>(Op1)) {
4494 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4495 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4496 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4497 return ReplaceInstUsesWith(I, I.getOperand(1));
4498 }
4499
4500
4501
4502 // or X, -1 == -1
4503 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4504 ConstantInt *C1 = 0; Value *X = 0;
4505 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4506 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004507 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004508 InsertNewInstBefore(Or, I);
4509 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004510 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004511 ConstantInt::get(RHS->getValue() | C1->getValue()));
4512 }
4513
4514 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4515 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004516 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004517 InsertNewInstBefore(Or, I);
4518 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004519 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004520 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4521 }
4522
4523 // Try to fold constant and into select arguments.
4524 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4525 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4526 return R;
4527 if (isa<PHINode>(Op0))
4528 if (Instruction *NV = FoldOpIntoPhi(I))
4529 return NV;
4530 }
4531
4532 Value *A = 0, *B = 0;
4533 ConstantInt *C1 = 0, *C2 = 0;
4534
4535 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4536 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4537 return ReplaceInstUsesWith(I, Op1);
4538 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4539 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4540 return ReplaceInstUsesWith(I, Op0);
4541
4542 // (A | B) | C and A | (B | C) -> bswap if possible.
4543 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4544 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4545 match(Op1, m_Or(m_Value(), m_Value())) ||
4546 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4547 match(Op1, m_Shift(m_Value(), m_Value())))) {
4548 if (Instruction *BSwap = MatchBSwap(I))
4549 return BSwap;
4550 }
4551
4552 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4553 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4554 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004555 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004556 InsertNewInstBefore(NOr, I);
4557 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004558 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004559 }
4560
4561 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4562 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4563 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004564 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004565 InsertNewInstBefore(NOr, I);
4566 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004567 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004568 }
4569
4570 // (A & C)|(B & D)
4571 Value *C = 0, *D = 0;
4572 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4573 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4574 Value *V1 = 0, *V2 = 0, *V3 = 0;
4575 C1 = dyn_cast<ConstantInt>(C);
4576 C2 = dyn_cast<ConstantInt>(D);
4577 if (C1 && C2) { // (A & C1)|(B & C2)
4578 // If we have: ((V + N) & C1) | (V & C2)
4579 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4580 // replace with V+N.
4581 if (C1->getValue() == ~C2->getValue()) {
4582 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4583 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4584 // Add commutes, try both ways.
4585 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4586 return ReplaceInstUsesWith(I, A);
4587 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4588 return ReplaceInstUsesWith(I, A);
4589 }
4590 // Or commutes, try both ways.
4591 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4592 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4593 // Add commutes, try both ways.
4594 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4595 return ReplaceInstUsesWith(I, B);
4596 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4597 return ReplaceInstUsesWith(I, B);
4598 }
4599 }
4600 V1 = 0; V2 = 0; V3 = 0;
4601 }
4602
4603 // Check to see if we have any common things being and'ed. If so, find the
4604 // terms for V1 & (V2|V3).
4605 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4606 if (A == B) // (A & C)|(A & D) == A & (C|D)
4607 V1 = A, V2 = C, V3 = D;
4608 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4609 V1 = A, V2 = B, V3 = C;
4610 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4611 V1 = C, V2 = A, V3 = D;
4612 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4613 V1 = C, V2 = A, V3 = B;
4614
4615 if (V1) {
4616 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004617 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4618 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004619 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004620 }
Dan Gohman279952c2008-10-28 22:38:57 +00004621
Dan Gohman35b76162008-10-30 20:40:10 +00004622 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004623 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
4624 return Match;
4625 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
4626 return Match;
4627 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
4628 return Match;
4629 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
4630 return Match;
Bill Wendling22ca8352008-11-30 13:52:49 +00004631
Bill Wendling22ca8352008-11-30 13:52:49 +00004632 // ((A&~B)|(~A&B)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004633 if ((match(C, m_Not(m_Specific(D))) &&
4634 match(B, m_Not(m_Specific(A)))))
4635 return BinaryOperator::CreateXor(A, D);
Bill Wendling22ca8352008-11-30 13:52:49 +00004636 // ((~B&A)|(~A&B)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004637 if ((match(A, m_Not(m_Specific(D))) &&
4638 match(B, m_Not(m_Specific(C)))))
4639 return BinaryOperator::CreateXor(C, D);
Bill Wendling22ca8352008-11-30 13:52:49 +00004640 // ((A&~B)|(B&~A)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004641 if ((match(C, m_Not(m_Specific(B))) &&
4642 match(D, m_Not(m_Specific(A)))))
4643 return BinaryOperator::CreateXor(A, B);
Bill Wendling22ca8352008-11-30 13:52:49 +00004644 // ((~B&A)|(B&~A)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004645 if ((match(A, m_Not(m_Specific(B))) &&
4646 match(D, m_Not(m_Specific(C)))))
4647 return BinaryOperator::CreateXor(C, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004648 }
4649
4650 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4651 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4652 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4653 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4654 SI0->getOperand(1) == SI1->getOperand(1) &&
4655 (SI0->hasOneUse() || SI1->hasOneUse())) {
4656 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004657 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004658 SI1->getOperand(0),
4659 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004660 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004661 SI1->getOperand(1));
4662 }
4663 }
4664
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004665 // ((A|B)&1)|(B&-2) -> (A&1) | B
4666 if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4667 match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
Bill Wendling9912f712008-12-01 08:32:40 +00004668 Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004669 if (Ret) return Ret;
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004670 }
4671 // (B&-2)|((A|B)&1) -> (A&1) | B
4672 if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4673 match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
Bill Wendling9912f712008-12-01 08:32:40 +00004674 Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004675 if (Ret) return Ret;
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004676 }
4677
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004678 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4679 if (A == Op1) // ~A | A == -1
4680 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4681 } else {
4682 A = 0;
4683 }
4684 // Note, A is still live here!
4685 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4686 if (Op0 == B)
4687 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4688
4689 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4690 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004691 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004692 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004693 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004694 }
4695 }
4696
4697 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4698 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4699 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4700 return R;
4701
Chris Lattner0c678e52008-11-16 05:20:07 +00004702 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4703 if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
4704 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004705 }
4706
4707 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004708 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004709 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4710 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004711 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4712 !isa<ICmpInst>(Op1C->getOperand(0))) {
4713 const Type *SrcTy = Op0C->getOperand(0)->getType();
4714 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4715 // Only do this if the casts both really cause code to be
4716 // generated.
4717 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4718 I.getType(), TD) &&
4719 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4720 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004721 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004722 Op1C->getOperand(0),
4723 I.getName());
4724 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004725 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004726 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004727 }
4728 }
Chris Lattner91882432007-10-24 05:38:08 +00004729 }
4730
4731
4732 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4733 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4734 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4735 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004736 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng72988052008-10-14 18:44:08 +00004737 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner91882432007-10-24 05:38:08 +00004738 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4739 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4740 // If either of the constants are nans, then the whole thing returns
4741 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004742 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004743 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4744
4745 // Otherwise, no need to compare the two constants, compare the
4746 // rest.
4747 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4748 RHS->getOperand(0));
4749 }
Evan Cheng72988052008-10-14 18:44:08 +00004750 } else {
4751 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4752 FCmpInst::Predicate Op0CC, Op1CC;
4753 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4754 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4755 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4756 // Swap RHS operands to match LHS.
4757 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4758 std::swap(Op1LHS, Op1RHS);
4759 }
4760 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4761 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4762 if (Op0CC == Op1CC)
4763 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4764 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4765 Op1CC == FCmpInst::FCMP_TRUE)
4766 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4767 else if (Op0CC == FCmpInst::FCMP_FALSE)
4768 return ReplaceInstUsesWith(I, Op1);
4769 else if (Op1CC == FCmpInst::FCMP_FALSE)
4770 return ReplaceInstUsesWith(I, Op0);
4771 bool Op0Ordered;
4772 bool Op1Ordered;
4773 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4774 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4775 if (Op0Ordered == Op1Ordered) {
4776 // If both are ordered or unordered, return a new fcmp with
4777 // or'ed predicates.
4778 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4779 Op0LHS, Op0RHS);
4780 if (Instruction *I = dyn_cast<Instruction>(RV))
4781 return I;
4782 // Otherwise, it's a constant boolean value...
4783 return ReplaceInstUsesWith(I, RV);
4784 }
4785 }
4786 }
4787 }
Chris Lattner91882432007-10-24 05:38:08 +00004788 }
4789 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004790
4791 return Changed ? &I : 0;
4792}
4793
Dan Gohman089efff2008-05-13 00:00:25 +00004794namespace {
4795
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004796// XorSelf - Implements: X ^ X --> 0
4797struct XorSelf {
4798 Value *RHS;
4799 XorSelf(Value *rhs) : RHS(rhs) {}
4800 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4801 Instruction *apply(BinaryOperator &Xor) const {
4802 return &Xor;
4803 }
4804};
4805
Dan Gohman089efff2008-05-13 00:00:25 +00004806}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004807
4808Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4809 bool Changed = SimplifyCommutative(I);
4810 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4811
Evan Chenge5cd8032008-03-25 20:07:13 +00004812 if (isa<UndefValue>(Op1)) {
4813 if (isa<UndefValue>(Op0))
4814 // Handle undef ^ undef -> 0 special case. This is a common
4815 // idiom (misuse).
4816 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004817 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004818 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004819
4820 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4821 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004822 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004823 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4824 }
4825
4826 // See if we can simplify any instructions used by the instruction whose sole
4827 // purpose is to compute bits we don't care about.
4828 if (!isa<VectorType>(I.getType())) {
4829 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4830 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4831 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4832 KnownZero, KnownOne))
4833 return &I;
4834 } else if (isa<ConstantAggregateZero>(Op1)) {
4835 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4836 }
4837
4838 // Is this a ~ operation?
4839 if (Value *NotOp = dyn_castNotVal(&I)) {
4840 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4841 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4842 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4843 if (Op0I->getOpcode() == Instruction::And ||
4844 Op0I->getOpcode() == Instruction::Or) {
4845 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4846 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4847 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004848 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004849 Op0I->getOperand(1)->getName()+".not");
4850 InsertNewInstBefore(NotY, I);
4851 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004852 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004853 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004854 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004855 }
4856 }
4857 }
4858 }
4859
4860
4861 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004862 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4863 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4864 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004865 return new ICmpInst(ICI->getInversePredicate(),
4866 ICI->getOperand(0), ICI->getOperand(1));
4867
Nick Lewycky1405e922007-08-06 20:04:16 +00004868 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4869 return new FCmpInst(FCI->getInversePredicate(),
4870 FCI->getOperand(0), FCI->getOperand(1));
4871 }
4872
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004873 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4874 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4875 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4876 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4877 Instruction::CastOps Opcode = Op0C->getOpcode();
4878 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4879 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4880 Op0C->getDestTy())) {
4881 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4882 CI->getOpcode(), CI->getInversePredicate(),
4883 CI->getOperand(0), CI->getOperand(1)), I);
4884 NewCI->takeName(CI);
4885 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4886 }
4887 }
4888 }
4889 }
4890 }
4891
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004892 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4893 // ~(c-X) == X-c-1 == X+(-c-1)
4894 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4895 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4896 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4897 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4898 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004899 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004900 }
4901
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004902 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004903 if (Op0I->getOpcode() == Instruction::Add) {
4904 // ~(X-c) --> (-c-1)-X
4905 if (RHS->isAllOnesValue()) {
4906 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004907 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004908 ConstantExpr::getSub(NegOp0CI,
4909 ConstantInt::get(I.getType(), 1)),
4910 Op0I->getOperand(0));
4911 } else if (RHS->getValue().isSignBit()) {
4912 // (X + C) ^ signbit -> (X + C + signbit)
4913 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004914 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004915
4916 }
4917 } else if (Op0I->getOpcode() == Instruction::Or) {
4918 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4919 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4920 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4921 // Anything in both C1 and C2 is known to be zero, remove it from
4922 // NewRHS.
4923 Constant *CommonBits = And(Op0CI, RHS);
4924 NewRHS = ConstantExpr::getAnd(NewRHS,
4925 ConstantExpr::getNot(CommonBits));
4926 AddToWorkList(Op0I);
4927 I.setOperand(0, Op0I->getOperand(0));
4928 I.setOperand(1, NewRHS);
4929 return &I;
4930 }
4931 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004932 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004933 }
4934
4935 // Try to fold constant and into select arguments.
4936 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4937 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4938 return R;
4939 if (isa<PHINode>(Op0))
4940 if (Instruction *NV = FoldOpIntoPhi(I))
4941 return NV;
4942 }
4943
4944 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4945 if (X == Op1)
4946 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4947
4948 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4949 if (X == Op0)
4950 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4951
4952
4953 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4954 if (Op1I) {
4955 Value *A, *B;
4956 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4957 if (A == Op0) { // B^(B|A) == (A|B)^B
4958 Op1I->swapOperands();
4959 I.swapOperands();
4960 std::swap(Op0, Op1);
4961 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4962 I.swapOperands(); // Simplified below.
4963 std::swap(Op0, Op1);
4964 }
Chris Lattner3b874082008-11-16 05:38:51 +00004965 } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
4966 return ReplaceInstUsesWith(I, B); // A^(A^B) == B
4967 } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
4968 return ReplaceInstUsesWith(I, A); // A^(B^A) == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004969 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4970 if (A == Op0) { // A^(A&B) -> A^(B&A)
4971 Op1I->swapOperands();
4972 std::swap(A, B);
4973 }
4974 if (B == Op0) { // A^(B&A) -> (B&A)^A
4975 I.swapOperands(); // Simplified below.
4976 std::swap(Op0, Op1);
4977 }
4978 }
4979 }
4980
4981 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4982 if (Op0I) {
4983 Value *A, *B;
4984 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4985 if (A == Op1) // (B|A)^B == (A|B)^B
4986 std::swap(A, B);
4987 if (B == Op1) { // (A|B)^B == A & ~B
4988 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00004989 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4990 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004991 }
Chris Lattner3b874082008-11-16 05:38:51 +00004992 } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
4993 return ReplaceInstUsesWith(I, B); // (A^B)^A == B
4994 } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
4995 return ReplaceInstUsesWith(I, A); // (B^A)^A == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004996 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4997 if (A == Op1) // (A&B)^A -> (B&A)^A
4998 std::swap(A, B);
4999 if (B == Op1 && // (B&A)^A == ~B & A
5000 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
5001 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00005002 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
5003 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005004 }
5005 }
5006 }
5007
5008 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
5009 if (Op0I && Op1I && Op0I->isShift() &&
5010 Op0I->getOpcode() == Op1I->getOpcode() &&
5011 Op0I->getOperand(1) == Op1I->getOperand(1) &&
5012 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
5013 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00005014 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005015 Op1I->getOperand(0),
5016 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005017 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005018 Op1I->getOperand(1));
5019 }
5020
5021 if (Op0I && Op1I) {
5022 Value *A, *B, *C, *D;
5023 // (A & B)^(A | B) -> A ^ B
5024 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5025 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
5026 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00005027 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005028 }
5029 // (A | B)^(A & B) -> A ^ B
5030 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
5031 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5032 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00005033 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005034 }
5035
5036 // (A & B)^(C & D)
5037 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
5038 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5039 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5040 // (X & Y)^(X & Y) -> (Y^Z) & X
5041 Value *X = 0, *Y = 0, *Z = 0;
5042 if (A == C)
5043 X = A, Y = B, Z = D;
5044 else if (A == D)
5045 X = A, Y = B, Z = C;
5046 else if (B == C)
5047 X = B, Y = A, Z = D;
5048 else if (B == D)
5049 X = B, Y = A, Z = C;
5050
5051 if (X) {
5052 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00005053 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
5054 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005055 }
5056 }
5057 }
5058
5059 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
5060 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
5061 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
5062 return R;
5063
5064 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00005065 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005066 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
5067 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
5068 const Type *SrcTy = Op0C->getOperand(0)->getType();
5069 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
5070 // Only do this if the casts both really cause code to be generated.
5071 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
5072 I.getType(), TD) &&
5073 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
5074 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00005075 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005076 Op1C->getOperand(0),
5077 I.getName());
5078 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005079 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005080 }
5081 }
Chris Lattner91882432007-10-24 05:38:08 +00005082 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00005083
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005084 return Changed ? &I : 0;
5085}
5086
5087/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
5088/// overflowed for this type.
5089static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5090 ConstantInt *In2, bool IsSigned = false) {
5091 Result = cast<ConstantInt>(Add(In1, In2));
5092
5093 if (IsSigned)
5094 if (In2->getValue().isNegative())
5095 return Result->getValue().sgt(In1->getValue());
5096 else
5097 return Result->getValue().slt(In1->getValue());
5098 else
5099 return Result->getValue().ult(In1->getValue());
5100}
5101
Dan Gohmanb80d5612008-09-10 23:30:57 +00005102/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
5103/// overflowed for this type.
5104static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5105 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00005106 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00005107
5108 if (IsSigned)
5109 if (In2->getValue().isNegative())
5110 return Result->getValue().slt(In1->getValue());
5111 else
5112 return Result->getValue().sgt(In1->getValue());
5113 else
5114 return Result->getValue().ugt(In1->getValue());
5115}
5116
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005117/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5118/// code necessary to compute the offset from the base pointer (without adding
5119/// in the base pointer). Return the result as a signed integer of intptr size.
5120static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5121 TargetData &TD = IC.getTargetData();
5122 gep_type_iterator GTI = gep_type_begin(GEP);
5123 const Type *IntPtrTy = TD.getIntPtrType();
5124 Value *Result = Constant::getNullValue(IntPtrTy);
5125
5126 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00005127 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005128 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5129
Gabor Greif17396002008-06-12 21:37:33 +00005130 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5131 ++i, ++GTI) {
5132 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00005133 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005134 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5135 if (OpC->isZero()) continue;
5136
5137 // Handle a struct index, which adds its field offset to the pointer.
5138 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5139 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5140
5141 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5142 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
5143 else
5144 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005145 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005146 ConstantInt::get(IntPtrTy, Size),
5147 GEP->getName()+".offs"), I);
5148 continue;
5149 }
5150
5151 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5152 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5153 Scale = ConstantExpr::getMul(OC, Scale);
5154 if (Constant *RC = dyn_cast<Constant>(Result))
5155 Result = ConstantExpr::getAdd(RC, Scale);
5156 else {
5157 // Emit an add instruction.
5158 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005159 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005160 GEP->getName()+".offs"), I);
5161 }
5162 continue;
5163 }
5164 // Convert to correct type.
5165 if (Op->getType() != IntPtrTy) {
5166 if (Constant *OpC = dyn_cast<Constant>(Op))
5167 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5168 else
5169 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5170 Op->getName()+".c"), I);
5171 }
5172 if (Size != 1) {
5173 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5174 if (Constant *OpC = dyn_cast<Constant>(Op))
5175 Op = ConstantExpr::getMul(OpC, Scale);
5176 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00005177 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005178 GEP->getName()+".idx"), I);
5179 }
5180
5181 // Emit an add instruction.
5182 if (isa<Constant>(Op) && isa<Constant>(Result))
5183 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5184 cast<Constant>(Result));
5185 else
Gabor Greifa645dd32008-05-16 19:29:10 +00005186 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005187 GEP->getName()+".offs"), I);
5188 }
5189 return Result;
5190}
5191
Chris Lattnereba75862008-04-22 02:53:33 +00005192
5193/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5194/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5195/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5196/// complex, and scales are involved. The above expression would also be legal
5197/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5198/// later form is less amenable to optimization though, and we are allowed to
5199/// generate the first by knowing that pointer arithmetic doesn't overflow.
5200///
5201/// If we can't emit an optimized form for this expression, this returns null.
5202///
5203static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5204 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00005205 TargetData &TD = IC.getTargetData();
5206 gep_type_iterator GTI = gep_type_begin(GEP);
5207
5208 // Check to see if this gep only has a single variable index. If so, and if
5209 // any constant indices are a multiple of its scale, then we can compute this
5210 // in terms of the scale of the variable index. For example, if the GEP
5211 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5212 // because the expression will cross zero at the same point.
5213 unsigned i, e = GEP->getNumOperands();
5214 int64_t Offset = 0;
5215 for (i = 1; i != e; ++i, ++GTI) {
5216 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5217 // Compute the aggregate offset of constant indices.
5218 if (CI->isZero()) continue;
5219
5220 // Handle a struct index, which adds its field offset to the pointer.
5221 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5222 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5223 } else {
5224 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5225 Offset += Size*CI->getSExtValue();
5226 }
5227 } else {
5228 // Found our variable index.
5229 break;
5230 }
5231 }
5232
5233 // If there are no variable indices, we must have a constant offset, just
5234 // evaluate it the general way.
5235 if (i == e) return 0;
5236
5237 Value *VariableIdx = GEP->getOperand(i);
5238 // Determine the scale factor of the variable element. For example, this is
5239 // 4 if the variable index is into an array of i32.
5240 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5241
5242 // Verify that there are no other variable indices. If so, emit the hard way.
5243 for (++i, ++GTI; i != e; ++i, ++GTI) {
5244 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5245 if (!CI) return 0;
5246
5247 // Compute the aggregate offset of constant indices.
5248 if (CI->isZero()) continue;
5249
5250 // Handle a struct index, which adds its field offset to the pointer.
5251 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5252 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5253 } else {
5254 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5255 Offset += Size*CI->getSExtValue();
5256 }
5257 }
5258
5259 // Okay, we know we have a single variable index, which must be a
5260 // pointer/array/vector index. If there is no offset, life is simple, return
5261 // the index.
5262 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5263 if (Offset == 0) {
5264 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5265 // we don't need to bother extending: the extension won't affect where the
5266 // computation crosses zero.
5267 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5268 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5269 VariableIdx->getNameStart(), &I);
5270 return VariableIdx;
5271 }
5272
5273 // Otherwise, there is an index. The computation we will do will be modulo
5274 // the pointer size, so get it.
5275 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5276
5277 Offset &= PtrSizeMask;
5278 VariableScale &= PtrSizeMask;
5279
5280 // To do this transformation, any constant index must be a multiple of the
5281 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5282 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5283 // multiple of the variable scale.
5284 int64_t NewOffs = Offset / (int64_t)VariableScale;
5285 if (Offset != NewOffs*(int64_t)VariableScale)
5286 return 0;
5287
5288 // Okay, we can do this evaluation. Start by converting the index to intptr.
5289 const Type *IntPtrTy = TD.getIntPtrType();
5290 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005291 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005292 true /*SExt*/,
5293 VariableIdx->getNameStart(), &I);
5294 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005295 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005296}
5297
5298
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005299/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5300/// else. At this point we know that the GEP is on the LHS of the comparison.
5301Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5302 ICmpInst::Predicate Cond,
5303 Instruction &I) {
5304 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5305
Chris Lattnereba75862008-04-22 02:53:33 +00005306 // Look through bitcasts.
5307 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5308 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005309
5310 Value *PtrBase = GEPLHS->getOperand(0);
5311 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005312 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005313 // This transformation (ignoring the base and scales) is valid because we
5314 // know pointers can't overflow. See if we can output an optimized form.
5315 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5316
5317 // If not, synthesize the offset the hard way.
5318 if (Offset == 0)
5319 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005320 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5321 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005322 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5323 // If the base pointers are different, but the indices are the same, just
5324 // compare the base pointer.
5325 if (PtrBase != GEPRHS->getOperand(0)) {
5326 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5327 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5328 GEPRHS->getOperand(0)->getType();
5329 if (IndicesTheSame)
5330 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5331 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5332 IndicesTheSame = false;
5333 break;
5334 }
5335
5336 // If all indices are the same, just compare the base pointers.
5337 if (IndicesTheSame)
5338 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5339 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5340
5341 // Otherwise, the base pointers are different and the indices are
5342 // different, bail out.
5343 return 0;
5344 }
5345
5346 // If one of the GEPs has all zero indices, recurse.
5347 bool AllZeros = true;
5348 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5349 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5350 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5351 AllZeros = false;
5352 break;
5353 }
5354 if (AllZeros)
5355 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5356 ICmpInst::getSwappedPredicate(Cond), I);
5357
5358 // If the other GEP has all zero indices, recurse.
5359 AllZeros = true;
5360 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5361 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5362 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5363 AllZeros = false;
5364 break;
5365 }
5366 if (AllZeros)
5367 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5368
5369 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5370 // If the GEPs only differ by one index, compare it.
5371 unsigned NumDifferences = 0; // Keep track of # differences.
5372 unsigned DiffOperand = 0; // The operand that differs.
5373 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5374 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5375 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5376 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5377 // Irreconcilable differences.
5378 NumDifferences = 2;
5379 break;
5380 } else {
5381 if (NumDifferences++) break;
5382 DiffOperand = i;
5383 }
5384 }
5385
5386 if (NumDifferences == 0) // SAME GEP?
5387 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005388 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005389 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005390
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005391 else if (NumDifferences == 1) {
5392 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5393 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5394 // Make sure we do a signed comparison here.
5395 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5396 }
5397 }
5398
5399 // Only lower this if the icmp is the only user of the GEP or if we expect
5400 // the result to fold to a constant!
5401 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5402 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5403 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5404 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5405 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5406 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5407 }
5408 }
5409 return 0;
5410}
5411
Chris Lattnere6b62d92008-05-19 20:18:56 +00005412/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5413///
5414Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5415 Instruction *LHSI,
5416 Constant *RHSC) {
5417 if (!isa<ConstantFP>(RHSC)) return 0;
5418 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5419
5420 // Get the width of the mantissa. We don't want to hack on conversions that
5421 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005422 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005423 if (MantissaWidth == -1) return 0; // Unknown.
5424
5425 // Check to see that the input is converted from an integer type that is small
5426 // enough that preserves all bits. TODO: check here for "known" sign bits.
5427 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5428 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5429
5430 // If this is a uitofp instruction, we need an extra bit to hold the sign.
Bill Wendling20636df2008-11-09 04:26:50 +00005431 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5432 if (LHSUnsigned)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005433 ++InputSize;
5434
5435 // If the conversion would lose info, don't hack on this.
5436 if ((int)InputSize > MantissaWidth)
5437 return 0;
5438
5439 // Otherwise, we can potentially simplify the comparison. We know that it
5440 // will always come through as an integer value and we know the constant is
5441 // not a NAN (it would have been previously simplified).
5442 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5443
5444 ICmpInst::Predicate Pred;
5445 switch (I.getPredicate()) {
5446 default: assert(0 && "Unexpected predicate!");
5447 case FCmpInst::FCMP_UEQ:
Bill Wendling20636df2008-11-09 04:26:50 +00005448 case FCmpInst::FCMP_OEQ:
5449 Pred = ICmpInst::ICMP_EQ;
5450 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005451 case FCmpInst::FCMP_UGT:
Bill Wendling20636df2008-11-09 04:26:50 +00005452 case FCmpInst::FCMP_OGT:
5453 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5454 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005455 case FCmpInst::FCMP_UGE:
Bill Wendling20636df2008-11-09 04:26:50 +00005456 case FCmpInst::FCMP_OGE:
5457 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5458 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005459 case FCmpInst::FCMP_ULT:
Bill Wendling20636df2008-11-09 04:26:50 +00005460 case FCmpInst::FCMP_OLT:
5461 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5462 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005463 case FCmpInst::FCMP_ULE:
Bill Wendling20636df2008-11-09 04:26:50 +00005464 case FCmpInst::FCMP_OLE:
5465 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5466 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005467 case FCmpInst::FCMP_UNE:
Bill Wendling20636df2008-11-09 04:26:50 +00005468 case FCmpInst::FCMP_ONE:
5469 Pred = ICmpInst::ICMP_NE;
5470 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005471 case FCmpInst::FCMP_ORD:
Eli Friedmanc9c96242008-11-30 22:48:49 +00005472 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005473 case FCmpInst::FCMP_UNO:
Eli Friedmanc9c96242008-11-30 22:48:49 +00005474 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005475 }
5476
5477 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5478
5479 // Now we know that the APFloat is a normal number, zero or inf.
5480
Chris Lattnerf13ff492008-05-20 03:50:52 +00005481 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005482 // comparing an i8 to 300.0.
5483 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5484
Bill Wendling20636df2008-11-09 04:26:50 +00005485 if (!LHSUnsigned) {
5486 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5487 // and large values.
5488 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5489 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5490 APFloat::rmNearestTiesToEven);
5491 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5492 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5493 Pred == ICmpInst::ICMP_SLE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005494 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5495 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005496 }
5497 } else {
5498 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5499 // +INF and large values.
5500 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5501 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5502 APFloat::rmNearestTiesToEven);
5503 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5504 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5505 Pred == ICmpInst::ICMP_ULE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005506 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5507 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005508 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005509 }
5510
Bill Wendling20636df2008-11-09 04:26:50 +00005511 if (!LHSUnsigned) {
5512 // See if the RHS value is < SignedMin.
5513 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5514 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5515 APFloat::rmNearestTiesToEven);
5516 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5517 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5518 Pred == ICmpInst::ICMP_SGE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005519 return ReplaceInstUsesWith(I,ConstantInt::getTrue());
5520 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005521 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005522 }
5523
Bill Wendling20636df2008-11-09 04:26:50 +00005524 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5525 // [0, UMAX], but it may still be fractional. See if it is fractional by
5526 // casting the FP value to the integer value and back, checking for equality.
5527 // Don't do this for zero, because -0.0 is not fractional.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005528 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5529 if (!RHS.isZero() &&
5530 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
Bill Wendling20636df2008-11-09 04:26:50 +00005531 // If we had a comparison against a fractional value, we have to adjust the
5532 // compare predicate and sometimes the value. RHSC is rounded towards zero
5533 // at this point.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005534 switch (Pred) {
5535 default: assert(0 && "Unexpected integer comparison!");
5536 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
Eli Friedmanc9c96242008-11-30 22:48:49 +00005537 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005538 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
Eli Friedmanc9c96242008-11-30 22:48:49 +00005539 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005540 case ICmpInst::ICMP_ULE:
5541 // (float)int <= 4.4 --> int <= 4
5542 // (float)int <= -4.4 --> false
5543 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005544 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005545 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005546 case ICmpInst::ICMP_SLE:
5547 // (float)int <= 4.4 --> int <= 4
5548 // (float)int <= -4.4 --> int < -4
5549 if (RHS.isNegative())
5550 Pred = ICmpInst::ICMP_SLT;
5551 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005552 case ICmpInst::ICMP_ULT:
5553 // (float)int < -4.4 --> false
5554 // (float)int < 4.4 --> int <= 4
5555 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005556 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005557 Pred = ICmpInst::ICMP_ULE;
5558 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005559 case ICmpInst::ICMP_SLT:
5560 // (float)int < -4.4 --> int < -4
5561 // (float)int < 4.4 --> int <= 4
5562 if (!RHS.isNegative())
5563 Pred = ICmpInst::ICMP_SLE;
5564 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005565 case ICmpInst::ICMP_UGT:
5566 // (float)int > 4.4 --> int > 4
5567 // (float)int > -4.4 --> true
5568 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005569 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendling20636df2008-11-09 04:26:50 +00005570 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005571 case ICmpInst::ICMP_SGT:
5572 // (float)int > 4.4 --> int > 4
5573 // (float)int > -4.4 --> int >= -4
5574 if (RHS.isNegative())
5575 Pred = ICmpInst::ICMP_SGE;
5576 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005577 case ICmpInst::ICMP_UGE:
5578 // (float)int >= -4.4 --> true
5579 // (float)int >= 4.4 --> int > 4
5580 if (!RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005581 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendling20636df2008-11-09 04:26:50 +00005582 Pred = ICmpInst::ICMP_UGT;
5583 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005584 case ICmpInst::ICMP_SGE:
5585 // (float)int >= -4.4 --> int >= -4
5586 // (float)int >= 4.4 --> int > 4
5587 if (!RHS.isNegative())
5588 Pred = ICmpInst::ICMP_SGT;
5589 break;
5590 }
5591 }
5592
5593 // Lower this FP comparison into an appropriate integer version of the
5594 // comparison.
5595 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5596}
5597
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005598Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5599 bool Changed = SimplifyCompare(I);
5600 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5601
5602 // Fold trivial predicates.
5603 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005604 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005605 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005606 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005607
5608 // Simplify 'fcmp pred X, X'
5609 if (Op0 == Op1) {
5610 switch (I.getPredicate()) {
5611 default: assert(0 && "Unknown predicate!");
5612 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5613 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5614 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
Eli Friedmanc9c96242008-11-30 22:48:49 +00005615 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005616 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5617 case FCmpInst::FCMP_OLT: // True if ordered and less than
5618 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
Eli Friedmanc9c96242008-11-30 22:48:49 +00005619 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005620
5621 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5622 case FCmpInst::FCMP_ULT: // True if unordered or less than
5623 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5624 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5625 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5626 I.setPredicate(FCmpInst::FCMP_UNO);
5627 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5628 return &I;
5629
5630 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5631 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5632 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5633 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5634 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5635 I.setPredicate(FCmpInst::FCMP_ORD);
5636 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5637 return &I;
5638 }
5639 }
5640
5641 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5642 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5643
5644 // Handle fcmp with constant RHS
5645 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005646 // If the constant is a nan, see if we can fold the comparison based on it.
5647 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5648 if (CFP->getValueAPF().isNaN()) {
5649 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
Eli Friedmanc9c96242008-11-30 22:48:49 +00005650 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnerf13ff492008-05-20 03:50:52 +00005651 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5652 "Comparison must be either ordered or unordered!");
5653 // True if unordered.
Eli Friedmanc9c96242008-11-30 22:48:49 +00005654 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005655 }
5656 }
5657
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005658 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5659 switch (LHSI->getOpcode()) {
5660 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005661 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5662 // block. If in the same block, we're encouraging jump threading. If
5663 // not, we are just pessimizing the code by making an i1 phi.
5664 if (LHSI->getParent() == I.getParent())
5665 if (Instruction *NV = FoldOpIntoPhi(I))
5666 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005667 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005668 case Instruction::SIToFP:
5669 case Instruction::UIToFP:
5670 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5671 return NV;
5672 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005673 case Instruction::Select:
5674 // If either operand of the select is a constant, we can fold the
5675 // comparison into the select arms, which will cause one to be
5676 // constant folded and the select turned into a bitwise or.
5677 Value *Op1 = 0, *Op2 = 0;
5678 if (LHSI->hasOneUse()) {
5679 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5680 // Fold the known value into the constant operand.
5681 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5682 // Insert a new FCmp of the other select operand.
5683 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5684 LHSI->getOperand(2), RHSC,
5685 I.getName()), I);
5686 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5687 // Fold the known value into the constant operand.
5688 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5689 // Insert a new FCmp of the other select operand.
5690 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5691 LHSI->getOperand(1), RHSC,
5692 I.getName()), I);
5693 }
5694 }
5695
5696 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005697 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005698 break;
5699 }
5700 }
5701
5702 return Changed ? &I : 0;
5703}
5704
5705Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5706 bool Changed = SimplifyCompare(I);
5707 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5708 const Type *Ty = Op0->getType();
5709
5710 // icmp X, X
5711 if (Op0 == Op1)
5712 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005713 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005714
5715 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5716 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005717
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005718 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5719 // addresses never equal each other! We already know that Op0 != Op1.
5720 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5721 isa<ConstantPointerNull>(Op0)) &&
5722 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5723 isa<ConstantPointerNull>(Op1)))
5724 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005725 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005726
5727 // icmp's with boolean values can always be turned into bitwise operations
5728 if (Ty == Type::Int1Ty) {
5729 switch (I.getPredicate()) {
5730 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005731 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005732 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005733 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005734 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005735 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005736 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005737 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005738
5739 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005740 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005741 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005742 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005743 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005744 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005745 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005746 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005747 case ICmpInst::ICMP_SGT:
5748 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005749 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005750 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5751 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5752 InsertNewInstBefore(Not, I);
5753 return BinaryOperator::CreateAnd(Not, Op0);
5754 }
5755 case ICmpInst::ICMP_UGE:
5756 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5757 // FALL THROUGH
5758 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005759 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005760 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005761 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005762 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005763 case ICmpInst::ICMP_SGE:
5764 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5765 // FALL THROUGH
5766 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5767 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5768 InsertNewInstBefore(Not, I);
5769 return BinaryOperator::CreateOr(Not, Op0);
5770 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005771 }
5772 }
5773
Dan Gohman58c09632008-09-16 18:46:06 +00005774 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005775 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005776 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005777
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005778 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5779 if (I.isEquality() && CI->isNullValue() &&
5780 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5781 // (icmp cond A B) if cond is equality
5782 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005783 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005784
Dan Gohman58c09632008-09-16 18:46:06 +00005785 // If we have an icmp le or icmp ge instruction, turn it into the
5786 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5787 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005788 switch (I.getPredicate()) {
5789 default: break;
5790 case ICmpInst::ICMP_ULE:
5791 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5792 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5793 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5794 case ICmpInst::ICMP_SLE:
5795 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5796 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5797 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5798 case ICmpInst::ICMP_UGE:
5799 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5800 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5801 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5802 case ICmpInst::ICMP_SGE:
5803 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5804 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5805 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5806 }
5807
Chris Lattnera1308652008-07-11 05:40:05 +00005808 // See if we can fold the comparison based on range information we can get
5809 // by checking whether bits are known to be zero or one in the input.
5810 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5811 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5812
5813 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005814 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005815 bool UnusedBit;
5816 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5817
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005818 if (SimplifyDemandedBits(Op0,
5819 isSignBit ? APInt::getSignBit(BitWidth)
5820 : APInt::getAllOnesValue(BitWidth),
5821 KnownZero, KnownOne, 0))
5822 return &I;
5823
5824 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005825 // in. Compute the Min, Max and RHS values based on the known bits. For the
5826 // EQ and NE we use unsigned values.
5827 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005828 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5829 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5830 else
5831 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5832
Chris Lattnera1308652008-07-11 05:40:05 +00005833 // If Min and Max are known to be the same, then SimplifyDemandedBits
5834 // figured out that the LHS is a constant. Just constant fold this now so
5835 // that code below can assume that Min != Max.
5836 if (Min == Max)
5837 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5838 ConstantInt::get(Min),
5839 CI));
5840
5841 // Based on the range information we know about the LHS, see if we can
5842 // simplify this comparison. For example, (x&4) < 8 is always true.
5843 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005844 switch (I.getPredicate()) { // LE/GE have been folded already.
5845 default: assert(0 && "Unknown icmp opcode!");
5846 case ICmpInst::ICMP_EQ:
5847 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5848 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5849 break;
5850 case ICmpInst::ICMP_NE:
5851 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5852 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5853 break;
5854 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005855 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005856 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005857 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005858 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005859 if (RHSVal == Max) // A <u MAX -> A != MAX
5860 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5861 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5862 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5863
5864 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5865 if (CI->isMinValue(true))
5866 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5867 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005868 break;
5869 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005870 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005871 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005872 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005873 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005874
5875 if (RHSVal == Min) // A >u MIN -> A != MIN
5876 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5877 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5878 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5879
5880 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5881 if (CI->isMaxValue(true))
5882 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5883 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005884 break;
5885 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005886 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005887 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005888 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005889 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005890 if (RHSVal == Max) // A <s MAX -> A != MAX
5891 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005892 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005893 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005894 break;
5895 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005896 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005897 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005898 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005899 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005900
5901 if (RHSVal == Min) // A >s MIN -> A != MIN
5902 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5903 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5904 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005905 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005906 }
Dan Gohman58c09632008-09-16 18:46:06 +00005907 }
5908
5909 // Test if the ICmpInst instruction is used exclusively by a select as
5910 // part of a minimum or maximum operation. If so, refrain from doing
5911 // any other folding. This helps out other analyses which understand
5912 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5913 // and CodeGen. And in this case, at least one of the comparison
5914 // operands has at least one user besides the compare (the select),
5915 // which would often largely negate the benefit of folding anyway.
5916 if (I.hasOneUse())
5917 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5918 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5919 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5920 return 0;
5921
5922 // See if we are doing a comparison between a constant and an instruction that
5923 // can be folded into the comparison.
5924 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005925 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5926 // instruction, see if that instruction also has constants so that the
5927 // instruction can be folded into the icmp
5928 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5929 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5930 return Res;
5931 }
5932
5933 // Handle icmp with constant (but not simple integer constant) RHS
5934 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5935 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5936 switch (LHSI->getOpcode()) {
5937 case Instruction::GetElementPtr:
5938 if (RHSC->isNullValue()) {
5939 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5940 bool isAllZeros = true;
5941 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5942 if (!isa<Constant>(LHSI->getOperand(i)) ||
5943 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5944 isAllZeros = false;
5945 break;
5946 }
5947 if (isAllZeros)
5948 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5949 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5950 }
5951 break;
5952
5953 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005954 // Only fold icmp into the PHI if the phi and fcmp are in the same
5955 // block. If in the same block, we're encouraging jump threading. If
5956 // not, we are just pessimizing the code by making an i1 phi.
5957 if (LHSI->getParent() == I.getParent())
5958 if (Instruction *NV = FoldOpIntoPhi(I))
5959 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005960 break;
5961 case Instruction::Select: {
5962 // If either operand of the select is a constant, we can fold the
5963 // comparison into the select arms, which will cause one to be
5964 // constant folded and the select turned into a bitwise or.
5965 Value *Op1 = 0, *Op2 = 0;
5966 if (LHSI->hasOneUse()) {
5967 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5968 // Fold the known value into the constant operand.
5969 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5970 // Insert a new ICmp of the other select operand.
5971 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5972 LHSI->getOperand(2), RHSC,
5973 I.getName()), I);
5974 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5975 // Fold the known value into the constant operand.
5976 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5977 // Insert a new ICmp of the other select operand.
5978 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5979 LHSI->getOperand(1), RHSC,
5980 I.getName()), I);
5981 }
5982 }
5983
5984 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005985 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005986 break;
5987 }
5988 case Instruction::Malloc:
5989 // If we have (malloc != null), and if the malloc has a single use, we
5990 // can assume it is successful and remove the malloc.
5991 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5992 AddToWorkList(LHSI);
5993 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005994 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005995 }
5996 break;
5997 }
5998 }
5999
6000 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
6001 if (User *GEP = dyn_castGetElementPtr(Op0))
6002 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
6003 return NI;
6004 if (User *GEP = dyn_castGetElementPtr(Op1))
6005 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
6006 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
6007 return NI;
6008
6009 // Test to see if the operands of the icmp are casted versions of other
6010 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
6011 // now.
6012 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
6013 if (isa<PointerType>(Op0->getType()) &&
6014 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
6015 // We keep moving the cast from the left operand over to the right
6016 // operand, where it can often be eliminated completely.
6017 Op0 = CI->getOperand(0);
6018
6019 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
6020 // so eliminate it as well.
6021 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
6022 Op1 = CI2->getOperand(0);
6023
6024 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006025 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006026 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
6027 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
6028 } else {
6029 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006030 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006031 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006032 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006033 return new ICmpInst(I.getPredicate(), Op0, Op1);
6034 }
6035 }
6036
6037 if (isa<CastInst>(Op0)) {
6038 // Handle the special case of: icmp (cast bool to X), <cst>
6039 // This comes up when you have code like
6040 // int X = A < B;
6041 // if (X) ...
6042 // For generality, we handle any zero-extension of any operand comparison
6043 // with a constant or another cast from the same type.
6044 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
6045 if (Instruction *R = visitICmpInstWithCastAndCast(I))
6046 return R;
6047 }
6048
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006049 // See if it's the same type of instruction on the left and right.
6050 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
6051 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006052 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
6053 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
6054 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00006055 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006056 default: break;
6057 case Instruction::Add:
6058 case Instruction::Sub:
6059 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006060 // a+x icmp eq/ne b+x --> a icmp b
6061 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
6062 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006063 break;
6064 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006065 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
6066 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
6067 // Mask = -1 >> count-trailing-zeros(Cst).
6068 if (!CI->isZero() && !CI->isOne()) {
6069 const APInt &AP = CI->getValue();
6070 ConstantInt *Mask = ConstantInt::get(
6071 APInt::getLowBitsSet(AP.getBitWidth(),
6072 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006073 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006074 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
6075 Mask);
6076 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
6077 Mask);
6078 InsertNewInstBefore(And1, I);
6079 InsertNewInstBefore(And2, I);
6080 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006081 }
6082 }
6083 break;
6084 }
6085 }
6086 }
6087 }
6088
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006089 // ~x < ~y --> y < x
6090 { Value *A, *B;
6091 if (match(Op0, m_Not(m_Value(A))) &&
6092 match(Op1, m_Not(m_Value(B))))
6093 return new ICmpInst(I.getPredicate(), B, A);
6094 }
6095
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006096 if (I.isEquality()) {
6097 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006098
6099 // -x == -y --> x == y
6100 if (match(Op0, m_Neg(m_Value(A))) &&
6101 match(Op1, m_Neg(m_Value(B))))
6102 return new ICmpInst(I.getPredicate(), A, B);
6103
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006104 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6105 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6106 Value *OtherVal = A == Op1 ? B : A;
6107 return new ICmpInst(I.getPredicate(), OtherVal,
6108 Constant::getNullValue(A->getType()));
6109 }
6110
6111 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6112 // A^c1 == C^c2 --> A == C^(c1^c2)
Chris Lattner3b874082008-11-16 05:38:51 +00006113 ConstantInt *C1, *C2;
6114 if (match(B, m_ConstantInt(C1)) &&
6115 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
6116 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
6117 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
6118 return new ICmpInst(I.getPredicate(), A,
6119 InsertNewInstBefore(Xor, I));
6120 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006121
6122 // A^B == A^D -> B == D
6123 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6124 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6125 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6126 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6127 }
6128 }
6129
6130 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6131 (A == Op0 || B == Op0)) {
6132 // A == (A^B) -> B == 0
6133 Value *OtherVal = A == Op0 ? B : A;
6134 return new ICmpInst(I.getPredicate(), OtherVal,
6135 Constant::getNullValue(A->getType()));
6136 }
Chris Lattner3b874082008-11-16 05:38:51 +00006137
6138 // (A-B) == A -> B == 0
6139 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
6140 return new ICmpInst(I.getPredicate(), B,
6141 Constant::getNullValue(B->getType()));
6142
6143 // A == (A-B) -> B == 0
6144 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006145 return new ICmpInst(I.getPredicate(), B,
6146 Constant::getNullValue(B->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006147
6148 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6149 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6150 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6151 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6152 Value *X = 0, *Y = 0, *Z = 0;
6153
6154 if (A == C) {
6155 X = B; Y = D; Z = A;
6156 } else if (A == D) {
6157 X = B; Y = C; Z = A;
6158 } else if (B == C) {
6159 X = A; Y = D; Z = B;
6160 } else if (B == D) {
6161 X = A; Y = C; Z = B;
6162 }
6163
6164 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00006165 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6166 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006167 I.setOperand(0, Op1);
6168 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6169 return &I;
6170 }
6171 }
6172 }
6173 return Changed ? &I : 0;
6174}
6175
6176
6177/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6178/// and CmpRHS are both known to be integer constants.
6179Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6180 ConstantInt *DivRHS) {
6181 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6182 const APInt &CmpRHSV = CmpRHS->getValue();
6183
6184 // FIXME: If the operand types don't match the type of the divide
6185 // then don't attempt this transform. The code below doesn't have the
6186 // logic to deal with a signed divide and an unsigned compare (and
6187 // vice versa). This is because (x /s C1) <s C2 produces different
6188 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6189 // (x /u C1) <u C2. Simply casting the operands and result won't
6190 // work. :( The if statement below tests that condition and bails
6191 // if it finds it.
6192 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6193 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6194 return 0;
6195 if (DivRHS->isZero())
6196 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006197 if (DivIsSigned && DivRHS->isAllOnesValue())
6198 return 0; // The overflow computation also screws up here
6199 if (DivRHS->isOne())
6200 return 0; // Not worth bothering, and eliminates some funny cases
6201 // with INT_MIN.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006202
6203 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6204 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6205 // C2 (CI). By solving for X we can turn this into a range check
6206 // instead of computing a divide.
6207 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6208
6209 // Determine if the product overflows by seeing if the product is
6210 // not equal to the divide. Make sure we do the same kind of divide
6211 // as in the LHS instruction that we're folding.
6212 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6213 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6214
6215 // Get the ICmp opcode
6216 ICmpInst::Predicate Pred = ICI.getPredicate();
6217
6218 // Figure out the interval that is being checked. For example, a comparison
6219 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6220 // Compute this interval based on the constants involved and the signedness of
6221 // the compare/divide. This computes a half-open interval, keeping track of
6222 // whether either value in the interval overflows. After analysis each
6223 // overflow variable is set to 0 if it's corresponding bound variable is valid
6224 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6225 int LoOverflow = 0, HiOverflow = 0;
6226 ConstantInt *LoBound = 0, *HiBound = 0;
6227
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006228 if (!DivIsSigned) { // udiv
6229 // e.g. X/5 op 3 --> [15, 20)
6230 LoBound = Prod;
6231 HiOverflow = LoOverflow = ProdOV;
6232 if (!HiOverflow)
6233 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00006234 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006235 if (CmpRHSV == 0) { // (X / pos) op 0
6236 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6237 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6238 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00006239 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006240 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6241 HiOverflow = LoOverflow = ProdOV;
6242 if (!HiOverflow)
6243 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
6244 } else { // (X / pos) op neg
6245 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006246 HiBound = AddOne(Prod);
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006247 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6248 if (!LoOverflow) {
6249 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6250 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6251 true) ? -1 : 0;
6252 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006253 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006254 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006255 if (CmpRHSV == 0) { // (X / neg) op 0
6256 // e.g. X/-5 op 0 --> [-4, 5)
6257 LoBound = AddOne(DivRHS);
6258 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6259 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6260 HiOverflow = 1; // [INTMIN+1, overflow)
6261 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6262 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006263 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006264 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006265 HiBound = AddOne(Prod);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006266 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
6267 if (!LoOverflow)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006268 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006269 } else { // (X / neg) op neg
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006270 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6271 LoOverflow = HiOverflow = ProdOV;
Dan Gohman45408ea2008-09-11 00:25:00 +00006272 if (!HiOverflow)
6273 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006274 }
6275
6276 // Dividing by a negative swaps the condition. LT <-> GT
6277 Pred = ICmpInst::getSwappedPredicate(Pred);
6278 }
6279
6280 Value *X = DivI->getOperand(0);
6281 switch (Pred) {
6282 default: assert(0 && "Unhandled icmp opcode!");
6283 case ICmpInst::ICMP_EQ:
6284 if (LoOverflow && HiOverflow)
6285 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6286 else if (HiOverflow)
6287 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6288 ICmpInst::ICMP_UGE, X, LoBound);
6289 else if (LoOverflow)
6290 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6291 ICmpInst::ICMP_ULT, X, HiBound);
6292 else
6293 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6294 case ICmpInst::ICMP_NE:
6295 if (LoOverflow && HiOverflow)
6296 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6297 else if (HiOverflow)
6298 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6299 ICmpInst::ICMP_ULT, X, LoBound);
6300 else if (LoOverflow)
6301 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6302 ICmpInst::ICMP_UGE, X, HiBound);
6303 else
6304 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6305 case ICmpInst::ICMP_ULT:
6306 case ICmpInst::ICMP_SLT:
6307 if (LoOverflow == +1) // Low bound is greater than input range.
6308 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6309 if (LoOverflow == -1) // Low bound is less than input range.
6310 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6311 return new ICmpInst(Pred, X, LoBound);
6312 case ICmpInst::ICMP_UGT:
6313 case ICmpInst::ICMP_SGT:
6314 if (HiOverflow == +1) // High bound greater than input range.
6315 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6316 else if (HiOverflow == -1) // High bound less than input range.
6317 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6318 if (Pred == ICmpInst::ICMP_UGT)
6319 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6320 else
6321 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6322 }
6323}
6324
6325
6326/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6327///
6328Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6329 Instruction *LHSI,
6330 ConstantInt *RHS) {
6331 const APInt &RHSV = RHS->getValue();
6332
6333 switch (LHSI->getOpcode()) {
6334 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6335 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6336 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6337 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006338 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6339 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006340 Value *CompareVal = LHSI->getOperand(0);
6341
6342 // If the sign bit of the XorCST is not set, there is no change to
6343 // the operation, just stop using the Xor.
6344 if (!XorCST->getValue().isNegative()) {
6345 ICI.setOperand(0, CompareVal);
6346 AddToWorkList(LHSI);
6347 return &ICI;
6348 }
6349
6350 // Was the old condition true if the operand is positive?
6351 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6352
6353 // If so, the new one isn't.
6354 isTrueIfPositive ^= true;
6355
6356 if (isTrueIfPositive)
6357 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6358 else
6359 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6360 }
6361 }
6362 break;
6363 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6364 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6365 LHSI->getOperand(0)->hasOneUse()) {
6366 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6367
6368 // If the LHS is an AND of a truncating cast, we can widen the
6369 // and/compare to be the input width without changing the value
6370 // produced, eliminating a cast.
6371 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6372 // We can do this transformation if either the AND constant does not
6373 // have its sign bit set or if it is an equality comparison.
6374 // Extending a relational comparison when we're checking the sign
6375 // bit would not work.
6376 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00006377 (ICI.isEquality() ||
6378 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006379 uint32_t BitWidth =
6380 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6381 APInt NewCST = AndCST->getValue();
6382 NewCST.zext(BitWidth);
6383 APInt NewCI = RHSV;
6384 NewCI.zext(BitWidth);
6385 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006386 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006387 ConstantInt::get(NewCST),LHSI->getName());
6388 InsertNewInstBefore(NewAnd, ICI);
6389 return new ICmpInst(ICI.getPredicate(), NewAnd,
6390 ConstantInt::get(NewCI));
6391 }
6392 }
6393
6394 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6395 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6396 // happens a LOT in code produced by the C front-end, for bitfield
6397 // access.
6398 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6399 if (Shift && !Shift->isShift())
6400 Shift = 0;
6401
6402 ConstantInt *ShAmt;
6403 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6404 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6405 const Type *AndTy = AndCST->getType(); // Type of the and.
6406
6407 // We can fold this as long as we can't shift unknown bits
6408 // into the mask. This can only happen with signed shift
6409 // rights, as they sign-extend.
6410 if (ShAmt) {
6411 bool CanFold = Shift->isLogicalShift();
6412 if (!CanFold) {
6413 // To test for the bad case of the signed shr, see if any
6414 // of the bits shifted in could be tested after the mask.
6415 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6416 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6417
6418 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6419 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6420 AndCST->getValue()) == 0)
6421 CanFold = true;
6422 }
6423
6424 if (CanFold) {
6425 Constant *NewCst;
6426 if (Shift->getOpcode() == Instruction::Shl)
6427 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6428 else
6429 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6430
6431 // Check to see if we are shifting out any of the bits being
6432 // compared.
6433 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6434 // If we shifted bits out, the fold is not going to work out.
6435 // As a special case, check to see if this means that the
6436 // result is always true or false now.
6437 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6438 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6439 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6440 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6441 } else {
6442 ICI.setOperand(1, NewCst);
6443 Constant *NewAndCST;
6444 if (Shift->getOpcode() == Instruction::Shl)
6445 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6446 else
6447 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6448 LHSI->setOperand(1, NewAndCST);
6449 LHSI->setOperand(0, Shift->getOperand(0));
6450 AddToWorkList(Shift); // Shift is dead.
6451 AddUsesToWorkList(ICI);
6452 return &ICI;
6453 }
6454 }
6455 }
6456
6457 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6458 // preferable because it allows the C<<Y expression to be hoisted out
6459 // of a loop if Y is invariant and X is not.
6460 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6461 ICI.isEquality() && !Shift->isArithmeticShift() &&
6462 isa<Instruction>(Shift->getOperand(0))) {
6463 // Compute C << Y.
6464 Value *NS;
6465 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006466 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006467 Shift->getOperand(1), "tmp");
6468 } else {
6469 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006470 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006471 Shift->getOperand(1), "tmp");
6472 }
6473 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6474
6475 // Compute X & (C << Y).
6476 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006477 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006478 InsertNewInstBefore(NewAnd, ICI);
6479
6480 ICI.setOperand(0, NewAnd);
6481 return &ICI;
6482 }
6483 }
6484 break;
6485
6486 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6487 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6488 if (!ShAmt) break;
6489
6490 uint32_t TypeBits = RHSV.getBitWidth();
6491
6492 // Check that the shift amount is in range. If not, don't perform
6493 // undefined shifts. When the shift is visited it will be
6494 // simplified.
6495 if (ShAmt->uge(TypeBits))
6496 break;
6497
6498 if (ICI.isEquality()) {
6499 // If we are comparing against bits always shifted out, the
6500 // comparison cannot succeed.
6501 Constant *Comp =
6502 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6503 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6504 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6505 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6506 return ReplaceInstUsesWith(ICI, Cst);
6507 }
6508
6509 if (LHSI->hasOneUse()) {
6510 // Otherwise strength reduce the shift into an and.
6511 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6512 Constant *Mask =
6513 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6514
6515 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006516 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006517 Mask, LHSI->getName()+".mask");
6518 Value *And = InsertNewInstBefore(AndI, ICI);
6519 return new ICmpInst(ICI.getPredicate(), And,
6520 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6521 }
6522 }
6523
6524 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6525 bool TrueIfSigned = false;
6526 if (LHSI->hasOneUse() &&
6527 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6528 // (X << 31) <s 0 --> (X&1) != 0
6529 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6530 (TypeBits-ShAmt->getZExtValue()-1));
6531 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006532 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006533 Mask, LHSI->getName()+".mask");
6534 Value *And = InsertNewInstBefore(AndI, ICI);
6535
6536 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6537 And, Constant::getNullValue(And->getType()));
6538 }
6539 break;
6540 }
6541
6542 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6543 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006544 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006545 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006546 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006547
Chris Lattner5ee84f82008-03-21 05:19:58 +00006548 // Check that the shift amount is in range. If not, don't perform
6549 // undefined shifts. When the shift is visited it will be
6550 // simplified.
6551 uint32_t TypeBits = RHSV.getBitWidth();
6552 if (ShAmt->uge(TypeBits))
6553 break;
6554
6555 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006556
Chris Lattner5ee84f82008-03-21 05:19:58 +00006557 // If we are comparing against bits always shifted out, the
6558 // comparison cannot succeed.
6559 APInt Comp = RHSV << ShAmtVal;
6560 if (LHSI->getOpcode() == Instruction::LShr)
6561 Comp = Comp.lshr(ShAmtVal);
6562 else
6563 Comp = Comp.ashr(ShAmtVal);
6564
6565 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6566 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6567 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6568 return ReplaceInstUsesWith(ICI, Cst);
6569 }
6570
6571 // Otherwise, check to see if the bits shifted out are known to be zero.
6572 // If so, we can compare against the unshifted value:
6573 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006574 if (LHSI->hasOneUse() &&
6575 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006576 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6577 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6578 ConstantExpr::getShl(RHS, ShAmt));
6579 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006580
Evan Chengfb9292a2008-04-23 00:38:06 +00006581 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006582 // Otherwise strength reduce the shift into an and.
6583 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6584 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006585
Chris Lattner5ee84f82008-03-21 05:19:58 +00006586 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006587 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006588 Mask, LHSI->getName()+".mask");
6589 Value *And = InsertNewInstBefore(AndI, ICI);
6590 return new ICmpInst(ICI.getPredicate(), And,
6591 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006592 }
6593 break;
6594 }
6595
6596 case Instruction::SDiv:
6597 case Instruction::UDiv:
6598 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6599 // Fold this div into the comparison, producing a range check.
6600 // Determine, based on the divide type, what the range is being
6601 // checked. If there is an overflow on the low or high side, remember
6602 // it, otherwise compute the range [low, hi) bounding the new value.
6603 // See: InsertRangeTest above for the kinds of replacements possible.
6604 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6605 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6606 DivRHS))
6607 return R;
6608 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006609
6610 case Instruction::Add:
6611 // Fold: icmp pred (add, X, C1), C2
6612
6613 if (!ICI.isEquality()) {
6614 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6615 if (!LHSC) break;
6616 const APInt &LHSV = LHSC->getValue();
6617
6618 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6619 .subtract(LHSV);
6620
6621 if (ICI.isSignedPredicate()) {
6622 if (CR.getLower().isSignBit()) {
6623 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6624 ConstantInt::get(CR.getUpper()));
6625 } else if (CR.getUpper().isSignBit()) {
6626 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6627 ConstantInt::get(CR.getLower()));
6628 }
6629 } else {
6630 if (CR.getLower().isMinValue()) {
6631 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6632 ConstantInt::get(CR.getUpper()));
6633 } else if (CR.getUpper().isMinValue()) {
6634 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6635 ConstantInt::get(CR.getLower()));
6636 }
6637 }
6638 }
6639 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006640 }
6641
6642 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6643 if (ICI.isEquality()) {
6644 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6645
6646 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6647 // the second operand is a constant, simplify a bit.
6648 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6649 switch (BO->getOpcode()) {
6650 case Instruction::SRem:
6651 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6652 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6653 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6654 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6655 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006656 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006657 BO->getName());
6658 InsertNewInstBefore(NewRem, ICI);
6659 return new ICmpInst(ICI.getPredicate(), NewRem,
6660 Constant::getNullValue(BO->getType()));
6661 }
6662 }
6663 break;
6664 case Instruction::Add:
6665 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6666 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6667 if (BO->hasOneUse())
6668 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6669 Subtract(RHS, BOp1C));
6670 } else if (RHSV == 0) {
6671 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6672 // efficiently invertible, or if the add has just this one use.
6673 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6674
6675 if (Value *NegVal = dyn_castNegVal(BOp1))
6676 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6677 else if (Value *NegVal = dyn_castNegVal(BOp0))
6678 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6679 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006680 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006681 InsertNewInstBefore(Neg, ICI);
6682 Neg->takeName(BO);
6683 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6684 }
6685 }
6686 break;
6687 case Instruction::Xor:
6688 // For the xor case, we can xor two constants together, eliminating
6689 // the explicit xor.
6690 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6691 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6692 ConstantExpr::getXor(RHS, BOC));
6693
6694 // FALLTHROUGH
6695 case Instruction::Sub:
6696 // Replace (([sub|xor] A, B) != 0) with (A != B)
6697 if (RHSV == 0)
6698 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6699 BO->getOperand(1));
6700 break;
6701
6702 case Instruction::Or:
6703 // If bits are being or'd in that are not present in the constant we
6704 // are comparing against, then the comparison could never succeed!
6705 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6706 Constant *NotCI = ConstantExpr::getNot(RHS);
6707 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6708 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6709 isICMP_NE));
6710 }
6711 break;
6712
6713 case Instruction::And:
6714 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6715 // If bits are being compared against that are and'd out, then the
6716 // comparison can never succeed!
6717 if ((RHSV & ~BOC->getValue()) != 0)
6718 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6719 isICMP_NE));
6720
6721 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6722 if (RHS == BOC && RHSV.isPowerOf2())
6723 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6724 ICmpInst::ICMP_NE, LHSI,
6725 Constant::getNullValue(RHS->getType()));
6726
6727 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006728 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006729 Value *X = BO->getOperand(0);
6730 Constant *Zero = Constant::getNullValue(X->getType());
6731 ICmpInst::Predicate pred = isICMP_NE ?
6732 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6733 return new ICmpInst(pred, X, Zero);
6734 }
6735
6736 // ((X & ~7) == 0) --> X < 8
6737 if (RHSV == 0 && isHighOnes(BOC)) {
6738 Value *X = BO->getOperand(0);
6739 Constant *NegX = ConstantExpr::getNeg(BOC);
6740 ICmpInst::Predicate pred = isICMP_NE ?
6741 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6742 return new ICmpInst(pred, X, NegX);
6743 }
6744 }
6745 default: break;
6746 }
6747 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6748 // Handle icmp {eq|ne} <intrinsic>, intcst.
6749 if (II->getIntrinsicID() == Intrinsic::bswap) {
6750 AddToWorkList(II);
6751 ICI.setOperand(0, II->getOperand(1));
6752 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6753 return &ICI;
6754 }
6755 }
6756 } else { // Not a ICMP_EQ/ICMP_NE
6757 // If the LHS is a cast from an integral value of the same size,
6758 // then since we know the RHS is a constant, try to simlify.
6759 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6760 Value *CastOp = Cast->getOperand(0);
6761 const Type *SrcTy = CastOp->getType();
6762 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6763 if (SrcTy->isInteger() &&
6764 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6765 // If this is an unsigned comparison, try to make the comparison use
6766 // smaller constant values.
6767 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6768 // X u< 128 => X s> -1
6769 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6770 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6771 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6772 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6773 // X u> 127 => X s< 0
6774 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6775 Constant::getNullValue(SrcTy));
6776 }
6777 }
6778 }
6779 }
6780 return 0;
6781}
6782
6783/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6784/// We only handle extending casts so far.
6785///
6786Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6787 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6788 Value *LHSCIOp = LHSCI->getOperand(0);
6789 const Type *SrcTy = LHSCIOp->getType();
6790 const Type *DestTy = LHSCI->getType();
6791 Value *RHSCIOp;
6792
6793 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6794 // integer type is the same size as the pointer type.
6795 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6796 getTargetData().getPointerSizeInBits() ==
6797 cast<IntegerType>(DestTy)->getBitWidth()) {
6798 Value *RHSOp = 0;
6799 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6800 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6801 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6802 RHSOp = RHSC->getOperand(0);
6803 // If the pointer types don't match, insert a bitcast.
6804 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006805 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006806 }
6807
6808 if (RHSOp)
6809 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6810 }
6811
6812 // The code below only handles extension cast instructions, so far.
6813 // Enforce this.
6814 if (LHSCI->getOpcode() != Instruction::ZExt &&
6815 LHSCI->getOpcode() != Instruction::SExt)
6816 return 0;
6817
6818 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6819 bool isSignedCmp = ICI.isSignedPredicate();
6820
6821 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6822 // Not an extension from the same type?
6823 RHSCIOp = CI->getOperand(0);
6824 if (RHSCIOp->getType() != LHSCIOp->getType())
6825 return 0;
6826
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006827 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006828 // and the other is a zext), then we can't handle this.
6829 if (CI->getOpcode() != LHSCI->getOpcode())
6830 return 0;
6831
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006832 // Deal with equality cases early.
6833 if (ICI.isEquality())
6834 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6835
6836 // A signed comparison of sign extended values simplifies into a
6837 // signed comparison.
6838 if (isSignedCmp && isSignedExt)
6839 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6840
6841 // The other three cases all fold into an unsigned comparison.
6842 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006843 }
6844
6845 // If we aren't dealing with a constant on the RHS, exit early
6846 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6847 if (!CI)
6848 return 0;
6849
6850 // Compute the constant that would happen if we truncated to SrcTy then
6851 // reextended to DestTy.
6852 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6853 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6854
6855 // If the re-extended constant didn't change...
6856 if (Res2 == CI) {
6857 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6858 // For example, we might have:
6859 // %A = sext short %X to uint
6860 // %B = icmp ugt uint %A, 1330
6861 // It is incorrect to transform this into
6862 // %B = icmp ugt short %X, 1330
6863 // because %A may have negative value.
6864 //
Chris Lattner3d816532008-07-11 04:09:09 +00006865 // However, we allow this when the compare is EQ/NE, because they are
6866 // signless.
6867 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006868 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006869 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006870 }
6871
6872 // The re-extended constant changed so the constant cannot be represented
6873 // in the shorter type. Consequently, we cannot emit a simple comparison.
6874
6875 // First, handle some easy cases. We know the result cannot be equal at this
6876 // point so handle the ICI.isEquality() cases
6877 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6878 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6879 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6880 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6881
6882 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6883 // should have been folded away previously and not enter in here.
6884 Value *Result;
6885 if (isSignedCmp) {
6886 // We're performing a signed comparison.
6887 if (cast<ConstantInt>(CI)->getValue().isNegative())
6888 Result = ConstantInt::getFalse(); // X < (small) --> false
6889 else
6890 Result = ConstantInt::getTrue(); // X < (large) --> true
6891 } else {
6892 // We're performing an unsigned comparison.
6893 if (isSignedExt) {
6894 // We're performing an unsigned comp with a sign extended value.
6895 // This is true if the input is >= 0. [aka >s -1]
6896 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6897 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6898 NegOne, ICI.getName()), ICI);
6899 } else {
6900 // Unsigned extend & unsigned compare -> always true.
6901 Result = ConstantInt::getTrue();
6902 }
6903 }
6904
6905 // Finally, return the value computed.
6906 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006907 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006908 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006909
6910 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6911 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6912 "ICmp should be folded!");
6913 if (Constant *CI = dyn_cast<Constant>(Result))
6914 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6915 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006916}
6917
6918Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6919 return commonShiftTransforms(I);
6920}
6921
6922Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6923 return commonShiftTransforms(I);
6924}
6925
6926Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006927 if (Instruction *R = commonShiftTransforms(I))
6928 return R;
6929
6930 Value *Op0 = I.getOperand(0);
6931
6932 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6933 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6934 if (CSI->isAllOnesValue())
6935 return ReplaceInstUsesWith(I, CSI);
6936
6937 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006938 if (!isa<VectorType>(I.getType()) &&
6939 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006940 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006941 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006942
6943 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006944}
6945
6946Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6947 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6948 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6949
6950 // shl X, 0 == X and shr X, 0 == X
6951 // shl 0, X == 0 and shr 0, X == 0
6952 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6953 Op0 == Constant::getNullValue(Op0->getType()))
6954 return ReplaceInstUsesWith(I, Op0);
6955
6956 if (isa<UndefValue>(Op0)) {
6957 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6958 return ReplaceInstUsesWith(I, Op0);
6959 else // undef << X -> 0, undef >>u X -> 0
6960 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6961 }
6962 if (isa<UndefValue>(Op1)) {
6963 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6964 return ReplaceInstUsesWith(I, Op0);
6965 else // X << undef, X >>u undef -> 0
6966 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6967 }
6968
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006969 // Try to fold constant and into select arguments.
6970 if (isa<Constant>(Op0))
6971 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6972 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6973 return R;
6974
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006975 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6976 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6977 return Res;
6978 return 0;
6979}
6980
6981Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6982 BinaryOperator &I) {
6983 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6984
6985 // See if we can simplify any instructions used by the instruction whose sole
6986 // purpose is to compute bits we don't care about.
6987 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6988 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6989 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6990 KnownZero, KnownOne))
6991 return &I;
6992
6993 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6994 // of a signed value.
6995 //
6996 if (Op1->uge(TypeBits)) {
6997 if (I.getOpcode() != Instruction::AShr)
6998 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6999 else {
7000 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
7001 return &I;
7002 }
7003 }
7004
7005 // ((X*C1) << C2) == (X * (C1 << C2))
7006 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
7007 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
7008 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00007009 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007010 ConstantExpr::getShl(BOOp, Op1));
7011
7012 // Try to fold constant and into select arguments.
7013 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
7014 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
7015 return R;
7016 if (isa<PHINode>(Op0))
7017 if (Instruction *NV = FoldOpIntoPhi(I))
7018 return NV;
7019
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007020 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
7021 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
7022 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
7023 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
7024 // place. Don't try to do this transformation in this case. Also, we
7025 // require that the input operand is a shift-by-constant so that we have
7026 // confidence that the shifts will get folded together. We could do this
7027 // xform in more cases, but it is unlikely to be profitable.
7028 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
7029 isa<ConstantInt>(TrOp->getOperand(1))) {
7030 // Okay, we'll do this xform. Make the shift of shift.
7031 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00007032 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007033 I.getName());
7034 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
7035
7036 // For logical shifts, the truncation has the effect of making the high
7037 // part of the register be zeros. Emulate this by inserting an AND to
7038 // clear the top bits as needed. This 'and' will usually be zapped by
7039 // other xforms later if dead.
7040 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
7041 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
7042 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
7043
7044 // The mask we constructed says what the trunc would do if occurring
7045 // between the shifts. We want to know the effect *after* the second
7046 // shift. We know that it is a logical shift by a constant, so adjust the
7047 // mask as appropriate.
7048 if (I.getOpcode() == Instruction::Shl)
7049 MaskV <<= Op1->getZExtValue();
7050 else {
7051 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
7052 MaskV = MaskV.lshr(Op1->getZExtValue());
7053 }
7054
Gabor Greifa645dd32008-05-16 19:29:10 +00007055 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007056 TI->getName());
7057 InsertNewInstBefore(And, I); // shift1 & 0x00FF
7058
7059 // Return the value truncated to the interesting size.
7060 return new TruncInst(And, I.getType());
7061 }
7062 }
7063
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007064 if (Op0->hasOneUse()) {
7065 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
7066 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7067 Value *V1, *V2;
7068 ConstantInt *CC;
7069 switch (Op0BO->getOpcode()) {
7070 default: break;
7071 case Instruction::Add:
7072 case Instruction::And:
7073 case Instruction::Or:
7074 case Instruction::Xor: {
7075 // These operators commute.
7076 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
7077 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007078 match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007079 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007080 Op0BO->getOperand(0), Op1,
7081 Op0BO->getName());
7082 InsertNewInstBefore(YS, I); // (Y << C)
7083 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007084 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007085 Op0BO->getOperand(1)->getName());
7086 InsertNewInstBefore(X, I); // (X + (Y << C))
7087 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007088 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007089 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7090 }
7091
7092 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
7093 Value *Op0BOOp1 = Op0BO->getOperand(1);
7094 if (isLeftShift && Op0BOOp1->hasOneUse() &&
7095 match(Op0BOOp1,
Chris Lattner3b874082008-11-16 05:38:51 +00007096 m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
7097 m_ConstantInt(CC))) &&
7098 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007099 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007100 Op0BO->getOperand(0), Op1,
7101 Op0BO->getName());
7102 InsertNewInstBefore(YS, I); // (Y << C)
7103 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007104 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007105 V1->getName()+".mask");
7106 InsertNewInstBefore(XM, I); // X & (CC << C)
7107
Gabor Greifa645dd32008-05-16 19:29:10 +00007108 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007109 }
7110 }
7111
7112 // FALL THROUGH.
7113 case Instruction::Sub: {
7114 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7115 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007116 match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007117 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007118 Op0BO->getOperand(1), Op1,
7119 Op0BO->getName());
7120 InsertNewInstBefore(YS, I); // (Y << C)
7121 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007122 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007123 Op0BO->getOperand(0)->getName());
7124 InsertNewInstBefore(X, I); // (X + (Y << C))
7125 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007126 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007127 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7128 }
7129
7130 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
7131 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7132 match(Op0BO->getOperand(0),
7133 m_And(m_Shr(m_Value(V1), m_Value(V2)),
7134 m_ConstantInt(CC))) && V2 == Op1 &&
7135 cast<BinaryOperator>(Op0BO->getOperand(0))
7136 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007137 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007138 Op0BO->getOperand(1), Op1,
7139 Op0BO->getName());
7140 InsertNewInstBefore(YS, I); // (Y << C)
7141 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007142 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007143 V1->getName()+".mask");
7144 InsertNewInstBefore(XM, I); // X & (CC << C)
7145
Gabor Greifa645dd32008-05-16 19:29:10 +00007146 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007147 }
7148
7149 break;
7150 }
7151 }
7152
7153
7154 // If the operand is an bitwise operator with a constant RHS, and the
7155 // shift is the only use, we can pull it out of the shift.
7156 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7157 bool isValid = true; // Valid only for And, Or, Xor
7158 bool highBitSet = false; // Transform if high bit of constant set?
7159
7160 switch (Op0BO->getOpcode()) {
7161 default: isValid = false; break; // Do not perform transform!
7162 case Instruction::Add:
7163 isValid = isLeftShift;
7164 break;
7165 case Instruction::Or:
7166 case Instruction::Xor:
7167 highBitSet = false;
7168 break;
7169 case Instruction::And:
7170 highBitSet = true;
7171 break;
7172 }
7173
7174 // If this is a signed shift right, and the high bit is modified
7175 // by the logical operation, do not perform the transformation.
7176 // The highBitSet boolean indicates the value of the high bit of
7177 // the constant which would cause it to be modified for this
7178 // operation.
7179 //
Chris Lattner15b76e32007-12-06 06:25:04 +00007180 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007181 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007182
7183 if (isValid) {
7184 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7185
7186 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007187 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007188 InsertNewInstBefore(NewShift, I);
7189 NewShift->takeName(Op0BO);
7190
Gabor Greifa645dd32008-05-16 19:29:10 +00007191 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007192 NewRHS);
7193 }
7194 }
7195 }
7196 }
7197
7198 // Find out if this is a shift of a shift by a constant.
7199 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7200 if (ShiftOp && !ShiftOp->isShift())
7201 ShiftOp = 0;
7202
7203 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
7204 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
7205 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7206 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
7207 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7208 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7209 Value *X = ShiftOp->getOperand(0);
7210
7211 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
7212 if (AmtSum > TypeBits)
7213 AmtSum = TypeBits;
7214
7215 const IntegerType *Ty = cast<IntegerType>(I.getType());
7216
7217 // Check for (X << c1) << c2 and (X >> c1) >> c2
7218 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007219 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007220 ConstantInt::get(Ty, AmtSum));
7221 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7222 I.getOpcode() == Instruction::AShr) {
7223 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00007224 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007225 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7226 I.getOpcode() == Instruction::LShr) {
7227 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7228 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007229 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007230 InsertNewInstBefore(Shift, I);
7231
7232 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007233 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007234 }
7235
7236 // Okay, if we get here, one shift must be left, and the other shift must be
7237 // right. See if the amounts are equal.
7238 if (ShiftAmt1 == ShiftAmt2) {
7239 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7240 if (I.getOpcode() == Instruction::Shl) {
7241 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007242 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007243 }
7244 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7245 if (I.getOpcode() == Instruction::LShr) {
7246 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007247 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007248 }
7249 // We can simplify ((X << C) >>s C) into a trunc + sext.
7250 // NOTE: we could do this for any C, but that would make 'unusual' integer
7251 // types. For now, just stick to ones well-supported by the code
7252 // generators.
7253 const Type *SExtType = 0;
7254 switch (Ty->getBitWidth() - ShiftAmt1) {
7255 case 1 :
7256 case 8 :
7257 case 16 :
7258 case 32 :
7259 case 64 :
7260 case 128:
7261 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7262 break;
7263 default: break;
7264 }
7265 if (SExtType) {
7266 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7267 InsertNewInstBefore(NewTrunc, I);
7268 return new SExtInst(NewTrunc, Ty);
7269 }
7270 // Otherwise, we can't handle it yet.
7271 } else if (ShiftAmt1 < ShiftAmt2) {
7272 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7273
7274 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7275 if (I.getOpcode() == Instruction::Shl) {
7276 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7277 ShiftOp->getOpcode() == Instruction::AShr);
7278 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007279 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007280 InsertNewInstBefore(Shift, I);
7281
7282 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007283 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007284 }
7285
7286 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7287 if (I.getOpcode() == Instruction::LShr) {
7288 assert(ShiftOp->getOpcode() == Instruction::Shl);
7289 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007290 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007291 InsertNewInstBefore(Shift, I);
7292
7293 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007294 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007295 }
7296
7297 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7298 } else {
7299 assert(ShiftAmt2 < ShiftAmt1);
7300 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7301
7302 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7303 if (I.getOpcode() == Instruction::Shl) {
7304 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7305 ShiftOp->getOpcode() == Instruction::AShr);
7306 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007307 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007308 ConstantInt::get(Ty, ShiftDiff));
7309 InsertNewInstBefore(Shift, I);
7310
7311 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007312 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007313 }
7314
7315 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7316 if (I.getOpcode() == Instruction::LShr) {
7317 assert(ShiftOp->getOpcode() == Instruction::Shl);
7318 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007319 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007320 InsertNewInstBefore(Shift, I);
7321
7322 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007323 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007324 }
7325
7326 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7327 }
7328 }
7329 return 0;
7330}
7331
7332
7333/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7334/// expression. If so, decompose it, returning some value X, such that Val is
7335/// X*Scale+Offset.
7336///
7337static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7338 int &Offset) {
7339 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
7340 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7341 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00007342 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007343 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00007344 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7345 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7346 if (I->getOpcode() == Instruction::Shl) {
7347 // This is a value scaled by '1 << the shift amt'.
7348 Scale = 1U << RHS->getZExtValue();
7349 Offset = 0;
7350 return I->getOperand(0);
7351 } else if (I->getOpcode() == Instruction::Mul) {
7352 // This value is scaled by 'RHS'.
7353 Scale = RHS->getZExtValue();
7354 Offset = 0;
7355 return I->getOperand(0);
7356 } else if (I->getOpcode() == Instruction::Add) {
7357 // We have X+C. Check to see if we really have (X*C2)+C1,
7358 // where C1 is divisible by C2.
7359 unsigned SubScale;
7360 Value *SubVal =
7361 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7362 Offset += RHS->getZExtValue();
7363 Scale = SubScale;
7364 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007365 }
7366 }
7367 }
7368
7369 // Otherwise, we can't look past this.
7370 Scale = 1;
7371 Offset = 0;
7372 return Val;
7373}
7374
7375
7376/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7377/// try to eliminate the cast by moving the type information into the alloc.
7378Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7379 AllocationInst &AI) {
7380 const PointerType *PTy = cast<PointerType>(CI.getType());
7381
7382 // Remove any uses of AI that are dead.
7383 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7384
7385 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7386 Instruction *User = cast<Instruction>(*UI++);
7387 if (isInstructionTriviallyDead(User)) {
7388 while (UI != E && *UI == User)
7389 ++UI; // If this instruction uses AI more than once, don't break UI.
7390
7391 ++NumDeadInst;
7392 DOUT << "IC: DCE: " << *User;
7393 EraseInstFromFunction(*User);
7394 }
7395 }
7396
7397 // Get the type really allocated and the type casted to.
7398 const Type *AllocElTy = AI.getAllocatedType();
7399 const Type *CastElTy = PTy->getElementType();
7400 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7401
7402 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7403 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7404 if (CastElTyAlign < AllocElTyAlign) return 0;
7405
7406 // If the allocation has multiple uses, only promote it if we are strictly
7407 // increasing the alignment of the resultant allocation. If we keep it the
7408 // same, we open the door to infinite loops of various kinds.
7409 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7410
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007411 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7412 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007413 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7414
7415 // See if we can satisfy the modulus by pulling a scale out of the array
7416 // size argument.
7417 unsigned ArraySizeScale;
7418 int ArrayOffset;
7419 Value *NumElements = // See if the array size is a decomposable linear expr.
7420 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7421
7422 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7423 // do the xform.
7424 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7425 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7426
7427 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7428 Value *Amt = 0;
7429 if (Scale == 1) {
7430 Amt = NumElements;
7431 } else {
7432 // If the allocation size is constant, form a constant mul expression
7433 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7434 if (isa<ConstantInt>(NumElements))
7435 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7436 // otherwise multiply the amount and the number of elements
7437 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007438 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007439 Amt = InsertNewInstBefore(Tmp, AI);
7440 }
7441 }
7442
7443 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7444 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007445 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007446 Amt = InsertNewInstBefore(Tmp, AI);
7447 }
7448
7449 AllocationInst *New;
7450 if (isa<MallocInst>(AI))
7451 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7452 else
7453 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7454 InsertNewInstBefore(New, AI);
7455 New->takeName(&AI);
7456
7457 // If the allocation has multiple uses, insert a cast and change all things
7458 // that used it to use the new cast. This will also hack on CI, but it will
7459 // die soon.
7460 if (!AI.hasOneUse()) {
7461 AddUsesToWorkList(AI);
7462 // New is the allocation instruction, pointer typed. AI is the original
7463 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7464 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7465 InsertNewInstBefore(NewCast, AI);
7466 AI.replaceAllUsesWith(NewCast);
7467 }
7468 return ReplaceInstUsesWith(CI, New);
7469}
7470
7471/// CanEvaluateInDifferentType - Return true if we can take the specified value
7472/// and return it as type Ty without inserting any new casts and without
7473/// changing the computed value. This is used by code that tries to decide
7474/// whether promoting or shrinking integer operations to wider or smaller types
7475/// will allow us to eliminate a truncate or extend.
7476///
7477/// This is a truncation operation if Ty is smaller than V->getType(), or an
7478/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007479///
7480/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7481/// should return true if trunc(V) can be computed by computing V in the smaller
7482/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7483/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7484/// efficiently truncated.
7485///
7486/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7487/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7488/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007489bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7490 unsigned CastOpc,
7491 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007492 // We can always evaluate constants in another type.
7493 if (isa<ConstantInt>(V))
7494 return true;
7495
7496 Instruction *I = dyn_cast<Instruction>(V);
7497 if (!I) return false;
7498
7499 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7500
Chris Lattneref70bb82007-08-02 06:11:14 +00007501 // If this is an extension or truncate, we can often eliminate it.
7502 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7503 // If this is a cast from the destination type, we can trivially eliminate
7504 // it, and this will remove a cast overall.
7505 if (I->getOperand(0)->getType() == Ty) {
7506 // If the first operand is itself a cast, and is eliminable, do not count
7507 // this as an eliminable cast. We would prefer to eliminate those two
7508 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007509 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007510 ++NumCastsRemoved;
7511 return true;
7512 }
7513 }
7514
7515 // We can't extend or shrink something that has multiple uses: doing so would
7516 // require duplicating the instruction in general, which isn't profitable.
7517 if (!I->hasOneUse()) return false;
7518
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007519 switch (I->getOpcode()) {
7520 case Instruction::Add:
7521 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007522 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007523 case Instruction::And:
7524 case Instruction::Or:
7525 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007526 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007527 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7528 NumCastsRemoved) &&
7529 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7530 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007531
7532 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007533 // If we are truncating the result of this SHL, and if it's a shift of a
7534 // constant amount, we can always perform a SHL in a smaller type.
7535 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7536 uint32_t BitWidth = Ty->getBitWidth();
7537 if (BitWidth < OrigTy->getBitWidth() &&
7538 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007539 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7540 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007541 }
7542 break;
7543 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007544 // If this is a truncate of a logical shr, we can truncate it to a smaller
7545 // lshr iff we know that the bits we would otherwise be shifting in are
7546 // already zeros.
7547 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7548 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7549 uint32_t BitWidth = Ty->getBitWidth();
7550 if (BitWidth < OrigBitWidth &&
7551 MaskedValueIsZero(I->getOperand(0),
7552 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7553 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007554 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7555 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007556 }
7557 }
7558 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007559 case Instruction::ZExt:
7560 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007561 case Instruction::Trunc:
7562 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007563 // can safely replace it. Note that replacing it does not reduce the number
7564 // of casts in the input.
7565 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007566 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007567 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007568 case Instruction::Select: {
7569 SelectInst *SI = cast<SelectInst>(I);
7570 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7571 NumCastsRemoved) &&
7572 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7573 NumCastsRemoved);
7574 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007575 case Instruction::PHI: {
7576 // We can change a phi if we can change all operands.
7577 PHINode *PN = cast<PHINode>(I);
7578 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7579 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7580 NumCastsRemoved))
7581 return false;
7582 return true;
7583 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007584 default:
7585 // TODO: Can handle more cases here.
7586 break;
7587 }
7588
7589 return false;
7590}
7591
7592/// EvaluateInDifferentType - Given an expression that
7593/// CanEvaluateInDifferentType returns true for, actually insert the code to
7594/// evaluate the expression.
7595Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7596 bool isSigned) {
7597 if (Constant *C = dyn_cast<Constant>(V))
7598 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7599
7600 // Otherwise, it must be an instruction.
7601 Instruction *I = cast<Instruction>(V);
7602 Instruction *Res = 0;
7603 switch (I->getOpcode()) {
7604 case Instruction::Add:
7605 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007606 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007607 case Instruction::And:
7608 case Instruction::Or:
7609 case Instruction::Xor:
7610 case Instruction::AShr:
7611 case Instruction::LShr:
7612 case Instruction::Shl: {
7613 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7614 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007615 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007616 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007617 break;
7618 }
7619 case Instruction::Trunc:
7620 case Instruction::ZExt:
7621 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007622 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007623 // just return the source. There's no need to insert it because it is not
7624 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007625 if (I->getOperand(0)->getType() == Ty)
7626 return I->getOperand(0);
7627
Chris Lattner4200c2062008-06-18 04:00:49 +00007628 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007629 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007630 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007631 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007632 case Instruction::Select: {
7633 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7634 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7635 Res = SelectInst::Create(I->getOperand(0), True, False);
7636 break;
7637 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007638 case Instruction::PHI: {
7639 PHINode *OPN = cast<PHINode>(I);
7640 PHINode *NPN = PHINode::Create(Ty);
7641 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7642 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7643 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7644 }
7645 Res = NPN;
7646 break;
7647 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007648 default:
7649 // TODO: Can handle more cases here.
7650 assert(0 && "Unreachable!");
7651 break;
7652 }
7653
Chris Lattner4200c2062008-06-18 04:00:49 +00007654 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007655 return InsertNewInstBefore(Res, *I);
7656}
7657
7658/// @brief Implement the transforms common to all CastInst visitors.
7659Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7660 Value *Src = CI.getOperand(0);
7661
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007662 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7663 // eliminate it now.
7664 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7665 if (Instruction::CastOps opc =
7666 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7667 // The first cast (CSrc) is eliminable so we need to fix up or replace
7668 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007669 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007670 }
7671 }
7672
7673 // If we are casting a select then fold the cast into the select
7674 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7675 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7676 return NV;
7677
7678 // If we are casting a PHI then fold the cast into the PHI
7679 if (isa<PHINode>(Src))
7680 if (Instruction *NV = FoldOpIntoPhi(CI))
7681 return NV;
7682
7683 return 0;
7684}
7685
7686/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7687Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7688 Value *Src = CI.getOperand(0);
7689
7690 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7691 // If casting the result of a getelementptr instruction with no offset, turn
7692 // this into a cast of the original pointer!
7693 if (GEP->hasAllZeroIndices()) {
7694 // Changing the cast operand is usually not a good idea but it is safe
7695 // here because the pointer operand is being replaced with another
7696 // pointer operand so the opcode doesn't need to change.
7697 AddToWorkList(GEP);
7698 CI.setOperand(0, GEP->getOperand(0));
7699 return &CI;
7700 }
7701
7702 // If the GEP has a single use, and the base pointer is a bitcast, and the
7703 // GEP computes a constant offset, see if we can convert these three
7704 // instructions into fewer. This typically happens with unions and other
7705 // non-type-safe code.
7706 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7707 if (GEP->hasAllConstantIndices()) {
7708 // We are guaranteed to get a constant from EmitGEPOffset.
7709 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7710 int64_t Offset = OffsetV->getSExtValue();
7711
7712 // Get the base pointer input of the bitcast, and the type it points to.
7713 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7714 const Type *GEPIdxTy =
7715 cast<PointerType>(OrigBase->getType())->getElementType();
7716 if (GEPIdxTy->isSized()) {
7717 SmallVector<Value*, 8> NewIndices;
7718
7719 // Start with the index over the outer type. Note that the type size
7720 // might be zero (even if the offset isn't zero) if the indexed type
7721 // is something like [0 x {int, int}]
7722 const Type *IntPtrTy = TD->getIntPtrType();
7723 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007724 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007725 FirstIdx = Offset/TySize;
7726 Offset %= TySize;
7727
7728 // Handle silly modulus not returning values values [0..TySize).
7729 if (Offset < 0) {
7730 --FirstIdx;
7731 Offset += TySize;
7732 assert(Offset >= 0);
7733 }
7734 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7735 }
7736
7737 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7738
7739 // Index into the types. If we fail, set OrigBase to null.
7740 while (Offset) {
7741 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7742 const StructLayout *SL = TD->getStructLayout(STy);
7743 if (Offset < (int64_t)SL->getSizeInBytes()) {
7744 unsigned Elt = SL->getElementContainingOffset(Offset);
7745 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7746
7747 Offset -= SL->getElementOffset(Elt);
7748 GEPIdxTy = STy->getElementType(Elt);
7749 } else {
7750 // Otherwise, we can't index into this, bail out.
7751 Offset = 0;
7752 OrigBase = 0;
7753 }
7754 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7755 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007756 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007757 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7758 Offset %= EltSize;
7759 } else {
7760 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7761 }
7762 GEPIdxTy = STy->getElementType();
7763 } else {
7764 // Otherwise, we can't index into this, bail out.
7765 Offset = 0;
7766 OrigBase = 0;
7767 }
7768 }
7769 if (OrigBase) {
7770 // If we were able to index down into an element, create the GEP
7771 // and bitcast the result. This eliminates one bitcast, potentially
7772 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007773 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7774 NewIndices.begin(),
7775 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007776 InsertNewInstBefore(NGEP, CI);
7777 NGEP->takeName(GEP);
7778
7779 if (isa<BitCastInst>(CI))
7780 return new BitCastInst(NGEP, CI.getType());
7781 assert(isa<PtrToIntInst>(CI));
7782 return new PtrToIntInst(NGEP, CI.getType());
7783 }
7784 }
7785 }
7786 }
7787 }
7788
7789 return commonCastTransforms(CI);
7790}
7791
7792
7793
7794/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7795/// integer types. This function implements the common transforms for all those
7796/// cases.
7797/// @brief Implement the transforms common to CastInst with integer operands
7798Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7799 if (Instruction *Result = commonCastTransforms(CI))
7800 return Result;
7801
7802 Value *Src = CI.getOperand(0);
7803 const Type *SrcTy = Src->getType();
7804 const Type *DestTy = CI.getType();
7805 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7806 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7807
7808 // See if we can simplify any instructions used by the LHS whose sole
7809 // purpose is to compute bits we don't care about.
7810 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7811 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7812 KnownZero, KnownOne))
7813 return &CI;
7814
7815 // If the source isn't an instruction or has more than one use then we
7816 // can't do anything more.
7817 Instruction *SrcI = dyn_cast<Instruction>(Src);
7818 if (!SrcI || !Src->hasOneUse())
7819 return 0;
7820
7821 // Attempt to propagate the cast into the instruction for int->int casts.
7822 int NumCastsRemoved = 0;
7823 if (!isa<BitCastInst>(CI) &&
7824 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007825 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007826 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007827 // eliminates the cast, so it is always a win. If this is a zero-extension,
7828 // we need to do an AND to maintain the clear top-part of the computation,
7829 // so we require that the input have eliminated at least one cast. If this
7830 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007831 // require that two casts have been eliminated.
7832 bool DoXForm;
7833 switch (CI.getOpcode()) {
7834 default:
7835 // All the others use floating point so we shouldn't actually
7836 // get here because of the check above.
7837 assert(0 && "Unknown cast type");
7838 case Instruction::Trunc:
7839 DoXForm = true;
7840 break;
7841 case Instruction::ZExt:
7842 DoXForm = NumCastsRemoved >= 1;
7843 break;
7844 case Instruction::SExt:
7845 DoXForm = NumCastsRemoved >= 2;
7846 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007847 }
7848
7849 if (DoXForm) {
7850 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7851 CI.getOpcode() == Instruction::SExt);
7852 assert(Res->getType() == DestTy);
7853 switch (CI.getOpcode()) {
7854 default: assert(0 && "Unknown cast type!");
7855 case Instruction::Trunc:
7856 case Instruction::BitCast:
7857 // Just replace this cast with the result.
7858 return ReplaceInstUsesWith(CI, Res);
7859 case Instruction::ZExt: {
7860 // We need to emit an AND to clear the high bits.
7861 assert(SrcBitSize < DestBitSize && "Not a zext?");
7862 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7863 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007864 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007865 }
7866 case Instruction::SExt:
7867 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007868 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007869 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7870 CI), DestTy);
7871 }
7872 }
7873 }
7874
7875 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7876 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7877
7878 switch (SrcI->getOpcode()) {
7879 case Instruction::Add:
7880 case Instruction::Mul:
7881 case Instruction::And:
7882 case Instruction::Or:
7883 case Instruction::Xor:
7884 // If we are discarding information, rewrite.
7885 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7886 // Don't insert two casts if they cannot be eliminated. We allow
7887 // two casts to be inserted if the sizes are the same. This could
7888 // only be converting signedness, which is a noop.
7889 if (DestBitSize == SrcBitSize ||
7890 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7891 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7892 Instruction::CastOps opcode = CI.getOpcode();
Eli Friedman722b4792008-11-30 21:09:11 +00007893 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7894 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007895 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007896 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7897 }
7898 }
7899
7900 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7901 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7902 SrcI->getOpcode() == Instruction::Xor &&
7903 Op1 == ConstantInt::getTrue() &&
7904 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
Eli Friedman722b4792008-11-30 21:09:11 +00007905 Value *New = InsertCastBefore(Instruction::ZExt, Op0, DestTy, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007906 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007907 }
7908 break;
7909 case Instruction::SDiv:
7910 case Instruction::UDiv:
7911 case Instruction::SRem:
7912 case Instruction::URem:
7913 // If we are just changing the sign, rewrite.
7914 if (DestBitSize == SrcBitSize) {
7915 // Don't insert two casts if they cannot be eliminated. We allow
7916 // two casts to be inserted if the sizes are the same. This could
7917 // only be converting signedness, which is a noop.
7918 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7919 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Eli Friedman722b4792008-11-30 21:09:11 +00007920 Value *Op0c = InsertCastBefore(Instruction::BitCast,
7921 Op0, DestTy, *SrcI);
7922 Value *Op1c = InsertCastBefore(Instruction::BitCast,
7923 Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007924 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007925 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7926 }
7927 }
7928 break;
7929
7930 case Instruction::Shl:
7931 // Allow changing the sign of the source operand. Do not allow
7932 // changing the size of the shift, UNLESS the shift amount is a
7933 // constant. We must not change variable sized shifts to a smaller
7934 // size, because it is undefined to shift more bits out than exist
7935 // in the value.
7936 if (DestBitSize == SrcBitSize ||
7937 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7938 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7939 Instruction::BitCast : Instruction::Trunc);
Eli Friedman722b4792008-11-30 21:09:11 +00007940 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7941 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007942 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007943 }
7944 break;
7945 case Instruction::AShr:
7946 // If this is a signed shr, and if all bits shifted in are about to be
7947 // truncated off, turn it into an unsigned shr to allow greater
7948 // simplifications.
7949 if (DestBitSize < SrcBitSize &&
7950 isa<ConstantInt>(Op1)) {
7951 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7952 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7953 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007954 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007955 }
7956 }
7957 break;
7958 }
7959 return 0;
7960}
7961
7962Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7963 if (Instruction *Result = commonIntCastTransforms(CI))
7964 return Result;
7965
7966 Value *Src = CI.getOperand(0);
7967 const Type *Ty = CI.getType();
7968 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7969 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7970
7971 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7972 switch (SrcI->getOpcode()) {
7973 default: break;
7974 case Instruction::LShr:
7975 // We can shrink lshr to something smaller if we know the bits shifted in
7976 // are already zeros.
7977 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7978 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7979
7980 // Get a mask for the bits shifting in.
7981 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7982 Value* SrcIOp0 = SrcI->getOperand(0);
7983 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7984 if (ShAmt >= DestBitWidth) // All zeros.
7985 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7986
7987 // Okay, we can shrink this. Truncate the input, then return a new
7988 // shift.
7989 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7990 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7991 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007992 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007993 }
7994 } else { // This is a variable shr.
7995
7996 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7997 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7998 // loop-invariant and CSE'd.
7999 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
8000 Value *One = ConstantInt::get(SrcI->getType(), 1);
8001
8002 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008003 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008004 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008005 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008006 SrcI->getOperand(0),
8007 "tmp"), CI);
8008 Value *Zero = Constant::getNullValue(V->getType());
8009 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
8010 }
8011 }
8012 break;
8013 }
8014 }
8015
8016 return 0;
8017}
8018
Evan Chenge3779cf2008-03-24 00:21:34 +00008019/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
8020/// in order to eliminate the icmp.
8021Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
8022 bool DoXform) {
8023 // If we are just checking for a icmp eq of a single bit and zext'ing it
8024 // to an integer, then shift the bit to the appropriate place and then
8025 // cast to integer to avoid the comparison.
8026 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
8027 const APInt &Op1CV = Op1C->getValue();
8028
8029 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
8030 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
8031 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
8032 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
8033 if (!DoXform) return ICI;
8034
8035 Value *In = ICI->getOperand(0);
8036 Value *Sh = ConstantInt::get(In->getType(),
8037 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008038 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00008039 In->getName()+".lobit"),
8040 CI);
8041 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00008042 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00008043 false/*ZExt*/, "tmp", &CI);
8044
8045 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
8046 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008047 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00008048 In->getName()+".not"),
8049 CI);
8050 }
8051
8052 return ReplaceInstUsesWith(CI, In);
8053 }
8054
8055
8056
8057 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
8058 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8059 // zext (X == 1) to i32 --> X iff X has only the low bit set.
8060 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
8061 // zext (X != 0) to i32 --> X iff X has only the low bit set.
8062 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
8063 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
8064 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8065 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
8066 // This only works for EQ and NE
8067 ICI->isEquality()) {
8068 // If Op1C some other power of two, convert:
8069 uint32_t BitWidth = Op1C->getType()->getBitWidth();
8070 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8071 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
8072 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
8073
8074 APInt KnownZeroMask(~KnownZero);
8075 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
8076 if (!DoXform) return ICI;
8077
8078 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
8079 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
8080 // (X&4) == 2 --> false
8081 // (X&4) != 2 --> true
8082 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
8083 Res = ConstantExpr::getZExt(Res, CI.getType());
8084 return ReplaceInstUsesWith(CI, Res);
8085 }
8086
8087 uint32_t ShiftAmt = KnownZeroMask.logBase2();
8088 Value *In = ICI->getOperand(0);
8089 if (ShiftAmt) {
8090 // Perform a logical shr by shiftamt.
8091 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00008092 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00008093 ConstantInt::get(In->getType(), ShiftAmt),
8094 In->getName()+".lobit"), CI);
8095 }
8096
8097 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
8098 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008099 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00008100 InsertNewInstBefore(cast<Instruction>(In), CI);
8101 }
8102
8103 if (CI.getType() == In->getType())
8104 return ReplaceInstUsesWith(CI, In);
8105 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008106 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00008107 }
8108 }
8109 }
8110
8111 return 0;
8112}
8113
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008114Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
8115 // If one of the common conversion will work ..
8116 if (Instruction *Result = commonIntCastTransforms(CI))
8117 return Result;
8118
8119 Value *Src = CI.getOperand(0);
8120
8121 // If this is a cast of a cast
8122 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
8123 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8124 // types and if the sizes are just right we can convert this into a logical
8125 // 'and' which will be much cheaper than the pair of casts.
8126 if (isa<TruncInst>(CSrc)) {
8127 // Get the sizes of the types involved
8128 Value *A = CSrc->getOperand(0);
8129 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
8130 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
8131 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
8132 // If we're actually extending zero bits and the trunc is a no-op
8133 if (MidSize < DstSize && SrcSize == DstSize) {
8134 // Replace both of the casts with an And of the type mask.
8135 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
8136 Constant *AndConst = ConstantInt::get(AndValue);
8137 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00008138 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008139 // Unfortunately, if the type changed, we need to cast it back.
8140 if (And->getType() != CI.getType()) {
8141 And->setName(CSrc->getName()+".mask");
8142 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008143 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008144 }
8145 return And;
8146 }
8147 }
8148 }
8149
Evan Chenge3779cf2008-03-24 00:21:34 +00008150 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8151 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008152
Evan Chenge3779cf2008-03-24 00:21:34 +00008153 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8154 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8155 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8156 // of the (zext icmp) will be transformed.
8157 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8158 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8159 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8160 (transformZExtICmp(LHS, CI, false) ||
8161 transformZExtICmp(RHS, CI, false))) {
8162 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
8163 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008164 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008165 }
Evan Chenge3779cf2008-03-24 00:21:34 +00008166 }
8167
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008168 return 0;
8169}
8170
8171Instruction *InstCombiner::visitSExt(SExtInst &CI) {
8172 if (Instruction *I = commonIntCastTransforms(CI))
8173 return I;
8174
8175 Value *Src = CI.getOperand(0);
8176
Dan Gohman35b76162008-10-30 20:40:10 +00008177 // Canonicalize sign-extend from i1 to a select.
8178 if (Src->getType() == Type::Int1Ty)
8179 return SelectInst::Create(Src,
8180 ConstantInt::getAllOnesValue(CI.getType()),
8181 Constant::getNullValue(CI.getType()));
Dan Gohmanf0f12022008-05-20 21:01:12 +00008182
8183 // See if the value being truncated is already sign extended. If so, just
8184 // eliminate the trunc/sext pair.
8185 if (getOpcode(Src) == Instruction::Trunc) {
8186 Value *Op = cast<User>(Src)->getOperand(0);
8187 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8188 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8189 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8190 unsigned NumSignBits = ComputeNumSignBits(Op);
8191
8192 if (OpBits == DestBits) {
8193 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8194 // bits, it is already ready.
8195 if (NumSignBits > DestBits-MidBits)
8196 return ReplaceInstUsesWith(CI, Op);
8197 } else if (OpBits < DestBits) {
8198 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8199 // bits, just sext from i32.
8200 if (NumSignBits > OpBits-MidBits)
8201 return new SExtInst(Op, CI.getType(), "tmp");
8202 } else {
8203 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8204 // bits, just truncate to i32.
8205 if (NumSignBits > OpBits-MidBits)
8206 return new TruncInst(Op, CI.getType(), "tmp");
8207 }
8208 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00008209
8210 // If the input is a shl/ashr pair of a same constant, then this is a sign
8211 // extension from a smaller value. If we could trust arbitrary bitwidth
8212 // integers, we could turn this into a truncate to the smaller bit and then
8213 // use a sext for the whole extension. Since we don't, look deeper and check
8214 // for a truncate. If the source and dest are the same type, eliminate the
8215 // trunc and extend and just do shifts. For example, turn:
8216 // %a = trunc i32 %i to i8
8217 // %b = shl i8 %a, 6
8218 // %c = ashr i8 %b, 6
8219 // %d = sext i8 %c to i32
8220 // into:
8221 // %a = shl i32 %i, 30
8222 // %d = ashr i32 %a, 30
8223 Value *A = 0;
8224 ConstantInt *BA = 0, *CA = 0;
8225 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8226 m_ConstantInt(CA))) &&
8227 BA == CA && isa<TruncInst>(A)) {
8228 Value *I = cast<TruncInst>(A)->getOperand(0);
8229 if (I->getType() == CI.getType()) {
8230 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8231 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8232 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8233 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8234 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8235 CI.getName()), CI);
8236 return BinaryOperator::CreateAShr(I, ShAmtV);
8237 }
8238 }
8239
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008240 return 0;
8241}
8242
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008243/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8244/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008245static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen6e547b42008-10-09 23:00:39 +00008246 bool losesInfo;
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008247 APFloat F = CFP->getValueAPF();
Dale Johannesen6e547b42008-10-09 23:00:39 +00008248 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8249 if (!losesInfo)
Chris Lattner5e0610f2008-04-20 00:41:09 +00008250 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008251 return 0;
8252}
8253
8254/// LookThroughFPExtensions - If this is an fp extension instruction, look
8255/// through it until we get the source value.
8256static Value *LookThroughFPExtensions(Value *V) {
8257 if (Instruction *I = dyn_cast<Instruction>(V))
8258 if (I->getOpcode() == Instruction::FPExt)
8259 return LookThroughFPExtensions(I->getOperand(0));
8260
8261 // If this value is a constant, return the constant in the smallest FP type
8262 // that can accurately represent it. This allows us to turn
8263 // (float)((double)X+2.0) into x+2.0f.
8264 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8265 if (CFP->getType() == Type::PPC_FP128Ty)
8266 return V; // No constant folding of this.
8267 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008268 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008269 return V;
8270 if (CFP->getType() == Type::DoubleTy)
8271 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008272 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008273 return V;
8274 // Don't try to shrink to various long double types.
8275 }
8276
8277 return V;
8278}
8279
8280Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8281 if (Instruction *I = commonCastTransforms(CI))
8282 return I;
8283
8284 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8285 // smaller than the destination type, we can eliminate the truncate by doing
8286 // the add as the smaller type. This applies to add/sub/mul/div as well as
8287 // many builtins (sqrt, etc).
8288 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8289 if (OpI && OpI->hasOneUse()) {
8290 switch (OpI->getOpcode()) {
8291 default: break;
8292 case Instruction::Add:
8293 case Instruction::Sub:
8294 case Instruction::Mul:
8295 case Instruction::FDiv:
8296 case Instruction::FRem:
8297 const Type *SrcTy = OpI->getType();
8298 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8299 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8300 if (LHSTrunc->getType() != SrcTy &&
8301 RHSTrunc->getType() != SrcTy) {
8302 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8303 // If the source types were both smaller than the destination type of
8304 // the cast, do this xform.
8305 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8306 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8307 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8308 CI.getType(), CI);
8309 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8310 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008311 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008312 }
8313 }
8314 break;
8315 }
8316 }
8317 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008318}
8319
8320Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8321 return commonCastTransforms(CI);
8322}
8323
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008324Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008325 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8326 if (OpI == 0)
8327 return commonCastTransforms(FI);
8328
8329 // fptoui(uitofp(X)) --> X
8330 // fptoui(sitofp(X)) --> X
8331 // This is safe if the intermediate type has enough bits in its mantissa to
8332 // accurately represent all values of X. For example, do not do this with
8333 // i64->float->i64. This is also safe for sitofp case, because any negative
8334 // 'X' value would cause an undefined result for the fptoui.
8335 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8336 OpI->getOperand(0)->getType() == FI.getType() &&
8337 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8338 OpI->getType()->getFPMantissaWidth())
8339 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008340
8341 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008342}
8343
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008344Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008345 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8346 if (OpI == 0)
8347 return commonCastTransforms(FI);
8348
8349 // fptosi(sitofp(X)) --> X
8350 // fptosi(uitofp(X)) --> X
8351 // This is safe if the intermediate type has enough bits in its mantissa to
8352 // accurately represent all values of X. For example, do not do this with
8353 // i64->float->i64. This is also safe for sitofp case, because any negative
8354 // 'X' value would cause an undefined result for the fptoui.
8355 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8356 OpI->getOperand(0)->getType() == FI.getType() &&
8357 (int)FI.getType()->getPrimitiveSizeInBits() <=
8358 OpI->getType()->getFPMantissaWidth())
8359 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008360
8361 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008362}
8363
8364Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8365 return commonCastTransforms(CI);
8366}
8367
8368Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8369 return commonCastTransforms(CI);
8370}
8371
8372Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
8373 return commonPointerCastTransforms(CI);
8374}
8375
Chris Lattner7c1626482008-01-08 07:23:51 +00008376Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8377 if (Instruction *I = commonCastTransforms(CI))
8378 return I;
8379
8380 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8381 if (!DestPointee->isSized()) return 0;
8382
8383 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8384 ConstantInt *Cst;
8385 Value *X;
8386 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8387 m_ConstantInt(Cst)))) {
8388 // If the source and destination operands have the same type, see if this
8389 // is a single-index GEP.
8390 if (X->getType() == CI.getType()) {
8391 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00008392 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008393
8394 // Convert the constant to intptr type.
8395 APInt Offset = Cst->getValue();
8396 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8397
8398 // If Offset is evenly divisible by Size, we can do this xform.
8399 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8400 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00008401 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00008402 }
8403 }
8404 // TODO: Could handle other cases, e.g. where add is indexing into field of
8405 // struct etc.
8406 } else if (CI.getOperand(0)->hasOneUse() &&
8407 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8408 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8409 // "inttoptr+GEP" instead of "add+intptr".
8410
8411 // Get the size of the pointee type.
8412 uint64_t Size = TD->getABITypeSize(DestPointee);
8413
8414 // Convert the constant to intptr type.
8415 APInt Offset = Cst->getValue();
8416 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8417
8418 // If Offset is evenly divisible by Size, we can do this xform.
8419 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8420 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8421
8422 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8423 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008424 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00008425 }
8426 }
8427 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008428}
8429
8430Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8431 // If the operands are integer typed then apply the integer transforms,
8432 // otherwise just apply the common ones.
8433 Value *Src = CI.getOperand(0);
8434 const Type *SrcTy = Src->getType();
8435 const Type *DestTy = CI.getType();
8436
8437 if (SrcTy->isInteger() && DestTy->isInteger()) {
8438 if (Instruction *Result = commonIntCastTransforms(CI))
8439 return Result;
8440 } else if (isa<PointerType>(SrcTy)) {
8441 if (Instruction *I = commonPointerCastTransforms(CI))
8442 return I;
8443 } else {
8444 if (Instruction *Result = commonCastTransforms(CI))
8445 return Result;
8446 }
8447
8448
8449 // Get rid of casts from one type to the same type. These are useless and can
8450 // be replaced by the operand.
8451 if (DestTy == Src->getType())
8452 return ReplaceInstUsesWith(CI, Src);
8453
8454 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8455 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8456 const Type *DstElTy = DstPTy->getElementType();
8457 const Type *SrcElTy = SrcPTy->getElementType();
8458
Nate Begemandf5b3612008-03-31 00:22:16 +00008459 // If the address spaces don't match, don't eliminate the bitcast, which is
8460 // required for changing types.
8461 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8462 return 0;
8463
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008464 // If we are casting a malloc or alloca to a pointer to a type of the same
8465 // size, rewrite the allocation instruction to allocate the "right" type.
8466 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8467 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8468 return V;
8469
8470 // If the source and destination are pointers, and this cast is equivalent
8471 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8472 // This can enhance SROA and other transforms that want type-safe pointers.
8473 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8474 unsigned NumZeros = 0;
8475 while (SrcElTy != DstElTy &&
8476 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8477 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8478 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8479 ++NumZeros;
8480 }
8481
8482 // If we found a path from the src to dest, create the getelementptr now.
8483 if (SrcElTy == DstElTy) {
8484 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008485 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8486 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008487 }
8488 }
8489
8490 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8491 if (SVI->hasOneUse()) {
8492 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8493 // a bitconvert to a vector with the same # elts.
8494 if (isa<VectorType>(DestTy) &&
Mon P Wangbff5d9c2008-11-10 04:46:22 +00008495 cast<VectorType>(DestTy)->getNumElements() ==
8496 SVI->getType()->getNumElements() &&
8497 SVI->getType()->getNumElements() ==
8498 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008499 CastInst *Tmp;
8500 // If either of the operands is a cast from CI.getType(), then
8501 // evaluating the shuffle in the casted destination's type will allow
8502 // us to eliminate at least one cast.
8503 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8504 Tmp->getOperand(0)->getType() == DestTy) ||
8505 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8506 Tmp->getOperand(0)->getType() == DestTy)) {
Eli Friedman722b4792008-11-30 21:09:11 +00008507 Value *LHS = InsertCastBefore(Instruction::BitCast,
8508 SVI->getOperand(0), DestTy, CI);
8509 Value *RHS = InsertCastBefore(Instruction::BitCast,
8510 SVI->getOperand(1), DestTy, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008511 // Return a new shuffle vector. Use the same element ID's, as we
8512 // know the vector types match #elts.
8513 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8514 }
8515 }
8516 }
8517 }
8518 return 0;
8519}
8520
8521/// GetSelectFoldableOperands - We want to turn code that looks like this:
8522/// %C = or %A, %B
8523/// %D = select %cond, %C, %A
8524/// into:
8525/// %C = select %cond, %B, 0
8526/// %D = or %A, %C
8527///
8528/// Assuming that the specified instruction is an operand to the select, return
8529/// a bitmask indicating which operands of this instruction are foldable if they
8530/// equal the other incoming value of the select.
8531///
8532static unsigned GetSelectFoldableOperands(Instruction *I) {
8533 switch (I->getOpcode()) {
8534 case Instruction::Add:
8535 case Instruction::Mul:
8536 case Instruction::And:
8537 case Instruction::Or:
8538 case Instruction::Xor:
8539 return 3; // Can fold through either operand.
8540 case Instruction::Sub: // Can only fold on the amount subtracted.
8541 case Instruction::Shl: // Can only fold on the shift amount.
8542 case Instruction::LShr:
8543 case Instruction::AShr:
8544 return 1;
8545 default:
8546 return 0; // Cannot fold
8547 }
8548}
8549
8550/// GetSelectFoldableConstant - For the same transformation as the previous
8551/// function, return the identity constant that goes into the select.
8552static Constant *GetSelectFoldableConstant(Instruction *I) {
8553 switch (I->getOpcode()) {
8554 default: assert(0 && "This cannot happen!"); abort();
8555 case Instruction::Add:
8556 case Instruction::Sub:
8557 case Instruction::Or:
8558 case Instruction::Xor:
8559 case Instruction::Shl:
8560 case Instruction::LShr:
8561 case Instruction::AShr:
8562 return Constant::getNullValue(I->getType());
8563 case Instruction::And:
8564 return Constant::getAllOnesValue(I->getType());
8565 case Instruction::Mul:
8566 return ConstantInt::get(I->getType(), 1);
8567 }
8568}
8569
8570/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8571/// have the same opcode and only one use each. Try to simplify this.
8572Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8573 Instruction *FI) {
8574 if (TI->getNumOperands() == 1) {
8575 // If this is a non-volatile load or a cast from the same type,
8576 // merge.
8577 if (TI->isCast()) {
8578 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8579 return 0;
8580 } else {
8581 return 0; // unknown unary op.
8582 }
8583
8584 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008585 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8586 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008587 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008588 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008589 TI->getType());
8590 }
8591
8592 // Only handle binary operators here.
8593 if (!isa<BinaryOperator>(TI))
8594 return 0;
8595
8596 // Figure out if the operations have any operands in common.
8597 Value *MatchOp, *OtherOpT, *OtherOpF;
8598 bool MatchIsOpZero;
8599 if (TI->getOperand(0) == FI->getOperand(0)) {
8600 MatchOp = TI->getOperand(0);
8601 OtherOpT = TI->getOperand(1);
8602 OtherOpF = FI->getOperand(1);
8603 MatchIsOpZero = true;
8604 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8605 MatchOp = TI->getOperand(1);
8606 OtherOpT = TI->getOperand(0);
8607 OtherOpF = FI->getOperand(0);
8608 MatchIsOpZero = false;
8609 } else if (!TI->isCommutative()) {
8610 return 0;
8611 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8612 MatchOp = TI->getOperand(0);
8613 OtherOpT = TI->getOperand(1);
8614 OtherOpF = FI->getOperand(0);
8615 MatchIsOpZero = true;
8616 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8617 MatchOp = TI->getOperand(1);
8618 OtherOpT = TI->getOperand(0);
8619 OtherOpF = FI->getOperand(1);
8620 MatchIsOpZero = true;
8621 } else {
8622 return 0;
8623 }
8624
8625 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008626 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8627 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008628 InsertNewInstBefore(NewSI, SI);
8629
8630 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8631 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008632 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008633 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008634 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008635 }
8636 assert(0 && "Shouldn't get here");
8637 return 0;
8638}
8639
Dan Gohman58c09632008-09-16 18:46:06 +00008640/// visitSelectInstWithICmp - Visit a SelectInst that has an
8641/// ICmpInst as its first operand.
8642///
8643Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8644 ICmpInst *ICI) {
8645 bool Changed = false;
8646 ICmpInst::Predicate Pred = ICI->getPredicate();
8647 Value *CmpLHS = ICI->getOperand(0);
8648 Value *CmpRHS = ICI->getOperand(1);
8649 Value *TrueVal = SI.getTrueValue();
8650 Value *FalseVal = SI.getFalseValue();
8651
8652 // Check cases where the comparison is with a constant that
8653 // can be adjusted to fit the min/max idiom. We may edit ICI in
8654 // place here, so make sure the select is the only user.
8655 if (ICI->hasOneUse())
Dan Gohman35b76162008-10-30 20:40:10 +00008656 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman58c09632008-09-16 18:46:06 +00008657 switch (Pred) {
8658 default: break;
8659 case ICmpInst::ICMP_ULT:
8660 case ICmpInst::ICMP_SLT: {
8661 // X < MIN ? T : F --> F
8662 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8663 return ReplaceInstUsesWith(SI, FalseVal);
8664 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8665 Constant *AdjustedRHS = SubOne(CI);
8666 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8667 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8668 Pred = ICmpInst::getSwappedPredicate(Pred);
8669 CmpRHS = AdjustedRHS;
8670 std::swap(FalseVal, TrueVal);
8671 ICI->setPredicate(Pred);
8672 ICI->setOperand(1, CmpRHS);
8673 SI.setOperand(1, TrueVal);
8674 SI.setOperand(2, FalseVal);
8675 Changed = true;
8676 }
8677 break;
8678 }
8679 case ICmpInst::ICMP_UGT:
8680 case ICmpInst::ICMP_SGT: {
8681 // X > MAX ? T : F --> F
8682 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8683 return ReplaceInstUsesWith(SI, FalseVal);
8684 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8685 Constant *AdjustedRHS = AddOne(CI);
8686 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8687 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8688 Pred = ICmpInst::getSwappedPredicate(Pred);
8689 CmpRHS = AdjustedRHS;
8690 std::swap(FalseVal, TrueVal);
8691 ICI->setPredicate(Pred);
8692 ICI->setOperand(1, CmpRHS);
8693 SI.setOperand(1, TrueVal);
8694 SI.setOperand(2, FalseVal);
8695 Changed = true;
8696 }
8697 break;
8698 }
8699 }
8700
Dan Gohman35b76162008-10-30 20:40:10 +00008701 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8702 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
Chris Lattner3b874082008-11-16 05:38:51 +00008703 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
8704 if (match(TrueVal, m_ConstantInt(-1)) &&
8705 match(FalseVal, m_ConstantInt(0)))
8706 Pred = ICI->getPredicate();
8707 else if (match(TrueVal, m_ConstantInt(0)) &&
8708 match(FalseVal, m_ConstantInt(-1)))
8709 Pred = CmpInst::getInversePredicate(ICI->getPredicate());
8710
Dan Gohman35b76162008-10-30 20:40:10 +00008711 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8712 // If we are just checking for a icmp eq of a single bit and zext'ing it
8713 // to an integer, then shift the bit to the appropriate place and then
8714 // cast to integer to avoid the comparison.
8715 const APInt &Op1CV = CI->getValue();
8716
8717 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8718 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8719 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
Chris Lattner3b874082008-11-16 05:38:51 +00008720 (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
Dan Gohman35b76162008-10-30 20:40:10 +00008721 Value *In = ICI->getOperand(0);
8722 Value *Sh = ConstantInt::get(In->getType(),
8723 In->getType()->getPrimitiveSizeInBits()-1);
8724 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8725 In->getName()+".lobit"),
8726 *ICI);
Dan Gohman47a60772008-11-02 00:17:33 +00008727 if (In->getType() != SI.getType())
8728 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman35b76162008-10-30 20:40:10 +00008729 true/*SExt*/, "tmp", ICI);
8730
8731 if (Pred == ICmpInst::ICMP_SGT)
8732 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8733 In->getName()+".not"), *ICI);
8734
8735 return ReplaceInstUsesWith(SI, In);
8736 }
8737 }
8738 }
8739
Dan Gohman58c09632008-09-16 18:46:06 +00008740 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8741 // Transform (X == Y) ? X : Y -> Y
8742 if (Pred == ICmpInst::ICMP_EQ)
8743 return ReplaceInstUsesWith(SI, FalseVal);
8744 // Transform (X != Y) ? X : Y -> X
8745 if (Pred == ICmpInst::ICMP_NE)
8746 return ReplaceInstUsesWith(SI, TrueVal);
8747 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8748
8749 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8750 // Transform (X == Y) ? Y : X -> X
8751 if (Pred == ICmpInst::ICMP_EQ)
8752 return ReplaceInstUsesWith(SI, FalseVal);
8753 // Transform (X != Y) ? Y : X -> Y
8754 if (Pred == ICmpInst::ICMP_NE)
8755 return ReplaceInstUsesWith(SI, TrueVal);
8756 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8757 }
8758
8759 /// NOTE: if we wanted to, this is where to detect integer ABS
8760
8761 return Changed ? &SI : 0;
8762}
8763
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008764Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8765 Value *CondVal = SI.getCondition();
8766 Value *TrueVal = SI.getTrueValue();
8767 Value *FalseVal = SI.getFalseValue();
8768
8769 // select true, X, Y -> X
8770 // select false, X, Y -> Y
8771 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8772 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8773
8774 // select C, X, X -> X
8775 if (TrueVal == FalseVal)
8776 return ReplaceInstUsesWith(SI, TrueVal);
8777
8778 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8779 return ReplaceInstUsesWith(SI, FalseVal);
8780 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8781 return ReplaceInstUsesWith(SI, TrueVal);
8782 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8783 if (isa<Constant>(TrueVal))
8784 return ReplaceInstUsesWith(SI, TrueVal);
8785 else
8786 return ReplaceInstUsesWith(SI, FalseVal);
8787 }
8788
8789 if (SI.getType() == Type::Int1Ty) {
8790 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8791 if (C->getZExtValue()) {
8792 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008793 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008794 } else {
8795 // Change: A = select B, false, C --> A = and !B, C
8796 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008797 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008798 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008799 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008800 }
8801 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8802 if (C->getZExtValue() == false) {
8803 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008804 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008805 } else {
8806 // Change: A = select B, C, true --> A = or !B, C
8807 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008808 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008809 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008810 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008811 }
8812 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008813
8814 // select a, b, a -> a&b
8815 // select a, a, b -> a|b
8816 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008817 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008818 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008819 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008820 }
8821
8822 // Selecting between two integer constants?
8823 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8824 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8825 // select C, 1, 0 -> zext C to int
8826 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008827 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008828 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8829 // select C, 0, 1 -> zext !C to int
8830 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008831 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008832 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008833 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008834 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008835
8836 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8837
8838 // (x <s 0) ? -1 : 0 -> ashr x, 31
8839 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8840 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8841 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8842 // The comparison constant and the result are not neccessarily the
8843 // same width. Make an all-ones value by inserting a AShr.
8844 Value *X = IC->getOperand(0);
8845 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8846 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008847 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008848 ShAmt, "ones");
8849 InsertNewInstBefore(SRA, SI);
Eli Friedman722b4792008-11-30 21:09:11 +00008850
8851 // Then cast to the appropriate width.
8852 return CastInst::CreateIntegerCast(SRA, SI.getType(), true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008853 }
8854 }
8855
8856
8857 // If one of the constants is zero (we know they can't both be) and we
8858 // have an icmp instruction with zero, and we have an 'and' with the
8859 // non-constant value, eliminate this whole mess. This corresponds to
8860 // cases like this: ((X & 27) ? 27 : 0)
8861 if (TrueValC->isZero() || FalseValC->isZero())
8862 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8863 cast<Constant>(IC->getOperand(1))->isNullValue())
8864 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8865 if (ICA->getOpcode() == Instruction::And &&
8866 isa<ConstantInt>(ICA->getOperand(1)) &&
8867 (ICA->getOperand(1) == TrueValC ||
8868 ICA->getOperand(1) == FalseValC) &&
8869 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8870 // Okay, now we know that everything is set up, we just don't
8871 // know whether we have a icmp_ne or icmp_eq and whether the
8872 // true or false val is the zero.
8873 bool ShouldNotVal = !TrueValC->isZero();
8874 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8875 Value *V = ICA;
8876 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008877 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008878 Instruction::Xor, V, ICA->getOperand(1)), SI);
8879 return ReplaceInstUsesWith(SI, V);
8880 }
8881 }
8882 }
8883
8884 // See if we are selecting two values based on a comparison of the two values.
8885 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8886 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8887 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008888 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8889 // This is not safe in general for floating point:
8890 // consider X== -0, Y== +0.
8891 // It becomes safe if either operand is a nonzero constant.
8892 ConstantFP *CFPt, *CFPf;
8893 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8894 !CFPt->getValueAPF().isZero()) ||
8895 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8896 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008897 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008898 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008899 // Transform (X != Y) ? X : Y -> X
8900 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8901 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008902 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008903
8904 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8905 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008906 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8907 // This is not safe in general for floating point:
8908 // consider X== -0, Y== +0.
8909 // It becomes safe if either operand is a nonzero constant.
8910 ConstantFP *CFPt, *CFPf;
8911 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8912 !CFPt->getValueAPF().isZero()) ||
8913 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8914 !CFPf->getValueAPF().isZero()))
8915 return ReplaceInstUsesWith(SI, FalseVal);
8916 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008917 // Transform (X != Y) ? Y : X -> Y
8918 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8919 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008920 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008921 }
Dan Gohman58c09632008-09-16 18:46:06 +00008922 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008923 }
8924
8925 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008926 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8927 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8928 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008929
8930 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8931 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8932 if (TI->hasOneUse() && FI->hasOneUse()) {
8933 Instruction *AddOp = 0, *SubOp = 0;
8934
8935 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8936 if (TI->getOpcode() == FI->getOpcode())
8937 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8938 return IV;
8939
8940 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8941 // even legal for FP.
8942 if (TI->getOpcode() == Instruction::Sub &&
8943 FI->getOpcode() == Instruction::Add) {
8944 AddOp = FI; SubOp = TI;
8945 } else if (FI->getOpcode() == Instruction::Sub &&
8946 TI->getOpcode() == Instruction::Add) {
8947 AddOp = TI; SubOp = FI;
8948 }
8949
8950 if (AddOp) {
8951 Value *OtherAddOp = 0;
8952 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8953 OtherAddOp = AddOp->getOperand(1);
8954 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8955 OtherAddOp = AddOp->getOperand(0);
8956 }
8957
8958 if (OtherAddOp) {
8959 // So at this point we know we have (Y -> OtherAddOp):
8960 // select C, (add X, Y), (sub X, Z)
8961 Value *NegVal; // Compute -Z
8962 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8963 NegVal = ConstantExpr::getNeg(C);
8964 } else {
8965 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008966 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008967 }
8968
8969 Value *NewTrueOp = OtherAddOp;
8970 Value *NewFalseOp = NegVal;
8971 if (AddOp != TI)
8972 std::swap(NewTrueOp, NewFalseOp);
8973 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008974 SelectInst::Create(CondVal, NewTrueOp,
8975 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008976
8977 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008978 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008979 }
8980 }
8981 }
8982
8983 // See if we can fold the select into one of our operands.
8984 if (SI.getType()->isInteger()) {
8985 // See the comment above GetSelectFoldableOperands for a description of the
8986 // transformation we are doing here.
8987 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8988 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8989 !isa<Constant>(FalseVal))
8990 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8991 unsigned OpToFold = 0;
8992 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8993 OpToFold = 1;
8994 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8995 OpToFold = 2;
8996 }
8997
8998 if (OpToFold) {
8999 Constant *C = GetSelectFoldableConstant(TVI);
9000 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009001 SelectInst::Create(SI.getCondition(),
9002 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009003 InsertNewInstBefore(NewSel, SI);
9004 NewSel->takeName(TVI);
9005 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00009006 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009007 else {
9008 assert(0 && "Unknown instruction!!");
9009 }
9010 }
9011 }
9012
9013 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
9014 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
9015 !isa<Constant>(TrueVal))
9016 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
9017 unsigned OpToFold = 0;
9018 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
9019 OpToFold = 1;
9020 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
9021 OpToFold = 2;
9022 }
9023
9024 if (OpToFold) {
9025 Constant *C = GetSelectFoldableConstant(FVI);
9026 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009027 SelectInst::Create(SI.getCondition(), C,
9028 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009029 InsertNewInstBefore(NewSel, SI);
9030 NewSel->takeName(FVI);
9031 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00009032 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009033 else
9034 assert(0 && "Unknown instruction!!");
9035 }
9036 }
9037 }
9038
9039 if (BinaryOperator::isNot(CondVal)) {
9040 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
9041 SI.setOperand(1, FalseVal);
9042 SI.setOperand(2, TrueVal);
9043 return &SI;
9044 }
9045
9046 return 0;
9047}
9048
Dan Gohman2d648bb2008-04-10 18:43:06 +00009049/// EnforceKnownAlignment - If the specified pointer points to an object that
9050/// we control, modify the object's alignment to PrefAlign. This isn't
9051/// often possible though. If alignment is important, a more reliable approach
9052/// is to simply align all global variables and allocation instructions to
9053/// their preferred alignment from the beginning.
9054///
9055static unsigned EnforceKnownAlignment(Value *V,
9056 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00009057
Dan Gohman2d648bb2008-04-10 18:43:06 +00009058 User *U = dyn_cast<User>(V);
9059 if (!U) return Align;
9060
9061 switch (getOpcode(U)) {
9062 default: break;
9063 case Instruction::BitCast:
9064 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
9065 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009066 // If all indexes are zero, it is just the alignment of the base pointer.
9067 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00009068 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00009069 if (!isa<Constant>(*i) ||
9070 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009071 AllZeroOperands = false;
9072 break;
9073 }
Chris Lattner47cf3452007-08-09 19:05:49 +00009074
9075 if (AllZeroOperands) {
9076 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00009077 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00009078 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00009079 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009080 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00009081 }
9082
9083 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
9084 // If there is a large requested alignment and we can, bump up the alignment
9085 // of the global.
9086 if (!GV->isDeclaration()) {
9087 GV->setAlignment(PrefAlign);
9088 Align = PrefAlign;
9089 }
9090 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
9091 // If there is a requested alignment and if this is an alloca, round up. We
9092 // don't do this for malloc, because some systems can't respect the request.
9093 if (isa<AllocaInst>(AI)) {
9094 AI->setAlignment(PrefAlign);
9095 Align = PrefAlign;
9096 }
9097 }
9098
9099 return Align;
9100}
9101
9102/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
9103/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
9104/// and it is more than the alignment of the ultimate object, see if we can
9105/// increase the alignment of the ultimate object, making this check succeed.
9106unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
9107 unsigned PrefAlign) {
9108 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
9109 sizeof(PrefAlign) * CHAR_BIT;
9110 APInt Mask = APInt::getAllOnesValue(BitWidth);
9111 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
9112 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
9113 unsigned TrailZ = KnownZero.countTrailingOnes();
9114 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
9115
9116 if (PrefAlign > Align)
9117 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9118
9119 // We don't need to make any adjustment.
9120 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009121}
9122
Chris Lattner00ae5132008-01-13 23:50:23 +00009123Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00009124 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9125 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00009126 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9127 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
9128
9129 if (CopyAlign < MinAlign) {
9130 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
9131 return MI;
9132 }
9133
9134 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9135 // load/store.
9136 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9137 if (MemOpLength == 0) return 0;
9138
Chris Lattnerc669fb62008-01-14 00:28:35 +00009139 // Source and destination pointer types are always "i8*" for intrinsic. See
9140 // if the size is something we can handle with a single primitive load/store.
9141 // A single load+store correctly handles overlapping memory in the memmove
9142 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00009143 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00009144 if (Size == 0) return MI; // Delete this mem transfer.
9145
9146 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00009147 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00009148
Chris Lattnerc669fb62008-01-14 00:28:35 +00009149 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00009150 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00009151
9152 // Memcpy forces the use of i8* for the source and destination. That means
9153 // that if you're using memcpy to move one double around, you'll get a cast
9154 // from double* to i8*. We'd much rather use a double load+store rather than
9155 // an i64 load+store, here because this improves the odds that the source or
9156 // dest address will be promotable. See if we can find a better type than the
9157 // integer datatype.
9158 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9159 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9160 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9161 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9162 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009163 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00009164 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9165 if (STy->getNumElements() == 1)
9166 SrcETy = STy->getElementType(0);
9167 else
9168 break;
9169 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9170 if (ATy->getNumElements() == 1)
9171 SrcETy = ATy->getElementType();
9172 else
9173 break;
9174 } else
9175 break;
9176 }
9177
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009178 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00009179 NewPtrTy = PointerType::getUnqual(SrcETy);
9180 }
9181 }
9182
9183
Chris Lattner00ae5132008-01-13 23:50:23 +00009184 // If the memcpy/memmove provides better alignment info than we can
9185 // infer, use it.
9186 SrcAlign = std::max(SrcAlign, CopyAlign);
9187 DstAlign = std::max(DstAlign, CopyAlign);
9188
9189 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9190 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00009191 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9192 InsertNewInstBefore(L, *MI);
9193 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9194
9195 // Set the size of the copy to 0, it will be deleted on the next iteration.
9196 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9197 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00009198}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009199
Chris Lattner5af8a912008-04-30 06:39:11 +00009200Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9201 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9202 if (MI->getAlignment()->getZExtValue() < Alignment) {
9203 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9204 return MI;
9205 }
9206
9207 // Extract the length and alignment and fill if they are constant.
9208 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9209 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9210 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9211 return 0;
9212 uint64_t Len = LenC->getZExtValue();
9213 Alignment = MI->getAlignment()->getZExtValue();
9214
9215 // If the length is zero, this is a no-op
9216 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9217
9218 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9219 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9220 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9221
9222 Value *Dest = MI->getDest();
9223 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9224
9225 // Alignment 0 is identity for alignment 1 for memset, but not store.
9226 if (Alignment == 0) Alignment = 1;
9227
9228 // Extract the fill value and store.
9229 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9230 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9231 Alignment), *MI);
9232
9233 // Set the size of the copy to 0, it will be deleted on the next iteration.
9234 MI->setLength(Constant::getNullValue(LenC->getType()));
9235 return MI;
9236 }
9237
9238 return 0;
9239}
9240
9241
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009242/// visitCallInst - CallInst simplification. This mostly only handles folding
9243/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9244/// the heavy lifting.
9245///
9246Instruction *InstCombiner::visitCallInst(CallInst &CI) {
9247 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9248 if (!II) return visitCallSite(&CI);
9249
9250 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9251 // visitCallSite.
9252 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
9253 bool Changed = false;
9254
9255 // memmove/cpy/set of zero bytes is a noop.
9256 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9257 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9258
9259 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
9260 if (CI->getZExtValue() == 1) {
9261 // Replace the instruction with just byte operations. We would
9262 // transform other cases to loads/stores, but we don't know if
9263 // alignment is sufficient.
9264 }
9265 }
9266
9267 // If we have a memmove and the source operation is a constant global,
9268 // then the source and dest pointers can't alias, so we can change this
9269 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00009270 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009271 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9272 if (GVSrc->isConstant()) {
9273 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner82c2e432008-11-21 16:42:48 +00009274 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
9275 const Type *Tys[1];
9276 Tys[0] = CI.getOperand(3)->getType();
9277 CI.setOperand(0,
9278 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009279 Changed = true;
9280 }
Chris Lattner59b27d92008-05-28 05:30:41 +00009281
9282 // memmove(x,x,size) -> noop.
9283 if (MMI->getSource() == MMI->getDest())
9284 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009285 }
9286
9287 // If we can determine a pointer alignment that is bigger than currently
9288 // set, update the alignment.
9289 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00009290 if (Instruction *I = SimplifyMemTransfer(MI))
9291 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00009292 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9293 if (Instruction *I = SimplifyMemSet(MSI))
9294 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009295 }
9296
9297 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00009298 }
9299
9300 switch (II->getIntrinsicID()) {
9301 default: break;
9302 case Intrinsic::bswap:
9303 // bswap(bswap(x)) -> x
9304 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9305 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9306 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9307 break;
9308 case Intrinsic::ppc_altivec_lvx:
9309 case Intrinsic::ppc_altivec_lvxl:
9310 case Intrinsic::x86_sse_loadu_ps:
9311 case Intrinsic::x86_sse2_loadu_pd:
9312 case Intrinsic::x86_sse2_loadu_dq:
9313 // Turn PPC lvx -> load if the pointer is known aligned.
9314 // Turn X86 loadups -> load if the pointer is known aligned.
9315 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9316 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9317 PointerType::getUnqual(II->getType()),
9318 CI);
9319 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009320 }
Chris Lattner989ba312008-06-18 04:33:20 +00009321 break;
9322 case Intrinsic::ppc_altivec_stvx:
9323 case Intrinsic::ppc_altivec_stvxl:
9324 // Turn stvx -> store if the pointer is known aligned.
9325 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9326 const Type *OpPtrTy =
9327 PointerType::getUnqual(II->getOperand(1)->getType());
9328 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9329 return new StoreInst(II->getOperand(1), Ptr);
9330 }
9331 break;
9332 case Intrinsic::x86_sse_storeu_ps:
9333 case Intrinsic::x86_sse2_storeu_pd:
9334 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00009335 // Turn X86 storeu -> store if the pointer is known aligned.
9336 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9337 const Type *OpPtrTy =
9338 PointerType::getUnqual(II->getOperand(2)->getType());
9339 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9340 return new StoreInst(II->getOperand(2), Ptr);
9341 }
9342 break;
9343
9344 case Intrinsic::x86_sse_cvttss2si: {
9345 // These intrinsics only demands the 0th element of its input vector. If
9346 // we can simplify the input based on that, do so now.
9347 uint64_t UndefElts;
9348 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9349 UndefElts)) {
9350 II->setOperand(1, V);
9351 return II;
9352 }
9353 break;
9354 }
9355
9356 case Intrinsic::ppc_altivec_vperm:
9357 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9358 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9359 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009360
Chris Lattner989ba312008-06-18 04:33:20 +00009361 // Check that all of the elements are integer constants or undefs.
9362 bool AllEltsOk = true;
9363 for (unsigned i = 0; i != 16; ++i) {
9364 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9365 !isa<UndefValue>(Mask->getOperand(i))) {
9366 AllEltsOk = false;
9367 break;
9368 }
9369 }
9370
9371 if (AllEltsOk) {
9372 // Cast the input vectors to byte vectors.
9373 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9374 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9375 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009376
Chris Lattner989ba312008-06-18 04:33:20 +00009377 // Only extract each element once.
9378 Value *ExtractedElts[32];
9379 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9380
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009381 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00009382 if (isa<UndefValue>(Mask->getOperand(i)))
9383 continue;
9384 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9385 Idx &= 31; // Match the hardware behavior.
9386
9387 if (ExtractedElts[Idx] == 0) {
9388 Instruction *Elt =
9389 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9390 InsertNewInstBefore(Elt, CI);
9391 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009392 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009393
Chris Lattner989ba312008-06-18 04:33:20 +00009394 // Insert this value into the result vector.
9395 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9396 i, "tmp");
9397 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009398 }
Chris Lattner989ba312008-06-18 04:33:20 +00009399 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009400 }
Chris Lattner989ba312008-06-18 04:33:20 +00009401 }
9402 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009403
Chris Lattner989ba312008-06-18 04:33:20 +00009404 case Intrinsic::stackrestore: {
9405 // If the save is right next to the restore, remove the restore. This can
9406 // happen when variable allocas are DCE'd.
9407 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9408 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9409 BasicBlock::iterator BI = SS;
9410 if (&*++BI == II)
9411 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009412 }
Chris Lattner989ba312008-06-18 04:33:20 +00009413 }
9414
9415 // Scan down this block to see if there is another stack restore in the
9416 // same block without an intervening call/alloca.
9417 BasicBlock::iterator BI = II;
9418 TerminatorInst *TI = II->getParent()->getTerminator();
9419 bool CannotRemove = false;
9420 for (++BI; &*BI != TI; ++BI) {
9421 if (isa<AllocaInst>(BI)) {
9422 CannotRemove = true;
9423 break;
9424 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00009425 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9426 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9427 // If there is a stackrestore below this one, remove this one.
9428 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9429 return EraseInstFromFunction(CI);
9430 // Otherwise, ignore the intrinsic.
9431 } else {
9432 // If we found a non-intrinsic call, we can't remove the stack
9433 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00009434 CannotRemove = true;
9435 break;
9436 }
Chris Lattner989ba312008-06-18 04:33:20 +00009437 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009438 }
Chris Lattner989ba312008-06-18 04:33:20 +00009439
9440 // If the stack restore is in a return/unwind block and if there are no
9441 // allocas or calls between the restore and the return, nuke the restore.
9442 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9443 return EraseInstFromFunction(CI);
9444 break;
9445 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009446 }
9447
9448 return visitCallSite(II);
9449}
9450
9451// InvokeInst simplification
9452//
9453Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9454 return visitCallSite(&II);
9455}
9456
Dale Johannesen96021832008-04-25 21:16:07 +00009457/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9458/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00009459static bool isSafeToEliminateVarargsCast(const CallSite CS,
9460 const CastInst * const CI,
9461 const TargetData * const TD,
9462 const int ix) {
9463 if (!CI->isLosslessCast())
9464 return false;
9465
9466 // The size of ByVal arguments is derived from the type, so we
9467 // can't change to a type with a different size. If the size were
9468 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009469 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009470 return true;
9471
9472 const Type* SrcTy =
9473 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9474 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9475 if (!SrcTy->isSized() || !DstTy->isSized())
9476 return false;
9477 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9478 return false;
9479 return true;
9480}
9481
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009482// visitCallSite - Improvements for call and invoke instructions.
9483//
9484Instruction *InstCombiner::visitCallSite(CallSite CS) {
9485 bool Changed = false;
9486
9487 // If the callee is a constexpr cast of a function, attempt to move the cast
9488 // to the arguments of the call/invoke.
9489 if (transformConstExprCastCall(CS)) return 0;
9490
9491 Value *Callee = CS.getCalledValue();
9492
9493 if (Function *CalleeF = dyn_cast<Function>(Callee))
9494 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9495 Instruction *OldCall = CS.getInstruction();
9496 // If the call and callee calling conventions don't match, this call must
9497 // be unreachable, as the call is undefined.
9498 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009499 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9500 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009501 if (!OldCall->use_empty())
9502 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9503 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9504 return EraseInstFromFunction(*OldCall);
9505 return 0;
9506 }
9507
9508 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9509 // This instruction is not reachable, just remove it. We insert a store to
9510 // undef so that we know that this code is not reachable, despite the fact
9511 // that we can't modify the CFG here.
9512 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009513 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009514 CS.getInstruction());
9515
9516 if (!CS.getInstruction()->use_empty())
9517 CS.getInstruction()->
9518 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9519
9520 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9521 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009522 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9523 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009524 }
9525 return EraseInstFromFunction(*CS.getInstruction());
9526 }
9527
Duncan Sands74833f22007-09-17 10:26:40 +00009528 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9529 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9530 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9531 return transformCallThroughTrampoline(CS);
9532
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009533 const PointerType *PTy = cast<PointerType>(Callee->getType());
9534 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9535 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009536 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009537 // See if we can optimize any arguments passed through the varargs area of
9538 // the call.
9539 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009540 E = CS.arg_end(); I != E; ++I, ++ix) {
9541 CastInst *CI = dyn_cast<CastInst>(*I);
9542 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9543 *I = CI->getOperand(0);
9544 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009545 }
Dale Johannesen35615462008-04-23 18:34:37 +00009546 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009547 }
9548
Duncan Sands2937e352007-12-19 21:13:37 +00009549 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009550 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009551 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009552 Changed = true;
9553 }
9554
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009555 return Changed ? CS.getInstruction() : 0;
9556}
9557
9558// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9559// attempt to move the cast to the arguments of the call/invoke.
9560//
9561bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9562 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9563 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9564 if (CE->getOpcode() != Instruction::BitCast ||
9565 !isa<Function>(CE->getOperand(0)))
9566 return false;
9567 Function *Callee = cast<Function>(CE->getOperand(0));
9568 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009569 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009570
9571 // Okay, this is a cast from a function to a different type. Unless doing so
9572 // would cause a type conversion of one of our arguments, change this call to
9573 // be a direct call with arguments casted to the appropriate types.
9574 //
9575 const FunctionType *FT = Callee->getFunctionType();
9576 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009577 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009578
Duncan Sands7901ce12008-06-01 07:38:42 +00009579 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009580 return false; // TODO: Handle multiple return values.
9581
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009582 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009583 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009584 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009585 // Conversion is ok if changing from one pointer type to another or from
9586 // a pointer to an integer of the same size.
9587 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009588 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009589 return false; // Cannot transform this return value.
9590
Duncan Sands5c489582008-01-06 10:12:28 +00009591 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009592 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009593 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009594 return false; // Cannot transform this return value.
9595
Chris Lattner1c8733e2008-03-12 17:45:29 +00009596 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009597 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009598 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009599 return false; // Attribute not compatible with transformed value.
9600 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009601
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009602 // If the callsite is an invoke instruction, and the return value is used by
9603 // a PHI node in a successor, we cannot change the return type of the call
9604 // because there is no place to put the cast instruction (without breaking
9605 // the critical edge). Bail out in this case.
9606 if (!Caller->use_empty())
9607 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9608 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9609 UI != E; ++UI)
9610 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9611 if (PN->getParent() == II->getNormalDest() ||
9612 PN->getParent() == II->getUnwindDest())
9613 return false;
9614 }
9615
9616 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9617 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9618
9619 CallSite::arg_iterator AI = CS.arg_begin();
9620 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9621 const Type *ParamTy = FT->getParamType(i);
9622 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009623
9624 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009625 return false; // Cannot transform this parameter value.
9626
Devang Patelf2a4a922008-09-26 22:53:05 +00009627 if (CallerPAL.getParamAttributes(i + 1)
9628 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009629 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009630
Duncan Sands7901ce12008-06-01 07:38:42 +00009631 // Converting from one pointer type to another or between a pointer and an
9632 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009633 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009634 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9635 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009636 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009637 }
9638
9639 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9640 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009641 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009642
Chris Lattner1c8733e2008-03-12 17:45:29 +00009643 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9644 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009645 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009646 // won't be dropping them. Check that these extra arguments have attributes
9647 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009648 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9649 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009650 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009651 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009652 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009653 return false;
9654 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009655
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009656 // Okay, we decided that this is a safe thing to do: go ahead and start
9657 // inserting cast instructions as necessary...
9658 std::vector<Value*> Args;
9659 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009660 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009661 attrVec.reserve(NumCommonArgs);
9662
9663 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009664 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009665
9666 // If the return value is not being used, the type may not be compatible
9667 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009668 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009669
9670 // Add the new return attributes.
9671 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009672 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009673
9674 AI = CS.arg_begin();
9675 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9676 const Type *ParamTy = FT->getParamType(i);
9677 if ((*AI)->getType() == ParamTy) {
9678 Args.push_back(*AI);
9679 } else {
9680 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9681 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009682 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009683 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9684 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009685
9686 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009687 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009688 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009689 }
9690
9691 // If the function takes more arguments than the call was taking, add them
9692 // now...
9693 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9694 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9695
9696 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009697 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009698 if (!FT->isVarArg()) {
9699 cerr << "WARNING: While resolving call to function '"
9700 << Callee->getName() << "' arguments were dropped!\n";
9701 } else {
9702 // Add all of the arguments in their promoted form to the arg list...
9703 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9704 const Type *PTy = getPromotedType((*AI)->getType());
9705 if (PTy != (*AI)->getType()) {
9706 // Must promote to pass through va_arg area!
9707 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9708 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009709 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009710 InsertNewInstBefore(Cast, *Caller);
9711 Args.push_back(Cast);
9712 } else {
9713 Args.push_back(*AI);
9714 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009715
Duncan Sands4ced1f82008-01-13 08:02:44 +00009716 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009717 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009718 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009719 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009720 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009721 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009722
Devang Patelf2a4a922008-09-26 22:53:05 +00009723 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9724 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9725
Duncan Sands7901ce12008-06-01 07:38:42 +00009726 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009727 Caller->setName(""); // Void type should not have a name.
9728
Devang Pateld222f862008-09-25 21:00:45 +00009729 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009730
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009731 Instruction *NC;
9732 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009733 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009734 Args.begin(), Args.end(),
9735 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009736 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009737 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009738 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009739 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9740 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009741 CallInst *CI = cast<CallInst>(Caller);
9742 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009743 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009744 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009745 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009746 }
9747
9748 // Insert a cast of the return type as necessary.
9749 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009750 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009751 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009752 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009753 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009754 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009755
9756 // If this is an invoke instruction, we should insert it after the first
9757 // non-phi, instruction in the normal successor block.
9758 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009759 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009760 InsertNewInstBefore(NC, *I);
9761 } else {
9762 // Otherwise, it's a call, just insert cast right after the call instr
9763 InsertNewInstBefore(NC, *Caller);
9764 }
9765 AddUsersToWorkList(*Caller);
9766 } else {
9767 NV = UndefValue::get(Caller->getType());
9768 }
9769 }
9770
9771 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9772 Caller->replaceAllUsesWith(NV);
9773 Caller->eraseFromParent();
9774 RemoveFromWorkList(Caller);
9775 return true;
9776}
9777
Duncan Sands74833f22007-09-17 10:26:40 +00009778// transformCallThroughTrampoline - Turn a call to a function created by the
9779// init_trampoline intrinsic into a direct call to the underlying function.
9780//
9781Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9782 Value *Callee = CS.getCalledValue();
9783 const PointerType *PTy = cast<PointerType>(Callee->getType());
9784 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009785 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009786
9787 // If the call already has the 'nest' attribute somewhere then give up -
9788 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009789 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009790 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009791
9792 IntrinsicInst *Tramp =
9793 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9794
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009795 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009796 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9797 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9798
Devang Pateld222f862008-09-25 21:00:45 +00009799 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009800 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009801 unsigned NestIdx = 1;
9802 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009803 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009804
9805 // Look for a parameter marked with the 'nest' attribute.
9806 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9807 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009808 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009809 // Record the parameter type and any other attributes.
9810 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009811 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009812 break;
9813 }
9814
9815 if (NestTy) {
9816 Instruction *Caller = CS.getInstruction();
9817 std::vector<Value*> NewArgs;
9818 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9819
Devang Pateld222f862008-09-25 21:00:45 +00009820 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009821 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009822
Duncan Sands74833f22007-09-17 10:26:40 +00009823 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009824 // mean appending it. Likewise for attributes.
9825
Devang Patelf2a4a922008-09-26 22:53:05 +00009826 // Add any result attributes.
9827 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009828 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009829
Duncan Sands74833f22007-09-17 10:26:40 +00009830 {
9831 unsigned Idx = 1;
9832 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9833 do {
9834 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009835 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009836 Value *NestVal = Tramp->getOperand(3);
9837 if (NestVal->getType() != NestTy)
9838 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9839 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009840 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009841 }
9842
9843 if (I == E)
9844 break;
9845
Duncan Sands48b81112008-01-14 19:52:09 +00009846 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009847 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009848 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009849 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009850 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009851
9852 ++Idx, ++I;
9853 } while (1);
9854 }
9855
Devang Patelf2a4a922008-09-26 22:53:05 +00009856 // Add any function attributes.
9857 if (Attributes Attr = Attrs.getFnAttributes())
9858 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9859
Duncan Sands74833f22007-09-17 10:26:40 +00009860 // The trampoline may have been bitcast to a bogus type (FTy).
9861 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009862 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009863
Duncan Sands74833f22007-09-17 10:26:40 +00009864 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009865 NewTypes.reserve(FTy->getNumParams()+1);
9866
Duncan Sands74833f22007-09-17 10:26:40 +00009867 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009868 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009869 {
9870 unsigned Idx = 1;
9871 FunctionType::param_iterator I = FTy->param_begin(),
9872 E = FTy->param_end();
9873
9874 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009875 if (Idx == NestIdx)
9876 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009877 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009878
9879 if (I == E)
9880 break;
9881
Duncan Sands48b81112008-01-14 19:52:09 +00009882 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009883 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009884
9885 ++Idx, ++I;
9886 } while (1);
9887 }
9888
9889 // Replace the trampoline call with a direct call. Let the generic
9890 // code sort out any function type mismatches.
9891 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009892 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009893 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9894 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009895 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009896
9897 Instruction *NewCaller;
9898 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009899 NewCaller = InvokeInst::Create(NewCallee,
9900 II->getNormalDest(), II->getUnwindDest(),
9901 NewArgs.begin(), NewArgs.end(),
9902 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009903 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009904 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009905 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009906 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9907 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009908 if (cast<CallInst>(Caller)->isTailCall())
9909 cast<CallInst>(NewCaller)->setTailCall();
9910 cast<CallInst>(NewCaller)->
9911 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009912 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009913 }
9914 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9915 Caller->replaceAllUsesWith(NewCaller);
9916 Caller->eraseFromParent();
9917 RemoveFromWorkList(Caller);
9918 return 0;
9919 }
9920 }
9921
9922 // Replace the trampoline call with a direct call. Since there is no 'nest'
9923 // parameter, there is no need to adjust the argument list. Let the generic
9924 // code sort out any function type mismatches.
9925 Constant *NewCallee =
9926 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9927 CS.setCalledFunction(NewCallee);
9928 return CS.getInstruction();
9929}
9930
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009931/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9932/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9933/// and a single binop.
9934Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9935 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
Chris Lattner30078012008-12-01 03:42:51 +00009936 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009937 unsigned Opc = FirstInst->getOpcode();
9938 Value *LHSVal = FirstInst->getOperand(0);
9939 Value *RHSVal = FirstInst->getOperand(1);
9940
9941 const Type *LHSType = LHSVal->getType();
9942 const Type *RHSType = RHSVal->getType();
9943
9944 // Scan to see if all operands are the same opcode, all have one use, and all
9945 // kill their operands (i.e. the operands have one use).
Chris Lattner9e1916e2008-12-01 02:34:36 +00009946 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009947 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9948 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9949 // Verify type of the LHS matches so we don't fold cmp's of different
9950 // types or GEP's with different index types.
9951 I->getOperand(0)->getType() != LHSType ||
9952 I->getOperand(1)->getType() != RHSType)
9953 return 0;
9954
9955 // If they are CmpInst instructions, check their predicates
9956 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9957 if (cast<CmpInst>(I)->getPredicate() !=
9958 cast<CmpInst>(FirstInst)->getPredicate())
9959 return 0;
9960
9961 // Keep track of which operand needs a phi node.
9962 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9963 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9964 }
9965
Chris Lattner30078012008-12-01 03:42:51 +00009966 // Otherwise, this is safe to transform!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009967
9968 Value *InLHS = FirstInst->getOperand(0);
9969 Value *InRHS = FirstInst->getOperand(1);
9970 PHINode *NewLHS = 0, *NewRHS = 0;
9971 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009972 NewLHS = PHINode::Create(LHSType,
9973 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009974 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9975 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9976 InsertNewInstBefore(NewLHS, PN);
9977 LHSVal = NewLHS;
9978 }
9979
9980 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009981 NewRHS = PHINode::Create(RHSType,
9982 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009983 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9984 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9985 InsertNewInstBefore(NewRHS, PN);
9986 RHSVal = NewRHS;
9987 }
9988
9989 // Add all operands to the new PHIs.
Chris Lattner9e1916e2008-12-01 02:34:36 +00009990 if (NewLHS || NewRHS) {
9991 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9992 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
9993 if (NewLHS) {
9994 Value *NewInLHS = InInst->getOperand(0);
9995 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9996 }
9997 if (NewRHS) {
9998 Value *NewInRHS = InInst->getOperand(1);
9999 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
10000 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010001 }
10002 }
10003
10004 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010005 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Chris Lattner30078012008-12-01 03:42:51 +000010006 CmpInst *CIOp = cast<CmpInst>(FirstInst);
10007 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
10008 RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010009}
10010
Chris Lattner9e1916e2008-12-01 02:34:36 +000010011Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
10012 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
10013
10014 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
10015 FirstInst->op_end());
10016
10017 // Scan to see if all operands are the same opcode, all have one use, and all
10018 // kill their operands (i.e. the operands have one use).
10019 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
10020 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
10021 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
10022 GEP->getNumOperands() != FirstInst->getNumOperands())
10023 return 0;
10024
10025 // Compare the operand lists.
10026 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
10027 if (FirstInst->getOperand(op) == GEP->getOperand(op))
10028 continue;
10029
10030 // Don't merge two GEPs when two operands differ (introducing phi nodes)
10031 // if one of the PHIs has a constant for the index. The index may be
10032 // substantially cheaper to compute for the constants, so making it a
10033 // variable index could pessimize the path. This also handles the case
10034 // for struct indices, which must always be constant.
10035 if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
10036 isa<ConstantInt>(GEP->getOperand(op)))
10037 return 0;
10038
10039 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
10040 return 0;
10041 FixedOperands[op] = 0; // Needs a PHI.
10042 }
10043 }
10044
10045 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
10046 // that is variable.
10047 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
10048
10049 bool HasAnyPHIs = false;
10050 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
10051 if (FixedOperands[i]) continue; // operand doesn't need a phi.
10052 Value *FirstOp = FirstInst->getOperand(i);
10053 PHINode *NewPN = PHINode::Create(FirstOp->getType(),
10054 FirstOp->getName()+".pn");
10055 InsertNewInstBefore(NewPN, PN);
10056
10057 NewPN->reserveOperandSpace(e);
10058 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
10059 OperandPhis[i] = NewPN;
10060 FixedOperands[i] = NewPN;
10061 HasAnyPHIs = true;
10062 }
10063
10064
10065 // Add all operands to the new PHIs.
10066 if (HasAnyPHIs) {
10067 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10068 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
10069 BasicBlock *InBB = PN.getIncomingBlock(i);
10070
10071 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
10072 if (PHINode *OpPhi = OperandPhis[op])
10073 OpPhi->addIncoming(InGEP->getOperand(op), InBB);
10074 }
10075 }
10076
10077 Value *Base = FixedOperands[0];
10078 return GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
10079 FixedOperands.end());
10080}
10081
10082
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010083/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
10084/// of the block that defines it. This means that it must be obvious the value
10085/// of the load is not changed from the point of the load to the end of the
10086/// block it is in.
10087///
10088/// Finally, it is safe, but not profitable, to sink a load targetting a
10089/// non-address-taken alloca. Doing so will cause us to not promote the alloca
10090/// to a register.
10091static bool isSafeToSinkLoad(LoadInst *L) {
10092 BasicBlock::iterator BBI = L, E = L->getParent()->end();
10093
10094 for (++BBI; BBI != E; ++BBI)
10095 if (BBI->mayWriteToMemory())
10096 return false;
10097
10098 // Check for non-address taken alloca. If not address-taken already, it isn't
10099 // profitable to do this xform.
10100 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
10101 bool isAddressTaken = false;
10102 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
10103 UI != E; ++UI) {
10104 if (isa<LoadInst>(UI)) continue;
10105 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
10106 // If storing TO the alloca, then the address isn't taken.
10107 if (SI->getOperand(1) == AI) continue;
10108 }
10109 isAddressTaken = true;
10110 break;
10111 }
10112
10113 if (!isAddressTaken)
10114 return false;
10115 }
10116
10117 return true;
10118}
10119
10120
10121// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
10122// operator and they all are only used by the PHI, PHI together their
10123// inputs, and do the operation once, to the result of the PHI.
10124Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
10125 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
10126
10127 // Scan the instruction, looking for input operations that can be folded away.
10128 // If all input operands to the phi are the same instruction (e.g. a cast from
10129 // the same type or "+42") we can pull the operation through the PHI, reducing
10130 // code size and simplifying code.
10131 Constant *ConstantOp = 0;
10132 const Type *CastSrcTy = 0;
10133 bool isVolatile = false;
10134 if (isa<CastInst>(FirstInst)) {
10135 CastSrcTy = FirstInst->getOperand(0)->getType();
10136 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
10137 // Can fold binop, compare or shift here if the RHS is a constant,
10138 // otherwise call FoldPHIArgBinOpIntoPHI.
10139 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
10140 if (ConstantOp == 0)
10141 return FoldPHIArgBinOpIntoPHI(PN);
10142 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
10143 isVolatile = LI->isVolatile();
10144 // We can't sink the load if the loaded value could be modified between the
10145 // load and the PHI.
10146 if (LI->getParent() != PN.getIncomingBlock(0) ||
10147 !isSafeToSinkLoad(LI))
10148 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010149
10150 // If the PHI is of volatile loads and the load block has multiple
10151 // successors, sinking it would remove a load of the volatile value from
10152 // the path through the other successor.
10153 if (isVolatile &&
10154 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10155 return 0;
10156
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010157 } else if (isa<GetElementPtrInst>(FirstInst)) {
Chris Lattner9e1916e2008-12-01 02:34:36 +000010158 return FoldPHIArgGEPIntoPHI(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010159 } else {
10160 return 0; // Cannot fold this operation.
10161 }
10162
10163 // Check to see if all arguments are the same operation.
10164 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10165 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
10166 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
10167 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
10168 return 0;
10169 if (CastSrcTy) {
10170 if (I->getOperand(0)->getType() != CastSrcTy)
10171 return 0; // Cast operation must match.
10172 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
10173 // We can't sink the load if the loaded value could be modified between
10174 // the load and the PHI.
10175 if (LI->isVolatile() != isVolatile ||
10176 LI->getParent() != PN.getIncomingBlock(i) ||
10177 !isSafeToSinkLoad(LI))
10178 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +000010179
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010180 // If the PHI is of volatile loads and the load block has multiple
10181 // successors, sinking it would remove a load of the volatile value from
10182 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +000010183 if (isVolatile &&
10184 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10185 return 0;
10186
10187
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010188 } else if (I->getOperand(1) != ConstantOp) {
10189 return 0;
10190 }
10191 }
10192
10193 // Okay, they are all the same operation. Create a new PHI node of the
10194 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +000010195 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10196 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010197 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
10198
10199 Value *InVal = FirstInst->getOperand(0);
10200 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
10201
10202 // Add all operands to the new PHI.
10203 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10204 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10205 if (NewInVal != InVal)
10206 InVal = 0;
10207 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10208 }
10209
10210 Value *PhiVal;
10211 if (InVal) {
10212 // The new PHI unions all of the same values together. This is really
10213 // common, so we handle it intelligently here for compile-time speed.
10214 PhiVal = InVal;
10215 delete NewPN;
10216 } else {
10217 InsertNewInstBefore(NewPN, PN);
10218 PhiVal = NewPN;
10219 }
10220
10221 // Insert and return the new operation.
10222 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010223 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +000010224 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010225 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010226 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010227 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010228 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010229 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10230
10231 // If this was a volatile load that we are merging, make sure to loop through
10232 // and mark all the input loads as non-volatile. If we don't do this, we will
10233 // insert a new volatile load and the old ones will not be deletable.
10234 if (isVolatile)
10235 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10236 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10237
10238 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010239}
10240
10241/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10242/// that is dead.
10243static bool DeadPHICycle(PHINode *PN,
10244 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
10245 if (PN->use_empty()) return true;
10246 if (!PN->hasOneUse()) return false;
10247
10248 // Remember this node, and if we find the cycle, return.
10249 if (!PotentiallyDeadPHIs.insert(PN))
10250 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +000010251
10252 // Don't scan crazily complex things.
10253 if (PotentiallyDeadPHIs.size() == 16)
10254 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010255
10256 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10257 return DeadPHICycle(PU, PotentiallyDeadPHIs);
10258
10259 return false;
10260}
10261
Chris Lattner27b695d2007-11-06 21:52:06 +000010262/// PHIsEqualValue - Return true if this phi node is always equal to
10263/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10264/// z = some value; x = phi (y, z); y = phi (x, z)
10265static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10266 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10267 // See if we already saw this PHI node.
10268 if (!ValueEqualPHIs.insert(PN))
10269 return true;
10270
10271 // Don't scan crazily complex things.
10272 if (ValueEqualPHIs.size() == 16)
10273 return false;
10274
10275 // Scan the operands to see if they are either phi nodes or are equal to
10276 // the value.
10277 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10278 Value *Op = PN->getIncomingValue(i);
10279 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10280 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10281 return false;
10282 } else if (Op != NonPhiInVal)
10283 return false;
10284 }
10285
10286 return true;
10287}
10288
10289
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010290// PHINode simplification
10291//
10292Instruction *InstCombiner::visitPHINode(PHINode &PN) {
10293 // If LCSSA is around, don't mess with Phi nodes
10294 if (MustPreserveLCSSA) return 0;
10295
10296 if (Value *V = PN.hasConstantValue())
10297 return ReplaceInstUsesWith(PN, V);
10298
10299 // If all PHI operands are the same operation, pull them through the PHI,
10300 // reducing code size.
10301 if (isa<Instruction>(PN.getIncomingValue(0)) &&
Chris Lattner9e1916e2008-12-01 02:34:36 +000010302 isa<Instruction>(PN.getIncomingValue(1)) &&
10303 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
10304 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
10305 // FIXME: The hasOneUse check will fail for PHIs that use the value more
10306 // than themselves more than once.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010307 PN.getIncomingValue(0)->hasOneUse())
10308 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10309 return Result;
10310
10311 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10312 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10313 // PHI)... break the cycle.
10314 if (PN.hasOneUse()) {
10315 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10316 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
10317 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
10318 PotentiallyDeadPHIs.insert(&PN);
10319 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10320 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10321 }
10322
10323 // If this phi has a single use, and if that use just computes a value for
10324 // the next iteration of a loop, delete the phi. This occurs with unused
10325 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10326 // common case here is good because the only other things that catch this
10327 // are induction variable analysis (sometimes) and ADCE, which is only run
10328 // late.
10329 if (PHIUser->hasOneUse() &&
10330 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10331 PHIUser->use_back() == &PN) {
10332 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10333 }
10334 }
10335
Chris Lattner27b695d2007-11-06 21:52:06 +000010336 // We sometimes end up with phi cycles that non-obviously end up being the
10337 // same value, for example:
10338 // z = some value; x = phi (y, z); y = phi (x, z)
10339 // where the phi nodes don't necessarily need to be in the same block. Do a
10340 // quick check to see if the PHI node only contains a single non-phi value, if
10341 // so, scan to see if the phi cycle is actually equal to that value.
10342 {
10343 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10344 // Scan for the first non-phi operand.
10345 while (InValNo != NumOperandVals &&
10346 isa<PHINode>(PN.getIncomingValue(InValNo)))
10347 ++InValNo;
10348
10349 if (InValNo != NumOperandVals) {
10350 Value *NonPhiInVal = PN.getOperand(InValNo);
10351
10352 // Scan the rest of the operands to see if there are any conflicts, if so
10353 // there is no need to recursively scan other phis.
10354 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10355 Value *OpVal = PN.getIncomingValue(InValNo);
10356 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10357 break;
10358 }
10359
10360 // If we scanned over all operands, then we have one unique value plus
10361 // phi values. Scan PHI nodes to see if they all merge in each other or
10362 // the value.
10363 if (InValNo == NumOperandVals) {
10364 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10365 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10366 return ReplaceInstUsesWith(PN, NonPhiInVal);
10367 }
10368 }
10369 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010370 return 0;
10371}
10372
10373static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10374 Instruction *InsertPoint,
10375 InstCombiner *IC) {
10376 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10377 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
10378 // We must cast correctly to the pointer type. Ensure that we
10379 // sign extend the integer value if it is smaller as this is
10380 // used for address computation.
10381 Instruction::CastOps opcode =
10382 (VTySize < PtrSize ? Instruction::SExt :
10383 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10384 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
10385}
10386
10387
10388Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10389 Value *PtrOp = GEP.getOperand(0);
10390 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10391 // If so, eliminate the noop.
10392 if (GEP.getNumOperands() == 1)
10393 return ReplaceInstUsesWith(GEP, PtrOp);
10394
10395 if (isa<UndefValue>(GEP.getOperand(0)))
10396 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10397
10398 bool HasZeroPointerIndex = false;
10399 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10400 HasZeroPointerIndex = C->isNullValue();
10401
10402 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10403 return ReplaceInstUsesWith(GEP, PtrOp);
10404
10405 // Eliminate unneeded casts for indices.
10406 bool MadeChange = false;
10407
10408 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010409 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10410 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010411 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +000010412 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010413 if (CI->getOpcode() == Instruction::ZExt ||
10414 CI->getOpcode() == Instruction::SExt) {
10415 const Type *SrcTy = CI->getOperand(0)->getType();
10416 // We can eliminate a cast from i32 to i64 iff the target
10417 // is a 32-bit pointer target.
10418 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10419 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +000010420 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010421 }
10422 }
10423 }
10424 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +000010425 // to what we need. If narrower, sign-extend it to what we need.
10426 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010427 // insert it. This explicit cast can make subsequent optimizations more
10428 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +000010429 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010430 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010431 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +000010432 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010433 MadeChange = true;
10434 } else {
10435 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10436 GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010437 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010438 MadeChange = true;
10439 }
Dan Gohman5d639ed2008-09-11 23:06:38 +000010440 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10441 if (Constant *C = dyn_cast<Constant>(Op)) {
10442 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10443 MadeChange = true;
10444 } else {
10445 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10446 GEP);
10447 *i = Op;
10448 MadeChange = true;
10449 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010450 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010451 }
10452 }
10453 if (MadeChange) return &GEP;
10454
10455 // If this GEP instruction doesn't move the pointer, and if the input operand
10456 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10457 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +000010458 if (GEP.hasAllZeroIndices()) {
10459 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10460 // If the bitcast is of an allocation, and the allocation will be
10461 // converted to match the type of the cast, don't touch this.
10462 if (isa<AllocationInst>(BCI->getOperand(0))) {
10463 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +000010464 if (Instruction *I = visitBitCast(*BCI)) {
10465 if (I != BCI) {
10466 I->takeName(BCI);
10467 BCI->getParent()->getInstList().insert(BCI, I);
10468 ReplaceInstUsesWith(*BCI, I);
10469 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010470 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +000010471 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010472 }
10473 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10474 }
10475 }
10476
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010477 // Combine Indices - If the source pointer to this getelementptr instruction
10478 // is a getelementptr instruction, combine the indices of the two
10479 // getelementptr instructions into a single instruction.
10480 //
10481 SmallVector<Value*, 8> SrcGEPOperands;
10482 if (User *Src = dyn_castGetElementPtr(PtrOp))
10483 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
10484
10485 if (!SrcGEPOperands.empty()) {
10486 // Note that if our source is a gep chain itself that we wait for that
10487 // chain to be resolved before we perform this transformation. This
10488 // avoids us creating a TON of code in some cases.
10489 //
10490 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10491 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10492 return 0; // Wait until our source is folded to completion.
10493
10494 SmallVector<Value*, 8> Indices;
10495
10496 // Find out whether the last index in the source GEP is a sequential idx.
10497 bool EndsWithSequential = false;
10498 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10499 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
10500 EndsWithSequential = !isa<StructType>(*I);
10501
10502 // Can we combine the two pointer arithmetics offsets?
10503 if (EndsWithSequential) {
10504 // Replace: gep (gep %P, long B), long A, ...
10505 // With: T = long A+B; gep %P, T, ...
10506 //
10507 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
10508 if (SO1 == Constant::getNullValue(SO1->getType())) {
10509 Sum = GO1;
10510 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10511 Sum = SO1;
10512 } else {
10513 // If they aren't the same type, convert both to an integer of the
10514 // target's pointer size.
10515 if (SO1->getType() != GO1->getType()) {
10516 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
10517 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
10518 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
10519 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
10520 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010521 unsigned PS = TD->getPointerSizeInBits();
10522 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010523 // Convert GO1 to SO1's type.
10524 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
10525
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010526 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010527 // Convert SO1 to GO1's type.
10528 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
10529 } else {
10530 const Type *PT = TD->getIntPtrType();
10531 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10532 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10533 }
10534 }
10535 }
10536 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10537 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10538 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010539 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010540 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10541 }
10542 }
10543
10544 // Recycle the GEP we already have if possible.
10545 if (SrcGEPOperands.size() == 2) {
10546 GEP.setOperand(0, SrcGEPOperands[0]);
10547 GEP.setOperand(1, Sum);
10548 return &GEP;
10549 } else {
10550 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10551 SrcGEPOperands.end()-1);
10552 Indices.push_back(Sum);
10553 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10554 }
10555 } else if (isa<Constant>(*GEP.idx_begin()) &&
10556 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10557 SrcGEPOperands.size() != 1) {
10558 // Otherwise we can do the fold if the first index of the GEP is a zero
10559 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10560 SrcGEPOperands.end());
10561 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10562 }
10563
10564 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010565 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10566 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010567
10568 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10569 // GEP of global variable. If all of the indices for this GEP are
10570 // constants, we can promote this to a constexpr instead of an instruction.
10571
10572 // Scan for nonconstants...
10573 SmallVector<Constant*, 8> Indices;
10574 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10575 for (; I != E && isa<Constant>(*I); ++I)
10576 Indices.push_back(cast<Constant>(*I));
10577
10578 if (I == E) { // If they are all constants...
10579 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10580 &Indices[0],Indices.size());
10581
10582 // Replace all uses of the GEP with the new constexpr...
10583 return ReplaceInstUsesWith(GEP, CE);
10584 }
10585 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10586 if (!isa<PointerType>(X->getType())) {
10587 // Not interesting. Source pointer must be a cast from pointer.
10588 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010589 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10590 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010591 //
10592 // This occurs when the program declares an array extern like "int X[];"
10593 //
10594 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10595 const PointerType *XTy = cast<PointerType>(X->getType());
10596 if (const ArrayType *XATy =
10597 dyn_cast<ArrayType>(XTy->getElementType()))
10598 if (const ArrayType *CATy =
10599 dyn_cast<ArrayType>(CPTy->getElementType()))
10600 if (CATy->getElementType() == XATy->getElementType()) {
10601 // At this point, we know that the cast source type is a pointer
10602 // to an array of the same type as the destination pointer
10603 // array. Because the array type is never stepped over (there
10604 // is a leading zero) we can fold the cast into this GEP.
10605 GEP.setOperand(0, X);
10606 return &GEP;
10607 }
10608 } else if (GEP.getNumOperands() == 2) {
10609 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010610 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10611 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010612 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10613 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10614 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010615 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10616 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010617 Value *Idx[2];
10618 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10619 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010620 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010621 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010622 // V and GEP are both pointer types --> BitCast
10623 return new BitCastInst(V, GEP.getType());
10624 }
10625
10626 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010627 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010628 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010629 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010630
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010631 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010632 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010633 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010634
10635 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10636 // allow either a mul, shift, or constant here.
10637 Value *NewIdx = 0;
10638 ConstantInt *Scale = 0;
10639 if (ArrayEltSize == 1) {
10640 NewIdx = GEP.getOperand(1);
10641 Scale = ConstantInt::get(NewIdx->getType(), 1);
10642 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10643 NewIdx = ConstantInt::get(CI->getType(), 1);
10644 Scale = CI;
10645 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10646 if (Inst->getOpcode() == Instruction::Shl &&
10647 isa<ConstantInt>(Inst->getOperand(1))) {
10648 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10649 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10650 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10651 NewIdx = Inst->getOperand(0);
10652 } else if (Inst->getOpcode() == Instruction::Mul &&
10653 isa<ConstantInt>(Inst->getOperand(1))) {
10654 Scale = cast<ConstantInt>(Inst->getOperand(1));
10655 NewIdx = Inst->getOperand(0);
10656 }
10657 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010658
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010659 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010660 // out, perform the transformation. Note, we don't know whether Scale is
10661 // signed or not. We'll use unsigned version of division/modulo
10662 // operation after making sure Scale doesn't have the sign bit set.
10663 if (Scale && Scale->getSExtValue() >= 0LL &&
10664 Scale->getZExtValue() % ArrayEltSize == 0) {
10665 Scale = ConstantInt::get(Scale->getType(),
10666 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010667 if (Scale->getZExtValue() != 1) {
10668 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010669 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010670 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010671 NewIdx = InsertNewInstBefore(Sc, GEP);
10672 }
10673
10674 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010675 Value *Idx[2];
10676 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10677 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010678 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010679 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010680 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10681 // The NewGEP must be pointer typed, so must the old one -> BitCast
10682 return new BitCastInst(NewGEP, GEP.getType());
10683 }
10684 }
10685 }
10686 }
10687
10688 return 0;
10689}
10690
10691Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10692 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010693 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010694 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10695 const Type *NewTy =
10696 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10697 AllocationInst *New = 0;
10698
10699 // Create and insert the replacement instruction...
10700 if (isa<MallocInst>(AI))
10701 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10702 else {
10703 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10704 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10705 }
10706
10707 InsertNewInstBefore(New, AI);
10708
10709 // Scan to the end of the allocation instructions, to skip over a block of
10710 // allocas if possible...
10711 //
10712 BasicBlock::iterator It = New;
10713 while (isa<AllocationInst>(*It)) ++It;
10714
10715 // Now that I is pointing to the first non-allocation-inst in the block,
10716 // insert our getelementptr instruction...
10717 //
10718 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010719 Value *Idx[2];
10720 Idx[0] = NullIdx;
10721 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010722 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10723 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010724
10725 // Now make everything use the getelementptr instead of the original
10726 // allocation.
10727 return ReplaceInstUsesWith(AI, V);
10728 } else if (isa<UndefValue>(AI.getArraySize())) {
10729 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10730 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010731 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010732
10733 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10734 // Note that we only do this for alloca's, because malloc should allocate and
10735 // return a unique pointer, even for a zero byte allocation.
10736 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010737 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010738 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10739
10740 return 0;
10741}
10742
10743Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10744 Value *Op = FI.getOperand(0);
10745
10746 // free undef -> unreachable.
10747 if (isa<UndefValue>(Op)) {
10748 // Insert a new store to null because we cannot modify the CFG here.
10749 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010750 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010751 return EraseInstFromFunction(FI);
10752 }
10753
10754 // If we have 'free null' delete the instruction. This can happen in stl code
10755 // when lots of inlining happens.
10756 if (isa<ConstantPointerNull>(Op))
10757 return EraseInstFromFunction(FI);
10758
10759 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10760 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10761 FI.setOperand(0, CI->getOperand(0));
10762 return &FI;
10763 }
10764
10765 // Change free (gep X, 0,0,0,0) into free(X)
10766 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10767 if (GEPI->hasAllZeroIndices()) {
10768 AddToWorkList(GEPI);
10769 FI.setOperand(0, GEPI->getOperand(0));
10770 return &FI;
10771 }
10772 }
10773
10774 // Change free(malloc) into nothing, if the malloc has a single use.
10775 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10776 if (MI->hasOneUse()) {
10777 EraseInstFromFunction(FI);
10778 return EraseInstFromFunction(*MI);
10779 }
10780
10781 return 0;
10782}
10783
10784
10785/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010786static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010787 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010788 User *CI = cast<User>(LI.getOperand(0));
10789 Value *CastOp = CI->getOperand(0);
10790
Devang Patela0f8ea82007-10-18 19:52:32 +000010791 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10792 // Instead of loading constant c string, use corresponding integer value
10793 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010794 std::string Str;
10795 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010796 unsigned len = Str.length();
10797 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10798 unsigned numBits = Ty->getPrimitiveSizeInBits();
10799 // Replace LI with immediate integer store.
10800 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010801 APInt StrVal(numBits, 0);
10802 APInt SingleChar(numBits, 0);
10803 if (TD->isLittleEndian()) {
10804 for (signed i = len-1; i >= 0; i--) {
10805 SingleChar = (uint64_t) Str[i];
10806 StrVal = (StrVal << 8) | SingleChar;
10807 }
10808 } else {
10809 for (unsigned i = 0; i < len; i++) {
10810 SingleChar = (uint64_t) Str[i];
10811 StrVal = (StrVal << 8) | SingleChar;
10812 }
10813 // Append NULL at the end.
10814 SingleChar = 0;
10815 StrVal = (StrVal << 8) | SingleChar;
10816 }
10817 Value *NL = ConstantInt::get(StrVal);
10818 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010819 }
10820 }
10821 }
10822
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010823 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10824 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10825 const Type *SrcPTy = SrcTy->getElementType();
10826
10827 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10828 isa<VectorType>(DestPTy)) {
10829 // If the source is an array, the code below will not succeed. Check to
10830 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10831 // constants.
10832 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10833 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10834 if (ASrcTy->getNumElements() != 0) {
10835 Value *Idxs[2];
10836 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10837 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10838 SrcTy = cast<PointerType>(CastOp->getType());
10839 SrcPTy = SrcTy->getElementType();
10840 }
10841
10842 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10843 isa<VectorType>(SrcPTy)) &&
10844 // Do not allow turning this into a load of an integer, which is then
10845 // casted to a pointer, this pessimizes pointer analysis a lot.
10846 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10847 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10848 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10849
10850 // Okay, we are casting from one integer or pointer type to another of
10851 // the same size. Instead of casting the pointer before the load, cast
10852 // the result of the loaded value.
10853 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10854 CI->getName(),
10855 LI.isVolatile()),LI);
10856 // Now cast the result of the load.
10857 return new BitCastInst(NewLoad, LI.getType());
10858 }
10859 }
10860 }
10861 return 0;
10862}
10863
10864/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10865/// from this value cannot trap. If it is not obviously safe to load from the
10866/// specified pointer, we do a quick local scan of the basic block containing
10867/// ScanFrom, to determine if the address is already accessed.
10868static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010869 // If it is an alloca it is always safe to load from.
10870 if (isa<AllocaInst>(V)) return true;
10871
Duncan Sandse40a94a2007-09-19 10:25:38 +000010872 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010873 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010874 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010875 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010876
10877 // Otherwise, be a little bit agressive by scanning the local block where we
10878 // want to check to see if the pointer is already being loaded or stored
10879 // from/to. If so, the previous load or store would have already trapped,
10880 // so there is no harm doing an extra load (also, CSE will later eliminate
10881 // the load entirely).
10882 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10883
10884 while (BBI != E) {
10885 --BBI;
10886
Chris Lattner476983a2008-06-20 05:12:56 +000010887 // If we see a free or a call (which might do a free) the pointer could be
10888 // marked invalid.
10889 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10890 return false;
10891
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010892 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10893 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010894 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010895 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010896 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010897
10898 }
10899 return false;
10900}
10901
10902Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10903 Value *Op = LI.getOperand(0);
10904
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010905 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010906 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10907 if (KnownAlign >
10908 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10909 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010910 LI.setAlignment(KnownAlign);
10911
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010912 // load (cast X) --> cast (load X) iff safe
10913 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010914 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010915 return Res;
10916
10917 // None of the following transforms are legal for volatile loads.
10918 if (LI.isVolatile()) return 0;
10919
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010920 // Do really simple store-to-load forwarding and load CSE, to catch cases
10921 // where there are several consequtive memory accesses to the same location,
10922 // separated by a few arithmetic operations.
10923 BasicBlock::iterator BBI = &LI;
Chris Lattner6fd8c802008-11-27 08:56:30 +000010924 if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
10925 return ReplaceInstUsesWith(LI, AvailableVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010926
Christopher Lamb2c175392007-12-29 07:56:53 +000010927 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10928 const Value *GEPI0 = GEPI->getOperand(0);
10929 // TODO: Consider a target hook for valid address spaces for this xform.
10930 if (isa<ConstantPointerNull>(GEPI0) &&
10931 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010932 // Insert a new store to null instruction before the load to indicate
10933 // that this code is not reachable. We do this instead of inserting
10934 // an unreachable instruction directly because we cannot modify the
10935 // CFG.
10936 new StoreInst(UndefValue::get(LI.getType()),
10937 Constant::getNullValue(Op->getType()), &LI);
10938 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10939 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010940 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010941
10942 if (Constant *C = dyn_cast<Constant>(Op)) {
10943 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010944 // TODO: Consider a target hook for valid address spaces for this xform.
10945 if (isa<UndefValue>(C) || (C->isNullValue() &&
10946 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010947 // Insert a new store to null instruction before the load to indicate that
10948 // this code is not reachable. We do this instead of inserting an
10949 // unreachable instruction directly because we cannot modify the CFG.
10950 new StoreInst(UndefValue::get(LI.getType()),
10951 Constant::getNullValue(Op->getType()), &LI);
10952 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10953 }
10954
10955 // Instcombine load (constant global) into the value loaded.
10956 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10957 if (GV->isConstant() && !GV->isDeclaration())
10958 return ReplaceInstUsesWith(LI, GV->getInitializer());
10959
10960 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010961 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010962 if (CE->getOpcode() == Instruction::GetElementPtr) {
10963 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10964 if (GV->isConstant() && !GV->isDeclaration())
10965 if (Constant *V =
10966 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10967 return ReplaceInstUsesWith(LI, V);
10968 if (CE->getOperand(0)->isNullValue()) {
10969 // Insert a new store to null instruction before the load to indicate
10970 // that this code is not reachable. We do this instead of inserting
10971 // an unreachable instruction directly because we cannot modify the
10972 // CFG.
10973 new StoreInst(UndefValue::get(LI.getType()),
10974 Constant::getNullValue(Op->getType()), &LI);
10975 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10976 }
10977
10978 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010979 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010980 return Res;
10981 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010982 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010983 }
Chris Lattner0270a112007-08-11 18:48:48 +000010984
10985 // If this load comes from anywhere in a constant global, and if the global
10986 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000010987 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000010988 if (GV->isConstant() && GV->hasInitializer()) {
10989 if (GV->getInitializer()->isNullValue())
10990 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10991 else if (isa<UndefValue>(GV->getInitializer()))
10992 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10993 }
10994 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010995
10996 if (Op->hasOneUse()) {
10997 // Change select and PHI nodes to select values instead of addresses: this
10998 // helps alias analysis out a lot, allows many others simplifications, and
10999 // exposes redundancy in the code.
11000 //
11001 // Note that we cannot do the transformation unless we know that the
11002 // introduced loads cannot trap! Something like this is valid as long as
11003 // the condition is always false: load (select bool %C, int* null, int* %G),
11004 // but it would not be valid if we transformed it to load from null
11005 // unconditionally.
11006 //
11007 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
11008 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
11009 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
11010 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
11011 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
11012 SI->getOperand(1)->getName()+".val"), LI);
11013 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
11014 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000011015 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011016 }
11017
11018 // load (select (cond, null, P)) -> load P
11019 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
11020 if (C->isNullValue()) {
11021 LI.setOperand(0, SI->getOperand(2));
11022 return &LI;
11023 }
11024
11025 // load (select (cond, P, null)) -> load P
11026 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
11027 if (C->isNullValue()) {
11028 LI.setOperand(0, SI->getOperand(1));
11029 return &LI;
11030 }
11031 }
11032 }
11033 return 0;
11034}
11035
11036/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
11037/// when possible.
11038static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
11039 User *CI = cast<User>(SI.getOperand(1));
11040 Value *CastOp = CI->getOperand(0);
11041
11042 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
11043 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
11044 const Type *SrcPTy = SrcTy->getElementType();
11045
11046 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
11047 // If the source is an array, the code below will not succeed. Check to
11048 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
11049 // constants.
11050 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
11051 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
11052 if (ASrcTy->getNumElements() != 0) {
11053 Value* Idxs[2];
11054 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
11055 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
11056 SrcTy = cast<PointerType>(CastOp->getType());
11057 SrcPTy = SrcTy->getElementType();
11058 }
11059
11060 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
11061 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
11062 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
11063
11064 // Okay, we are casting from one integer or pointer type to another of
11065 // the same size. Instead of casting the pointer before
11066 // the store, cast the value to be stored.
11067 Value *NewCast;
11068 Value *SIOp0 = SI.getOperand(0);
11069 Instruction::CastOps opcode = Instruction::BitCast;
11070 const Type* CastSrcTy = SIOp0->getType();
11071 const Type* CastDstTy = SrcPTy;
11072 if (isa<PointerType>(CastDstTy)) {
11073 if (CastSrcTy->isInteger())
11074 opcode = Instruction::IntToPtr;
11075 } else if (isa<IntegerType>(CastDstTy)) {
11076 if (isa<PointerType>(SIOp0->getType()))
11077 opcode = Instruction::PtrToInt;
11078 }
11079 if (Constant *C = dyn_cast<Constant>(SIOp0))
11080 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
11081 else
11082 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000011083 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011084 SI);
11085 return new StoreInst(NewCast, CastOp);
11086 }
11087 }
11088 }
11089 return 0;
11090}
11091
Chris Lattner6fd8c802008-11-27 08:56:30 +000011092/// equivalentAddressValues - Test if A and B will obviously have the same
11093/// value. This includes recognizing that %t0 and %t1 will have the same
11094/// value in code like this:
11095/// %t0 = getelementptr @a, 0, 3
11096/// store i32 0, i32* %t0
11097/// %t1 = getelementptr @a, 0, 3
11098/// %t2 = load i32* %t1
11099///
11100static bool equivalentAddressValues(Value *A, Value *B) {
11101 // Test if the values are trivially equivalent.
11102 if (A == B) return true;
11103
11104 // Test if the values come form identical arithmetic instructions.
11105 if (isa<BinaryOperator>(A) ||
11106 isa<CastInst>(A) ||
11107 isa<PHINode>(A) ||
11108 isa<GetElementPtrInst>(A))
11109 if (Instruction *BI = dyn_cast<Instruction>(B))
11110 if (cast<Instruction>(A)->isIdenticalTo(BI))
11111 return true;
11112
11113 // Otherwise they may not be equivalent.
11114 return false;
11115}
11116
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011117Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
11118 Value *Val = SI.getOperand(0);
11119 Value *Ptr = SI.getOperand(1);
11120
11121 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
11122 EraseInstFromFunction(SI);
11123 ++NumCombined;
11124 return 0;
11125 }
11126
11127 // If the RHS is an alloca with a single use, zapify the store, making the
11128 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000011129 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011130 if (isa<AllocaInst>(Ptr)) {
11131 EraseInstFromFunction(SI);
11132 ++NumCombined;
11133 return 0;
11134 }
11135
11136 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
11137 if (isa<AllocaInst>(GEP->getOperand(0)) &&
11138 GEP->getOperand(0)->hasOneUse()) {
11139 EraseInstFromFunction(SI);
11140 ++NumCombined;
11141 return 0;
11142 }
11143 }
11144
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011145 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000011146 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
11147 if (KnownAlign >
11148 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
11149 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011150 SI.setAlignment(KnownAlign);
11151
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011152 // Do really simple DSE, to catch cases where there are several consequtive
11153 // stores to the same location, separated by a few arithmetic operations. This
11154 // situation often occurs with bitfield accesses.
11155 BasicBlock::iterator BBI = &SI;
11156 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
11157 --ScanInsts) {
11158 --BBI;
11159
11160 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
11161 // Prev store isn't volatile, and stores to the same location?
Chris Lattner6fd8c802008-11-27 08:56:30 +000011162 if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
11163 SI.getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011164 ++NumDeadStore;
11165 ++BBI;
11166 EraseInstFromFunction(*PrevSI);
11167 continue;
11168 }
11169 break;
11170 }
11171
11172 // If this is a load, we have to stop. However, if the loaded value is from
11173 // the pointer we're loading and is producing the pointer we're storing,
11174 // then *this* store is dead (X = load P; store X -> P).
11175 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011176 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11177 !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011178 EraseInstFromFunction(SI);
11179 ++NumCombined;
11180 return 0;
11181 }
11182 // Otherwise, this is a load from some other location. Stores before it
11183 // may not be dead.
11184 break;
11185 }
11186
11187 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000011188 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011189 break;
11190 }
11191
11192
11193 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
11194
11195 // store X, null -> turns into 'unreachable' in SimplifyCFG
11196 if (isa<ConstantPointerNull>(Ptr)) {
11197 if (!isa<UndefValue>(Val)) {
11198 SI.setOperand(0, UndefValue::get(Val->getType()));
11199 if (Instruction *U = dyn_cast<Instruction>(Val))
11200 AddToWorkList(U); // Dropped a use.
11201 ++NumCombined;
11202 }
11203 return 0; // Do not modify these!
11204 }
11205
11206 // store undef, Ptr -> noop
11207 if (isa<UndefValue>(Val)) {
11208 EraseInstFromFunction(SI);
11209 ++NumCombined;
11210 return 0;
11211 }
11212
11213 // If the pointer destination is a cast, see if we can fold the cast into the
11214 // source instead.
11215 if (isa<CastInst>(Ptr))
11216 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11217 return Res;
11218 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
11219 if (CE->isCast())
11220 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11221 return Res;
11222
11223
11224 // If this store is the last instruction in the basic block, and if the block
11225 // ends with an unconditional branch, try to move it to the successor block.
11226 BBI = &SI; ++BBI;
11227 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
11228 if (BI->isUnconditional())
11229 if (SimplifyStoreAtEndOfBlock(SI))
11230 return 0; // xform done!
11231
11232 return 0;
11233}
11234
11235/// SimplifyStoreAtEndOfBlock - Turn things like:
11236/// if () { *P = v1; } else { *P = v2 }
11237/// into a phi node with a store in the successor.
11238///
11239/// Simplify things like:
11240/// *P = v1; if () { *P = v2; }
11241/// into a phi node with a store in the successor.
11242///
11243bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11244 BasicBlock *StoreBB = SI.getParent();
11245
11246 // Check to see if the successor block has exactly two incoming edges. If
11247 // so, see if the other predecessor contains a store to the same location.
11248 // if so, insert a PHI node (if needed) and move the stores down.
11249 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
11250
11251 // Determine whether Dest has exactly two predecessors and, if so, compute
11252 // the other predecessor.
11253 pred_iterator PI = pred_begin(DestBB);
11254 BasicBlock *OtherBB = 0;
11255 if (*PI != StoreBB)
11256 OtherBB = *PI;
11257 ++PI;
11258 if (PI == pred_end(DestBB))
11259 return false;
11260
11261 if (*PI != StoreBB) {
11262 if (OtherBB)
11263 return false;
11264 OtherBB = *PI;
11265 }
11266 if (++PI != pred_end(DestBB))
11267 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000011268
11269 // Bail out if all the relevant blocks aren't distinct (this can happen,
11270 // for example, if SI is in an infinite loop)
11271 if (StoreBB == DestBB || OtherBB == DestBB)
11272 return false;
11273
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011274 // Verify that the other block ends in a branch and is not otherwise empty.
11275 BasicBlock::iterator BBI = OtherBB->getTerminator();
11276 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
11277 if (!OtherBr || BBI == OtherBB->begin())
11278 return false;
11279
11280 // If the other block ends in an unconditional branch, check for the 'if then
11281 // else' case. there is an instruction before the branch.
11282 StoreInst *OtherStore = 0;
11283 if (OtherBr->isUnconditional()) {
11284 // If this isn't a store, or isn't a store to the same location, bail out.
11285 --BBI;
11286 OtherStore = dyn_cast<StoreInst>(BBI);
11287 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11288 return false;
11289 } else {
11290 // Otherwise, the other block ended with a conditional branch. If one of the
11291 // destinations is StoreBB, then we have the if/then case.
11292 if (OtherBr->getSuccessor(0) != StoreBB &&
11293 OtherBr->getSuccessor(1) != StoreBB)
11294 return false;
11295
11296 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11297 // if/then triangle. See if there is a store to the same ptr as SI that
11298 // lives in OtherBB.
11299 for (;; --BBI) {
11300 // Check to see if we find the matching store.
11301 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11302 if (OtherStore->getOperand(1) != SI.getOperand(1))
11303 return false;
11304 break;
11305 }
Eli Friedman3a311d52008-06-13 22:02:12 +000011306 // If we find something that may be using or overwriting the stored
11307 // value, or if we run out of instructions, we can't do the xform.
11308 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011309 BBI == OtherBB->begin())
11310 return false;
11311 }
11312
11313 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000011314 // make sure nothing reads or overwrites the stored value in
11315 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011316 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11317 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000011318 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011319 return false;
11320 }
11321 }
11322
11323 // Insert a PHI node now if we need it.
11324 Value *MergedVal = OtherStore->getOperand(0);
11325 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000011326 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011327 PN->reserveOperandSpace(2);
11328 PN->addIncoming(SI.getOperand(0), SI.getParent());
11329 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11330 MergedVal = InsertNewInstBefore(PN, DestBB->front());
11331 }
11332
11333 // Advance to a place where it is safe to insert the new store and
11334 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000011335 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011336 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11337 OtherStore->isVolatile()), *BBI);
11338
11339 // Nuke the old stores.
11340 EraseInstFromFunction(SI);
11341 EraseInstFromFunction(*OtherStore);
11342 ++NumCombined;
11343 return true;
11344}
11345
11346
11347Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11348 // Change br (not X), label True, label False to: br X, label False, True
11349 Value *X = 0;
11350 BasicBlock *TrueDest;
11351 BasicBlock *FalseDest;
11352 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11353 !isa<Constant>(X)) {
11354 // Swap Destinations and condition...
11355 BI.setCondition(X);
11356 BI.setSuccessor(0, FalseDest);
11357 BI.setSuccessor(1, TrueDest);
11358 return &BI;
11359 }
11360
11361 // Cannonicalize fcmp_one -> fcmp_oeq
11362 FCmpInst::Predicate FPred; Value *Y;
11363 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11364 TrueDest, FalseDest)))
11365 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11366 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11367 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
11368 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
11369 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11370 NewSCC->takeName(I);
11371 // Swap Destinations and condition...
11372 BI.setCondition(NewSCC);
11373 BI.setSuccessor(0, FalseDest);
11374 BI.setSuccessor(1, TrueDest);
11375 RemoveFromWorkList(I);
11376 I->eraseFromParent();
11377 AddToWorkList(NewSCC);
11378 return &BI;
11379 }
11380
11381 // Cannonicalize icmp_ne -> icmp_eq
11382 ICmpInst::Predicate IPred;
11383 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11384 TrueDest, FalseDest)))
11385 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11386 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11387 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11388 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
11389 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
11390 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11391 NewSCC->takeName(I);
11392 // Swap Destinations and condition...
11393 BI.setCondition(NewSCC);
11394 BI.setSuccessor(0, FalseDest);
11395 BI.setSuccessor(1, TrueDest);
11396 RemoveFromWorkList(I);
11397 I->eraseFromParent();;
11398 AddToWorkList(NewSCC);
11399 return &BI;
11400 }
11401
11402 return 0;
11403}
11404
11405Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11406 Value *Cond = SI.getCondition();
11407 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11408 if (I->getOpcode() == Instruction::Add)
11409 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11410 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11411 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11412 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11413 AddRHS));
11414 SI.setOperand(0, I->getOperand(0));
11415 AddToWorkList(I);
11416 return &SI;
11417 }
11418 }
11419 return 0;
11420}
11421
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011422Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011423 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011424
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011425 if (!EV.hasIndices())
11426 return ReplaceInstUsesWith(EV, Agg);
11427
11428 if (Constant *C = dyn_cast<Constant>(Agg)) {
11429 if (isa<UndefValue>(C))
11430 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11431
11432 if (isa<ConstantAggregateZero>(C))
11433 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11434
11435 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11436 // Extract the element indexed by the first index out of the constant
11437 Value *V = C->getOperand(*EV.idx_begin());
11438 if (EV.getNumIndices() > 1)
11439 // Extract the remaining indices out of the constant indexed by the
11440 // first index
11441 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11442 else
11443 return ReplaceInstUsesWith(EV, V);
11444 }
11445 return 0; // Can't handle other constants
11446 }
11447 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11448 // We're extracting from an insertvalue instruction, compare the indices
11449 const unsigned *exti, *exte, *insi, *inse;
11450 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11451 exte = EV.idx_end(), inse = IV->idx_end();
11452 exti != exte && insi != inse;
11453 ++exti, ++insi) {
11454 if (*insi != *exti)
11455 // The insert and extract both reference distinctly different elements.
11456 // This means the extract is not influenced by the insert, and we can
11457 // replace the aggregate operand of the extract with the aggregate
11458 // operand of the insert. i.e., replace
11459 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11460 // %E = extractvalue { i32, { i32 } } %I, 0
11461 // with
11462 // %E = extractvalue { i32, { i32 } } %A, 0
11463 return ExtractValueInst::Create(IV->getAggregateOperand(),
11464 EV.idx_begin(), EV.idx_end());
11465 }
11466 if (exti == exte && insi == inse)
11467 // Both iterators are at the end: Index lists are identical. Replace
11468 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11469 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11470 // with "i32 42"
11471 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11472 if (exti == exte) {
11473 // The extract list is a prefix of the insert list. i.e. replace
11474 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11475 // %E = extractvalue { i32, { i32 } } %I, 1
11476 // with
11477 // %X = extractvalue { i32, { i32 } } %A, 1
11478 // %E = insertvalue { i32 } %X, i32 42, 0
11479 // by switching the order of the insert and extract (though the
11480 // insertvalue should be left in, since it may have other uses).
11481 Value *NewEV = InsertNewInstBefore(
11482 ExtractValueInst::Create(IV->getAggregateOperand(),
11483 EV.idx_begin(), EV.idx_end()),
11484 EV);
11485 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11486 insi, inse);
11487 }
11488 if (insi == inse)
11489 // The insert list is a prefix of the extract list
11490 // We can simply remove the common indices from the extract and make it
11491 // operate on the inserted value instead of the insertvalue result.
11492 // i.e., replace
11493 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11494 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11495 // with
11496 // %E extractvalue { i32 } { i32 42 }, 0
11497 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11498 exti, exte);
11499 }
11500 // Can't simplify extracts from other values. Note that nested extracts are
11501 // already simplified implicitely by the above (extract ( extract (insert) )
11502 // will be translated into extract ( insert ( extract ) ) first and then just
11503 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011504 return 0;
11505}
11506
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011507/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11508/// is to leave as a vector operation.
11509static bool CheapToScalarize(Value *V, bool isConstant) {
11510 if (isa<ConstantAggregateZero>(V))
11511 return true;
11512 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
11513 if (isConstant) return true;
11514 // If all elts are the same, we can extract.
11515 Constant *Op0 = C->getOperand(0);
11516 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11517 if (C->getOperand(i) != Op0)
11518 return false;
11519 return true;
11520 }
11521 Instruction *I = dyn_cast<Instruction>(V);
11522 if (!I) return false;
11523
11524 // Insert element gets simplified to the inserted element or is deleted if
11525 // this is constant idx extract element and its a constant idx insertelt.
11526 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11527 isa<ConstantInt>(I->getOperand(2)))
11528 return true;
11529 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11530 return true;
11531 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11532 if (BO->hasOneUse() &&
11533 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11534 CheapToScalarize(BO->getOperand(1), isConstant)))
11535 return true;
11536 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11537 if (CI->hasOneUse() &&
11538 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11539 CheapToScalarize(CI->getOperand(1), isConstant)))
11540 return true;
11541
11542 return false;
11543}
11544
11545/// Read and decode a shufflevector mask.
11546///
11547/// It turns undef elements into values that are larger than the number of
11548/// elements in the input.
11549static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11550 unsigned NElts = SVI->getType()->getNumElements();
11551 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11552 return std::vector<unsigned>(NElts, 0);
11553 if (isa<UndefValue>(SVI->getOperand(2)))
11554 return std::vector<unsigned>(NElts, 2*NElts);
11555
11556 std::vector<unsigned> Result;
11557 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011558 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11559 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011560 Result.push_back(NElts*2); // undef -> 8
11561 else
Gabor Greif17396002008-06-12 21:37:33 +000011562 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011563 return Result;
11564}
11565
11566/// FindScalarElement - Given a vector and an element number, see if the scalar
11567/// value is already around as a register, for example if it were inserted then
11568/// extracted from the vector.
11569static Value *FindScalarElement(Value *V, unsigned EltNo) {
11570 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11571 const VectorType *PTy = cast<VectorType>(V->getType());
11572 unsigned Width = PTy->getNumElements();
11573 if (EltNo >= Width) // Out of range access.
11574 return UndefValue::get(PTy->getElementType());
11575
11576 if (isa<UndefValue>(V))
11577 return UndefValue::get(PTy->getElementType());
11578 else if (isa<ConstantAggregateZero>(V))
11579 return Constant::getNullValue(PTy->getElementType());
11580 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11581 return CP->getOperand(EltNo);
11582 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11583 // If this is an insert to a variable element, we don't know what it is.
11584 if (!isa<ConstantInt>(III->getOperand(2)))
11585 return 0;
11586 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11587
11588 // If this is an insert to the element we are looking for, return the
11589 // inserted value.
11590 if (EltNo == IIElt)
11591 return III->getOperand(1);
11592
11593 // Otherwise, the insertelement doesn't modify the value, recurse on its
11594 // vector input.
11595 return FindScalarElement(III->getOperand(0), EltNo);
11596 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011597 unsigned LHSWidth =
11598 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011599 unsigned InEl = getShuffleMask(SVI)[EltNo];
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011600 if (InEl < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011601 return FindScalarElement(SVI->getOperand(0), InEl);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011602 else if (InEl < LHSWidth*2)
11603 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011604 else
11605 return UndefValue::get(PTy->getElementType());
11606 }
11607
11608 // Otherwise, we don't know.
11609 return 0;
11610}
11611
11612Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011613 // If vector val is undef, replace extract with scalar undef.
11614 if (isa<UndefValue>(EI.getOperand(0)))
11615 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11616
11617 // If vector val is constant 0, replace extract with scalar 0.
11618 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11619 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11620
11621 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011622 // If vector val is constant with all elements the same, replace EI with
11623 // that element. When the elements are not identical, we cannot replace yet
11624 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011625 Constant *op0 = C->getOperand(0);
11626 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11627 if (C->getOperand(i) != op0) {
11628 op0 = 0;
11629 break;
11630 }
11631 if (op0)
11632 return ReplaceInstUsesWith(EI, op0);
11633 }
11634
11635 // If extracting a specified index from the vector, see if we can recursively
11636 // find a previously computed scalar that was inserted into the vector.
11637 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11638 unsigned IndexVal = IdxC->getZExtValue();
11639 unsigned VectorWidth =
11640 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11641
11642 // If this is extracting an invalid index, turn this into undef, to avoid
11643 // crashing the code below.
11644 if (IndexVal >= VectorWidth)
11645 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11646
11647 // This instruction only demands the single element from the input vector.
11648 // If the input vector has a single use, simplify it based on this use
11649 // property.
11650 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11651 uint64_t UndefElts;
11652 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11653 1 << IndexVal,
11654 UndefElts)) {
11655 EI.setOperand(0, V);
11656 return &EI;
11657 }
11658 }
11659
11660 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11661 return ReplaceInstUsesWith(EI, Elt);
11662
11663 // If the this extractelement is directly using a bitcast from a vector of
11664 // the same number of elements, see if we can find the source element from
11665 // it. In this case, we will end up needing to bitcast the scalars.
11666 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11667 if (const VectorType *VT =
11668 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11669 if (VT->getNumElements() == VectorWidth)
11670 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11671 return new BitCastInst(Elt, EI.getType());
11672 }
11673 }
11674
11675 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11676 if (I->hasOneUse()) {
11677 // Push extractelement into predecessor operation if legal and
11678 // profitable to do so
11679 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11680 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11681 if (CheapToScalarize(BO, isConstantElt)) {
11682 ExtractElementInst *newEI0 =
11683 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11684 EI.getName()+".lhs");
11685 ExtractElementInst *newEI1 =
11686 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11687 EI.getName()+".rhs");
11688 InsertNewInstBefore(newEI0, EI);
11689 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011690 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011691 }
11692 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011693 unsigned AS =
11694 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011695 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11696 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011697 GetElementPtrInst *GEP =
11698 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011699 InsertNewInstBefore(GEP, EI);
11700 return new LoadInst(GEP);
11701 }
11702 }
11703 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11704 // Extracting the inserted element?
11705 if (IE->getOperand(2) == EI.getOperand(1))
11706 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11707 // If the inserted and extracted elements are constants, they must not
11708 // be the same value, extract from the pre-inserted value instead.
11709 if (isa<Constant>(IE->getOperand(2)) &&
11710 isa<Constant>(EI.getOperand(1))) {
11711 AddUsesToWorkList(EI);
11712 EI.setOperand(0, IE->getOperand(0));
11713 return &EI;
11714 }
11715 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11716 // If this is extracting an element from a shufflevector, figure out where
11717 // it came from and extract from the appropriate input element instead.
11718 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11719 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11720 Value *Src;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011721 unsigned LHSWidth =
11722 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
11723
11724 if (SrcIdx < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011725 Src = SVI->getOperand(0);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011726 else if (SrcIdx < LHSWidth*2) {
11727 SrcIdx -= LHSWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011728 Src = SVI->getOperand(1);
11729 } else {
11730 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11731 }
11732 return new ExtractElementInst(Src, SrcIdx);
11733 }
11734 }
11735 }
11736 return 0;
11737}
11738
11739/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11740/// elements from either LHS or RHS, return the shuffle mask and true.
11741/// Otherwise, return false.
11742static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11743 std::vector<Constant*> &Mask) {
11744 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11745 "Invalid CollectSingleShuffleElements");
11746 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11747
11748 if (isa<UndefValue>(V)) {
11749 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11750 return true;
11751 } else if (V == LHS) {
11752 for (unsigned i = 0; i != NumElts; ++i)
11753 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11754 return true;
11755 } else if (V == RHS) {
11756 for (unsigned i = 0; i != NumElts; ++i)
11757 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11758 return true;
11759 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11760 // If this is an insert of an extract from some other vector, include it.
11761 Value *VecOp = IEI->getOperand(0);
11762 Value *ScalarOp = IEI->getOperand(1);
11763 Value *IdxOp = IEI->getOperand(2);
11764
11765 if (!isa<ConstantInt>(IdxOp))
11766 return false;
11767 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11768
11769 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11770 // Okay, we can handle this if the vector we are insertinting into is
11771 // transitively ok.
11772 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11773 // If so, update the mask to reflect the inserted undef.
11774 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11775 return true;
11776 }
11777 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11778 if (isa<ConstantInt>(EI->getOperand(1)) &&
11779 EI->getOperand(0)->getType() == V->getType()) {
11780 unsigned ExtractedIdx =
11781 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11782
11783 // This must be extracting from either LHS or RHS.
11784 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11785 // Okay, we can handle this if the vector we are insertinting into is
11786 // transitively ok.
11787 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11788 // If so, update the mask to reflect the inserted value.
11789 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011790 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011791 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11792 } else {
11793 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011794 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011795 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11796
11797 }
11798 return true;
11799 }
11800 }
11801 }
11802 }
11803 }
11804 // TODO: Handle shufflevector here!
11805
11806 return false;
11807}
11808
11809/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11810/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11811/// that computes V and the LHS value of the shuffle.
11812static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11813 Value *&RHS) {
11814 assert(isa<VectorType>(V->getType()) &&
11815 (RHS == 0 || V->getType() == RHS->getType()) &&
11816 "Invalid shuffle!");
11817 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11818
11819 if (isa<UndefValue>(V)) {
11820 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11821 return V;
11822 } else if (isa<ConstantAggregateZero>(V)) {
11823 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11824 return V;
11825 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11826 // If this is an insert of an extract from some other vector, include it.
11827 Value *VecOp = IEI->getOperand(0);
11828 Value *ScalarOp = IEI->getOperand(1);
11829 Value *IdxOp = IEI->getOperand(2);
11830
11831 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11832 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11833 EI->getOperand(0)->getType() == V->getType()) {
11834 unsigned ExtractedIdx =
11835 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11836 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11837
11838 // Either the extracted from or inserted into vector must be RHSVec,
11839 // otherwise we'd end up with a shuffle of three inputs.
11840 if (EI->getOperand(0) == RHS || RHS == 0) {
11841 RHS = EI->getOperand(0);
11842 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011843 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011844 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11845 return V;
11846 }
11847
11848 if (VecOp == RHS) {
11849 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11850 // Everything but the extracted element is replaced with the RHS.
11851 for (unsigned i = 0; i != NumElts; ++i) {
11852 if (i != InsertedIdx)
11853 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11854 }
11855 return V;
11856 }
11857
11858 // If this insertelement is a chain that comes from exactly these two
11859 // vectors, return the vector and the effective shuffle.
11860 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11861 return EI->getOperand(0);
11862
11863 }
11864 }
11865 }
11866 // TODO: Handle shufflevector here!
11867
11868 // Otherwise, can't do anything fancy. Return an identity vector.
11869 for (unsigned i = 0; i != NumElts; ++i)
11870 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11871 return V;
11872}
11873
11874Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11875 Value *VecOp = IE.getOperand(0);
11876 Value *ScalarOp = IE.getOperand(1);
11877 Value *IdxOp = IE.getOperand(2);
11878
11879 // Inserting an undef or into an undefined place, remove this.
11880 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11881 ReplaceInstUsesWith(IE, VecOp);
11882
11883 // If the inserted element was extracted from some other vector, and if the
11884 // indexes are constant, try to turn this into a shufflevector operation.
11885 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11886 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11887 EI->getOperand(0)->getType() == IE.getType()) {
11888 unsigned NumVectorElts = IE.getType()->getNumElements();
11889 unsigned ExtractedIdx =
11890 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11891 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11892
11893 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11894 return ReplaceInstUsesWith(IE, VecOp);
11895
11896 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11897 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11898
11899 // If we are extracting a value from a vector, then inserting it right
11900 // back into the same place, just use the input vector.
11901 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11902 return ReplaceInstUsesWith(IE, VecOp);
11903
11904 // We could theoretically do this for ANY input. However, doing so could
11905 // turn chains of insertelement instructions into a chain of shufflevector
11906 // instructions, and right now we do not merge shufflevectors. As such,
11907 // only do this in a situation where it is clear that there is benefit.
11908 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11909 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11910 // the values of VecOp, except then one read from EIOp0.
11911 // Build a new shuffle mask.
11912 std::vector<Constant*> Mask;
11913 if (isa<UndefValue>(VecOp))
11914 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11915 else {
11916 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11917 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11918 NumVectorElts));
11919 }
11920 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11921 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11922 ConstantVector::get(Mask));
11923 }
11924
11925 // If this insertelement isn't used by some other insertelement, turn it
11926 // (and any insertelements it points to), into one big shuffle.
11927 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11928 std::vector<Constant*> Mask;
11929 Value *RHS = 0;
11930 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11931 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11932 // We now have a shuffle of LHS, RHS, Mask.
11933 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11934 }
11935 }
11936 }
11937
11938 return 0;
11939}
11940
11941
11942Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11943 Value *LHS = SVI.getOperand(0);
11944 Value *RHS = SVI.getOperand(1);
11945 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11946
11947 bool MadeChange = false;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011948
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011949 // Undefined shuffle mask -> undefined value.
11950 if (isa<UndefValue>(SVI.getOperand(2)))
11951 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011952
11953 uint64_t UndefElts;
11954 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011955
11956 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
11957 return 0;
11958
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011959 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11960 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000011961 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11962 LHS = SVI.getOperand(0);
11963 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011964 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000011965 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011966
11967 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11968 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11969 if (LHS == RHS || isa<UndefValue>(LHS)) {
11970 if (isa<UndefValue>(LHS) && LHS == RHS) {
11971 // shuffle(undef,undef,mask) -> undef.
11972 return ReplaceInstUsesWith(SVI, LHS);
11973 }
11974
11975 // Remap any references to RHS to use LHS.
11976 std::vector<Constant*> Elts;
11977 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11978 if (Mask[i] >= 2*e)
11979 Elts.push_back(UndefValue::get(Type::Int32Ty));
11980 else {
11981 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000011982 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011983 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011984 Elts.push_back(UndefValue::get(Type::Int32Ty));
11985 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011986 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011987 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11988 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011989 }
11990 }
11991 SVI.setOperand(0, SVI.getOperand(1));
11992 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11993 SVI.setOperand(2, ConstantVector::get(Elts));
11994 LHS = SVI.getOperand(0);
11995 RHS = SVI.getOperand(1);
11996 MadeChange = true;
11997 }
11998
11999 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
12000 bool isLHSID = true, isRHSID = true;
12001
12002 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
12003 if (Mask[i] >= e*2) continue; // Ignore undef values.
12004 // Is this an identity shuffle of the LHS value?
12005 isLHSID &= (Mask[i] == i);
12006
12007 // Is this an identity shuffle of the RHS value?
12008 isRHSID &= (Mask[i]-e == i);
12009 }
12010
12011 // Eliminate identity shuffles.
12012 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
12013 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
12014
12015 // If the LHS is a shufflevector itself, see if we can combine it with this
12016 // one without producing an unusual shuffle. Here we are really conservative:
12017 // we are absolutely afraid of producing a shuffle mask not in the input
12018 // program, because the code gen may not be smart enough to turn a merged
12019 // shuffle into two specific shuffles: it may produce worse code. As such,
12020 // we only merge two shuffles if the result is one of the two input shuffle
12021 // masks. In this case, merging the shuffles just removes one instruction,
12022 // which we know is safe. This is good for things like turning:
12023 // (splat(splat)) -> splat.
12024 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
12025 if (isa<UndefValue>(RHS)) {
12026 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
12027
12028 std::vector<unsigned> NewMask;
12029 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
12030 if (Mask[i] >= 2*e)
12031 NewMask.push_back(2*e);
12032 else
12033 NewMask.push_back(LHSMask[Mask[i]]);
12034
12035 // If the result mask is equal to the src shuffle or this shuffle mask, do
12036 // the replacement.
12037 if (NewMask == LHSMask || NewMask == Mask) {
12038 std::vector<Constant*> Elts;
12039 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
12040 if (NewMask[i] >= e*2) {
12041 Elts.push_back(UndefValue::get(Type::Int32Ty));
12042 } else {
12043 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
12044 }
12045 }
12046 return new ShuffleVectorInst(LHSSVI->getOperand(0),
12047 LHSSVI->getOperand(1),
12048 ConstantVector::get(Elts));
12049 }
12050 }
12051 }
12052
12053 return MadeChange ? &SVI : 0;
12054}
12055
12056
12057
12058
12059/// TryToSinkInstruction - Try to move the specified instruction from its
12060/// current block into the beginning of DestBlock, which can only happen if it's
12061/// safe to move the instruction past all of the instructions between it and the
12062/// end of its block.
12063static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
12064 assert(I->hasOneUse() && "Invariants didn't hold!");
12065
12066 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000012067 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
12068 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012069
12070 // Do not sink alloca instructions out of the entry block.
12071 if (isa<AllocaInst>(I) && I->getParent() ==
12072 &DestBlock->getParent()->getEntryBlock())
12073 return false;
12074
12075 // We can only sink load instructions if there is nothing between the load and
12076 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000012077 if (I->mayReadFromMemory()) {
12078 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012079 Scan != E; ++Scan)
12080 if (Scan->mayWriteToMemory())
12081 return false;
12082 }
12083
Dan Gohman514277c2008-05-23 21:05:58 +000012084 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012085
12086 I->moveBefore(InsertPos);
12087 ++NumSunkInst;
12088 return true;
12089}
12090
12091
12092/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
12093/// all reachable code to the worklist.
12094///
12095/// This has a couple of tricks to make the code faster and more powerful. In
12096/// particular, we constant fold and DCE instructions as we go, to avoid adding
12097/// them to the worklist (this significantly speeds up instcombine on code where
12098/// many instructions are dead or constant). Additionally, if we find a branch
12099/// whose condition is a known constant, we only visit the reachable successors.
12100///
12101static void AddReachableCodeToWorklist(BasicBlock *BB,
12102 SmallPtrSet<BasicBlock*, 64> &Visited,
12103 InstCombiner &IC,
12104 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000012105 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012106 Worklist.push_back(BB);
12107
12108 while (!Worklist.empty()) {
12109 BB = Worklist.back();
12110 Worklist.pop_back();
12111
12112 // We have now visited this block! If we've already been here, ignore it.
12113 if (!Visited.insert(BB)) continue;
Devang Patel794140c2008-11-19 18:56:50 +000012114
12115 DbgInfoIntrinsic *DBI_Prev = NULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012116 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
12117 Instruction *Inst = BBI++;
12118
12119 // DCE instruction if trivially dead.
12120 if (isInstructionTriviallyDead(Inst)) {
12121 ++NumDeadInst;
12122 DOUT << "IC: DCE: " << *Inst;
12123 Inst->eraseFromParent();
12124 continue;
12125 }
12126
12127 // ConstantProp instruction if trivially constant.
12128 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
12129 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
12130 Inst->replaceAllUsesWith(C);
12131 ++NumConstProp;
12132 Inst->eraseFromParent();
12133 continue;
12134 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000012135
Devang Patel794140c2008-11-19 18:56:50 +000012136 // If there are two consecutive llvm.dbg.stoppoint calls then
12137 // it is likely that the optimizer deleted code in between these
12138 // two intrinsics.
12139 DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
12140 if (DBI_Next) {
12141 if (DBI_Prev
12142 && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
12143 && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
12144 IC.RemoveFromWorkList(DBI_Prev);
12145 DBI_Prev->eraseFromParent();
12146 }
12147 DBI_Prev = DBI_Next;
12148 }
12149
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012150 IC.AddToWorkList(Inst);
12151 }
12152
12153 // Recursively visit successors. If this is a branch or switch on a
12154 // constant, only visit the reachable successor.
12155 TerminatorInst *TI = BB->getTerminator();
12156 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
12157 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
12158 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012159 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012160 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012161 continue;
12162 }
12163 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
12164 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
12165 // See if this is an explicit destination.
12166 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
12167 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012168 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012169 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012170 continue;
12171 }
12172
12173 // Otherwise it is the default destination.
12174 Worklist.push_back(SI->getSuccessor(0));
12175 continue;
12176 }
12177 }
12178
12179 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
12180 Worklist.push_back(TI->getSuccessor(i));
12181 }
12182}
12183
12184bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
12185 bool Changed = false;
12186 TD = &getAnalysis<TargetData>();
12187
12188 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12189 << F.getNameStr() << "\n");
12190
12191 {
12192 // Do a depth-first traversal of the function, populate the worklist with
12193 // the reachable instructions. Ignore blocks that are not reachable. Keep
12194 // track of which blocks we visit.
12195 SmallPtrSet<BasicBlock*, 64> Visited;
12196 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
12197
12198 // Do a quick scan over the function. If we find any blocks that are
12199 // unreachable, remove any instructions inside of them. This prevents
12200 // the instcombine code from having to deal with some bad special cases.
12201 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12202 if (!Visited.count(BB)) {
12203 Instruction *Term = BB->getTerminator();
12204 while (Term != BB->begin()) { // Remove instrs bottom-up
12205 BasicBlock::iterator I = Term; --I;
12206
12207 DOUT << "IC: DCE: " << *I;
12208 ++NumDeadInst;
12209
12210 if (!I->use_empty())
12211 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12212 I->eraseFromParent();
12213 }
12214 }
12215 }
12216
12217 while (!Worklist.empty()) {
12218 Instruction *I = RemoveOneFromWorkList();
12219 if (I == 0) continue; // skip null values.
12220
12221 // Check to see if we can DCE the instruction.
12222 if (isInstructionTriviallyDead(I)) {
12223 // Add operands to the worklist.
12224 if (I->getNumOperands() < 4)
12225 AddUsesToWorkList(*I);
12226 ++NumDeadInst;
12227
12228 DOUT << "IC: DCE: " << *I;
12229
12230 I->eraseFromParent();
12231 RemoveFromWorkList(I);
12232 continue;
12233 }
12234
12235 // Instruction isn't dead, see if we can constant propagate it.
12236 if (Constant *C = ConstantFoldInstruction(I, TD)) {
12237 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
12238
12239 // Add operands to the worklist.
12240 AddUsesToWorkList(*I);
12241 ReplaceInstUsesWith(*I, C);
12242
12243 ++NumConstProp;
12244 I->eraseFromParent();
12245 RemoveFromWorkList(I);
12246 continue;
12247 }
12248
Nick Lewyckyadb67922008-05-25 20:56:15 +000012249 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12250 // See if we can constant fold its operands.
12251 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12252 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12253 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12254 i->set(NewC);
12255 }
12256 }
12257 }
12258
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012259 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000012260 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012261 BasicBlock *BB = I->getParent();
12262 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12263 if (UserParent != BB) {
12264 bool UserIsSuccessor = false;
12265 // See if the user is one of our successors.
12266 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12267 if (*SI == UserParent) {
12268 UserIsSuccessor = true;
12269 break;
12270 }
12271
12272 // If the user is one of our immediate successors, and if that successor
12273 // only has us as a predecessors (we'd have to split the critical edge
12274 // otherwise), we can keep going.
12275 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12276 next(pred_begin(UserParent)) == pred_end(UserParent))
12277 // Okay, the CFG is simple enough, try to sink this instruction.
12278 Changed |= TryToSinkInstruction(I, UserParent);
12279 }
12280 }
12281
12282 // Now that we have an instruction, try combining it to simplify it...
12283#ifndef NDEBUG
12284 std::string OrigI;
12285#endif
12286 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
12287 if (Instruction *Result = visit(*I)) {
12288 ++NumCombined;
12289 // Should we replace the old instruction with a new one?
12290 if (Result != I) {
12291 DOUT << "IC: Old = " << *I
12292 << " New = " << *Result;
12293
12294 // Everything uses the new instruction now.
12295 I->replaceAllUsesWith(Result);
12296
12297 // Push the new instruction and any users onto the worklist.
12298 AddToWorkList(Result);
12299 AddUsersToWorkList(*Result);
12300
12301 // Move the name to the new instruction first.
12302 Result->takeName(I);
12303
12304 // Insert the new instruction into the basic block...
12305 BasicBlock *InstParent = I->getParent();
12306 BasicBlock::iterator InsertPos = I;
12307
12308 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12309 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12310 ++InsertPos;
12311
12312 InstParent->getInstList().insert(InsertPos, Result);
12313
12314 // Make sure that we reprocess all operands now that we reduced their
12315 // use counts.
12316 AddUsesToWorkList(*I);
12317
12318 // Instructions can end up on the worklist more than once. Make sure
12319 // we do not process an instruction that has been deleted.
12320 RemoveFromWorkList(I);
12321
12322 // Erase the old instruction.
12323 InstParent->getInstList().erase(I);
12324 } else {
12325#ifndef NDEBUG
12326 DOUT << "IC: Mod = " << OrigI
12327 << " New = " << *I;
12328#endif
12329
12330 // If the instruction was modified, it's possible that it is now dead.
12331 // if so, remove it.
12332 if (isInstructionTriviallyDead(I)) {
12333 // Make sure we process all operands now that we are reducing their
12334 // use counts.
12335 AddUsesToWorkList(*I);
12336
12337 // Instructions may end up in the worklist more than once. Erase all
12338 // occurrences of this instruction.
12339 RemoveFromWorkList(I);
12340 I->eraseFromParent();
12341 } else {
12342 AddToWorkList(I);
12343 AddUsersToWorkList(*I);
12344 }
12345 }
12346 Changed = true;
12347 }
12348 }
12349
12350 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000012351
12352 // Do an explicit clear, this shrinks the map if needed.
12353 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012354 return Changed;
12355}
12356
12357
12358bool InstCombiner::runOnFunction(Function &F) {
12359 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12360
12361 bool EverMadeChange = false;
12362
12363 // Iterate while there is work to do.
12364 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000012365 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012366 EverMadeChange = true;
12367 return EverMadeChange;
12368}
12369
12370FunctionPass *llvm::createInstructionCombiningPass() {
12371 return new InstCombiner();
12372}
12373
Chris Lattner6297fc72008-08-11 22:06:05 +000012374