blob: db2c997d3fbe263b9073efffa7869c88c084766d [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner0631ea72008-11-16 05:06:21 +0000183 Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000184 Instruction *visitAnd(BinaryOperator &I);
Chris Lattner0c678e52008-11-16 05:20:07 +0000185 Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Bill Wendling9912f712008-12-01 08:32:40 +0000186 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
Bill Wendlingdae376a2008-12-01 08:23:25 +0000187 Value *A, Value *B, Value *C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188 Instruction *visitOr (BinaryOperator &I);
189 Instruction *visitXor(BinaryOperator &I);
190 Instruction *visitShl(BinaryOperator &I);
191 Instruction *visitAShr(BinaryOperator &I);
192 Instruction *visitLShr(BinaryOperator &I);
193 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000194 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
195 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 Instruction *visitFCmpInst(FCmpInst &I);
197 Instruction *visitICmpInst(ICmpInst &I);
198 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
199 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
200 Instruction *LHS,
201 ConstantInt *RHS);
202 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
203 ConstantInt *DivRHS);
204
205 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
206 ICmpInst::Predicate Cond, Instruction &I);
207 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
208 BinaryOperator &I);
209 Instruction *commonCastTransforms(CastInst &CI);
210 Instruction *commonIntCastTransforms(CastInst &CI);
211 Instruction *commonPointerCastTransforms(CastInst &CI);
212 Instruction *visitTrunc(TruncInst &CI);
213 Instruction *visitZExt(ZExtInst &CI);
214 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000215 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000217 Instruction *visitFPToUI(FPToUIInst &FI);
218 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 Instruction *visitUIToFP(CastInst &CI);
220 Instruction *visitSIToFP(CastInst &CI);
221 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000222 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223 Instruction *visitBitCast(BitCastInst &CI);
224 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
225 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000226 Instruction *visitSelectInst(SelectInst &SI);
227 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228 Instruction *visitCallInst(CallInst &CI);
229 Instruction *visitInvokeInst(InvokeInst &II);
230 Instruction *visitPHINode(PHINode &PN);
231 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
232 Instruction *visitAllocationInst(AllocationInst &AI);
233 Instruction *visitFreeInst(FreeInst &FI);
234 Instruction *visitLoadInst(LoadInst &LI);
235 Instruction *visitStoreInst(StoreInst &SI);
236 Instruction *visitBranchInst(BranchInst &BI);
237 Instruction *visitSwitchInst(SwitchInst &SI);
238 Instruction *visitInsertElementInst(InsertElementInst &IE);
239 Instruction *visitExtractElementInst(ExtractElementInst &EI);
240 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000241 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242
243 // visitInstruction - Specify what to return for unhandled instructions...
244 Instruction *visitInstruction(Instruction &I) { return 0; }
245
246 private:
247 Instruction *visitCallSite(CallSite CS);
248 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000249 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000250 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
251 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000252 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000253
254 public:
255 // InsertNewInstBefore - insert an instruction New before instruction Old
256 // in the program. Add the new instruction to the worklist.
257 //
258 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
259 assert(New && New->getParent() == 0 &&
260 "New instruction already inserted into a basic block!");
261 BasicBlock *BB = Old.getParent();
262 BB->getInstList().insert(&Old, New); // Insert inst
263 AddToWorkList(New);
264 return New;
265 }
266
267 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
268 /// This also adds the cast to the worklist. Finally, this returns the
269 /// cast.
270 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
271 Instruction &Pos) {
272 if (V->getType() == Ty) return V;
273
274 if (Constant *CV = dyn_cast<Constant>(V))
275 return ConstantExpr::getCast(opc, CV, Ty);
276
Gabor Greifa645dd32008-05-16 19:29:10 +0000277 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278 AddToWorkList(C);
279 return C;
280 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000281
282 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
283 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
284 }
285
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286
287 // ReplaceInstUsesWith - This method is to be used when an instruction is
288 // found to be dead, replacable with another preexisting expression. Here
289 // we add all uses of I to the worklist, replace all uses of I with the new
290 // value, then return I, so that the inst combiner will know that I was
291 // modified.
292 //
293 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
294 AddUsersToWorkList(I); // Add all modified instrs to worklist
295 if (&I != V) {
296 I.replaceAllUsesWith(V);
297 return &I;
298 } else {
299 // If we are replacing the instruction with itself, this must be in a
300 // segment of unreachable code, so just clobber the instruction.
301 I.replaceAllUsesWith(UndefValue::get(I.getType()));
302 return &I;
303 }
304 }
305
306 // UpdateValueUsesWith - This method is to be used when an value is
307 // found to be replacable with another preexisting expression or was
308 // updated. Here we add all uses of I to the worklist, replace all uses of
309 // I with the new value (unless the instruction was just updated), then
310 // return true, so that the inst combiner will know that I was modified.
311 //
312 bool UpdateValueUsesWith(Value *Old, Value *New) {
313 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
314 if (Old != New)
315 Old->replaceAllUsesWith(New);
316 if (Instruction *I = dyn_cast<Instruction>(Old))
317 AddToWorkList(I);
318 if (Instruction *I = dyn_cast<Instruction>(New))
319 AddToWorkList(I);
320 return true;
321 }
322
323 // EraseInstFromFunction - When dealing with an instruction that has side
324 // effects or produces a void value, we can't rely on DCE to delete the
325 // instruction. Instead, visit methods should return the value returned by
326 // this function.
327 Instruction *EraseInstFromFunction(Instruction &I) {
328 assert(I.use_empty() && "Cannot erase instruction that is used!");
329 AddUsesToWorkList(I);
330 RemoveFromWorkList(&I);
331 I.eraseFromParent();
332 return 0; // Don't do anything with FI
333 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000334
335 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
336 APInt &KnownOne, unsigned Depth = 0) const {
337 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
338 }
339
340 bool MaskedValueIsZero(Value *V, const APInt &Mask,
341 unsigned Depth = 0) const {
342 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
343 }
344 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
345 return llvm::ComputeNumSignBits(Op, TD, Depth);
346 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000347
348 private:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349
350 /// SimplifyCommutative - This performs a few simplifications for
351 /// commutative operators.
352 bool SimplifyCommutative(BinaryOperator &I);
353
354 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
355 /// most-complex to least-complex order.
356 bool SimplifyCompare(CmpInst &I);
357
358 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
359 /// on the demanded bits.
360 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
361 APInt& KnownZero, APInt& KnownOne,
362 unsigned Depth = 0);
363
364 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
365 uint64_t &UndefElts, unsigned Depth = 0);
366
367 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
368 // PHI node as operand #0, see if we can fold the instruction into the PHI
369 // (which is only possible if all operands to the PHI are constants).
370 Instruction *FoldOpIntoPhi(Instruction &I);
371
372 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
373 // operator and they all are only used by the PHI, PHI together their
374 // inputs, and do the operation once, to the result of the PHI.
375 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
376 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
Chris Lattner9e1916e2008-12-01 02:34:36 +0000377 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
378
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379
380 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
381 ConstantInt *AndRHS, BinaryOperator &TheAnd);
382
383 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
384 bool isSub, Instruction &I);
385 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
386 bool isSigned, bool Inside, Instruction &IB);
387 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
388 Instruction *MatchBSwap(BinaryOperator &I);
389 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000390 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000391 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000392
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393
394 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000395
Dan Gohman2d648bb2008-04-10 18:43:06 +0000396 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
397 unsigned CastOpc,
398 int &NumCastsRemoved);
399 unsigned GetOrEnforceKnownAlignment(Value *V,
400 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000401
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403}
404
Dan Gohman089efff2008-05-13 00:00:25 +0000405char InstCombiner::ID = 0;
406static RegisterPass<InstCombiner>
407X("instcombine", "Combine redundant instructions");
408
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409// getComplexity: Assign a complexity or rank value to LLVM Values...
410// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
411static unsigned getComplexity(Value *V) {
412 if (isa<Instruction>(V)) {
413 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
414 return 3;
415 return 4;
416 }
417 if (isa<Argument>(V)) return 3;
418 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
419}
420
421// isOnlyUse - Return true if this instruction will be deleted if we stop using
422// it.
423static bool isOnlyUse(Value *V) {
424 return V->hasOneUse() || isa<Constant>(V);
425}
426
427// getPromotedType - Return the specified type promoted as it would be to pass
428// though a va_arg area...
429static const Type *getPromotedType(const Type *Ty) {
430 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
431 if (ITy->getBitWidth() < 32)
432 return Type::Int32Ty;
433 }
434 return Ty;
435}
436
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000437/// getBitCastOperand - If the specified operand is a CastInst, a constant
438/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
439/// operand value, otherwise return null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440static Value *getBitCastOperand(Value *V) {
441 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000442 // BitCastInst?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000443 return I->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000444 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
445 // GetElementPtrInst?
446 if (GEP->hasAllZeroIndices())
447 return GEP->getOperand(0);
448 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000450 // BitCast ConstantExp?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 return CE->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000452 else if (CE->getOpcode() == Instruction::GetElementPtr) {
453 // GetElementPtr ConstantExp?
454 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
455 I != E; ++I) {
456 ConstantInt *CI = dyn_cast<ConstantInt>(I);
457 if (!CI || !CI->isZero())
458 // Any non-zero indices? Not cast-like.
459 return 0;
460 }
461 // All-zero indices? This is just like casting.
462 return CE->getOperand(0);
463 }
464 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000465 return 0;
466}
467
468/// This function is a wrapper around CastInst::isEliminableCastPair. It
469/// simply extracts arguments and returns what that function returns.
470static Instruction::CastOps
471isEliminableCastPair(
472 const CastInst *CI, ///< The first cast instruction
473 unsigned opcode, ///< The opcode of the second cast instruction
474 const Type *DstTy, ///< The target type for the second cast instruction
475 TargetData *TD ///< The target data for pointer size
476) {
477
478 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
479 const Type *MidTy = CI->getType(); // B from above
480
481 // Get the opcodes of the two Cast instructions
482 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
483 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
484
485 return Instruction::CastOps(
486 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
487 DstTy, TD->getIntPtrType()));
488}
489
490/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
491/// in any code being generated. It does not require codegen if V is simple
492/// enough or if the cast can be folded into other casts.
493static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
494 const Type *Ty, TargetData *TD) {
495 if (V->getType() == Ty || isa<Constant>(V)) return false;
496
497 // If this is another cast that can be eliminated, it isn't codegen either.
498 if (const CastInst *CI = dyn_cast<CastInst>(V))
499 if (isEliminableCastPair(CI, opcode, Ty, TD))
500 return false;
501 return true;
502}
503
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504// SimplifyCommutative - This performs a few simplifications for commutative
505// operators:
506//
507// 1. Order operands such that they are listed from right (least complex) to
508// left (most complex). This puts constants before unary operators before
509// binary operators.
510//
511// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
512// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
513//
514bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
515 bool Changed = false;
516 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
517 Changed = !I.swapOperands();
518
519 if (!I.isAssociative()) return Changed;
520 Instruction::BinaryOps Opcode = I.getOpcode();
521 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
522 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
523 if (isa<Constant>(I.getOperand(1))) {
524 Constant *Folded = ConstantExpr::get(I.getOpcode(),
525 cast<Constant>(I.getOperand(1)),
526 cast<Constant>(Op->getOperand(1)));
527 I.setOperand(0, Op->getOperand(0));
528 I.setOperand(1, Folded);
529 return true;
530 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
531 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
532 isOnlyUse(Op) && isOnlyUse(Op1)) {
533 Constant *C1 = cast<Constant>(Op->getOperand(1));
534 Constant *C2 = cast<Constant>(Op1->getOperand(1));
535
536 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
537 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000538 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000539 Op1->getOperand(0),
540 Op1->getName(), &I);
541 AddToWorkList(New);
542 I.setOperand(0, New);
543 I.setOperand(1, Folded);
544 return true;
545 }
546 }
547 return Changed;
548}
549
550/// SimplifyCompare - For a CmpInst this function just orders the operands
551/// so that theyare listed from right (least complex) to left (most complex).
552/// This puts constants before unary operators before binary operators.
553bool InstCombiner::SimplifyCompare(CmpInst &I) {
554 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
555 return false;
556 I.swapOperands();
557 // Compare instructions are not associative so there's nothing else we can do.
558 return true;
559}
560
561// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
562// if the LHS is a constant zero (which is the 'negate' form).
563//
564static inline Value *dyn_castNegVal(Value *V) {
565 if (BinaryOperator::isNeg(V))
566 return BinaryOperator::getNegArgument(V);
567
568 // Constants can be considered to be negated values if they can be folded.
569 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
570 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000571
572 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
573 if (C->getType()->getElementType()->isInteger())
574 return ConstantExpr::getNeg(C);
575
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000576 return 0;
577}
578
579static inline Value *dyn_castNotVal(Value *V) {
580 if (BinaryOperator::isNot(V))
581 return BinaryOperator::getNotArgument(V);
582
583 // Constants can be considered to be not'ed values...
584 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
585 return ConstantInt::get(~C->getValue());
586 return 0;
587}
588
589// dyn_castFoldableMul - If this value is a multiply that can be folded into
590// other computations (because it has a constant operand), return the
591// non-constant operand of the multiply, and set CST to point to the multiplier.
592// Otherwise, return null.
593//
594static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
595 if (V->hasOneUse() && V->getType()->isInteger())
596 if (Instruction *I = dyn_cast<Instruction>(V)) {
597 if (I->getOpcode() == Instruction::Mul)
598 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
599 return I->getOperand(0);
600 if (I->getOpcode() == Instruction::Shl)
601 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
602 // The multiplier is really 1 << CST.
603 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
604 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
605 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
606 return I->getOperand(0);
607 }
608 }
609 return 0;
610}
611
612/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
613/// expression, return it.
614static User *dyn_castGetElementPtr(Value *V) {
615 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
616 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
617 if (CE->getOpcode() == Instruction::GetElementPtr)
618 return cast<User>(V);
619 return false;
620}
621
Dan Gohman2d648bb2008-04-10 18:43:06 +0000622/// getOpcode - If this is an Instruction or a ConstantExpr, return the
623/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000624static unsigned getOpcode(const Value *V) {
625 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000626 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000627 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000628 return CE->getOpcode();
629 // Use UserOp1 to mean there's no opcode.
630 return Instruction::UserOp1;
631}
632
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000633/// AddOne - Add one to a ConstantInt
634static ConstantInt *AddOne(ConstantInt *C) {
635 APInt Val(C->getValue());
636 return ConstantInt::get(++Val);
637}
638/// SubOne - Subtract one from a ConstantInt
639static ConstantInt *SubOne(ConstantInt *C) {
640 APInt Val(C->getValue());
641 return ConstantInt::get(--Val);
642}
643/// Add - Add two ConstantInts together
644static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
645 return ConstantInt::get(C1->getValue() + C2->getValue());
646}
647/// And - Bitwise AND two ConstantInts together
648static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
649 return ConstantInt::get(C1->getValue() & C2->getValue());
650}
651/// Subtract - Subtract one ConstantInt from another
652static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
653 return ConstantInt::get(C1->getValue() - C2->getValue());
654}
655/// Multiply - Multiply two ConstantInts together
656static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
657 return ConstantInt::get(C1->getValue() * C2->getValue());
658}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000659/// MultiplyOverflows - True if the multiply can not be expressed in an int
660/// this size.
661static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
662 uint32_t W = C1->getBitWidth();
663 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
664 if (sign) {
665 LHSExt.sext(W * 2);
666 RHSExt.sext(W * 2);
667 } else {
668 LHSExt.zext(W * 2);
669 RHSExt.zext(W * 2);
670 }
671
672 APInt MulExt = LHSExt * RHSExt;
673
674 if (sign) {
675 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
676 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
677 return MulExt.slt(Min) || MulExt.sgt(Max);
678 } else
679 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
680}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000682
683/// ShrinkDemandedConstant - Check to see if the specified operand of the
684/// specified instruction is a constant integer. If so, check to see if there
685/// are any bits set in the constant that are not demanded. If so, shrink the
686/// constant and return true.
687static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
688 APInt Demanded) {
689 assert(I && "No instruction?");
690 assert(OpNo < I->getNumOperands() && "Operand index too large");
691
692 // If the operand is not a constant integer, nothing to do.
693 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
694 if (!OpC) return false;
695
696 // If there are no bits set that aren't demanded, nothing to do.
697 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
698 if ((~Demanded & OpC->getValue()) == 0)
699 return false;
700
701 // This instruction is producing bits that are not demanded. Shrink the RHS.
702 Demanded &= OpC->getValue();
703 I->setOperand(OpNo, ConstantInt::get(Demanded));
704 return true;
705}
706
707// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
708// set of known zero and one bits, compute the maximum and minimum values that
709// could have the specified known zero and known one bits, returning them in
710// min/max.
711static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
712 const APInt& KnownZero,
713 const APInt& KnownOne,
714 APInt& Min, APInt& Max) {
715 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
716 assert(KnownZero.getBitWidth() == BitWidth &&
717 KnownOne.getBitWidth() == BitWidth &&
718 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
719 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
720 APInt UnknownBits = ~(KnownZero|KnownOne);
721
722 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
723 // bit if it is unknown.
724 Min = KnownOne;
725 Max = KnownOne|UnknownBits;
726
727 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
728 Min.set(BitWidth-1);
729 Max.clear(BitWidth-1);
730 }
731}
732
733// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
734// a set of known zero and one bits, compute the maximum and minimum values that
735// could have the specified known zero and known one bits, returning them in
736// min/max.
737static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000738 const APInt &KnownZero,
739 const APInt &KnownOne,
740 APInt &Min, APInt &Max) {
741 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 assert(KnownZero.getBitWidth() == BitWidth &&
743 KnownOne.getBitWidth() == BitWidth &&
744 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
745 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
746 APInt UnknownBits = ~(KnownZero|KnownOne);
747
748 // The minimum value is when the unknown bits are all zeros.
749 Min = KnownOne;
750 // The maximum value is when the unknown bits are all ones.
751 Max = KnownOne|UnknownBits;
752}
753
754/// SimplifyDemandedBits - This function attempts to replace V with a simpler
755/// value based on the demanded bits. When this function is called, it is known
756/// that only the bits set in DemandedMask of the result of V are ever used
757/// downstream. Consequently, depending on the mask and V, it may be possible
758/// to replace V with a constant or one of its operands. In such cases, this
759/// function does the replacement and returns true. In all other cases, it
760/// returns false after analyzing the expression and setting KnownOne and known
761/// to be one in the expression. KnownZero contains all the bits that are known
762/// to be zero in the expression. These are provided to potentially allow the
763/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
764/// the expression. KnownOne and KnownZero always follow the invariant that
765/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
766/// the bits in KnownOne and KnownZero may only be accurate for those bits set
767/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
768/// and KnownOne must all be the same.
769bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
770 APInt& KnownZero, APInt& KnownOne,
771 unsigned Depth) {
772 assert(V != 0 && "Null pointer of Value???");
773 assert(Depth <= 6 && "Limit Search Depth");
774 uint32_t BitWidth = DemandedMask.getBitWidth();
775 const IntegerType *VTy = cast<IntegerType>(V->getType());
776 assert(VTy->getBitWidth() == BitWidth &&
777 KnownZero.getBitWidth() == BitWidth &&
778 KnownOne.getBitWidth() == BitWidth &&
779 "Value *V, DemandedMask, KnownZero and KnownOne \
780 must have same BitWidth");
781 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
782 // We know all of the bits for a constant!
783 KnownOne = CI->getValue() & DemandedMask;
784 KnownZero = ~KnownOne & DemandedMask;
785 return false;
786 }
787
788 KnownZero.clear();
789 KnownOne.clear();
790 if (!V->hasOneUse()) { // Other users may use these bits.
791 if (Depth != 0) { // Not at the root.
792 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
793 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
794 return false;
795 }
796 // If this is the root being simplified, allow it to have multiple uses,
797 // just set the DemandedMask to all bits.
798 DemandedMask = APInt::getAllOnesValue(BitWidth);
799 } else if (DemandedMask == 0) { // Not demanding any bits from V.
800 if (V != UndefValue::get(VTy))
801 return UpdateValueUsesWith(V, UndefValue::get(VTy));
802 return false;
803 } else if (Depth == 6) { // Limit search depth.
804 return false;
805 }
806
807 Instruction *I = dyn_cast<Instruction>(V);
808 if (!I) return false; // Only analyze instructions.
809
810 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
811 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
812 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000813 default:
814 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
815 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816 case Instruction::And:
817 // If either the LHS or the RHS are Zero, the result is zero.
818 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
819 RHSKnownZero, RHSKnownOne, Depth+1))
820 return true;
821 assert((RHSKnownZero & RHSKnownOne) == 0 &&
822 "Bits known to be one AND zero?");
823
824 // If something is known zero on the RHS, the bits aren't demanded on the
825 // LHS.
826 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
827 LHSKnownZero, LHSKnownOne, Depth+1))
828 return true;
829 assert((LHSKnownZero & LHSKnownOne) == 0 &&
830 "Bits known to be one AND zero?");
831
832 // If all of the demanded bits are known 1 on one side, return the other.
833 // These bits cannot contribute to the result of the 'and'.
834 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
835 (DemandedMask & ~LHSKnownZero))
836 return UpdateValueUsesWith(I, I->getOperand(0));
837 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
838 (DemandedMask & ~RHSKnownZero))
839 return UpdateValueUsesWith(I, I->getOperand(1));
840
841 // If all of the demanded bits in the inputs are known zeros, return zero.
842 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
843 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
844
845 // If the RHS is a constant, see if we can simplify it.
846 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
847 return UpdateValueUsesWith(I, I);
848
849 // Output known-1 bits are only known if set in both the LHS & RHS.
850 RHSKnownOne &= LHSKnownOne;
851 // Output known-0 are known to be clear if zero in either the LHS | RHS.
852 RHSKnownZero |= LHSKnownZero;
853 break;
854 case Instruction::Or:
855 // If either the LHS or the RHS are One, the result is One.
856 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
857 RHSKnownZero, RHSKnownOne, Depth+1))
858 return true;
859 assert((RHSKnownZero & RHSKnownOne) == 0 &&
860 "Bits known to be one AND zero?");
861 // If something is known one on the RHS, the bits aren't demanded on the
862 // LHS.
863 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
864 LHSKnownZero, LHSKnownOne, Depth+1))
865 return true;
866 assert((LHSKnownZero & LHSKnownOne) == 0 &&
867 "Bits known to be one AND zero?");
868
869 // If all of the demanded bits are known zero on one side, return the other.
870 // These bits cannot contribute to the result of the 'or'.
871 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
872 (DemandedMask & ~LHSKnownOne))
873 return UpdateValueUsesWith(I, I->getOperand(0));
874 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
875 (DemandedMask & ~RHSKnownOne))
876 return UpdateValueUsesWith(I, I->getOperand(1));
877
878 // If all of the potentially set bits on one side are known to be set on
879 // the other side, just use the 'other' side.
880 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
881 (DemandedMask & (~RHSKnownZero)))
882 return UpdateValueUsesWith(I, I->getOperand(0));
883 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
884 (DemandedMask & (~LHSKnownZero)))
885 return UpdateValueUsesWith(I, I->getOperand(1));
886
887 // If the RHS is a constant, see if we can simplify it.
888 if (ShrinkDemandedConstant(I, 1, DemandedMask))
889 return UpdateValueUsesWith(I, I);
890
891 // Output known-0 bits are only known if clear in both the LHS & RHS.
892 RHSKnownZero &= LHSKnownZero;
893 // Output known-1 are known to be set if set in either the LHS | RHS.
894 RHSKnownOne |= LHSKnownOne;
895 break;
896 case Instruction::Xor: {
897 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
898 RHSKnownZero, RHSKnownOne, Depth+1))
899 return true;
900 assert((RHSKnownZero & RHSKnownOne) == 0 &&
901 "Bits known to be one AND zero?");
902 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
903 LHSKnownZero, LHSKnownOne, Depth+1))
904 return true;
905 assert((LHSKnownZero & LHSKnownOne) == 0 &&
906 "Bits known to be one AND zero?");
907
908 // If all of the demanded bits are known zero on one side, return the other.
909 // These bits cannot contribute to the result of the 'xor'.
910 if ((DemandedMask & RHSKnownZero) == DemandedMask)
911 return UpdateValueUsesWith(I, I->getOperand(0));
912 if ((DemandedMask & LHSKnownZero) == DemandedMask)
913 return UpdateValueUsesWith(I, I->getOperand(1));
914
915 // Output known-0 bits are known if clear or set in both the LHS & RHS.
916 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
917 (RHSKnownOne & LHSKnownOne);
918 // Output known-1 are known to be set if set in only one of the LHS, RHS.
919 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
920 (RHSKnownOne & LHSKnownZero);
921
922 // If all of the demanded bits are known to be zero on one side or the
923 // other, turn this into an *inclusive* or.
924 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
925 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
926 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000927 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000928 I->getName());
929 InsertNewInstBefore(Or, *I);
930 return UpdateValueUsesWith(I, Or);
931 }
932
933 // If all of the demanded bits on one side are known, and all of the set
934 // bits on that side are also known to be set on the other side, turn this
935 // into an AND, as we know the bits will be cleared.
936 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
937 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
938 // all known
939 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
940 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
941 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000942 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 InsertNewInstBefore(And, *I);
944 return UpdateValueUsesWith(I, And);
945 }
946 }
947
948 // If the RHS is a constant, see if we can simplify it.
949 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
950 if (ShrinkDemandedConstant(I, 1, DemandedMask))
951 return UpdateValueUsesWith(I, I);
952
953 RHSKnownZero = KnownZeroOut;
954 RHSKnownOne = KnownOneOut;
955 break;
956 }
957 case Instruction::Select:
958 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
959 RHSKnownZero, RHSKnownOne, Depth+1))
960 return true;
961 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
962 LHSKnownZero, LHSKnownOne, Depth+1))
963 return true;
964 assert((RHSKnownZero & RHSKnownOne) == 0 &&
965 "Bits known to be one AND zero?");
966 assert((LHSKnownZero & LHSKnownOne) == 0 &&
967 "Bits known to be one AND zero?");
968
969 // If the operands are constants, see if we can simplify them.
970 if (ShrinkDemandedConstant(I, 1, DemandedMask))
971 return UpdateValueUsesWith(I, I);
972 if (ShrinkDemandedConstant(I, 2, DemandedMask))
973 return UpdateValueUsesWith(I, I);
974
975 // Only known if known in both the LHS and RHS.
976 RHSKnownOne &= LHSKnownOne;
977 RHSKnownZero &= LHSKnownZero;
978 break;
979 case Instruction::Trunc: {
980 uint32_t truncBf =
981 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
982 DemandedMask.zext(truncBf);
983 RHSKnownZero.zext(truncBf);
984 RHSKnownOne.zext(truncBf);
985 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
986 RHSKnownZero, RHSKnownOne, Depth+1))
987 return true;
988 DemandedMask.trunc(BitWidth);
989 RHSKnownZero.trunc(BitWidth);
990 RHSKnownOne.trunc(BitWidth);
991 assert((RHSKnownZero & RHSKnownOne) == 0 &&
992 "Bits known to be one AND zero?");
993 break;
994 }
995 case Instruction::BitCast:
996 if (!I->getOperand(0)->getType()->isInteger())
997 return false;
998
999 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1000 RHSKnownZero, RHSKnownOne, Depth+1))
1001 return true;
1002 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1003 "Bits known to be one AND zero?");
1004 break;
1005 case Instruction::ZExt: {
1006 // Compute the bits in the result that are not present in the input.
1007 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1008 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1009
1010 DemandedMask.trunc(SrcBitWidth);
1011 RHSKnownZero.trunc(SrcBitWidth);
1012 RHSKnownOne.trunc(SrcBitWidth);
1013 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1014 RHSKnownZero, RHSKnownOne, Depth+1))
1015 return true;
1016 DemandedMask.zext(BitWidth);
1017 RHSKnownZero.zext(BitWidth);
1018 RHSKnownOne.zext(BitWidth);
1019 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1020 "Bits known to be one AND zero?");
1021 // The top bits are known to be zero.
1022 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1023 break;
1024 }
1025 case Instruction::SExt: {
1026 // Compute the bits in the result that are not present in the input.
1027 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1028 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1029
1030 APInt InputDemandedBits = DemandedMask &
1031 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1032
1033 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1034 // If any of the sign extended bits are demanded, we know that the sign
1035 // bit is demanded.
1036 if ((NewBits & DemandedMask) != 0)
1037 InputDemandedBits.set(SrcBitWidth-1);
1038
1039 InputDemandedBits.trunc(SrcBitWidth);
1040 RHSKnownZero.trunc(SrcBitWidth);
1041 RHSKnownOne.trunc(SrcBitWidth);
1042 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1043 RHSKnownZero, RHSKnownOne, Depth+1))
1044 return true;
1045 InputDemandedBits.zext(BitWidth);
1046 RHSKnownZero.zext(BitWidth);
1047 RHSKnownOne.zext(BitWidth);
1048 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1049 "Bits known to be one AND zero?");
1050
1051 // If the sign bit of the input is known set or clear, then we know the
1052 // top bits of the result.
1053
1054 // If the input sign bit is known zero, or if the NewBits are not demanded
1055 // convert this into a zero extension.
1056 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1057 {
1058 // Convert to ZExt cast
1059 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1060 return UpdateValueUsesWith(I, NewCast);
1061 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1062 RHSKnownOne |= NewBits;
1063 }
1064 break;
1065 }
1066 case Instruction::Add: {
1067 // Figure out what the input bits are. If the top bits of the and result
1068 // are not demanded, then the add doesn't demand them from its input
1069 // either.
1070 uint32_t NLZ = DemandedMask.countLeadingZeros();
1071
1072 // If there is a constant on the RHS, there are a variety of xformations
1073 // we can do.
1074 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1075 // If null, this should be simplified elsewhere. Some of the xforms here
1076 // won't work if the RHS is zero.
1077 if (RHS->isZero())
1078 break;
1079
1080 // If the top bit of the output is demanded, demand everything from the
1081 // input. Otherwise, we demand all the input bits except NLZ top bits.
1082 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1083
1084 // Find information about known zero/one bits in the input.
1085 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1086 LHSKnownZero, LHSKnownOne, Depth+1))
1087 return true;
1088
1089 // If the RHS of the add has bits set that can't affect the input, reduce
1090 // the constant.
1091 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1092 return UpdateValueUsesWith(I, I);
1093
1094 // Avoid excess work.
1095 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1096 break;
1097
1098 // Turn it into OR if input bits are zero.
1099 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1100 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001101 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001102 I->getName());
1103 InsertNewInstBefore(Or, *I);
1104 return UpdateValueUsesWith(I, Or);
1105 }
1106
1107 // We can say something about the output known-zero and known-one bits,
1108 // depending on potential carries from the input constant and the
1109 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1110 // bits set and the RHS constant is 0x01001, then we know we have a known
1111 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1112
1113 // To compute this, we first compute the potential carry bits. These are
1114 // the bits which may be modified. I'm not aware of a better way to do
1115 // this scan.
1116 const APInt& RHSVal = RHS->getValue();
1117 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1118
1119 // Now that we know which bits have carries, compute the known-1/0 sets.
1120
1121 // Bits are known one if they are known zero in one operand and one in the
1122 // other, and there is no input carry.
1123 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1124 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1125
1126 // Bits are known zero if they are known zero in both operands and there
1127 // is no input carry.
1128 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1129 } else {
1130 // If the high-bits of this ADD are not demanded, then it does not demand
1131 // the high bits of its LHS or RHS.
1132 if (DemandedMask[BitWidth-1] == 0) {
1133 // Right fill the mask of bits for this ADD to demand the most
1134 // significant bit and all those below it.
1135 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1136 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1137 LHSKnownZero, LHSKnownOne, Depth+1))
1138 return true;
1139 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1140 LHSKnownZero, LHSKnownOne, Depth+1))
1141 return true;
1142 }
1143 }
1144 break;
1145 }
1146 case Instruction::Sub:
1147 // If the high-bits of this SUB are not demanded, then it does not demand
1148 // the high bits of its LHS or RHS.
1149 if (DemandedMask[BitWidth-1] == 0) {
1150 // Right fill the mask of bits for this SUB to demand the most
1151 // significant bit and all those below it.
1152 uint32_t NLZ = DemandedMask.countLeadingZeros();
1153 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1154 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1155 LHSKnownZero, LHSKnownOne, Depth+1))
1156 return true;
1157 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1158 LHSKnownZero, LHSKnownOne, Depth+1))
1159 return true;
1160 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001161 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1162 // the known zeros and ones.
1163 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001164 break;
1165 case Instruction::Shl:
1166 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1167 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1168 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1169 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1170 RHSKnownZero, RHSKnownOne, Depth+1))
1171 return true;
1172 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1173 "Bits known to be one AND zero?");
1174 RHSKnownZero <<= ShiftAmt;
1175 RHSKnownOne <<= ShiftAmt;
1176 // low bits known zero.
1177 if (ShiftAmt)
1178 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1179 }
1180 break;
1181 case Instruction::LShr:
1182 // For a logical shift right
1183 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1184 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1185
1186 // Unsigned shift right.
1187 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1188 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1189 RHSKnownZero, RHSKnownOne, Depth+1))
1190 return true;
1191 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1192 "Bits known to be one AND zero?");
1193 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1194 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1195 if (ShiftAmt) {
1196 // Compute the new bits that are at the top now.
1197 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1198 RHSKnownZero |= HighBits; // high bits known zero.
1199 }
1200 }
1201 break;
1202 case Instruction::AShr:
1203 // If this is an arithmetic shift right and only the low-bit is set, we can
1204 // always convert this into a logical shr, even if the shift amount is
1205 // variable. The low bit of the shift cannot be an input sign bit unless
1206 // the shift amount is >= the size of the datatype, which is undefined.
1207 if (DemandedMask == 1) {
1208 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001209 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001210 I->getOperand(0), I->getOperand(1), I->getName());
1211 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1212 return UpdateValueUsesWith(I, NewVal);
1213 }
1214
1215 // If the sign bit is the only bit demanded by this ashr, then there is no
1216 // need to do it, the shift doesn't change the high bit.
1217 if (DemandedMask.isSignBit())
1218 return UpdateValueUsesWith(I, I->getOperand(0));
1219
1220 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1221 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1222
1223 // Signed shift right.
1224 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1225 // If any of the "high bits" are demanded, we should set the sign bit as
1226 // demanded.
1227 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1228 DemandedMaskIn.set(BitWidth-1);
1229 if (SimplifyDemandedBits(I->getOperand(0),
1230 DemandedMaskIn,
1231 RHSKnownZero, RHSKnownOne, Depth+1))
1232 return true;
1233 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1234 "Bits known to be one AND zero?");
1235 // Compute the new bits that are at the top now.
1236 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1237 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1238 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1239
1240 // Handle the sign bits.
1241 APInt SignBit(APInt::getSignBit(BitWidth));
1242 // Adjust to where it is now in the mask.
1243 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1244
1245 // If the input sign bit is known to be zero, or if none of the top bits
1246 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001247 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 (HighBits & ~DemandedMask) == HighBits) {
1249 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001250 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001251 I->getOperand(0), SA, I->getName());
1252 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1253 return UpdateValueUsesWith(I, NewVal);
1254 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1255 RHSKnownOne |= HighBits;
1256 }
1257 }
1258 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001259 case Instruction::SRem:
1260 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001261 APInt RA = Rem->getValue().abs();
1262 if (RA.isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001263 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1264 return UpdateValueUsesWith(I, I->getOperand(0));
1265
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001266 APInt LowBits = RA - 1;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001267 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1268 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1269 LHSKnownZero, LHSKnownOne, Depth+1))
1270 return true;
1271
1272 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1273 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001274
1275 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001276
1277 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1278 }
1279 }
1280 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001281 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001282 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1283 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001284 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1285 KnownZero2, KnownOne2, Depth+1))
1286 return true;
1287
Dan Gohmanbec16052008-04-28 17:02:21 +00001288 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001289 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001290 KnownZero2, KnownOne2, Depth+1))
1291 return true;
1292
1293 Leaders = std::max(Leaders,
1294 KnownZero2.countLeadingOnes());
1295 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001296 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001297 }
Chris Lattner989ba312008-06-18 04:33:20 +00001298 case Instruction::Call:
1299 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1300 switch (II->getIntrinsicID()) {
1301 default: break;
1302 case Intrinsic::bswap: {
1303 // If the only bits demanded come from one byte of the bswap result,
1304 // just shift the input byte into position to eliminate the bswap.
1305 unsigned NLZ = DemandedMask.countLeadingZeros();
1306 unsigned NTZ = DemandedMask.countTrailingZeros();
1307
1308 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1309 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1310 // have 14 leading zeros, round to 8.
1311 NLZ &= ~7;
1312 NTZ &= ~7;
1313 // If we need exactly one byte, we can do this transformation.
1314 if (BitWidth-NLZ-NTZ == 8) {
1315 unsigned ResultBit = NTZ;
1316 unsigned InputBit = BitWidth-NTZ-8;
1317
1318 // Replace this with either a left or right shift to get the byte into
1319 // the right place.
1320 Instruction *NewVal;
1321 if (InputBit > ResultBit)
1322 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1323 ConstantInt::get(I->getType(), InputBit-ResultBit));
1324 else
1325 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1326 ConstantInt::get(I->getType(), ResultBit-InputBit));
1327 NewVal->takeName(I);
1328 InsertNewInstBefore(NewVal, *I);
1329 return UpdateValueUsesWith(I, NewVal);
1330 }
1331
1332 // TODO: Could compute known zero/one bits based on the input.
1333 break;
1334 }
1335 }
1336 }
Chris Lattner4946e222008-06-18 18:11:55 +00001337 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001338 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001339 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001340
1341 // If the client is only demanding bits that we know, return the known
1342 // constant.
1343 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1344 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1345 return false;
1346}
1347
1348
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001349/// SimplifyDemandedVectorElts - The specified value produces a vector with
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001350/// 64 or fewer elements. DemandedElts contains the set of elements that are
1351/// actually used by the caller. This method analyzes which elements of the
1352/// operand are undef and returns that information in UndefElts.
1353///
1354/// If the information about demanded elements can be used to simplify the
1355/// operation, the operation is simplified, then the resultant value is
1356/// returned. This returns null if no change was made.
1357Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1358 uint64_t &UndefElts,
1359 unsigned Depth) {
1360 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1361 assert(VWidth <= 64 && "Vector too wide to analyze!");
1362 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001363 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001364
1365 if (isa<UndefValue>(V)) {
1366 // If the entire vector is undefined, just return this info.
1367 UndefElts = EltMask;
1368 return 0;
1369 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1370 UndefElts = EltMask;
1371 return UndefValue::get(V->getType());
1372 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001373
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001374 UndefElts = 0;
1375 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1376 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1377 Constant *Undef = UndefValue::get(EltTy);
1378
1379 std::vector<Constant*> Elts;
1380 for (unsigned i = 0; i != VWidth; ++i)
1381 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1382 Elts.push_back(Undef);
1383 UndefElts |= (1ULL << i);
1384 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1385 Elts.push_back(Undef);
1386 UndefElts |= (1ULL << i);
1387 } else { // Otherwise, defined.
1388 Elts.push_back(CP->getOperand(i));
1389 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001390
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001391 // If we changed the constant, return it.
1392 Constant *NewCP = ConstantVector::get(Elts);
1393 return NewCP != CP ? NewCP : 0;
1394 } else if (isa<ConstantAggregateZero>(V)) {
1395 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1396 // set to undef.
Mon P Wang927daf52008-11-06 22:52:21 +00001397
1398 // Check if this is identity. If so, return 0 since we are not simplifying
1399 // anything.
1400 if (DemandedElts == ((1ULL << VWidth) -1))
1401 return 0;
1402
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001403 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1404 Constant *Zero = Constant::getNullValue(EltTy);
1405 Constant *Undef = UndefValue::get(EltTy);
1406 std::vector<Constant*> Elts;
1407 for (unsigned i = 0; i != VWidth; ++i)
1408 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1409 UndefElts = DemandedElts ^ EltMask;
1410 return ConstantVector::get(Elts);
1411 }
1412
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001413 // Limit search depth.
1414 if (Depth == 10)
1415 return false;
1416
1417 // If multiple users are using the root value, procede with
1418 // simplification conservatively assuming that all elements
1419 // are needed.
1420 if (!V->hasOneUse()) {
1421 // Quit if we find multiple users of a non-root value though.
1422 // They'll be handled when it's their turn to be visited by
1423 // the main instcombine process.
1424 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001425 // TODO: Just compute the UndefElts information recursively.
1426 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001427
1428 // Conservatively assume that all elements are needed.
1429 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001430 }
1431
1432 Instruction *I = dyn_cast<Instruction>(V);
1433 if (!I) return false; // Only analyze instructions.
1434
1435 bool MadeChange = false;
1436 uint64_t UndefElts2;
1437 Value *TmpV;
1438 switch (I->getOpcode()) {
1439 default: break;
1440
1441 case Instruction::InsertElement: {
1442 // If this is a variable index, we don't know which element it overwrites.
1443 // demand exactly the same input as we produce.
1444 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1445 if (Idx == 0) {
1446 // Note that we can't propagate undef elt info, because we don't know
1447 // which elt is getting updated.
1448 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1449 UndefElts2, Depth+1);
1450 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1451 break;
1452 }
1453
1454 // If this is inserting an element that isn't demanded, remove this
1455 // insertelement.
1456 unsigned IdxNo = Idx->getZExtValue();
1457 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1458 return AddSoonDeadInstToWorklist(*I, 0);
1459
1460 // Otherwise, the element inserted overwrites whatever was there, so the
1461 // input demanded set is simpler than the output set.
1462 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1463 DemandedElts & ~(1ULL << IdxNo),
1464 UndefElts, Depth+1);
1465 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1466
1467 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001468 UndefElts &= ~(1ULL << IdxNo);
1469 break;
1470 }
1471 case Instruction::ShuffleVector: {
1472 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001473 uint64_t LHSVWidth =
1474 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001475 uint64_t LeftDemanded = 0, RightDemanded = 0;
1476 for (unsigned i = 0; i < VWidth; i++) {
1477 if (DemandedElts & (1ULL << i)) {
1478 unsigned MaskVal = Shuffle->getMaskValue(i);
1479 if (MaskVal != -1u) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001480 assert(MaskVal < LHSVWidth * 2 &&
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001481 "shufflevector mask index out of range!");
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001482 if (MaskVal < LHSVWidth)
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001483 LeftDemanded |= 1ULL << MaskVal;
1484 else
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001485 RightDemanded |= 1ULL << (MaskVal - LHSVWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001486 }
1487 }
1488 }
1489
1490 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1491 UndefElts2, Depth+1);
1492 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1493
1494 uint64_t UndefElts3;
1495 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1496 UndefElts3, Depth+1);
1497 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1498
1499 bool NewUndefElts = false;
1500 for (unsigned i = 0; i < VWidth; i++) {
1501 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001502 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001503 uint64_t NewBit = 1ULL << i;
1504 UndefElts |= NewBit;
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001505 } else if (MaskVal < LHSVWidth) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001506 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1507 NewUndefElts |= NewBit;
1508 UndefElts |= NewBit;
1509 } else {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001510 uint64_t NewBit = ((UndefElts3 >> (MaskVal - LHSVWidth)) & 1) << i;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001511 NewUndefElts |= NewBit;
1512 UndefElts |= NewBit;
1513 }
1514 }
1515
1516 if (NewUndefElts) {
1517 // Add additional discovered undefs.
1518 std::vector<Constant*> Elts;
1519 for (unsigned i = 0; i < VWidth; ++i) {
1520 if (UndefElts & (1ULL << i))
1521 Elts.push_back(UndefValue::get(Type::Int32Ty));
1522 else
1523 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1524 Shuffle->getMaskValue(i)));
1525 }
1526 I->setOperand(2, ConstantVector::get(Elts));
1527 MadeChange = true;
1528 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001529 break;
1530 }
1531 case Instruction::BitCast: {
1532 // Vector->vector casts only.
1533 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1534 if (!VTy) break;
1535 unsigned InVWidth = VTy->getNumElements();
1536 uint64_t InputDemandedElts = 0;
1537 unsigned Ratio;
1538
1539 if (VWidth == InVWidth) {
1540 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1541 // elements as are demanded of us.
1542 Ratio = 1;
1543 InputDemandedElts = DemandedElts;
1544 } else if (VWidth > InVWidth) {
1545 // Untested so far.
1546 break;
1547
1548 // If there are more elements in the result than there are in the source,
1549 // then an input element is live if any of the corresponding output
1550 // elements are live.
1551 Ratio = VWidth/InVWidth;
1552 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1553 if (DemandedElts & (1ULL << OutIdx))
1554 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1555 }
1556 } else {
1557 // Untested so far.
1558 break;
1559
1560 // If there are more elements in the source than there are in the result,
1561 // then an input element is live if the corresponding output element is
1562 // live.
1563 Ratio = InVWidth/VWidth;
1564 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1565 if (DemandedElts & (1ULL << InIdx/Ratio))
1566 InputDemandedElts |= 1ULL << InIdx;
1567 }
1568
1569 // div/rem demand all inputs, because they don't want divide by zero.
1570 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1571 UndefElts2, Depth+1);
1572 if (TmpV) {
1573 I->setOperand(0, TmpV);
1574 MadeChange = true;
1575 }
1576
1577 UndefElts = UndefElts2;
1578 if (VWidth > InVWidth) {
1579 assert(0 && "Unimp");
1580 // If there are more elements in the result than there are in the source,
1581 // then an output element is undef if the corresponding input element is
1582 // undef.
1583 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1584 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1585 UndefElts |= 1ULL << OutIdx;
1586 } else if (VWidth < InVWidth) {
1587 assert(0 && "Unimp");
1588 // If there are more elements in the source than there are in the result,
1589 // then a result element is undef if all of the corresponding input
1590 // elements are undef.
1591 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1592 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1593 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1594 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1595 }
1596 break;
1597 }
1598 case Instruction::And:
1599 case Instruction::Or:
1600 case Instruction::Xor:
1601 case Instruction::Add:
1602 case Instruction::Sub:
1603 case Instruction::Mul:
1604 // div/rem demand all inputs, because they don't want divide by zero.
1605 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1606 UndefElts, Depth+1);
1607 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1608 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1609 UndefElts2, Depth+1);
1610 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1611
1612 // Output elements are undefined if both are undefined. Consider things
1613 // like undef&0. The result is known zero, not undef.
1614 UndefElts &= UndefElts2;
1615 break;
1616
1617 case Instruction::Call: {
1618 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1619 if (!II) break;
1620 switch (II->getIntrinsicID()) {
1621 default: break;
1622
1623 // Binary vector operations that work column-wise. A dest element is a
1624 // function of the corresponding input elements from the two inputs.
1625 case Intrinsic::x86_sse_sub_ss:
1626 case Intrinsic::x86_sse_mul_ss:
1627 case Intrinsic::x86_sse_min_ss:
1628 case Intrinsic::x86_sse_max_ss:
1629 case Intrinsic::x86_sse2_sub_sd:
1630 case Intrinsic::x86_sse2_mul_sd:
1631 case Intrinsic::x86_sse2_min_sd:
1632 case Intrinsic::x86_sse2_max_sd:
1633 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1634 UndefElts, Depth+1);
1635 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1636 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1637 UndefElts2, Depth+1);
1638 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1639
1640 // If only the low elt is demanded and this is a scalarizable intrinsic,
1641 // scalarize it now.
1642 if (DemandedElts == 1) {
1643 switch (II->getIntrinsicID()) {
1644 default: break;
1645 case Intrinsic::x86_sse_sub_ss:
1646 case Intrinsic::x86_sse_mul_ss:
1647 case Intrinsic::x86_sse2_sub_sd:
1648 case Intrinsic::x86_sse2_mul_sd:
1649 // TODO: Lower MIN/MAX/ABS/etc
1650 Value *LHS = II->getOperand(1);
1651 Value *RHS = II->getOperand(2);
1652 // Extract the element as scalars.
1653 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1654 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1655
1656 switch (II->getIntrinsicID()) {
1657 default: assert(0 && "Case stmts out of sync!");
1658 case Intrinsic::x86_sse_sub_ss:
1659 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001660 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001661 II->getName()), *II);
1662 break;
1663 case Intrinsic::x86_sse_mul_ss:
1664 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001665 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001666 II->getName()), *II);
1667 break;
1668 }
1669
1670 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001671 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1672 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001673 InsertNewInstBefore(New, *II);
1674 AddSoonDeadInstToWorklist(*II, 0);
1675 return New;
1676 }
1677 }
1678
1679 // Output elements are undefined if both are undefined. Consider things
1680 // like undef&0. The result is known zero, not undef.
1681 UndefElts &= UndefElts2;
1682 break;
1683 }
1684 break;
1685 }
1686 }
1687 return MadeChange ? I : 0;
1688}
1689
Dan Gohman5d56fd42008-05-19 22:14:15 +00001690
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001691/// AssociativeOpt - Perform an optimization on an associative operator. This
1692/// function is designed to check a chain of associative operators for a
1693/// potential to apply a certain optimization. Since the optimization may be
1694/// applicable if the expression was reassociated, this checks the chain, then
1695/// reassociates the expression as necessary to expose the optimization
1696/// opportunity. This makes use of a special Functor, which must define
1697/// 'shouldApply' and 'apply' methods.
1698///
1699template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001700static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001701 unsigned Opcode = Root.getOpcode();
1702 Value *LHS = Root.getOperand(0);
1703
1704 // Quick check, see if the immediate LHS matches...
1705 if (F.shouldApply(LHS))
1706 return F.apply(Root);
1707
1708 // Otherwise, if the LHS is not of the same opcode as the root, return.
1709 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1710 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1711 // Should we apply this transform to the RHS?
1712 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1713
1714 // If not to the RHS, check to see if we should apply to the LHS...
1715 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1716 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1717 ShouldApply = true;
1718 }
1719
1720 // If the functor wants to apply the optimization to the RHS of LHSI,
1721 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1722 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001723 // Now all of the instructions are in the current basic block, go ahead
1724 // and perform the reassociation.
1725 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1726
1727 // First move the selected RHS to the LHS of the root...
1728 Root.setOperand(0, LHSI->getOperand(1));
1729
1730 // Make what used to be the LHS of the root be the user of the root...
1731 Value *ExtraOperand = TmpLHSI->getOperand(1);
1732 if (&Root == TmpLHSI) {
1733 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1734 return 0;
1735 }
1736 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1737 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001738 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001739 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001740 ARI = Root;
1741
1742 // Now propagate the ExtraOperand down the chain of instructions until we
1743 // get to LHSI.
1744 while (TmpLHSI != LHSI) {
1745 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1746 // Move the instruction to immediately before the chain we are
1747 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001748 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749 ARI = NextLHSI;
1750
1751 Value *NextOp = NextLHSI->getOperand(1);
1752 NextLHSI->setOperand(1, ExtraOperand);
1753 TmpLHSI = NextLHSI;
1754 ExtraOperand = NextOp;
1755 }
1756
1757 // Now that the instructions are reassociated, have the functor perform
1758 // the transformation...
1759 return F.apply(Root);
1760 }
1761
1762 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1763 }
1764 return 0;
1765}
1766
Dan Gohman089efff2008-05-13 00:00:25 +00001767namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768
Nick Lewycky27f6c132008-05-23 04:34:58 +00001769// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001770struct AddRHS {
1771 Value *RHS;
1772 AddRHS(Value *rhs) : RHS(rhs) {}
1773 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1774 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001775 return BinaryOperator::CreateShl(Add.getOperand(0),
1776 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001777 }
1778};
1779
1780// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1781// iff C1&C2 == 0
1782struct AddMaskingAnd {
1783 Constant *C2;
1784 AddMaskingAnd(Constant *c) : C2(c) {}
1785 bool shouldApply(Value *LHS) const {
1786 ConstantInt *C1;
1787 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1788 ConstantExpr::getAnd(C1, C2)->isNullValue();
1789 }
1790 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001791 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001792 }
1793};
1794
Dan Gohman089efff2008-05-13 00:00:25 +00001795}
1796
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001797static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1798 InstCombiner *IC) {
1799 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Eli Friedman722b4792008-11-30 21:09:11 +00001800 return IC->InsertCastBefore(CI->getOpcode(), SO, I.getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001801 }
1802
1803 // Figure out if the constant is the left or the right argument.
1804 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1805 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1806
1807 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1808 if (ConstIsRHS)
1809 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1810 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1811 }
1812
1813 Value *Op0 = SO, *Op1 = ConstOperand;
1814 if (!ConstIsRHS)
1815 std::swap(Op0, Op1);
1816 Instruction *New;
1817 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001818 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001819 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001820 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001821 SO->getName()+".cmp");
1822 else {
1823 assert(0 && "Unknown binary instruction type!");
1824 abort();
1825 }
1826 return IC->InsertNewInstBefore(New, I);
1827}
1828
1829// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1830// constant as the other operand, try to fold the binary operator into the
1831// select arguments. This also works for Cast instructions, which obviously do
1832// not have a second operand.
1833static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1834 InstCombiner *IC) {
1835 // Don't modify shared select instructions
1836 if (!SI->hasOneUse()) return 0;
1837 Value *TV = SI->getOperand(1);
1838 Value *FV = SI->getOperand(2);
1839
1840 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1841 // Bool selects with constant operands can be folded to logical ops.
1842 if (SI->getType() == Type::Int1Ty) return 0;
1843
1844 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1845 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1846
Gabor Greifd6da1d02008-04-06 20:25:17 +00001847 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1848 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001849 }
1850 return 0;
1851}
1852
1853
1854/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1855/// node as operand #0, see if we can fold the instruction into the PHI (which
1856/// is only possible if all operands to the PHI are constants).
1857Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1858 PHINode *PN = cast<PHINode>(I.getOperand(0));
1859 unsigned NumPHIValues = PN->getNumIncomingValues();
1860 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1861
1862 // Check to see if all of the operands of the PHI are constants. If there is
1863 // one non-constant value, remember the BB it is. If there is more than one
1864 // or if *it* is a PHI, bail out.
1865 BasicBlock *NonConstBB = 0;
1866 for (unsigned i = 0; i != NumPHIValues; ++i)
1867 if (!isa<Constant>(PN->getIncomingValue(i))) {
1868 if (NonConstBB) return 0; // More than one non-const value.
1869 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1870 NonConstBB = PN->getIncomingBlock(i);
1871
1872 // If the incoming non-constant value is in I's block, we have an infinite
1873 // loop.
1874 if (NonConstBB == I.getParent())
1875 return 0;
1876 }
1877
1878 // If there is exactly one non-constant value, we can insert a copy of the
1879 // operation in that block. However, if this is a critical edge, we would be
1880 // inserting the computation one some other paths (e.g. inside a loop). Only
1881 // do this if the pred block is unconditionally branching into the phi block.
1882 if (NonConstBB) {
1883 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1884 if (!BI || !BI->isUnconditional()) return 0;
1885 }
1886
1887 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001888 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001889 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1890 InsertNewInstBefore(NewPN, *PN);
1891 NewPN->takeName(PN);
1892
1893 // Next, add all of the operands to the PHI.
1894 if (I.getNumOperands() == 2) {
1895 Constant *C = cast<Constant>(I.getOperand(1));
1896 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001897 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001898 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1899 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1900 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1901 else
1902 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1903 } else {
1904 assert(PN->getIncomingBlock(i) == NonConstBB);
1905 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001906 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001907 PN->getIncomingValue(i), C, "phitmp",
1908 NonConstBB->getTerminator());
1909 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001910 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001911 CI->getPredicate(),
1912 PN->getIncomingValue(i), C, "phitmp",
1913 NonConstBB->getTerminator());
1914 else
1915 assert(0 && "Unknown binop!");
1916
1917 AddToWorkList(cast<Instruction>(InV));
1918 }
1919 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1920 }
1921 } else {
1922 CastInst *CI = cast<CastInst>(&I);
1923 const Type *RetTy = CI->getType();
1924 for (unsigned i = 0; i != NumPHIValues; ++i) {
1925 Value *InV;
1926 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1927 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1928 } else {
1929 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001930 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001931 I.getType(), "phitmp",
1932 NonConstBB->getTerminator());
1933 AddToWorkList(cast<Instruction>(InV));
1934 }
1935 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1936 }
1937 }
1938 return ReplaceInstUsesWith(I, NewPN);
1939}
1940
Chris Lattner55476162008-01-29 06:52:45 +00001941
Chris Lattner3554f972008-05-20 05:46:13 +00001942/// WillNotOverflowSignedAdd - Return true if we can prove that:
1943/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1944/// This basically requires proving that the add in the original type would not
1945/// overflow to change the sign bit or have a carry out.
1946bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1947 // There are different heuristics we can use for this. Here are some simple
1948 // ones.
1949
1950 // Add has the property that adding any two 2's complement numbers can only
1951 // have one carry bit which can change a sign. As such, if LHS and RHS each
1952 // have at least two sign bits, we know that the addition of the two values will
1953 // sign extend fine.
1954 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1955 return true;
1956
1957
1958 // If one of the operands only has one non-zero bit, and if the other operand
1959 // has a known-zero bit in a more significant place than it (not including the
1960 // sign bit) the ripple may go up to and fill the zero, but won't change the
1961 // sign. For example, (X & ~4) + 1.
1962
1963 // TODO: Implement.
1964
1965 return false;
1966}
1967
Chris Lattner55476162008-01-29 06:52:45 +00001968
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001969Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1970 bool Changed = SimplifyCommutative(I);
1971 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1972
1973 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1974 // X + undef -> undef
1975 if (isa<UndefValue>(RHS))
1976 return ReplaceInstUsesWith(I, RHS);
1977
1978 // X + 0 --> X
1979 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1980 if (RHSC->isNullValue())
1981 return ReplaceInstUsesWith(I, LHS);
1982 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00001983 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
1984 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001985 return ReplaceInstUsesWith(I, LHS);
1986 }
1987
1988 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
1989 // X + (signbit) --> X ^ signbit
1990 const APInt& Val = CI->getValue();
1991 uint32_t BitWidth = Val.getBitWidth();
1992 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00001993 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001994
1995 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1996 // (X & 254)+1 -> (X&254)|1
1997 if (!isa<VectorType>(I.getType())) {
1998 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1999 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2000 KnownZero, KnownOne))
2001 return &I;
2002 }
Dan Gohman35b76162008-10-30 20:40:10 +00002003
2004 // zext(i1) - 1 -> select i1, 0, -1
2005 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2006 if (CI->isAllOnesValue() &&
2007 ZI->getOperand(0)->getType() == Type::Int1Ty)
2008 return SelectInst::Create(ZI->getOperand(0),
2009 Constant::getNullValue(I.getType()),
2010 ConstantInt::getAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002011 }
2012
2013 if (isa<PHINode>(LHS))
2014 if (Instruction *NV = FoldOpIntoPhi(I))
2015 return NV;
2016
2017 ConstantInt *XorRHS = 0;
2018 Value *XorLHS = 0;
2019 if (isa<ConstantInt>(RHSC) &&
2020 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2021 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2022 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2023
2024 uint32_t Size = TySizeBits / 2;
2025 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2026 APInt CFF80Val(-C0080Val);
2027 do {
2028 if (TySizeBits > Size) {
2029 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2030 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2031 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2032 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2033 // This is a sign extend if the top bits are known zero.
2034 if (!MaskedValueIsZero(XorLHS,
2035 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2036 Size = 0; // Not a sign ext, but can't be any others either.
2037 break;
2038 }
2039 }
2040 Size >>= 1;
2041 C0080Val = APIntOps::lshr(C0080Val, Size);
2042 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2043 } while (Size >= 1);
2044
2045 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002046 // with funny bit widths then this switch statement should be removed. It
2047 // is just here to get the size of the "middle" type back up to something
2048 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002049 const Type *MiddleType = 0;
2050 switch (Size) {
2051 default: break;
2052 case 32: MiddleType = Type::Int32Ty; break;
2053 case 16: MiddleType = Type::Int16Ty; break;
2054 case 8: MiddleType = Type::Int8Ty; break;
2055 }
2056 if (MiddleType) {
2057 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2058 InsertNewInstBefore(NewTrunc, I);
2059 return new SExtInst(NewTrunc, I.getType(), I.getName());
2060 }
2061 }
2062 }
2063
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002064 if (I.getType() == Type::Int1Ty)
2065 return BinaryOperator::CreateXor(LHS, RHS);
2066
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002067 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002068 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002069 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2070
2071 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2072 if (RHSI->getOpcode() == Instruction::Sub)
2073 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2074 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2075 }
2076 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2077 if (LHSI->getOpcode() == Instruction::Sub)
2078 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2079 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2080 }
2081 }
2082
2083 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002084 // -A + -B --> -(A + B)
2085 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002086 if (LHS->getType()->isIntOrIntVector()) {
2087 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002088 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002089 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002090 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002091 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002092 }
2093
Gabor Greifa645dd32008-05-16 19:29:10 +00002094 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002095 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002096
2097 // A + -B --> A - B
2098 if (!isa<Constant>(RHS))
2099 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002100 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002101
2102
2103 ConstantInt *C2;
2104 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2105 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002106 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002107
2108 // X*C1 + X*C2 --> X * (C1+C2)
2109 ConstantInt *C1;
2110 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002111 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002112 }
2113
2114 // X + X*C --> X * (C+1)
2115 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002116 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002117
2118 // X + ~X --> -1 since ~X = -X-1
2119 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2120 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2121
2122
2123 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2124 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2125 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2126 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002127
2128 // A+B --> A|B iff A and B have no bits set in common.
2129 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2130 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2131 APInt LHSKnownOne(IT->getBitWidth(), 0);
2132 APInt LHSKnownZero(IT->getBitWidth(), 0);
2133 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2134 if (LHSKnownZero != 0) {
2135 APInt RHSKnownOne(IT->getBitWidth(), 0);
2136 APInt RHSKnownZero(IT->getBitWidth(), 0);
2137 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2138
2139 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002140 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002141 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002142 }
2143 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002144
Nick Lewycky83598a72008-02-03 07:42:09 +00002145 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002146 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002147 Value *W, *X, *Y, *Z;
2148 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2149 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2150 if (W != Y) {
2151 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002152 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002153 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002154 std::swap(W, X);
2155 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002156 std::swap(Y, Z);
2157 std::swap(W, X);
2158 }
2159 }
2160
2161 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002162 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002163 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002164 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002165 }
2166 }
2167 }
2168
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002169 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2170 Value *X = 0;
2171 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002172 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002173
2174 // (X & FF00) + xx00 -> (X+xx00) & FF00
2175 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2176 Constant *Anded = And(CRHS, C2);
2177 if (Anded == CRHS) {
2178 // See if all bits from the first bit set in the Add RHS up are included
2179 // in the mask. First, get the rightmost bit.
2180 const APInt& AddRHSV = CRHS->getValue();
2181
2182 // Form a mask of all bits from the lowest bit added through the top.
2183 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2184
2185 // See if the and mask includes all of these bits.
2186 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2187
2188 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2189 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002190 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002191 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002192 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002193 }
2194 }
2195 }
2196
2197 // Try to fold constant add into select arguments.
2198 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2199 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2200 return R;
2201 }
2202
2203 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002204 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002205 {
2206 CastInst *CI = dyn_cast<CastInst>(LHS);
2207 Value *Other = RHS;
2208 if (!CI) {
2209 CI = dyn_cast<CastInst>(RHS);
2210 Other = LHS;
2211 }
2212 if (CI && CI->getType()->isSized() &&
2213 (CI->getType()->getPrimitiveSizeInBits() ==
2214 TD->getIntPtrType()->getPrimitiveSizeInBits())
2215 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002216 unsigned AS =
2217 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002218 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2219 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002220 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002221 return new PtrToIntInst(I2, CI->getType());
2222 }
2223 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002224
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002225 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002226 {
2227 SelectInst *SI = dyn_cast<SelectInst>(LHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002228 Value *A = RHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002229 if (!SI) {
2230 SI = dyn_cast<SelectInst>(RHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002231 A = LHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002232 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002233 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002234 Value *TV = SI->getTrueValue();
2235 Value *FV = SI->getFalseValue();
Chris Lattner641ea462008-11-16 04:46:19 +00002236 Value *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002237
2238 // Can we fold the add into the argument of the select?
2239 // We check both true and false select arguments for a matching subtract.
Chris Lattner641ea462008-11-16 04:46:19 +00002240 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
2241 // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002242 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattner641ea462008-11-16 04:46:19 +00002243 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
2244 // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002245 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002246 }
2247 }
Chris Lattner55476162008-01-29 06:52:45 +00002248
2249 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2250 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2251 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2252 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002253
Chris Lattner3554f972008-05-20 05:46:13 +00002254 // Check for (add (sext x), y), see if we can merge this into an
2255 // integer add followed by a sext.
2256 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2257 // (add (sext x), cst) --> (sext (add x, cst'))
2258 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2259 Constant *CI =
2260 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2261 if (LHSConv->hasOneUse() &&
2262 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2263 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2264 // Insert the new, smaller add.
2265 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2266 CI, "addconv");
2267 InsertNewInstBefore(NewAdd, I);
2268 return new SExtInst(NewAdd, I.getType());
2269 }
2270 }
2271
2272 // (add (sext x), (sext y)) --> (sext (add int x, y))
2273 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2274 // Only do this if x/y have the same type, if at last one of them has a
2275 // single use (so we don't increase the number of sexts), and if the
2276 // integer add will not overflow.
2277 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2278 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2279 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2280 RHSConv->getOperand(0))) {
2281 // Insert the new integer add.
2282 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2283 RHSConv->getOperand(0),
2284 "addconv");
2285 InsertNewInstBefore(NewAdd, I);
2286 return new SExtInst(NewAdd, I.getType());
2287 }
2288 }
2289 }
2290
2291 // Check for (add double (sitofp x), y), see if we can merge this into an
2292 // integer add followed by a promotion.
2293 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2294 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2295 // ... if the constant fits in the integer value. This is useful for things
2296 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2297 // requires a constant pool load, and generally allows the add to be better
2298 // instcombined.
2299 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2300 Constant *CI =
2301 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2302 if (LHSConv->hasOneUse() &&
2303 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2304 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2305 // Insert the new integer add.
2306 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2307 CI, "addconv");
2308 InsertNewInstBefore(NewAdd, I);
2309 return new SIToFPInst(NewAdd, I.getType());
2310 }
2311 }
2312
2313 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2314 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2315 // Only do this if x/y have the same type, if at last one of them has a
2316 // single use (so we don't increase the number of int->fp conversions),
2317 // and if the integer add will not overflow.
2318 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2319 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2320 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2321 RHSConv->getOperand(0))) {
2322 // Insert the new integer add.
2323 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2324 RHSConv->getOperand(0),
2325 "addconv");
2326 InsertNewInstBefore(NewAdd, I);
2327 return new SIToFPInst(NewAdd, I.getType());
2328 }
2329 }
2330 }
2331
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002332 return Changed ? &I : 0;
2333}
2334
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002335Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2336 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2337
Chris Lattner27fbef42008-07-17 06:07:20 +00002338 if (Op0 == Op1 && // sub X, X -> 0
2339 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002340 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2341
2342 // If this is a 'B = x-(-A)', change to B = x+A...
2343 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002344 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002345
2346 if (isa<UndefValue>(Op0))
2347 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2348 if (isa<UndefValue>(Op1))
2349 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2350
2351 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2352 // Replace (-1 - A) with (~A)...
2353 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002354 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002355
2356 // C - ~X == X + (1+C)
2357 Value *X = 0;
2358 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002359 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002360
2361 // -(X >>u 31) -> (X >>s 31)
2362 // -(X >>s 31) -> (X >>u 31)
2363 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002364 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002365 if (SI->getOpcode() == Instruction::LShr) {
2366 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2367 // Check to see if we are shifting out everything but the sign bit.
2368 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2369 SI->getType()->getPrimitiveSizeInBits()-1) {
2370 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002371 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002372 SI->getOperand(0), CU, SI->getName());
2373 }
2374 }
2375 }
2376 else if (SI->getOpcode() == Instruction::AShr) {
2377 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2378 // Check to see if we are shifting out everything but the sign bit.
2379 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2380 SI->getType()->getPrimitiveSizeInBits()-1) {
2381 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002382 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002383 SI->getOperand(0), CU, SI->getName());
2384 }
2385 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002386 }
2387 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002388 }
2389
2390 // Try to fold constant sub into select arguments.
2391 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2392 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2393 return R;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394 }
2395
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002396 if (I.getType() == Type::Int1Ty)
2397 return BinaryOperator::CreateXor(Op0, Op1);
2398
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002399 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2400 if (Op1I->getOpcode() == Instruction::Add &&
2401 !Op0->getType()->isFPOrFPVector()) {
2402 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002403 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002405 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002406 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2407 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2408 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002409 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002410 Op1I->getOperand(0));
2411 }
2412 }
2413
2414 if (Op1I->hasOneUse()) {
2415 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2416 // is not used by anyone else...
2417 //
2418 if (Op1I->getOpcode() == Instruction::Sub &&
2419 !Op1I->getType()->isFPOrFPVector()) {
2420 // Swap the two operands of the subexpr...
2421 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2422 Op1I->setOperand(0, IIOp1);
2423 Op1I->setOperand(1, IIOp0);
2424
2425 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002426 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002427 }
2428
2429 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2430 //
2431 if (Op1I->getOpcode() == Instruction::And &&
2432 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2433 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2434
2435 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002436 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2437 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002438 }
2439
2440 // 0 - (X sdiv C) -> (X sdiv -C)
2441 if (Op1I->getOpcode() == Instruction::SDiv)
2442 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2443 if (CSI->isZero())
2444 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002445 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002446 ConstantExpr::getNeg(DivRHS));
2447
2448 // X - X*C --> X * (1-C)
2449 ConstantInt *C2 = 0;
2450 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2451 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002452 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002453 }
2454 }
2455 }
2456
2457 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002458 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002459 if (Op0I->getOpcode() == Instruction::Add) {
2460 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2461 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2462 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2463 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2464 } else if (Op0I->getOpcode() == Instruction::Sub) {
2465 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002466 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002467 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002468 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002469
2470 ConstantInt *C1;
2471 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2472 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002473 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002474
2475 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2476 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002477 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002478 }
2479 return 0;
2480}
2481
2482/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2483/// comparison only checks the sign bit. If it only checks the sign bit, set
2484/// TrueIfSigned if the result of the comparison is true when the input value is
2485/// signed.
2486static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2487 bool &TrueIfSigned) {
2488 switch (pred) {
2489 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2490 TrueIfSigned = true;
2491 return RHS->isZero();
2492 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2493 TrueIfSigned = true;
2494 return RHS->isAllOnesValue();
2495 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2496 TrueIfSigned = false;
2497 return RHS->isAllOnesValue();
2498 case ICmpInst::ICMP_UGT:
2499 // True if LHS u> RHS and RHS == high-bit-mask - 1
2500 TrueIfSigned = true;
2501 return RHS->getValue() ==
2502 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2503 case ICmpInst::ICMP_UGE:
2504 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2505 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002506 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002507 default:
2508 return false;
2509 }
2510}
2511
2512Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2513 bool Changed = SimplifyCommutative(I);
2514 Value *Op0 = I.getOperand(0);
2515
2516 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2517 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2518
2519 // Simplify mul instructions with a constant RHS...
2520 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2521 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2522
2523 // ((X << C1)*C2) == (X * (C2 << C1))
2524 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2525 if (SI->getOpcode() == Instruction::Shl)
2526 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002527 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002528 ConstantExpr::getShl(CI, ShOp));
2529
2530 if (CI->isZero())
2531 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2532 if (CI->equalsInt(1)) // X * 1 == X
2533 return ReplaceInstUsesWith(I, Op0);
2534 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002535 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002536
2537 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2538 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002539 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002540 ConstantInt::get(Op0->getType(), Val.logBase2()));
2541 }
2542 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2543 if (Op1F->isNullValue())
2544 return ReplaceInstUsesWith(I, Op1);
2545
2546 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2547 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002548 if (Op1F->isExactlyValue(1.0))
2549 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2550 } else if (isa<VectorType>(Op1->getType())) {
2551 if (isa<ConstantAggregateZero>(Op1))
2552 return ReplaceInstUsesWith(I, Op1);
Nick Lewycky94418732008-11-27 20:21:08 +00002553
2554 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2555 if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
2556 return BinaryOperator::CreateNeg(Op0, I.getName());
2557
2558 // As above, vector X*splat(1.0) -> X in all defined cases.
2559 if (Constant *Splat = Op1V->getSplatValue()) {
2560 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
2561 if (F->isExactlyValue(1.0))
2562 return ReplaceInstUsesWith(I, Op0);
2563 if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
2564 if (CI->equalsInt(1))
2565 return ReplaceInstUsesWith(I, Op0);
2566 }
2567 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002568 }
2569
2570 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2571 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002572 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002573 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002574 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002575 Op1, "tmp");
2576 InsertNewInstBefore(Add, I);
2577 Value *C1C2 = ConstantExpr::getMul(Op1,
2578 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002579 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002580
2581 }
2582
2583 // Try to fold constant mul into select arguments.
2584 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2585 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2586 return R;
2587
2588 if (isa<PHINode>(Op0))
2589 if (Instruction *NV = FoldOpIntoPhi(I))
2590 return NV;
2591 }
2592
2593 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2594 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002595 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002596
Nick Lewycky1c246402008-11-21 07:33:58 +00002597 // (X / Y) * Y = X - (X % Y)
2598 // (X / Y) * -Y = (X % Y) - X
2599 {
2600 Value *Op1 = I.getOperand(1);
2601 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
2602 if (!BO ||
2603 (BO->getOpcode() != Instruction::UDiv &&
2604 BO->getOpcode() != Instruction::SDiv)) {
2605 Op1 = Op0;
2606 BO = dyn_cast<BinaryOperator>(I.getOperand(1));
2607 }
2608 Value *Neg = dyn_castNegVal(Op1);
2609 if (BO && BO->hasOneUse() &&
2610 (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) &&
2611 (BO->getOpcode() == Instruction::UDiv ||
2612 BO->getOpcode() == Instruction::SDiv)) {
2613 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
2614
2615 Instruction *Rem;
2616 if (BO->getOpcode() == Instruction::UDiv)
2617 Rem = BinaryOperator::CreateURem(Op0BO, Op1BO);
2618 else
2619 Rem = BinaryOperator::CreateSRem(Op0BO, Op1BO);
2620
2621 InsertNewInstBefore(Rem, I);
2622 Rem->takeName(BO);
2623
2624 if (Op1BO == Op1)
2625 return BinaryOperator::CreateSub(Op0BO, Rem);
2626 else
2627 return BinaryOperator::CreateSub(Rem, Op0BO);
2628 }
2629 }
2630
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002631 if (I.getType() == Type::Int1Ty)
2632 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2633
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002634 // If one of the operands of the multiply is a cast from a boolean value, then
2635 // we know the bool is either zero or one, so this is a 'masking' multiply.
2636 // See if we can simplify things based on how the boolean was originally
2637 // formed.
2638 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002639 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002640 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2641 BoolCast = CI;
2642 if (!BoolCast)
2643 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2644 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2645 BoolCast = CI;
2646 if (BoolCast) {
2647 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2648 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2649 const Type *SCOpTy = SCIOp0->getType();
2650 bool TIS = false;
2651
2652 // If the icmp is true iff the sign bit of X is set, then convert this
2653 // multiply into a shift/and combination.
2654 if (isa<ConstantInt>(SCIOp1) &&
2655 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2656 TIS) {
2657 // Shift the X value right to turn it into "all signbits".
2658 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2659 SCOpTy->getPrimitiveSizeInBits()-1);
2660 Value *V =
2661 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002662 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002663 BoolCast->getOperand(0)->getName()+
2664 ".mask"), I);
2665
2666 // If the multiply type is not the same as the source type, sign extend
2667 // or truncate to the multiply type.
2668 if (I.getType() != V->getType()) {
2669 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2670 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2671 Instruction::CastOps opcode =
2672 (SrcBits == DstBits ? Instruction::BitCast :
2673 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2674 V = InsertCastBefore(opcode, V, I.getType(), I);
2675 }
2676
2677 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002678 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002679 }
2680 }
2681 }
2682
2683 return Changed ? &I : 0;
2684}
2685
Chris Lattner76972db2008-07-14 00:15:52 +00002686/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2687/// instruction.
2688bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2689 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2690
2691 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2692 int NonNullOperand = -1;
2693 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2694 if (ST->isNullValue())
2695 NonNullOperand = 2;
2696 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2697 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2698 if (ST->isNullValue())
2699 NonNullOperand = 1;
2700
2701 if (NonNullOperand == -1)
2702 return false;
2703
2704 Value *SelectCond = SI->getOperand(0);
2705
2706 // Change the div/rem to use 'Y' instead of the select.
2707 I.setOperand(1, SI->getOperand(NonNullOperand));
2708
2709 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2710 // problem. However, the select, or the condition of the select may have
2711 // multiple uses. Based on our knowledge that the operand must be non-zero,
2712 // propagate the known value for the select into other uses of it, and
2713 // propagate a known value of the condition into its other users.
2714
2715 // If the select and condition only have a single use, don't bother with this,
2716 // early exit.
2717 if (SI->use_empty() && SelectCond->hasOneUse())
2718 return true;
2719
2720 // Scan the current block backward, looking for other uses of SI.
2721 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2722
2723 while (BBI != BBFront) {
2724 --BBI;
2725 // If we found a call to a function, we can't assume it will return, so
2726 // information from below it cannot be propagated above it.
2727 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2728 break;
2729
2730 // Replace uses of the select or its condition with the known values.
2731 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2732 I != E; ++I) {
2733 if (*I == SI) {
2734 *I = SI->getOperand(NonNullOperand);
2735 AddToWorkList(BBI);
2736 } else if (*I == SelectCond) {
2737 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2738 ConstantInt::getFalse();
2739 AddToWorkList(BBI);
2740 }
2741 }
2742
2743 // If we past the instruction, quit looking for it.
2744 if (&*BBI == SI)
2745 SI = 0;
2746 if (&*BBI == SelectCond)
2747 SelectCond = 0;
2748
2749 // If we ran out of things to eliminate, break out of the loop.
2750 if (SelectCond == 0 && SI == 0)
2751 break;
2752
2753 }
2754 return true;
2755}
2756
2757
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002758/// This function implements the transforms on div instructions that work
2759/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2760/// used by the visitors to those instructions.
2761/// @brief Transforms common to all three div instructions
2762Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2763 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2764
Chris Lattner653ef3c2008-02-19 06:12:18 +00002765 // undef / X -> 0 for integer.
2766 // undef / X -> undef for FP (the undef could be a snan).
2767 if (isa<UndefValue>(Op0)) {
2768 if (Op0->getType()->isFPOrFPVector())
2769 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002770 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002771 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002772
2773 // X / undef -> undef
2774 if (isa<UndefValue>(Op1))
2775 return ReplaceInstUsesWith(I, Op1);
2776
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002777 return 0;
2778}
2779
2780/// This function implements the transforms common to both integer division
2781/// instructions (udiv and sdiv). It is called by the visitors to those integer
2782/// division instructions.
2783/// @brief Common integer divide transforms
2784Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2785 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2786
Chris Lattnercefb36c2008-05-16 02:59:42 +00002787 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002788 if (Op0 == Op1) {
2789 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2790 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2791 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2792 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2793 }
2794
2795 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2796 return ReplaceInstUsesWith(I, CI);
2797 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002798
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002799 if (Instruction *Common = commonDivTransforms(I))
2800 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002801
2802 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2803 // This does not apply for fdiv.
2804 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2805 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002806
2807 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2808 // div X, 1 == X
2809 if (RHS->equalsInt(1))
2810 return ReplaceInstUsesWith(I, Op0);
2811
2812 // (X / C1) / C2 -> X / (C1*C2)
2813 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2814 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2815 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002816 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2817 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2818 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002819 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002820 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002821 }
2822
2823 if (!RHS->isZero()) { // avoid X udiv 0
2824 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2825 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2826 return R;
2827 if (isa<PHINode>(Op0))
2828 if (Instruction *NV = FoldOpIntoPhi(I))
2829 return NV;
2830 }
2831 }
2832
2833 // 0 / X == 0, we don't need to preserve faults!
2834 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2835 if (LHS->equalsInt(0))
2836 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2837
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002838 // It can't be division by zero, hence it must be division by one.
2839 if (I.getType() == Type::Int1Ty)
2840 return ReplaceInstUsesWith(I, Op0);
2841
Nick Lewycky94418732008-11-27 20:21:08 +00002842 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2843 if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
2844 // div X, 1 == X
2845 if (X->isOne())
2846 return ReplaceInstUsesWith(I, Op0);
2847 }
2848
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002849 return 0;
2850}
2851
2852Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2853 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2854
2855 // Handle the integer div common cases
2856 if (Instruction *Common = commonIDivTransforms(I))
2857 return Common;
2858
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002859 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky240182a2008-11-27 22:41:10 +00002860 // X udiv C^2 -> X >> C
2861 // Check to see if this is an unsigned division with an exact power of 2,
2862 // if so, convert to a right shift.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002863 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002864 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002865 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
Nick Lewycky240182a2008-11-27 22:41:10 +00002866
2867 // X udiv C, where C >= signbit
2868 if (C->getValue().isNegative()) {
2869 Value *IC = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT, Op0, C),
2870 I);
2871 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
2872 ConstantInt::get(I.getType(), 1));
2873 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002874 }
2875
2876 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2877 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2878 if (RHSI->getOpcode() == Instruction::Shl &&
2879 isa<ConstantInt>(RHSI->getOperand(0))) {
2880 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2881 if (C1.isPowerOf2()) {
2882 Value *N = RHSI->getOperand(1);
2883 const Type *NTy = N->getType();
2884 if (uint32_t C2 = C1.logBase2()) {
2885 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002886 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002887 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002888 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002889 }
2890 }
2891 }
2892
2893 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2894 // where C1&C2 are powers of two.
2895 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2896 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2897 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2898 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2899 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2900 // Compute the shift amounts
2901 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2902 // Construct the "on true" case of the select
2903 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002904 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002905 Op0, TC, SI->getName()+".t");
2906 TSI = InsertNewInstBefore(TSI, I);
2907
2908 // Construct the "on false" case of the select
2909 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002910 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002911 Op0, FC, SI->getName()+".f");
2912 FSI = InsertNewInstBefore(FSI, I);
2913
2914 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002915 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002916 }
2917 }
2918 return 0;
2919}
2920
2921Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2922 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2923
2924 // Handle the integer div common cases
2925 if (Instruction *Common = commonIDivTransforms(I))
2926 return Common;
2927
2928 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2929 // sdiv X, -1 == -X
2930 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002931 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002932 }
2933
2934 // If the sign bits of both operands are zero (i.e. we can prove they are
2935 // unsigned inputs), turn this into a udiv.
2936 if (I.getType()->isInteger()) {
2937 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2938 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002939 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002940 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002941 }
2942 }
2943
2944 return 0;
2945}
2946
2947Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2948 return commonDivTransforms(I);
2949}
2950
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002951/// This function implements the transforms on rem instructions that work
2952/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2953/// is used by the visitors to those instructions.
2954/// @brief Transforms common to all three rem instructions
2955Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2956 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2957
Chris Lattner653ef3c2008-02-19 06:12:18 +00002958 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002959 if (Constant *LHS = dyn_cast<Constant>(Op0))
2960 if (LHS->isNullValue())
2961 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2962
Chris Lattner653ef3c2008-02-19 06:12:18 +00002963 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2964 if (I.getType()->isFPOrFPVector())
2965 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002966 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002967 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002968 if (isa<UndefValue>(Op1))
2969 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2970
2971 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002972 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2973 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002974
2975 return 0;
2976}
2977
2978/// This function implements the transforms common to both integer remainder
2979/// instructions (urem and srem). It is called by the visitors to those integer
2980/// remainder instructions.
2981/// @brief Common integer remainder transforms
2982Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2983 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2984
2985 if (Instruction *common = commonRemTransforms(I))
2986 return common;
2987
2988 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2989 // X % 0 == undef, we don't need to preserve faults!
2990 if (RHS->equalsInt(0))
2991 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2992
2993 if (RHS->equalsInt(1)) // X % 1 == 0
2994 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2995
2996 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2997 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2998 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2999 return R;
3000 } else if (isa<PHINode>(Op0I)) {
3001 if (Instruction *NV = FoldOpIntoPhi(I))
3002 return NV;
3003 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00003004
3005 // See if we can fold away this rem instruction.
3006 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3007 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3008 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3009 KnownZero, KnownOne))
3010 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003011 }
3012 }
3013
3014 return 0;
3015}
3016
3017Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3018 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3019
3020 if (Instruction *common = commonIRemTransforms(I))
3021 return common;
3022
3023 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3024 // X urem C^2 -> X and C
3025 // Check to see if this is an unsigned remainder with an exact power of 2,
3026 // if so, convert to a bitwise and.
3027 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3028 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00003029 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003030 }
3031
3032 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3033 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3034 if (RHSI->getOpcode() == Instruction::Shl &&
3035 isa<ConstantInt>(RHSI->getOperand(0))) {
3036 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3037 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003038 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003039 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003040 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003041 }
3042 }
3043 }
3044
3045 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3046 // where C1&C2 are powers of two.
3047 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3048 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3049 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3050 // STO == 0 and SFO == 0 handled above.
3051 if ((STO->getValue().isPowerOf2()) &&
3052 (SFO->getValue().isPowerOf2())) {
3053 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003054 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003055 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003056 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003057 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003058 }
3059 }
3060 }
3061
3062 return 0;
3063}
3064
3065Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3066 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3067
Dan Gohmandb3dd962007-11-05 23:16:33 +00003068 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003069 if (Instruction *common = commonIRemTransforms(I))
3070 return common;
3071
3072 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003073 if (!isa<Constant>(RHSNeg) ||
3074 (isa<ConstantInt>(RHSNeg) &&
3075 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003076 // X % -Y -> X % Y
3077 AddUsesToWorkList(I);
3078 I.setOperand(1, RHSNeg);
3079 return &I;
3080 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003081
Dan Gohmandb3dd962007-11-05 23:16:33 +00003082 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003083 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003084 if (I.getType()->isInteger()) {
3085 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3086 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3087 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003088 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003089 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003090 }
3091
3092 return 0;
3093}
3094
3095Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3096 return commonRemTransforms(I);
3097}
3098
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003099// isOneBitSet - Return true if there is exactly one bit set in the specified
3100// constant.
3101static bool isOneBitSet(const ConstantInt *CI) {
3102 return CI->getValue().isPowerOf2();
3103}
3104
3105// isHighOnes - Return true if the constant is of the form 1+0+.
3106// This is the same as lowones(~X).
3107static bool isHighOnes(const ConstantInt *CI) {
3108 return (~CI->getValue() + 1).isPowerOf2();
3109}
3110
3111/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3112/// are carefully arranged to allow folding of expressions such as:
3113///
3114/// (A < B) | (A > B) --> (A != B)
3115///
3116/// Note that this is only valid if the first and second predicates have the
3117/// same sign. Is illegal to do: (A u< B) | (A s> B)
3118///
3119/// Three bits are used to represent the condition, as follows:
3120/// 0 A > B
3121/// 1 A == B
3122/// 2 A < B
3123///
3124/// <=> Value Definition
3125/// 000 0 Always false
3126/// 001 1 A > B
3127/// 010 2 A == B
3128/// 011 3 A >= B
3129/// 100 4 A < B
3130/// 101 5 A != B
3131/// 110 6 A <= B
3132/// 111 7 Always true
3133///
3134static unsigned getICmpCode(const ICmpInst *ICI) {
3135 switch (ICI->getPredicate()) {
3136 // False -> 0
3137 case ICmpInst::ICMP_UGT: return 1; // 001
3138 case ICmpInst::ICMP_SGT: return 1; // 001
3139 case ICmpInst::ICMP_EQ: return 2; // 010
3140 case ICmpInst::ICMP_UGE: return 3; // 011
3141 case ICmpInst::ICMP_SGE: return 3; // 011
3142 case ICmpInst::ICMP_ULT: return 4; // 100
3143 case ICmpInst::ICMP_SLT: return 4; // 100
3144 case ICmpInst::ICMP_NE: return 5; // 101
3145 case ICmpInst::ICMP_ULE: return 6; // 110
3146 case ICmpInst::ICMP_SLE: return 6; // 110
3147 // True -> 7
3148 default:
3149 assert(0 && "Invalid ICmp predicate!");
3150 return 0;
3151 }
3152}
3153
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003154/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3155/// predicate into a three bit mask. It also returns whether it is an ordered
3156/// predicate by reference.
3157static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3158 isOrdered = false;
3159 switch (CC) {
3160 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3161 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Chengf1f2cea2008-10-14 18:13:38 +00003162 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3163 case FCmpInst::FCMP_UGT: return 1; // 001
3164 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3165 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003166 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3167 case FCmpInst::FCMP_UGE: return 3; // 011
3168 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3169 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Chengf1f2cea2008-10-14 18:13:38 +00003170 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3171 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003172 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3173 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng72988052008-10-14 18:44:08 +00003174 // True -> 7
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003175 default:
3176 // Not expecting FCMP_FALSE and FCMP_TRUE;
3177 assert(0 && "Unexpected FCmp predicate!");
3178 return 0;
3179 }
3180}
3181
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003182/// getICmpValue - This is the complement of getICmpCode, which turns an
3183/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003184/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003185/// of predicate to use in the new icmp instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003186static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3187 switch (code) {
3188 default: assert(0 && "Illegal ICmp code!");
3189 case 0: return ConstantInt::getFalse();
3190 case 1:
3191 if (sign)
3192 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3193 else
3194 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3195 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3196 case 3:
3197 if (sign)
3198 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3199 else
3200 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3201 case 4:
3202 if (sign)
3203 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3204 else
3205 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3206 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3207 case 6:
3208 if (sign)
3209 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3210 else
3211 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3212 case 7: return ConstantInt::getTrue();
3213 }
3214}
3215
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003216/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3217/// opcode and two operands into either a FCmp instruction. isordered is passed
3218/// in to determine which kind of predicate to use in the new fcmp instruction.
3219static Value *getFCmpValue(bool isordered, unsigned code,
3220 Value *LHS, Value *RHS) {
3221 switch (code) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003222 default: assert(0 && "Illegal FCmp code!");
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003223 case 0:
3224 if (isordered)
3225 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3226 else
3227 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3228 case 1:
3229 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003230 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3231 else
3232 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Chengf1f2cea2008-10-14 18:13:38 +00003233 case 2:
3234 if (isordered)
3235 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3236 else
3237 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003238 case 3:
3239 if (isordered)
3240 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3241 else
3242 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3243 case 4:
3244 if (isordered)
3245 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3246 else
3247 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3248 case 5:
3249 if (isordered)
Evan Chengf1f2cea2008-10-14 18:13:38 +00003250 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3251 else
3252 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3253 case 6:
3254 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003255 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3256 else
3257 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng72988052008-10-14 18:44:08 +00003258 case 7: return ConstantInt::getTrue();
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003259 }
3260}
3261
Chris Lattner2972b822008-11-16 04:55:20 +00003262/// PredicatesFoldable - Return true if both predicates match sign or if at
3263/// least one of them is an equality comparison (which is signless).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003264static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3265 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
Chris Lattner2972b822008-11-16 04:55:20 +00003266 (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) ||
3267 (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003268}
3269
3270namespace {
3271// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3272struct FoldICmpLogical {
3273 InstCombiner &IC;
3274 Value *LHS, *RHS;
3275 ICmpInst::Predicate pred;
3276 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3277 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3278 pred(ICI->getPredicate()) {}
3279 bool shouldApply(Value *V) const {
3280 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3281 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003282 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3283 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003284 return false;
3285 }
3286 Instruction *apply(Instruction &Log) const {
3287 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3288 if (ICI->getOperand(0) != LHS) {
3289 assert(ICI->getOperand(1) == LHS);
3290 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3291 }
3292
3293 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3294 unsigned LHSCode = getICmpCode(ICI);
3295 unsigned RHSCode = getICmpCode(RHSICI);
3296 unsigned Code;
3297 switch (Log.getOpcode()) {
3298 case Instruction::And: Code = LHSCode & RHSCode; break;
3299 case Instruction::Or: Code = LHSCode | RHSCode; break;
3300 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3301 default: assert(0 && "Illegal logical opcode!"); return 0;
3302 }
3303
3304 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3305 ICmpInst::isSignedPredicate(ICI->getPredicate());
3306
3307 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3308 if (Instruction *I = dyn_cast<Instruction>(RV))
3309 return I;
3310 // Otherwise, it's a constant boolean value...
3311 return IC.ReplaceInstUsesWith(Log, RV);
3312 }
3313};
3314} // end anonymous namespace
3315
3316// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3317// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3318// guaranteed to be a binary operator.
3319Instruction *InstCombiner::OptAndOp(Instruction *Op,
3320 ConstantInt *OpRHS,
3321 ConstantInt *AndRHS,
3322 BinaryOperator &TheAnd) {
3323 Value *X = Op->getOperand(0);
3324 Constant *Together = 0;
3325 if (!Op->isShift())
3326 Together = And(AndRHS, OpRHS);
3327
3328 switch (Op->getOpcode()) {
3329 case Instruction::Xor:
3330 if (Op->hasOneUse()) {
3331 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003332 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003333 InsertNewInstBefore(And, TheAnd);
3334 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003335 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003336 }
3337 break;
3338 case Instruction::Or:
3339 if (Together == AndRHS) // (X | C) & C --> C
3340 return ReplaceInstUsesWith(TheAnd, AndRHS);
3341
3342 if (Op->hasOneUse() && Together != OpRHS) {
3343 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003344 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003345 InsertNewInstBefore(Or, TheAnd);
3346 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003347 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003348 }
3349 break;
3350 case Instruction::Add:
3351 if (Op->hasOneUse()) {
3352 // Adding a one to a single bit bit-field should be turned into an XOR
3353 // of the bit. First thing to check is to see if this AND is with a
3354 // single bit constant.
3355 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3356
3357 // If there is only one bit set...
3358 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3359 // Ok, at this point, we know that we are masking the result of the
3360 // ADD down to exactly one bit. If the constant we are adding has
3361 // no bits set below this bit, then we can eliminate the ADD.
3362 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3363
3364 // Check to see if any bits below the one bit set in AndRHSV are set.
3365 if ((AddRHS & (AndRHSV-1)) == 0) {
3366 // If not, the only thing that can effect the output of the AND is
3367 // the bit specified by AndRHSV. If that bit is set, the effect of
3368 // the XOR is to toggle the bit. If it is clear, then the ADD has
3369 // no effect.
3370 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3371 TheAnd.setOperand(0, X);
3372 return &TheAnd;
3373 } else {
3374 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003375 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003376 InsertNewInstBefore(NewAnd, TheAnd);
3377 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003378 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003379 }
3380 }
3381 }
3382 }
3383 break;
3384
3385 case Instruction::Shl: {
3386 // We know that the AND will not produce any of the bits shifted in, so if
3387 // the anded constant includes them, clear them now!
3388 //
3389 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3390 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3391 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3392 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3393
3394 if (CI->getValue() == ShlMask) {
3395 // Masking out bits that the shift already masks
3396 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3397 } else if (CI != AndRHS) { // Reducing bits set in and.
3398 TheAnd.setOperand(1, CI);
3399 return &TheAnd;
3400 }
3401 break;
3402 }
3403 case Instruction::LShr:
3404 {
3405 // We know that the AND will not produce any of the bits shifted in, so if
3406 // the anded constant includes them, clear them now! This only applies to
3407 // unsigned shifts, because a signed shr may bring in set bits!
3408 //
3409 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3410 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3411 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3412 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3413
3414 if (CI->getValue() == ShrMask) {
3415 // Masking out bits that the shift already masks.
3416 return ReplaceInstUsesWith(TheAnd, Op);
3417 } else if (CI != AndRHS) {
3418 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3419 return &TheAnd;
3420 }
3421 break;
3422 }
3423 case Instruction::AShr:
3424 // Signed shr.
3425 // See if this is shifting in some sign extension, then masking it out
3426 // with an and.
3427 if (Op->hasOneUse()) {
3428 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3429 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3430 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3431 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3432 if (C == AndRHS) { // Masking out bits shifted in.
3433 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3434 // Make the argument unsigned.
3435 Value *ShVal = Op->getOperand(0);
3436 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003437 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003438 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003439 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003440 }
3441 }
3442 break;
3443 }
3444 return 0;
3445}
3446
3447
3448/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3449/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3450/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3451/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3452/// insert new instructions.
3453Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3454 bool isSigned, bool Inside,
3455 Instruction &IB) {
3456 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3457 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3458 "Lo is not <= Hi in range emission code!");
3459
3460 if (Inside) {
3461 if (Lo == Hi) // Trivially false.
3462 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3463
3464 // V >= Min && V < Hi --> V < Hi
3465 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3466 ICmpInst::Predicate pred = (isSigned ?
3467 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3468 return new ICmpInst(pred, V, Hi);
3469 }
3470
3471 // Emit V-Lo <u Hi-Lo
3472 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003473 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003474 InsertNewInstBefore(Add, IB);
3475 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3476 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3477 }
3478
3479 if (Lo == Hi) // Trivially true.
3480 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3481
3482 // V < Min || V >= Hi -> V > Hi-1
3483 Hi = SubOne(cast<ConstantInt>(Hi));
3484 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3485 ICmpInst::Predicate pred = (isSigned ?
3486 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3487 return new ICmpInst(pred, V, Hi);
3488 }
3489
3490 // Emit V-Lo >u Hi-1-Lo
3491 // Note that Hi has already had one subtracted from it, above.
3492 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003493 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003494 InsertNewInstBefore(Add, IB);
3495 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3496 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3497}
3498
3499// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3500// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3501// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3502// not, since all 1s are not contiguous.
3503static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3504 const APInt& V = Val->getValue();
3505 uint32_t BitWidth = Val->getType()->getBitWidth();
3506 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3507
3508 // look for the first zero bit after the run of ones
3509 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3510 // look for the first non-zero bit
3511 ME = V.getActiveBits();
3512 return true;
3513}
3514
3515/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3516/// where isSub determines whether the operator is a sub. If we can fold one of
3517/// the following xforms:
3518///
3519/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3520/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3521/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3522///
3523/// return (A +/- B).
3524///
3525Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3526 ConstantInt *Mask, bool isSub,
3527 Instruction &I) {
3528 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3529 if (!LHSI || LHSI->getNumOperands() != 2 ||
3530 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3531
3532 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3533
3534 switch (LHSI->getOpcode()) {
3535 default: return 0;
3536 case Instruction::And:
3537 if (And(N, Mask) == Mask) {
3538 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3539 if ((Mask->getValue().countLeadingZeros() +
3540 Mask->getValue().countPopulation()) ==
3541 Mask->getValue().getBitWidth())
3542 break;
3543
3544 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3545 // part, we don't need any explicit masks to take them out of A. If that
3546 // is all N is, ignore it.
3547 uint32_t MB = 0, ME = 0;
3548 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3549 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3550 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3551 if (MaskedValueIsZero(RHS, Mask))
3552 break;
3553 }
3554 }
3555 return 0;
3556 case Instruction::Or:
3557 case Instruction::Xor:
3558 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3559 if ((Mask->getValue().countLeadingZeros() +
3560 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3561 && And(N, Mask)->isZero())
3562 break;
3563 return 0;
3564 }
3565
3566 Instruction *New;
3567 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003568 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003569 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003570 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003571 return InsertNewInstBefore(New, I);
3572}
3573
Chris Lattner0631ea72008-11-16 05:06:21 +00003574/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
3575Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
3576 ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattnerf3803482008-11-16 05:10:52 +00003577 Value *Val, *Val2;
Chris Lattner0631ea72008-11-16 05:06:21 +00003578 ConstantInt *LHSCst, *RHSCst;
3579 ICmpInst::Predicate LHSCC, RHSCC;
3580
Chris Lattnerf3803482008-11-16 05:10:52 +00003581 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Chris Lattner0631ea72008-11-16 05:06:21 +00003582 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
Chris Lattnerf3803482008-11-16 05:10:52 +00003583 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
Chris Lattner0631ea72008-11-16 05:06:21 +00003584 return 0;
Chris Lattnerf3803482008-11-16 05:10:52 +00003585
3586 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3587 // where C is a power of 2
3588 if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3589 LHSCst->getValue().isPowerOf2()) {
3590 Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2);
3591 InsertNewInstBefore(NewOr, I);
3592 return new ICmpInst(LHSCC, NewOr, LHSCst);
3593 }
3594
3595 // From here on, we only handle:
3596 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
3597 if (Val != Val2) return 0;
3598
Chris Lattner0631ea72008-11-16 05:06:21 +00003599 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
3600 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
3601 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
3602 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
3603 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
3604 return 0;
3605
3606 // We can't fold (ugt x, C) & (sgt x, C2).
3607 if (!PredicatesFoldable(LHSCC, RHSCC))
3608 return 0;
3609
3610 // Ensure that the larger constant is on the RHS.
Chris Lattner665298f2008-11-16 05:14:43 +00003611 bool ShouldSwap;
Chris Lattner0631ea72008-11-16 05:06:21 +00003612 if (ICmpInst::isSignedPredicate(LHSCC) ||
3613 (ICmpInst::isEquality(LHSCC) &&
3614 ICmpInst::isSignedPredicate(RHSCC)))
Chris Lattner665298f2008-11-16 05:14:43 +00003615 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
Chris Lattner0631ea72008-11-16 05:06:21 +00003616 else
Chris Lattner665298f2008-11-16 05:14:43 +00003617 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3618
3619 if (ShouldSwap) {
Chris Lattner0631ea72008-11-16 05:06:21 +00003620 std::swap(LHS, RHS);
3621 std::swap(LHSCst, RHSCst);
3622 std::swap(LHSCC, RHSCC);
3623 }
3624
3625 // At this point, we know we have have two icmp instructions
3626 // comparing a value against two constants and and'ing the result
3627 // together. Because of the above check, we know that we only have
3628 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3629 // (from the FoldICmpLogical check above), that the two constants
3630 // are not equal and that the larger constant is on the RHS
3631 assert(LHSCst != RHSCst && "Compares not folded above?");
3632
3633 switch (LHSCC) {
3634 default: assert(0 && "Unknown integer condition code!");
3635 case ICmpInst::ICMP_EQ:
3636 switch (RHSCC) {
3637 default: assert(0 && "Unknown integer condition code!");
3638 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3639 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3640 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3641 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3642 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3643 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3644 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3645 return ReplaceInstUsesWith(I, LHS);
3646 }
3647 case ICmpInst::ICMP_NE:
3648 switch (RHSCC) {
3649 default: assert(0 && "Unknown integer condition code!");
3650 case ICmpInst::ICMP_ULT:
3651 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3652 return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
3653 break; // (X != 13 & X u< 15) -> no change
3654 case ICmpInst::ICMP_SLT:
3655 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3656 return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
3657 break; // (X != 13 & X s< 15) -> no change
3658 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3659 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3660 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3661 return ReplaceInstUsesWith(I, RHS);
3662 case ICmpInst::ICMP_NE:
3663 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3664 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3665 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
3666 Val->getName()+".off");
3667 InsertNewInstBefore(Add, I);
3668 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3669 ConstantInt::get(Add->getType(), 1));
3670 }
3671 break; // (X != 13 & X != 15) -> no change
3672 }
3673 break;
3674 case ICmpInst::ICMP_ULT:
3675 switch (RHSCC) {
3676 default: assert(0 && "Unknown integer condition code!");
3677 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3678 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3679 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3680 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3681 break;
3682 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3683 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3684 return ReplaceInstUsesWith(I, LHS);
3685 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3686 break;
3687 }
3688 break;
3689 case ICmpInst::ICMP_SLT:
3690 switch (RHSCC) {
3691 default: assert(0 && "Unknown integer condition code!");
3692 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3693 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3694 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3695 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3696 break;
3697 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3698 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3699 return ReplaceInstUsesWith(I, LHS);
3700 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3701 break;
3702 }
3703 break;
3704 case ICmpInst::ICMP_UGT:
3705 switch (RHSCC) {
3706 default: assert(0 && "Unknown integer condition code!");
3707 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
3708 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3709 return ReplaceInstUsesWith(I, RHS);
3710 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3711 break;
3712 case ICmpInst::ICMP_NE:
3713 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3714 return new ICmpInst(LHSCC, Val, RHSCst);
3715 break; // (X u> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003716 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003717 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true, I);
3718 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3719 break;
3720 }
3721 break;
3722 case ICmpInst::ICMP_SGT:
3723 switch (RHSCC) {
3724 default: assert(0 && "Unknown integer condition code!");
3725 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
3726 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3727 return ReplaceInstUsesWith(I, RHS);
3728 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3729 break;
3730 case ICmpInst::ICMP_NE:
3731 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3732 return new ICmpInst(LHSCC, Val, RHSCst);
3733 break; // (X s> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003734 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003735 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true, I);
3736 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3737 break;
3738 }
3739 break;
3740 }
Chris Lattner0631ea72008-11-16 05:06:21 +00003741
3742 return 0;
3743}
3744
3745
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003746Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3747 bool Changed = SimplifyCommutative(I);
3748 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3749
3750 if (isa<UndefValue>(Op1)) // X & undef -> 0
3751 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3752
3753 // and X, X = X
3754 if (Op0 == Op1)
3755 return ReplaceInstUsesWith(I, Op1);
3756
3757 // See if we can simplify any instructions used by the instruction whose sole
3758 // purpose is to compute bits we don't care about.
3759 if (!isa<VectorType>(I.getType())) {
3760 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3761 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3762 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3763 KnownZero, KnownOne))
3764 return &I;
3765 } else {
3766 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3767 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3768 return ReplaceInstUsesWith(I, I.getOperand(0));
3769 } else if (isa<ConstantAggregateZero>(Op1)) {
3770 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3771 }
3772 }
3773
3774 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3775 const APInt& AndRHSMask = AndRHS->getValue();
3776 APInt NotAndRHS(~AndRHSMask);
3777
3778 // Optimize a variety of ((val OP C1) & C2) combinations...
3779 if (isa<BinaryOperator>(Op0)) {
3780 Instruction *Op0I = cast<Instruction>(Op0);
3781 Value *Op0LHS = Op0I->getOperand(0);
3782 Value *Op0RHS = Op0I->getOperand(1);
3783 switch (Op0I->getOpcode()) {
3784 case Instruction::Xor:
3785 case Instruction::Or:
3786 // If the mask is only needed on one incoming arm, push it up.
3787 if (Op0I->hasOneUse()) {
3788 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3789 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003790 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003791 Op0RHS->getName()+".masked");
3792 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003793 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003794 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3795 }
3796 if (!isa<Constant>(Op0RHS) &&
3797 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3798 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003799 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003800 Op0LHS->getName()+".masked");
3801 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003802 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003803 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3804 }
3805 }
3806
3807 break;
3808 case Instruction::Add:
3809 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3810 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3811 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3812 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003813 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003814 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003815 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003816 break;
3817
3818 case Instruction::Sub:
3819 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3820 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3821 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3822 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003823 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003824
Nick Lewyckya349ba42008-07-10 05:51:40 +00003825 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3826 // has 1's for all bits that the subtraction with A might affect.
3827 if (Op0I->hasOneUse()) {
3828 uint32_t BitWidth = AndRHSMask.getBitWidth();
3829 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3830 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3831
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003832 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003833 if (!(A && A->isZero()) && // avoid infinite recursion.
3834 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003835 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3836 InsertNewInstBefore(NewNeg, I);
3837 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3838 }
3839 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003840 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003841
3842 case Instruction::Shl:
3843 case Instruction::LShr:
3844 // (1 << x) & 1 --> zext(x == 0)
3845 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003846 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003847 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3848 Constant::getNullValue(I.getType()));
3849 InsertNewInstBefore(NewICmp, I);
3850 return new ZExtInst(NewICmp, I.getType());
3851 }
3852 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003853 }
3854
3855 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3856 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3857 return Res;
3858 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3859 // If this is an integer truncation or change from signed-to-unsigned, and
3860 // if the source is an and/or with immediate, transform it. This
3861 // frequently occurs for bitfield accesses.
3862 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3863 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3864 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003865 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003866 if (CastOp->getOpcode() == Instruction::And) {
3867 // Change: and (cast (and X, C1) to T), C2
3868 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3869 // This will fold the two constants together, which may allow
3870 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003871 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003872 CastOp->getOperand(0), I.getType(),
3873 CastOp->getName()+".shrunk");
3874 NewCast = InsertNewInstBefore(NewCast, I);
3875 // trunc_or_bitcast(C1)&C2
3876 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3877 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003878 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003879 } else if (CastOp->getOpcode() == Instruction::Or) {
3880 // Change: and (cast (or X, C1) to T), C2
3881 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3882 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3883 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3884 return ReplaceInstUsesWith(I, AndRHS);
3885 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003886 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003887 }
3888 }
3889
3890 // Try to fold constant and into select arguments.
3891 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3892 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3893 return R;
3894 if (isa<PHINode>(Op0))
3895 if (Instruction *NV = FoldOpIntoPhi(I))
3896 return NV;
3897 }
3898
3899 Value *Op0NotVal = dyn_castNotVal(Op0);
3900 Value *Op1NotVal = dyn_castNotVal(Op1);
3901
3902 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3903 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3904
3905 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3906 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003907 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003908 I.getName()+".demorgan");
3909 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003910 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003911 }
3912
3913 {
3914 Value *A = 0, *B = 0, *C = 0, *D = 0;
3915 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3916 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3917 return ReplaceInstUsesWith(I, Op1);
3918
3919 // (A|B) & ~(A&B) -> A^B
3920 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3921 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003922 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003923 }
3924 }
3925
3926 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3927 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3928 return ReplaceInstUsesWith(I, Op0);
3929
3930 // ~(A&B) & (A|B) -> A^B
3931 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3932 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003933 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003934 }
3935 }
3936
3937 if (Op0->hasOneUse() &&
3938 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3939 if (A == Op1) { // (A^B)&A -> A&(A^B)
3940 I.swapOperands(); // Simplify below
3941 std::swap(Op0, Op1);
3942 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3943 cast<BinaryOperator>(Op0)->swapOperands();
3944 I.swapOperands(); // Simplify below
3945 std::swap(Op0, Op1);
3946 }
3947 }
Bill Wendlingce5e0af2008-11-30 13:08:13 +00003948
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003949 if (Op1->hasOneUse() &&
3950 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3951 if (B == Op0) { // B&(A^B) -> B&(B^A)
3952 cast<BinaryOperator>(Op1)->swapOperands();
3953 std::swap(A, B);
3954 }
3955 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003956 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003957 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003958 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003959 }
3960 }
Bill Wendlingce5e0af2008-11-30 13:08:13 +00003961
3962 // (A&((~A)|B)) -> A&B
Chris Lattner9db479f2008-12-01 05:16:26 +00003963 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
3964 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
3965 return BinaryOperator::CreateAnd(A, Op1);
3966 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
3967 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
3968 return BinaryOperator::CreateAnd(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003969 }
3970
3971 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3972 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3973 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3974 return R;
3975
Chris Lattner0631ea72008-11-16 05:06:21 +00003976 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
3977 if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
3978 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003979 }
3980
3981 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3982 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3983 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3984 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3985 const Type *SrcTy = Op0C->getOperand(0)->getType();
3986 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3987 // Only do this if the casts both really cause code to be generated.
3988 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
3989 I.getType(), TD) &&
3990 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
3991 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003992 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003993 Op1C->getOperand(0),
3994 I.getName());
3995 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003996 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003997 }
3998 }
3999
4000 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
4001 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4002 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4003 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4004 SI0->getOperand(1) == SI1->getOperand(1) &&
4005 (SI0->hasOneUse() || SI1->hasOneUse())) {
4006 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004007 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004008 SI1->getOperand(0),
4009 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004010 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004011 SI1->getOperand(1));
4012 }
4013 }
4014
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004015 // If and'ing two fcmp, try combine them into one.
Chris Lattner91882432007-10-24 05:38:08 +00004016 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4017 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4018 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004019 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
4020 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner91882432007-10-24 05:38:08 +00004021 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4022 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4023 // If either of the constants are nans, then the whole thing returns
4024 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004025 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004026 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4027 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4028 RHS->getOperand(0));
4029 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004030 } else {
4031 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4032 FCmpInst::Predicate Op0CC, Op1CC;
4033 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4034 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00004035 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4036 // Swap RHS operands to match LHS.
4037 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4038 std::swap(Op1LHS, Op1RHS);
4039 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004040 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4041 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4042 if (Op0CC == Op1CC)
4043 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4044 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4045 Op1CC == FCmpInst::FCMP_FALSE)
4046 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4047 else if (Op0CC == FCmpInst::FCMP_TRUE)
4048 return ReplaceInstUsesWith(I, Op1);
4049 else if (Op1CC == FCmpInst::FCMP_TRUE)
4050 return ReplaceInstUsesWith(I, Op0);
4051 bool Op0Ordered;
4052 bool Op1Ordered;
4053 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4054 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4055 if (Op1Pred == 0) {
4056 std::swap(Op0, Op1);
4057 std::swap(Op0Pred, Op1Pred);
4058 std::swap(Op0Ordered, Op1Ordered);
4059 }
4060 if (Op0Pred == 0) {
4061 // uno && ueq -> uno && (uno || eq) -> ueq
4062 // ord && olt -> ord && (ord && lt) -> olt
4063 if (Op0Ordered == Op1Ordered)
4064 return ReplaceInstUsesWith(I, Op1);
4065 // uno && oeq -> uno && (ord && eq) -> false
4066 // uno && ord -> false
4067 if (!Op0Ordered)
4068 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4069 // ord && ueq -> ord && (uno || eq) -> oeq
4070 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4071 Op0LHS, Op0RHS));
4072 }
4073 }
4074 }
4075 }
Chris Lattner91882432007-10-24 05:38:08 +00004076 }
4077 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00004078
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004079 return Changed ? &I : 0;
4080}
4081
Chris Lattner567f5112008-10-05 02:13:19 +00004082/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4083/// capable of providing pieces of a bswap. The subexpression provides pieces
4084/// of a bswap if it is proven that each of the non-zero bytes in the output of
4085/// the expression came from the corresponding "byte swapped" byte in some other
4086/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4087/// we know that the expression deposits the low byte of %X into the high byte
4088/// of the bswap result and that all other bytes are zero. This expression is
4089/// accepted, the high byte of ByteValues is set to X to indicate a correct
4090/// match.
4091///
4092/// This function returns true if the match was unsuccessful and false if so.
4093/// On entry to the function the "OverallLeftShift" is a signed integer value
4094/// indicating the number of bytes that the subexpression is later shifted. For
4095/// example, if the expression is later right shifted by 16 bits, the
4096/// OverallLeftShift value would be -2 on entry. This is used to specify which
4097/// byte of ByteValues is actually being set.
4098///
4099/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4100/// byte is masked to zero by a user. For example, in (X & 255), X will be
4101/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4102/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4103/// always in the local (OverallLeftShift) coordinate space.
4104///
4105static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4106 SmallVector<Value*, 8> &ByteValues) {
4107 if (Instruction *I = dyn_cast<Instruction>(V)) {
4108 // If this is an or instruction, it may be an inner node of the bswap.
4109 if (I->getOpcode() == Instruction::Or) {
4110 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4111 ByteValues) ||
4112 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4113 ByteValues);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004114 }
Chris Lattner567f5112008-10-05 02:13:19 +00004115
4116 // If this is a logical shift by a constant multiple of 8, recurse with
4117 // OverallLeftShift and ByteMask adjusted.
4118 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4119 unsigned ShAmt =
4120 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4121 // Ensure the shift amount is defined and of a byte value.
4122 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4123 return true;
4124
4125 unsigned ByteShift = ShAmt >> 3;
4126 if (I->getOpcode() == Instruction::Shl) {
4127 // X << 2 -> collect(X, +2)
4128 OverallLeftShift += ByteShift;
4129 ByteMask >>= ByteShift;
4130 } else {
4131 // X >>u 2 -> collect(X, -2)
4132 OverallLeftShift -= ByteShift;
4133 ByteMask <<= ByteShift;
Chris Lattner44448592008-10-08 06:42:28 +00004134 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner567f5112008-10-05 02:13:19 +00004135 }
4136
4137 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4138 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4139
4140 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4141 ByteValues);
4142 }
4143
4144 // If this is a logical 'and' with a mask that clears bytes, clear the
4145 // corresponding bytes in ByteMask.
4146 if (I->getOpcode() == Instruction::And &&
4147 isa<ConstantInt>(I->getOperand(1))) {
4148 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4149 unsigned NumBytes = ByteValues.size();
4150 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4151 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4152
4153 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4154 // If this byte is masked out by a later operation, we don't care what
4155 // the and mask is.
4156 if ((ByteMask & (1 << i)) == 0)
4157 continue;
4158
4159 // If the AndMask is all zeros for this byte, clear the bit.
4160 APInt MaskB = AndMask & Byte;
4161 if (MaskB == 0) {
4162 ByteMask &= ~(1U << i);
4163 continue;
4164 }
4165
4166 // If the AndMask is not all ones for this byte, it's not a bytezap.
4167 if (MaskB != Byte)
4168 return true;
4169
4170 // Otherwise, this byte is kept.
4171 }
4172
4173 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4174 ByteValues);
4175 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004176 }
4177
Chris Lattner567f5112008-10-05 02:13:19 +00004178 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4179 // the input value to the bswap. Some observations: 1) if more than one byte
4180 // is demanded from this input, then it could not be successfully assembled
4181 // into a byteswap. At least one of the two bytes would not be aligned with
4182 // their ultimate destination.
4183 if (!isPowerOf2_32(ByteMask)) return true;
4184 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004185
Chris Lattner567f5112008-10-05 02:13:19 +00004186 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4187 // is demanded, it needs to go into byte 0 of the result. This means that the
4188 // byte needs to be shifted until it lands in the right byte bucket. The
4189 // shift amount depends on the position: if the byte is coming from the high
4190 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4191 // low part, it must be shifted left.
4192 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4193 if (InputByteNo < ByteValues.size()/2) {
4194 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4195 return true;
4196 } else {
4197 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4198 return true;
4199 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004200
4201 // If the destination byte value is already defined, the values are or'd
4202 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner567f5112008-10-05 02:13:19 +00004203 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004204 return true;
Chris Lattner567f5112008-10-05 02:13:19 +00004205 ByteValues[DestByteNo] = V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004206 return false;
4207}
4208
4209/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4210/// If so, insert the new bswap intrinsic and return it.
4211Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4212 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner567f5112008-10-05 02:13:19 +00004213 if (!ITy || ITy->getBitWidth() % 16 ||
4214 // ByteMask only allows up to 32-byte values.
4215 ITy->getBitWidth() > 32*8)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004216 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4217
4218 /// ByteValues - For each byte of the result, we keep track of which value
4219 /// defines each byte.
4220 SmallVector<Value*, 8> ByteValues;
4221 ByteValues.resize(ITy->getBitWidth()/8);
4222
4223 // Try to find all the pieces corresponding to the bswap.
Chris Lattner567f5112008-10-05 02:13:19 +00004224 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4225 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004226 return 0;
4227
4228 // Check to see if all of the bytes come from the same value.
4229 Value *V = ByteValues[0];
4230 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4231
4232 // Check to make sure that all of the bytes come from the same value.
4233 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4234 if (ByteValues[i] != V)
4235 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004236 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004237 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004238 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004239 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004240}
4241
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004242/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4243/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4244/// we can simplify this expression to "cond ? C : D or B".
4245static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
4246 Value *C, Value *D) {
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004247 // If A is not a select of -1/0, this cannot match.
Chris Lattner641ea462008-11-16 04:46:19 +00004248 Value *Cond = 0;
Chris Lattnerd8640f62008-11-16 04:33:38 +00004249 if (!match(A, m_SelectCst(m_Value(Cond), -1, 0)))
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004250 return 0;
4251
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004252 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattner641ea462008-11-16 04:46:19 +00004253 if (match(D, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004254 return SelectInst::Create(Cond, C, B);
Chris Lattner641ea462008-11-16 04:46:19 +00004255 if (match(D, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004256 return SelectInst::Create(Cond, C, B);
4257 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattner641ea462008-11-16 04:46:19 +00004258 if (match(B, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004259 return SelectInst::Create(Cond, C, D);
Chris Lattner641ea462008-11-16 04:46:19 +00004260 if (match(B, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004261 return SelectInst::Create(Cond, C, D);
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004262 return 0;
4263}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004264
Chris Lattner0c678e52008-11-16 05:20:07 +00004265/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
4266Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
4267 ICmpInst *LHS, ICmpInst *RHS) {
4268 Value *Val, *Val2;
4269 ConstantInt *LHSCst, *RHSCst;
4270 ICmpInst::Predicate LHSCC, RHSCC;
4271
4272 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
4273 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
4274 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
4275 return 0;
4276
4277 // From here on, we only handle:
4278 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
4279 if (Val != Val2) return 0;
4280
4281 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
4282 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
4283 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
4284 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
4285 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
4286 return 0;
4287
4288 // We can't fold (ugt x, C) | (sgt x, C2).
4289 if (!PredicatesFoldable(LHSCC, RHSCC))
4290 return 0;
4291
4292 // Ensure that the larger constant is on the RHS.
4293 bool ShouldSwap;
4294 if (ICmpInst::isSignedPredicate(LHSCC) ||
4295 (ICmpInst::isEquality(LHSCC) &&
4296 ICmpInst::isSignedPredicate(RHSCC)))
4297 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4298 else
4299 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4300
4301 if (ShouldSwap) {
4302 std::swap(LHS, RHS);
4303 std::swap(LHSCst, RHSCst);
4304 std::swap(LHSCC, RHSCC);
4305 }
4306
4307 // At this point, we know we have have two icmp instructions
4308 // comparing a value against two constants and or'ing the result
4309 // together. Because of the above check, we know that we only have
4310 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4311 // FoldICmpLogical check above), that the two constants are not
4312 // equal.
4313 assert(LHSCst != RHSCst && "Compares not folded above?");
4314
4315 switch (LHSCC) {
4316 default: assert(0 && "Unknown integer condition code!");
4317 case ICmpInst::ICMP_EQ:
4318 switch (RHSCC) {
4319 default: assert(0 && "Unknown integer condition code!");
4320 case ICmpInst::ICMP_EQ:
4321 if (LHSCst == SubOne(RHSCst)) { // (X == 13 | X == 14) -> X-13 <u 2
4322 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4323 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
4324 Val->getName()+".off");
4325 InsertNewInstBefore(Add, I);
4326 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4327 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4328 }
4329 break; // (X == 13 | X == 15) -> no change
4330 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4331 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4332 break;
4333 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4334 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4335 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4336 return ReplaceInstUsesWith(I, RHS);
4337 }
4338 break;
4339 case ICmpInst::ICMP_NE:
4340 switch (RHSCC) {
4341 default: assert(0 && "Unknown integer condition code!");
4342 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4343 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4344 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4345 return ReplaceInstUsesWith(I, LHS);
4346 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4347 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4348 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4349 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4350 }
4351 break;
4352 case ICmpInst::ICMP_ULT:
4353 switch (RHSCC) {
4354 default: assert(0 && "Unknown integer condition code!");
4355 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4356 break;
4357 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
4358 // If RHSCst is [us]MAXINT, it is always false. Not handling
4359 // this can cause overflow.
4360 if (RHSCst->isMaxValue(false))
4361 return ReplaceInstUsesWith(I, LHS);
4362 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false, I);
4363 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4364 break;
4365 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4366 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4367 return ReplaceInstUsesWith(I, RHS);
4368 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4369 break;
4370 }
4371 break;
4372 case ICmpInst::ICMP_SLT:
4373 switch (RHSCC) {
4374 default: assert(0 && "Unknown integer condition code!");
4375 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4376 break;
4377 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
4378 // If RHSCst is [us]MAXINT, it is always false. Not handling
4379 // this can cause overflow.
4380 if (RHSCst->isMaxValue(true))
4381 return ReplaceInstUsesWith(I, LHS);
4382 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false, I);
4383 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4384 break;
4385 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4386 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4387 return ReplaceInstUsesWith(I, RHS);
4388 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4389 break;
4390 }
4391 break;
4392 case ICmpInst::ICMP_UGT:
4393 switch (RHSCC) {
4394 default: assert(0 && "Unknown integer condition code!");
4395 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4396 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4397 return ReplaceInstUsesWith(I, LHS);
4398 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4399 break;
4400 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4401 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4402 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4403 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4404 break;
4405 }
4406 break;
4407 case ICmpInst::ICMP_SGT:
4408 switch (RHSCC) {
4409 default: assert(0 && "Unknown integer condition code!");
4410 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4411 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4412 return ReplaceInstUsesWith(I, LHS);
4413 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4414 break;
4415 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4416 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4417 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4418 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4419 break;
4420 }
4421 break;
4422 }
4423 return 0;
4424}
4425
Bill Wendlingdae376a2008-12-01 08:23:25 +00004426/// FoldOrWithConstants - This helper function folds:
4427///
Bill Wendling236a1192008-12-02 05:09:00 +00004428/// ((A | B) & C1) | (B & C2)
Bill Wendlingdae376a2008-12-01 08:23:25 +00004429///
4430/// into:
4431///
Bill Wendling236a1192008-12-02 05:09:00 +00004432/// (A & C1) | B
Bill Wendling9912f712008-12-01 08:32:40 +00004433///
Bill Wendling236a1192008-12-02 05:09:00 +00004434/// when the XOR of the two constants is "all ones" (-1).
Bill Wendling9912f712008-12-01 08:32:40 +00004435Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
Bill Wendlingdae376a2008-12-01 08:23:25 +00004436 Value *A, Value *B, Value *C) {
Bill Wendlingfc5b8e62008-12-02 05:06:43 +00004437 ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
4438 if (!CI1) return 0;
Bill Wendlingdae376a2008-12-01 08:23:25 +00004439
Bill Wendlingfc5b8e62008-12-02 05:06:43 +00004440 Value *V1 = 0, *C2 = 0;
Bill Wendling86ee3162008-12-02 06:18:11 +00004441 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(C2)))) return 0;
Bill Wendlingdae376a2008-12-01 08:23:25 +00004442
Bill Wendling86ee3162008-12-02 06:18:11 +00004443 APInt Xor = CI1->getValue() ^ CI2->getValue();
4444 if (!Xor.isAllOnesValue()) return 0;
4445
4446 if (V1 == B) {
4447 Instruction *NewOp =
4448 InsertNewInstBefore(BinaryOperator::CreateAnd(A, CI1), I);
4449 return BinaryOperator::CreateOr(NewOp, B);
4450 } else if (V1 == A) {
4451 Instruction *NewOp =
4452 InsertNewInstBefore(BinaryOperator::CreateAnd(B, CI1), I);
4453 return BinaryOperator::CreateOr(NewOp, A);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004454 }
4455
4456 return 0;
4457}
4458
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004459Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4460 bool Changed = SimplifyCommutative(I);
4461 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4462
4463 if (isa<UndefValue>(Op1)) // X | undef -> -1
4464 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4465
4466 // or X, X = X
4467 if (Op0 == Op1)
4468 return ReplaceInstUsesWith(I, Op0);
4469
4470 // See if we can simplify any instructions used by the instruction whose sole
4471 // purpose is to compute bits we don't care about.
4472 if (!isa<VectorType>(I.getType())) {
4473 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4474 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4475 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4476 KnownZero, KnownOne))
4477 return &I;
4478 } else if (isa<ConstantAggregateZero>(Op1)) {
4479 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4480 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4481 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4482 return ReplaceInstUsesWith(I, I.getOperand(1));
4483 }
4484
4485
4486
4487 // or X, -1 == -1
4488 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4489 ConstantInt *C1 = 0; Value *X = 0;
4490 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4491 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004492 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004493 InsertNewInstBefore(Or, I);
4494 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004495 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004496 ConstantInt::get(RHS->getValue() | C1->getValue()));
4497 }
4498
4499 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4500 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004501 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004502 InsertNewInstBefore(Or, I);
4503 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004504 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004505 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4506 }
4507
4508 // Try to fold constant and into select arguments.
4509 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4510 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4511 return R;
4512 if (isa<PHINode>(Op0))
4513 if (Instruction *NV = FoldOpIntoPhi(I))
4514 return NV;
4515 }
4516
4517 Value *A = 0, *B = 0;
4518 ConstantInt *C1 = 0, *C2 = 0;
4519
4520 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4521 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4522 return ReplaceInstUsesWith(I, Op1);
4523 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4524 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4525 return ReplaceInstUsesWith(I, Op0);
4526
4527 // (A | B) | C and A | (B | C) -> bswap if possible.
4528 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4529 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4530 match(Op1, m_Or(m_Value(), m_Value())) ||
4531 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4532 match(Op1, m_Shift(m_Value(), m_Value())))) {
4533 if (Instruction *BSwap = MatchBSwap(I))
4534 return BSwap;
4535 }
4536
4537 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4538 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4539 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004540 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004541 InsertNewInstBefore(NOr, I);
4542 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004543 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004544 }
4545
4546 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4547 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4548 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004549 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004550 InsertNewInstBefore(NOr, I);
4551 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004552 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004553 }
4554
4555 // (A & C)|(B & D)
4556 Value *C = 0, *D = 0;
4557 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4558 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4559 Value *V1 = 0, *V2 = 0, *V3 = 0;
4560 C1 = dyn_cast<ConstantInt>(C);
4561 C2 = dyn_cast<ConstantInt>(D);
4562 if (C1 && C2) { // (A & C1)|(B & C2)
4563 // If we have: ((V + N) & C1) | (V & C2)
4564 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4565 // replace with V+N.
4566 if (C1->getValue() == ~C2->getValue()) {
4567 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4568 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4569 // Add commutes, try both ways.
4570 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4571 return ReplaceInstUsesWith(I, A);
4572 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4573 return ReplaceInstUsesWith(I, A);
4574 }
4575 // Or commutes, try both ways.
4576 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4577 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4578 // Add commutes, try both ways.
4579 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4580 return ReplaceInstUsesWith(I, B);
4581 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4582 return ReplaceInstUsesWith(I, B);
4583 }
4584 }
4585 V1 = 0; V2 = 0; V3 = 0;
4586 }
4587
4588 // Check to see if we have any common things being and'ed. If so, find the
4589 // terms for V1 & (V2|V3).
4590 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4591 if (A == B) // (A & C)|(A & D) == A & (C|D)
4592 V1 = A, V2 = C, V3 = D;
4593 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4594 V1 = A, V2 = B, V3 = C;
4595 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4596 V1 = C, V2 = A, V3 = D;
4597 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4598 V1 = C, V2 = A, V3 = B;
4599
4600 if (V1) {
4601 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004602 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4603 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004604 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004605 }
Dan Gohman279952c2008-10-28 22:38:57 +00004606
Dan Gohman35b76162008-10-30 20:40:10 +00004607 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004608 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
4609 return Match;
4610 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
4611 return Match;
4612 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
4613 return Match;
4614 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
4615 return Match;
Bill Wendling22ca8352008-11-30 13:52:49 +00004616
Bill Wendling22ca8352008-11-30 13:52:49 +00004617 // ((A&~B)|(~A&B)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004618 if ((match(C, m_Not(m_Specific(D))) &&
4619 match(B, m_Not(m_Specific(A)))))
4620 return BinaryOperator::CreateXor(A, D);
Bill Wendling22ca8352008-11-30 13:52:49 +00004621 // ((~B&A)|(~A&B)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004622 if ((match(A, m_Not(m_Specific(D))) &&
4623 match(B, m_Not(m_Specific(C)))))
4624 return BinaryOperator::CreateXor(C, D);
Bill Wendling22ca8352008-11-30 13:52:49 +00004625 // ((A&~B)|(B&~A)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004626 if ((match(C, m_Not(m_Specific(B))) &&
4627 match(D, m_Not(m_Specific(A)))))
4628 return BinaryOperator::CreateXor(A, B);
Bill Wendling22ca8352008-11-30 13:52:49 +00004629 // ((~B&A)|(B&~A)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004630 if ((match(A, m_Not(m_Specific(B))) &&
4631 match(D, m_Not(m_Specific(C)))))
4632 return BinaryOperator::CreateXor(C, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004633 }
4634
4635 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4636 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4637 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4638 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4639 SI0->getOperand(1) == SI1->getOperand(1) &&
4640 (SI0->hasOneUse() || SI1->hasOneUse())) {
4641 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004642 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004643 SI1->getOperand(0),
4644 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004645 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004646 SI1->getOperand(1));
4647 }
4648 }
4649
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004650 // ((A|B)&1)|(B&-2) -> (A&1) | B
4651 if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4652 match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
Bill Wendling9912f712008-12-01 08:32:40 +00004653 Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004654 if (Ret) return Ret;
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004655 }
4656 // (B&-2)|((A|B)&1) -> (A&1) | B
4657 if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4658 match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
Bill Wendling9912f712008-12-01 08:32:40 +00004659 Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004660 if (Ret) return Ret;
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004661 }
4662
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004663 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4664 if (A == Op1) // ~A | A == -1
4665 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4666 } else {
4667 A = 0;
4668 }
4669 // Note, A is still live here!
4670 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4671 if (Op0 == B)
4672 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4673
4674 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4675 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004676 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004677 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004678 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004679 }
4680 }
4681
4682 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4683 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4684 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4685 return R;
4686
Chris Lattner0c678e52008-11-16 05:20:07 +00004687 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4688 if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
4689 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004690 }
4691
4692 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004693 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004694 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4695 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004696 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4697 !isa<ICmpInst>(Op1C->getOperand(0))) {
4698 const Type *SrcTy = Op0C->getOperand(0)->getType();
4699 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4700 // Only do this if the casts both really cause code to be
4701 // generated.
4702 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4703 I.getType(), TD) &&
4704 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4705 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004706 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004707 Op1C->getOperand(0),
4708 I.getName());
4709 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004710 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004711 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004712 }
4713 }
Chris Lattner91882432007-10-24 05:38:08 +00004714 }
4715
4716
4717 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4718 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4719 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4720 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004721 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng72988052008-10-14 18:44:08 +00004722 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner91882432007-10-24 05:38:08 +00004723 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4724 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4725 // If either of the constants are nans, then the whole thing returns
4726 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004727 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004728 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4729
4730 // Otherwise, no need to compare the two constants, compare the
4731 // rest.
4732 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4733 RHS->getOperand(0));
4734 }
Evan Cheng72988052008-10-14 18:44:08 +00004735 } else {
4736 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4737 FCmpInst::Predicate Op0CC, Op1CC;
4738 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4739 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4740 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4741 // Swap RHS operands to match LHS.
4742 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4743 std::swap(Op1LHS, Op1RHS);
4744 }
4745 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4746 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4747 if (Op0CC == Op1CC)
4748 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4749 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4750 Op1CC == FCmpInst::FCMP_TRUE)
4751 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4752 else if (Op0CC == FCmpInst::FCMP_FALSE)
4753 return ReplaceInstUsesWith(I, Op1);
4754 else if (Op1CC == FCmpInst::FCMP_FALSE)
4755 return ReplaceInstUsesWith(I, Op0);
4756 bool Op0Ordered;
4757 bool Op1Ordered;
4758 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4759 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4760 if (Op0Ordered == Op1Ordered) {
4761 // If both are ordered or unordered, return a new fcmp with
4762 // or'ed predicates.
4763 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4764 Op0LHS, Op0RHS);
4765 if (Instruction *I = dyn_cast<Instruction>(RV))
4766 return I;
4767 // Otherwise, it's a constant boolean value...
4768 return ReplaceInstUsesWith(I, RV);
4769 }
4770 }
4771 }
4772 }
Chris Lattner91882432007-10-24 05:38:08 +00004773 }
4774 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004775
4776 return Changed ? &I : 0;
4777}
4778
Dan Gohman089efff2008-05-13 00:00:25 +00004779namespace {
4780
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004781// XorSelf - Implements: X ^ X --> 0
4782struct XorSelf {
4783 Value *RHS;
4784 XorSelf(Value *rhs) : RHS(rhs) {}
4785 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4786 Instruction *apply(BinaryOperator &Xor) const {
4787 return &Xor;
4788 }
4789};
4790
Dan Gohman089efff2008-05-13 00:00:25 +00004791}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004792
4793Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4794 bool Changed = SimplifyCommutative(I);
4795 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4796
Evan Chenge5cd8032008-03-25 20:07:13 +00004797 if (isa<UndefValue>(Op1)) {
4798 if (isa<UndefValue>(Op0))
4799 // Handle undef ^ undef -> 0 special case. This is a common
4800 // idiom (misuse).
4801 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004802 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004803 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004804
4805 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4806 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004807 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004808 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4809 }
4810
4811 // See if we can simplify any instructions used by the instruction whose sole
4812 // purpose is to compute bits we don't care about.
4813 if (!isa<VectorType>(I.getType())) {
4814 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4815 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4816 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4817 KnownZero, KnownOne))
4818 return &I;
4819 } else if (isa<ConstantAggregateZero>(Op1)) {
4820 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4821 }
4822
4823 // Is this a ~ operation?
4824 if (Value *NotOp = dyn_castNotVal(&I)) {
4825 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4826 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4827 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4828 if (Op0I->getOpcode() == Instruction::And ||
4829 Op0I->getOpcode() == Instruction::Or) {
4830 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4831 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4832 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004833 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004834 Op0I->getOperand(1)->getName()+".not");
4835 InsertNewInstBefore(NotY, I);
4836 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004837 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004838 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004839 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004840 }
4841 }
4842 }
4843 }
4844
4845
4846 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004847 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4848 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4849 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004850 return new ICmpInst(ICI->getInversePredicate(),
4851 ICI->getOperand(0), ICI->getOperand(1));
4852
Nick Lewycky1405e922007-08-06 20:04:16 +00004853 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4854 return new FCmpInst(FCI->getInversePredicate(),
4855 FCI->getOperand(0), FCI->getOperand(1));
4856 }
4857
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004858 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4859 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4860 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4861 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4862 Instruction::CastOps Opcode = Op0C->getOpcode();
4863 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4864 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4865 Op0C->getDestTy())) {
4866 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4867 CI->getOpcode(), CI->getInversePredicate(),
4868 CI->getOperand(0), CI->getOperand(1)), I);
4869 NewCI->takeName(CI);
4870 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4871 }
4872 }
4873 }
4874 }
4875 }
4876
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004877 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4878 // ~(c-X) == X-c-1 == X+(-c-1)
4879 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4880 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4881 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4882 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4883 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004884 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004885 }
4886
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004887 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004888 if (Op0I->getOpcode() == Instruction::Add) {
4889 // ~(X-c) --> (-c-1)-X
4890 if (RHS->isAllOnesValue()) {
4891 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004892 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004893 ConstantExpr::getSub(NegOp0CI,
4894 ConstantInt::get(I.getType(), 1)),
4895 Op0I->getOperand(0));
4896 } else if (RHS->getValue().isSignBit()) {
4897 // (X + C) ^ signbit -> (X + C + signbit)
4898 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004899 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004900
4901 }
4902 } else if (Op0I->getOpcode() == Instruction::Or) {
4903 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4904 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4905 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4906 // Anything in both C1 and C2 is known to be zero, remove it from
4907 // NewRHS.
4908 Constant *CommonBits = And(Op0CI, RHS);
4909 NewRHS = ConstantExpr::getAnd(NewRHS,
4910 ConstantExpr::getNot(CommonBits));
4911 AddToWorkList(Op0I);
4912 I.setOperand(0, Op0I->getOperand(0));
4913 I.setOperand(1, NewRHS);
4914 return &I;
4915 }
4916 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004917 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004918 }
4919
4920 // Try to fold constant and into select arguments.
4921 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4922 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4923 return R;
4924 if (isa<PHINode>(Op0))
4925 if (Instruction *NV = FoldOpIntoPhi(I))
4926 return NV;
4927 }
4928
4929 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4930 if (X == Op1)
4931 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4932
4933 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4934 if (X == Op0)
4935 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4936
4937
4938 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4939 if (Op1I) {
4940 Value *A, *B;
4941 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4942 if (A == Op0) { // B^(B|A) == (A|B)^B
4943 Op1I->swapOperands();
4944 I.swapOperands();
4945 std::swap(Op0, Op1);
4946 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4947 I.swapOperands(); // Simplified below.
4948 std::swap(Op0, Op1);
4949 }
Chris Lattner3b874082008-11-16 05:38:51 +00004950 } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
4951 return ReplaceInstUsesWith(I, B); // A^(A^B) == B
4952 } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
4953 return ReplaceInstUsesWith(I, A); // A^(B^A) == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004954 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4955 if (A == Op0) { // A^(A&B) -> A^(B&A)
4956 Op1I->swapOperands();
4957 std::swap(A, B);
4958 }
4959 if (B == Op0) { // A^(B&A) -> (B&A)^A
4960 I.swapOperands(); // Simplified below.
4961 std::swap(Op0, Op1);
4962 }
4963 }
4964 }
4965
4966 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4967 if (Op0I) {
4968 Value *A, *B;
4969 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4970 if (A == Op1) // (B|A)^B == (A|B)^B
4971 std::swap(A, B);
4972 if (B == Op1) { // (A|B)^B == A & ~B
4973 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00004974 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4975 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004976 }
Chris Lattner3b874082008-11-16 05:38:51 +00004977 } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
4978 return ReplaceInstUsesWith(I, B); // (A^B)^A == B
4979 } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
4980 return ReplaceInstUsesWith(I, A); // (B^A)^A == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004981 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4982 if (A == Op1) // (A&B)^A -> (B&A)^A
4983 std::swap(A, B);
4984 if (B == Op1 && // (B&A)^A == ~B & A
4985 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4986 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00004987 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
4988 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004989 }
4990 }
4991 }
4992
4993 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4994 if (Op0I && Op1I && Op0I->isShift() &&
4995 Op0I->getOpcode() == Op1I->getOpcode() &&
4996 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4997 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4998 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004999 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005000 Op1I->getOperand(0),
5001 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005002 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005003 Op1I->getOperand(1));
5004 }
5005
5006 if (Op0I && Op1I) {
5007 Value *A, *B, *C, *D;
5008 // (A & B)^(A | B) -> A ^ B
5009 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5010 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
5011 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00005012 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005013 }
5014 // (A | B)^(A & B) -> A ^ B
5015 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
5016 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5017 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00005018 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005019 }
5020
5021 // (A & B)^(C & D)
5022 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
5023 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5024 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5025 // (X & Y)^(X & Y) -> (Y^Z) & X
5026 Value *X = 0, *Y = 0, *Z = 0;
5027 if (A == C)
5028 X = A, Y = B, Z = D;
5029 else if (A == D)
5030 X = A, Y = B, Z = C;
5031 else if (B == C)
5032 X = B, Y = A, Z = D;
5033 else if (B == D)
5034 X = B, Y = A, Z = C;
5035
5036 if (X) {
5037 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00005038 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
5039 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005040 }
5041 }
5042 }
5043
5044 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
5045 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
5046 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
5047 return R;
5048
5049 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00005050 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005051 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
5052 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
5053 const Type *SrcTy = Op0C->getOperand(0)->getType();
5054 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
5055 // Only do this if the casts both really cause code to be generated.
5056 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
5057 I.getType(), TD) &&
5058 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
5059 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00005060 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005061 Op1C->getOperand(0),
5062 I.getName());
5063 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005064 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005065 }
5066 }
Chris Lattner91882432007-10-24 05:38:08 +00005067 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00005068
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005069 return Changed ? &I : 0;
5070}
5071
5072/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
5073/// overflowed for this type.
5074static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5075 ConstantInt *In2, bool IsSigned = false) {
5076 Result = cast<ConstantInt>(Add(In1, In2));
5077
5078 if (IsSigned)
5079 if (In2->getValue().isNegative())
5080 return Result->getValue().sgt(In1->getValue());
5081 else
5082 return Result->getValue().slt(In1->getValue());
5083 else
5084 return Result->getValue().ult(In1->getValue());
5085}
5086
Dan Gohmanb80d5612008-09-10 23:30:57 +00005087/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
5088/// overflowed for this type.
5089static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5090 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00005091 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00005092
5093 if (IsSigned)
5094 if (In2->getValue().isNegative())
5095 return Result->getValue().slt(In1->getValue());
5096 else
5097 return Result->getValue().sgt(In1->getValue());
5098 else
5099 return Result->getValue().ugt(In1->getValue());
5100}
5101
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005102/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5103/// code necessary to compute the offset from the base pointer (without adding
5104/// in the base pointer). Return the result as a signed integer of intptr size.
5105static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5106 TargetData &TD = IC.getTargetData();
5107 gep_type_iterator GTI = gep_type_begin(GEP);
5108 const Type *IntPtrTy = TD.getIntPtrType();
5109 Value *Result = Constant::getNullValue(IntPtrTy);
5110
5111 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00005112 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005113 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5114
Gabor Greif17396002008-06-12 21:37:33 +00005115 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5116 ++i, ++GTI) {
5117 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00005118 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005119 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5120 if (OpC->isZero()) continue;
5121
5122 // Handle a struct index, which adds its field offset to the pointer.
5123 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5124 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5125
5126 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5127 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
5128 else
5129 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005130 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005131 ConstantInt::get(IntPtrTy, Size),
5132 GEP->getName()+".offs"), I);
5133 continue;
5134 }
5135
5136 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5137 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5138 Scale = ConstantExpr::getMul(OC, Scale);
5139 if (Constant *RC = dyn_cast<Constant>(Result))
5140 Result = ConstantExpr::getAdd(RC, Scale);
5141 else {
5142 // Emit an add instruction.
5143 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005144 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005145 GEP->getName()+".offs"), I);
5146 }
5147 continue;
5148 }
5149 // Convert to correct type.
5150 if (Op->getType() != IntPtrTy) {
5151 if (Constant *OpC = dyn_cast<Constant>(Op))
5152 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5153 else
5154 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5155 Op->getName()+".c"), I);
5156 }
5157 if (Size != 1) {
5158 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5159 if (Constant *OpC = dyn_cast<Constant>(Op))
5160 Op = ConstantExpr::getMul(OpC, Scale);
5161 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00005162 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005163 GEP->getName()+".idx"), I);
5164 }
5165
5166 // Emit an add instruction.
5167 if (isa<Constant>(Op) && isa<Constant>(Result))
5168 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5169 cast<Constant>(Result));
5170 else
Gabor Greifa645dd32008-05-16 19:29:10 +00005171 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005172 GEP->getName()+".offs"), I);
5173 }
5174 return Result;
5175}
5176
Chris Lattnereba75862008-04-22 02:53:33 +00005177
5178/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5179/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5180/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5181/// complex, and scales are involved. The above expression would also be legal
5182/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5183/// later form is less amenable to optimization though, and we are allowed to
5184/// generate the first by knowing that pointer arithmetic doesn't overflow.
5185///
5186/// If we can't emit an optimized form for this expression, this returns null.
5187///
5188static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5189 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00005190 TargetData &TD = IC.getTargetData();
5191 gep_type_iterator GTI = gep_type_begin(GEP);
5192
5193 // Check to see if this gep only has a single variable index. If so, and if
5194 // any constant indices are a multiple of its scale, then we can compute this
5195 // in terms of the scale of the variable index. For example, if the GEP
5196 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5197 // because the expression will cross zero at the same point.
5198 unsigned i, e = GEP->getNumOperands();
5199 int64_t Offset = 0;
5200 for (i = 1; i != e; ++i, ++GTI) {
5201 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5202 // Compute the aggregate offset of constant indices.
5203 if (CI->isZero()) continue;
5204
5205 // Handle a struct index, which adds its field offset to the pointer.
5206 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5207 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5208 } else {
5209 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5210 Offset += Size*CI->getSExtValue();
5211 }
5212 } else {
5213 // Found our variable index.
5214 break;
5215 }
5216 }
5217
5218 // If there are no variable indices, we must have a constant offset, just
5219 // evaluate it the general way.
5220 if (i == e) return 0;
5221
5222 Value *VariableIdx = GEP->getOperand(i);
5223 // Determine the scale factor of the variable element. For example, this is
5224 // 4 if the variable index is into an array of i32.
5225 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5226
5227 // Verify that there are no other variable indices. If so, emit the hard way.
5228 for (++i, ++GTI; i != e; ++i, ++GTI) {
5229 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5230 if (!CI) return 0;
5231
5232 // Compute the aggregate offset of constant indices.
5233 if (CI->isZero()) continue;
5234
5235 // Handle a struct index, which adds its field offset to the pointer.
5236 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5237 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5238 } else {
5239 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5240 Offset += Size*CI->getSExtValue();
5241 }
5242 }
5243
5244 // Okay, we know we have a single variable index, which must be a
5245 // pointer/array/vector index. If there is no offset, life is simple, return
5246 // the index.
5247 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5248 if (Offset == 0) {
5249 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5250 // we don't need to bother extending: the extension won't affect where the
5251 // computation crosses zero.
5252 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5253 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5254 VariableIdx->getNameStart(), &I);
5255 return VariableIdx;
5256 }
5257
5258 // Otherwise, there is an index. The computation we will do will be modulo
5259 // the pointer size, so get it.
5260 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5261
5262 Offset &= PtrSizeMask;
5263 VariableScale &= PtrSizeMask;
5264
5265 // To do this transformation, any constant index must be a multiple of the
5266 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5267 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5268 // multiple of the variable scale.
5269 int64_t NewOffs = Offset / (int64_t)VariableScale;
5270 if (Offset != NewOffs*(int64_t)VariableScale)
5271 return 0;
5272
5273 // Okay, we can do this evaluation. Start by converting the index to intptr.
5274 const Type *IntPtrTy = TD.getIntPtrType();
5275 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005276 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005277 true /*SExt*/,
5278 VariableIdx->getNameStart(), &I);
5279 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005280 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005281}
5282
5283
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005284/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5285/// else. At this point we know that the GEP is on the LHS of the comparison.
5286Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5287 ICmpInst::Predicate Cond,
5288 Instruction &I) {
5289 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5290
Chris Lattnereba75862008-04-22 02:53:33 +00005291 // Look through bitcasts.
5292 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5293 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005294
5295 Value *PtrBase = GEPLHS->getOperand(0);
5296 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005297 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005298 // This transformation (ignoring the base and scales) is valid because we
5299 // know pointers can't overflow. See if we can output an optimized form.
5300 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5301
5302 // If not, synthesize the offset the hard way.
5303 if (Offset == 0)
5304 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005305 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5306 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005307 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5308 // If the base pointers are different, but the indices are the same, just
5309 // compare the base pointer.
5310 if (PtrBase != GEPRHS->getOperand(0)) {
5311 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5312 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5313 GEPRHS->getOperand(0)->getType();
5314 if (IndicesTheSame)
5315 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5316 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5317 IndicesTheSame = false;
5318 break;
5319 }
5320
5321 // If all indices are the same, just compare the base pointers.
5322 if (IndicesTheSame)
5323 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5324 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5325
5326 // Otherwise, the base pointers are different and the indices are
5327 // different, bail out.
5328 return 0;
5329 }
5330
5331 // If one of the GEPs has all zero indices, recurse.
5332 bool AllZeros = true;
5333 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5334 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5335 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5336 AllZeros = false;
5337 break;
5338 }
5339 if (AllZeros)
5340 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5341 ICmpInst::getSwappedPredicate(Cond), I);
5342
5343 // If the other GEP has all zero indices, recurse.
5344 AllZeros = true;
5345 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5346 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5347 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5348 AllZeros = false;
5349 break;
5350 }
5351 if (AllZeros)
5352 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5353
5354 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5355 // If the GEPs only differ by one index, compare it.
5356 unsigned NumDifferences = 0; // Keep track of # differences.
5357 unsigned DiffOperand = 0; // The operand that differs.
5358 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5359 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5360 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5361 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5362 // Irreconcilable differences.
5363 NumDifferences = 2;
5364 break;
5365 } else {
5366 if (NumDifferences++) break;
5367 DiffOperand = i;
5368 }
5369 }
5370
5371 if (NumDifferences == 0) // SAME GEP?
5372 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005373 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005374 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005375
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005376 else if (NumDifferences == 1) {
5377 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5378 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5379 // Make sure we do a signed comparison here.
5380 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5381 }
5382 }
5383
5384 // Only lower this if the icmp is the only user of the GEP or if we expect
5385 // the result to fold to a constant!
5386 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5387 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5388 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5389 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5390 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5391 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5392 }
5393 }
5394 return 0;
5395}
5396
Chris Lattnere6b62d92008-05-19 20:18:56 +00005397/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5398///
5399Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5400 Instruction *LHSI,
5401 Constant *RHSC) {
5402 if (!isa<ConstantFP>(RHSC)) return 0;
5403 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5404
5405 // Get the width of the mantissa. We don't want to hack on conversions that
5406 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005407 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005408 if (MantissaWidth == -1) return 0; // Unknown.
5409
5410 // Check to see that the input is converted from an integer type that is small
5411 // enough that preserves all bits. TODO: check here for "known" sign bits.
5412 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5413 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5414
5415 // If this is a uitofp instruction, we need an extra bit to hold the sign.
Bill Wendling20636df2008-11-09 04:26:50 +00005416 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5417 if (LHSUnsigned)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005418 ++InputSize;
5419
5420 // If the conversion would lose info, don't hack on this.
5421 if ((int)InputSize > MantissaWidth)
5422 return 0;
5423
5424 // Otherwise, we can potentially simplify the comparison. We know that it
5425 // will always come through as an integer value and we know the constant is
5426 // not a NAN (it would have been previously simplified).
5427 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5428
5429 ICmpInst::Predicate Pred;
5430 switch (I.getPredicate()) {
5431 default: assert(0 && "Unexpected predicate!");
5432 case FCmpInst::FCMP_UEQ:
Bill Wendling20636df2008-11-09 04:26:50 +00005433 case FCmpInst::FCMP_OEQ:
5434 Pred = ICmpInst::ICMP_EQ;
5435 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005436 case FCmpInst::FCMP_UGT:
Bill Wendling20636df2008-11-09 04:26:50 +00005437 case FCmpInst::FCMP_OGT:
5438 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5439 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005440 case FCmpInst::FCMP_UGE:
Bill Wendling20636df2008-11-09 04:26:50 +00005441 case FCmpInst::FCMP_OGE:
5442 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5443 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005444 case FCmpInst::FCMP_ULT:
Bill Wendling20636df2008-11-09 04:26:50 +00005445 case FCmpInst::FCMP_OLT:
5446 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5447 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005448 case FCmpInst::FCMP_ULE:
Bill Wendling20636df2008-11-09 04:26:50 +00005449 case FCmpInst::FCMP_OLE:
5450 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5451 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005452 case FCmpInst::FCMP_UNE:
Bill Wendling20636df2008-11-09 04:26:50 +00005453 case FCmpInst::FCMP_ONE:
5454 Pred = ICmpInst::ICMP_NE;
5455 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005456 case FCmpInst::FCMP_ORD:
Eli Friedmanc9c96242008-11-30 22:48:49 +00005457 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005458 case FCmpInst::FCMP_UNO:
Eli Friedmanc9c96242008-11-30 22:48:49 +00005459 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005460 }
5461
5462 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5463
5464 // Now we know that the APFloat is a normal number, zero or inf.
5465
Chris Lattnerf13ff492008-05-20 03:50:52 +00005466 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005467 // comparing an i8 to 300.0.
5468 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5469
Bill Wendling20636df2008-11-09 04:26:50 +00005470 if (!LHSUnsigned) {
5471 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5472 // and large values.
5473 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5474 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5475 APFloat::rmNearestTiesToEven);
5476 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5477 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5478 Pred == ICmpInst::ICMP_SLE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005479 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5480 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005481 }
5482 } else {
5483 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5484 // +INF and large values.
5485 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5486 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5487 APFloat::rmNearestTiesToEven);
5488 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5489 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5490 Pred == ICmpInst::ICMP_ULE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005491 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5492 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005493 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005494 }
5495
Bill Wendling20636df2008-11-09 04:26:50 +00005496 if (!LHSUnsigned) {
5497 // See if the RHS value is < SignedMin.
5498 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5499 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5500 APFloat::rmNearestTiesToEven);
5501 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5502 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5503 Pred == ICmpInst::ICMP_SGE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005504 return ReplaceInstUsesWith(I,ConstantInt::getTrue());
5505 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005506 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005507 }
5508
Bill Wendling20636df2008-11-09 04:26:50 +00005509 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5510 // [0, UMAX], but it may still be fractional. See if it is fractional by
5511 // casting the FP value to the integer value and back, checking for equality.
5512 // Don't do this for zero, because -0.0 is not fractional.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005513 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5514 if (!RHS.isZero() &&
5515 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
Bill Wendling20636df2008-11-09 04:26:50 +00005516 // If we had a comparison against a fractional value, we have to adjust the
5517 // compare predicate and sometimes the value. RHSC is rounded towards zero
5518 // at this point.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005519 switch (Pred) {
5520 default: assert(0 && "Unexpected integer comparison!");
5521 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
Eli Friedmanc9c96242008-11-30 22:48:49 +00005522 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005523 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
Eli Friedmanc9c96242008-11-30 22:48:49 +00005524 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005525 case ICmpInst::ICMP_ULE:
5526 // (float)int <= 4.4 --> int <= 4
5527 // (float)int <= -4.4 --> false
5528 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005529 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005530 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005531 case ICmpInst::ICMP_SLE:
5532 // (float)int <= 4.4 --> int <= 4
5533 // (float)int <= -4.4 --> int < -4
5534 if (RHS.isNegative())
5535 Pred = ICmpInst::ICMP_SLT;
5536 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005537 case ICmpInst::ICMP_ULT:
5538 // (float)int < -4.4 --> false
5539 // (float)int < 4.4 --> int <= 4
5540 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005541 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005542 Pred = ICmpInst::ICMP_ULE;
5543 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005544 case ICmpInst::ICMP_SLT:
5545 // (float)int < -4.4 --> int < -4
5546 // (float)int < 4.4 --> int <= 4
5547 if (!RHS.isNegative())
5548 Pred = ICmpInst::ICMP_SLE;
5549 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005550 case ICmpInst::ICMP_UGT:
5551 // (float)int > 4.4 --> int > 4
5552 // (float)int > -4.4 --> true
5553 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005554 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendling20636df2008-11-09 04:26:50 +00005555 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005556 case ICmpInst::ICMP_SGT:
5557 // (float)int > 4.4 --> int > 4
5558 // (float)int > -4.4 --> int >= -4
5559 if (RHS.isNegative())
5560 Pred = ICmpInst::ICMP_SGE;
5561 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005562 case ICmpInst::ICMP_UGE:
5563 // (float)int >= -4.4 --> true
5564 // (float)int >= 4.4 --> int > 4
5565 if (!RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005566 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendling20636df2008-11-09 04:26:50 +00005567 Pred = ICmpInst::ICMP_UGT;
5568 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005569 case ICmpInst::ICMP_SGE:
5570 // (float)int >= -4.4 --> int >= -4
5571 // (float)int >= 4.4 --> int > 4
5572 if (!RHS.isNegative())
5573 Pred = ICmpInst::ICMP_SGT;
5574 break;
5575 }
5576 }
5577
5578 // Lower this FP comparison into an appropriate integer version of the
5579 // comparison.
5580 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5581}
5582
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005583Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5584 bool Changed = SimplifyCompare(I);
5585 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5586
5587 // Fold trivial predicates.
5588 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005589 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005590 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005591 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005592
5593 // Simplify 'fcmp pred X, X'
5594 if (Op0 == Op1) {
5595 switch (I.getPredicate()) {
5596 default: assert(0 && "Unknown predicate!");
5597 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5598 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5599 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
Eli Friedmanc9c96242008-11-30 22:48:49 +00005600 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005601 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5602 case FCmpInst::FCMP_OLT: // True if ordered and less than
5603 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
Eli Friedmanc9c96242008-11-30 22:48:49 +00005604 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005605
5606 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5607 case FCmpInst::FCMP_ULT: // True if unordered or less than
5608 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5609 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5610 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5611 I.setPredicate(FCmpInst::FCMP_UNO);
5612 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5613 return &I;
5614
5615 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5616 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5617 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5618 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5619 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5620 I.setPredicate(FCmpInst::FCMP_ORD);
5621 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5622 return &I;
5623 }
5624 }
5625
5626 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5627 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5628
5629 // Handle fcmp with constant RHS
5630 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005631 // If the constant is a nan, see if we can fold the comparison based on it.
5632 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5633 if (CFP->getValueAPF().isNaN()) {
5634 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
Eli Friedmanc9c96242008-11-30 22:48:49 +00005635 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnerf13ff492008-05-20 03:50:52 +00005636 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5637 "Comparison must be either ordered or unordered!");
5638 // True if unordered.
Eli Friedmanc9c96242008-11-30 22:48:49 +00005639 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005640 }
5641 }
5642
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005643 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5644 switch (LHSI->getOpcode()) {
5645 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005646 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5647 // block. If in the same block, we're encouraging jump threading. If
5648 // not, we are just pessimizing the code by making an i1 phi.
5649 if (LHSI->getParent() == I.getParent())
5650 if (Instruction *NV = FoldOpIntoPhi(I))
5651 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005652 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005653 case Instruction::SIToFP:
5654 case Instruction::UIToFP:
5655 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5656 return NV;
5657 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005658 case Instruction::Select:
5659 // If either operand of the select is a constant, we can fold the
5660 // comparison into the select arms, which will cause one to be
5661 // constant folded and the select turned into a bitwise or.
5662 Value *Op1 = 0, *Op2 = 0;
5663 if (LHSI->hasOneUse()) {
5664 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5665 // Fold the known value into the constant operand.
5666 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5667 // Insert a new FCmp of the other select operand.
5668 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5669 LHSI->getOperand(2), RHSC,
5670 I.getName()), I);
5671 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5672 // Fold the known value into the constant operand.
5673 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5674 // Insert a new FCmp of the other select operand.
5675 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5676 LHSI->getOperand(1), RHSC,
5677 I.getName()), I);
5678 }
5679 }
5680
5681 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005682 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005683 break;
5684 }
5685 }
5686
5687 return Changed ? &I : 0;
5688}
5689
5690Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5691 bool Changed = SimplifyCompare(I);
5692 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5693 const Type *Ty = Op0->getType();
5694
5695 // icmp X, X
5696 if (Op0 == Op1)
5697 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005698 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005699
5700 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5701 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005702
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005703 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5704 // addresses never equal each other! We already know that Op0 != Op1.
5705 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5706 isa<ConstantPointerNull>(Op0)) &&
5707 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5708 isa<ConstantPointerNull>(Op1)))
5709 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005710 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005711
5712 // icmp's with boolean values can always be turned into bitwise operations
5713 if (Ty == Type::Int1Ty) {
5714 switch (I.getPredicate()) {
5715 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005716 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005717 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005718 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005719 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005720 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005721 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005722 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005723
5724 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005725 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005726 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005727 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005728 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005729 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005730 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005731 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005732 case ICmpInst::ICMP_SGT:
5733 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005734 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005735 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5736 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5737 InsertNewInstBefore(Not, I);
5738 return BinaryOperator::CreateAnd(Not, Op0);
5739 }
5740 case ICmpInst::ICMP_UGE:
5741 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5742 // FALL THROUGH
5743 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005744 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005745 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005746 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005747 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005748 case ICmpInst::ICMP_SGE:
5749 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5750 // FALL THROUGH
5751 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5752 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5753 InsertNewInstBefore(Not, I);
5754 return BinaryOperator::CreateOr(Not, Op0);
5755 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005756 }
5757 }
5758
Dan Gohman58c09632008-09-16 18:46:06 +00005759 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005760 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005761 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005762
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005763 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5764 if (I.isEquality() && CI->isNullValue() &&
5765 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5766 // (icmp cond A B) if cond is equality
5767 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005768 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005769
Dan Gohman58c09632008-09-16 18:46:06 +00005770 // If we have an icmp le or icmp ge instruction, turn it into the
5771 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5772 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005773 switch (I.getPredicate()) {
5774 default: break;
5775 case ICmpInst::ICMP_ULE:
5776 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5777 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5778 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5779 case ICmpInst::ICMP_SLE:
5780 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5781 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5782 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5783 case ICmpInst::ICMP_UGE:
5784 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5785 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5786 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5787 case ICmpInst::ICMP_SGE:
5788 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5789 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5790 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5791 }
5792
Chris Lattnera1308652008-07-11 05:40:05 +00005793 // See if we can fold the comparison based on range information we can get
5794 // by checking whether bits are known to be zero or one in the input.
5795 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5796 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5797
5798 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005799 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005800 bool UnusedBit;
5801 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5802
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005803 if (SimplifyDemandedBits(Op0,
5804 isSignBit ? APInt::getSignBit(BitWidth)
5805 : APInt::getAllOnesValue(BitWidth),
5806 KnownZero, KnownOne, 0))
5807 return &I;
5808
5809 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005810 // in. Compute the Min, Max and RHS values based on the known bits. For the
5811 // EQ and NE we use unsigned values.
5812 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005813 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5814 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5815 else
5816 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5817
Chris Lattnera1308652008-07-11 05:40:05 +00005818 // If Min and Max are known to be the same, then SimplifyDemandedBits
5819 // figured out that the LHS is a constant. Just constant fold this now so
5820 // that code below can assume that Min != Max.
5821 if (Min == Max)
5822 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5823 ConstantInt::get(Min),
5824 CI));
5825
5826 // Based on the range information we know about the LHS, see if we can
5827 // simplify this comparison. For example, (x&4) < 8 is always true.
5828 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005829 switch (I.getPredicate()) { // LE/GE have been folded already.
5830 default: assert(0 && "Unknown icmp opcode!");
5831 case ICmpInst::ICMP_EQ:
5832 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5833 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5834 break;
5835 case ICmpInst::ICMP_NE:
5836 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5837 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5838 break;
5839 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005840 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005841 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005842 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005843 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005844 if (RHSVal == Max) // A <u MAX -> A != MAX
5845 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5846 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5847 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5848
5849 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5850 if (CI->isMinValue(true))
5851 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5852 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005853 break;
5854 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005855 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005856 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005857 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005858 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005859
5860 if (RHSVal == Min) // A >u MIN -> A != MIN
5861 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5862 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5863 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5864
5865 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5866 if (CI->isMaxValue(true))
5867 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5868 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005869 break;
5870 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005871 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005872 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005873 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005874 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005875 if (RHSVal == Max) // A <s MAX -> A != MAX
5876 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005877 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005878 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005879 break;
5880 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005881 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005882 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005883 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005884 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005885
5886 if (RHSVal == Min) // A >s MIN -> A != MIN
5887 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5888 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5889 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005890 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005891 }
Dan Gohman58c09632008-09-16 18:46:06 +00005892 }
5893
5894 // Test if the ICmpInst instruction is used exclusively by a select as
5895 // part of a minimum or maximum operation. If so, refrain from doing
5896 // any other folding. This helps out other analyses which understand
5897 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5898 // and CodeGen. And in this case, at least one of the comparison
5899 // operands has at least one user besides the compare (the select),
5900 // which would often largely negate the benefit of folding anyway.
5901 if (I.hasOneUse())
5902 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5903 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5904 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5905 return 0;
5906
5907 // See if we are doing a comparison between a constant and an instruction that
5908 // can be folded into the comparison.
5909 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005910 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5911 // instruction, see if that instruction also has constants so that the
5912 // instruction can be folded into the icmp
5913 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5914 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5915 return Res;
5916 }
5917
5918 // Handle icmp with constant (but not simple integer constant) RHS
5919 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5920 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5921 switch (LHSI->getOpcode()) {
5922 case Instruction::GetElementPtr:
5923 if (RHSC->isNullValue()) {
5924 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5925 bool isAllZeros = true;
5926 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5927 if (!isa<Constant>(LHSI->getOperand(i)) ||
5928 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5929 isAllZeros = false;
5930 break;
5931 }
5932 if (isAllZeros)
5933 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5934 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5935 }
5936 break;
5937
5938 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005939 // Only fold icmp into the PHI if the phi and fcmp are in the same
5940 // block. If in the same block, we're encouraging jump threading. If
5941 // not, we are just pessimizing the code by making an i1 phi.
5942 if (LHSI->getParent() == I.getParent())
5943 if (Instruction *NV = FoldOpIntoPhi(I))
5944 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005945 break;
5946 case Instruction::Select: {
5947 // If either operand of the select is a constant, we can fold the
5948 // comparison into the select arms, which will cause one to be
5949 // constant folded and the select turned into a bitwise or.
5950 Value *Op1 = 0, *Op2 = 0;
5951 if (LHSI->hasOneUse()) {
5952 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5953 // Fold the known value into the constant operand.
5954 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5955 // Insert a new ICmp of the other select operand.
5956 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5957 LHSI->getOperand(2), RHSC,
5958 I.getName()), I);
5959 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5960 // Fold the known value into the constant operand.
5961 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5962 // Insert a new ICmp of the other select operand.
5963 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5964 LHSI->getOperand(1), RHSC,
5965 I.getName()), I);
5966 }
5967 }
5968
5969 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005970 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005971 break;
5972 }
5973 case Instruction::Malloc:
5974 // If we have (malloc != null), and if the malloc has a single use, we
5975 // can assume it is successful and remove the malloc.
5976 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5977 AddToWorkList(LHSI);
5978 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005979 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005980 }
5981 break;
5982 }
5983 }
5984
5985 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5986 if (User *GEP = dyn_castGetElementPtr(Op0))
5987 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5988 return NI;
5989 if (User *GEP = dyn_castGetElementPtr(Op1))
5990 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5991 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5992 return NI;
5993
5994 // Test to see if the operands of the icmp are casted versions of other
5995 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5996 // now.
5997 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5998 if (isa<PointerType>(Op0->getType()) &&
5999 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
6000 // We keep moving the cast from the left operand over to the right
6001 // operand, where it can often be eliminated completely.
6002 Op0 = CI->getOperand(0);
6003
6004 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
6005 // so eliminate it as well.
6006 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
6007 Op1 = CI2->getOperand(0);
6008
6009 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006010 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006011 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
6012 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
6013 } else {
6014 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006015 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006016 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006017 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006018 return new ICmpInst(I.getPredicate(), Op0, Op1);
6019 }
6020 }
6021
6022 if (isa<CastInst>(Op0)) {
6023 // Handle the special case of: icmp (cast bool to X), <cst>
6024 // This comes up when you have code like
6025 // int X = A < B;
6026 // if (X) ...
6027 // For generality, we handle any zero-extension of any operand comparison
6028 // with a constant or another cast from the same type.
6029 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
6030 if (Instruction *R = visitICmpInstWithCastAndCast(I))
6031 return R;
6032 }
6033
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006034 // See if it's the same type of instruction on the left and right.
6035 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
6036 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006037 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
6038 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
6039 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00006040 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006041 default: break;
6042 case Instruction::Add:
6043 case Instruction::Sub:
6044 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006045 // a+x icmp eq/ne b+x --> a icmp b
6046 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
6047 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006048 break;
6049 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006050 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
6051 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
6052 // Mask = -1 >> count-trailing-zeros(Cst).
6053 if (!CI->isZero() && !CI->isOne()) {
6054 const APInt &AP = CI->getValue();
6055 ConstantInt *Mask = ConstantInt::get(
6056 APInt::getLowBitsSet(AP.getBitWidth(),
6057 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006058 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006059 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
6060 Mask);
6061 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
6062 Mask);
6063 InsertNewInstBefore(And1, I);
6064 InsertNewInstBefore(And2, I);
6065 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006066 }
6067 }
6068 break;
6069 }
6070 }
6071 }
6072 }
6073
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006074 // ~x < ~y --> y < x
6075 { Value *A, *B;
6076 if (match(Op0, m_Not(m_Value(A))) &&
6077 match(Op1, m_Not(m_Value(B))))
6078 return new ICmpInst(I.getPredicate(), B, A);
6079 }
6080
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006081 if (I.isEquality()) {
6082 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006083
6084 // -x == -y --> x == y
6085 if (match(Op0, m_Neg(m_Value(A))) &&
6086 match(Op1, m_Neg(m_Value(B))))
6087 return new ICmpInst(I.getPredicate(), A, B);
6088
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006089 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6090 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6091 Value *OtherVal = A == Op1 ? B : A;
6092 return new ICmpInst(I.getPredicate(), OtherVal,
6093 Constant::getNullValue(A->getType()));
6094 }
6095
6096 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6097 // A^c1 == C^c2 --> A == C^(c1^c2)
Chris Lattner3b874082008-11-16 05:38:51 +00006098 ConstantInt *C1, *C2;
6099 if (match(B, m_ConstantInt(C1)) &&
6100 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
6101 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
6102 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
6103 return new ICmpInst(I.getPredicate(), A,
6104 InsertNewInstBefore(Xor, I));
6105 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006106
6107 // A^B == A^D -> B == D
6108 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6109 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6110 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6111 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6112 }
6113 }
6114
6115 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6116 (A == Op0 || B == Op0)) {
6117 // A == (A^B) -> B == 0
6118 Value *OtherVal = A == Op0 ? B : A;
6119 return new ICmpInst(I.getPredicate(), OtherVal,
6120 Constant::getNullValue(A->getType()));
6121 }
Chris Lattner3b874082008-11-16 05:38:51 +00006122
6123 // (A-B) == A -> B == 0
6124 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
6125 return new ICmpInst(I.getPredicate(), B,
6126 Constant::getNullValue(B->getType()));
6127
6128 // A == (A-B) -> B == 0
6129 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006130 return new ICmpInst(I.getPredicate(), B,
6131 Constant::getNullValue(B->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006132
6133 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6134 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6135 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6136 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6137 Value *X = 0, *Y = 0, *Z = 0;
6138
6139 if (A == C) {
6140 X = B; Y = D; Z = A;
6141 } else if (A == D) {
6142 X = B; Y = C; Z = A;
6143 } else if (B == C) {
6144 X = A; Y = D; Z = B;
6145 } else if (B == D) {
6146 X = A; Y = C; Z = B;
6147 }
6148
6149 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00006150 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6151 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006152 I.setOperand(0, Op1);
6153 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6154 return &I;
6155 }
6156 }
6157 }
6158 return Changed ? &I : 0;
6159}
6160
6161
6162/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6163/// and CmpRHS are both known to be integer constants.
6164Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6165 ConstantInt *DivRHS) {
6166 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6167 const APInt &CmpRHSV = CmpRHS->getValue();
6168
6169 // FIXME: If the operand types don't match the type of the divide
6170 // then don't attempt this transform. The code below doesn't have the
6171 // logic to deal with a signed divide and an unsigned compare (and
6172 // vice versa). This is because (x /s C1) <s C2 produces different
6173 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6174 // (x /u C1) <u C2. Simply casting the operands and result won't
6175 // work. :( The if statement below tests that condition and bails
6176 // if it finds it.
6177 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6178 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6179 return 0;
6180 if (DivRHS->isZero())
6181 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006182 if (DivIsSigned && DivRHS->isAllOnesValue())
6183 return 0; // The overflow computation also screws up here
6184 if (DivRHS->isOne())
6185 return 0; // Not worth bothering, and eliminates some funny cases
6186 // with INT_MIN.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006187
6188 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6189 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6190 // C2 (CI). By solving for X we can turn this into a range check
6191 // instead of computing a divide.
6192 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6193
6194 // Determine if the product overflows by seeing if the product is
6195 // not equal to the divide. Make sure we do the same kind of divide
6196 // as in the LHS instruction that we're folding.
6197 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6198 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6199
6200 // Get the ICmp opcode
6201 ICmpInst::Predicate Pred = ICI.getPredicate();
6202
6203 // Figure out the interval that is being checked. For example, a comparison
6204 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6205 // Compute this interval based on the constants involved and the signedness of
6206 // the compare/divide. This computes a half-open interval, keeping track of
6207 // whether either value in the interval overflows. After analysis each
6208 // overflow variable is set to 0 if it's corresponding bound variable is valid
6209 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6210 int LoOverflow = 0, HiOverflow = 0;
6211 ConstantInt *LoBound = 0, *HiBound = 0;
6212
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006213 if (!DivIsSigned) { // udiv
6214 // e.g. X/5 op 3 --> [15, 20)
6215 LoBound = Prod;
6216 HiOverflow = LoOverflow = ProdOV;
6217 if (!HiOverflow)
6218 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00006219 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006220 if (CmpRHSV == 0) { // (X / pos) op 0
6221 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6222 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6223 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00006224 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006225 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6226 HiOverflow = LoOverflow = ProdOV;
6227 if (!HiOverflow)
6228 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
6229 } else { // (X / pos) op neg
6230 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006231 HiBound = AddOne(Prod);
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006232 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6233 if (!LoOverflow) {
6234 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6235 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6236 true) ? -1 : 0;
6237 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006238 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006239 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006240 if (CmpRHSV == 0) { // (X / neg) op 0
6241 // e.g. X/-5 op 0 --> [-4, 5)
6242 LoBound = AddOne(DivRHS);
6243 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6244 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6245 HiOverflow = 1; // [INTMIN+1, overflow)
6246 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6247 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006248 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006249 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006250 HiBound = AddOne(Prod);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006251 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
6252 if (!LoOverflow)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006253 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006254 } else { // (X / neg) op neg
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006255 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6256 LoOverflow = HiOverflow = ProdOV;
Dan Gohman45408ea2008-09-11 00:25:00 +00006257 if (!HiOverflow)
6258 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006259 }
6260
6261 // Dividing by a negative swaps the condition. LT <-> GT
6262 Pred = ICmpInst::getSwappedPredicate(Pred);
6263 }
6264
6265 Value *X = DivI->getOperand(0);
6266 switch (Pred) {
6267 default: assert(0 && "Unhandled icmp opcode!");
6268 case ICmpInst::ICMP_EQ:
6269 if (LoOverflow && HiOverflow)
6270 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6271 else if (HiOverflow)
6272 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6273 ICmpInst::ICMP_UGE, X, LoBound);
6274 else if (LoOverflow)
6275 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6276 ICmpInst::ICMP_ULT, X, HiBound);
6277 else
6278 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6279 case ICmpInst::ICMP_NE:
6280 if (LoOverflow && HiOverflow)
6281 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6282 else if (HiOverflow)
6283 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6284 ICmpInst::ICMP_ULT, X, LoBound);
6285 else if (LoOverflow)
6286 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6287 ICmpInst::ICMP_UGE, X, HiBound);
6288 else
6289 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6290 case ICmpInst::ICMP_ULT:
6291 case ICmpInst::ICMP_SLT:
6292 if (LoOverflow == +1) // Low bound is greater than input range.
6293 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6294 if (LoOverflow == -1) // Low bound is less than input range.
6295 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6296 return new ICmpInst(Pred, X, LoBound);
6297 case ICmpInst::ICMP_UGT:
6298 case ICmpInst::ICMP_SGT:
6299 if (HiOverflow == +1) // High bound greater than input range.
6300 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6301 else if (HiOverflow == -1) // High bound less than input range.
6302 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6303 if (Pred == ICmpInst::ICMP_UGT)
6304 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6305 else
6306 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6307 }
6308}
6309
6310
6311/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6312///
6313Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6314 Instruction *LHSI,
6315 ConstantInt *RHS) {
6316 const APInt &RHSV = RHS->getValue();
6317
6318 switch (LHSI->getOpcode()) {
6319 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6320 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6321 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6322 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006323 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6324 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006325 Value *CompareVal = LHSI->getOperand(0);
6326
6327 // If the sign bit of the XorCST is not set, there is no change to
6328 // the operation, just stop using the Xor.
6329 if (!XorCST->getValue().isNegative()) {
6330 ICI.setOperand(0, CompareVal);
6331 AddToWorkList(LHSI);
6332 return &ICI;
6333 }
6334
6335 // Was the old condition true if the operand is positive?
6336 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6337
6338 // If so, the new one isn't.
6339 isTrueIfPositive ^= true;
6340
6341 if (isTrueIfPositive)
6342 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6343 else
6344 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6345 }
6346 }
6347 break;
6348 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6349 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6350 LHSI->getOperand(0)->hasOneUse()) {
6351 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6352
6353 // If the LHS is an AND of a truncating cast, we can widen the
6354 // and/compare to be the input width without changing the value
6355 // produced, eliminating a cast.
6356 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6357 // We can do this transformation if either the AND constant does not
6358 // have its sign bit set or if it is an equality comparison.
6359 // Extending a relational comparison when we're checking the sign
6360 // bit would not work.
6361 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00006362 (ICI.isEquality() ||
6363 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006364 uint32_t BitWidth =
6365 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6366 APInt NewCST = AndCST->getValue();
6367 NewCST.zext(BitWidth);
6368 APInt NewCI = RHSV;
6369 NewCI.zext(BitWidth);
6370 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006371 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006372 ConstantInt::get(NewCST),LHSI->getName());
6373 InsertNewInstBefore(NewAnd, ICI);
6374 return new ICmpInst(ICI.getPredicate(), NewAnd,
6375 ConstantInt::get(NewCI));
6376 }
6377 }
6378
6379 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6380 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6381 // happens a LOT in code produced by the C front-end, for bitfield
6382 // access.
6383 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6384 if (Shift && !Shift->isShift())
6385 Shift = 0;
6386
6387 ConstantInt *ShAmt;
6388 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6389 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6390 const Type *AndTy = AndCST->getType(); // Type of the and.
6391
6392 // We can fold this as long as we can't shift unknown bits
6393 // into the mask. This can only happen with signed shift
6394 // rights, as they sign-extend.
6395 if (ShAmt) {
6396 bool CanFold = Shift->isLogicalShift();
6397 if (!CanFold) {
6398 // To test for the bad case of the signed shr, see if any
6399 // of the bits shifted in could be tested after the mask.
6400 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6401 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6402
6403 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6404 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6405 AndCST->getValue()) == 0)
6406 CanFold = true;
6407 }
6408
6409 if (CanFold) {
6410 Constant *NewCst;
6411 if (Shift->getOpcode() == Instruction::Shl)
6412 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6413 else
6414 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6415
6416 // Check to see if we are shifting out any of the bits being
6417 // compared.
6418 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6419 // If we shifted bits out, the fold is not going to work out.
6420 // As a special case, check to see if this means that the
6421 // result is always true or false now.
6422 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6423 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6424 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6425 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6426 } else {
6427 ICI.setOperand(1, NewCst);
6428 Constant *NewAndCST;
6429 if (Shift->getOpcode() == Instruction::Shl)
6430 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6431 else
6432 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6433 LHSI->setOperand(1, NewAndCST);
6434 LHSI->setOperand(0, Shift->getOperand(0));
6435 AddToWorkList(Shift); // Shift is dead.
6436 AddUsesToWorkList(ICI);
6437 return &ICI;
6438 }
6439 }
6440 }
6441
6442 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6443 // preferable because it allows the C<<Y expression to be hoisted out
6444 // of a loop if Y is invariant and X is not.
6445 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6446 ICI.isEquality() && !Shift->isArithmeticShift() &&
6447 isa<Instruction>(Shift->getOperand(0))) {
6448 // Compute C << Y.
6449 Value *NS;
6450 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006451 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006452 Shift->getOperand(1), "tmp");
6453 } else {
6454 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006455 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006456 Shift->getOperand(1), "tmp");
6457 }
6458 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6459
6460 // Compute X & (C << Y).
6461 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006462 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006463 InsertNewInstBefore(NewAnd, ICI);
6464
6465 ICI.setOperand(0, NewAnd);
6466 return &ICI;
6467 }
6468 }
6469 break;
6470
6471 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6472 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6473 if (!ShAmt) break;
6474
6475 uint32_t TypeBits = RHSV.getBitWidth();
6476
6477 // Check that the shift amount is in range. If not, don't perform
6478 // undefined shifts. When the shift is visited it will be
6479 // simplified.
6480 if (ShAmt->uge(TypeBits))
6481 break;
6482
6483 if (ICI.isEquality()) {
6484 // If we are comparing against bits always shifted out, the
6485 // comparison cannot succeed.
6486 Constant *Comp =
6487 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6488 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6489 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6490 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6491 return ReplaceInstUsesWith(ICI, Cst);
6492 }
6493
6494 if (LHSI->hasOneUse()) {
6495 // Otherwise strength reduce the shift into an and.
6496 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6497 Constant *Mask =
6498 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6499
6500 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006501 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006502 Mask, LHSI->getName()+".mask");
6503 Value *And = InsertNewInstBefore(AndI, ICI);
6504 return new ICmpInst(ICI.getPredicate(), And,
6505 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6506 }
6507 }
6508
6509 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6510 bool TrueIfSigned = false;
6511 if (LHSI->hasOneUse() &&
6512 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6513 // (X << 31) <s 0 --> (X&1) != 0
6514 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6515 (TypeBits-ShAmt->getZExtValue()-1));
6516 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006517 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006518 Mask, LHSI->getName()+".mask");
6519 Value *And = InsertNewInstBefore(AndI, ICI);
6520
6521 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6522 And, Constant::getNullValue(And->getType()));
6523 }
6524 break;
6525 }
6526
6527 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6528 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006529 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006530 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006531 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006532
Chris Lattner5ee84f82008-03-21 05:19:58 +00006533 // Check that the shift amount is in range. If not, don't perform
6534 // undefined shifts. When the shift is visited it will be
6535 // simplified.
6536 uint32_t TypeBits = RHSV.getBitWidth();
6537 if (ShAmt->uge(TypeBits))
6538 break;
6539
6540 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006541
Chris Lattner5ee84f82008-03-21 05:19:58 +00006542 // If we are comparing against bits always shifted out, the
6543 // comparison cannot succeed.
6544 APInt Comp = RHSV << ShAmtVal;
6545 if (LHSI->getOpcode() == Instruction::LShr)
6546 Comp = Comp.lshr(ShAmtVal);
6547 else
6548 Comp = Comp.ashr(ShAmtVal);
6549
6550 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6551 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6552 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6553 return ReplaceInstUsesWith(ICI, Cst);
6554 }
6555
6556 // Otherwise, check to see if the bits shifted out are known to be zero.
6557 // If so, we can compare against the unshifted value:
6558 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006559 if (LHSI->hasOneUse() &&
6560 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006561 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6562 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6563 ConstantExpr::getShl(RHS, ShAmt));
6564 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006565
Evan Chengfb9292a2008-04-23 00:38:06 +00006566 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006567 // Otherwise strength reduce the shift into an and.
6568 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6569 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006570
Chris Lattner5ee84f82008-03-21 05:19:58 +00006571 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006572 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006573 Mask, LHSI->getName()+".mask");
6574 Value *And = InsertNewInstBefore(AndI, ICI);
6575 return new ICmpInst(ICI.getPredicate(), And,
6576 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006577 }
6578 break;
6579 }
6580
6581 case Instruction::SDiv:
6582 case Instruction::UDiv:
6583 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6584 // Fold this div into the comparison, producing a range check.
6585 // Determine, based on the divide type, what the range is being
6586 // checked. If there is an overflow on the low or high side, remember
6587 // it, otherwise compute the range [low, hi) bounding the new value.
6588 // See: InsertRangeTest above for the kinds of replacements possible.
6589 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6590 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6591 DivRHS))
6592 return R;
6593 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006594
6595 case Instruction::Add:
6596 // Fold: icmp pred (add, X, C1), C2
6597
6598 if (!ICI.isEquality()) {
6599 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6600 if (!LHSC) break;
6601 const APInt &LHSV = LHSC->getValue();
6602
6603 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6604 .subtract(LHSV);
6605
6606 if (ICI.isSignedPredicate()) {
6607 if (CR.getLower().isSignBit()) {
6608 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6609 ConstantInt::get(CR.getUpper()));
6610 } else if (CR.getUpper().isSignBit()) {
6611 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6612 ConstantInt::get(CR.getLower()));
6613 }
6614 } else {
6615 if (CR.getLower().isMinValue()) {
6616 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6617 ConstantInt::get(CR.getUpper()));
6618 } else if (CR.getUpper().isMinValue()) {
6619 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6620 ConstantInt::get(CR.getLower()));
6621 }
6622 }
6623 }
6624 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006625 }
6626
6627 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6628 if (ICI.isEquality()) {
6629 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6630
6631 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6632 // the second operand is a constant, simplify a bit.
6633 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6634 switch (BO->getOpcode()) {
6635 case Instruction::SRem:
6636 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6637 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6638 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6639 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6640 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006641 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006642 BO->getName());
6643 InsertNewInstBefore(NewRem, ICI);
6644 return new ICmpInst(ICI.getPredicate(), NewRem,
6645 Constant::getNullValue(BO->getType()));
6646 }
6647 }
6648 break;
6649 case Instruction::Add:
6650 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6651 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6652 if (BO->hasOneUse())
6653 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6654 Subtract(RHS, BOp1C));
6655 } else if (RHSV == 0) {
6656 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6657 // efficiently invertible, or if the add has just this one use.
6658 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6659
6660 if (Value *NegVal = dyn_castNegVal(BOp1))
6661 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6662 else if (Value *NegVal = dyn_castNegVal(BOp0))
6663 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6664 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006665 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006666 InsertNewInstBefore(Neg, ICI);
6667 Neg->takeName(BO);
6668 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6669 }
6670 }
6671 break;
6672 case Instruction::Xor:
6673 // For the xor case, we can xor two constants together, eliminating
6674 // the explicit xor.
6675 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6676 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6677 ConstantExpr::getXor(RHS, BOC));
6678
6679 // FALLTHROUGH
6680 case Instruction::Sub:
6681 // Replace (([sub|xor] A, B) != 0) with (A != B)
6682 if (RHSV == 0)
6683 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6684 BO->getOperand(1));
6685 break;
6686
6687 case Instruction::Or:
6688 // If bits are being or'd in that are not present in the constant we
6689 // are comparing against, then the comparison could never succeed!
6690 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6691 Constant *NotCI = ConstantExpr::getNot(RHS);
6692 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6693 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6694 isICMP_NE));
6695 }
6696 break;
6697
6698 case Instruction::And:
6699 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6700 // If bits are being compared against that are and'd out, then the
6701 // comparison can never succeed!
6702 if ((RHSV & ~BOC->getValue()) != 0)
6703 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6704 isICMP_NE));
6705
6706 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6707 if (RHS == BOC && RHSV.isPowerOf2())
6708 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6709 ICmpInst::ICMP_NE, LHSI,
6710 Constant::getNullValue(RHS->getType()));
6711
6712 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006713 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006714 Value *X = BO->getOperand(0);
6715 Constant *Zero = Constant::getNullValue(X->getType());
6716 ICmpInst::Predicate pred = isICMP_NE ?
6717 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6718 return new ICmpInst(pred, X, Zero);
6719 }
6720
6721 // ((X & ~7) == 0) --> X < 8
6722 if (RHSV == 0 && isHighOnes(BOC)) {
6723 Value *X = BO->getOperand(0);
6724 Constant *NegX = ConstantExpr::getNeg(BOC);
6725 ICmpInst::Predicate pred = isICMP_NE ?
6726 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6727 return new ICmpInst(pred, X, NegX);
6728 }
6729 }
6730 default: break;
6731 }
6732 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6733 // Handle icmp {eq|ne} <intrinsic>, intcst.
6734 if (II->getIntrinsicID() == Intrinsic::bswap) {
6735 AddToWorkList(II);
6736 ICI.setOperand(0, II->getOperand(1));
6737 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6738 return &ICI;
6739 }
6740 }
6741 } else { // Not a ICMP_EQ/ICMP_NE
6742 // If the LHS is a cast from an integral value of the same size,
6743 // then since we know the RHS is a constant, try to simlify.
6744 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6745 Value *CastOp = Cast->getOperand(0);
6746 const Type *SrcTy = CastOp->getType();
6747 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6748 if (SrcTy->isInteger() &&
6749 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6750 // If this is an unsigned comparison, try to make the comparison use
6751 // smaller constant values.
6752 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6753 // X u< 128 => X s> -1
6754 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6755 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6756 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6757 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6758 // X u> 127 => X s< 0
6759 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6760 Constant::getNullValue(SrcTy));
6761 }
6762 }
6763 }
6764 }
6765 return 0;
6766}
6767
6768/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6769/// We only handle extending casts so far.
6770///
6771Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6772 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6773 Value *LHSCIOp = LHSCI->getOperand(0);
6774 const Type *SrcTy = LHSCIOp->getType();
6775 const Type *DestTy = LHSCI->getType();
6776 Value *RHSCIOp;
6777
6778 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6779 // integer type is the same size as the pointer type.
6780 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6781 getTargetData().getPointerSizeInBits() ==
6782 cast<IntegerType>(DestTy)->getBitWidth()) {
6783 Value *RHSOp = 0;
6784 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6785 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6786 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6787 RHSOp = RHSC->getOperand(0);
6788 // If the pointer types don't match, insert a bitcast.
6789 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006790 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006791 }
6792
6793 if (RHSOp)
6794 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6795 }
6796
6797 // The code below only handles extension cast instructions, so far.
6798 // Enforce this.
6799 if (LHSCI->getOpcode() != Instruction::ZExt &&
6800 LHSCI->getOpcode() != Instruction::SExt)
6801 return 0;
6802
6803 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6804 bool isSignedCmp = ICI.isSignedPredicate();
6805
6806 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6807 // Not an extension from the same type?
6808 RHSCIOp = CI->getOperand(0);
6809 if (RHSCIOp->getType() != LHSCIOp->getType())
6810 return 0;
6811
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006812 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006813 // and the other is a zext), then we can't handle this.
6814 if (CI->getOpcode() != LHSCI->getOpcode())
6815 return 0;
6816
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006817 // Deal with equality cases early.
6818 if (ICI.isEquality())
6819 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6820
6821 // A signed comparison of sign extended values simplifies into a
6822 // signed comparison.
6823 if (isSignedCmp && isSignedExt)
6824 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6825
6826 // The other three cases all fold into an unsigned comparison.
6827 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006828 }
6829
6830 // If we aren't dealing with a constant on the RHS, exit early
6831 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6832 if (!CI)
6833 return 0;
6834
6835 // Compute the constant that would happen if we truncated to SrcTy then
6836 // reextended to DestTy.
6837 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6838 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6839
6840 // If the re-extended constant didn't change...
6841 if (Res2 == CI) {
6842 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6843 // For example, we might have:
6844 // %A = sext short %X to uint
6845 // %B = icmp ugt uint %A, 1330
6846 // It is incorrect to transform this into
6847 // %B = icmp ugt short %X, 1330
6848 // because %A may have negative value.
6849 //
Chris Lattner3d816532008-07-11 04:09:09 +00006850 // However, we allow this when the compare is EQ/NE, because they are
6851 // signless.
6852 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006853 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006854 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006855 }
6856
6857 // The re-extended constant changed so the constant cannot be represented
6858 // in the shorter type. Consequently, we cannot emit a simple comparison.
6859
6860 // First, handle some easy cases. We know the result cannot be equal at this
6861 // point so handle the ICI.isEquality() cases
6862 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6863 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6864 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6865 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6866
6867 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6868 // should have been folded away previously and not enter in here.
6869 Value *Result;
6870 if (isSignedCmp) {
6871 // We're performing a signed comparison.
6872 if (cast<ConstantInt>(CI)->getValue().isNegative())
6873 Result = ConstantInt::getFalse(); // X < (small) --> false
6874 else
6875 Result = ConstantInt::getTrue(); // X < (large) --> true
6876 } else {
6877 // We're performing an unsigned comparison.
6878 if (isSignedExt) {
6879 // We're performing an unsigned comp with a sign extended value.
6880 // This is true if the input is >= 0. [aka >s -1]
6881 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6882 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6883 NegOne, ICI.getName()), ICI);
6884 } else {
6885 // Unsigned extend & unsigned compare -> always true.
6886 Result = ConstantInt::getTrue();
6887 }
6888 }
6889
6890 // Finally, return the value computed.
6891 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006892 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006893 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006894
6895 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6896 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6897 "ICmp should be folded!");
6898 if (Constant *CI = dyn_cast<Constant>(Result))
6899 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6900 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006901}
6902
6903Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6904 return commonShiftTransforms(I);
6905}
6906
6907Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6908 return commonShiftTransforms(I);
6909}
6910
6911Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006912 if (Instruction *R = commonShiftTransforms(I))
6913 return R;
6914
6915 Value *Op0 = I.getOperand(0);
6916
6917 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6918 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6919 if (CSI->isAllOnesValue())
6920 return ReplaceInstUsesWith(I, CSI);
6921
6922 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006923 if (!isa<VectorType>(I.getType()) &&
6924 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006925 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006926 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006927
6928 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006929}
6930
6931Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6932 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6933 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6934
6935 // shl X, 0 == X and shr X, 0 == X
6936 // shl 0, X == 0 and shr 0, X == 0
6937 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6938 Op0 == Constant::getNullValue(Op0->getType()))
6939 return ReplaceInstUsesWith(I, Op0);
6940
6941 if (isa<UndefValue>(Op0)) {
6942 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6943 return ReplaceInstUsesWith(I, Op0);
6944 else // undef << X -> 0, undef >>u X -> 0
6945 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6946 }
6947 if (isa<UndefValue>(Op1)) {
6948 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6949 return ReplaceInstUsesWith(I, Op0);
6950 else // X << undef, X >>u undef -> 0
6951 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6952 }
6953
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006954 // Try to fold constant and into select arguments.
6955 if (isa<Constant>(Op0))
6956 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6957 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6958 return R;
6959
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006960 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6961 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6962 return Res;
6963 return 0;
6964}
6965
6966Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6967 BinaryOperator &I) {
6968 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6969
6970 // See if we can simplify any instructions used by the instruction whose sole
6971 // purpose is to compute bits we don't care about.
6972 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6973 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6974 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6975 KnownZero, KnownOne))
6976 return &I;
6977
6978 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6979 // of a signed value.
6980 //
6981 if (Op1->uge(TypeBits)) {
6982 if (I.getOpcode() != Instruction::AShr)
6983 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6984 else {
6985 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
6986 return &I;
6987 }
6988 }
6989
6990 // ((X*C1) << C2) == (X * (C1 << C2))
6991 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6992 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6993 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00006994 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006995 ConstantExpr::getShl(BOOp, Op1));
6996
6997 // Try to fold constant and into select arguments.
6998 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6999 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
7000 return R;
7001 if (isa<PHINode>(Op0))
7002 if (Instruction *NV = FoldOpIntoPhi(I))
7003 return NV;
7004
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007005 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
7006 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
7007 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
7008 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
7009 // place. Don't try to do this transformation in this case. Also, we
7010 // require that the input operand is a shift-by-constant so that we have
7011 // confidence that the shifts will get folded together. We could do this
7012 // xform in more cases, but it is unlikely to be profitable.
7013 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
7014 isa<ConstantInt>(TrOp->getOperand(1))) {
7015 // Okay, we'll do this xform. Make the shift of shift.
7016 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00007017 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007018 I.getName());
7019 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
7020
7021 // For logical shifts, the truncation has the effect of making the high
7022 // part of the register be zeros. Emulate this by inserting an AND to
7023 // clear the top bits as needed. This 'and' will usually be zapped by
7024 // other xforms later if dead.
7025 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
7026 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
7027 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
7028
7029 // The mask we constructed says what the trunc would do if occurring
7030 // between the shifts. We want to know the effect *after* the second
7031 // shift. We know that it is a logical shift by a constant, so adjust the
7032 // mask as appropriate.
7033 if (I.getOpcode() == Instruction::Shl)
7034 MaskV <<= Op1->getZExtValue();
7035 else {
7036 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
7037 MaskV = MaskV.lshr(Op1->getZExtValue());
7038 }
7039
Gabor Greifa645dd32008-05-16 19:29:10 +00007040 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007041 TI->getName());
7042 InsertNewInstBefore(And, I); // shift1 & 0x00FF
7043
7044 // Return the value truncated to the interesting size.
7045 return new TruncInst(And, I.getType());
7046 }
7047 }
7048
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007049 if (Op0->hasOneUse()) {
7050 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
7051 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7052 Value *V1, *V2;
7053 ConstantInt *CC;
7054 switch (Op0BO->getOpcode()) {
7055 default: break;
7056 case Instruction::Add:
7057 case Instruction::And:
7058 case Instruction::Or:
7059 case Instruction::Xor: {
7060 // These operators commute.
7061 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
7062 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007063 match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007064 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007065 Op0BO->getOperand(0), Op1,
7066 Op0BO->getName());
7067 InsertNewInstBefore(YS, I); // (Y << C)
7068 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007069 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007070 Op0BO->getOperand(1)->getName());
7071 InsertNewInstBefore(X, I); // (X + (Y << C))
7072 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007073 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007074 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7075 }
7076
7077 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
7078 Value *Op0BOOp1 = Op0BO->getOperand(1);
7079 if (isLeftShift && Op0BOOp1->hasOneUse() &&
7080 match(Op0BOOp1,
Chris Lattner3b874082008-11-16 05:38:51 +00007081 m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
7082 m_ConstantInt(CC))) &&
7083 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007084 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007085 Op0BO->getOperand(0), Op1,
7086 Op0BO->getName());
7087 InsertNewInstBefore(YS, I); // (Y << C)
7088 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007089 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007090 V1->getName()+".mask");
7091 InsertNewInstBefore(XM, I); // X & (CC << C)
7092
Gabor Greifa645dd32008-05-16 19:29:10 +00007093 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007094 }
7095 }
7096
7097 // FALL THROUGH.
7098 case Instruction::Sub: {
7099 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7100 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007101 match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007102 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007103 Op0BO->getOperand(1), Op1,
7104 Op0BO->getName());
7105 InsertNewInstBefore(YS, I); // (Y << C)
7106 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007107 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007108 Op0BO->getOperand(0)->getName());
7109 InsertNewInstBefore(X, I); // (X + (Y << C))
7110 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007111 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007112 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7113 }
7114
7115 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
7116 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7117 match(Op0BO->getOperand(0),
7118 m_And(m_Shr(m_Value(V1), m_Value(V2)),
7119 m_ConstantInt(CC))) && V2 == Op1 &&
7120 cast<BinaryOperator>(Op0BO->getOperand(0))
7121 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007122 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007123 Op0BO->getOperand(1), Op1,
7124 Op0BO->getName());
7125 InsertNewInstBefore(YS, I); // (Y << C)
7126 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007127 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007128 V1->getName()+".mask");
7129 InsertNewInstBefore(XM, I); // X & (CC << C)
7130
Gabor Greifa645dd32008-05-16 19:29:10 +00007131 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007132 }
7133
7134 break;
7135 }
7136 }
7137
7138
7139 // If the operand is an bitwise operator with a constant RHS, and the
7140 // shift is the only use, we can pull it out of the shift.
7141 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7142 bool isValid = true; // Valid only for And, Or, Xor
7143 bool highBitSet = false; // Transform if high bit of constant set?
7144
7145 switch (Op0BO->getOpcode()) {
7146 default: isValid = false; break; // Do not perform transform!
7147 case Instruction::Add:
7148 isValid = isLeftShift;
7149 break;
7150 case Instruction::Or:
7151 case Instruction::Xor:
7152 highBitSet = false;
7153 break;
7154 case Instruction::And:
7155 highBitSet = true;
7156 break;
7157 }
7158
7159 // If this is a signed shift right, and the high bit is modified
7160 // by the logical operation, do not perform the transformation.
7161 // The highBitSet boolean indicates the value of the high bit of
7162 // the constant which would cause it to be modified for this
7163 // operation.
7164 //
Chris Lattner15b76e32007-12-06 06:25:04 +00007165 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007166 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007167
7168 if (isValid) {
7169 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7170
7171 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007172 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007173 InsertNewInstBefore(NewShift, I);
7174 NewShift->takeName(Op0BO);
7175
Gabor Greifa645dd32008-05-16 19:29:10 +00007176 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007177 NewRHS);
7178 }
7179 }
7180 }
7181 }
7182
7183 // Find out if this is a shift of a shift by a constant.
7184 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7185 if (ShiftOp && !ShiftOp->isShift())
7186 ShiftOp = 0;
7187
7188 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
7189 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
7190 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7191 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
7192 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7193 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7194 Value *X = ShiftOp->getOperand(0);
7195
7196 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
7197 if (AmtSum > TypeBits)
7198 AmtSum = TypeBits;
7199
7200 const IntegerType *Ty = cast<IntegerType>(I.getType());
7201
7202 // Check for (X << c1) << c2 and (X >> c1) >> c2
7203 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007204 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007205 ConstantInt::get(Ty, AmtSum));
7206 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7207 I.getOpcode() == Instruction::AShr) {
7208 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00007209 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007210 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7211 I.getOpcode() == Instruction::LShr) {
7212 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7213 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007214 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007215 InsertNewInstBefore(Shift, I);
7216
7217 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007218 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007219 }
7220
7221 // Okay, if we get here, one shift must be left, and the other shift must be
7222 // right. See if the amounts are equal.
7223 if (ShiftAmt1 == ShiftAmt2) {
7224 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7225 if (I.getOpcode() == Instruction::Shl) {
7226 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007227 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007228 }
7229 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7230 if (I.getOpcode() == Instruction::LShr) {
7231 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007232 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007233 }
7234 // We can simplify ((X << C) >>s C) into a trunc + sext.
7235 // NOTE: we could do this for any C, but that would make 'unusual' integer
7236 // types. For now, just stick to ones well-supported by the code
7237 // generators.
7238 const Type *SExtType = 0;
7239 switch (Ty->getBitWidth() - ShiftAmt1) {
7240 case 1 :
7241 case 8 :
7242 case 16 :
7243 case 32 :
7244 case 64 :
7245 case 128:
7246 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7247 break;
7248 default: break;
7249 }
7250 if (SExtType) {
7251 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7252 InsertNewInstBefore(NewTrunc, I);
7253 return new SExtInst(NewTrunc, Ty);
7254 }
7255 // Otherwise, we can't handle it yet.
7256 } else if (ShiftAmt1 < ShiftAmt2) {
7257 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7258
7259 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7260 if (I.getOpcode() == Instruction::Shl) {
7261 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7262 ShiftOp->getOpcode() == Instruction::AShr);
7263 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007264 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007265 InsertNewInstBefore(Shift, I);
7266
7267 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007268 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007269 }
7270
7271 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7272 if (I.getOpcode() == Instruction::LShr) {
7273 assert(ShiftOp->getOpcode() == Instruction::Shl);
7274 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007275 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007276 InsertNewInstBefore(Shift, I);
7277
7278 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007279 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007280 }
7281
7282 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7283 } else {
7284 assert(ShiftAmt2 < ShiftAmt1);
7285 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7286
7287 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7288 if (I.getOpcode() == Instruction::Shl) {
7289 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7290 ShiftOp->getOpcode() == Instruction::AShr);
7291 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007292 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007293 ConstantInt::get(Ty, ShiftDiff));
7294 InsertNewInstBefore(Shift, I);
7295
7296 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007297 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007298 }
7299
7300 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7301 if (I.getOpcode() == Instruction::LShr) {
7302 assert(ShiftOp->getOpcode() == Instruction::Shl);
7303 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007304 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007305 InsertNewInstBefore(Shift, I);
7306
7307 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007308 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007309 }
7310
7311 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7312 }
7313 }
7314 return 0;
7315}
7316
7317
7318/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7319/// expression. If so, decompose it, returning some value X, such that Val is
7320/// X*Scale+Offset.
7321///
7322static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7323 int &Offset) {
7324 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
7325 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7326 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00007327 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007328 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00007329 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7330 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7331 if (I->getOpcode() == Instruction::Shl) {
7332 // This is a value scaled by '1 << the shift amt'.
7333 Scale = 1U << RHS->getZExtValue();
7334 Offset = 0;
7335 return I->getOperand(0);
7336 } else if (I->getOpcode() == Instruction::Mul) {
7337 // This value is scaled by 'RHS'.
7338 Scale = RHS->getZExtValue();
7339 Offset = 0;
7340 return I->getOperand(0);
7341 } else if (I->getOpcode() == Instruction::Add) {
7342 // We have X+C. Check to see if we really have (X*C2)+C1,
7343 // where C1 is divisible by C2.
7344 unsigned SubScale;
7345 Value *SubVal =
7346 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7347 Offset += RHS->getZExtValue();
7348 Scale = SubScale;
7349 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007350 }
7351 }
7352 }
7353
7354 // Otherwise, we can't look past this.
7355 Scale = 1;
7356 Offset = 0;
7357 return Val;
7358}
7359
7360
7361/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7362/// try to eliminate the cast by moving the type information into the alloc.
7363Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7364 AllocationInst &AI) {
7365 const PointerType *PTy = cast<PointerType>(CI.getType());
7366
7367 // Remove any uses of AI that are dead.
7368 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7369
7370 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7371 Instruction *User = cast<Instruction>(*UI++);
7372 if (isInstructionTriviallyDead(User)) {
7373 while (UI != E && *UI == User)
7374 ++UI; // If this instruction uses AI more than once, don't break UI.
7375
7376 ++NumDeadInst;
7377 DOUT << "IC: DCE: " << *User;
7378 EraseInstFromFunction(*User);
7379 }
7380 }
7381
7382 // Get the type really allocated and the type casted to.
7383 const Type *AllocElTy = AI.getAllocatedType();
7384 const Type *CastElTy = PTy->getElementType();
7385 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7386
7387 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7388 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7389 if (CastElTyAlign < AllocElTyAlign) return 0;
7390
7391 // If the allocation has multiple uses, only promote it if we are strictly
7392 // increasing the alignment of the resultant allocation. If we keep it the
7393 // same, we open the door to infinite loops of various kinds.
7394 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7395
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007396 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7397 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007398 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7399
7400 // See if we can satisfy the modulus by pulling a scale out of the array
7401 // size argument.
7402 unsigned ArraySizeScale;
7403 int ArrayOffset;
7404 Value *NumElements = // See if the array size is a decomposable linear expr.
7405 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7406
7407 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7408 // do the xform.
7409 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7410 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7411
7412 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7413 Value *Amt = 0;
7414 if (Scale == 1) {
7415 Amt = NumElements;
7416 } else {
7417 // If the allocation size is constant, form a constant mul expression
7418 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7419 if (isa<ConstantInt>(NumElements))
7420 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7421 // otherwise multiply the amount and the number of elements
7422 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007423 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007424 Amt = InsertNewInstBefore(Tmp, AI);
7425 }
7426 }
7427
7428 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7429 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007430 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007431 Amt = InsertNewInstBefore(Tmp, AI);
7432 }
7433
7434 AllocationInst *New;
7435 if (isa<MallocInst>(AI))
7436 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7437 else
7438 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7439 InsertNewInstBefore(New, AI);
7440 New->takeName(&AI);
7441
7442 // If the allocation has multiple uses, insert a cast and change all things
7443 // that used it to use the new cast. This will also hack on CI, but it will
7444 // die soon.
7445 if (!AI.hasOneUse()) {
7446 AddUsesToWorkList(AI);
7447 // New is the allocation instruction, pointer typed. AI is the original
7448 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7449 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7450 InsertNewInstBefore(NewCast, AI);
7451 AI.replaceAllUsesWith(NewCast);
7452 }
7453 return ReplaceInstUsesWith(CI, New);
7454}
7455
7456/// CanEvaluateInDifferentType - Return true if we can take the specified value
7457/// and return it as type Ty without inserting any new casts and without
7458/// changing the computed value. This is used by code that tries to decide
7459/// whether promoting or shrinking integer operations to wider or smaller types
7460/// will allow us to eliminate a truncate or extend.
7461///
7462/// This is a truncation operation if Ty is smaller than V->getType(), or an
7463/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007464///
7465/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7466/// should return true if trunc(V) can be computed by computing V in the smaller
7467/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7468/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7469/// efficiently truncated.
7470///
7471/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7472/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7473/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007474bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7475 unsigned CastOpc,
7476 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007477 // We can always evaluate constants in another type.
7478 if (isa<ConstantInt>(V))
7479 return true;
7480
7481 Instruction *I = dyn_cast<Instruction>(V);
7482 if (!I) return false;
7483
7484 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7485
Chris Lattneref70bb82007-08-02 06:11:14 +00007486 // If this is an extension or truncate, we can often eliminate it.
7487 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7488 // If this is a cast from the destination type, we can trivially eliminate
7489 // it, and this will remove a cast overall.
7490 if (I->getOperand(0)->getType() == Ty) {
7491 // If the first operand is itself a cast, and is eliminable, do not count
7492 // this as an eliminable cast. We would prefer to eliminate those two
7493 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007494 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007495 ++NumCastsRemoved;
7496 return true;
7497 }
7498 }
7499
7500 // We can't extend or shrink something that has multiple uses: doing so would
7501 // require duplicating the instruction in general, which isn't profitable.
7502 if (!I->hasOneUse()) return false;
7503
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007504 switch (I->getOpcode()) {
7505 case Instruction::Add:
7506 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007507 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007508 case Instruction::And:
7509 case Instruction::Or:
7510 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007511 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007512 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7513 NumCastsRemoved) &&
7514 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7515 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007516
7517 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007518 // If we are truncating the result of this SHL, and if it's a shift of a
7519 // constant amount, we can always perform a SHL in a smaller type.
7520 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7521 uint32_t BitWidth = Ty->getBitWidth();
7522 if (BitWidth < OrigTy->getBitWidth() &&
7523 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007524 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7525 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007526 }
7527 break;
7528 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007529 // If this is a truncate of a logical shr, we can truncate it to a smaller
7530 // lshr iff we know that the bits we would otherwise be shifting in are
7531 // already zeros.
7532 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7533 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7534 uint32_t BitWidth = Ty->getBitWidth();
7535 if (BitWidth < OrigBitWidth &&
7536 MaskedValueIsZero(I->getOperand(0),
7537 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7538 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007539 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7540 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007541 }
7542 }
7543 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007544 case Instruction::ZExt:
7545 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007546 case Instruction::Trunc:
7547 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007548 // can safely replace it. Note that replacing it does not reduce the number
7549 // of casts in the input.
7550 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007551 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007552 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007553 case Instruction::Select: {
7554 SelectInst *SI = cast<SelectInst>(I);
7555 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7556 NumCastsRemoved) &&
7557 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7558 NumCastsRemoved);
7559 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007560 case Instruction::PHI: {
7561 // We can change a phi if we can change all operands.
7562 PHINode *PN = cast<PHINode>(I);
7563 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7564 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7565 NumCastsRemoved))
7566 return false;
7567 return true;
7568 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007569 default:
7570 // TODO: Can handle more cases here.
7571 break;
7572 }
7573
7574 return false;
7575}
7576
7577/// EvaluateInDifferentType - Given an expression that
7578/// CanEvaluateInDifferentType returns true for, actually insert the code to
7579/// evaluate the expression.
7580Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7581 bool isSigned) {
7582 if (Constant *C = dyn_cast<Constant>(V))
7583 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7584
7585 // Otherwise, it must be an instruction.
7586 Instruction *I = cast<Instruction>(V);
7587 Instruction *Res = 0;
7588 switch (I->getOpcode()) {
7589 case Instruction::Add:
7590 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007591 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007592 case Instruction::And:
7593 case Instruction::Or:
7594 case Instruction::Xor:
7595 case Instruction::AShr:
7596 case Instruction::LShr:
7597 case Instruction::Shl: {
7598 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7599 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007600 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007601 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007602 break;
7603 }
7604 case Instruction::Trunc:
7605 case Instruction::ZExt:
7606 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007607 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007608 // just return the source. There's no need to insert it because it is not
7609 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007610 if (I->getOperand(0)->getType() == Ty)
7611 return I->getOperand(0);
7612
Chris Lattner4200c2062008-06-18 04:00:49 +00007613 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007614 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007615 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007616 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007617 case Instruction::Select: {
7618 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7619 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7620 Res = SelectInst::Create(I->getOperand(0), True, False);
7621 break;
7622 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007623 case Instruction::PHI: {
7624 PHINode *OPN = cast<PHINode>(I);
7625 PHINode *NPN = PHINode::Create(Ty);
7626 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7627 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7628 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7629 }
7630 Res = NPN;
7631 break;
7632 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007633 default:
7634 // TODO: Can handle more cases here.
7635 assert(0 && "Unreachable!");
7636 break;
7637 }
7638
Chris Lattner4200c2062008-06-18 04:00:49 +00007639 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007640 return InsertNewInstBefore(Res, *I);
7641}
7642
7643/// @brief Implement the transforms common to all CastInst visitors.
7644Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7645 Value *Src = CI.getOperand(0);
7646
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007647 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7648 // eliminate it now.
7649 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7650 if (Instruction::CastOps opc =
7651 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7652 // The first cast (CSrc) is eliminable so we need to fix up or replace
7653 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007654 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007655 }
7656 }
7657
7658 // If we are casting a select then fold the cast into the select
7659 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7660 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7661 return NV;
7662
7663 // If we are casting a PHI then fold the cast into the PHI
7664 if (isa<PHINode>(Src))
7665 if (Instruction *NV = FoldOpIntoPhi(CI))
7666 return NV;
7667
7668 return 0;
7669}
7670
7671/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7672Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7673 Value *Src = CI.getOperand(0);
7674
7675 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7676 // If casting the result of a getelementptr instruction with no offset, turn
7677 // this into a cast of the original pointer!
7678 if (GEP->hasAllZeroIndices()) {
7679 // Changing the cast operand is usually not a good idea but it is safe
7680 // here because the pointer operand is being replaced with another
7681 // pointer operand so the opcode doesn't need to change.
7682 AddToWorkList(GEP);
7683 CI.setOperand(0, GEP->getOperand(0));
7684 return &CI;
7685 }
7686
7687 // If the GEP has a single use, and the base pointer is a bitcast, and the
7688 // GEP computes a constant offset, see if we can convert these three
7689 // instructions into fewer. This typically happens with unions and other
7690 // non-type-safe code.
7691 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7692 if (GEP->hasAllConstantIndices()) {
7693 // We are guaranteed to get a constant from EmitGEPOffset.
7694 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7695 int64_t Offset = OffsetV->getSExtValue();
7696
7697 // Get the base pointer input of the bitcast, and the type it points to.
7698 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7699 const Type *GEPIdxTy =
7700 cast<PointerType>(OrigBase->getType())->getElementType();
7701 if (GEPIdxTy->isSized()) {
7702 SmallVector<Value*, 8> NewIndices;
7703
7704 // Start with the index over the outer type. Note that the type size
7705 // might be zero (even if the offset isn't zero) if the indexed type
7706 // is something like [0 x {int, int}]
7707 const Type *IntPtrTy = TD->getIntPtrType();
7708 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007709 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007710 FirstIdx = Offset/TySize;
7711 Offset %= TySize;
7712
7713 // Handle silly modulus not returning values values [0..TySize).
7714 if (Offset < 0) {
7715 --FirstIdx;
7716 Offset += TySize;
7717 assert(Offset >= 0);
7718 }
7719 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7720 }
7721
7722 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7723
7724 // Index into the types. If we fail, set OrigBase to null.
7725 while (Offset) {
7726 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7727 const StructLayout *SL = TD->getStructLayout(STy);
7728 if (Offset < (int64_t)SL->getSizeInBytes()) {
7729 unsigned Elt = SL->getElementContainingOffset(Offset);
7730 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7731
7732 Offset -= SL->getElementOffset(Elt);
7733 GEPIdxTy = STy->getElementType(Elt);
7734 } else {
7735 // Otherwise, we can't index into this, bail out.
7736 Offset = 0;
7737 OrigBase = 0;
7738 }
7739 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7740 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007741 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007742 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7743 Offset %= EltSize;
7744 } else {
7745 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7746 }
7747 GEPIdxTy = STy->getElementType();
7748 } else {
7749 // Otherwise, we can't index into this, bail out.
7750 Offset = 0;
7751 OrigBase = 0;
7752 }
7753 }
7754 if (OrigBase) {
7755 // If we were able to index down into an element, create the GEP
7756 // and bitcast the result. This eliminates one bitcast, potentially
7757 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007758 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7759 NewIndices.begin(),
7760 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007761 InsertNewInstBefore(NGEP, CI);
7762 NGEP->takeName(GEP);
7763
7764 if (isa<BitCastInst>(CI))
7765 return new BitCastInst(NGEP, CI.getType());
7766 assert(isa<PtrToIntInst>(CI));
7767 return new PtrToIntInst(NGEP, CI.getType());
7768 }
7769 }
7770 }
7771 }
7772 }
7773
7774 return commonCastTransforms(CI);
7775}
7776
7777
7778
7779/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7780/// integer types. This function implements the common transforms for all those
7781/// cases.
7782/// @brief Implement the transforms common to CastInst with integer operands
7783Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7784 if (Instruction *Result = commonCastTransforms(CI))
7785 return Result;
7786
7787 Value *Src = CI.getOperand(0);
7788 const Type *SrcTy = Src->getType();
7789 const Type *DestTy = CI.getType();
7790 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7791 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7792
7793 // See if we can simplify any instructions used by the LHS whose sole
7794 // purpose is to compute bits we don't care about.
7795 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7796 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7797 KnownZero, KnownOne))
7798 return &CI;
7799
7800 // If the source isn't an instruction or has more than one use then we
7801 // can't do anything more.
7802 Instruction *SrcI = dyn_cast<Instruction>(Src);
7803 if (!SrcI || !Src->hasOneUse())
7804 return 0;
7805
7806 // Attempt to propagate the cast into the instruction for int->int casts.
7807 int NumCastsRemoved = 0;
7808 if (!isa<BitCastInst>(CI) &&
7809 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007810 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007811 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007812 // eliminates the cast, so it is always a win. If this is a zero-extension,
7813 // we need to do an AND to maintain the clear top-part of the computation,
7814 // so we require that the input have eliminated at least one cast. If this
7815 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007816 // require that two casts have been eliminated.
7817 bool DoXForm;
7818 switch (CI.getOpcode()) {
7819 default:
7820 // All the others use floating point so we shouldn't actually
7821 // get here because of the check above.
7822 assert(0 && "Unknown cast type");
7823 case Instruction::Trunc:
7824 DoXForm = true;
7825 break;
7826 case Instruction::ZExt:
7827 DoXForm = NumCastsRemoved >= 1;
7828 break;
7829 case Instruction::SExt:
7830 DoXForm = NumCastsRemoved >= 2;
7831 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007832 }
7833
7834 if (DoXForm) {
7835 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7836 CI.getOpcode() == Instruction::SExt);
7837 assert(Res->getType() == DestTy);
7838 switch (CI.getOpcode()) {
7839 default: assert(0 && "Unknown cast type!");
7840 case Instruction::Trunc:
7841 case Instruction::BitCast:
7842 // Just replace this cast with the result.
7843 return ReplaceInstUsesWith(CI, Res);
7844 case Instruction::ZExt: {
7845 // We need to emit an AND to clear the high bits.
7846 assert(SrcBitSize < DestBitSize && "Not a zext?");
7847 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7848 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007849 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007850 }
7851 case Instruction::SExt:
7852 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007853 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007854 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7855 CI), DestTy);
7856 }
7857 }
7858 }
7859
7860 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7861 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7862
7863 switch (SrcI->getOpcode()) {
7864 case Instruction::Add:
7865 case Instruction::Mul:
7866 case Instruction::And:
7867 case Instruction::Or:
7868 case Instruction::Xor:
7869 // If we are discarding information, rewrite.
7870 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7871 // Don't insert two casts if they cannot be eliminated. We allow
7872 // two casts to be inserted if the sizes are the same. This could
7873 // only be converting signedness, which is a noop.
7874 if (DestBitSize == SrcBitSize ||
7875 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7876 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7877 Instruction::CastOps opcode = CI.getOpcode();
Eli Friedman722b4792008-11-30 21:09:11 +00007878 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7879 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007880 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007881 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7882 }
7883 }
7884
7885 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7886 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7887 SrcI->getOpcode() == Instruction::Xor &&
7888 Op1 == ConstantInt::getTrue() &&
7889 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
Eli Friedman722b4792008-11-30 21:09:11 +00007890 Value *New = InsertCastBefore(Instruction::ZExt, Op0, DestTy, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007891 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007892 }
7893 break;
7894 case Instruction::SDiv:
7895 case Instruction::UDiv:
7896 case Instruction::SRem:
7897 case Instruction::URem:
7898 // If we are just changing the sign, rewrite.
7899 if (DestBitSize == SrcBitSize) {
7900 // Don't insert two casts if they cannot be eliminated. We allow
7901 // two casts to be inserted if the sizes are the same. This could
7902 // only be converting signedness, which is a noop.
7903 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7904 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Eli Friedman722b4792008-11-30 21:09:11 +00007905 Value *Op0c = InsertCastBefore(Instruction::BitCast,
7906 Op0, DestTy, *SrcI);
7907 Value *Op1c = InsertCastBefore(Instruction::BitCast,
7908 Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007909 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007910 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7911 }
7912 }
7913 break;
7914
7915 case Instruction::Shl:
7916 // Allow changing the sign of the source operand. Do not allow
7917 // changing the size of the shift, UNLESS the shift amount is a
7918 // constant. We must not change variable sized shifts to a smaller
7919 // size, because it is undefined to shift more bits out than exist
7920 // in the value.
7921 if (DestBitSize == SrcBitSize ||
7922 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7923 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7924 Instruction::BitCast : Instruction::Trunc);
Eli Friedman722b4792008-11-30 21:09:11 +00007925 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7926 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007927 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007928 }
7929 break;
7930 case Instruction::AShr:
7931 // If this is a signed shr, and if all bits shifted in are about to be
7932 // truncated off, turn it into an unsigned shr to allow greater
7933 // simplifications.
7934 if (DestBitSize < SrcBitSize &&
7935 isa<ConstantInt>(Op1)) {
7936 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7937 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7938 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007939 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007940 }
7941 }
7942 break;
7943 }
7944 return 0;
7945}
7946
7947Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7948 if (Instruction *Result = commonIntCastTransforms(CI))
7949 return Result;
7950
7951 Value *Src = CI.getOperand(0);
7952 const Type *Ty = CI.getType();
7953 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7954 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7955
7956 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7957 switch (SrcI->getOpcode()) {
7958 default: break;
7959 case Instruction::LShr:
7960 // We can shrink lshr to something smaller if we know the bits shifted in
7961 // are already zeros.
7962 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7963 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7964
7965 // Get a mask for the bits shifting in.
7966 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7967 Value* SrcIOp0 = SrcI->getOperand(0);
7968 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7969 if (ShAmt >= DestBitWidth) // All zeros.
7970 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7971
7972 // Okay, we can shrink this. Truncate the input, then return a new
7973 // shift.
7974 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7975 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7976 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007977 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007978 }
7979 } else { // This is a variable shr.
7980
7981 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7982 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7983 // loop-invariant and CSE'd.
7984 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
7985 Value *One = ConstantInt::get(SrcI->getType(), 1);
7986
7987 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00007988 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007989 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007990 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007991 SrcI->getOperand(0),
7992 "tmp"), CI);
7993 Value *Zero = Constant::getNullValue(V->getType());
7994 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
7995 }
7996 }
7997 break;
7998 }
7999 }
8000
8001 return 0;
8002}
8003
Evan Chenge3779cf2008-03-24 00:21:34 +00008004/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
8005/// in order to eliminate the icmp.
8006Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
8007 bool DoXform) {
8008 // If we are just checking for a icmp eq of a single bit and zext'ing it
8009 // to an integer, then shift the bit to the appropriate place and then
8010 // cast to integer to avoid the comparison.
8011 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
8012 const APInt &Op1CV = Op1C->getValue();
8013
8014 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
8015 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
8016 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
8017 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
8018 if (!DoXform) return ICI;
8019
8020 Value *In = ICI->getOperand(0);
8021 Value *Sh = ConstantInt::get(In->getType(),
8022 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008023 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00008024 In->getName()+".lobit"),
8025 CI);
8026 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00008027 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00008028 false/*ZExt*/, "tmp", &CI);
8029
8030 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
8031 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008032 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00008033 In->getName()+".not"),
8034 CI);
8035 }
8036
8037 return ReplaceInstUsesWith(CI, In);
8038 }
8039
8040
8041
8042 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
8043 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8044 // zext (X == 1) to i32 --> X iff X has only the low bit set.
8045 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
8046 // zext (X != 0) to i32 --> X iff X has only the low bit set.
8047 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
8048 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
8049 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8050 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
8051 // This only works for EQ and NE
8052 ICI->isEquality()) {
8053 // If Op1C some other power of two, convert:
8054 uint32_t BitWidth = Op1C->getType()->getBitWidth();
8055 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8056 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
8057 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
8058
8059 APInt KnownZeroMask(~KnownZero);
8060 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
8061 if (!DoXform) return ICI;
8062
8063 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
8064 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
8065 // (X&4) == 2 --> false
8066 // (X&4) != 2 --> true
8067 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
8068 Res = ConstantExpr::getZExt(Res, CI.getType());
8069 return ReplaceInstUsesWith(CI, Res);
8070 }
8071
8072 uint32_t ShiftAmt = KnownZeroMask.logBase2();
8073 Value *In = ICI->getOperand(0);
8074 if (ShiftAmt) {
8075 // Perform a logical shr by shiftamt.
8076 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00008077 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00008078 ConstantInt::get(In->getType(), ShiftAmt),
8079 In->getName()+".lobit"), CI);
8080 }
8081
8082 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
8083 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008084 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00008085 InsertNewInstBefore(cast<Instruction>(In), CI);
8086 }
8087
8088 if (CI.getType() == In->getType())
8089 return ReplaceInstUsesWith(CI, In);
8090 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008091 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00008092 }
8093 }
8094 }
8095
8096 return 0;
8097}
8098
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008099Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
8100 // If one of the common conversion will work ..
8101 if (Instruction *Result = commonIntCastTransforms(CI))
8102 return Result;
8103
8104 Value *Src = CI.getOperand(0);
8105
8106 // If this is a cast of a cast
8107 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
8108 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8109 // types and if the sizes are just right we can convert this into a logical
8110 // 'and' which will be much cheaper than the pair of casts.
8111 if (isa<TruncInst>(CSrc)) {
8112 // Get the sizes of the types involved
8113 Value *A = CSrc->getOperand(0);
8114 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
8115 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
8116 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
8117 // If we're actually extending zero bits and the trunc is a no-op
8118 if (MidSize < DstSize && SrcSize == DstSize) {
8119 // Replace both of the casts with an And of the type mask.
8120 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
8121 Constant *AndConst = ConstantInt::get(AndValue);
8122 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00008123 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008124 // Unfortunately, if the type changed, we need to cast it back.
8125 if (And->getType() != CI.getType()) {
8126 And->setName(CSrc->getName()+".mask");
8127 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008128 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008129 }
8130 return And;
8131 }
8132 }
8133 }
8134
Evan Chenge3779cf2008-03-24 00:21:34 +00008135 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8136 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008137
Evan Chenge3779cf2008-03-24 00:21:34 +00008138 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8139 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8140 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8141 // of the (zext icmp) will be transformed.
8142 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8143 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8144 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8145 (transformZExtICmp(LHS, CI, false) ||
8146 transformZExtICmp(RHS, CI, false))) {
8147 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
8148 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008149 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008150 }
Evan Chenge3779cf2008-03-24 00:21:34 +00008151 }
8152
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008153 return 0;
8154}
8155
8156Instruction *InstCombiner::visitSExt(SExtInst &CI) {
8157 if (Instruction *I = commonIntCastTransforms(CI))
8158 return I;
8159
8160 Value *Src = CI.getOperand(0);
8161
Dan Gohman35b76162008-10-30 20:40:10 +00008162 // Canonicalize sign-extend from i1 to a select.
8163 if (Src->getType() == Type::Int1Ty)
8164 return SelectInst::Create(Src,
8165 ConstantInt::getAllOnesValue(CI.getType()),
8166 Constant::getNullValue(CI.getType()));
Dan Gohmanf0f12022008-05-20 21:01:12 +00008167
8168 // See if the value being truncated is already sign extended. If so, just
8169 // eliminate the trunc/sext pair.
8170 if (getOpcode(Src) == Instruction::Trunc) {
8171 Value *Op = cast<User>(Src)->getOperand(0);
8172 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8173 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8174 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8175 unsigned NumSignBits = ComputeNumSignBits(Op);
8176
8177 if (OpBits == DestBits) {
8178 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8179 // bits, it is already ready.
8180 if (NumSignBits > DestBits-MidBits)
8181 return ReplaceInstUsesWith(CI, Op);
8182 } else if (OpBits < DestBits) {
8183 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8184 // bits, just sext from i32.
8185 if (NumSignBits > OpBits-MidBits)
8186 return new SExtInst(Op, CI.getType(), "tmp");
8187 } else {
8188 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8189 // bits, just truncate to i32.
8190 if (NumSignBits > OpBits-MidBits)
8191 return new TruncInst(Op, CI.getType(), "tmp");
8192 }
8193 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00008194
8195 // If the input is a shl/ashr pair of a same constant, then this is a sign
8196 // extension from a smaller value. If we could trust arbitrary bitwidth
8197 // integers, we could turn this into a truncate to the smaller bit and then
8198 // use a sext for the whole extension. Since we don't, look deeper and check
8199 // for a truncate. If the source and dest are the same type, eliminate the
8200 // trunc and extend and just do shifts. For example, turn:
8201 // %a = trunc i32 %i to i8
8202 // %b = shl i8 %a, 6
8203 // %c = ashr i8 %b, 6
8204 // %d = sext i8 %c to i32
8205 // into:
8206 // %a = shl i32 %i, 30
8207 // %d = ashr i32 %a, 30
8208 Value *A = 0;
8209 ConstantInt *BA = 0, *CA = 0;
8210 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8211 m_ConstantInt(CA))) &&
8212 BA == CA && isa<TruncInst>(A)) {
8213 Value *I = cast<TruncInst>(A)->getOperand(0);
8214 if (I->getType() == CI.getType()) {
8215 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8216 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8217 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8218 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8219 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8220 CI.getName()), CI);
8221 return BinaryOperator::CreateAShr(I, ShAmtV);
8222 }
8223 }
8224
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008225 return 0;
8226}
8227
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008228/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8229/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008230static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen6e547b42008-10-09 23:00:39 +00008231 bool losesInfo;
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008232 APFloat F = CFP->getValueAPF();
Dale Johannesen6e547b42008-10-09 23:00:39 +00008233 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8234 if (!losesInfo)
Chris Lattner5e0610f2008-04-20 00:41:09 +00008235 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008236 return 0;
8237}
8238
8239/// LookThroughFPExtensions - If this is an fp extension instruction, look
8240/// through it until we get the source value.
8241static Value *LookThroughFPExtensions(Value *V) {
8242 if (Instruction *I = dyn_cast<Instruction>(V))
8243 if (I->getOpcode() == Instruction::FPExt)
8244 return LookThroughFPExtensions(I->getOperand(0));
8245
8246 // If this value is a constant, return the constant in the smallest FP type
8247 // that can accurately represent it. This allows us to turn
8248 // (float)((double)X+2.0) into x+2.0f.
8249 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8250 if (CFP->getType() == Type::PPC_FP128Ty)
8251 return V; // No constant folding of this.
8252 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008253 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008254 return V;
8255 if (CFP->getType() == Type::DoubleTy)
8256 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008257 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008258 return V;
8259 // Don't try to shrink to various long double types.
8260 }
8261
8262 return V;
8263}
8264
8265Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8266 if (Instruction *I = commonCastTransforms(CI))
8267 return I;
8268
8269 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8270 // smaller than the destination type, we can eliminate the truncate by doing
8271 // the add as the smaller type. This applies to add/sub/mul/div as well as
8272 // many builtins (sqrt, etc).
8273 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8274 if (OpI && OpI->hasOneUse()) {
8275 switch (OpI->getOpcode()) {
8276 default: break;
8277 case Instruction::Add:
8278 case Instruction::Sub:
8279 case Instruction::Mul:
8280 case Instruction::FDiv:
8281 case Instruction::FRem:
8282 const Type *SrcTy = OpI->getType();
8283 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8284 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8285 if (LHSTrunc->getType() != SrcTy &&
8286 RHSTrunc->getType() != SrcTy) {
8287 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8288 // If the source types were both smaller than the destination type of
8289 // the cast, do this xform.
8290 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8291 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8292 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8293 CI.getType(), CI);
8294 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8295 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008296 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008297 }
8298 }
8299 break;
8300 }
8301 }
8302 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008303}
8304
8305Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8306 return commonCastTransforms(CI);
8307}
8308
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008309Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008310 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8311 if (OpI == 0)
8312 return commonCastTransforms(FI);
8313
8314 // fptoui(uitofp(X)) --> X
8315 // fptoui(sitofp(X)) --> X
8316 // This is safe if the intermediate type has enough bits in its mantissa to
8317 // accurately represent all values of X. For example, do not do this with
8318 // i64->float->i64. This is also safe for sitofp case, because any negative
8319 // 'X' value would cause an undefined result for the fptoui.
8320 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8321 OpI->getOperand(0)->getType() == FI.getType() &&
8322 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8323 OpI->getType()->getFPMantissaWidth())
8324 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008325
8326 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008327}
8328
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008329Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008330 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8331 if (OpI == 0)
8332 return commonCastTransforms(FI);
8333
8334 // fptosi(sitofp(X)) --> X
8335 // fptosi(uitofp(X)) --> X
8336 // This is safe if the intermediate type has enough bits in its mantissa to
8337 // accurately represent all values of X. For example, do not do this with
8338 // i64->float->i64. This is also safe for sitofp case, because any negative
8339 // 'X' value would cause an undefined result for the fptoui.
8340 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8341 OpI->getOperand(0)->getType() == FI.getType() &&
8342 (int)FI.getType()->getPrimitiveSizeInBits() <=
8343 OpI->getType()->getFPMantissaWidth())
8344 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008345
8346 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008347}
8348
8349Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8350 return commonCastTransforms(CI);
8351}
8352
8353Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8354 return commonCastTransforms(CI);
8355}
8356
8357Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
8358 return commonPointerCastTransforms(CI);
8359}
8360
Chris Lattner7c1626482008-01-08 07:23:51 +00008361Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8362 if (Instruction *I = commonCastTransforms(CI))
8363 return I;
8364
8365 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8366 if (!DestPointee->isSized()) return 0;
8367
8368 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8369 ConstantInt *Cst;
8370 Value *X;
8371 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8372 m_ConstantInt(Cst)))) {
8373 // If the source and destination operands have the same type, see if this
8374 // is a single-index GEP.
8375 if (X->getType() == CI.getType()) {
8376 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00008377 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008378
8379 // Convert the constant to intptr type.
8380 APInt Offset = Cst->getValue();
8381 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8382
8383 // If Offset is evenly divisible by Size, we can do this xform.
8384 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8385 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00008386 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00008387 }
8388 }
8389 // TODO: Could handle other cases, e.g. where add is indexing into field of
8390 // struct etc.
8391 } else if (CI.getOperand(0)->hasOneUse() &&
8392 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8393 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8394 // "inttoptr+GEP" instead of "add+intptr".
8395
8396 // Get the size of the pointee type.
8397 uint64_t Size = TD->getABITypeSize(DestPointee);
8398
8399 // Convert the constant to intptr type.
8400 APInt Offset = Cst->getValue();
8401 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8402
8403 // If Offset is evenly divisible by Size, we can do this xform.
8404 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8405 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8406
8407 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8408 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008409 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00008410 }
8411 }
8412 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008413}
8414
8415Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8416 // If the operands are integer typed then apply the integer transforms,
8417 // otherwise just apply the common ones.
8418 Value *Src = CI.getOperand(0);
8419 const Type *SrcTy = Src->getType();
8420 const Type *DestTy = CI.getType();
8421
8422 if (SrcTy->isInteger() && DestTy->isInteger()) {
8423 if (Instruction *Result = commonIntCastTransforms(CI))
8424 return Result;
8425 } else if (isa<PointerType>(SrcTy)) {
8426 if (Instruction *I = commonPointerCastTransforms(CI))
8427 return I;
8428 } else {
8429 if (Instruction *Result = commonCastTransforms(CI))
8430 return Result;
8431 }
8432
8433
8434 // Get rid of casts from one type to the same type. These are useless and can
8435 // be replaced by the operand.
8436 if (DestTy == Src->getType())
8437 return ReplaceInstUsesWith(CI, Src);
8438
8439 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8440 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8441 const Type *DstElTy = DstPTy->getElementType();
8442 const Type *SrcElTy = SrcPTy->getElementType();
8443
Nate Begemandf5b3612008-03-31 00:22:16 +00008444 // If the address spaces don't match, don't eliminate the bitcast, which is
8445 // required for changing types.
8446 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8447 return 0;
8448
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008449 // If we are casting a malloc or alloca to a pointer to a type of the same
8450 // size, rewrite the allocation instruction to allocate the "right" type.
8451 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8452 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8453 return V;
8454
8455 // If the source and destination are pointers, and this cast is equivalent
8456 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8457 // This can enhance SROA and other transforms that want type-safe pointers.
8458 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8459 unsigned NumZeros = 0;
8460 while (SrcElTy != DstElTy &&
8461 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8462 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8463 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8464 ++NumZeros;
8465 }
8466
8467 // If we found a path from the src to dest, create the getelementptr now.
8468 if (SrcElTy == DstElTy) {
8469 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008470 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8471 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008472 }
8473 }
8474
8475 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8476 if (SVI->hasOneUse()) {
8477 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8478 // a bitconvert to a vector with the same # elts.
8479 if (isa<VectorType>(DestTy) &&
Mon P Wangbff5d9c2008-11-10 04:46:22 +00008480 cast<VectorType>(DestTy)->getNumElements() ==
8481 SVI->getType()->getNumElements() &&
8482 SVI->getType()->getNumElements() ==
8483 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008484 CastInst *Tmp;
8485 // If either of the operands is a cast from CI.getType(), then
8486 // evaluating the shuffle in the casted destination's type will allow
8487 // us to eliminate at least one cast.
8488 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8489 Tmp->getOperand(0)->getType() == DestTy) ||
8490 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8491 Tmp->getOperand(0)->getType() == DestTy)) {
Eli Friedman722b4792008-11-30 21:09:11 +00008492 Value *LHS = InsertCastBefore(Instruction::BitCast,
8493 SVI->getOperand(0), DestTy, CI);
8494 Value *RHS = InsertCastBefore(Instruction::BitCast,
8495 SVI->getOperand(1), DestTy, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008496 // Return a new shuffle vector. Use the same element ID's, as we
8497 // know the vector types match #elts.
8498 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8499 }
8500 }
8501 }
8502 }
8503 return 0;
8504}
8505
8506/// GetSelectFoldableOperands - We want to turn code that looks like this:
8507/// %C = or %A, %B
8508/// %D = select %cond, %C, %A
8509/// into:
8510/// %C = select %cond, %B, 0
8511/// %D = or %A, %C
8512///
8513/// Assuming that the specified instruction is an operand to the select, return
8514/// a bitmask indicating which operands of this instruction are foldable if they
8515/// equal the other incoming value of the select.
8516///
8517static unsigned GetSelectFoldableOperands(Instruction *I) {
8518 switch (I->getOpcode()) {
8519 case Instruction::Add:
8520 case Instruction::Mul:
8521 case Instruction::And:
8522 case Instruction::Or:
8523 case Instruction::Xor:
8524 return 3; // Can fold through either operand.
8525 case Instruction::Sub: // Can only fold on the amount subtracted.
8526 case Instruction::Shl: // Can only fold on the shift amount.
8527 case Instruction::LShr:
8528 case Instruction::AShr:
8529 return 1;
8530 default:
8531 return 0; // Cannot fold
8532 }
8533}
8534
8535/// GetSelectFoldableConstant - For the same transformation as the previous
8536/// function, return the identity constant that goes into the select.
8537static Constant *GetSelectFoldableConstant(Instruction *I) {
8538 switch (I->getOpcode()) {
8539 default: assert(0 && "This cannot happen!"); abort();
8540 case Instruction::Add:
8541 case Instruction::Sub:
8542 case Instruction::Or:
8543 case Instruction::Xor:
8544 case Instruction::Shl:
8545 case Instruction::LShr:
8546 case Instruction::AShr:
8547 return Constant::getNullValue(I->getType());
8548 case Instruction::And:
8549 return Constant::getAllOnesValue(I->getType());
8550 case Instruction::Mul:
8551 return ConstantInt::get(I->getType(), 1);
8552 }
8553}
8554
8555/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8556/// have the same opcode and only one use each. Try to simplify this.
8557Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8558 Instruction *FI) {
8559 if (TI->getNumOperands() == 1) {
8560 // If this is a non-volatile load or a cast from the same type,
8561 // merge.
8562 if (TI->isCast()) {
8563 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8564 return 0;
8565 } else {
8566 return 0; // unknown unary op.
8567 }
8568
8569 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008570 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8571 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008572 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008573 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008574 TI->getType());
8575 }
8576
8577 // Only handle binary operators here.
8578 if (!isa<BinaryOperator>(TI))
8579 return 0;
8580
8581 // Figure out if the operations have any operands in common.
8582 Value *MatchOp, *OtherOpT, *OtherOpF;
8583 bool MatchIsOpZero;
8584 if (TI->getOperand(0) == FI->getOperand(0)) {
8585 MatchOp = TI->getOperand(0);
8586 OtherOpT = TI->getOperand(1);
8587 OtherOpF = FI->getOperand(1);
8588 MatchIsOpZero = true;
8589 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8590 MatchOp = TI->getOperand(1);
8591 OtherOpT = TI->getOperand(0);
8592 OtherOpF = FI->getOperand(0);
8593 MatchIsOpZero = false;
8594 } else if (!TI->isCommutative()) {
8595 return 0;
8596 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8597 MatchOp = TI->getOperand(0);
8598 OtherOpT = TI->getOperand(1);
8599 OtherOpF = FI->getOperand(0);
8600 MatchIsOpZero = true;
8601 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8602 MatchOp = TI->getOperand(1);
8603 OtherOpT = TI->getOperand(0);
8604 OtherOpF = FI->getOperand(1);
8605 MatchIsOpZero = true;
8606 } else {
8607 return 0;
8608 }
8609
8610 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008611 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8612 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008613 InsertNewInstBefore(NewSI, SI);
8614
8615 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8616 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008617 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008618 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008619 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008620 }
8621 assert(0 && "Shouldn't get here");
8622 return 0;
8623}
8624
Dan Gohman58c09632008-09-16 18:46:06 +00008625/// visitSelectInstWithICmp - Visit a SelectInst that has an
8626/// ICmpInst as its first operand.
8627///
8628Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8629 ICmpInst *ICI) {
8630 bool Changed = false;
8631 ICmpInst::Predicate Pred = ICI->getPredicate();
8632 Value *CmpLHS = ICI->getOperand(0);
8633 Value *CmpRHS = ICI->getOperand(1);
8634 Value *TrueVal = SI.getTrueValue();
8635 Value *FalseVal = SI.getFalseValue();
8636
8637 // Check cases where the comparison is with a constant that
8638 // can be adjusted to fit the min/max idiom. We may edit ICI in
8639 // place here, so make sure the select is the only user.
8640 if (ICI->hasOneUse())
Dan Gohman35b76162008-10-30 20:40:10 +00008641 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman58c09632008-09-16 18:46:06 +00008642 switch (Pred) {
8643 default: break;
8644 case ICmpInst::ICMP_ULT:
8645 case ICmpInst::ICMP_SLT: {
8646 // X < MIN ? T : F --> F
8647 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8648 return ReplaceInstUsesWith(SI, FalseVal);
8649 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8650 Constant *AdjustedRHS = SubOne(CI);
8651 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8652 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8653 Pred = ICmpInst::getSwappedPredicate(Pred);
8654 CmpRHS = AdjustedRHS;
8655 std::swap(FalseVal, TrueVal);
8656 ICI->setPredicate(Pred);
8657 ICI->setOperand(1, CmpRHS);
8658 SI.setOperand(1, TrueVal);
8659 SI.setOperand(2, FalseVal);
8660 Changed = true;
8661 }
8662 break;
8663 }
8664 case ICmpInst::ICMP_UGT:
8665 case ICmpInst::ICMP_SGT: {
8666 // X > MAX ? T : F --> F
8667 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8668 return ReplaceInstUsesWith(SI, FalseVal);
8669 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8670 Constant *AdjustedRHS = AddOne(CI);
8671 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8672 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8673 Pred = ICmpInst::getSwappedPredicate(Pred);
8674 CmpRHS = AdjustedRHS;
8675 std::swap(FalseVal, TrueVal);
8676 ICI->setPredicate(Pred);
8677 ICI->setOperand(1, CmpRHS);
8678 SI.setOperand(1, TrueVal);
8679 SI.setOperand(2, FalseVal);
8680 Changed = true;
8681 }
8682 break;
8683 }
8684 }
8685
Dan Gohman35b76162008-10-30 20:40:10 +00008686 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8687 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
Chris Lattner3b874082008-11-16 05:38:51 +00008688 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
8689 if (match(TrueVal, m_ConstantInt(-1)) &&
8690 match(FalseVal, m_ConstantInt(0)))
8691 Pred = ICI->getPredicate();
8692 else if (match(TrueVal, m_ConstantInt(0)) &&
8693 match(FalseVal, m_ConstantInt(-1)))
8694 Pred = CmpInst::getInversePredicate(ICI->getPredicate());
8695
Dan Gohman35b76162008-10-30 20:40:10 +00008696 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8697 // If we are just checking for a icmp eq of a single bit and zext'ing it
8698 // to an integer, then shift the bit to the appropriate place and then
8699 // cast to integer to avoid the comparison.
8700 const APInt &Op1CV = CI->getValue();
8701
8702 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8703 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8704 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
Chris Lattner3b874082008-11-16 05:38:51 +00008705 (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
Dan Gohman35b76162008-10-30 20:40:10 +00008706 Value *In = ICI->getOperand(0);
8707 Value *Sh = ConstantInt::get(In->getType(),
8708 In->getType()->getPrimitiveSizeInBits()-1);
8709 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8710 In->getName()+".lobit"),
8711 *ICI);
Dan Gohman47a60772008-11-02 00:17:33 +00008712 if (In->getType() != SI.getType())
8713 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman35b76162008-10-30 20:40:10 +00008714 true/*SExt*/, "tmp", ICI);
8715
8716 if (Pred == ICmpInst::ICMP_SGT)
8717 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8718 In->getName()+".not"), *ICI);
8719
8720 return ReplaceInstUsesWith(SI, In);
8721 }
8722 }
8723 }
8724
Dan Gohman58c09632008-09-16 18:46:06 +00008725 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8726 // Transform (X == Y) ? X : Y -> Y
8727 if (Pred == ICmpInst::ICMP_EQ)
8728 return ReplaceInstUsesWith(SI, FalseVal);
8729 // Transform (X != Y) ? X : Y -> X
8730 if (Pred == ICmpInst::ICMP_NE)
8731 return ReplaceInstUsesWith(SI, TrueVal);
8732 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8733
8734 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8735 // Transform (X == Y) ? Y : X -> X
8736 if (Pred == ICmpInst::ICMP_EQ)
8737 return ReplaceInstUsesWith(SI, FalseVal);
8738 // Transform (X != Y) ? Y : X -> Y
8739 if (Pred == ICmpInst::ICMP_NE)
8740 return ReplaceInstUsesWith(SI, TrueVal);
8741 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8742 }
8743
8744 /// NOTE: if we wanted to, this is where to detect integer ABS
8745
8746 return Changed ? &SI : 0;
8747}
8748
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008749Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8750 Value *CondVal = SI.getCondition();
8751 Value *TrueVal = SI.getTrueValue();
8752 Value *FalseVal = SI.getFalseValue();
8753
8754 // select true, X, Y -> X
8755 // select false, X, Y -> Y
8756 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8757 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8758
8759 // select C, X, X -> X
8760 if (TrueVal == FalseVal)
8761 return ReplaceInstUsesWith(SI, TrueVal);
8762
8763 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8764 return ReplaceInstUsesWith(SI, FalseVal);
8765 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8766 return ReplaceInstUsesWith(SI, TrueVal);
8767 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8768 if (isa<Constant>(TrueVal))
8769 return ReplaceInstUsesWith(SI, TrueVal);
8770 else
8771 return ReplaceInstUsesWith(SI, FalseVal);
8772 }
8773
8774 if (SI.getType() == Type::Int1Ty) {
8775 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8776 if (C->getZExtValue()) {
8777 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008778 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008779 } else {
8780 // Change: A = select B, false, C --> A = and !B, C
8781 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008782 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008783 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008784 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008785 }
8786 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8787 if (C->getZExtValue() == false) {
8788 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008789 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008790 } else {
8791 // Change: A = select B, C, true --> A = or !B, C
8792 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008793 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008794 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008795 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008796 }
8797 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008798
8799 // select a, b, a -> a&b
8800 // select a, a, b -> a|b
8801 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008802 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008803 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008804 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008805 }
8806
8807 // Selecting between two integer constants?
8808 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8809 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8810 // select C, 1, 0 -> zext C to int
8811 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008812 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008813 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8814 // select C, 0, 1 -> zext !C to int
8815 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008816 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008817 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008818 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008819 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008820
8821 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8822
8823 // (x <s 0) ? -1 : 0 -> ashr x, 31
8824 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8825 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8826 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8827 // The comparison constant and the result are not neccessarily the
8828 // same width. Make an all-ones value by inserting a AShr.
8829 Value *X = IC->getOperand(0);
8830 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8831 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008832 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008833 ShAmt, "ones");
8834 InsertNewInstBefore(SRA, SI);
Eli Friedman722b4792008-11-30 21:09:11 +00008835
8836 // Then cast to the appropriate width.
8837 return CastInst::CreateIntegerCast(SRA, SI.getType(), true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008838 }
8839 }
8840
8841
8842 // If one of the constants is zero (we know they can't both be) and we
8843 // have an icmp instruction with zero, and we have an 'and' with the
8844 // non-constant value, eliminate this whole mess. This corresponds to
8845 // cases like this: ((X & 27) ? 27 : 0)
8846 if (TrueValC->isZero() || FalseValC->isZero())
8847 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8848 cast<Constant>(IC->getOperand(1))->isNullValue())
8849 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8850 if (ICA->getOpcode() == Instruction::And &&
8851 isa<ConstantInt>(ICA->getOperand(1)) &&
8852 (ICA->getOperand(1) == TrueValC ||
8853 ICA->getOperand(1) == FalseValC) &&
8854 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8855 // Okay, now we know that everything is set up, we just don't
8856 // know whether we have a icmp_ne or icmp_eq and whether the
8857 // true or false val is the zero.
8858 bool ShouldNotVal = !TrueValC->isZero();
8859 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8860 Value *V = ICA;
8861 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008862 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008863 Instruction::Xor, V, ICA->getOperand(1)), SI);
8864 return ReplaceInstUsesWith(SI, V);
8865 }
8866 }
8867 }
8868
8869 // See if we are selecting two values based on a comparison of the two values.
8870 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8871 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8872 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008873 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8874 // This is not safe in general for floating point:
8875 // consider X== -0, Y== +0.
8876 // It becomes safe if either operand is a nonzero constant.
8877 ConstantFP *CFPt, *CFPf;
8878 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8879 !CFPt->getValueAPF().isZero()) ||
8880 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8881 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008882 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008883 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008884 // Transform (X != Y) ? X : Y -> X
8885 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8886 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008887 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008888
8889 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8890 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008891 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8892 // This is not safe in general for floating point:
8893 // consider X== -0, Y== +0.
8894 // It becomes safe if either operand is a nonzero constant.
8895 ConstantFP *CFPt, *CFPf;
8896 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8897 !CFPt->getValueAPF().isZero()) ||
8898 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8899 !CFPf->getValueAPF().isZero()))
8900 return ReplaceInstUsesWith(SI, FalseVal);
8901 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008902 // Transform (X != Y) ? Y : X -> Y
8903 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8904 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008905 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008906 }
Dan Gohman58c09632008-09-16 18:46:06 +00008907 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008908 }
8909
8910 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008911 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8912 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8913 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008914
8915 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8916 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8917 if (TI->hasOneUse() && FI->hasOneUse()) {
8918 Instruction *AddOp = 0, *SubOp = 0;
8919
8920 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8921 if (TI->getOpcode() == FI->getOpcode())
8922 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8923 return IV;
8924
8925 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8926 // even legal for FP.
8927 if (TI->getOpcode() == Instruction::Sub &&
8928 FI->getOpcode() == Instruction::Add) {
8929 AddOp = FI; SubOp = TI;
8930 } else if (FI->getOpcode() == Instruction::Sub &&
8931 TI->getOpcode() == Instruction::Add) {
8932 AddOp = TI; SubOp = FI;
8933 }
8934
8935 if (AddOp) {
8936 Value *OtherAddOp = 0;
8937 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8938 OtherAddOp = AddOp->getOperand(1);
8939 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8940 OtherAddOp = AddOp->getOperand(0);
8941 }
8942
8943 if (OtherAddOp) {
8944 // So at this point we know we have (Y -> OtherAddOp):
8945 // select C, (add X, Y), (sub X, Z)
8946 Value *NegVal; // Compute -Z
8947 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8948 NegVal = ConstantExpr::getNeg(C);
8949 } else {
8950 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008951 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008952 }
8953
8954 Value *NewTrueOp = OtherAddOp;
8955 Value *NewFalseOp = NegVal;
8956 if (AddOp != TI)
8957 std::swap(NewTrueOp, NewFalseOp);
8958 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008959 SelectInst::Create(CondVal, NewTrueOp,
8960 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008961
8962 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008963 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008964 }
8965 }
8966 }
8967
8968 // See if we can fold the select into one of our operands.
8969 if (SI.getType()->isInteger()) {
8970 // See the comment above GetSelectFoldableOperands for a description of the
8971 // transformation we are doing here.
8972 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8973 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8974 !isa<Constant>(FalseVal))
8975 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8976 unsigned OpToFold = 0;
8977 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8978 OpToFold = 1;
8979 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8980 OpToFold = 2;
8981 }
8982
8983 if (OpToFold) {
8984 Constant *C = GetSelectFoldableConstant(TVI);
8985 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008986 SelectInst::Create(SI.getCondition(),
8987 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008988 InsertNewInstBefore(NewSel, SI);
8989 NewSel->takeName(TVI);
8990 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008991 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008992 else {
8993 assert(0 && "Unknown instruction!!");
8994 }
8995 }
8996 }
8997
8998 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8999 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
9000 !isa<Constant>(TrueVal))
9001 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
9002 unsigned OpToFold = 0;
9003 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
9004 OpToFold = 1;
9005 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
9006 OpToFold = 2;
9007 }
9008
9009 if (OpToFold) {
9010 Constant *C = GetSelectFoldableConstant(FVI);
9011 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009012 SelectInst::Create(SI.getCondition(), C,
9013 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009014 InsertNewInstBefore(NewSel, SI);
9015 NewSel->takeName(FVI);
9016 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00009017 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009018 else
9019 assert(0 && "Unknown instruction!!");
9020 }
9021 }
9022 }
9023
9024 if (BinaryOperator::isNot(CondVal)) {
9025 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
9026 SI.setOperand(1, FalseVal);
9027 SI.setOperand(2, TrueVal);
9028 return &SI;
9029 }
9030
9031 return 0;
9032}
9033
Dan Gohman2d648bb2008-04-10 18:43:06 +00009034/// EnforceKnownAlignment - If the specified pointer points to an object that
9035/// we control, modify the object's alignment to PrefAlign. This isn't
9036/// often possible though. If alignment is important, a more reliable approach
9037/// is to simply align all global variables and allocation instructions to
9038/// their preferred alignment from the beginning.
9039///
9040static unsigned EnforceKnownAlignment(Value *V,
9041 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00009042
Dan Gohman2d648bb2008-04-10 18:43:06 +00009043 User *U = dyn_cast<User>(V);
9044 if (!U) return Align;
9045
9046 switch (getOpcode(U)) {
9047 default: break;
9048 case Instruction::BitCast:
9049 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
9050 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009051 // If all indexes are zero, it is just the alignment of the base pointer.
9052 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00009053 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00009054 if (!isa<Constant>(*i) ||
9055 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009056 AllZeroOperands = false;
9057 break;
9058 }
Chris Lattner47cf3452007-08-09 19:05:49 +00009059
9060 if (AllZeroOperands) {
9061 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00009062 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00009063 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00009064 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009065 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00009066 }
9067
9068 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
9069 // If there is a large requested alignment and we can, bump up the alignment
9070 // of the global.
9071 if (!GV->isDeclaration()) {
9072 GV->setAlignment(PrefAlign);
9073 Align = PrefAlign;
9074 }
9075 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
9076 // If there is a requested alignment and if this is an alloca, round up. We
9077 // don't do this for malloc, because some systems can't respect the request.
9078 if (isa<AllocaInst>(AI)) {
9079 AI->setAlignment(PrefAlign);
9080 Align = PrefAlign;
9081 }
9082 }
9083
9084 return Align;
9085}
9086
9087/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
9088/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
9089/// and it is more than the alignment of the ultimate object, see if we can
9090/// increase the alignment of the ultimate object, making this check succeed.
9091unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
9092 unsigned PrefAlign) {
9093 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
9094 sizeof(PrefAlign) * CHAR_BIT;
9095 APInt Mask = APInt::getAllOnesValue(BitWidth);
9096 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
9097 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
9098 unsigned TrailZ = KnownZero.countTrailingOnes();
9099 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
9100
9101 if (PrefAlign > Align)
9102 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9103
9104 // We don't need to make any adjustment.
9105 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009106}
9107
Chris Lattner00ae5132008-01-13 23:50:23 +00009108Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00009109 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9110 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00009111 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9112 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
9113
9114 if (CopyAlign < MinAlign) {
9115 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
9116 return MI;
9117 }
9118
9119 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9120 // load/store.
9121 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9122 if (MemOpLength == 0) return 0;
9123
Chris Lattnerc669fb62008-01-14 00:28:35 +00009124 // Source and destination pointer types are always "i8*" for intrinsic. See
9125 // if the size is something we can handle with a single primitive load/store.
9126 // A single load+store correctly handles overlapping memory in the memmove
9127 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00009128 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00009129 if (Size == 0) return MI; // Delete this mem transfer.
9130
9131 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00009132 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00009133
Chris Lattnerc669fb62008-01-14 00:28:35 +00009134 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00009135 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00009136
9137 // Memcpy forces the use of i8* for the source and destination. That means
9138 // that if you're using memcpy to move one double around, you'll get a cast
9139 // from double* to i8*. We'd much rather use a double load+store rather than
9140 // an i64 load+store, here because this improves the odds that the source or
9141 // dest address will be promotable. See if we can find a better type than the
9142 // integer datatype.
9143 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9144 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9145 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9146 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9147 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009148 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00009149 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9150 if (STy->getNumElements() == 1)
9151 SrcETy = STy->getElementType(0);
9152 else
9153 break;
9154 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9155 if (ATy->getNumElements() == 1)
9156 SrcETy = ATy->getElementType();
9157 else
9158 break;
9159 } else
9160 break;
9161 }
9162
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009163 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00009164 NewPtrTy = PointerType::getUnqual(SrcETy);
9165 }
9166 }
9167
9168
Chris Lattner00ae5132008-01-13 23:50:23 +00009169 // If the memcpy/memmove provides better alignment info than we can
9170 // infer, use it.
9171 SrcAlign = std::max(SrcAlign, CopyAlign);
9172 DstAlign = std::max(DstAlign, CopyAlign);
9173
9174 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9175 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00009176 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9177 InsertNewInstBefore(L, *MI);
9178 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9179
9180 // Set the size of the copy to 0, it will be deleted on the next iteration.
9181 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9182 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00009183}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009184
Chris Lattner5af8a912008-04-30 06:39:11 +00009185Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9186 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9187 if (MI->getAlignment()->getZExtValue() < Alignment) {
9188 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9189 return MI;
9190 }
9191
9192 // Extract the length and alignment and fill if they are constant.
9193 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9194 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9195 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9196 return 0;
9197 uint64_t Len = LenC->getZExtValue();
9198 Alignment = MI->getAlignment()->getZExtValue();
9199
9200 // If the length is zero, this is a no-op
9201 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9202
9203 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9204 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9205 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9206
9207 Value *Dest = MI->getDest();
9208 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9209
9210 // Alignment 0 is identity for alignment 1 for memset, but not store.
9211 if (Alignment == 0) Alignment = 1;
9212
9213 // Extract the fill value and store.
9214 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9215 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9216 Alignment), *MI);
9217
9218 // Set the size of the copy to 0, it will be deleted on the next iteration.
9219 MI->setLength(Constant::getNullValue(LenC->getType()));
9220 return MI;
9221 }
9222
9223 return 0;
9224}
9225
9226
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009227/// visitCallInst - CallInst simplification. This mostly only handles folding
9228/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9229/// the heavy lifting.
9230///
9231Instruction *InstCombiner::visitCallInst(CallInst &CI) {
9232 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9233 if (!II) return visitCallSite(&CI);
9234
9235 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9236 // visitCallSite.
9237 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
9238 bool Changed = false;
9239
9240 // memmove/cpy/set of zero bytes is a noop.
9241 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9242 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9243
9244 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
9245 if (CI->getZExtValue() == 1) {
9246 // Replace the instruction with just byte operations. We would
9247 // transform other cases to loads/stores, but we don't know if
9248 // alignment is sufficient.
9249 }
9250 }
9251
9252 // If we have a memmove and the source operation is a constant global,
9253 // then the source and dest pointers can't alias, so we can change this
9254 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00009255 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009256 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9257 if (GVSrc->isConstant()) {
9258 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner82c2e432008-11-21 16:42:48 +00009259 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
9260 const Type *Tys[1];
9261 Tys[0] = CI.getOperand(3)->getType();
9262 CI.setOperand(0,
9263 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009264 Changed = true;
9265 }
Chris Lattner59b27d92008-05-28 05:30:41 +00009266
9267 // memmove(x,x,size) -> noop.
9268 if (MMI->getSource() == MMI->getDest())
9269 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009270 }
9271
9272 // If we can determine a pointer alignment that is bigger than currently
9273 // set, update the alignment.
9274 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00009275 if (Instruction *I = SimplifyMemTransfer(MI))
9276 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00009277 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9278 if (Instruction *I = SimplifyMemSet(MSI))
9279 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009280 }
9281
9282 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00009283 }
9284
9285 switch (II->getIntrinsicID()) {
9286 default: break;
9287 case Intrinsic::bswap:
9288 // bswap(bswap(x)) -> x
9289 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9290 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9291 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9292 break;
9293 case Intrinsic::ppc_altivec_lvx:
9294 case Intrinsic::ppc_altivec_lvxl:
9295 case Intrinsic::x86_sse_loadu_ps:
9296 case Intrinsic::x86_sse2_loadu_pd:
9297 case Intrinsic::x86_sse2_loadu_dq:
9298 // Turn PPC lvx -> load if the pointer is known aligned.
9299 // Turn X86 loadups -> load if the pointer is known aligned.
9300 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9301 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9302 PointerType::getUnqual(II->getType()),
9303 CI);
9304 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009305 }
Chris Lattner989ba312008-06-18 04:33:20 +00009306 break;
9307 case Intrinsic::ppc_altivec_stvx:
9308 case Intrinsic::ppc_altivec_stvxl:
9309 // Turn stvx -> store if the pointer is known aligned.
9310 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9311 const Type *OpPtrTy =
9312 PointerType::getUnqual(II->getOperand(1)->getType());
9313 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9314 return new StoreInst(II->getOperand(1), Ptr);
9315 }
9316 break;
9317 case Intrinsic::x86_sse_storeu_ps:
9318 case Intrinsic::x86_sse2_storeu_pd:
9319 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00009320 // Turn X86 storeu -> store if the pointer is known aligned.
9321 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9322 const Type *OpPtrTy =
9323 PointerType::getUnqual(II->getOperand(2)->getType());
9324 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9325 return new StoreInst(II->getOperand(2), Ptr);
9326 }
9327 break;
9328
9329 case Intrinsic::x86_sse_cvttss2si: {
9330 // These intrinsics only demands the 0th element of its input vector. If
9331 // we can simplify the input based on that, do so now.
9332 uint64_t UndefElts;
9333 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9334 UndefElts)) {
9335 II->setOperand(1, V);
9336 return II;
9337 }
9338 break;
9339 }
9340
9341 case Intrinsic::ppc_altivec_vperm:
9342 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9343 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9344 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009345
Chris Lattner989ba312008-06-18 04:33:20 +00009346 // Check that all of the elements are integer constants or undefs.
9347 bool AllEltsOk = true;
9348 for (unsigned i = 0; i != 16; ++i) {
9349 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9350 !isa<UndefValue>(Mask->getOperand(i))) {
9351 AllEltsOk = false;
9352 break;
9353 }
9354 }
9355
9356 if (AllEltsOk) {
9357 // Cast the input vectors to byte vectors.
9358 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9359 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9360 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009361
Chris Lattner989ba312008-06-18 04:33:20 +00009362 // Only extract each element once.
9363 Value *ExtractedElts[32];
9364 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9365
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009366 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00009367 if (isa<UndefValue>(Mask->getOperand(i)))
9368 continue;
9369 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9370 Idx &= 31; // Match the hardware behavior.
9371
9372 if (ExtractedElts[Idx] == 0) {
9373 Instruction *Elt =
9374 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9375 InsertNewInstBefore(Elt, CI);
9376 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009377 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009378
Chris Lattner989ba312008-06-18 04:33:20 +00009379 // Insert this value into the result vector.
9380 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9381 i, "tmp");
9382 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009383 }
Chris Lattner989ba312008-06-18 04:33:20 +00009384 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009385 }
Chris Lattner989ba312008-06-18 04:33:20 +00009386 }
9387 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009388
Chris Lattner989ba312008-06-18 04:33:20 +00009389 case Intrinsic::stackrestore: {
9390 // If the save is right next to the restore, remove the restore. This can
9391 // happen when variable allocas are DCE'd.
9392 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9393 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9394 BasicBlock::iterator BI = SS;
9395 if (&*++BI == II)
9396 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009397 }
Chris Lattner989ba312008-06-18 04:33:20 +00009398 }
9399
9400 // Scan down this block to see if there is another stack restore in the
9401 // same block without an intervening call/alloca.
9402 BasicBlock::iterator BI = II;
9403 TerminatorInst *TI = II->getParent()->getTerminator();
9404 bool CannotRemove = false;
9405 for (++BI; &*BI != TI; ++BI) {
9406 if (isa<AllocaInst>(BI)) {
9407 CannotRemove = true;
9408 break;
9409 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00009410 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9411 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9412 // If there is a stackrestore below this one, remove this one.
9413 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9414 return EraseInstFromFunction(CI);
9415 // Otherwise, ignore the intrinsic.
9416 } else {
9417 // If we found a non-intrinsic call, we can't remove the stack
9418 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00009419 CannotRemove = true;
9420 break;
9421 }
Chris Lattner989ba312008-06-18 04:33:20 +00009422 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009423 }
Chris Lattner989ba312008-06-18 04:33:20 +00009424
9425 // If the stack restore is in a return/unwind block and if there are no
9426 // allocas or calls between the restore and the return, nuke the restore.
9427 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9428 return EraseInstFromFunction(CI);
9429 break;
9430 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009431 }
9432
9433 return visitCallSite(II);
9434}
9435
9436// InvokeInst simplification
9437//
9438Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9439 return visitCallSite(&II);
9440}
9441
Dale Johannesen96021832008-04-25 21:16:07 +00009442/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9443/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00009444static bool isSafeToEliminateVarargsCast(const CallSite CS,
9445 const CastInst * const CI,
9446 const TargetData * const TD,
9447 const int ix) {
9448 if (!CI->isLosslessCast())
9449 return false;
9450
9451 // The size of ByVal arguments is derived from the type, so we
9452 // can't change to a type with a different size. If the size were
9453 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009454 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009455 return true;
9456
9457 const Type* SrcTy =
9458 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9459 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9460 if (!SrcTy->isSized() || !DstTy->isSized())
9461 return false;
9462 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9463 return false;
9464 return true;
9465}
9466
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009467// visitCallSite - Improvements for call and invoke instructions.
9468//
9469Instruction *InstCombiner::visitCallSite(CallSite CS) {
9470 bool Changed = false;
9471
9472 // If the callee is a constexpr cast of a function, attempt to move the cast
9473 // to the arguments of the call/invoke.
9474 if (transformConstExprCastCall(CS)) return 0;
9475
9476 Value *Callee = CS.getCalledValue();
9477
9478 if (Function *CalleeF = dyn_cast<Function>(Callee))
9479 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9480 Instruction *OldCall = CS.getInstruction();
9481 // If the call and callee calling conventions don't match, this call must
9482 // be unreachable, as the call is undefined.
9483 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009484 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9485 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009486 if (!OldCall->use_empty())
9487 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9488 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9489 return EraseInstFromFunction(*OldCall);
9490 return 0;
9491 }
9492
9493 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9494 // This instruction is not reachable, just remove it. We insert a store to
9495 // undef so that we know that this code is not reachable, despite the fact
9496 // that we can't modify the CFG here.
9497 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009498 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009499 CS.getInstruction());
9500
9501 if (!CS.getInstruction()->use_empty())
9502 CS.getInstruction()->
9503 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9504
9505 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9506 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009507 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9508 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009509 }
9510 return EraseInstFromFunction(*CS.getInstruction());
9511 }
9512
Duncan Sands74833f22007-09-17 10:26:40 +00009513 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9514 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9515 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9516 return transformCallThroughTrampoline(CS);
9517
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009518 const PointerType *PTy = cast<PointerType>(Callee->getType());
9519 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9520 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009521 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009522 // See if we can optimize any arguments passed through the varargs area of
9523 // the call.
9524 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009525 E = CS.arg_end(); I != E; ++I, ++ix) {
9526 CastInst *CI = dyn_cast<CastInst>(*I);
9527 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9528 *I = CI->getOperand(0);
9529 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009530 }
Dale Johannesen35615462008-04-23 18:34:37 +00009531 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009532 }
9533
Duncan Sands2937e352007-12-19 21:13:37 +00009534 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009535 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009536 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009537 Changed = true;
9538 }
9539
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009540 return Changed ? CS.getInstruction() : 0;
9541}
9542
9543// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9544// attempt to move the cast to the arguments of the call/invoke.
9545//
9546bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9547 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9548 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9549 if (CE->getOpcode() != Instruction::BitCast ||
9550 !isa<Function>(CE->getOperand(0)))
9551 return false;
9552 Function *Callee = cast<Function>(CE->getOperand(0));
9553 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009554 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009555
9556 // Okay, this is a cast from a function to a different type. Unless doing so
9557 // would cause a type conversion of one of our arguments, change this call to
9558 // be a direct call with arguments casted to the appropriate types.
9559 //
9560 const FunctionType *FT = Callee->getFunctionType();
9561 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009562 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009563
Duncan Sands7901ce12008-06-01 07:38:42 +00009564 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009565 return false; // TODO: Handle multiple return values.
9566
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009567 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009568 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009569 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009570 // Conversion is ok if changing from one pointer type to another or from
9571 // a pointer to an integer of the same size.
9572 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009573 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009574 return false; // Cannot transform this return value.
9575
Duncan Sands5c489582008-01-06 10:12:28 +00009576 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009577 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009578 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009579 return false; // Cannot transform this return value.
9580
Chris Lattner1c8733e2008-03-12 17:45:29 +00009581 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009582 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009583 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009584 return false; // Attribute not compatible with transformed value.
9585 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009586
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009587 // If the callsite is an invoke instruction, and the return value is used by
9588 // a PHI node in a successor, we cannot change the return type of the call
9589 // because there is no place to put the cast instruction (without breaking
9590 // the critical edge). Bail out in this case.
9591 if (!Caller->use_empty())
9592 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9593 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9594 UI != E; ++UI)
9595 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9596 if (PN->getParent() == II->getNormalDest() ||
9597 PN->getParent() == II->getUnwindDest())
9598 return false;
9599 }
9600
9601 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9602 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9603
9604 CallSite::arg_iterator AI = CS.arg_begin();
9605 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9606 const Type *ParamTy = FT->getParamType(i);
9607 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009608
9609 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009610 return false; // Cannot transform this parameter value.
9611
Devang Patelf2a4a922008-09-26 22:53:05 +00009612 if (CallerPAL.getParamAttributes(i + 1)
9613 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009614 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009615
Duncan Sands7901ce12008-06-01 07:38:42 +00009616 // Converting from one pointer type to another or between a pointer and an
9617 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009618 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009619 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9620 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009621 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009622 }
9623
9624 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9625 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009626 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009627
Chris Lattner1c8733e2008-03-12 17:45:29 +00009628 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9629 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009630 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009631 // won't be dropping them. Check that these extra arguments have attributes
9632 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009633 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9634 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009635 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009636 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009637 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009638 return false;
9639 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009640
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009641 // Okay, we decided that this is a safe thing to do: go ahead and start
9642 // inserting cast instructions as necessary...
9643 std::vector<Value*> Args;
9644 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009645 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009646 attrVec.reserve(NumCommonArgs);
9647
9648 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009649 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009650
9651 // If the return value is not being used, the type may not be compatible
9652 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009653 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009654
9655 // Add the new return attributes.
9656 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009657 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009658
9659 AI = CS.arg_begin();
9660 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9661 const Type *ParamTy = FT->getParamType(i);
9662 if ((*AI)->getType() == ParamTy) {
9663 Args.push_back(*AI);
9664 } else {
9665 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9666 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009667 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009668 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9669 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009670
9671 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009672 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009673 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009674 }
9675
9676 // If the function takes more arguments than the call was taking, add them
9677 // now...
9678 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9679 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9680
9681 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009682 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009683 if (!FT->isVarArg()) {
9684 cerr << "WARNING: While resolving call to function '"
9685 << Callee->getName() << "' arguments were dropped!\n";
9686 } else {
9687 // Add all of the arguments in their promoted form to the arg list...
9688 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9689 const Type *PTy = getPromotedType((*AI)->getType());
9690 if (PTy != (*AI)->getType()) {
9691 // Must promote to pass through va_arg area!
9692 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9693 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009694 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009695 InsertNewInstBefore(Cast, *Caller);
9696 Args.push_back(Cast);
9697 } else {
9698 Args.push_back(*AI);
9699 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009700
Duncan Sands4ced1f82008-01-13 08:02:44 +00009701 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009702 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009703 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009704 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009705 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009706 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009707
Devang Patelf2a4a922008-09-26 22:53:05 +00009708 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9709 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9710
Duncan Sands7901ce12008-06-01 07:38:42 +00009711 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009712 Caller->setName(""); // Void type should not have a name.
9713
Devang Pateld222f862008-09-25 21:00:45 +00009714 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009715
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009716 Instruction *NC;
9717 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009718 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009719 Args.begin(), Args.end(),
9720 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009721 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009722 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009723 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009724 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9725 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009726 CallInst *CI = cast<CallInst>(Caller);
9727 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009728 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009729 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009730 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009731 }
9732
9733 // Insert a cast of the return type as necessary.
9734 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009735 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009736 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009737 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009738 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009739 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009740
9741 // If this is an invoke instruction, we should insert it after the first
9742 // non-phi, instruction in the normal successor block.
9743 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009744 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009745 InsertNewInstBefore(NC, *I);
9746 } else {
9747 // Otherwise, it's a call, just insert cast right after the call instr
9748 InsertNewInstBefore(NC, *Caller);
9749 }
9750 AddUsersToWorkList(*Caller);
9751 } else {
9752 NV = UndefValue::get(Caller->getType());
9753 }
9754 }
9755
9756 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9757 Caller->replaceAllUsesWith(NV);
9758 Caller->eraseFromParent();
9759 RemoveFromWorkList(Caller);
9760 return true;
9761}
9762
Duncan Sands74833f22007-09-17 10:26:40 +00009763// transformCallThroughTrampoline - Turn a call to a function created by the
9764// init_trampoline intrinsic into a direct call to the underlying function.
9765//
9766Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9767 Value *Callee = CS.getCalledValue();
9768 const PointerType *PTy = cast<PointerType>(Callee->getType());
9769 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009770 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009771
9772 // If the call already has the 'nest' attribute somewhere then give up -
9773 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009774 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009775 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009776
9777 IntrinsicInst *Tramp =
9778 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9779
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009780 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009781 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9782 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9783
Devang Pateld222f862008-09-25 21:00:45 +00009784 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009785 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009786 unsigned NestIdx = 1;
9787 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009788 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009789
9790 // Look for a parameter marked with the 'nest' attribute.
9791 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9792 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009793 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009794 // Record the parameter type and any other attributes.
9795 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009796 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009797 break;
9798 }
9799
9800 if (NestTy) {
9801 Instruction *Caller = CS.getInstruction();
9802 std::vector<Value*> NewArgs;
9803 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9804
Devang Pateld222f862008-09-25 21:00:45 +00009805 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009806 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009807
Duncan Sands74833f22007-09-17 10:26:40 +00009808 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009809 // mean appending it. Likewise for attributes.
9810
Devang Patelf2a4a922008-09-26 22:53:05 +00009811 // Add any result attributes.
9812 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009813 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009814
Duncan Sands74833f22007-09-17 10:26:40 +00009815 {
9816 unsigned Idx = 1;
9817 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9818 do {
9819 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009820 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009821 Value *NestVal = Tramp->getOperand(3);
9822 if (NestVal->getType() != NestTy)
9823 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9824 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009825 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009826 }
9827
9828 if (I == E)
9829 break;
9830
Duncan Sands48b81112008-01-14 19:52:09 +00009831 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009832 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009833 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009834 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009835 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009836
9837 ++Idx, ++I;
9838 } while (1);
9839 }
9840
Devang Patelf2a4a922008-09-26 22:53:05 +00009841 // Add any function attributes.
9842 if (Attributes Attr = Attrs.getFnAttributes())
9843 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9844
Duncan Sands74833f22007-09-17 10:26:40 +00009845 // The trampoline may have been bitcast to a bogus type (FTy).
9846 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009847 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009848
Duncan Sands74833f22007-09-17 10:26:40 +00009849 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009850 NewTypes.reserve(FTy->getNumParams()+1);
9851
Duncan Sands74833f22007-09-17 10:26:40 +00009852 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009853 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009854 {
9855 unsigned Idx = 1;
9856 FunctionType::param_iterator I = FTy->param_begin(),
9857 E = FTy->param_end();
9858
9859 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009860 if (Idx == NestIdx)
9861 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009862 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009863
9864 if (I == E)
9865 break;
9866
Duncan Sands48b81112008-01-14 19:52:09 +00009867 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009868 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009869
9870 ++Idx, ++I;
9871 } while (1);
9872 }
9873
9874 // Replace the trampoline call with a direct call. Let the generic
9875 // code sort out any function type mismatches.
9876 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009877 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009878 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9879 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009880 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009881
9882 Instruction *NewCaller;
9883 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009884 NewCaller = InvokeInst::Create(NewCallee,
9885 II->getNormalDest(), II->getUnwindDest(),
9886 NewArgs.begin(), NewArgs.end(),
9887 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009888 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009889 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009890 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009891 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9892 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009893 if (cast<CallInst>(Caller)->isTailCall())
9894 cast<CallInst>(NewCaller)->setTailCall();
9895 cast<CallInst>(NewCaller)->
9896 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009897 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009898 }
9899 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9900 Caller->replaceAllUsesWith(NewCaller);
9901 Caller->eraseFromParent();
9902 RemoveFromWorkList(Caller);
9903 return 0;
9904 }
9905 }
9906
9907 // Replace the trampoline call with a direct call. Since there is no 'nest'
9908 // parameter, there is no need to adjust the argument list. Let the generic
9909 // code sort out any function type mismatches.
9910 Constant *NewCallee =
9911 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9912 CS.setCalledFunction(NewCallee);
9913 return CS.getInstruction();
9914}
9915
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009916/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9917/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9918/// and a single binop.
9919Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9920 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
Chris Lattner30078012008-12-01 03:42:51 +00009921 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009922 unsigned Opc = FirstInst->getOpcode();
9923 Value *LHSVal = FirstInst->getOperand(0);
9924 Value *RHSVal = FirstInst->getOperand(1);
9925
9926 const Type *LHSType = LHSVal->getType();
9927 const Type *RHSType = RHSVal->getType();
9928
9929 // Scan to see if all operands are the same opcode, all have one use, and all
9930 // kill their operands (i.e. the operands have one use).
Chris Lattner9e1916e2008-12-01 02:34:36 +00009931 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009932 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9933 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9934 // Verify type of the LHS matches so we don't fold cmp's of different
9935 // types or GEP's with different index types.
9936 I->getOperand(0)->getType() != LHSType ||
9937 I->getOperand(1)->getType() != RHSType)
9938 return 0;
9939
9940 // If they are CmpInst instructions, check their predicates
9941 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9942 if (cast<CmpInst>(I)->getPredicate() !=
9943 cast<CmpInst>(FirstInst)->getPredicate())
9944 return 0;
9945
9946 // Keep track of which operand needs a phi node.
9947 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9948 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9949 }
9950
Chris Lattner30078012008-12-01 03:42:51 +00009951 // Otherwise, this is safe to transform!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009952
9953 Value *InLHS = FirstInst->getOperand(0);
9954 Value *InRHS = FirstInst->getOperand(1);
9955 PHINode *NewLHS = 0, *NewRHS = 0;
9956 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009957 NewLHS = PHINode::Create(LHSType,
9958 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009959 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9960 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9961 InsertNewInstBefore(NewLHS, PN);
9962 LHSVal = NewLHS;
9963 }
9964
9965 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009966 NewRHS = PHINode::Create(RHSType,
9967 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009968 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9969 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9970 InsertNewInstBefore(NewRHS, PN);
9971 RHSVal = NewRHS;
9972 }
9973
9974 // Add all operands to the new PHIs.
Chris Lattner9e1916e2008-12-01 02:34:36 +00009975 if (NewLHS || NewRHS) {
9976 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9977 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
9978 if (NewLHS) {
9979 Value *NewInLHS = InInst->getOperand(0);
9980 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9981 }
9982 if (NewRHS) {
9983 Value *NewInRHS = InInst->getOperand(1);
9984 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9985 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009986 }
9987 }
9988
9989 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009990 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Chris Lattner30078012008-12-01 03:42:51 +00009991 CmpInst *CIOp = cast<CmpInst>(FirstInst);
9992 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
9993 RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009994}
9995
Chris Lattner9e1916e2008-12-01 02:34:36 +00009996Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
9997 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
9998
9999 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
10000 FirstInst->op_end());
10001
10002 // Scan to see if all operands are the same opcode, all have one use, and all
10003 // kill their operands (i.e. the operands have one use).
10004 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
10005 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
10006 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
10007 GEP->getNumOperands() != FirstInst->getNumOperands())
10008 return 0;
10009
10010 // Compare the operand lists.
10011 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
10012 if (FirstInst->getOperand(op) == GEP->getOperand(op))
10013 continue;
10014
10015 // Don't merge two GEPs when two operands differ (introducing phi nodes)
10016 // if one of the PHIs has a constant for the index. The index may be
10017 // substantially cheaper to compute for the constants, so making it a
10018 // variable index could pessimize the path. This also handles the case
10019 // for struct indices, which must always be constant.
10020 if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
10021 isa<ConstantInt>(GEP->getOperand(op)))
10022 return 0;
10023
10024 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
10025 return 0;
10026 FixedOperands[op] = 0; // Needs a PHI.
10027 }
10028 }
10029
10030 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
10031 // that is variable.
10032 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
10033
10034 bool HasAnyPHIs = false;
10035 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
10036 if (FixedOperands[i]) continue; // operand doesn't need a phi.
10037 Value *FirstOp = FirstInst->getOperand(i);
10038 PHINode *NewPN = PHINode::Create(FirstOp->getType(),
10039 FirstOp->getName()+".pn");
10040 InsertNewInstBefore(NewPN, PN);
10041
10042 NewPN->reserveOperandSpace(e);
10043 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
10044 OperandPhis[i] = NewPN;
10045 FixedOperands[i] = NewPN;
10046 HasAnyPHIs = true;
10047 }
10048
10049
10050 // Add all operands to the new PHIs.
10051 if (HasAnyPHIs) {
10052 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10053 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
10054 BasicBlock *InBB = PN.getIncomingBlock(i);
10055
10056 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
10057 if (PHINode *OpPhi = OperandPhis[op])
10058 OpPhi->addIncoming(InGEP->getOperand(op), InBB);
10059 }
10060 }
10061
10062 Value *Base = FixedOperands[0];
10063 return GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
10064 FixedOperands.end());
10065}
10066
10067
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010068/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
10069/// of the block that defines it. This means that it must be obvious the value
10070/// of the load is not changed from the point of the load to the end of the
10071/// block it is in.
10072///
10073/// Finally, it is safe, but not profitable, to sink a load targetting a
10074/// non-address-taken alloca. Doing so will cause us to not promote the alloca
10075/// to a register.
10076static bool isSafeToSinkLoad(LoadInst *L) {
10077 BasicBlock::iterator BBI = L, E = L->getParent()->end();
10078
10079 for (++BBI; BBI != E; ++BBI)
10080 if (BBI->mayWriteToMemory())
10081 return false;
10082
10083 // Check for non-address taken alloca. If not address-taken already, it isn't
10084 // profitable to do this xform.
10085 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
10086 bool isAddressTaken = false;
10087 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
10088 UI != E; ++UI) {
10089 if (isa<LoadInst>(UI)) continue;
10090 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
10091 // If storing TO the alloca, then the address isn't taken.
10092 if (SI->getOperand(1) == AI) continue;
10093 }
10094 isAddressTaken = true;
10095 break;
10096 }
10097
10098 if (!isAddressTaken)
10099 return false;
10100 }
10101
10102 return true;
10103}
10104
10105
10106// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
10107// operator and they all are only used by the PHI, PHI together their
10108// inputs, and do the operation once, to the result of the PHI.
10109Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
10110 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
10111
10112 // Scan the instruction, looking for input operations that can be folded away.
10113 // If all input operands to the phi are the same instruction (e.g. a cast from
10114 // the same type or "+42") we can pull the operation through the PHI, reducing
10115 // code size and simplifying code.
10116 Constant *ConstantOp = 0;
10117 const Type *CastSrcTy = 0;
10118 bool isVolatile = false;
10119 if (isa<CastInst>(FirstInst)) {
10120 CastSrcTy = FirstInst->getOperand(0)->getType();
10121 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
10122 // Can fold binop, compare or shift here if the RHS is a constant,
10123 // otherwise call FoldPHIArgBinOpIntoPHI.
10124 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
10125 if (ConstantOp == 0)
10126 return FoldPHIArgBinOpIntoPHI(PN);
10127 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
10128 isVolatile = LI->isVolatile();
10129 // We can't sink the load if the loaded value could be modified between the
10130 // load and the PHI.
10131 if (LI->getParent() != PN.getIncomingBlock(0) ||
10132 !isSafeToSinkLoad(LI))
10133 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010134
10135 // If the PHI is of volatile loads and the load block has multiple
10136 // successors, sinking it would remove a load of the volatile value from
10137 // the path through the other successor.
10138 if (isVolatile &&
10139 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10140 return 0;
10141
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010142 } else if (isa<GetElementPtrInst>(FirstInst)) {
Chris Lattner9e1916e2008-12-01 02:34:36 +000010143 return FoldPHIArgGEPIntoPHI(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010144 } else {
10145 return 0; // Cannot fold this operation.
10146 }
10147
10148 // Check to see if all arguments are the same operation.
10149 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10150 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
10151 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
10152 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
10153 return 0;
10154 if (CastSrcTy) {
10155 if (I->getOperand(0)->getType() != CastSrcTy)
10156 return 0; // Cast operation must match.
10157 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
10158 // We can't sink the load if the loaded value could be modified between
10159 // the load and the PHI.
10160 if (LI->isVolatile() != isVolatile ||
10161 LI->getParent() != PN.getIncomingBlock(i) ||
10162 !isSafeToSinkLoad(LI))
10163 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +000010164
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010165 // If the PHI is of volatile loads and the load block has multiple
10166 // successors, sinking it would remove a load of the volatile value from
10167 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +000010168 if (isVolatile &&
10169 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10170 return 0;
10171
10172
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010173 } else if (I->getOperand(1) != ConstantOp) {
10174 return 0;
10175 }
10176 }
10177
10178 // Okay, they are all the same operation. Create a new PHI node of the
10179 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +000010180 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10181 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010182 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
10183
10184 Value *InVal = FirstInst->getOperand(0);
10185 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
10186
10187 // Add all operands to the new PHI.
10188 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10189 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10190 if (NewInVal != InVal)
10191 InVal = 0;
10192 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10193 }
10194
10195 Value *PhiVal;
10196 if (InVal) {
10197 // The new PHI unions all of the same values together. This is really
10198 // common, so we handle it intelligently here for compile-time speed.
10199 PhiVal = InVal;
10200 delete NewPN;
10201 } else {
10202 InsertNewInstBefore(NewPN, PN);
10203 PhiVal = NewPN;
10204 }
10205
10206 // Insert and return the new operation.
10207 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010208 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +000010209 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010210 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010211 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010212 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010213 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010214 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10215
10216 // If this was a volatile load that we are merging, make sure to loop through
10217 // and mark all the input loads as non-volatile. If we don't do this, we will
10218 // insert a new volatile load and the old ones will not be deletable.
10219 if (isVolatile)
10220 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10221 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10222
10223 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010224}
10225
10226/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10227/// that is dead.
10228static bool DeadPHICycle(PHINode *PN,
10229 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
10230 if (PN->use_empty()) return true;
10231 if (!PN->hasOneUse()) return false;
10232
10233 // Remember this node, and if we find the cycle, return.
10234 if (!PotentiallyDeadPHIs.insert(PN))
10235 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +000010236
10237 // Don't scan crazily complex things.
10238 if (PotentiallyDeadPHIs.size() == 16)
10239 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010240
10241 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10242 return DeadPHICycle(PU, PotentiallyDeadPHIs);
10243
10244 return false;
10245}
10246
Chris Lattner27b695d2007-11-06 21:52:06 +000010247/// PHIsEqualValue - Return true if this phi node is always equal to
10248/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10249/// z = some value; x = phi (y, z); y = phi (x, z)
10250static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10251 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10252 // See if we already saw this PHI node.
10253 if (!ValueEqualPHIs.insert(PN))
10254 return true;
10255
10256 // Don't scan crazily complex things.
10257 if (ValueEqualPHIs.size() == 16)
10258 return false;
10259
10260 // Scan the operands to see if they are either phi nodes or are equal to
10261 // the value.
10262 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10263 Value *Op = PN->getIncomingValue(i);
10264 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10265 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10266 return false;
10267 } else if (Op != NonPhiInVal)
10268 return false;
10269 }
10270
10271 return true;
10272}
10273
10274
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010275// PHINode simplification
10276//
10277Instruction *InstCombiner::visitPHINode(PHINode &PN) {
10278 // If LCSSA is around, don't mess with Phi nodes
10279 if (MustPreserveLCSSA) return 0;
10280
10281 if (Value *V = PN.hasConstantValue())
10282 return ReplaceInstUsesWith(PN, V);
10283
10284 // If all PHI operands are the same operation, pull them through the PHI,
10285 // reducing code size.
10286 if (isa<Instruction>(PN.getIncomingValue(0)) &&
Chris Lattner9e1916e2008-12-01 02:34:36 +000010287 isa<Instruction>(PN.getIncomingValue(1)) &&
10288 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
10289 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
10290 // FIXME: The hasOneUse check will fail for PHIs that use the value more
10291 // than themselves more than once.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010292 PN.getIncomingValue(0)->hasOneUse())
10293 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10294 return Result;
10295
10296 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10297 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10298 // PHI)... break the cycle.
10299 if (PN.hasOneUse()) {
10300 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10301 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
10302 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
10303 PotentiallyDeadPHIs.insert(&PN);
10304 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10305 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10306 }
10307
10308 // If this phi has a single use, and if that use just computes a value for
10309 // the next iteration of a loop, delete the phi. This occurs with unused
10310 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10311 // common case here is good because the only other things that catch this
10312 // are induction variable analysis (sometimes) and ADCE, which is only run
10313 // late.
10314 if (PHIUser->hasOneUse() &&
10315 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10316 PHIUser->use_back() == &PN) {
10317 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10318 }
10319 }
10320
Chris Lattner27b695d2007-11-06 21:52:06 +000010321 // We sometimes end up with phi cycles that non-obviously end up being the
10322 // same value, for example:
10323 // z = some value; x = phi (y, z); y = phi (x, z)
10324 // where the phi nodes don't necessarily need to be in the same block. Do a
10325 // quick check to see if the PHI node only contains a single non-phi value, if
10326 // so, scan to see if the phi cycle is actually equal to that value.
10327 {
10328 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10329 // Scan for the first non-phi operand.
10330 while (InValNo != NumOperandVals &&
10331 isa<PHINode>(PN.getIncomingValue(InValNo)))
10332 ++InValNo;
10333
10334 if (InValNo != NumOperandVals) {
10335 Value *NonPhiInVal = PN.getOperand(InValNo);
10336
10337 // Scan the rest of the operands to see if there are any conflicts, if so
10338 // there is no need to recursively scan other phis.
10339 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10340 Value *OpVal = PN.getIncomingValue(InValNo);
10341 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10342 break;
10343 }
10344
10345 // If we scanned over all operands, then we have one unique value plus
10346 // phi values. Scan PHI nodes to see if they all merge in each other or
10347 // the value.
10348 if (InValNo == NumOperandVals) {
10349 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10350 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10351 return ReplaceInstUsesWith(PN, NonPhiInVal);
10352 }
10353 }
10354 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010355 return 0;
10356}
10357
10358static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10359 Instruction *InsertPoint,
10360 InstCombiner *IC) {
10361 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10362 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
10363 // We must cast correctly to the pointer type. Ensure that we
10364 // sign extend the integer value if it is smaller as this is
10365 // used for address computation.
10366 Instruction::CastOps opcode =
10367 (VTySize < PtrSize ? Instruction::SExt :
10368 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10369 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
10370}
10371
10372
10373Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10374 Value *PtrOp = GEP.getOperand(0);
10375 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10376 // If so, eliminate the noop.
10377 if (GEP.getNumOperands() == 1)
10378 return ReplaceInstUsesWith(GEP, PtrOp);
10379
10380 if (isa<UndefValue>(GEP.getOperand(0)))
10381 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10382
10383 bool HasZeroPointerIndex = false;
10384 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10385 HasZeroPointerIndex = C->isNullValue();
10386
10387 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10388 return ReplaceInstUsesWith(GEP, PtrOp);
10389
10390 // Eliminate unneeded casts for indices.
10391 bool MadeChange = false;
10392
10393 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010394 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10395 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010396 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +000010397 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010398 if (CI->getOpcode() == Instruction::ZExt ||
10399 CI->getOpcode() == Instruction::SExt) {
10400 const Type *SrcTy = CI->getOperand(0)->getType();
10401 // We can eliminate a cast from i32 to i64 iff the target
10402 // is a 32-bit pointer target.
10403 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10404 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +000010405 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010406 }
10407 }
10408 }
10409 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +000010410 // to what we need. If narrower, sign-extend it to what we need.
10411 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010412 // insert it. This explicit cast can make subsequent optimizations more
10413 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +000010414 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010415 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010416 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +000010417 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010418 MadeChange = true;
10419 } else {
10420 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10421 GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010422 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010423 MadeChange = true;
10424 }
Dan Gohman5d639ed2008-09-11 23:06:38 +000010425 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10426 if (Constant *C = dyn_cast<Constant>(Op)) {
10427 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10428 MadeChange = true;
10429 } else {
10430 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10431 GEP);
10432 *i = Op;
10433 MadeChange = true;
10434 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010435 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010436 }
10437 }
10438 if (MadeChange) return &GEP;
10439
10440 // If this GEP instruction doesn't move the pointer, and if the input operand
10441 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10442 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +000010443 if (GEP.hasAllZeroIndices()) {
10444 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10445 // If the bitcast is of an allocation, and the allocation will be
10446 // converted to match the type of the cast, don't touch this.
10447 if (isa<AllocationInst>(BCI->getOperand(0))) {
10448 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +000010449 if (Instruction *I = visitBitCast(*BCI)) {
10450 if (I != BCI) {
10451 I->takeName(BCI);
10452 BCI->getParent()->getInstList().insert(BCI, I);
10453 ReplaceInstUsesWith(*BCI, I);
10454 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010455 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +000010456 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010457 }
10458 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10459 }
10460 }
10461
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010462 // Combine Indices - If the source pointer to this getelementptr instruction
10463 // is a getelementptr instruction, combine the indices of the two
10464 // getelementptr instructions into a single instruction.
10465 //
10466 SmallVector<Value*, 8> SrcGEPOperands;
10467 if (User *Src = dyn_castGetElementPtr(PtrOp))
10468 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
10469
10470 if (!SrcGEPOperands.empty()) {
10471 // Note that if our source is a gep chain itself that we wait for that
10472 // chain to be resolved before we perform this transformation. This
10473 // avoids us creating a TON of code in some cases.
10474 //
10475 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10476 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10477 return 0; // Wait until our source is folded to completion.
10478
10479 SmallVector<Value*, 8> Indices;
10480
10481 // Find out whether the last index in the source GEP is a sequential idx.
10482 bool EndsWithSequential = false;
10483 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10484 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
10485 EndsWithSequential = !isa<StructType>(*I);
10486
10487 // Can we combine the two pointer arithmetics offsets?
10488 if (EndsWithSequential) {
10489 // Replace: gep (gep %P, long B), long A, ...
10490 // With: T = long A+B; gep %P, T, ...
10491 //
10492 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
10493 if (SO1 == Constant::getNullValue(SO1->getType())) {
10494 Sum = GO1;
10495 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10496 Sum = SO1;
10497 } else {
10498 // If they aren't the same type, convert both to an integer of the
10499 // target's pointer size.
10500 if (SO1->getType() != GO1->getType()) {
10501 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
10502 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
10503 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
10504 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
10505 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010506 unsigned PS = TD->getPointerSizeInBits();
10507 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010508 // Convert GO1 to SO1's type.
10509 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
10510
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010511 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010512 // Convert SO1 to GO1's type.
10513 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
10514 } else {
10515 const Type *PT = TD->getIntPtrType();
10516 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10517 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10518 }
10519 }
10520 }
10521 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10522 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10523 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010524 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010525 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10526 }
10527 }
10528
10529 // Recycle the GEP we already have if possible.
10530 if (SrcGEPOperands.size() == 2) {
10531 GEP.setOperand(0, SrcGEPOperands[0]);
10532 GEP.setOperand(1, Sum);
10533 return &GEP;
10534 } else {
10535 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10536 SrcGEPOperands.end()-1);
10537 Indices.push_back(Sum);
10538 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10539 }
10540 } else if (isa<Constant>(*GEP.idx_begin()) &&
10541 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10542 SrcGEPOperands.size() != 1) {
10543 // Otherwise we can do the fold if the first index of the GEP is a zero
10544 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10545 SrcGEPOperands.end());
10546 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10547 }
10548
10549 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010550 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10551 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010552
10553 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10554 // GEP of global variable. If all of the indices for this GEP are
10555 // constants, we can promote this to a constexpr instead of an instruction.
10556
10557 // Scan for nonconstants...
10558 SmallVector<Constant*, 8> Indices;
10559 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10560 for (; I != E && isa<Constant>(*I); ++I)
10561 Indices.push_back(cast<Constant>(*I));
10562
10563 if (I == E) { // If they are all constants...
10564 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10565 &Indices[0],Indices.size());
10566
10567 // Replace all uses of the GEP with the new constexpr...
10568 return ReplaceInstUsesWith(GEP, CE);
10569 }
10570 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10571 if (!isa<PointerType>(X->getType())) {
10572 // Not interesting. Source pointer must be a cast from pointer.
10573 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010574 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10575 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010576 //
10577 // This occurs when the program declares an array extern like "int X[];"
10578 //
10579 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10580 const PointerType *XTy = cast<PointerType>(X->getType());
10581 if (const ArrayType *XATy =
10582 dyn_cast<ArrayType>(XTy->getElementType()))
10583 if (const ArrayType *CATy =
10584 dyn_cast<ArrayType>(CPTy->getElementType()))
10585 if (CATy->getElementType() == XATy->getElementType()) {
10586 // At this point, we know that the cast source type is a pointer
10587 // to an array of the same type as the destination pointer
10588 // array. Because the array type is never stepped over (there
10589 // is a leading zero) we can fold the cast into this GEP.
10590 GEP.setOperand(0, X);
10591 return &GEP;
10592 }
10593 } else if (GEP.getNumOperands() == 2) {
10594 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010595 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10596 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010597 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10598 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10599 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010600 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10601 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010602 Value *Idx[2];
10603 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10604 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010605 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010606 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010607 // V and GEP are both pointer types --> BitCast
10608 return new BitCastInst(V, GEP.getType());
10609 }
10610
10611 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010612 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010613 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010614 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010615
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010616 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010617 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010618 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010619
10620 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10621 // allow either a mul, shift, or constant here.
10622 Value *NewIdx = 0;
10623 ConstantInt *Scale = 0;
10624 if (ArrayEltSize == 1) {
10625 NewIdx = GEP.getOperand(1);
10626 Scale = ConstantInt::get(NewIdx->getType(), 1);
10627 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10628 NewIdx = ConstantInt::get(CI->getType(), 1);
10629 Scale = CI;
10630 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10631 if (Inst->getOpcode() == Instruction::Shl &&
10632 isa<ConstantInt>(Inst->getOperand(1))) {
10633 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10634 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10635 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10636 NewIdx = Inst->getOperand(0);
10637 } else if (Inst->getOpcode() == Instruction::Mul &&
10638 isa<ConstantInt>(Inst->getOperand(1))) {
10639 Scale = cast<ConstantInt>(Inst->getOperand(1));
10640 NewIdx = Inst->getOperand(0);
10641 }
10642 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010643
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010644 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010645 // out, perform the transformation. Note, we don't know whether Scale is
10646 // signed or not. We'll use unsigned version of division/modulo
10647 // operation after making sure Scale doesn't have the sign bit set.
10648 if (Scale && Scale->getSExtValue() >= 0LL &&
10649 Scale->getZExtValue() % ArrayEltSize == 0) {
10650 Scale = ConstantInt::get(Scale->getType(),
10651 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010652 if (Scale->getZExtValue() != 1) {
10653 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010654 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010655 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010656 NewIdx = InsertNewInstBefore(Sc, GEP);
10657 }
10658
10659 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010660 Value *Idx[2];
10661 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10662 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010663 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010664 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010665 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10666 // The NewGEP must be pointer typed, so must the old one -> BitCast
10667 return new BitCastInst(NewGEP, GEP.getType());
10668 }
10669 }
10670 }
10671 }
10672
10673 return 0;
10674}
10675
10676Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10677 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010678 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010679 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10680 const Type *NewTy =
10681 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10682 AllocationInst *New = 0;
10683
10684 // Create and insert the replacement instruction...
10685 if (isa<MallocInst>(AI))
10686 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10687 else {
10688 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10689 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10690 }
10691
10692 InsertNewInstBefore(New, AI);
10693
10694 // Scan to the end of the allocation instructions, to skip over a block of
10695 // allocas if possible...
10696 //
10697 BasicBlock::iterator It = New;
10698 while (isa<AllocationInst>(*It)) ++It;
10699
10700 // Now that I is pointing to the first non-allocation-inst in the block,
10701 // insert our getelementptr instruction...
10702 //
10703 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010704 Value *Idx[2];
10705 Idx[0] = NullIdx;
10706 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010707 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10708 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010709
10710 // Now make everything use the getelementptr instead of the original
10711 // allocation.
10712 return ReplaceInstUsesWith(AI, V);
10713 } else if (isa<UndefValue>(AI.getArraySize())) {
10714 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10715 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010716 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010717
10718 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10719 // Note that we only do this for alloca's, because malloc should allocate and
10720 // return a unique pointer, even for a zero byte allocation.
10721 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010722 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010723 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10724
10725 return 0;
10726}
10727
10728Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10729 Value *Op = FI.getOperand(0);
10730
10731 // free undef -> unreachable.
10732 if (isa<UndefValue>(Op)) {
10733 // Insert a new store to null because we cannot modify the CFG here.
10734 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010735 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010736 return EraseInstFromFunction(FI);
10737 }
10738
10739 // If we have 'free null' delete the instruction. This can happen in stl code
10740 // when lots of inlining happens.
10741 if (isa<ConstantPointerNull>(Op))
10742 return EraseInstFromFunction(FI);
10743
10744 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10745 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10746 FI.setOperand(0, CI->getOperand(0));
10747 return &FI;
10748 }
10749
10750 // Change free (gep X, 0,0,0,0) into free(X)
10751 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10752 if (GEPI->hasAllZeroIndices()) {
10753 AddToWorkList(GEPI);
10754 FI.setOperand(0, GEPI->getOperand(0));
10755 return &FI;
10756 }
10757 }
10758
10759 // Change free(malloc) into nothing, if the malloc has a single use.
10760 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10761 if (MI->hasOneUse()) {
10762 EraseInstFromFunction(FI);
10763 return EraseInstFromFunction(*MI);
10764 }
10765
10766 return 0;
10767}
10768
10769
10770/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010771static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010772 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010773 User *CI = cast<User>(LI.getOperand(0));
10774 Value *CastOp = CI->getOperand(0);
10775
Devang Patela0f8ea82007-10-18 19:52:32 +000010776 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10777 // Instead of loading constant c string, use corresponding integer value
10778 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010779 std::string Str;
10780 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010781 unsigned len = Str.length();
10782 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10783 unsigned numBits = Ty->getPrimitiveSizeInBits();
10784 // Replace LI with immediate integer store.
10785 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010786 APInt StrVal(numBits, 0);
10787 APInt SingleChar(numBits, 0);
10788 if (TD->isLittleEndian()) {
10789 for (signed i = len-1; i >= 0; i--) {
10790 SingleChar = (uint64_t) Str[i];
10791 StrVal = (StrVal << 8) | SingleChar;
10792 }
10793 } else {
10794 for (unsigned i = 0; i < len; i++) {
10795 SingleChar = (uint64_t) Str[i];
10796 StrVal = (StrVal << 8) | SingleChar;
10797 }
10798 // Append NULL at the end.
10799 SingleChar = 0;
10800 StrVal = (StrVal << 8) | SingleChar;
10801 }
10802 Value *NL = ConstantInt::get(StrVal);
10803 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010804 }
10805 }
10806 }
10807
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010808 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10809 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10810 const Type *SrcPTy = SrcTy->getElementType();
10811
10812 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10813 isa<VectorType>(DestPTy)) {
10814 // If the source is an array, the code below will not succeed. Check to
10815 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10816 // constants.
10817 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10818 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10819 if (ASrcTy->getNumElements() != 0) {
10820 Value *Idxs[2];
10821 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10822 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10823 SrcTy = cast<PointerType>(CastOp->getType());
10824 SrcPTy = SrcTy->getElementType();
10825 }
10826
10827 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10828 isa<VectorType>(SrcPTy)) &&
10829 // Do not allow turning this into a load of an integer, which is then
10830 // casted to a pointer, this pessimizes pointer analysis a lot.
10831 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10832 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10833 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10834
10835 // Okay, we are casting from one integer or pointer type to another of
10836 // the same size. Instead of casting the pointer before the load, cast
10837 // the result of the loaded value.
10838 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10839 CI->getName(),
10840 LI.isVolatile()),LI);
10841 // Now cast the result of the load.
10842 return new BitCastInst(NewLoad, LI.getType());
10843 }
10844 }
10845 }
10846 return 0;
10847}
10848
10849/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10850/// from this value cannot trap. If it is not obviously safe to load from the
10851/// specified pointer, we do a quick local scan of the basic block containing
10852/// ScanFrom, to determine if the address is already accessed.
10853static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010854 // If it is an alloca it is always safe to load from.
10855 if (isa<AllocaInst>(V)) return true;
10856
Duncan Sandse40a94a2007-09-19 10:25:38 +000010857 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010858 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010859 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010860 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010861
10862 // Otherwise, be a little bit agressive by scanning the local block where we
10863 // want to check to see if the pointer is already being loaded or stored
10864 // from/to. If so, the previous load or store would have already trapped,
10865 // so there is no harm doing an extra load (also, CSE will later eliminate
10866 // the load entirely).
10867 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10868
10869 while (BBI != E) {
10870 --BBI;
10871
Chris Lattner476983a2008-06-20 05:12:56 +000010872 // If we see a free or a call (which might do a free) the pointer could be
10873 // marked invalid.
10874 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10875 return false;
10876
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010877 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10878 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010879 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010880 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010881 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010882
10883 }
10884 return false;
10885}
10886
10887Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10888 Value *Op = LI.getOperand(0);
10889
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010890 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010891 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10892 if (KnownAlign >
10893 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10894 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010895 LI.setAlignment(KnownAlign);
10896
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010897 // load (cast X) --> cast (load X) iff safe
10898 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010899 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010900 return Res;
10901
10902 // None of the following transforms are legal for volatile loads.
10903 if (LI.isVolatile()) return 0;
10904
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010905 // Do really simple store-to-load forwarding and load CSE, to catch cases
10906 // where there are several consequtive memory accesses to the same location,
10907 // separated by a few arithmetic operations.
10908 BasicBlock::iterator BBI = &LI;
Chris Lattner6fd8c802008-11-27 08:56:30 +000010909 if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
10910 return ReplaceInstUsesWith(LI, AvailableVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010911
Christopher Lamb2c175392007-12-29 07:56:53 +000010912 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10913 const Value *GEPI0 = GEPI->getOperand(0);
10914 // TODO: Consider a target hook for valid address spaces for this xform.
10915 if (isa<ConstantPointerNull>(GEPI0) &&
10916 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010917 // Insert a new store to null instruction before the load to indicate
10918 // that this code is not reachable. We do this instead of inserting
10919 // an unreachable instruction directly because we cannot modify the
10920 // CFG.
10921 new StoreInst(UndefValue::get(LI.getType()),
10922 Constant::getNullValue(Op->getType()), &LI);
10923 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10924 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010925 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010926
10927 if (Constant *C = dyn_cast<Constant>(Op)) {
10928 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010929 // TODO: Consider a target hook for valid address spaces for this xform.
10930 if (isa<UndefValue>(C) || (C->isNullValue() &&
10931 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010932 // Insert a new store to null instruction before the load to indicate that
10933 // this code is not reachable. We do this instead of inserting an
10934 // unreachable instruction directly because we cannot modify the CFG.
10935 new StoreInst(UndefValue::get(LI.getType()),
10936 Constant::getNullValue(Op->getType()), &LI);
10937 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10938 }
10939
10940 // Instcombine load (constant global) into the value loaded.
10941 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10942 if (GV->isConstant() && !GV->isDeclaration())
10943 return ReplaceInstUsesWith(LI, GV->getInitializer());
10944
10945 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010946 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010947 if (CE->getOpcode() == Instruction::GetElementPtr) {
10948 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10949 if (GV->isConstant() && !GV->isDeclaration())
10950 if (Constant *V =
10951 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10952 return ReplaceInstUsesWith(LI, V);
10953 if (CE->getOperand(0)->isNullValue()) {
10954 // Insert a new store to null instruction before the load to indicate
10955 // that this code is not reachable. We do this instead of inserting
10956 // an unreachable instruction directly because we cannot modify the
10957 // CFG.
10958 new StoreInst(UndefValue::get(LI.getType()),
10959 Constant::getNullValue(Op->getType()), &LI);
10960 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10961 }
10962
10963 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010964 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010965 return Res;
10966 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010967 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010968 }
Chris Lattner0270a112007-08-11 18:48:48 +000010969
10970 // If this load comes from anywhere in a constant global, and if the global
10971 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000010972 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000010973 if (GV->isConstant() && GV->hasInitializer()) {
10974 if (GV->getInitializer()->isNullValue())
10975 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10976 else if (isa<UndefValue>(GV->getInitializer()))
10977 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10978 }
10979 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010980
10981 if (Op->hasOneUse()) {
10982 // Change select and PHI nodes to select values instead of addresses: this
10983 // helps alias analysis out a lot, allows many others simplifications, and
10984 // exposes redundancy in the code.
10985 //
10986 // Note that we cannot do the transformation unless we know that the
10987 // introduced loads cannot trap! Something like this is valid as long as
10988 // the condition is always false: load (select bool %C, int* null, int* %G),
10989 // but it would not be valid if we transformed it to load from null
10990 // unconditionally.
10991 //
10992 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10993 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
10994 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10995 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
10996 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
10997 SI->getOperand(1)->getName()+".val"), LI);
10998 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
10999 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000011000 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011001 }
11002
11003 // load (select (cond, null, P)) -> load P
11004 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
11005 if (C->isNullValue()) {
11006 LI.setOperand(0, SI->getOperand(2));
11007 return &LI;
11008 }
11009
11010 // load (select (cond, P, null)) -> load P
11011 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
11012 if (C->isNullValue()) {
11013 LI.setOperand(0, SI->getOperand(1));
11014 return &LI;
11015 }
11016 }
11017 }
11018 return 0;
11019}
11020
11021/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
11022/// when possible.
11023static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
11024 User *CI = cast<User>(SI.getOperand(1));
11025 Value *CastOp = CI->getOperand(0);
11026
11027 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
11028 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
11029 const Type *SrcPTy = SrcTy->getElementType();
11030
11031 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
11032 // If the source is an array, the code below will not succeed. Check to
11033 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
11034 // constants.
11035 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
11036 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
11037 if (ASrcTy->getNumElements() != 0) {
11038 Value* Idxs[2];
11039 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
11040 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
11041 SrcTy = cast<PointerType>(CastOp->getType());
11042 SrcPTy = SrcTy->getElementType();
11043 }
11044
11045 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
11046 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
11047 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
11048
11049 // Okay, we are casting from one integer or pointer type to another of
11050 // the same size. Instead of casting the pointer before
11051 // the store, cast the value to be stored.
11052 Value *NewCast;
11053 Value *SIOp0 = SI.getOperand(0);
11054 Instruction::CastOps opcode = Instruction::BitCast;
11055 const Type* CastSrcTy = SIOp0->getType();
11056 const Type* CastDstTy = SrcPTy;
11057 if (isa<PointerType>(CastDstTy)) {
11058 if (CastSrcTy->isInteger())
11059 opcode = Instruction::IntToPtr;
11060 } else if (isa<IntegerType>(CastDstTy)) {
11061 if (isa<PointerType>(SIOp0->getType()))
11062 opcode = Instruction::PtrToInt;
11063 }
11064 if (Constant *C = dyn_cast<Constant>(SIOp0))
11065 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
11066 else
11067 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000011068 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011069 SI);
11070 return new StoreInst(NewCast, CastOp);
11071 }
11072 }
11073 }
11074 return 0;
11075}
11076
Chris Lattner6fd8c802008-11-27 08:56:30 +000011077/// equivalentAddressValues - Test if A and B will obviously have the same
11078/// value. This includes recognizing that %t0 and %t1 will have the same
11079/// value in code like this:
11080/// %t0 = getelementptr @a, 0, 3
11081/// store i32 0, i32* %t0
11082/// %t1 = getelementptr @a, 0, 3
11083/// %t2 = load i32* %t1
11084///
11085static bool equivalentAddressValues(Value *A, Value *B) {
11086 // Test if the values are trivially equivalent.
11087 if (A == B) return true;
11088
11089 // Test if the values come form identical arithmetic instructions.
11090 if (isa<BinaryOperator>(A) ||
11091 isa<CastInst>(A) ||
11092 isa<PHINode>(A) ||
11093 isa<GetElementPtrInst>(A))
11094 if (Instruction *BI = dyn_cast<Instruction>(B))
11095 if (cast<Instruction>(A)->isIdenticalTo(BI))
11096 return true;
11097
11098 // Otherwise they may not be equivalent.
11099 return false;
11100}
11101
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011102Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
11103 Value *Val = SI.getOperand(0);
11104 Value *Ptr = SI.getOperand(1);
11105
11106 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
11107 EraseInstFromFunction(SI);
11108 ++NumCombined;
11109 return 0;
11110 }
11111
11112 // If the RHS is an alloca with a single use, zapify the store, making the
11113 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000011114 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011115 if (isa<AllocaInst>(Ptr)) {
11116 EraseInstFromFunction(SI);
11117 ++NumCombined;
11118 return 0;
11119 }
11120
11121 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
11122 if (isa<AllocaInst>(GEP->getOperand(0)) &&
11123 GEP->getOperand(0)->hasOneUse()) {
11124 EraseInstFromFunction(SI);
11125 ++NumCombined;
11126 return 0;
11127 }
11128 }
11129
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011130 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000011131 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
11132 if (KnownAlign >
11133 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
11134 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011135 SI.setAlignment(KnownAlign);
11136
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011137 // Do really simple DSE, to catch cases where there are several consequtive
11138 // stores to the same location, separated by a few arithmetic operations. This
11139 // situation often occurs with bitfield accesses.
11140 BasicBlock::iterator BBI = &SI;
11141 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
11142 --ScanInsts) {
11143 --BBI;
11144
11145 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
11146 // Prev store isn't volatile, and stores to the same location?
Chris Lattner6fd8c802008-11-27 08:56:30 +000011147 if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
11148 SI.getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011149 ++NumDeadStore;
11150 ++BBI;
11151 EraseInstFromFunction(*PrevSI);
11152 continue;
11153 }
11154 break;
11155 }
11156
11157 // If this is a load, we have to stop. However, if the loaded value is from
11158 // the pointer we're loading and is producing the pointer we're storing,
11159 // then *this* store is dead (X = load P; store X -> P).
11160 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011161 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11162 !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011163 EraseInstFromFunction(SI);
11164 ++NumCombined;
11165 return 0;
11166 }
11167 // Otherwise, this is a load from some other location. Stores before it
11168 // may not be dead.
11169 break;
11170 }
11171
11172 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000011173 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011174 break;
11175 }
11176
11177
11178 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
11179
11180 // store X, null -> turns into 'unreachable' in SimplifyCFG
11181 if (isa<ConstantPointerNull>(Ptr)) {
11182 if (!isa<UndefValue>(Val)) {
11183 SI.setOperand(0, UndefValue::get(Val->getType()));
11184 if (Instruction *U = dyn_cast<Instruction>(Val))
11185 AddToWorkList(U); // Dropped a use.
11186 ++NumCombined;
11187 }
11188 return 0; // Do not modify these!
11189 }
11190
11191 // store undef, Ptr -> noop
11192 if (isa<UndefValue>(Val)) {
11193 EraseInstFromFunction(SI);
11194 ++NumCombined;
11195 return 0;
11196 }
11197
11198 // If the pointer destination is a cast, see if we can fold the cast into the
11199 // source instead.
11200 if (isa<CastInst>(Ptr))
11201 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11202 return Res;
11203 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
11204 if (CE->isCast())
11205 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11206 return Res;
11207
11208
11209 // If this store is the last instruction in the basic block, and if the block
11210 // ends with an unconditional branch, try to move it to the successor block.
11211 BBI = &SI; ++BBI;
11212 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
11213 if (BI->isUnconditional())
11214 if (SimplifyStoreAtEndOfBlock(SI))
11215 return 0; // xform done!
11216
11217 return 0;
11218}
11219
11220/// SimplifyStoreAtEndOfBlock - Turn things like:
11221/// if () { *P = v1; } else { *P = v2 }
11222/// into a phi node with a store in the successor.
11223///
11224/// Simplify things like:
11225/// *P = v1; if () { *P = v2; }
11226/// into a phi node with a store in the successor.
11227///
11228bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11229 BasicBlock *StoreBB = SI.getParent();
11230
11231 // Check to see if the successor block has exactly two incoming edges. If
11232 // so, see if the other predecessor contains a store to the same location.
11233 // if so, insert a PHI node (if needed) and move the stores down.
11234 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
11235
11236 // Determine whether Dest has exactly two predecessors and, if so, compute
11237 // the other predecessor.
11238 pred_iterator PI = pred_begin(DestBB);
11239 BasicBlock *OtherBB = 0;
11240 if (*PI != StoreBB)
11241 OtherBB = *PI;
11242 ++PI;
11243 if (PI == pred_end(DestBB))
11244 return false;
11245
11246 if (*PI != StoreBB) {
11247 if (OtherBB)
11248 return false;
11249 OtherBB = *PI;
11250 }
11251 if (++PI != pred_end(DestBB))
11252 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000011253
11254 // Bail out if all the relevant blocks aren't distinct (this can happen,
11255 // for example, if SI is in an infinite loop)
11256 if (StoreBB == DestBB || OtherBB == DestBB)
11257 return false;
11258
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011259 // Verify that the other block ends in a branch and is not otherwise empty.
11260 BasicBlock::iterator BBI = OtherBB->getTerminator();
11261 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
11262 if (!OtherBr || BBI == OtherBB->begin())
11263 return false;
11264
11265 // If the other block ends in an unconditional branch, check for the 'if then
11266 // else' case. there is an instruction before the branch.
11267 StoreInst *OtherStore = 0;
11268 if (OtherBr->isUnconditional()) {
11269 // If this isn't a store, or isn't a store to the same location, bail out.
11270 --BBI;
11271 OtherStore = dyn_cast<StoreInst>(BBI);
11272 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11273 return false;
11274 } else {
11275 // Otherwise, the other block ended with a conditional branch. If one of the
11276 // destinations is StoreBB, then we have the if/then case.
11277 if (OtherBr->getSuccessor(0) != StoreBB &&
11278 OtherBr->getSuccessor(1) != StoreBB)
11279 return false;
11280
11281 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11282 // if/then triangle. See if there is a store to the same ptr as SI that
11283 // lives in OtherBB.
11284 for (;; --BBI) {
11285 // Check to see if we find the matching store.
11286 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11287 if (OtherStore->getOperand(1) != SI.getOperand(1))
11288 return false;
11289 break;
11290 }
Eli Friedman3a311d52008-06-13 22:02:12 +000011291 // If we find something that may be using or overwriting the stored
11292 // value, or if we run out of instructions, we can't do the xform.
11293 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011294 BBI == OtherBB->begin())
11295 return false;
11296 }
11297
11298 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000011299 // make sure nothing reads or overwrites the stored value in
11300 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011301 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11302 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000011303 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011304 return false;
11305 }
11306 }
11307
11308 // Insert a PHI node now if we need it.
11309 Value *MergedVal = OtherStore->getOperand(0);
11310 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000011311 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011312 PN->reserveOperandSpace(2);
11313 PN->addIncoming(SI.getOperand(0), SI.getParent());
11314 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11315 MergedVal = InsertNewInstBefore(PN, DestBB->front());
11316 }
11317
11318 // Advance to a place where it is safe to insert the new store and
11319 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000011320 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011321 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11322 OtherStore->isVolatile()), *BBI);
11323
11324 // Nuke the old stores.
11325 EraseInstFromFunction(SI);
11326 EraseInstFromFunction(*OtherStore);
11327 ++NumCombined;
11328 return true;
11329}
11330
11331
11332Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11333 // Change br (not X), label True, label False to: br X, label False, True
11334 Value *X = 0;
11335 BasicBlock *TrueDest;
11336 BasicBlock *FalseDest;
11337 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11338 !isa<Constant>(X)) {
11339 // Swap Destinations and condition...
11340 BI.setCondition(X);
11341 BI.setSuccessor(0, FalseDest);
11342 BI.setSuccessor(1, TrueDest);
11343 return &BI;
11344 }
11345
11346 // Cannonicalize fcmp_one -> fcmp_oeq
11347 FCmpInst::Predicate FPred; Value *Y;
11348 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11349 TrueDest, FalseDest)))
11350 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11351 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11352 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
11353 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
11354 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11355 NewSCC->takeName(I);
11356 // Swap Destinations and condition...
11357 BI.setCondition(NewSCC);
11358 BI.setSuccessor(0, FalseDest);
11359 BI.setSuccessor(1, TrueDest);
11360 RemoveFromWorkList(I);
11361 I->eraseFromParent();
11362 AddToWorkList(NewSCC);
11363 return &BI;
11364 }
11365
11366 // Cannonicalize icmp_ne -> icmp_eq
11367 ICmpInst::Predicate IPred;
11368 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11369 TrueDest, FalseDest)))
11370 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11371 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11372 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11373 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
11374 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
11375 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11376 NewSCC->takeName(I);
11377 // Swap Destinations and condition...
11378 BI.setCondition(NewSCC);
11379 BI.setSuccessor(0, FalseDest);
11380 BI.setSuccessor(1, TrueDest);
11381 RemoveFromWorkList(I);
11382 I->eraseFromParent();;
11383 AddToWorkList(NewSCC);
11384 return &BI;
11385 }
11386
11387 return 0;
11388}
11389
11390Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11391 Value *Cond = SI.getCondition();
11392 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11393 if (I->getOpcode() == Instruction::Add)
11394 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11395 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11396 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11397 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11398 AddRHS));
11399 SI.setOperand(0, I->getOperand(0));
11400 AddToWorkList(I);
11401 return &SI;
11402 }
11403 }
11404 return 0;
11405}
11406
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011407Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011408 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011409
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011410 if (!EV.hasIndices())
11411 return ReplaceInstUsesWith(EV, Agg);
11412
11413 if (Constant *C = dyn_cast<Constant>(Agg)) {
11414 if (isa<UndefValue>(C))
11415 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11416
11417 if (isa<ConstantAggregateZero>(C))
11418 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11419
11420 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11421 // Extract the element indexed by the first index out of the constant
11422 Value *V = C->getOperand(*EV.idx_begin());
11423 if (EV.getNumIndices() > 1)
11424 // Extract the remaining indices out of the constant indexed by the
11425 // first index
11426 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11427 else
11428 return ReplaceInstUsesWith(EV, V);
11429 }
11430 return 0; // Can't handle other constants
11431 }
11432 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11433 // We're extracting from an insertvalue instruction, compare the indices
11434 const unsigned *exti, *exte, *insi, *inse;
11435 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11436 exte = EV.idx_end(), inse = IV->idx_end();
11437 exti != exte && insi != inse;
11438 ++exti, ++insi) {
11439 if (*insi != *exti)
11440 // The insert and extract both reference distinctly different elements.
11441 // This means the extract is not influenced by the insert, and we can
11442 // replace the aggregate operand of the extract with the aggregate
11443 // operand of the insert. i.e., replace
11444 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11445 // %E = extractvalue { i32, { i32 } } %I, 0
11446 // with
11447 // %E = extractvalue { i32, { i32 } } %A, 0
11448 return ExtractValueInst::Create(IV->getAggregateOperand(),
11449 EV.idx_begin(), EV.idx_end());
11450 }
11451 if (exti == exte && insi == inse)
11452 // Both iterators are at the end: Index lists are identical. Replace
11453 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11454 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11455 // with "i32 42"
11456 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11457 if (exti == exte) {
11458 // The extract list is a prefix of the insert list. i.e. replace
11459 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11460 // %E = extractvalue { i32, { i32 } } %I, 1
11461 // with
11462 // %X = extractvalue { i32, { i32 } } %A, 1
11463 // %E = insertvalue { i32 } %X, i32 42, 0
11464 // by switching the order of the insert and extract (though the
11465 // insertvalue should be left in, since it may have other uses).
11466 Value *NewEV = InsertNewInstBefore(
11467 ExtractValueInst::Create(IV->getAggregateOperand(),
11468 EV.idx_begin(), EV.idx_end()),
11469 EV);
11470 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11471 insi, inse);
11472 }
11473 if (insi == inse)
11474 // The insert list is a prefix of the extract list
11475 // We can simply remove the common indices from the extract and make it
11476 // operate on the inserted value instead of the insertvalue result.
11477 // i.e., replace
11478 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11479 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11480 // with
11481 // %E extractvalue { i32 } { i32 42 }, 0
11482 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11483 exti, exte);
11484 }
11485 // Can't simplify extracts from other values. Note that nested extracts are
11486 // already simplified implicitely by the above (extract ( extract (insert) )
11487 // will be translated into extract ( insert ( extract ) ) first and then just
11488 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011489 return 0;
11490}
11491
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011492/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11493/// is to leave as a vector operation.
11494static bool CheapToScalarize(Value *V, bool isConstant) {
11495 if (isa<ConstantAggregateZero>(V))
11496 return true;
11497 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
11498 if (isConstant) return true;
11499 // If all elts are the same, we can extract.
11500 Constant *Op0 = C->getOperand(0);
11501 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11502 if (C->getOperand(i) != Op0)
11503 return false;
11504 return true;
11505 }
11506 Instruction *I = dyn_cast<Instruction>(V);
11507 if (!I) return false;
11508
11509 // Insert element gets simplified to the inserted element or is deleted if
11510 // this is constant idx extract element and its a constant idx insertelt.
11511 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11512 isa<ConstantInt>(I->getOperand(2)))
11513 return true;
11514 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11515 return true;
11516 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11517 if (BO->hasOneUse() &&
11518 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11519 CheapToScalarize(BO->getOperand(1), isConstant)))
11520 return true;
11521 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11522 if (CI->hasOneUse() &&
11523 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11524 CheapToScalarize(CI->getOperand(1), isConstant)))
11525 return true;
11526
11527 return false;
11528}
11529
11530/// Read and decode a shufflevector mask.
11531///
11532/// It turns undef elements into values that are larger than the number of
11533/// elements in the input.
11534static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11535 unsigned NElts = SVI->getType()->getNumElements();
11536 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11537 return std::vector<unsigned>(NElts, 0);
11538 if (isa<UndefValue>(SVI->getOperand(2)))
11539 return std::vector<unsigned>(NElts, 2*NElts);
11540
11541 std::vector<unsigned> Result;
11542 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011543 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11544 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011545 Result.push_back(NElts*2); // undef -> 8
11546 else
Gabor Greif17396002008-06-12 21:37:33 +000011547 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011548 return Result;
11549}
11550
11551/// FindScalarElement - Given a vector and an element number, see if the scalar
11552/// value is already around as a register, for example if it were inserted then
11553/// extracted from the vector.
11554static Value *FindScalarElement(Value *V, unsigned EltNo) {
11555 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11556 const VectorType *PTy = cast<VectorType>(V->getType());
11557 unsigned Width = PTy->getNumElements();
11558 if (EltNo >= Width) // Out of range access.
11559 return UndefValue::get(PTy->getElementType());
11560
11561 if (isa<UndefValue>(V))
11562 return UndefValue::get(PTy->getElementType());
11563 else if (isa<ConstantAggregateZero>(V))
11564 return Constant::getNullValue(PTy->getElementType());
11565 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11566 return CP->getOperand(EltNo);
11567 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11568 // If this is an insert to a variable element, we don't know what it is.
11569 if (!isa<ConstantInt>(III->getOperand(2)))
11570 return 0;
11571 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11572
11573 // If this is an insert to the element we are looking for, return the
11574 // inserted value.
11575 if (EltNo == IIElt)
11576 return III->getOperand(1);
11577
11578 // Otherwise, the insertelement doesn't modify the value, recurse on its
11579 // vector input.
11580 return FindScalarElement(III->getOperand(0), EltNo);
11581 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011582 unsigned LHSWidth =
11583 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011584 unsigned InEl = getShuffleMask(SVI)[EltNo];
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011585 if (InEl < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011586 return FindScalarElement(SVI->getOperand(0), InEl);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011587 else if (InEl < LHSWidth*2)
11588 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011589 else
11590 return UndefValue::get(PTy->getElementType());
11591 }
11592
11593 // Otherwise, we don't know.
11594 return 0;
11595}
11596
11597Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011598 // If vector val is undef, replace extract with scalar undef.
11599 if (isa<UndefValue>(EI.getOperand(0)))
11600 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11601
11602 // If vector val is constant 0, replace extract with scalar 0.
11603 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11604 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11605
11606 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011607 // If vector val is constant with all elements the same, replace EI with
11608 // that element. When the elements are not identical, we cannot replace yet
11609 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011610 Constant *op0 = C->getOperand(0);
11611 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11612 if (C->getOperand(i) != op0) {
11613 op0 = 0;
11614 break;
11615 }
11616 if (op0)
11617 return ReplaceInstUsesWith(EI, op0);
11618 }
11619
11620 // If extracting a specified index from the vector, see if we can recursively
11621 // find a previously computed scalar that was inserted into the vector.
11622 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11623 unsigned IndexVal = IdxC->getZExtValue();
11624 unsigned VectorWidth =
11625 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11626
11627 // If this is extracting an invalid index, turn this into undef, to avoid
11628 // crashing the code below.
11629 if (IndexVal >= VectorWidth)
11630 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11631
11632 // This instruction only demands the single element from the input vector.
11633 // If the input vector has a single use, simplify it based on this use
11634 // property.
11635 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11636 uint64_t UndefElts;
11637 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11638 1 << IndexVal,
11639 UndefElts)) {
11640 EI.setOperand(0, V);
11641 return &EI;
11642 }
11643 }
11644
11645 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11646 return ReplaceInstUsesWith(EI, Elt);
11647
11648 // If the this extractelement is directly using a bitcast from a vector of
11649 // the same number of elements, see if we can find the source element from
11650 // it. In this case, we will end up needing to bitcast the scalars.
11651 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11652 if (const VectorType *VT =
11653 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11654 if (VT->getNumElements() == VectorWidth)
11655 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11656 return new BitCastInst(Elt, EI.getType());
11657 }
11658 }
11659
11660 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11661 if (I->hasOneUse()) {
11662 // Push extractelement into predecessor operation if legal and
11663 // profitable to do so
11664 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11665 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11666 if (CheapToScalarize(BO, isConstantElt)) {
11667 ExtractElementInst *newEI0 =
11668 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11669 EI.getName()+".lhs");
11670 ExtractElementInst *newEI1 =
11671 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11672 EI.getName()+".rhs");
11673 InsertNewInstBefore(newEI0, EI);
11674 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011675 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011676 }
11677 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011678 unsigned AS =
11679 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011680 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11681 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011682 GetElementPtrInst *GEP =
11683 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011684 InsertNewInstBefore(GEP, EI);
11685 return new LoadInst(GEP);
11686 }
11687 }
11688 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11689 // Extracting the inserted element?
11690 if (IE->getOperand(2) == EI.getOperand(1))
11691 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11692 // If the inserted and extracted elements are constants, they must not
11693 // be the same value, extract from the pre-inserted value instead.
11694 if (isa<Constant>(IE->getOperand(2)) &&
11695 isa<Constant>(EI.getOperand(1))) {
11696 AddUsesToWorkList(EI);
11697 EI.setOperand(0, IE->getOperand(0));
11698 return &EI;
11699 }
11700 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11701 // If this is extracting an element from a shufflevector, figure out where
11702 // it came from and extract from the appropriate input element instead.
11703 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11704 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11705 Value *Src;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011706 unsigned LHSWidth =
11707 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
11708
11709 if (SrcIdx < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011710 Src = SVI->getOperand(0);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011711 else if (SrcIdx < LHSWidth*2) {
11712 SrcIdx -= LHSWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011713 Src = SVI->getOperand(1);
11714 } else {
11715 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11716 }
11717 return new ExtractElementInst(Src, SrcIdx);
11718 }
11719 }
11720 }
11721 return 0;
11722}
11723
11724/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11725/// elements from either LHS or RHS, return the shuffle mask and true.
11726/// Otherwise, return false.
11727static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11728 std::vector<Constant*> &Mask) {
11729 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11730 "Invalid CollectSingleShuffleElements");
11731 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11732
11733 if (isa<UndefValue>(V)) {
11734 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11735 return true;
11736 } else if (V == LHS) {
11737 for (unsigned i = 0; i != NumElts; ++i)
11738 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11739 return true;
11740 } else if (V == RHS) {
11741 for (unsigned i = 0; i != NumElts; ++i)
11742 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11743 return true;
11744 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11745 // If this is an insert of an extract from some other vector, include it.
11746 Value *VecOp = IEI->getOperand(0);
11747 Value *ScalarOp = IEI->getOperand(1);
11748 Value *IdxOp = IEI->getOperand(2);
11749
11750 if (!isa<ConstantInt>(IdxOp))
11751 return false;
11752 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11753
11754 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11755 // Okay, we can handle this if the vector we are insertinting into is
11756 // transitively ok.
11757 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11758 // If so, update the mask to reflect the inserted undef.
11759 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11760 return true;
11761 }
11762 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11763 if (isa<ConstantInt>(EI->getOperand(1)) &&
11764 EI->getOperand(0)->getType() == V->getType()) {
11765 unsigned ExtractedIdx =
11766 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11767
11768 // This must be extracting from either LHS or RHS.
11769 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11770 // Okay, we can handle this if the vector we are insertinting into is
11771 // transitively ok.
11772 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11773 // If so, update the mask to reflect the inserted value.
11774 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011775 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011776 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11777 } else {
11778 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011779 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011780 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11781
11782 }
11783 return true;
11784 }
11785 }
11786 }
11787 }
11788 }
11789 // TODO: Handle shufflevector here!
11790
11791 return false;
11792}
11793
11794/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11795/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11796/// that computes V and the LHS value of the shuffle.
11797static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11798 Value *&RHS) {
11799 assert(isa<VectorType>(V->getType()) &&
11800 (RHS == 0 || V->getType() == RHS->getType()) &&
11801 "Invalid shuffle!");
11802 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11803
11804 if (isa<UndefValue>(V)) {
11805 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11806 return V;
11807 } else if (isa<ConstantAggregateZero>(V)) {
11808 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11809 return V;
11810 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11811 // If this is an insert of an extract from some other vector, include it.
11812 Value *VecOp = IEI->getOperand(0);
11813 Value *ScalarOp = IEI->getOperand(1);
11814 Value *IdxOp = IEI->getOperand(2);
11815
11816 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11817 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11818 EI->getOperand(0)->getType() == V->getType()) {
11819 unsigned ExtractedIdx =
11820 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11821 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11822
11823 // Either the extracted from or inserted into vector must be RHSVec,
11824 // otherwise we'd end up with a shuffle of three inputs.
11825 if (EI->getOperand(0) == RHS || RHS == 0) {
11826 RHS = EI->getOperand(0);
11827 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011828 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011829 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11830 return V;
11831 }
11832
11833 if (VecOp == RHS) {
11834 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11835 // Everything but the extracted element is replaced with the RHS.
11836 for (unsigned i = 0; i != NumElts; ++i) {
11837 if (i != InsertedIdx)
11838 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11839 }
11840 return V;
11841 }
11842
11843 // If this insertelement is a chain that comes from exactly these two
11844 // vectors, return the vector and the effective shuffle.
11845 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11846 return EI->getOperand(0);
11847
11848 }
11849 }
11850 }
11851 // TODO: Handle shufflevector here!
11852
11853 // Otherwise, can't do anything fancy. Return an identity vector.
11854 for (unsigned i = 0; i != NumElts; ++i)
11855 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11856 return V;
11857}
11858
11859Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11860 Value *VecOp = IE.getOperand(0);
11861 Value *ScalarOp = IE.getOperand(1);
11862 Value *IdxOp = IE.getOperand(2);
11863
11864 // Inserting an undef or into an undefined place, remove this.
11865 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11866 ReplaceInstUsesWith(IE, VecOp);
11867
11868 // If the inserted element was extracted from some other vector, and if the
11869 // indexes are constant, try to turn this into a shufflevector operation.
11870 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11871 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11872 EI->getOperand(0)->getType() == IE.getType()) {
11873 unsigned NumVectorElts = IE.getType()->getNumElements();
11874 unsigned ExtractedIdx =
11875 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11876 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11877
11878 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11879 return ReplaceInstUsesWith(IE, VecOp);
11880
11881 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11882 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11883
11884 // If we are extracting a value from a vector, then inserting it right
11885 // back into the same place, just use the input vector.
11886 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11887 return ReplaceInstUsesWith(IE, VecOp);
11888
11889 // We could theoretically do this for ANY input. However, doing so could
11890 // turn chains of insertelement instructions into a chain of shufflevector
11891 // instructions, and right now we do not merge shufflevectors. As such,
11892 // only do this in a situation where it is clear that there is benefit.
11893 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11894 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11895 // the values of VecOp, except then one read from EIOp0.
11896 // Build a new shuffle mask.
11897 std::vector<Constant*> Mask;
11898 if (isa<UndefValue>(VecOp))
11899 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11900 else {
11901 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11902 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11903 NumVectorElts));
11904 }
11905 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11906 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11907 ConstantVector::get(Mask));
11908 }
11909
11910 // If this insertelement isn't used by some other insertelement, turn it
11911 // (and any insertelements it points to), into one big shuffle.
11912 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11913 std::vector<Constant*> Mask;
11914 Value *RHS = 0;
11915 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11916 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11917 // We now have a shuffle of LHS, RHS, Mask.
11918 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11919 }
11920 }
11921 }
11922
11923 return 0;
11924}
11925
11926
11927Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11928 Value *LHS = SVI.getOperand(0);
11929 Value *RHS = SVI.getOperand(1);
11930 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11931
11932 bool MadeChange = false;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011933
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011934 // Undefined shuffle mask -> undefined value.
11935 if (isa<UndefValue>(SVI.getOperand(2)))
11936 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011937
11938 uint64_t UndefElts;
11939 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011940
11941 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
11942 return 0;
11943
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011944 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11945 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000011946 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11947 LHS = SVI.getOperand(0);
11948 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011949 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000011950 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011951
11952 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11953 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11954 if (LHS == RHS || isa<UndefValue>(LHS)) {
11955 if (isa<UndefValue>(LHS) && LHS == RHS) {
11956 // shuffle(undef,undef,mask) -> undef.
11957 return ReplaceInstUsesWith(SVI, LHS);
11958 }
11959
11960 // Remap any references to RHS to use LHS.
11961 std::vector<Constant*> Elts;
11962 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11963 if (Mask[i] >= 2*e)
11964 Elts.push_back(UndefValue::get(Type::Int32Ty));
11965 else {
11966 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000011967 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011968 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011969 Elts.push_back(UndefValue::get(Type::Int32Ty));
11970 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011971 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011972 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11973 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011974 }
11975 }
11976 SVI.setOperand(0, SVI.getOperand(1));
11977 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11978 SVI.setOperand(2, ConstantVector::get(Elts));
11979 LHS = SVI.getOperand(0);
11980 RHS = SVI.getOperand(1);
11981 MadeChange = true;
11982 }
11983
11984 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
11985 bool isLHSID = true, isRHSID = true;
11986
11987 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11988 if (Mask[i] >= e*2) continue; // Ignore undef values.
11989 // Is this an identity shuffle of the LHS value?
11990 isLHSID &= (Mask[i] == i);
11991
11992 // Is this an identity shuffle of the RHS value?
11993 isRHSID &= (Mask[i]-e == i);
11994 }
11995
11996 // Eliminate identity shuffles.
11997 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11998 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
11999
12000 // If the LHS is a shufflevector itself, see if we can combine it with this
12001 // one without producing an unusual shuffle. Here we are really conservative:
12002 // we are absolutely afraid of producing a shuffle mask not in the input
12003 // program, because the code gen may not be smart enough to turn a merged
12004 // shuffle into two specific shuffles: it may produce worse code. As such,
12005 // we only merge two shuffles if the result is one of the two input shuffle
12006 // masks. In this case, merging the shuffles just removes one instruction,
12007 // which we know is safe. This is good for things like turning:
12008 // (splat(splat)) -> splat.
12009 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
12010 if (isa<UndefValue>(RHS)) {
12011 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
12012
12013 std::vector<unsigned> NewMask;
12014 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
12015 if (Mask[i] >= 2*e)
12016 NewMask.push_back(2*e);
12017 else
12018 NewMask.push_back(LHSMask[Mask[i]]);
12019
12020 // If the result mask is equal to the src shuffle or this shuffle mask, do
12021 // the replacement.
12022 if (NewMask == LHSMask || NewMask == Mask) {
12023 std::vector<Constant*> Elts;
12024 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
12025 if (NewMask[i] >= e*2) {
12026 Elts.push_back(UndefValue::get(Type::Int32Ty));
12027 } else {
12028 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
12029 }
12030 }
12031 return new ShuffleVectorInst(LHSSVI->getOperand(0),
12032 LHSSVI->getOperand(1),
12033 ConstantVector::get(Elts));
12034 }
12035 }
12036 }
12037
12038 return MadeChange ? &SVI : 0;
12039}
12040
12041
12042
12043
12044/// TryToSinkInstruction - Try to move the specified instruction from its
12045/// current block into the beginning of DestBlock, which can only happen if it's
12046/// safe to move the instruction past all of the instructions between it and the
12047/// end of its block.
12048static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
12049 assert(I->hasOneUse() && "Invariants didn't hold!");
12050
12051 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000012052 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
12053 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012054
12055 // Do not sink alloca instructions out of the entry block.
12056 if (isa<AllocaInst>(I) && I->getParent() ==
12057 &DestBlock->getParent()->getEntryBlock())
12058 return false;
12059
12060 // We can only sink load instructions if there is nothing between the load and
12061 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000012062 if (I->mayReadFromMemory()) {
12063 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012064 Scan != E; ++Scan)
12065 if (Scan->mayWriteToMemory())
12066 return false;
12067 }
12068
Dan Gohman514277c2008-05-23 21:05:58 +000012069 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012070
12071 I->moveBefore(InsertPos);
12072 ++NumSunkInst;
12073 return true;
12074}
12075
12076
12077/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
12078/// all reachable code to the worklist.
12079///
12080/// This has a couple of tricks to make the code faster and more powerful. In
12081/// particular, we constant fold and DCE instructions as we go, to avoid adding
12082/// them to the worklist (this significantly speeds up instcombine on code where
12083/// many instructions are dead or constant). Additionally, if we find a branch
12084/// whose condition is a known constant, we only visit the reachable successors.
12085///
12086static void AddReachableCodeToWorklist(BasicBlock *BB,
12087 SmallPtrSet<BasicBlock*, 64> &Visited,
12088 InstCombiner &IC,
12089 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000012090 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012091 Worklist.push_back(BB);
12092
12093 while (!Worklist.empty()) {
12094 BB = Worklist.back();
12095 Worklist.pop_back();
12096
12097 // We have now visited this block! If we've already been here, ignore it.
12098 if (!Visited.insert(BB)) continue;
Devang Patel794140c2008-11-19 18:56:50 +000012099
12100 DbgInfoIntrinsic *DBI_Prev = NULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012101 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
12102 Instruction *Inst = BBI++;
12103
12104 // DCE instruction if trivially dead.
12105 if (isInstructionTriviallyDead(Inst)) {
12106 ++NumDeadInst;
12107 DOUT << "IC: DCE: " << *Inst;
12108 Inst->eraseFromParent();
12109 continue;
12110 }
12111
12112 // ConstantProp instruction if trivially constant.
12113 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
12114 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
12115 Inst->replaceAllUsesWith(C);
12116 ++NumConstProp;
12117 Inst->eraseFromParent();
12118 continue;
12119 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000012120
Devang Patel794140c2008-11-19 18:56:50 +000012121 // If there are two consecutive llvm.dbg.stoppoint calls then
12122 // it is likely that the optimizer deleted code in between these
12123 // two intrinsics.
12124 DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
12125 if (DBI_Next) {
12126 if (DBI_Prev
12127 && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
12128 && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
12129 IC.RemoveFromWorkList(DBI_Prev);
12130 DBI_Prev->eraseFromParent();
12131 }
12132 DBI_Prev = DBI_Next;
12133 }
12134
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012135 IC.AddToWorkList(Inst);
12136 }
12137
12138 // Recursively visit successors. If this is a branch or switch on a
12139 // constant, only visit the reachable successor.
12140 TerminatorInst *TI = BB->getTerminator();
12141 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
12142 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
12143 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012144 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012145 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012146 continue;
12147 }
12148 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
12149 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
12150 // See if this is an explicit destination.
12151 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
12152 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012153 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012154 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012155 continue;
12156 }
12157
12158 // Otherwise it is the default destination.
12159 Worklist.push_back(SI->getSuccessor(0));
12160 continue;
12161 }
12162 }
12163
12164 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
12165 Worklist.push_back(TI->getSuccessor(i));
12166 }
12167}
12168
12169bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
12170 bool Changed = false;
12171 TD = &getAnalysis<TargetData>();
12172
12173 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12174 << F.getNameStr() << "\n");
12175
12176 {
12177 // Do a depth-first traversal of the function, populate the worklist with
12178 // the reachable instructions. Ignore blocks that are not reachable. Keep
12179 // track of which blocks we visit.
12180 SmallPtrSet<BasicBlock*, 64> Visited;
12181 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
12182
12183 // Do a quick scan over the function. If we find any blocks that are
12184 // unreachable, remove any instructions inside of them. This prevents
12185 // the instcombine code from having to deal with some bad special cases.
12186 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12187 if (!Visited.count(BB)) {
12188 Instruction *Term = BB->getTerminator();
12189 while (Term != BB->begin()) { // Remove instrs bottom-up
12190 BasicBlock::iterator I = Term; --I;
12191
12192 DOUT << "IC: DCE: " << *I;
12193 ++NumDeadInst;
12194
12195 if (!I->use_empty())
12196 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12197 I->eraseFromParent();
12198 }
12199 }
12200 }
12201
12202 while (!Worklist.empty()) {
12203 Instruction *I = RemoveOneFromWorkList();
12204 if (I == 0) continue; // skip null values.
12205
12206 // Check to see if we can DCE the instruction.
12207 if (isInstructionTriviallyDead(I)) {
12208 // Add operands to the worklist.
12209 if (I->getNumOperands() < 4)
12210 AddUsesToWorkList(*I);
12211 ++NumDeadInst;
12212
12213 DOUT << "IC: DCE: " << *I;
12214
12215 I->eraseFromParent();
12216 RemoveFromWorkList(I);
12217 continue;
12218 }
12219
12220 // Instruction isn't dead, see if we can constant propagate it.
12221 if (Constant *C = ConstantFoldInstruction(I, TD)) {
12222 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
12223
12224 // Add operands to the worklist.
12225 AddUsesToWorkList(*I);
12226 ReplaceInstUsesWith(*I, C);
12227
12228 ++NumConstProp;
12229 I->eraseFromParent();
12230 RemoveFromWorkList(I);
12231 continue;
12232 }
12233
Nick Lewyckyadb67922008-05-25 20:56:15 +000012234 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12235 // See if we can constant fold its operands.
12236 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12237 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12238 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12239 i->set(NewC);
12240 }
12241 }
12242 }
12243
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012244 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000012245 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012246 BasicBlock *BB = I->getParent();
12247 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12248 if (UserParent != BB) {
12249 bool UserIsSuccessor = false;
12250 // See if the user is one of our successors.
12251 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12252 if (*SI == UserParent) {
12253 UserIsSuccessor = true;
12254 break;
12255 }
12256
12257 // If the user is one of our immediate successors, and if that successor
12258 // only has us as a predecessors (we'd have to split the critical edge
12259 // otherwise), we can keep going.
12260 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12261 next(pred_begin(UserParent)) == pred_end(UserParent))
12262 // Okay, the CFG is simple enough, try to sink this instruction.
12263 Changed |= TryToSinkInstruction(I, UserParent);
12264 }
12265 }
12266
12267 // Now that we have an instruction, try combining it to simplify it...
12268#ifndef NDEBUG
12269 std::string OrigI;
12270#endif
12271 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
12272 if (Instruction *Result = visit(*I)) {
12273 ++NumCombined;
12274 // Should we replace the old instruction with a new one?
12275 if (Result != I) {
12276 DOUT << "IC: Old = " << *I
12277 << " New = " << *Result;
12278
12279 // Everything uses the new instruction now.
12280 I->replaceAllUsesWith(Result);
12281
12282 // Push the new instruction and any users onto the worklist.
12283 AddToWorkList(Result);
12284 AddUsersToWorkList(*Result);
12285
12286 // Move the name to the new instruction first.
12287 Result->takeName(I);
12288
12289 // Insert the new instruction into the basic block...
12290 BasicBlock *InstParent = I->getParent();
12291 BasicBlock::iterator InsertPos = I;
12292
12293 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12294 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12295 ++InsertPos;
12296
12297 InstParent->getInstList().insert(InsertPos, Result);
12298
12299 // Make sure that we reprocess all operands now that we reduced their
12300 // use counts.
12301 AddUsesToWorkList(*I);
12302
12303 // Instructions can end up on the worklist more than once. Make sure
12304 // we do not process an instruction that has been deleted.
12305 RemoveFromWorkList(I);
12306
12307 // Erase the old instruction.
12308 InstParent->getInstList().erase(I);
12309 } else {
12310#ifndef NDEBUG
12311 DOUT << "IC: Mod = " << OrigI
12312 << " New = " << *I;
12313#endif
12314
12315 // If the instruction was modified, it's possible that it is now dead.
12316 // if so, remove it.
12317 if (isInstructionTriviallyDead(I)) {
12318 // Make sure we process all operands now that we are reducing their
12319 // use counts.
12320 AddUsesToWorkList(*I);
12321
12322 // Instructions may end up in the worklist more than once. Erase all
12323 // occurrences of this instruction.
12324 RemoveFromWorkList(I);
12325 I->eraseFromParent();
12326 } else {
12327 AddToWorkList(I);
12328 AddUsersToWorkList(*I);
12329 }
12330 }
12331 Changed = true;
12332 }
12333 }
12334
12335 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000012336
12337 // Do an explicit clear, this shrinks the map if needed.
12338 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012339 return Changed;
12340}
12341
12342
12343bool InstCombiner::runOnFunction(Function &F) {
12344 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12345
12346 bool EverMadeChange = false;
12347
12348 // Iterate while there is work to do.
12349 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000012350 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012351 EverMadeChange = true;
12352 return EverMadeChange;
12353}
12354
12355FunctionPass *llvm::createInstructionCombiningPass() {
12356 return new InstCombiner();
12357}
12358
Chris Lattner6297fc72008-08-11 22:06:05 +000012359