blob: e0005bad854aca08189a31c2363d2a0eab645c3b [file] [log] [blame]
Dan Gohman2d1be872009-04-16 03:18:22 +00001//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
Nate Begemaneaa13852004-10-18 21:08:22 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
Nate Begemaneaa13852004-10-18 21:08:22 +00008//===----------------------------------------------------------------------===//
9//
Dan Gohmancec8f9d2009-05-19 20:37:36 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
Nate Begemaneaa13852004-10-18 21:08:22 +000014// This pass performs a strength reduction on array references inside loops that
Dan Gohmancec8f9d2009-05-19 20:37:36 +000015// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
Nate Begemaneaa13852004-10-18 21:08:22 +000019//
Dan Gohman572645c2010-02-12 10:34:29 +000020// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24// %i = phi [ 0, %entry ], [ %i.next, %latch ]
25// ...
26// %i.next = add %i, 1
27// %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41// instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44// smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47// multiple base registers, or as the increment expression in an addrec),
48// we may not actually need both reg and (-1 * reg) in registers; the
49// negation can be implemented by using a sub instead of an add. The
50// lack of support for taking this into consideration when making
51// register pressure decisions is partly worked around by the "Special"
52// use kind.
53//
Nate Begemaneaa13852004-10-18 21:08:22 +000054//===----------------------------------------------------------------------===//
55
Chris Lattnerbe3e5212005-08-03 23:30:08 +000056#define DEBUG_TYPE "loop-reduce"
Nate Begemaneaa13852004-10-18 21:08:22 +000057#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
Dan Gohmane5b01be2007-05-04 14:59:09 +000060#include "llvm/IntrinsicInst.h"
Jeff Cohen2f3c9b72005-03-04 04:04:26 +000061#include "llvm/DerivedTypes.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000062#include "llvm/Analysis/IVUsers.h"
Dan Gohman572645c2010-02-12 10:34:29 +000063#include "llvm/Analysis/Dominators.h"
Devang Patel0f54dcb2007-03-06 21:14:09 +000064#include "llvm/Analysis/LoopPass.h"
Nate Begeman16997482005-07-30 00:15:07 +000065#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chris Lattner9fc5cdf2011-01-02 22:09:33 +000066#include "llvm/Assembly/Writer.h"
Chris Lattnere0391be2005-08-12 22:06:11 +000067#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Nate Begemaneaa13852004-10-18 21:08:22 +000068#include "llvm/Transforms/Utils/Local.h"
Dan Gohman572645c2010-02-12 10:34:29 +000069#include "llvm/ADT/SmallBitVector.h"
70#include "llvm/ADT/SetVector.h"
71#include "llvm/ADT/DenseSet.h"
Nate Begeman16997482005-07-30 00:15:07 +000072#include "llvm/Support/Debug.h"
Andrew Trick80ef1b22011-09-27 00:44:14 +000073#include "llvm/Support/CommandLine.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000074#include "llvm/Support/ValueHandle.h"
Daniel Dunbar460f6562009-07-26 09:48:23 +000075#include "llvm/Support/raw_ostream.h"
Evan Chengd277f2c2006-03-13 23:14:23 +000076#include "llvm/Target/TargetLowering.h"
Jeff Cohencfb1d422005-07-30 18:22:27 +000077#include <algorithm>
Nate Begemaneaa13852004-10-18 21:08:22 +000078using namespace llvm;
79
Benjamin Kramer0861f572011-11-26 23:01:57 +000080static cl::opt<bool> EnableRetry(
81 "enable-lsr-retry", cl::Hidden, cl::desc("Enable LSR retry"));
Andrew Tricka02bfce2011-10-11 02:30:45 +000082
83// Temporary flag to cleanup congruent phis after LSR phi expansion.
84// It's currently disabled until we can determine whether it's truly useful or
85// not. The flag should be removed after the v3.0 release.
Andrew Trick24f670f2012-01-07 07:08:17 +000086// This is now needed for ivchains.
Benjamin Kramer0861f572011-11-26 23:01:57 +000087static cl::opt<bool> EnablePhiElim(
Andrew Trick24f670f2012-01-07 07:08:17 +000088 "enable-lsr-phielim", cl::Hidden, cl::init(true),
89 cl::desc("Enable LSR phi elimination"));
Andrew Trick80ef1b22011-09-27 00:44:14 +000090
Andrew Trick22d20c22012-01-09 21:18:52 +000091#ifndef NDEBUG
92// Stress test IV chain generation.
93static cl::opt<bool> StressIVChain(
94 "stress-ivchain", cl::Hidden, cl::init(false),
95 cl::desc("Stress test LSR IV chains"));
96#else
97static bool StressIVChain = false;
98#endif
99
Dan Gohman572645c2010-02-12 10:34:29 +0000100namespace {
Nate Begemaneaa13852004-10-18 21:08:22 +0000101
Dan Gohman572645c2010-02-12 10:34:29 +0000102/// RegSortData - This class holds data which is used to order reuse candidates.
103class RegSortData {
104public:
105 /// UsedByIndices - This represents the set of LSRUse indices which reference
106 /// a particular register.
107 SmallBitVector UsedByIndices;
108
109 RegSortData() {}
110
111 void print(raw_ostream &OS) const;
112 void dump() const;
113};
114
115}
116
117void RegSortData::print(raw_ostream &OS) const {
118 OS << "[NumUses=" << UsedByIndices.count() << ']';
119}
120
121void RegSortData::dump() const {
122 print(errs()); errs() << '\n';
123}
Dan Gohmanc17e0cf2009-02-20 04:17:46 +0000124
Chris Lattner0e5f4992006-12-19 21:40:18 +0000125namespace {
Dale Johannesendc42f482007-03-20 00:47:50 +0000126
Dan Gohman572645c2010-02-12 10:34:29 +0000127/// RegUseTracker - Map register candidates to information about how they are
128/// used.
129class RegUseTracker {
130 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
Dale Johannesendc42f482007-03-20 00:47:50 +0000131
Dan Gohman90bb3552010-05-18 22:33:00 +0000132 RegUsesTy RegUsesMap;
Dan Gohman572645c2010-02-12 10:34:29 +0000133 SmallVector<const SCEV *, 16> RegSequence;
Evan Chengd1d6b5c2006-03-16 21:53:05 +0000134
Dan Gohman572645c2010-02-12 10:34:29 +0000135public:
136 void CountRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000137 void DropRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmanc6897702010-10-07 23:33:43 +0000138 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000139
Dan Gohman572645c2010-02-12 10:34:29 +0000140 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000141
Dan Gohman572645c2010-02-12 10:34:29 +0000142 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000143
Dan Gohman572645c2010-02-12 10:34:29 +0000144 void clear();
Dan Gohmana10756e2010-01-21 02:09:26 +0000145
Dan Gohman572645c2010-02-12 10:34:29 +0000146 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
147 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
148 iterator begin() { return RegSequence.begin(); }
149 iterator end() { return RegSequence.end(); }
150 const_iterator begin() const { return RegSequence.begin(); }
151 const_iterator end() const { return RegSequence.end(); }
152};
Dan Gohmana10756e2010-01-21 02:09:26 +0000153
Dan Gohmana10756e2010-01-21 02:09:26 +0000154}
155
Dan Gohman572645c2010-02-12 10:34:29 +0000156void
157RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
158 std::pair<RegUsesTy::iterator, bool> Pair =
Dan Gohman90bb3552010-05-18 22:33:00 +0000159 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
Dan Gohman572645c2010-02-12 10:34:29 +0000160 RegSortData &RSD = Pair.first->second;
161 if (Pair.second)
162 RegSequence.push_back(Reg);
163 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
164 RSD.UsedByIndices.set(LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000165}
166
Dan Gohmanb2df4332010-05-18 23:42:37 +0000167void
168RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
169 RegUsesTy::iterator It = RegUsesMap.find(Reg);
170 assert(It != RegUsesMap.end());
171 RegSortData &RSD = It->second;
172 assert(RSD.UsedByIndices.size() > LUIdx);
173 RSD.UsedByIndices.reset(LUIdx);
174}
175
Dan Gohmana2086b32010-05-19 23:43:12 +0000176void
Dan Gohmanc6897702010-10-07 23:33:43 +0000177RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
178 assert(LUIdx <= LastLUIdx);
179
180 // Update RegUses. The data structure is not optimized for this purpose;
181 // we must iterate through it and update each of the bit vectors.
Dan Gohmana2086b32010-05-19 23:43:12 +0000182 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
Dan Gohmanc6897702010-10-07 23:33:43 +0000183 I != E; ++I) {
184 SmallBitVector &UsedByIndices = I->second.UsedByIndices;
185 if (LUIdx < UsedByIndices.size())
186 UsedByIndices[LUIdx] =
187 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
188 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
189 }
Dan Gohmana2086b32010-05-19 23:43:12 +0000190}
191
Dan Gohman572645c2010-02-12 10:34:29 +0000192bool
193RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
Dan Gohman46fd7a62010-08-29 15:18:49 +0000194 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
195 if (I == RegUsesMap.end())
196 return false;
197 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
Dan Gohman572645c2010-02-12 10:34:29 +0000198 int i = UsedByIndices.find_first();
199 if (i == -1) return false;
200 if ((size_t)i != LUIdx) return true;
201 return UsedByIndices.find_next(i) != -1;
202}
Dan Gohmana10756e2010-01-21 02:09:26 +0000203
Dan Gohman572645c2010-02-12 10:34:29 +0000204const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000205 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
206 assert(I != RegUsesMap.end() && "Unknown register!");
Dan Gohman572645c2010-02-12 10:34:29 +0000207 return I->second.UsedByIndices;
208}
Dan Gohmana10756e2010-01-21 02:09:26 +0000209
Dan Gohman572645c2010-02-12 10:34:29 +0000210void RegUseTracker::clear() {
Dan Gohman90bb3552010-05-18 22:33:00 +0000211 RegUsesMap.clear();
Dan Gohman572645c2010-02-12 10:34:29 +0000212 RegSequence.clear();
213}
Dan Gohmana10756e2010-01-21 02:09:26 +0000214
Dan Gohman572645c2010-02-12 10:34:29 +0000215namespace {
216
217/// Formula - This class holds information that describes a formula for
218/// computing satisfying a use. It may include broken-out immediates and scaled
219/// registers.
220struct Formula {
221 /// AM - This is used to represent complex addressing, as well as other kinds
222 /// of interesting uses.
223 TargetLowering::AddrMode AM;
224
225 /// BaseRegs - The list of "base" registers for this use. When this is
226 /// non-empty, AM.HasBaseReg should be set to true.
227 SmallVector<const SCEV *, 2> BaseRegs;
228
229 /// ScaledReg - The 'scaled' register for this use. This should be non-null
230 /// when AM.Scale is not zero.
231 const SCEV *ScaledReg;
232
Dan Gohmancca82142011-05-03 00:46:49 +0000233 /// UnfoldedOffset - An additional constant offset which added near the
234 /// use. This requires a temporary register, but the offset itself can
235 /// live in an add immediate field rather than a register.
236 int64_t UnfoldedOffset;
237
238 Formula() : ScaledReg(0), UnfoldedOffset(0) {}
Dan Gohman572645c2010-02-12 10:34:29 +0000239
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000240 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
Dan Gohman572645c2010-02-12 10:34:29 +0000241
242 unsigned getNumRegs() const;
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000243 Type *getType() const;
Dan Gohman572645c2010-02-12 10:34:29 +0000244
Dan Gohman5ce6d052010-05-20 15:17:54 +0000245 void DeleteBaseReg(const SCEV *&S);
246
Dan Gohman572645c2010-02-12 10:34:29 +0000247 bool referencesReg(const SCEV *S) const;
248 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
249 const RegUseTracker &RegUses) const;
250
251 void print(raw_ostream &OS) const;
252 void dump() const;
253};
254
255}
256
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000257/// DoInitialMatch - Recursion helper for InitialMatch.
Dan Gohman572645c2010-02-12 10:34:29 +0000258static void DoInitialMatch(const SCEV *S, Loop *L,
259 SmallVectorImpl<const SCEV *> &Good,
260 SmallVectorImpl<const SCEV *> &Bad,
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000261 ScalarEvolution &SE) {
Dan Gohman572645c2010-02-12 10:34:29 +0000262 // Collect expressions which properly dominate the loop header.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000263 if (SE.properlyDominates(S, L->getHeader())) {
Dan Gohman572645c2010-02-12 10:34:29 +0000264 Good.push_back(S);
265 return;
Dan Gohmana10756e2010-01-21 02:09:26 +0000266 }
Dan Gohman572645c2010-02-12 10:34:29 +0000267
268 // Look at add operands.
269 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
270 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
271 I != E; ++I)
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000272 DoInitialMatch(*I, L, Good, Bad, SE);
Dan Gohman572645c2010-02-12 10:34:29 +0000273 return;
274 }
275
276 // Look at addrec operands.
277 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
278 if (!AR->getStart()->isZero()) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000279 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
Dan Gohmandeff6212010-05-03 22:09:21 +0000280 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +0000281 AR->getStepRecurrence(SE),
Andrew Trick3228cc22011-03-14 16:50:06 +0000282 // FIXME: AR->getNoWrapFlags()
283 AR->getLoop(), SCEV::FlagAnyWrap),
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000284 L, Good, Bad, SE);
Dan Gohman572645c2010-02-12 10:34:29 +0000285 return;
286 }
287
288 // Handle a multiplication by -1 (negation) if it didn't fold.
289 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
290 if (Mul->getOperand(0)->isAllOnesValue()) {
291 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
292 const SCEV *NewMul = SE.getMulExpr(Ops);
293
294 SmallVector<const SCEV *, 4> MyGood;
295 SmallVector<const SCEV *, 4> MyBad;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000296 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
Dan Gohman572645c2010-02-12 10:34:29 +0000297 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
298 SE.getEffectiveSCEVType(NewMul->getType())));
299 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
300 E = MyGood.end(); I != E; ++I)
301 Good.push_back(SE.getMulExpr(NegOne, *I));
302 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
303 E = MyBad.end(); I != E; ++I)
304 Bad.push_back(SE.getMulExpr(NegOne, *I));
305 return;
306 }
307
308 // Ok, we can't do anything interesting. Just stuff the whole thing into a
309 // register and hope for the best.
310 Bad.push_back(S);
311}
312
313/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
314/// attempting to keep all loop-invariant and loop-computable values in a
315/// single base register.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000316void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
Dan Gohman572645c2010-02-12 10:34:29 +0000317 SmallVector<const SCEV *, 4> Good;
318 SmallVector<const SCEV *, 4> Bad;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +0000319 DoInitialMatch(S, L, Good, Bad, SE);
Dan Gohman572645c2010-02-12 10:34:29 +0000320 if (!Good.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000321 const SCEV *Sum = SE.getAddExpr(Good);
322 if (!Sum->isZero())
323 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000324 AM.HasBaseReg = true;
325 }
326 if (!Bad.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000327 const SCEV *Sum = SE.getAddExpr(Bad);
328 if (!Sum->isZero())
329 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000330 AM.HasBaseReg = true;
331 }
332}
333
334/// getNumRegs - Return the total number of register operands used by this
335/// formula. This does not include register uses implied by non-constant
336/// addrec strides.
337unsigned Formula::getNumRegs() const {
338 return !!ScaledReg + BaseRegs.size();
339}
340
341/// getType - Return the type of this formula, if it has one, or null
342/// otherwise. This type is meaningless except for the bit size.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000343Type *Formula::getType() const {
Dan Gohman572645c2010-02-12 10:34:29 +0000344 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
345 ScaledReg ? ScaledReg->getType() :
346 AM.BaseGV ? AM.BaseGV->getType() :
347 0;
348}
349
Dan Gohman5ce6d052010-05-20 15:17:54 +0000350/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
351void Formula::DeleteBaseReg(const SCEV *&S) {
352 if (&S != &BaseRegs.back())
353 std::swap(S, BaseRegs.back());
354 BaseRegs.pop_back();
355}
356
Dan Gohman572645c2010-02-12 10:34:29 +0000357/// referencesReg - Test if this formula references the given register.
358bool Formula::referencesReg(const SCEV *S) const {
359 return S == ScaledReg ||
360 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
361}
362
363/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
364/// which are used by uses other than the use with the given index.
365bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
366 const RegUseTracker &RegUses) const {
367 if (ScaledReg)
368 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
369 return true;
370 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
371 E = BaseRegs.end(); I != E; ++I)
372 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
373 return true;
374 return false;
375}
376
377void Formula::print(raw_ostream &OS) const {
378 bool First = true;
379 if (AM.BaseGV) {
380 if (!First) OS << " + "; else First = false;
381 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
382 }
383 if (AM.BaseOffs != 0) {
384 if (!First) OS << " + "; else First = false;
385 OS << AM.BaseOffs;
386 }
387 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
388 E = BaseRegs.end(); I != E; ++I) {
389 if (!First) OS << " + "; else First = false;
390 OS << "reg(" << **I << ')';
391 }
Dan Gohmanc4cfbaf2010-05-18 22:35:55 +0000392 if (AM.HasBaseReg && BaseRegs.empty()) {
393 if (!First) OS << " + "; else First = false;
394 OS << "**error: HasBaseReg**";
395 } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
396 if (!First) OS << " + "; else First = false;
397 OS << "**error: !HasBaseReg**";
398 }
Dan Gohman572645c2010-02-12 10:34:29 +0000399 if (AM.Scale != 0) {
400 if (!First) OS << " + "; else First = false;
401 OS << AM.Scale << "*reg(";
402 if (ScaledReg)
403 OS << *ScaledReg;
404 else
405 OS << "<unknown>";
406 OS << ')';
407 }
Dan Gohmancca82142011-05-03 00:46:49 +0000408 if (UnfoldedOffset != 0) {
409 if (!First) OS << " + "; else First = false;
410 OS << "imm(" << UnfoldedOffset << ')';
411 }
Dan Gohman572645c2010-02-12 10:34:29 +0000412}
413
414void Formula::dump() const {
415 print(errs()); errs() << '\n';
416}
417
Dan Gohmanaae01f12010-02-19 19:32:49 +0000418/// isAddRecSExtable - Return true if the given addrec can be sign-extended
419/// without changing its value.
420static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000421 Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000422 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000423 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
424}
425
426/// isAddSExtable - Return true if the given add can be sign-extended
427/// without changing its value.
428static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000429 Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000430 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000431 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
432}
433
Dan Gohman473e6352010-06-24 16:45:11 +0000434/// isMulSExtable - Return true if the given mul can be sign-extended
Dan Gohmanaae01f12010-02-19 19:32:49 +0000435/// without changing its value.
Dan Gohman473e6352010-06-24 16:45:11 +0000436static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000437 Type *WideTy =
Dan Gohman473e6352010-06-24 16:45:11 +0000438 IntegerType::get(SE.getContext(),
439 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
440 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
Dan Gohmanaae01f12010-02-19 19:32:49 +0000441}
442
Dan Gohmanf09b7122010-02-19 19:35:48 +0000443/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
444/// and if the remainder is known to be zero, or null otherwise. If
445/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
446/// to Y, ignoring that the multiplication may overflow, which is useful when
447/// the result will be used in a context where the most significant bits are
448/// ignored.
449static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
450 ScalarEvolution &SE,
451 bool IgnoreSignificantBits = false) {
Dan Gohman572645c2010-02-12 10:34:29 +0000452 // Handle the trivial case, which works for any SCEV type.
453 if (LHS == RHS)
Dan Gohmandeff6212010-05-03 22:09:21 +0000454 return SE.getConstant(LHS->getType(), 1);
Dan Gohman572645c2010-02-12 10:34:29 +0000455
Dan Gohmand42819a2010-06-24 16:51:25 +0000456 // Handle a few RHS special cases.
457 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
458 if (RC) {
459 const APInt &RA = RC->getValue()->getValue();
460 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
461 // some folding.
462 if (RA.isAllOnesValue())
463 return SE.getMulExpr(LHS, RC);
464 // Handle x /s 1 as x.
465 if (RA == 1)
466 return LHS;
467 }
Dan Gohman572645c2010-02-12 10:34:29 +0000468
469 // Check for a division of a constant by a constant.
470 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000471 if (!RC)
472 return 0;
Dan Gohmand42819a2010-06-24 16:51:25 +0000473 const APInt &LA = C->getValue()->getValue();
474 const APInt &RA = RC->getValue()->getValue();
475 if (LA.srem(RA) != 0)
Dan Gohman572645c2010-02-12 10:34:29 +0000476 return 0;
Dan Gohmand42819a2010-06-24 16:51:25 +0000477 return SE.getConstant(LA.sdiv(RA));
Dan Gohman572645c2010-02-12 10:34:29 +0000478 }
479
Dan Gohmanaae01f12010-02-19 19:32:49 +0000480 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000481 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000482 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000483 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
484 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000485 if (!Step) return 0;
Dan Gohman694a15e2010-08-19 01:02:31 +0000486 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
487 IgnoreSignificantBits);
488 if (!Start) return 0;
Andrew Trick3228cc22011-03-14 16:50:06 +0000489 // FlagNW is independent of the start value, step direction, and is
490 // preserved with smaller magnitude steps.
491 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
492 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000493 }
Dan Gohman2ea09e02010-06-24 16:57:52 +0000494 return 0;
Dan Gohman572645c2010-02-12 10:34:29 +0000495 }
496
Dan Gohmanaae01f12010-02-19 19:32:49 +0000497 // Distribute the sdiv over add operands, if the add doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000498 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000499 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
500 SmallVector<const SCEV *, 8> Ops;
501 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
502 I != E; ++I) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000503 const SCEV *Op = getExactSDiv(*I, RHS, SE,
504 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000505 if (!Op) return 0;
506 Ops.push_back(Op);
507 }
508 return SE.getAddExpr(Ops);
Dan Gohman572645c2010-02-12 10:34:29 +0000509 }
Dan Gohman2ea09e02010-06-24 16:57:52 +0000510 return 0;
Dan Gohman572645c2010-02-12 10:34:29 +0000511 }
512
513 // Check for a multiply operand that we can pull RHS out of.
Dan Gohman2ea09e02010-06-24 16:57:52 +0000514 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000515 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000516 SmallVector<const SCEV *, 4> Ops;
517 bool Found = false;
518 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
519 I != E; ++I) {
Dan Gohman47667442010-05-20 16:23:28 +0000520 const SCEV *S = *I;
Dan Gohman572645c2010-02-12 10:34:29 +0000521 if (!Found)
Dan Gohman47667442010-05-20 16:23:28 +0000522 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
Dan Gohmanf09b7122010-02-19 19:35:48 +0000523 IgnoreSignificantBits)) {
Dan Gohman47667442010-05-20 16:23:28 +0000524 S = Q;
Dan Gohman572645c2010-02-12 10:34:29 +0000525 Found = true;
Dan Gohman572645c2010-02-12 10:34:29 +0000526 }
Dan Gohman47667442010-05-20 16:23:28 +0000527 Ops.push_back(S);
Dan Gohman572645c2010-02-12 10:34:29 +0000528 }
529 return Found ? SE.getMulExpr(Ops) : 0;
530 }
Dan Gohman2ea09e02010-06-24 16:57:52 +0000531 return 0;
532 }
Dan Gohman572645c2010-02-12 10:34:29 +0000533
534 // Otherwise we don't know.
535 return 0;
536}
537
538/// ExtractImmediate - If S involves the addition of a constant integer value,
539/// return that integer value, and mutate S to point to a new SCEV with that
540/// value excluded.
541static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
542 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
543 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000544 S = SE.getConstant(C->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000545 return C->getValue()->getSExtValue();
546 }
547 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
548 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
549 int64_t Result = ExtractImmediate(NewOps.front(), SE);
Dan Gohmane62d5882010-08-13 21:17:19 +0000550 if (Result != 0)
551 S = SE.getAddExpr(NewOps);
Dan Gohman572645c2010-02-12 10:34:29 +0000552 return Result;
553 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
554 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
555 int64_t Result = ExtractImmediate(NewOps.front(), SE);
Dan Gohmane62d5882010-08-13 21:17:19 +0000556 if (Result != 0)
Andrew Trick3228cc22011-03-14 16:50:06 +0000557 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
558 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
559 SCEV::FlagAnyWrap);
Dan Gohman572645c2010-02-12 10:34:29 +0000560 return Result;
561 }
562 return 0;
563}
564
565/// ExtractSymbol - If S involves the addition of a GlobalValue address,
566/// return that symbol, and mutate S to point to a new SCEV with that
567/// value excluded.
568static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
569 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
570 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000571 S = SE.getConstant(GV->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000572 return GV;
573 }
574 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
575 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
576 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
Dan Gohmane62d5882010-08-13 21:17:19 +0000577 if (Result)
578 S = SE.getAddExpr(NewOps);
Dan Gohman572645c2010-02-12 10:34:29 +0000579 return Result;
580 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
581 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
582 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
Dan Gohmane62d5882010-08-13 21:17:19 +0000583 if (Result)
Andrew Trick3228cc22011-03-14 16:50:06 +0000584 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
585 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
586 SCEV::FlagAnyWrap);
Dan Gohman572645c2010-02-12 10:34:29 +0000587 return Result;
588 }
589 return 0;
Nate Begemaneaa13852004-10-18 21:08:22 +0000590}
591
Dan Gohmanf284ce22009-02-18 00:08:39 +0000592/// isAddressUse - Returns true if the specified instruction is using the
Dale Johannesen203af582008-12-05 21:47:27 +0000593/// specified value as an address.
594static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
595 bool isAddress = isa<LoadInst>(Inst);
596 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
597 if (SI->getOperand(1) == OperandVal)
598 isAddress = true;
599 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
600 // Addressing modes can also be folded into prefetches and a variety
601 // of intrinsics.
602 switch (II->getIntrinsicID()) {
603 default: break;
604 case Intrinsic::prefetch:
Dale Johannesen203af582008-12-05 21:47:27 +0000605 case Intrinsic::x86_sse_storeu_ps:
606 case Intrinsic::x86_sse2_storeu_pd:
607 case Intrinsic::x86_sse2_storeu_dq:
608 case Intrinsic::x86_sse2_storel_dq:
Gabor Greifad72e732010-06-30 09:15:28 +0000609 if (II->getArgOperand(0) == OperandVal)
Dale Johannesen203af582008-12-05 21:47:27 +0000610 isAddress = true;
611 break;
612 }
613 }
614 return isAddress;
615}
Chris Lattner0ae33eb2005-10-03 01:04:44 +0000616
Dan Gohman21e77222009-03-09 21:01:17 +0000617/// getAccessType - Return the type of the memory being accessed.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000618static Type *getAccessType(const Instruction *Inst) {
619 Type *AccessTy = Inst->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000620 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
Dan Gohmana537bf82009-05-18 16:45:28 +0000621 AccessTy = SI->getOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000622 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
623 // Addressing modes can also be folded into prefetches and a variety
624 // of intrinsics.
625 switch (II->getIntrinsicID()) {
626 default: break;
627 case Intrinsic::x86_sse_storeu_ps:
628 case Intrinsic::x86_sse2_storeu_pd:
629 case Intrinsic::x86_sse2_storeu_dq:
630 case Intrinsic::x86_sse2_storel_dq:
Gabor Greifad72e732010-06-30 09:15:28 +0000631 AccessTy = II->getArgOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000632 break;
633 }
634 }
Dan Gohman572645c2010-02-12 10:34:29 +0000635
636 // All pointers have the same requirements, so canonicalize them to an
637 // arbitrary pointer type to minimize variation.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000638 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +0000639 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
640 PTy->getAddressSpace());
641
Dan Gohmana537bf82009-05-18 16:45:28 +0000642 return AccessTy;
Dan Gohman21e77222009-03-09 21:01:17 +0000643}
644
Andrew Trick8a5d7922011-12-06 03:13:31 +0000645/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
646static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
647 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
648 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
649 if (SE.isSCEVable(PN->getType()) &&
650 (SE.getEffectiveSCEVType(PN->getType()) ==
651 SE.getEffectiveSCEVType(AR->getType())) &&
652 SE.getSCEV(PN) == AR)
653 return true;
654 }
655 return false;
656}
657
Andrew Trick64925c52012-01-10 01:45:08 +0000658/// Check if expanding this expression is likely to incur significant cost. This
659/// is tricky because SCEV doesn't track which expressions are actually computed
660/// by the current IR.
661///
662/// We currently allow expansion of IV increments that involve adds,
663/// multiplication by constants, and AddRecs from existing phis.
664///
665/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
666/// obvious multiple of the UDivExpr.
667static bool isHighCostExpansion(const SCEV *S,
668 SmallPtrSet<const SCEV*, 8> &Processed,
669 ScalarEvolution &SE) {
670 // Zero/One operand expressions
671 switch (S->getSCEVType()) {
672 case scUnknown:
673 case scConstant:
674 return false;
675 case scTruncate:
676 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
677 Processed, SE);
678 case scZeroExtend:
679 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
680 Processed, SE);
681 case scSignExtend:
682 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
683 Processed, SE);
684 }
685
686 if (!Processed.insert(S))
687 return false;
688
689 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
690 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
691 I != E; ++I) {
692 if (isHighCostExpansion(*I, Processed, SE))
693 return true;
694 }
695 return false;
696 }
697
698 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
699 if (Mul->getNumOperands() == 2) {
700 // Multiplication by a constant is ok
701 if (isa<SCEVConstant>(Mul->getOperand(0)))
702 return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
703
704 // If we have the value of one operand, check if an existing
705 // multiplication already generates this expression.
706 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
707 Value *UVal = U->getValue();
708 for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
709 UI != UE; ++UI) {
710 Instruction *User = cast<Instruction>(*UI);
711 if (User->getOpcode() == Instruction::Mul
712 && SE.isSCEVable(User->getType())) {
713 return SE.getSCEV(User) == Mul;
714 }
715 }
716 }
717 }
718 }
719
720 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
721 if (isExistingPhi(AR, SE))
722 return false;
723 }
724
725 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
726 return true;
727}
728
Dan Gohman572645c2010-02-12 10:34:29 +0000729/// DeleteTriviallyDeadInstructions - If any of the instructions is the
730/// specified set are trivially dead, delete them and see if this makes any of
731/// their operands subsequently dead.
732static bool
733DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
734 bool Changed = false;
735
736 while (!DeadInsts.empty()) {
Gabor Greiff097b592010-09-18 11:55:34 +0000737 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
Dan Gohman572645c2010-02-12 10:34:29 +0000738
739 if (I == 0 || !isInstructionTriviallyDead(I))
740 continue;
741
742 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
743 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
744 *OI = 0;
745 if (U->use_empty())
746 DeadInsts.push_back(U);
747 }
748
749 I->eraseFromParent();
750 Changed = true;
751 }
752
753 return Changed;
754}
755
Dan Gohman7979b722010-01-22 00:46:49 +0000756namespace {
Jim Grosbach56a1f802009-11-17 17:53:56 +0000757
Dan Gohman572645c2010-02-12 10:34:29 +0000758/// Cost - This class is used to measure and compare candidate formulae.
759class Cost {
760 /// TODO: Some of these could be merged. Also, a lexical ordering
761 /// isn't always optimal.
762 unsigned NumRegs;
763 unsigned AddRecCost;
764 unsigned NumIVMuls;
765 unsigned NumBaseAdds;
766 unsigned ImmCost;
767 unsigned SetupCost;
Nate Begeman16997482005-07-30 00:15:07 +0000768
Dan Gohman572645c2010-02-12 10:34:29 +0000769public:
770 Cost()
771 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
772 SetupCost(0) {}
Jim Grosbach56a1f802009-11-17 17:53:56 +0000773
Dan Gohman572645c2010-02-12 10:34:29 +0000774 bool operator<(const Cost &Other) const;
Dan Gohman7979b722010-01-22 00:46:49 +0000775
Dan Gohman572645c2010-02-12 10:34:29 +0000776 void Loose();
Dan Gohman7979b722010-01-22 00:46:49 +0000777
Andrew Trick7d11bd82011-09-26 23:11:04 +0000778#ifndef NDEBUG
779 // Once any of the metrics loses, they must all remain losers.
780 bool isValid() {
781 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
782 | ImmCost | SetupCost) != ~0u)
783 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
784 & ImmCost & SetupCost) == ~0u);
785 }
786#endif
787
788 bool isLoser() {
789 assert(isValid() && "invalid cost");
790 return NumRegs == ~0u;
791 }
792
Dan Gohman572645c2010-02-12 10:34:29 +0000793 void RateFormula(const Formula &F,
794 SmallPtrSet<const SCEV *, 16> &Regs,
795 const DenseSet<const SCEV *> &VisitedRegs,
796 const Loop *L,
797 const SmallVectorImpl<int64_t> &Offsets,
Andrew Trick8a5d7922011-12-06 03:13:31 +0000798 ScalarEvolution &SE, DominatorTree &DT,
799 SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
Dan Gohman7979b722010-01-22 00:46:49 +0000800
Dan Gohman572645c2010-02-12 10:34:29 +0000801 void print(raw_ostream &OS) const;
802 void dump() const;
Dan Gohman7979b722010-01-22 00:46:49 +0000803
Dan Gohman572645c2010-02-12 10:34:29 +0000804private:
805 void RateRegister(const SCEV *Reg,
806 SmallPtrSet<const SCEV *, 16> &Regs,
807 const Loop *L,
808 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman9214b822010-02-13 02:06:02 +0000809 void RatePrimaryRegister(const SCEV *Reg,
810 SmallPtrSet<const SCEV *, 16> &Regs,
811 const Loop *L,
Andrew Trick8a5d7922011-12-06 03:13:31 +0000812 ScalarEvolution &SE, DominatorTree &DT,
813 SmallPtrSet<const SCEV *, 16> *LoserRegs);
Dan Gohman572645c2010-02-12 10:34:29 +0000814};
815
816}
817
818/// RateRegister - Tally up interesting quantities from the given register.
819void Cost::RateRegister(const SCEV *Reg,
820 SmallPtrSet<const SCEV *, 16> &Regs,
821 const Loop *L,
822 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000823 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
Andrew Trick0c01bc32011-09-29 01:33:38 +0000824 // If this is an addrec for another loop, don't second-guess its addrec phi
825 // nodes. LSR isn't currently smart enough to reason about more than one
Andrew Trickbd618f12012-03-22 22:42:45 +0000826 // loop at a time. LSR has already run on inner loops, will not run on outer
827 // loops, and cannot be expected to change sibling loops.
828 if (AR->getLoop() != L) {
829 // If the AddRec exists, consider it's register free and leave it alone.
Andrew Trick8a5d7922011-12-06 03:13:31 +0000830 if (isExistingPhi(AR, SE))
831 return;
832
Andrew Trickbd618f12012-03-22 22:42:45 +0000833 // Otherwise, do not consider this formula at all.
834 Loose();
835 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000836 }
Andrew Trickbd618f12012-03-22 22:42:45 +0000837 AddRecCost += 1; /// TODO: This should be a function of the stride.
Dan Gohman572645c2010-02-12 10:34:29 +0000838
Dan Gohman9214b822010-02-13 02:06:02 +0000839 // Add the step value register, if it needs one.
840 // TODO: The non-affine case isn't precisely modeled here.
Andrew Trick25b689e2011-09-26 23:35:25 +0000841 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
842 if (!Regs.count(AR->getOperand(1))) {
Dan Gohman9214b822010-02-13 02:06:02 +0000843 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
Andrew Trick25b689e2011-09-26 23:35:25 +0000844 if (isLoser())
845 return;
846 }
847 }
Dan Gohman572645c2010-02-12 10:34:29 +0000848 }
Dan Gohman9214b822010-02-13 02:06:02 +0000849 ++NumRegs;
850
851 // Rough heuristic; favor registers which don't require extra setup
852 // instructions in the preheader.
853 if (!isa<SCEVUnknown>(Reg) &&
854 !isa<SCEVConstant>(Reg) &&
855 !(isa<SCEVAddRecExpr>(Reg) &&
856 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
857 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
858 ++SetupCost;
Dan Gohman23c3fde2010-10-07 23:41:58 +0000859
860 NumIVMuls += isa<SCEVMulExpr>(Reg) &&
Dan Gohman17ead4f2010-11-17 21:23:15 +0000861 SE.hasComputableLoopEvolution(Reg, L);
Dan Gohman9214b822010-02-13 02:06:02 +0000862}
863
864/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
Andrew Trick8a5d7922011-12-06 03:13:31 +0000865/// before, rate it. Optional LoserRegs provides a way to declare any formula
866/// that refers to one of those regs an instant loser.
Dan Gohman9214b822010-02-13 02:06:02 +0000867void Cost::RatePrimaryRegister(const SCEV *Reg,
Dan Gohman7fca2292010-02-16 19:42:34 +0000868 SmallPtrSet<const SCEV *, 16> &Regs,
869 const Loop *L,
Andrew Trick8a5d7922011-12-06 03:13:31 +0000870 ScalarEvolution &SE, DominatorTree &DT,
871 SmallPtrSet<const SCEV *, 16> *LoserRegs) {
872 if (LoserRegs && LoserRegs->count(Reg)) {
873 Loose();
874 return;
875 }
876 if (Regs.insert(Reg)) {
Dan Gohman9214b822010-02-13 02:06:02 +0000877 RateRegister(Reg, Regs, L, SE, DT);
Andrew Trick8a5d7922011-12-06 03:13:31 +0000878 if (isLoser())
879 LoserRegs->insert(Reg);
880 }
Dan Gohman572645c2010-02-12 10:34:29 +0000881}
882
883void Cost::RateFormula(const Formula &F,
884 SmallPtrSet<const SCEV *, 16> &Regs,
885 const DenseSet<const SCEV *> &VisitedRegs,
886 const Loop *L,
887 const SmallVectorImpl<int64_t> &Offsets,
Andrew Trick8a5d7922011-12-06 03:13:31 +0000888 ScalarEvolution &SE, DominatorTree &DT,
889 SmallPtrSet<const SCEV *, 16> *LoserRegs) {
Dan Gohman572645c2010-02-12 10:34:29 +0000890 // Tally up the registers.
891 if (const SCEV *ScaledReg = F.ScaledReg) {
892 if (VisitedRegs.count(ScaledReg)) {
893 Loose();
894 return;
895 }
Andrew Trick8a5d7922011-12-06 03:13:31 +0000896 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
Andrew Trick7d11bd82011-09-26 23:11:04 +0000897 if (isLoser())
898 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000899 }
900 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
901 E = F.BaseRegs.end(); I != E; ++I) {
902 const SCEV *BaseReg = *I;
903 if (VisitedRegs.count(BaseReg)) {
904 Loose();
905 return;
906 }
Andrew Trick8a5d7922011-12-06 03:13:31 +0000907 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
Andrew Trick7d11bd82011-09-26 23:11:04 +0000908 if (isLoser())
909 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000910 }
911
Dan Gohmancca82142011-05-03 00:46:49 +0000912 // Determine how many (unfolded) adds we'll need inside the loop.
913 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
914 if (NumBaseParts > 1)
915 NumBaseAdds += NumBaseParts - 1;
Dan Gohman572645c2010-02-12 10:34:29 +0000916
917 // Tally up the non-zero immediates.
918 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
919 E = Offsets.end(); I != E; ++I) {
920 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
921 if (F.AM.BaseGV)
922 ImmCost += 64; // Handle symbolic values conservatively.
923 // TODO: This should probably be the pointer size.
924 else if (Offset != 0)
925 ImmCost += APInt(64, Offset, true).getMinSignedBits();
926 }
Andrew Trick7d11bd82011-09-26 23:11:04 +0000927 assert(isValid() && "invalid cost");
Dan Gohman572645c2010-02-12 10:34:29 +0000928}
929
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000930/// Loose - Set this cost to a losing value.
Dan Gohman572645c2010-02-12 10:34:29 +0000931void Cost::Loose() {
932 NumRegs = ~0u;
933 AddRecCost = ~0u;
934 NumIVMuls = ~0u;
935 NumBaseAdds = ~0u;
936 ImmCost = ~0u;
937 SetupCost = ~0u;
938}
939
940/// operator< - Choose the lower cost.
941bool Cost::operator<(const Cost &Other) const {
942 if (NumRegs != Other.NumRegs)
943 return NumRegs < Other.NumRegs;
944 if (AddRecCost != Other.AddRecCost)
945 return AddRecCost < Other.AddRecCost;
946 if (NumIVMuls != Other.NumIVMuls)
947 return NumIVMuls < Other.NumIVMuls;
948 if (NumBaseAdds != Other.NumBaseAdds)
949 return NumBaseAdds < Other.NumBaseAdds;
950 if (ImmCost != Other.ImmCost)
951 return ImmCost < Other.ImmCost;
952 if (SetupCost != Other.SetupCost)
953 return SetupCost < Other.SetupCost;
954 return false;
955}
956
957void Cost::print(raw_ostream &OS) const {
958 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
959 if (AddRecCost != 0)
960 OS << ", with addrec cost " << AddRecCost;
961 if (NumIVMuls != 0)
962 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
963 if (NumBaseAdds != 0)
964 OS << ", plus " << NumBaseAdds << " base add"
965 << (NumBaseAdds == 1 ? "" : "s");
966 if (ImmCost != 0)
967 OS << ", plus " << ImmCost << " imm cost";
968 if (SetupCost != 0)
969 OS << ", plus " << SetupCost << " setup cost";
970}
971
972void Cost::dump() const {
973 print(errs()); errs() << '\n';
974}
975
976namespace {
977
978/// LSRFixup - An operand value in an instruction which is to be replaced
979/// with some equivalent, possibly strength-reduced, replacement.
980struct LSRFixup {
981 /// UserInst - The instruction which will be updated.
982 Instruction *UserInst;
983
984 /// OperandValToReplace - The operand of the instruction which will
985 /// be replaced. The operand may be used more than once; every instance
986 /// will be replaced.
987 Value *OperandValToReplace;
988
Dan Gohman448db1c2010-04-07 22:27:08 +0000989 /// PostIncLoops - If this user is to use the post-incremented value of an
Dan Gohman572645c2010-02-12 10:34:29 +0000990 /// induction variable, this variable is non-null and holds the loop
991 /// associated with the induction variable.
Dan Gohman448db1c2010-04-07 22:27:08 +0000992 PostIncLoopSet PostIncLoops;
Dan Gohman572645c2010-02-12 10:34:29 +0000993
994 /// LUIdx - The index of the LSRUse describing the expression which
995 /// this fixup needs, minus an offset (below).
996 size_t LUIdx;
997
998 /// Offset - A constant offset to be added to the LSRUse expression.
999 /// This allows multiple fixups to share the same LSRUse with different
1000 /// offsets, for example in an unrolled loop.
1001 int64_t Offset;
1002
Dan Gohman448db1c2010-04-07 22:27:08 +00001003 bool isUseFullyOutsideLoop(const Loop *L) const;
1004
Dan Gohman572645c2010-02-12 10:34:29 +00001005 LSRFixup();
1006
1007 void print(raw_ostream &OS) const;
1008 void dump() const;
1009};
1010
1011}
1012
1013LSRFixup::LSRFixup()
Dan Gohmanea507f52010-05-20 19:44:23 +00001014 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
Dan Gohman572645c2010-02-12 10:34:29 +00001015
Dan Gohman448db1c2010-04-07 22:27:08 +00001016/// isUseFullyOutsideLoop - Test whether this fixup always uses its
1017/// value outside of the given loop.
1018bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1019 // PHI nodes use their value in their incoming blocks.
1020 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1021 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1022 if (PN->getIncomingValue(i) == OperandValToReplace &&
1023 L->contains(PN->getIncomingBlock(i)))
1024 return false;
1025 return true;
1026 }
1027
1028 return !L->contains(UserInst);
1029}
1030
Dan Gohman572645c2010-02-12 10:34:29 +00001031void LSRFixup::print(raw_ostream &OS) const {
1032 OS << "UserInst=";
1033 // Store is common and interesting enough to be worth special-casing.
1034 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1035 OS << "store ";
1036 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
1037 } else if (UserInst->getType()->isVoidTy())
1038 OS << UserInst->getOpcodeName();
1039 else
1040 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
1041
1042 OS << ", OperandValToReplace=";
1043 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
1044
Dan Gohman448db1c2010-04-07 22:27:08 +00001045 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
1046 E = PostIncLoops.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +00001047 OS << ", PostIncLoop=";
Dan Gohman448db1c2010-04-07 22:27:08 +00001048 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
Dan Gohman572645c2010-02-12 10:34:29 +00001049 }
1050
1051 if (LUIdx != ~size_t(0))
1052 OS << ", LUIdx=" << LUIdx;
1053
1054 if (Offset != 0)
1055 OS << ", Offset=" << Offset;
1056}
1057
1058void LSRFixup::dump() const {
1059 print(errs()); errs() << '\n';
1060}
1061
1062namespace {
1063
1064/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
1065/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
1066struct UniquifierDenseMapInfo {
1067 static SmallVector<const SCEV *, 2> getEmptyKey() {
1068 SmallVector<const SCEV *, 2> V;
1069 V.push_back(reinterpret_cast<const SCEV *>(-1));
1070 return V;
1071 }
1072
1073 static SmallVector<const SCEV *, 2> getTombstoneKey() {
1074 SmallVector<const SCEV *, 2> V;
1075 V.push_back(reinterpret_cast<const SCEV *>(-2));
1076 return V;
1077 }
1078
1079 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
1080 unsigned Result = 0;
1081 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
1082 E = V.end(); I != E; ++I)
1083 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
1084 return Result;
1085 }
1086
1087 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
1088 const SmallVector<const SCEV *, 2> &RHS) {
1089 return LHS == RHS;
1090 }
1091};
1092
1093/// LSRUse - This class holds the state that LSR keeps for each use in
1094/// IVUsers, as well as uses invented by LSR itself. It includes information
1095/// about what kinds of things can be folded into the user, information about
1096/// the user itself, and information about how the use may be satisfied.
1097/// TODO: Represent multiple users of the same expression in common?
1098class LSRUse {
1099 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
1100
1101public:
1102 /// KindType - An enum for a kind of use, indicating what types of
1103 /// scaled and immediate operands it might support.
1104 enum KindType {
1105 Basic, ///< A normal use, with no folding.
1106 Special, ///< A special case of basic, allowing -1 scales.
1107 Address, ///< An address use; folding according to TargetLowering
1108 ICmpZero ///< An equality icmp with both operands folded into one.
1109 // TODO: Add a generic icmp too?
Dan Gohman7979b722010-01-22 00:46:49 +00001110 };
Dan Gohman572645c2010-02-12 10:34:29 +00001111
1112 KindType Kind;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001113 Type *AccessTy;
Dan Gohman572645c2010-02-12 10:34:29 +00001114
1115 SmallVector<int64_t, 8> Offsets;
1116 int64_t MinOffset;
1117 int64_t MaxOffset;
1118
1119 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
1120 /// LSRUse are outside of the loop, in which case some special-case heuristics
1121 /// may be used.
1122 bool AllFixupsOutsideLoop;
1123
Dan Gohmana9db1292010-07-15 20:24:58 +00001124 /// WidestFixupType - This records the widest use type for any fixup using
1125 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
1126 /// max fixup widths to be equivalent, because the narrower one may be relying
1127 /// on the implicit truncation to truncate away bogus bits.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001128 Type *WidestFixupType;
Dan Gohmana9db1292010-07-15 20:24:58 +00001129
Dan Gohman572645c2010-02-12 10:34:29 +00001130 /// Formulae - A list of ways to build a value that can satisfy this user.
1131 /// After the list is populated, one of these is selected heuristically and
1132 /// used to formulate a replacement for OperandValToReplace in UserInst.
1133 SmallVector<Formula, 12> Formulae;
1134
1135 /// Regs - The set of register candidates used by all formulae in this LSRUse.
1136 SmallPtrSet<const SCEV *, 4> Regs;
1137
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001138 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
Dan Gohman572645c2010-02-12 10:34:29 +00001139 MinOffset(INT64_MAX),
1140 MaxOffset(INT64_MIN),
Dan Gohmana9db1292010-07-15 20:24:58 +00001141 AllFixupsOutsideLoop(true),
1142 WidestFixupType(0) {}
Dan Gohman572645c2010-02-12 10:34:29 +00001143
Dan Gohmana2086b32010-05-19 23:43:12 +00001144 bool HasFormulaWithSameRegs(const Formula &F) const;
Dan Gohman454d26d2010-02-22 04:11:59 +00001145 bool InsertFormula(const Formula &F);
Dan Gohmand69d6282010-05-18 22:39:15 +00001146 void DeleteFormula(Formula &F);
Dan Gohmanb2df4332010-05-18 23:42:37 +00001147 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
Dan Gohman572645c2010-02-12 10:34:29 +00001148
Dan Gohman572645c2010-02-12 10:34:29 +00001149 void print(raw_ostream &OS) const;
1150 void dump() const;
1151};
1152
Dan Gohmanb6211712010-06-19 21:21:39 +00001153}
1154
Dan Gohmana2086b32010-05-19 23:43:12 +00001155/// HasFormula - Test whether this use as a formula which has the same
1156/// registers as the given formula.
1157bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1158 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1159 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1160 // Unstable sort by host order ok, because this is only used for uniquifying.
1161 std::sort(Key.begin(), Key.end());
1162 return Uniquifier.count(Key);
1163}
1164
Dan Gohman572645c2010-02-12 10:34:29 +00001165/// InsertFormula - If the given formula has not yet been inserted, add it to
1166/// the list, and return true. Return false otherwise.
Dan Gohman454d26d2010-02-22 04:11:59 +00001167bool LSRUse::InsertFormula(const Formula &F) {
Dan Gohman572645c2010-02-12 10:34:29 +00001168 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1169 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1170 // Unstable sort by host order ok, because this is only used for uniquifying.
1171 std::sort(Key.begin(), Key.end());
1172
1173 if (!Uniquifier.insert(Key).second)
1174 return false;
1175
1176 // Using a register to hold the value of 0 is not profitable.
1177 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1178 "Zero allocated in a scaled register!");
1179#ifndef NDEBUG
1180 for (SmallVectorImpl<const SCEV *>::const_iterator I =
1181 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1182 assert(!(*I)->isZero() && "Zero allocated in a base register!");
1183#endif
1184
1185 // Add the formula to the list.
1186 Formulae.push_back(F);
1187
1188 // Record registers now being used by this use.
Dan Gohman572645c2010-02-12 10:34:29 +00001189 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1190
1191 return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001192}
1193
Dan Gohmand69d6282010-05-18 22:39:15 +00001194/// DeleteFormula - Remove the given formula from this use's list.
1195void LSRUse::DeleteFormula(Formula &F) {
Dan Gohman5ce6d052010-05-20 15:17:54 +00001196 if (&F != &Formulae.back())
1197 std::swap(F, Formulae.back());
Dan Gohmand69d6282010-05-18 22:39:15 +00001198 Formulae.pop_back();
1199}
1200
Dan Gohmanb2df4332010-05-18 23:42:37 +00001201/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1202void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1203 // Now that we've filtered out some formulae, recompute the Regs set.
1204 SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1205 Regs.clear();
Dan Gohman402d4352010-05-20 20:33:18 +00001206 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1207 E = Formulae.end(); I != E; ++I) {
1208 const Formula &F = *I;
Dan Gohmanb2df4332010-05-18 23:42:37 +00001209 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1210 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1211 }
1212
1213 // Update the RegTracker.
1214 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1215 E = OldRegs.end(); I != E; ++I)
1216 if (!Regs.count(*I))
1217 RegUses.DropRegister(*I, LUIdx);
1218}
1219
Dan Gohman572645c2010-02-12 10:34:29 +00001220void LSRUse::print(raw_ostream &OS) const {
1221 OS << "LSR Use: Kind=";
1222 switch (Kind) {
1223 case Basic: OS << "Basic"; break;
1224 case Special: OS << "Special"; break;
1225 case ICmpZero: OS << "ICmpZero"; break;
1226 case Address:
1227 OS << "Address of ";
Duncan Sands1df98592010-02-16 11:11:14 +00001228 if (AccessTy->isPointerTy())
Dan Gohman572645c2010-02-12 10:34:29 +00001229 OS << "pointer"; // the full pointer type could be really verbose
1230 else
1231 OS << *AccessTy;
Evan Chengcdf43b12007-10-25 09:11:16 +00001232 }
1233
Dan Gohman572645c2010-02-12 10:34:29 +00001234 OS << ", Offsets={";
1235 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1236 E = Offsets.end(); I != E; ++I) {
1237 OS << *I;
Oscar Fuentesee56c422010-08-02 06:00:15 +00001238 if (llvm::next(I) != E)
Dan Gohman572645c2010-02-12 10:34:29 +00001239 OS << ',';
Dan Gohman7979b722010-01-22 00:46:49 +00001240 }
Dan Gohman572645c2010-02-12 10:34:29 +00001241 OS << '}';
Dan Gohman7979b722010-01-22 00:46:49 +00001242
Dan Gohman572645c2010-02-12 10:34:29 +00001243 if (AllFixupsOutsideLoop)
1244 OS << ", all-fixups-outside-loop";
Dan Gohmana9db1292010-07-15 20:24:58 +00001245
1246 if (WidestFixupType)
1247 OS << ", widest fixup type: " << *WidestFixupType;
Dan Gohman7979b722010-01-22 00:46:49 +00001248}
1249
Dan Gohman572645c2010-02-12 10:34:29 +00001250void LSRUse::dump() const {
1251 print(errs()); errs() << '\n';
1252}
Dan Gohman7979b722010-01-22 00:46:49 +00001253
Dan Gohman572645c2010-02-12 10:34:29 +00001254/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1255/// be completely folded into the user instruction at isel time. This includes
1256/// address-mode folding and special icmp tricks.
1257static bool isLegalUse(const TargetLowering::AddrMode &AM,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001258 LSRUse::KindType Kind, Type *AccessTy,
Dan Gohman572645c2010-02-12 10:34:29 +00001259 const TargetLowering *TLI) {
1260 switch (Kind) {
1261 case LSRUse::Address:
1262 // If we have low-level target information, ask the target if it can
1263 // completely fold this address.
1264 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1265
1266 // Otherwise, just guess that reg+reg addressing is legal.
1267 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1268
1269 case LSRUse::ICmpZero:
1270 // There's not even a target hook for querying whether it would be legal to
1271 // fold a GV into an ICmp.
1272 if (AM.BaseGV)
1273 return false;
1274
1275 // ICmp only has two operands; don't allow more than two non-trivial parts.
1276 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1277 return false;
1278
1279 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1280 // putting the scaled register in the other operand of the icmp.
1281 if (AM.Scale != 0 && AM.Scale != -1)
1282 return false;
1283
1284 // If we have low-level target information, ask the target if it can fold an
1285 // integer immediate on an icmp.
1286 if (AM.BaseOffs != 0) {
Eli Friedmandae36ba2011-10-13 23:48:33 +00001287 if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs);
Dan Gohman572645c2010-02-12 10:34:29 +00001288 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001289 }
Dan Gohman572645c2010-02-12 10:34:29 +00001290
1291 return true;
1292
1293 case LSRUse::Basic:
1294 // Only handle single-register values.
1295 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1296
1297 case LSRUse::Special:
1298 // Only handle -1 scales, or no scale.
1299 return AM.Scale == 0 || AM.Scale == -1;
Dan Gohman7979b722010-01-22 00:46:49 +00001300 }
1301
David Blaikie4d6ccb52012-01-20 21:51:11 +00001302 llvm_unreachable("Invalid LSRUse Kind!");
Dan Gohman7979b722010-01-22 00:46:49 +00001303}
1304
Dan Gohman572645c2010-02-12 10:34:29 +00001305static bool isLegalUse(TargetLowering::AddrMode AM,
1306 int64_t MinOffset, int64_t MaxOffset,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001307 LSRUse::KindType Kind, Type *AccessTy,
Dan Gohman572645c2010-02-12 10:34:29 +00001308 const TargetLowering *TLI) {
1309 // Check for overflow.
1310 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1311 (MinOffset > 0))
1312 return false;
1313 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1314 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1315 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1316 // Check for overflow.
1317 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1318 (MaxOffset > 0))
1319 return false;
1320 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1321 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001322 }
Dan Gohman572645c2010-02-12 10:34:29 +00001323 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001324}
1325
Dan Gohman572645c2010-02-12 10:34:29 +00001326static bool isAlwaysFoldable(int64_t BaseOffs,
1327 GlobalValue *BaseGV,
1328 bool HasBaseReg,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001329 LSRUse::KindType Kind, Type *AccessTy,
Dan Gohman454d26d2010-02-22 04:11:59 +00001330 const TargetLowering *TLI) {
Dan Gohman572645c2010-02-12 10:34:29 +00001331 // Fast-path: zero is always foldable.
1332 if (BaseOffs == 0 && !BaseGV) return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001333
Dan Gohman572645c2010-02-12 10:34:29 +00001334 // Conservatively, create an address with an immediate and a
1335 // base and a scale.
1336 TargetLowering::AddrMode AM;
1337 AM.BaseOffs = BaseOffs;
1338 AM.BaseGV = BaseGV;
1339 AM.HasBaseReg = HasBaseReg;
1340 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001341
Dan Gohmana2086b32010-05-19 23:43:12 +00001342 // Canonicalize a scale of 1 to a base register if the formula doesn't
1343 // already have a base register.
1344 if (!AM.HasBaseReg && AM.Scale == 1) {
1345 AM.Scale = 0;
1346 AM.HasBaseReg = true;
1347 }
1348
Dan Gohman572645c2010-02-12 10:34:29 +00001349 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001350}
1351
Dan Gohman572645c2010-02-12 10:34:29 +00001352static bool isAlwaysFoldable(const SCEV *S,
1353 int64_t MinOffset, int64_t MaxOffset,
1354 bool HasBaseReg,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001355 LSRUse::KindType Kind, Type *AccessTy,
Dan Gohman572645c2010-02-12 10:34:29 +00001356 const TargetLowering *TLI,
1357 ScalarEvolution &SE) {
1358 // Fast-path: zero is always foldable.
1359 if (S->isZero()) return true;
1360
1361 // Conservatively, create an address with an immediate and a
1362 // base and a scale.
1363 int64_t BaseOffs = ExtractImmediate(S, SE);
1364 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1365
1366 // If there's anything else involved, it's not foldable.
1367 if (!S->isZero()) return false;
1368
1369 // Fast-path: zero is always foldable.
1370 if (BaseOffs == 0 && !BaseGV) return true;
1371
1372 // Conservatively, create an address with an immediate and a
1373 // base and a scale.
1374 TargetLowering::AddrMode AM;
1375 AM.BaseOffs = BaseOffs;
1376 AM.BaseGV = BaseGV;
1377 AM.HasBaseReg = HasBaseReg;
1378 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1379
1380 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001381}
1382
Dan Gohmanb6211712010-06-19 21:21:39 +00001383namespace {
1384
Dan Gohman1e3121c2010-06-19 21:29:59 +00001385/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1386/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1387struct UseMapDenseMapInfo {
1388 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1389 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1390 }
1391
1392 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1393 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1394 }
1395
1396 static unsigned
1397 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1398 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1399 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1400 return Result;
1401 }
1402
1403 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1404 const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1405 return LHS == RHS;
1406 }
1407};
1408
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00001409/// IVInc - An individual increment in a Chain of IV increments.
1410/// Relate an IV user to an expression that computes the IV it uses from the IV
1411/// used by the previous link in the Chain.
1412///
1413/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1414/// original IVOperand. The head of the chain's IVOperand is only valid during
1415/// chain collection, before LSR replaces IV users. During chain generation,
1416/// IncExpr can be used to find the new IVOperand that computes the same
1417/// expression.
1418struct IVInc {
1419 Instruction *UserInst;
1420 Value* IVOperand;
1421 const SCEV *IncExpr;
1422
1423 IVInc(Instruction *U, Value *O, const SCEV *E):
1424 UserInst(U), IVOperand(O), IncExpr(E) {}
1425};
1426
1427// IVChain - The list of IV increments in program order.
1428// We typically add the head of a chain without finding subsequent links.
1429typedef SmallVector<IVInc,1> IVChain;
1430
1431/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
1432/// Distinguish between FarUsers that definitely cross IV increments and
1433/// NearUsers that may be used between IV increments.
1434struct ChainUsers {
1435 SmallPtrSet<Instruction*, 4> FarUsers;
1436 SmallPtrSet<Instruction*, 4> NearUsers;
1437};
1438
Dan Gohman572645c2010-02-12 10:34:29 +00001439/// LSRInstance - This class holds state for the main loop strength reduction
1440/// logic.
1441class LSRInstance {
1442 IVUsers &IU;
1443 ScalarEvolution &SE;
1444 DominatorTree &DT;
Dan Gohmane5f76872010-04-09 22:07:05 +00001445 LoopInfo &LI;
Dan Gohman572645c2010-02-12 10:34:29 +00001446 const TargetLowering *const TLI;
1447 Loop *const L;
1448 bool Changed;
1449
1450 /// IVIncInsertPos - This is the insert position that the current loop's
1451 /// induction variable increment should be placed. In simple loops, this is
1452 /// the latch block's terminator. But in more complicated cases, this is a
1453 /// position which will dominate all the in-loop post-increment users.
1454 Instruction *IVIncInsertPos;
1455
1456 /// Factors - Interesting factors between use strides.
1457 SmallSetVector<int64_t, 8> Factors;
1458
1459 /// Types - Interesting use types, to facilitate truncation reuse.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001460 SmallSetVector<Type *, 4> Types;
Dan Gohman572645c2010-02-12 10:34:29 +00001461
1462 /// Fixups - The list of operands which are to be replaced.
1463 SmallVector<LSRFixup, 16> Fixups;
1464
1465 /// Uses - The list of interesting uses.
1466 SmallVector<LSRUse, 16> Uses;
1467
1468 /// RegUses - Track which uses use which register candidates.
1469 RegUseTracker RegUses;
1470
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00001471 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1472 // have more than a few IV increment chains in a loop. Missing a Chain falls
1473 // back to normal LSR behavior for those uses.
1474 static const unsigned MaxChains = 8;
1475
1476 /// IVChainVec - IV users can form a chain of IV increments.
1477 SmallVector<IVChain, MaxChains> IVChainVec;
1478
Andrew Trick22d20c22012-01-09 21:18:52 +00001479 /// IVIncSet - IV users that belong to profitable IVChains.
1480 SmallPtrSet<Use*, MaxChains> IVIncSet;
1481
Dan Gohman572645c2010-02-12 10:34:29 +00001482 void OptimizeShadowIV();
1483 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1484 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
Dan Gohmanc6519f92010-05-20 20:05:31 +00001485 void OptimizeLoopTermCond();
Dan Gohman572645c2010-02-12 10:34:29 +00001486
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00001487 void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1488 SmallVectorImpl<ChainUsers> &ChainUsersVec);
Andrew Trick22d20c22012-01-09 21:18:52 +00001489 void FinalizeChain(IVChain &Chain);
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00001490 void CollectChains();
Andrew Trick22d20c22012-01-09 21:18:52 +00001491 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1492 SmallVectorImpl<WeakVH> &DeadInsts);
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00001493
Dan Gohman572645c2010-02-12 10:34:29 +00001494 void CollectInterestingTypesAndFactors();
1495 void CollectFixupsAndInitialFormulae();
1496
1497 LSRFixup &getNewFixup() {
1498 Fixups.push_back(LSRFixup());
1499 return Fixups.back();
1500 }
1501
1502 // Support for sharing of LSRUses between LSRFixups.
Dan Gohman1e3121c2010-06-19 21:29:59 +00001503 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1504 size_t,
1505 UseMapDenseMapInfo> UseMapTy;
Dan Gohman572645c2010-02-12 10:34:29 +00001506 UseMapTy UseMap;
1507
Dan Gohman191bd642010-09-01 01:45:53 +00001508 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001509 LSRUse::KindType Kind, Type *AccessTy);
Dan Gohman572645c2010-02-12 10:34:29 +00001510
1511 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1512 LSRUse::KindType Kind,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001513 Type *AccessTy);
Dan Gohman572645c2010-02-12 10:34:29 +00001514
Dan Gohmanc6897702010-10-07 23:33:43 +00001515 void DeleteUse(LSRUse &LU, size_t LUIdx);
Dan Gohman5ce6d052010-05-20 15:17:54 +00001516
Dan Gohman191bd642010-09-01 01:45:53 +00001517 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
Dan Gohmana2086b32010-05-19 23:43:12 +00001518
Dan Gohman454d26d2010-02-22 04:11:59 +00001519 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001520 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1521 void CountRegisters(const Formula &F, size_t LUIdx);
1522 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1523
1524 void CollectLoopInvariantFixupsAndFormulae();
1525
1526 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1527 unsigned Depth = 0);
1528 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1529 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1530 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1531 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1532 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1533 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1534 void GenerateCrossUseConstantOffsets();
1535 void GenerateAllReuseFormulae();
1536
1537 void FilterOutUndesirableDedicatedRegisters();
Dan Gohmand079c302010-05-18 22:51:59 +00001538
1539 size_t EstimateSearchSpaceComplexity() const;
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00001540 void NarrowSearchSpaceByDetectingSupersets();
1541 void NarrowSearchSpaceByCollapsingUnrolledCode();
Dan Gohman4f7e18d2010-08-29 16:39:22 +00001542 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00001543 void NarrowSearchSpaceByPickingWinnerRegs();
Dan Gohman572645c2010-02-12 10:34:29 +00001544 void NarrowSearchSpaceUsingHeuristics();
1545
1546 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1547 Cost &SolutionCost,
1548 SmallVectorImpl<const Formula *> &Workspace,
1549 const Cost &CurCost,
1550 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1551 DenseSet<const SCEV *> &VisitedRegs) const;
1552 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1553
Dan Gohmane5f76872010-04-09 22:07:05 +00001554 BasicBlock::iterator
1555 HoistInsertPosition(BasicBlock::iterator IP,
1556 const SmallVectorImpl<Instruction *> &Inputs) const;
Andrew Trickb5c26ef2012-01-20 07:41:13 +00001557 BasicBlock::iterator
1558 AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1559 const LSRFixup &LF,
1560 const LSRUse &LU,
1561 SCEVExpander &Rewriter) const;
Dan Gohmand96eae82010-04-09 02:00:38 +00001562
Dan Gohman572645c2010-02-12 10:34:29 +00001563 Value *Expand(const LSRFixup &LF,
1564 const Formula &F,
Dan Gohman454d26d2010-02-22 04:11:59 +00001565 BasicBlock::iterator IP,
Dan Gohman572645c2010-02-12 10:34:29 +00001566 SCEVExpander &Rewriter,
Dan Gohman454d26d2010-02-22 04:11:59 +00001567 SmallVectorImpl<WeakVH> &DeadInsts) const;
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001568 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1569 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001570 SCEVExpander &Rewriter,
1571 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001572 Pass *P) const;
Dan Gohman572645c2010-02-12 10:34:29 +00001573 void Rewrite(const LSRFixup &LF,
1574 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00001575 SCEVExpander &Rewriter,
1576 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00001577 Pass *P) const;
1578 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1579 Pass *P);
1580
Andrew Trickd56ef8d2011-12-13 00:55:33 +00001581public:
Dan Gohman572645c2010-02-12 10:34:29 +00001582 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1583
1584 bool getChanged() const { return Changed; }
1585
1586 void print_factors_and_types(raw_ostream &OS) const;
1587 void print_fixups(raw_ostream &OS) const;
1588 void print_uses(raw_ostream &OS) const;
1589 void print(raw_ostream &OS) const;
1590 void dump() const;
1591};
1592
1593}
1594
1595/// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001596/// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00001597void LSRInstance::OptimizeShadowIV() {
1598 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1599 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1600 return;
1601
1602 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1603 UI != E; /* empty */) {
1604 IVUsers::const_iterator CandidateUI = UI;
1605 ++UI;
1606 Instruction *ShadowUse = CandidateUI->getUser();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001607 Type *DestTy = NULL;
Andrew Trickc2c988e2011-07-21 01:05:01 +00001608 bool IsSigned = false;
Dan Gohman572645c2010-02-12 10:34:29 +00001609
1610 /* If shadow use is a int->float cast then insert a second IV
1611 to eliminate this cast.
1612
1613 for (unsigned i = 0; i < n; ++i)
1614 foo((double)i);
1615
1616 is transformed into
1617
1618 double d = 0.0;
1619 for (unsigned i = 0; i < n; ++i, ++d)
1620 foo(d);
1621 */
Andrew Trickc2c988e2011-07-21 01:05:01 +00001622 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1623 IsSigned = false;
Dan Gohman572645c2010-02-12 10:34:29 +00001624 DestTy = UCast->getDestTy();
Andrew Trickc2c988e2011-07-21 01:05:01 +00001625 }
1626 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1627 IsSigned = true;
Dan Gohman572645c2010-02-12 10:34:29 +00001628 DestTy = SCast->getDestTy();
Andrew Trickc2c988e2011-07-21 01:05:01 +00001629 }
Dan Gohman572645c2010-02-12 10:34:29 +00001630 if (!DestTy) continue;
1631
1632 if (TLI) {
1633 // If target does not support DestTy natively then do not apply
1634 // this transformation.
1635 EVT DVT = TLI->getValueType(DestTy);
1636 if (!TLI->isTypeLegal(DVT)) continue;
1637 }
1638
1639 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1640 if (!PH) continue;
1641 if (PH->getNumIncomingValues() != 2) continue;
1642
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001643 Type *SrcTy = PH->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00001644 int Mantissa = DestTy->getFPMantissaWidth();
1645 if (Mantissa == -1) continue;
1646 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1647 continue;
1648
1649 unsigned Entry, Latch;
1650 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1651 Entry = 0;
1652 Latch = 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001653 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001654 Entry = 1;
1655 Latch = 0;
Dan Gohman7979b722010-01-22 00:46:49 +00001656 }
Dan Gohman7979b722010-01-22 00:46:49 +00001657
Dan Gohman572645c2010-02-12 10:34:29 +00001658 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1659 if (!Init) continue;
Andrew Trickc2c988e2011-07-21 01:05:01 +00001660 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
Andrew Trickc205a092011-07-21 01:45:54 +00001661 (double)Init->getSExtValue() :
1662 (double)Init->getZExtValue());
Dan Gohman7979b722010-01-22 00:46:49 +00001663
Dan Gohman572645c2010-02-12 10:34:29 +00001664 BinaryOperator *Incr =
1665 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1666 if (!Incr) continue;
1667 if (Incr->getOpcode() != Instruction::Add
1668 && Incr->getOpcode() != Instruction::Sub)
Dan Gohman7979b722010-01-22 00:46:49 +00001669 continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001670
Dan Gohman572645c2010-02-12 10:34:29 +00001671 /* Initialize new IV, double d = 0.0 in above example. */
1672 ConstantInt *C = NULL;
1673 if (Incr->getOperand(0) == PH)
1674 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1675 else if (Incr->getOperand(1) == PH)
1676 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001677 else
Dan Gohman7979b722010-01-22 00:46:49 +00001678 continue;
1679
Dan Gohman572645c2010-02-12 10:34:29 +00001680 if (!C) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001681
Dan Gohman572645c2010-02-12 10:34:29 +00001682 // Ignore negative constants, as the code below doesn't handle them
1683 // correctly. TODO: Remove this restriction.
1684 if (!C->getValue().isStrictlyPositive()) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001685
Dan Gohman572645c2010-02-12 10:34:29 +00001686 /* Add new PHINode. */
Jay Foad3ecfc862011-03-30 11:28:46 +00001687 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
Dan Gohman7979b722010-01-22 00:46:49 +00001688
Dan Gohman572645c2010-02-12 10:34:29 +00001689 /* create new increment. '++d' in above example. */
1690 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1691 BinaryOperator *NewIncr =
1692 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1693 Instruction::FAdd : Instruction::FSub,
1694 NewPH, CFP, "IV.S.next.", Incr);
Dan Gohman7979b722010-01-22 00:46:49 +00001695
Dan Gohman572645c2010-02-12 10:34:29 +00001696 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1697 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
Dan Gohman7979b722010-01-22 00:46:49 +00001698
Dan Gohman572645c2010-02-12 10:34:29 +00001699 /* Remove cast operation */
1700 ShadowUse->replaceAllUsesWith(NewPH);
1701 ShadowUse->eraseFromParent();
Dan Gohmanc6519f92010-05-20 20:05:31 +00001702 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00001703 break;
Dan Gohman7979b722010-01-22 00:46:49 +00001704 }
1705}
1706
1707/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1708/// set the IV user and stride information and return true, otherwise return
1709/// false.
Dan Gohmanea507f52010-05-20 19:44:23 +00001710bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
Dan Gohman572645c2010-02-12 10:34:29 +00001711 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1712 if (UI->getUser() == Cond) {
1713 // NOTE: we could handle setcc instructions with multiple uses here, but
1714 // InstCombine does it as well for simple uses, it's not clear that it
1715 // occurs enough in real life to handle.
1716 CondUse = UI;
1717 return true;
1718 }
Dan Gohman7979b722010-01-22 00:46:49 +00001719 return false;
Evan Chengcdf43b12007-10-25 09:11:16 +00001720}
1721
Dan Gohman7979b722010-01-22 00:46:49 +00001722/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1723/// a max computation.
1724///
1725/// This is a narrow solution to a specific, but acute, problem. For loops
1726/// like this:
1727///
1728/// i = 0;
1729/// do {
1730/// p[i] = 0.0;
1731/// } while (++i < n);
1732///
1733/// the trip count isn't just 'n', because 'n' might not be positive. And
1734/// unfortunately this can come up even for loops where the user didn't use
1735/// a C do-while loop. For example, seemingly well-behaved top-test loops
1736/// will commonly be lowered like this:
1737//
1738/// if (n > 0) {
1739/// i = 0;
1740/// do {
1741/// p[i] = 0.0;
1742/// } while (++i < n);
1743/// }
1744///
1745/// and then it's possible for subsequent optimization to obscure the if
1746/// test in such a way that indvars can't find it.
1747///
1748/// When indvars can't find the if test in loops like this, it creates a
1749/// max expression, which allows it to give the loop a canonical
1750/// induction variable:
1751///
1752/// i = 0;
1753/// max = n < 1 ? 1 : n;
1754/// do {
1755/// p[i] = 0.0;
1756/// } while (++i != max);
1757///
1758/// Canonical induction variables are necessary because the loop passes
1759/// are designed around them. The most obvious example of this is the
1760/// LoopInfo analysis, which doesn't remember trip count values. It
1761/// expects to be able to rediscover the trip count each time it is
Dan Gohman572645c2010-02-12 10:34:29 +00001762/// needed, and it does this using a simple analysis that only succeeds if
Dan Gohman7979b722010-01-22 00:46:49 +00001763/// the loop has a canonical induction variable.
1764///
1765/// However, when it comes time to generate code, the maximum operation
1766/// can be quite costly, especially if it's inside of an outer loop.
1767///
1768/// This function solves this problem by detecting this type of loop and
1769/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1770/// the instructions for the maximum computation.
1771///
Dan Gohman572645c2010-02-12 10:34:29 +00001772ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
Dan Gohman7979b722010-01-22 00:46:49 +00001773 // Check that the loop matches the pattern we're looking for.
1774 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1775 Cond->getPredicate() != CmpInst::ICMP_NE)
1776 return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001777
Dan Gohman7979b722010-01-22 00:46:49 +00001778 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1779 if (!Sel || !Sel->hasOneUse()) return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001780
Dan Gohman572645c2010-02-12 10:34:29 +00001781 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
Dan Gohman7979b722010-01-22 00:46:49 +00001782 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1783 return Cond;
Dan Gohmandeff6212010-05-03 22:09:21 +00001784 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
Dan Gohmana10756e2010-01-21 02:09:26 +00001785
Dan Gohman7979b722010-01-22 00:46:49 +00001786 // Add one to the backedge-taken count to get the trip count.
Dan Gohman4065f602010-08-16 15:39:27 +00001787 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
Dan Gohman1d367982010-04-24 03:13:44 +00001788 if (IterationCount != SE.getSCEV(Sel)) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001789
Dan Gohman1d367982010-04-24 03:13:44 +00001790 // Check for a max calculation that matches the pattern. There's no check
1791 // for ICMP_ULE here because the comparison would be with zero, which
1792 // isn't interesting.
1793 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1794 const SCEVNAryExpr *Max = 0;
1795 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1796 Pred = ICmpInst::ICMP_SLE;
1797 Max = S;
1798 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1799 Pred = ICmpInst::ICMP_SLT;
1800 Max = S;
1801 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1802 Pred = ICmpInst::ICMP_ULT;
1803 Max = U;
1804 } else {
1805 // No match; bail.
Dan Gohman7979b722010-01-22 00:46:49 +00001806 return Cond;
Dan Gohman1d367982010-04-24 03:13:44 +00001807 }
Dan Gohman7979b722010-01-22 00:46:49 +00001808
1809 // To handle a max with more than two operands, this optimization would
1810 // require additional checking and setup.
1811 if (Max->getNumOperands() != 2)
1812 return Cond;
1813
1814 const SCEV *MaxLHS = Max->getOperand(0);
1815 const SCEV *MaxRHS = Max->getOperand(1);
Dan Gohman1d367982010-04-24 03:13:44 +00001816
1817 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1818 // for a comparison with 1. For <= and >=, a comparison with zero.
1819 if (!MaxLHS ||
1820 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1821 return Cond;
1822
Dan Gohman7979b722010-01-22 00:46:49 +00001823 // Check the relevant induction variable for conformance to
1824 // the pattern.
Dan Gohman572645c2010-02-12 10:34:29 +00001825 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001826 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1827 if (!AR || !AR->isAffine() ||
1828 AR->getStart() != One ||
Dan Gohman572645c2010-02-12 10:34:29 +00001829 AR->getStepRecurrence(SE) != One)
Dan Gohman7979b722010-01-22 00:46:49 +00001830 return Cond;
1831
1832 assert(AR->getLoop() == L &&
1833 "Loop condition operand is an addrec in a different loop!");
1834
1835 // Check the right operand of the select, and remember it, as it will
1836 // be used in the new comparison instruction.
1837 Value *NewRHS = 0;
Dan Gohman1d367982010-04-24 03:13:44 +00001838 if (ICmpInst::isTrueWhenEqual(Pred)) {
1839 // Look for n+1, and grab n.
1840 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1841 if (isa<ConstantInt>(BO->getOperand(1)) &&
1842 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1843 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1844 NewRHS = BO->getOperand(0);
1845 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1846 if (isa<ConstantInt>(BO->getOperand(1)) &&
1847 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1848 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1849 NewRHS = BO->getOperand(0);
1850 if (!NewRHS)
1851 return Cond;
1852 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001853 NewRHS = Sel->getOperand(1);
Dan Gohman572645c2010-02-12 10:34:29 +00001854 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001855 NewRHS = Sel->getOperand(2);
Dan Gohmancaf71ab2010-06-22 23:07:13 +00001856 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1857 NewRHS = SU->getValue();
Dan Gohman1d367982010-04-24 03:13:44 +00001858 else
Dan Gohmancaf71ab2010-06-22 23:07:13 +00001859 // Max doesn't match expected pattern.
1860 return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001861
1862 // Determine the new comparison opcode. It may be signed or unsigned,
1863 // and the original comparison may be either equality or inequality.
Dan Gohman7979b722010-01-22 00:46:49 +00001864 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1865 Pred = CmpInst::getInversePredicate(Pred);
1866
1867 // Ok, everything looks ok to change the condition into an SLT or SGE and
1868 // delete the max calculation.
1869 ICmpInst *NewCond =
1870 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1871
1872 // Delete the max calculation instructions.
1873 Cond->replaceAllUsesWith(NewCond);
1874 CondUse->setUser(NewCond);
1875 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1876 Cond->eraseFromParent();
1877 Sel->eraseFromParent();
1878 if (Cmp->use_empty())
1879 Cmp->eraseFromParent();
1880 return NewCond;
Dan Gohmanad7321f2008-09-15 21:22:06 +00001881}
1882
Jim Grosbach56a1f802009-11-17 17:53:56 +00001883/// OptimizeLoopTermCond - Change loop terminating condition to use the
Evan Cheng586f69a2009-11-12 07:35:05 +00001884/// postinc iv when possible.
Dan Gohmanc6519f92010-05-20 20:05:31 +00001885void
Dan Gohman572645c2010-02-12 10:34:29 +00001886LSRInstance::OptimizeLoopTermCond() {
1887 SmallPtrSet<Instruction *, 4> PostIncs;
1888
Evan Cheng586f69a2009-11-12 07:35:05 +00001889 BasicBlock *LatchBlock = L->getLoopLatch();
Evan Cheng076e0852009-11-17 18:10:11 +00001890 SmallVector<BasicBlock*, 8> ExitingBlocks;
1891 L->getExitingBlocks(ExitingBlocks);
Jim Grosbach56a1f802009-11-17 17:53:56 +00001892
Evan Cheng076e0852009-11-17 18:10:11 +00001893 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1894 BasicBlock *ExitingBlock = ExitingBlocks[i];
Evan Cheng586f69a2009-11-12 07:35:05 +00001895
Dan Gohman572645c2010-02-12 10:34:29 +00001896 // Get the terminating condition for the loop if possible. If we
Evan Cheng076e0852009-11-17 18:10:11 +00001897 // can, we want to change it to use a post-incremented version of its
1898 // induction variable, to allow coalescing the live ranges for the IV into
1899 // one register value.
Evan Cheng586f69a2009-11-12 07:35:05 +00001900
Evan Cheng076e0852009-11-17 18:10:11 +00001901 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1902 if (!TermBr)
1903 continue;
1904 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1905 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1906 continue;
Evan Cheng586f69a2009-11-12 07:35:05 +00001907
Evan Cheng076e0852009-11-17 18:10:11 +00001908 // Search IVUsesByStride to find Cond's IVUse if there is one.
1909 IVStrideUse *CondUse = 0;
Evan Cheng076e0852009-11-17 18:10:11 +00001910 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
Dan Gohman572645c2010-02-12 10:34:29 +00001911 if (!FindIVUserForCond(Cond, CondUse))
Evan Cheng076e0852009-11-17 18:10:11 +00001912 continue;
1913
Evan Cheng076e0852009-11-17 18:10:11 +00001914 // If the trip count is computed in terms of a max (due to ScalarEvolution
1915 // being unable to find a sufficient guard, for example), change the loop
1916 // comparison to use SLT or ULT instead of NE.
Dan Gohman572645c2010-02-12 10:34:29 +00001917 // One consequence of doing this now is that it disrupts the count-down
1918 // optimization. That's not always a bad thing though, because in such
1919 // cases it may still be worthwhile to avoid a max.
1920 Cond = OptimizeMax(Cond, CondUse);
Evan Cheng076e0852009-11-17 18:10:11 +00001921
Dan Gohman572645c2010-02-12 10:34:29 +00001922 // If this exiting block dominates the latch block, it may also use
1923 // the post-inc value if it won't be shared with other uses.
1924 // Check for dominance.
1925 if (!DT.dominates(ExitingBlock, LatchBlock))
Dan Gohman7979b722010-01-22 00:46:49 +00001926 continue;
Evan Cheng076e0852009-11-17 18:10:11 +00001927
Dan Gohman572645c2010-02-12 10:34:29 +00001928 // Conservatively avoid trying to use the post-inc value in non-latch
1929 // exits if there may be pre-inc users in intervening blocks.
Dan Gohman590bfe82010-02-14 03:21:49 +00001930 if (LatchBlock != ExitingBlock)
Dan Gohman572645c2010-02-12 10:34:29 +00001931 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1932 // Test if the use is reachable from the exiting block. This dominator
1933 // query is a conservative approximation of reachability.
1934 if (&*UI != CondUse &&
1935 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1936 // Conservatively assume there may be reuse if the quotient of their
1937 // strides could be a legal scale.
Dan Gohmanc0564542010-04-19 21:48:58 +00001938 const SCEV *A = IU.getStride(*CondUse, L);
1939 const SCEV *B = IU.getStride(*UI, L);
Dan Gohman448db1c2010-04-07 22:27:08 +00001940 if (!A || !B) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001941 if (SE.getTypeSizeInBits(A->getType()) !=
1942 SE.getTypeSizeInBits(B->getType())) {
1943 if (SE.getTypeSizeInBits(A->getType()) >
1944 SE.getTypeSizeInBits(B->getType()))
1945 B = SE.getSignExtendExpr(B, A->getType());
1946 else
1947 A = SE.getSignExtendExpr(A, B->getType());
1948 }
1949 if (const SCEVConstant *D =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001950 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
Dan Gohman9f383eb2010-05-20 22:25:20 +00001951 const ConstantInt *C = D->getValue();
Dan Gohman572645c2010-02-12 10:34:29 +00001952 // Stride of one or negative one can have reuse with non-addresses.
Dan Gohman9f383eb2010-05-20 22:25:20 +00001953 if (C->isOne() || C->isAllOnesValue())
Dan Gohman572645c2010-02-12 10:34:29 +00001954 goto decline_post_inc;
1955 // Avoid weird situations.
Dan Gohman9f383eb2010-05-20 22:25:20 +00001956 if (C->getValue().getMinSignedBits() >= 64 ||
1957 C->getValue().isMinSignedValue())
Dan Gohman572645c2010-02-12 10:34:29 +00001958 goto decline_post_inc;
Dan Gohman590bfe82010-02-14 03:21:49 +00001959 // Without TLI, assume that any stride might be valid, and so any
1960 // use might be shared.
1961 if (!TLI)
1962 goto decline_post_inc;
Dan Gohman572645c2010-02-12 10:34:29 +00001963 // Check for possible scaled-address reuse.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001964 Type *AccessTy = getAccessType(UI->getUser());
Dan Gohman572645c2010-02-12 10:34:29 +00001965 TargetLowering::AddrMode AM;
Dan Gohman9f383eb2010-05-20 22:25:20 +00001966 AM.Scale = C->getSExtValue();
Dan Gohman2763dfd2010-02-14 02:45:21 +00001967 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001968 goto decline_post_inc;
1969 AM.Scale = -AM.Scale;
Dan Gohman2763dfd2010-02-14 02:45:21 +00001970 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001971 goto decline_post_inc;
1972 }
1973 }
1974
David Greene63c94632009-12-23 22:58:38 +00001975 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
Dan Gohman572645c2010-02-12 10:34:29 +00001976 << *Cond << '\n');
Evan Cheng076e0852009-11-17 18:10:11 +00001977
1978 // It's possible for the setcc instruction to be anywhere in the loop, and
1979 // possible for it to have multiple users. If it is not immediately before
1980 // the exiting block branch, move it.
Dan Gohman572645c2010-02-12 10:34:29 +00001981 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1982 if (Cond->hasOneUse()) {
Evan Cheng076e0852009-11-17 18:10:11 +00001983 Cond->moveBefore(TermBr);
1984 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001985 // Clone the terminating condition and insert into the loopend.
1986 ICmpInst *OldCond = Cond;
Evan Cheng076e0852009-11-17 18:10:11 +00001987 Cond = cast<ICmpInst>(Cond->clone());
1988 Cond->setName(L->getHeader()->getName() + ".termcond");
1989 ExitingBlock->getInstList().insert(TermBr, Cond);
1990
1991 // Clone the IVUse, as the old use still exists!
Andrew Trick4417e532011-06-21 15:43:52 +00001992 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
Dan Gohman572645c2010-02-12 10:34:29 +00001993 TermBr->replaceUsesOfWith(OldCond, Cond);
Evan Cheng076e0852009-11-17 18:10:11 +00001994 }
Evan Cheng586f69a2009-11-12 07:35:05 +00001995 }
1996
Evan Cheng076e0852009-11-17 18:10:11 +00001997 // If we get to here, we know that we can transform the setcc instruction to
1998 // use the post-incremented version of the IV, allowing us to coalesce the
1999 // live ranges for the IV correctly.
Dan Gohman448db1c2010-04-07 22:27:08 +00002000 CondUse->transformToPostInc(L);
Evan Cheng076e0852009-11-17 18:10:11 +00002001 Changed = true;
2002
Dan Gohman572645c2010-02-12 10:34:29 +00002003 PostIncs.insert(Cond);
2004 decline_post_inc:;
Dan Gohmana10756e2010-01-21 02:09:26 +00002005 }
Dan Gohman572645c2010-02-12 10:34:29 +00002006
2007 // Determine an insertion point for the loop induction variable increment. It
2008 // must dominate all the post-inc comparisons we just set up, and it must
2009 // dominate the loop latch edge.
2010 IVIncInsertPos = L->getLoopLatch()->getTerminator();
2011 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
2012 E = PostIncs.end(); I != E; ++I) {
2013 BasicBlock *BB =
2014 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2015 (*I)->getParent());
2016 if (BB == (*I)->getParent())
2017 IVIncInsertPos = *I;
2018 else if (BB != IVIncInsertPos->getParent())
2019 IVIncInsertPos = BB->getTerminator();
2020 }
Dan Gohmana10756e2010-01-21 02:09:26 +00002021}
2022
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002023/// reconcileNewOffset - Determine if the given use can accommodate a fixup
Dan Gohman76c315a2010-05-20 20:52:00 +00002024/// at the given offset and other details. If so, update the use and
2025/// return true.
Dan Gohman572645c2010-02-12 10:34:29 +00002026bool
Dan Gohman191bd642010-09-01 01:45:53 +00002027LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002028 LSRUse::KindType Kind, Type *AccessTy) {
Dan Gohman191bd642010-09-01 01:45:53 +00002029 int64_t NewMinOffset = LU.MinOffset;
2030 int64_t NewMaxOffset = LU.MaxOffset;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002031 Type *NewAccessTy = AccessTy;
Dan Gohman7979b722010-01-22 00:46:49 +00002032
Dan Gohman572645c2010-02-12 10:34:29 +00002033 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2034 // something conservative, however this can pessimize in the case that one of
2035 // the uses will have all its uses outside the loop, for example.
2036 if (LU.Kind != Kind)
Dan Gohman7979b722010-01-22 00:46:49 +00002037 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00002038 // Conservatively assume HasBaseReg is true for now.
Dan Gohman191bd642010-09-01 01:45:53 +00002039 if (NewOffset < LU.MinOffset) {
2040 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00002041 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00002042 return false;
Dan Gohman191bd642010-09-01 01:45:53 +00002043 NewMinOffset = NewOffset;
2044 } else if (NewOffset > LU.MaxOffset) {
2045 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00002046 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00002047 return false;
Dan Gohman191bd642010-09-01 01:45:53 +00002048 NewMaxOffset = NewOffset;
Dan Gohmana10756e2010-01-21 02:09:26 +00002049 }
Dan Gohman572645c2010-02-12 10:34:29 +00002050 // Check for a mismatched access type, and fall back conservatively as needed.
Dan Gohman74e5ef02010-06-19 21:30:18 +00002051 // TODO: Be less conservative when the type is similar and can use the same
2052 // addressing modes.
Dan Gohman572645c2010-02-12 10:34:29 +00002053 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
Dan Gohman191bd642010-09-01 01:45:53 +00002054 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
Dan Gohmana10756e2010-01-21 02:09:26 +00002055
Dan Gohman572645c2010-02-12 10:34:29 +00002056 // Update the use.
Dan Gohman191bd642010-09-01 01:45:53 +00002057 LU.MinOffset = NewMinOffset;
2058 LU.MaxOffset = NewMaxOffset;
2059 LU.AccessTy = NewAccessTy;
2060 if (NewOffset != LU.Offsets.back())
2061 LU.Offsets.push_back(NewOffset);
Dan Gohman8b0ade32010-01-21 22:42:49 +00002062 return true;
2063}
2064
Dan Gohman572645c2010-02-12 10:34:29 +00002065/// getUse - Return an LSRUse index and an offset value for a fixup which
2066/// needs the given expression, with the given kind and optional access type.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002067/// Either reuse an existing use or create a new one, as needed.
Dan Gohman572645c2010-02-12 10:34:29 +00002068std::pair<size_t, int64_t>
2069LSRInstance::getUse(const SCEV *&Expr,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002070 LSRUse::KindType Kind, Type *AccessTy) {
Dan Gohman572645c2010-02-12 10:34:29 +00002071 const SCEV *Copy = Expr;
2072 int64_t Offset = ExtractImmediate(Expr, SE);
Evan Cheng586f69a2009-11-12 07:35:05 +00002073
Dan Gohman572645c2010-02-12 10:34:29 +00002074 // Basic uses can't accept any offset, for example.
Dan Gohman454d26d2010-02-22 04:11:59 +00002075 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
Dan Gohman572645c2010-02-12 10:34:29 +00002076 Expr = Copy;
2077 Offset = 0;
2078 }
2079
2080 std::pair<UseMapTy::iterator, bool> P =
Dan Gohman1e3121c2010-06-19 21:29:59 +00002081 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
Dan Gohman572645c2010-02-12 10:34:29 +00002082 if (!P.second) {
2083 // A use already existed with this base.
2084 size_t LUIdx = P.first->second;
2085 LSRUse &LU = Uses[LUIdx];
Dan Gohman191bd642010-09-01 01:45:53 +00002086 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00002087 // Reuse this use.
2088 return std::make_pair(LUIdx, Offset);
2089 }
2090
2091 // Create a new use.
2092 size_t LUIdx = Uses.size();
2093 P.first->second = LUIdx;
2094 Uses.push_back(LSRUse(Kind, AccessTy));
2095 LSRUse &LU = Uses[LUIdx];
2096
Dan Gohman191bd642010-09-01 01:45:53 +00002097 // We don't need to track redundant offsets, but we don't need to go out
2098 // of our way here to avoid them.
2099 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2100 LU.Offsets.push_back(Offset);
2101
Dan Gohman572645c2010-02-12 10:34:29 +00002102 LU.MinOffset = Offset;
2103 LU.MaxOffset = Offset;
2104 return std::make_pair(LUIdx, Offset);
2105}
2106
Dan Gohman5ce6d052010-05-20 15:17:54 +00002107/// DeleteUse - Delete the given use from the Uses list.
Dan Gohmanc6897702010-10-07 23:33:43 +00002108void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
Dan Gohman191bd642010-09-01 01:45:53 +00002109 if (&LU != &Uses.back())
Dan Gohman5ce6d052010-05-20 15:17:54 +00002110 std::swap(LU, Uses.back());
2111 Uses.pop_back();
Dan Gohmanc6897702010-10-07 23:33:43 +00002112
2113 // Update RegUses.
2114 RegUses.SwapAndDropUse(LUIdx, Uses.size());
Dan Gohman5ce6d052010-05-20 15:17:54 +00002115}
2116
Dan Gohmana2086b32010-05-19 23:43:12 +00002117/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
2118/// a formula that has the same registers as the given formula.
2119LSRUse *
2120LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
Dan Gohman191bd642010-09-01 01:45:53 +00002121 const LSRUse &OrigLU) {
2122 // Search all uses for the formula. This could be more clever.
Dan Gohmana2086b32010-05-19 23:43:12 +00002123 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2124 LSRUse &LU = Uses[LUIdx];
Dan Gohman6a832712010-08-29 15:27:08 +00002125 // Check whether this use is close enough to OrigLU, to see whether it's
2126 // worthwhile looking through its formulae.
2127 // Ignore ICmpZero uses because they may contain formulae generated by
2128 // GenerateICmpZeroScales, in which case adding fixup offsets may
2129 // be invalid.
Dan Gohmana2086b32010-05-19 23:43:12 +00002130 if (&LU != &OrigLU &&
2131 LU.Kind != LSRUse::ICmpZero &&
2132 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
Dan Gohmana9db1292010-07-15 20:24:58 +00002133 LU.WidestFixupType == OrigLU.WidestFixupType &&
Dan Gohmana2086b32010-05-19 23:43:12 +00002134 LU.HasFormulaWithSameRegs(OrigF)) {
Dan Gohman6a832712010-08-29 15:27:08 +00002135 // Scan through this use's formulae.
Dan Gohman402d4352010-05-20 20:33:18 +00002136 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2137 E = LU.Formulae.end(); I != E; ++I) {
2138 const Formula &F = *I;
Dan Gohman6a832712010-08-29 15:27:08 +00002139 // Check to see if this formula has the same registers and symbols
2140 // as OrigF.
Dan Gohmana2086b32010-05-19 23:43:12 +00002141 if (F.BaseRegs == OrigF.BaseRegs &&
2142 F.ScaledReg == OrigF.ScaledReg &&
2143 F.AM.BaseGV == OrigF.AM.BaseGV &&
Dan Gohmancca82142011-05-03 00:46:49 +00002144 F.AM.Scale == OrigF.AM.Scale &&
2145 F.UnfoldedOffset == OrigF.UnfoldedOffset) {
Dan Gohman191bd642010-09-01 01:45:53 +00002146 if (F.AM.BaseOffs == 0)
Dan Gohmana2086b32010-05-19 23:43:12 +00002147 return &LU;
Dan Gohman6a832712010-08-29 15:27:08 +00002148 // This is the formula where all the registers and symbols matched;
2149 // there aren't going to be any others. Since we declined it, we
2150 // can skip the rest of the formulae and procede to the next LSRUse.
Dan Gohmana2086b32010-05-19 23:43:12 +00002151 break;
2152 }
2153 }
2154 }
2155 }
2156
Dan Gohman6a832712010-08-29 15:27:08 +00002157 // Nothing looked good.
Dan Gohmana2086b32010-05-19 23:43:12 +00002158 return 0;
2159}
2160
Dan Gohman572645c2010-02-12 10:34:29 +00002161void LSRInstance::CollectInterestingTypesAndFactors() {
2162 SmallSetVector<const SCEV *, 4> Strides;
2163
Dan Gohman1b7bf182010-02-19 00:05:23 +00002164 // Collect interesting types and strides.
Dan Gohman448db1c2010-04-07 22:27:08 +00002165 SmallVector<const SCEV *, 4> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00002166 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
Dan Gohmanc0564542010-04-19 21:48:58 +00002167 const SCEV *Expr = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00002168
2169 // Collect interesting types.
Dan Gohman448db1c2010-04-07 22:27:08 +00002170 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
Dan Gohman572645c2010-02-12 10:34:29 +00002171
Dan Gohman448db1c2010-04-07 22:27:08 +00002172 // Add strides for mentioned loops.
2173 Worklist.push_back(Expr);
2174 do {
2175 const SCEV *S = Worklist.pop_back_val();
2176 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
Andrew Trickbd618f12012-03-22 22:42:45 +00002177 if (AR->getLoop() == L)
Andrew Trickfa1948a2011-12-10 00:25:00 +00002178 Strides.insert(AR->getStepRecurrence(SE));
Dan Gohman448db1c2010-04-07 22:27:08 +00002179 Worklist.push_back(AR->getStart());
2180 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002181 Worklist.append(Add->op_begin(), Add->op_end());
Dan Gohman448db1c2010-04-07 22:27:08 +00002182 }
2183 } while (!Worklist.empty());
Dan Gohman1b7bf182010-02-19 00:05:23 +00002184 }
2185
2186 // Compute interesting factors from the set of interesting strides.
2187 for (SmallSetVector<const SCEV *, 4>::const_iterator
2188 I = Strides.begin(), E = Strides.end(); I != E; ++I)
Dan Gohman572645c2010-02-12 10:34:29 +00002189 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
Oscar Fuentesee56c422010-08-02 06:00:15 +00002190 llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
Dan Gohman1b7bf182010-02-19 00:05:23 +00002191 const SCEV *OldStride = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00002192 const SCEV *NewStride = *NewStrideIter;
Dan Gohman572645c2010-02-12 10:34:29 +00002193
2194 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2195 SE.getTypeSizeInBits(NewStride->getType())) {
2196 if (SE.getTypeSizeInBits(OldStride->getType()) >
2197 SE.getTypeSizeInBits(NewStride->getType()))
2198 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2199 else
2200 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2201 }
2202 if (const SCEVConstant *Factor =
Dan Gohmanf09b7122010-02-19 19:35:48 +00002203 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2204 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00002205 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2206 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2207 } else if (const SCEVConstant *Factor =
Dan Gohman454d26d2010-02-22 04:11:59 +00002208 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2209 NewStride,
Dan Gohmanf09b7122010-02-19 19:35:48 +00002210 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00002211 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2212 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2213 }
2214 }
Dan Gohman572645c2010-02-12 10:34:29 +00002215
2216 // If all uses use the same type, don't bother looking for truncation-based
2217 // reuse.
2218 if (Types.size() == 1)
2219 Types.clear();
2220
2221 DEBUG(print_factors_and_types(dbgs()));
2222}
2223
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00002224/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
2225/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
2226/// Instructions to IVStrideUses, we could partially skip this.
2227static User::op_iterator
2228findIVOperand(User::op_iterator OI, User::op_iterator OE,
2229 Loop *L, ScalarEvolution &SE) {
2230 for(; OI != OE; ++OI) {
2231 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2232 if (!SE.isSCEVable(Oper->getType()))
2233 continue;
2234
2235 if (const SCEVAddRecExpr *AR =
2236 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2237 if (AR->getLoop() == L)
2238 break;
2239 }
2240 }
2241 }
2242 return OI;
2243}
2244
2245/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
2246/// operands, so wrap it in a convenient helper.
2247static Value *getWideOperand(Value *Oper) {
2248 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2249 return Trunc->getOperand(0);
2250 return Oper;
2251}
2252
2253/// isCompatibleIVType - Return true if we allow an IV chain to include both
2254/// types.
2255static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2256 Type *LType = LVal->getType();
2257 Type *RType = RVal->getType();
2258 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2259}
2260
Andrew Trick64925c52012-01-10 01:45:08 +00002261/// getExprBase - Return an approximation of this SCEV expression's "base", or
2262/// NULL for any constant. Returning the expression itself is
2263/// conservative. Returning a deeper subexpression is more precise and valid as
2264/// long as it isn't less complex than another subexpression. For expressions
2265/// involving multiple unscaled values, we need to return the pointer-type
2266/// SCEVUnknown. This avoids forming chains across objects, such as:
2267/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
2268///
2269/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2270/// SCEVUnknown, we simply return the rightmost SCEV operand.
2271static const SCEV *getExprBase(const SCEV *S) {
2272 switch (S->getSCEVType()) {
2273 default: // uncluding scUnknown.
2274 return S;
2275 case scConstant:
2276 return 0;
2277 case scTruncate:
2278 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2279 case scZeroExtend:
2280 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2281 case scSignExtend:
2282 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2283 case scAddExpr: {
2284 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2285 // there's nothing more complex.
2286 // FIXME: not sure if we want to recognize negation.
2287 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2288 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2289 E(Add->op_begin()); I != E; ++I) {
2290 const SCEV *SubExpr = *I;
2291 if (SubExpr->getSCEVType() == scAddExpr)
2292 return getExprBase(SubExpr);
2293
2294 if (SubExpr->getSCEVType() != scMulExpr)
2295 return SubExpr;
2296 }
2297 return S; // all operands are scaled, be conservative.
2298 }
2299 case scAddRecExpr:
2300 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2301 }
2302}
2303
Andrew Trick22d20c22012-01-09 21:18:52 +00002304/// Return true if the chain increment is profitable to expand into a loop
2305/// invariant value, which may require its own register. A profitable chain
2306/// increment will be an offset relative to the same base. We allow such offsets
2307/// to potentially be used as chain increment as long as it's not obviously
2308/// expensive to expand using real instructions.
2309static const SCEV *
2310getProfitableChainIncrement(Value *NextIV, Value *PrevIV,
2311 const IVChain &Chain, Loop *L,
2312 ScalarEvolution &SE, const TargetLowering *TLI) {
Andrew Trick64925c52012-01-10 01:45:08 +00002313 // Prune the solution space aggressively by checking that both IV operands
2314 // are expressions that operate on the same unscaled SCEVUnknown. This
2315 // "base" will be canceled by the subsequent getMinusSCEV call. Checking first
2316 // avoids creating extra SCEV expressions.
2317 const SCEV *OperExpr = SE.getSCEV(NextIV);
2318 const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2319 if (getExprBase(OperExpr) != getExprBase(PrevExpr) && !StressIVChain)
2320 return 0;
2321
2322 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
Andrew Trick22d20c22012-01-09 21:18:52 +00002323 if (!SE.isLoopInvariant(IncExpr, L))
2324 return 0;
2325
2326 // We are not able to expand an increment unless it is loop invariant,
2327 // however, the following checks are purely for profitability.
2328 if (StressIVChain)
2329 return IncExpr;
2330
Andrew Trick64925c52012-01-10 01:45:08 +00002331 // Do not replace a constant offset from IV head with a nonconstant IV
2332 // increment.
2333 if (!isa<SCEVConstant>(IncExpr)) {
2334 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Chain[0].IVOperand));
2335 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2336 return 0;
2337 }
2338
2339 SmallPtrSet<const SCEV*, 8> Processed;
2340 if (isHighCostExpansion(IncExpr, Processed, SE))
2341 return 0;
2342
2343 return IncExpr;
Andrew Trick22d20c22012-01-09 21:18:52 +00002344}
2345
2346/// Return true if the number of registers needed for the chain is estimated to
2347/// be less than the number required for the individual IV users. First prohibit
2348/// any IV users that keep the IV live across increments (the Users set should
2349/// be empty). Next count the number and type of increments in the chain.
2350///
2351/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2352/// effectively use postinc addressing modes. Only consider it profitable it the
2353/// increments can be computed in fewer registers when chained.
2354///
2355/// TODO: Consider IVInc free if it's already used in another chains.
2356static bool
2357isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
2358 ScalarEvolution &SE, const TargetLowering *TLI) {
2359 if (StressIVChain)
2360 return true;
2361
Andrew Trick64925c52012-01-10 01:45:08 +00002362 if (Chain.size() <= 2)
2363 return false;
2364
2365 if (!Users.empty()) {
2366 DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " users:\n";
2367 for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
2368 E = Users.end(); I != E; ++I) {
2369 dbgs() << " " << **I << "\n";
2370 });
2371 return false;
2372 }
2373 assert(!Chain.empty() && "empty IV chains are not allowed");
2374
2375 // The chain itself may require a register, so intialize cost to 1.
2376 int cost = 1;
2377
2378 // A complete chain likely eliminates the need for keeping the original IV in
2379 // a register. LSR does not currently know how to form a complete chain unless
2380 // the header phi already exists.
2381 if (isa<PHINode>(Chain.back().UserInst)
2382 && SE.getSCEV(Chain.back().UserInst) == Chain[0].IncExpr) {
2383 --cost;
2384 }
2385 const SCEV *LastIncExpr = 0;
2386 unsigned NumConstIncrements = 0;
2387 unsigned NumVarIncrements = 0;
2388 unsigned NumReusedIncrements = 0;
2389 for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
2390 I != E; ++I) {
2391
2392 if (I->IncExpr->isZero())
2393 continue;
2394
2395 // Incrementing by zero or some constant is neutral. We assume constants can
2396 // be folded into an addressing mode or an add's immediate operand.
2397 if (isa<SCEVConstant>(I->IncExpr)) {
2398 ++NumConstIncrements;
2399 continue;
2400 }
2401
2402 if (I->IncExpr == LastIncExpr)
2403 ++NumReusedIncrements;
2404 else
2405 ++NumVarIncrements;
2406
2407 LastIncExpr = I->IncExpr;
2408 }
2409 // An IV chain with a single increment is handled by LSR's postinc
2410 // uses. However, a chain with multiple increments requires keeping the IV's
2411 // value live longer than it needs to be if chained.
2412 if (NumConstIncrements > 1)
2413 --cost;
2414
2415 // Materializing increment expressions in the preheader that didn't exist in
2416 // the original code may cost a register. For example, sign-extended array
2417 // indices can produce ridiculous increments like this:
2418 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2419 cost += NumVarIncrements;
2420
2421 // Reusing variable increments likely saves a register to hold the multiple of
2422 // the stride.
2423 cost -= NumReusedIncrements;
2424
2425 DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " Cost: " << cost << "\n");
2426
2427 return cost < 0;
Andrew Trick22d20c22012-01-09 21:18:52 +00002428}
2429
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00002430/// ChainInstruction - Add this IV user to an existing chain or make it the head
2431/// of a new chain.
2432void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2433 SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2434 // When IVs are used as types of varying widths, they are generally converted
2435 // to a wider type with some uses remaining narrow under a (free) trunc.
2436 Value *NextIV = getWideOperand(IVOper);
2437
2438 // Visit all existing chains. Check if its IVOper can be computed as a
2439 // profitable loop invariant increment from the last link in the Chain.
2440 unsigned ChainIdx = 0, NChains = IVChainVec.size();
2441 const SCEV *LastIncExpr = 0;
2442 for (; ChainIdx < NChains; ++ChainIdx) {
2443 Value *PrevIV = getWideOperand(IVChainVec[ChainIdx].back().IVOperand);
2444 if (!isCompatibleIVType(PrevIV, NextIV))
2445 continue;
2446
2447 // A phi nodes terminates a chain.
2448 if (isa<PHINode>(UserInst)
2449 && isa<PHINode>(IVChainVec[ChainIdx].back().UserInst))
2450 continue;
2451
Andrew Trick22d20c22012-01-09 21:18:52 +00002452 if (const SCEV *IncExpr =
2453 getProfitableChainIncrement(NextIV, PrevIV, IVChainVec[ChainIdx],
2454 L, SE, TLI)) {
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00002455 LastIncExpr = IncExpr;
2456 break;
2457 }
2458 }
2459 // If we haven't found a chain, create a new one, unless we hit the max. Don't
2460 // bother for phi nodes, because they must be last in the chain.
2461 if (ChainIdx == NChains) {
2462 if (isa<PHINode>(UserInst))
2463 return;
Andrew Trick22d20c22012-01-09 21:18:52 +00002464 if (NChains >= MaxChains && !StressIVChain) {
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00002465 DEBUG(dbgs() << "IV Chain Limit\n");
2466 return;
2467 }
Andrew Trick0041d4d2012-01-20 21:23:40 +00002468 LastIncExpr = SE.getSCEV(NextIV);
2469 // IVUsers may have skipped over sign/zero extensions. We don't currently
2470 // attempt to form chains involving extensions unless they can be hoisted
2471 // into this loop's AddRec.
2472 if (!isa<SCEVAddRecExpr>(LastIncExpr))
2473 return;
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00002474 ++NChains;
2475 IVChainVec.resize(NChains);
2476 ChainUsersVec.resize(NChains);
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00002477 DEBUG(dbgs() << "IV Head: (" << *UserInst << ") IV=" << *LastIncExpr
2478 << "\n");
2479 }
2480 else
2481 DEBUG(dbgs() << "IV Inc: (" << *UserInst << ") IV+" << *LastIncExpr
2482 << "\n");
2483
2484 // Add this IV user to the end of the chain.
2485 IVChainVec[ChainIdx].push_back(IVInc(UserInst, IVOper, LastIncExpr));
2486
2487 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2488 // This chain's NearUsers become FarUsers.
2489 if (!LastIncExpr->isZero()) {
2490 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2491 NearUsers.end());
2492 NearUsers.clear();
2493 }
2494
2495 // All other uses of IVOperand become near uses of the chain.
2496 // We currently ignore intermediate values within SCEV expressions, assuming
2497 // they will eventually be used be the current chain, or can be computed
2498 // from one of the chain increments. To be more precise we could
2499 // transitively follow its user and only add leaf IV users to the set.
2500 for (Value::use_iterator UseIter = IVOper->use_begin(),
2501 UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
2502 Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
2503 if (SE.isSCEVable(OtherUse->getType())
2504 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2505 && IU.isIVUserOrOperand(OtherUse)) {
2506 continue;
2507 }
2508 if (OtherUse && OtherUse != UserInst)
2509 NearUsers.insert(OtherUse);
2510 }
2511
2512 // Since this user is part of the chain, it's no longer considered a use
2513 // of the chain.
2514 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2515}
2516
2517/// CollectChains - Populate the vector of Chains.
2518///
2519/// This decreases ILP at the architecture level. Targets with ample registers,
2520/// multiple memory ports, and no register renaming probably don't want
2521/// this. However, such targets should probably disable LSR altogether.
2522///
2523/// The job of LSR is to make a reasonable choice of induction variables across
2524/// the loop. Subsequent passes can easily "unchain" computation exposing more
2525/// ILP *within the loop* if the target wants it.
2526///
2527/// Finding the best IV chain is potentially a scheduling problem. Since LSR
2528/// will not reorder memory operations, it will recognize this as a chain, but
2529/// will generate redundant IV increments. Ideally this would be corrected later
2530/// by a smart scheduler:
2531/// = A[i]
2532/// = A[i+x]
2533/// A[i] =
2534/// A[i+x] =
2535///
2536/// TODO: Walk the entire domtree within this loop, not just the path to the
2537/// loop latch. This will discover chains on side paths, but requires
2538/// maintaining multiple copies of the Chains state.
2539void LSRInstance::CollectChains() {
2540 SmallVector<ChainUsers, 8> ChainUsersVec;
2541
2542 SmallVector<BasicBlock *,8> LatchPath;
2543 BasicBlock *LoopHeader = L->getHeader();
2544 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2545 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2546 LatchPath.push_back(Rung->getBlock());
2547 }
2548 LatchPath.push_back(LoopHeader);
2549
2550 // Walk the instruction stream from the loop header to the loop latch.
2551 for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2552 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2553 BBIter != BBEnd; ++BBIter) {
2554 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2555 I != E; ++I) {
2556 // Skip instructions that weren't seen by IVUsers analysis.
2557 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
2558 continue;
2559
2560 // Ignore users that are part of a SCEV expression. This way we only
2561 // consider leaf IV Users. This effectively rediscovers a portion of
2562 // IVUsers analysis but in program order this time.
2563 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
2564 continue;
2565
2566 // Remove this instruction from any NearUsers set it may be in.
2567 for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2568 ChainIdx < NChains; ++ChainIdx) {
2569 ChainUsersVec[ChainIdx].NearUsers.erase(I);
2570 }
2571 // Search for operands that can be chained.
2572 SmallPtrSet<Instruction*, 4> UniqueOperands;
2573 User::op_iterator IVOpEnd = I->op_end();
2574 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2575 while (IVOpIter != IVOpEnd) {
2576 Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2577 if (UniqueOperands.insert(IVOpInst))
2578 ChainInstruction(I, IVOpInst, ChainUsersVec);
2579 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2580 }
2581 } // Continue walking down the instructions.
2582 } // Continue walking down the domtree.
2583 // Visit phi backedges to determine if the chain can generate the IV postinc.
2584 for (BasicBlock::iterator I = L->getHeader()->begin();
2585 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2586 if (!SE.isSCEVable(PN->getType()))
2587 continue;
2588
2589 Instruction *IncV =
2590 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2591 if (IncV)
2592 ChainInstruction(PN, IncV, ChainUsersVec);
2593 }
Andrew Trick22d20c22012-01-09 21:18:52 +00002594 // Remove any unprofitable chains.
2595 unsigned ChainIdx = 0;
2596 for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2597 UsersIdx < NChains; ++UsersIdx) {
2598 if (!isProfitableChain(IVChainVec[UsersIdx],
2599 ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
2600 continue;
2601 // Preserve the chain at UsesIdx.
2602 if (ChainIdx != UsersIdx)
2603 IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2604 FinalizeChain(IVChainVec[ChainIdx]);
2605 ++ChainIdx;
2606 }
2607 IVChainVec.resize(ChainIdx);
2608}
2609
2610void LSRInstance::FinalizeChain(IVChain &Chain) {
2611 assert(!Chain.empty() && "empty IV chains are not allowed");
2612 DEBUG(dbgs() << "Final Chain: " << *Chain[0].UserInst << "\n");
2613
2614 for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
2615 I != E; ++I) {
2616 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n");
2617 User::op_iterator UseI =
2618 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
2619 assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
2620 IVIncSet.insert(UseI);
2621 }
2622}
2623
2624/// Return true if the IVInc can be folded into an addressing mode.
2625static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2626 Value *Operand, const TargetLowering *TLI) {
2627 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2628 if (!IncConst || !isAddressUse(UserInst, Operand))
2629 return false;
2630
2631 if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
2632 return false;
2633
2634 int64_t IncOffset = IncConst->getValue()->getSExtValue();
2635 if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
2636 LSRUse::Address, getAccessType(UserInst), TLI))
2637 return false;
2638
2639 return true;
2640}
2641
2642/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
2643/// materialize the IV user's operand from the previous IV user's operand.
2644void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2645 SmallVectorImpl<WeakVH> &DeadInsts) {
2646 // Find the new IVOperand for the head of the chain. It may have been replaced
2647 // by LSR.
2648 const IVInc &Head = Chain[0];
2649 User::op_iterator IVOpEnd = Head.UserInst->op_end();
2650 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2651 IVOpEnd, L, SE);
2652 Value *IVSrc = 0;
2653 while (IVOpIter != IVOpEnd) {
2654 IVSrc = getWideOperand(*IVOpIter);
2655
2656 // If this operand computes the expression that the chain needs, we may use
2657 // it. (Check this after setting IVSrc which is used below.)
2658 //
2659 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2660 // narrow for the chain, so we can no longer use it. We do allow using a
2661 // wider phi, assuming the LSR checked for free truncation. In that case we
2662 // should already have a truncate on this operand such that
2663 // getSCEV(IVSrc) == IncExpr.
2664 if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2665 || SE.getSCEV(IVSrc) == Head.IncExpr) {
2666 break;
2667 }
2668 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2669 }
2670 if (IVOpIter == IVOpEnd) {
2671 // Gracefully give up on this chain.
2672 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2673 return;
2674 }
2675
2676 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2677 Type *IVTy = IVSrc->getType();
2678 Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2679 const SCEV *LeftOverExpr = 0;
2680 for (IVChain::const_iterator IncI = llvm::next(Chain.begin()),
2681 IncE = Chain.end(); IncI != IncE; ++IncI) {
2682
2683 Instruction *InsertPt = IncI->UserInst;
2684 if (isa<PHINode>(InsertPt))
2685 InsertPt = L->getLoopLatch()->getTerminator();
2686
2687 // IVOper will replace the current IV User's operand. IVSrc is the IV
2688 // value currently held in a register.
2689 Value *IVOper = IVSrc;
2690 if (!IncI->IncExpr->isZero()) {
2691 // IncExpr was the result of subtraction of two narrow values, so must
2692 // be signed.
2693 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
2694 LeftOverExpr = LeftOverExpr ?
2695 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2696 }
2697 if (LeftOverExpr && !LeftOverExpr->isZero()) {
2698 // Expand the IV increment.
2699 Rewriter.clearPostInc();
2700 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2701 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2702 SE.getUnknown(IncV));
2703 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2704
2705 // If an IV increment can't be folded, use it as the next IV value.
2706 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
2707 TLI)) {
2708 assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2709 IVSrc = IVOper;
2710 LeftOverExpr = 0;
2711 }
2712 }
2713 Type *OperTy = IncI->IVOperand->getType();
2714 if (IVTy != OperTy) {
2715 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2716 "cannot extend a chained IV");
2717 IRBuilder<> Builder(InsertPt);
2718 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2719 }
2720 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
2721 DeadInsts.push_back(IncI->IVOperand);
2722 }
2723 // If LSR created a new, wider phi, we may also replace its postinc. We only
2724 // do this if we also found a wide value for the head of the chain.
2725 if (isa<PHINode>(Chain.back().UserInst)) {
2726 for (BasicBlock::iterator I = L->getHeader()->begin();
2727 PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2728 if (!isCompatibleIVType(Phi, IVSrc))
2729 continue;
2730 Instruction *PostIncV = dyn_cast<Instruction>(
2731 Phi->getIncomingValueForBlock(L->getLoopLatch()));
2732 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2733 continue;
2734 Value *IVOper = IVSrc;
2735 Type *PostIncTy = PostIncV->getType();
2736 if (IVTy != PostIncTy) {
2737 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2738 IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2739 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2740 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2741 }
2742 Phi->replaceUsesOfWith(PostIncV, IVOper);
2743 DeadInsts.push_back(PostIncV);
2744 }
2745 }
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00002746}
2747
Dan Gohman572645c2010-02-12 10:34:29 +00002748void LSRInstance::CollectFixupsAndInitialFormulae() {
2749 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
Andrew Trick22d20c22012-01-09 21:18:52 +00002750 Instruction *UserInst = UI->getUser();
2751 // Skip IV users that are part of profitable IV Chains.
2752 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2753 UI->getOperandValToReplace());
2754 assert(UseI != UserInst->op_end() && "cannot find IV operand");
2755 if (IVIncSet.count(UseI))
2756 continue;
2757
Dan Gohman572645c2010-02-12 10:34:29 +00002758 // Record the uses.
2759 LSRFixup &LF = getNewFixup();
Andrew Trick22d20c22012-01-09 21:18:52 +00002760 LF.UserInst = UserInst;
Dan Gohman572645c2010-02-12 10:34:29 +00002761 LF.OperandValToReplace = UI->getOperandValToReplace();
Dan Gohman448db1c2010-04-07 22:27:08 +00002762 LF.PostIncLoops = UI->getPostIncLoops();
Dan Gohman572645c2010-02-12 10:34:29 +00002763
2764 LSRUse::KindType Kind = LSRUse::Basic;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002765 Type *AccessTy = 0;
Dan Gohman572645c2010-02-12 10:34:29 +00002766 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2767 Kind = LSRUse::Address;
2768 AccessTy = getAccessType(LF.UserInst);
2769 }
2770
Dan Gohmanc0564542010-04-19 21:48:58 +00002771 const SCEV *S = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00002772
2773 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2774 // (N - i == 0), and this allows (N - i) to be the expression that we work
2775 // with rather than just N or i, so we can consider the register
2776 // requirements for both N and i at the same time. Limiting this code to
2777 // equality icmps is not a problem because all interesting loops use
2778 // equality icmps, thanks to IndVarSimplify.
2779 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2780 if (CI->isEquality()) {
2781 // Swap the operands if needed to put the OperandValToReplace on the
2782 // left, for consistency.
2783 Value *NV = CI->getOperand(1);
2784 if (NV == LF.OperandValToReplace) {
2785 CI->setOperand(1, CI->getOperand(0));
2786 CI->setOperand(0, NV);
Dan Gohmanf182b232010-05-20 19:26:52 +00002787 NV = CI->getOperand(1);
Dan Gohman9da1bf42010-05-20 19:16:03 +00002788 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002789 }
2790
2791 // x == y --> x - y == 0
2792 const SCEV *N = SE.getSCEV(NV);
Dan Gohman17ead4f2010-11-17 21:23:15 +00002793 if (SE.isLoopInvariant(N, L)) {
Dan Gohman673968a2011-05-18 21:02:18 +00002794 // S is normalized, so normalize N before folding it into S
2795 // to keep the result normalized.
2796 N = TransformForPostIncUse(Normalize, N, CI, 0,
2797 LF.PostIncLoops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00002798 Kind = LSRUse::ICmpZero;
2799 S = SE.getMinusSCEV(N, S);
2800 }
2801
2802 // -1 and the negations of all interesting strides (except the negation
2803 // of -1) are now also interesting.
2804 for (size_t i = 0, e = Factors.size(); i != e; ++i)
2805 if (Factors[i] != -1)
2806 Factors.insert(-(uint64_t)Factors[i]);
2807 Factors.insert(-1);
2808 }
2809
2810 // Set up the initial formula for this use.
2811 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2812 LF.LUIdx = P.first;
2813 LF.Offset = P.second;
2814 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002815 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohmana9db1292010-07-15 20:24:58 +00002816 if (!LU.WidestFixupType ||
2817 SE.getTypeSizeInBits(LU.WidestFixupType) <
2818 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2819 LU.WidestFixupType = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00002820
2821 // If this is the first use of this LSRUse, give it a formula.
2822 if (LU.Formulae.empty()) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002823 InsertInitialFormula(S, LU, LF.LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00002824 CountRegisters(LU.Formulae.back(), LF.LUIdx);
2825 }
2826 }
2827
2828 DEBUG(print_fixups(dbgs()));
2829}
2830
Dan Gohman76c315a2010-05-20 20:52:00 +00002831/// InsertInitialFormula - Insert a formula for the given expression into
2832/// the given use, separating out loop-variant portions from loop-invariant
2833/// and loop-computable portions.
Dan Gohman572645c2010-02-12 10:34:29 +00002834void
Dan Gohman454d26d2010-02-22 04:11:59 +00002835LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Dan Gohman572645c2010-02-12 10:34:29 +00002836 Formula F;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00002837 F.InitialMatch(S, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002838 bool Inserted = InsertFormula(LU, LUIdx, F);
2839 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2840}
2841
Dan Gohman76c315a2010-05-20 20:52:00 +00002842/// InsertSupplementalFormula - Insert a simple single-register formula for
2843/// the given expression into the given use.
Dan Gohman572645c2010-02-12 10:34:29 +00002844void
2845LSRInstance::InsertSupplementalFormula(const SCEV *S,
2846 LSRUse &LU, size_t LUIdx) {
2847 Formula F;
2848 F.BaseRegs.push_back(S);
2849 F.AM.HasBaseReg = true;
2850 bool Inserted = InsertFormula(LU, LUIdx, F);
2851 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2852}
2853
2854/// CountRegisters - Note which registers are used by the given formula,
2855/// updating RegUses.
2856void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2857 if (F.ScaledReg)
2858 RegUses.CountRegister(F.ScaledReg, LUIdx);
2859 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2860 E = F.BaseRegs.end(); I != E; ++I)
2861 RegUses.CountRegister(*I, LUIdx);
2862}
2863
2864/// InsertFormula - If the given formula has not yet been inserted, add it to
2865/// the list, and return true. Return false otherwise.
2866bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002867 if (!LU.InsertFormula(F))
Dan Gohman572645c2010-02-12 10:34:29 +00002868 return false;
2869
2870 CountRegisters(F, LUIdx);
2871 return true;
2872}
2873
2874/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2875/// loop-invariant values which we're tracking. These other uses will pin these
2876/// values in registers, making them less profitable for elimination.
2877/// TODO: This currently misses non-constant addrec step registers.
2878/// TODO: Should this give more weight to users inside the loop?
2879void
2880LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2881 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2882 SmallPtrSet<const SCEV *, 8> Inserted;
2883
2884 while (!Worklist.empty()) {
2885 const SCEV *S = Worklist.pop_back_val();
2886
2887 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
Dan Gohman403a8cd2010-06-21 19:47:52 +00002888 Worklist.append(N->op_begin(), N->op_end());
Dan Gohman572645c2010-02-12 10:34:29 +00002889 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2890 Worklist.push_back(C->getOperand());
2891 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2892 Worklist.push_back(D->getLHS());
2893 Worklist.push_back(D->getRHS());
2894 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2895 if (!Inserted.insert(U)) continue;
2896 const Value *V = U->getValue();
Dan Gohmana15ec5d2010-06-04 23:16:05 +00002897 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2898 // Look for instructions defined outside the loop.
Dan Gohman572645c2010-02-12 10:34:29 +00002899 if (L->contains(Inst)) continue;
Dan Gohmana15ec5d2010-06-04 23:16:05 +00002900 } else if (isa<UndefValue>(V))
2901 // Undef doesn't have a live range, so it doesn't matter.
2902 continue;
Gabor Greif60ad7812010-03-25 23:06:16 +00002903 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
Dan Gohman572645c2010-02-12 10:34:29 +00002904 UI != UE; ++UI) {
2905 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2906 // Ignore non-instructions.
2907 if (!UserInst)
Dan Gohman7979b722010-01-22 00:46:49 +00002908 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002909 // Ignore instructions in other functions (as can happen with
2910 // Constants).
2911 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
Dan Gohman7979b722010-01-22 00:46:49 +00002912 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002913 // Ignore instructions not dominated by the loop.
2914 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2915 UserInst->getParent() :
2916 cast<PHINode>(UserInst)->getIncomingBlock(
2917 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2918 if (!DT.dominates(L->getHeader(), UseBB))
2919 continue;
2920 // Ignore uses which are part of other SCEV expressions, to avoid
2921 // analyzing them multiple times.
Dan Gohman4a2a6832010-04-09 19:12:34 +00002922 if (SE.isSCEVable(UserInst->getType())) {
2923 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2924 // If the user is a no-op, look through to its uses.
2925 if (!isa<SCEVUnknown>(UserS))
2926 continue;
2927 if (UserS == U) {
2928 Worklist.push_back(
2929 SE.getUnknown(const_cast<Instruction *>(UserInst)));
2930 continue;
2931 }
2932 }
Dan Gohman572645c2010-02-12 10:34:29 +00002933 // Ignore icmp instructions which are already being analyzed.
2934 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2935 unsigned OtherIdx = !UI.getOperandNo();
2936 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
Dan Gohman17ead4f2010-11-17 21:23:15 +00002937 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
Dan Gohman572645c2010-02-12 10:34:29 +00002938 continue;
2939 }
2940
2941 LSRFixup &LF = getNewFixup();
2942 LF.UserInst = const_cast<Instruction *>(UserInst);
2943 LF.OperandValToReplace = UI.getUse();
2944 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2945 LF.LUIdx = P.first;
2946 LF.Offset = P.second;
2947 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002948 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohmana9db1292010-07-15 20:24:58 +00002949 if (!LU.WidestFixupType ||
2950 SE.getTypeSizeInBits(LU.WidestFixupType) <
2951 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2952 LU.WidestFixupType = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00002953 InsertSupplementalFormula(U, LU, LF.LUIdx);
2954 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2955 break;
2956 }
2957 }
2958 }
2959}
2960
2961/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2962/// separate registers. If C is non-null, multiply each subexpression by C.
2963static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2964 SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman3e3f15b2010-06-25 22:32:18 +00002965 const Loop *L,
Dan Gohman572645c2010-02-12 10:34:29 +00002966 ScalarEvolution &SE) {
2967 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2968 // Break out add operands.
2969 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2970 I != E; ++I)
Dan Gohman3e22b7c2010-08-16 15:50:00 +00002971 CollectSubexprs(*I, C, Ops, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002972 return;
2973 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2974 // Split a non-zero base out of an addrec.
2975 if (!AR->getStart()->isZero()) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002976 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +00002977 AR->getStepRecurrence(SE),
Andrew Trick3228cc22011-03-14 16:50:06 +00002978 AR->getLoop(),
2979 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
2980 SCEV::FlagAnyWrap),
Dan Gohman3e22b7c2010-08-16 15:50:00 +00002981 C, Ops, L, SE);
2982 CollectSubexprs(AR->getStart(), C, Ops, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002983 return;
2984 }
2985 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2986 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2987 if (Mul->getNumOperands() == 2)
2988 if (const SCEVConstant *Op0 =
2989 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2990 CollectSubexprs(Mul->getOperand(1),
2991 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
Dan Gohman3e22b7c2010-08-16 15:50:00 +00002992 Ops, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002993 return;
2994 }
2995 }
2996
Dan Gohman3e22b7c2010-08-16 15:50:00 +00002997 // Otherwise use the value itself, optionally with a scale applied.
2998 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
Dan Gohman572645c2010-02-12 10:34:29 +00002999}
3000
3001/// GenerateReassociations - Split out subexpressions from adds and the bases of
3002/// addrecs.
3003void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3004 Formula Base,
3005 unsigned Depth) {
3006 // Arbitrarily cap recursion to protect compile time.
3007 if (Depth >= 3) return;
3008
3009 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3010 const SCEV *BaseReg = Base.BaseRegs[i];
3011
Dan Gohman3e22b7c2010-08-16 15:50:00 +00003012 SmallVector<const SCEV *, 8> AddOps;
3013 CollectSubexprs(BaseReg, 0, AddOps, L, SE);
Dan Gohman3e3f15b2010-06-25 22:32:18 +00003014
Dan Gohman572645c2010-02-12 10:34:29 +00003015 if (AddOps.size() == 1) continue;
3016
3017 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3018 JE = AddOps.end(); J != JE; ++J) {
Dan Gohman3e22b7c2010-08-16 15:50:00 +00003019
3020 // Loop-variant "unknown" values are uninteresting; we won't be able to
3021 // do anything meaningful with them.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003022 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
Dan Gohman3e22b7c2010-08-16 15:50:00 +00003023 continue;
3024
Dan Gohman572645c2010-02-12 10:34:29 +00003025 // Don't pull a constant into a register if the constant could be folded
3026 // into an immediate field.
3027 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
3028 Base.getNumRegs() > 1,
3029 LU.Kind, LU.AccessTy, TLI, SE))
3030 continue;
3031
3032 // Collect all operands except *J.
Dan Gohman403a8cd2010-06-21 19:47:52 +00003033 SmallVector<const SCEV *, 8> InnerAddOps
Dan Gohman4eaee282010-08-04 17:43:57 +00003034 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
Dan Gohman403a8cd2010-06-21 19:47:52 +00003035 InnerAddOps.append
Oscar Fuentesee56c422010-08-02 06:00:15 +00003036 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
Dan Gohman572645c2010-02-12 10:34:29 +00003037
3038 // Don't leave just a constant behind in a register if the constant could
3039 // be folded into an immediate field.
3040 if (InnerAddOps.size() == 1 &&
3041 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
3042 Base.getNumRegs() > 1,
3043 LU.Kind, LU.AccessTy, TLI, SE))
3044 continue;
3045
Dan Gohmanfafb8902010-04-23 01:55:05 +00003046 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3047 if (InnerSum->isZero())
3048 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00003049 Formula F = Base;
Dan Gohmancca82142011-05-03 00:46:49 +00003050
3051 // Add the remaining pieces of the add back into the new formula.
3052 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3053 if (TLI && InnerSumSC &&
3054 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3055 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3056 InnerSumSC->getValue()->getZExtValue())) {
3057 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3058 InnerSumSC->getValue()->getZExtValue();
3059 F.BaseRegs.erase(F.BaseRegs.begin() + i);
3060 } else
3061 F.BaseRegs[i] = InnerSum;
3062
3063 // Add J as its own register, or an unfolded immediate.
3064 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3065 if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3066 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3067 SC->getValue()->getZExtValue()))
3068 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3069 SC->getValue()->getZExtValue();
3070 else
3071 F.BaseRegs.push_back(*J);
3072
Dan Gohman572645c2010-02-12 10:34:29 +00003073 if (InsertFormula(LU, LUIdx, F))
3074 // If that formula hadn't been seen before, recurse to find more like
3075 // it.
3076 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
3077 }
3078 }
3079}
3080
3081/// GenerateCombinations - Generate a formula consisting of all of the
3082/// loop-dominating registers added into a single register.
3083void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Dan Gohman441a3892010-02-14 18:51:39 +00003084 Formula Base) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003085 // This method is only interesting on a plurality of registers.
Dan Gohman572645c2010-02-12 10:34:29 +00003086 if (Base.BaseRegs.size() <= 1) return;
3087
3088 Formula F = Base;
3089 F.BaseRegs.clear();
3090 SmallVector<const SCEV *, 4> Ops;
3091 for (SmallVectorImpl<const SCEV *>::const_iterator
3092 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
3093 const SCEV *BaseReg = *I;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00003094 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
Dan Gohman17ead4f2010-11-17 21:23:15 +00003095 !SE.hasComputableLoopEvolution(BaseReg, L))
Dan Gohman572645c2010-02-12 10:34:29 +00003096 Ops.push_back(BaseReg);
3097 else
3098 F.BaseRegs.push_back(BaseReg);
3099 }
3100 if (Ops.size() > 1) {
Dan Gohmance947362010-02-14 18:50:49 +00003101 const SCEV *Sum = SE.getAddExpr(Ops);
3102 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3103 // opportunity to fold something. For now, just ignore such cases
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003104 // rather than proceed with zero in a register.
Dan Gohmance947362010-02-14 18:50:49 +00003105 if (!Sum->isZero()) {
3106 F.BaseRegs.push_back(Sum);
3107 (void)InsertFormula(LU, LUIdx, F);
3108 }
Dan Gohman572645c2010-02-12 10:34:29 +00003109 }
3110}
3111
3112/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
3113void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3114 Formula Base) {
3115 // We can't add a symbolic offset if the address already contains one.
3116 if (Base.AM.BaseGV) return;
3117
3118 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3119 const SCEV *G = Base.BaseRegs[i];
3120 GlobalValue *GV = ExtractSymbol(G, SE);
3121 if (G->isZero() || !GV)
3122 continue;
3123 Formula F = Base;
3124 F.AM.BaseGV = GV;
3125 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3126 LU.Kind, LU.AccessTy, TLI))
3127 continue;
3128 F.BaseRegs[i] = G;
3129 (void)InsertFormula(LU, LUIdx, F);
3130 }
3131}
3132
3133/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3134void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3135 Formula Base) {
3136 // TODO: For now, just add the min and max offset, because it usually isn't
3137 // worthwhile looking at everything inbetween.
Dan Gohmanc88c1a42010-07-15 15:14:45 +00003138 SmallVector<int64_t, 2> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00003139 Worklist.push_back(LU.MinOffset);
3140 if (LU.MaxOffset != LU.MinOffset)
3141 Worklist.push_back(LU.MaxOffset);
3142
3143 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3144 const SCEV *G = Base.BaseRegs[i];
3145
3146 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
3147 E = Worklist.end(); I != E; ++I) {
3148 Formula F = Base;
3149 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
3150 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
3151 LU.Kind, LU.AccessTy, TLI)) {
Dan Gohmanc88c1a42010-07-15 15:14:45 +00003152 // Add the offset to the base register.
Dan Gohman4065f602010-08-16 15:39:27 +00003153 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
Dan Gohmanc88c1a42010-07-15 15:14:45 +00003154 // If it cancelled out, drop the base register, otherwise update it.
3155 if (NewG->isZero()) {
3156 std::swap(F.BaseRegs[i], F.BaseRegs.back());
3157 F.BaseRegs.pop_back();
3158 } else
3159 F.BaseRegs[i] = NewG;
Dan Gohman572645c2010-02-12 10:34:29 +00003160
3161 (void)InsertFormula(LU, LUIdx, F);
3162 }
3163 }
3164
3165 int64_t Imm = ExtractImmediate(G, SE);
3166 if (G->isZero() || Imm == 0)
3167 continue;
3168 Formula F = Base;
3169 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
3170 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3171 LU.Kind, LU.AccessTy, TLI))
3172 continue;
3173 F.BaseRegs[i] = G;
3174 (void)InsertFormula(LU, LUIdx, F);
3175 }
3176}
3177
3178/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
3179/// the comparison. For example, x == y -> x*c == y*c.
3180void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3181 Formula Base) {
3182 if (LU.Kind != LSRUse::ICmpZero) return;
3183
3184 // Determine the integer type for the base formula.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003185 Type *IntTy = Base.getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003186 if (!IntTy) return;
3187 if (SE.getTypeSizeInBits(IntTy) > 64) return;
3188
3189 // Don't do this if there is more than one offset.
3190 if (LU.MinOffset != LU.MaxOffset) return;
3191
3192 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
3193
3194 // Check each interesting stride.
3195 for (SmallSetVector<int64_t, 8>::const_iterator
3196 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3197 int64_t Factor = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00003198
3199 // Check that the multiplication doesn't overflow.
Dan Gohman2ea09e02010-06-24 16:57:52 +00003200 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
Dan Gohman968cb932010-02-17 00:41:53 +00003201 continue;
Dan Gohman2ea09e02010-06-24 16:57:52 +00003202 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
3203 if (NewBaseOffs / Factor != Base.AM.BaseOffs)
Dan Gohman572645c2010-02-12 10:34:29 +00003204 continue;
3205
3206 // Check that multiplying with the use offset doesn't overflow.
3207 int64_t Offset = LU.MinOffset;
Dan Gohman968cb932010-02-17 00:41:53 +00003208 if (Offset == INT64_MIN && Factor == -1)
3209 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00003210 Offset = (uint64_t)Offset * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00003211 if (Offset / Factor != LU.MinOffset)
Dan Gohman572645c2010-02-12 10:34:29 +00003212 continue;
3213
Dan Gohman2ea09e02010-06-24 16:57:52 +00003214 Formula F = Base;
3215 F.AM.BaseOffs = NewBaseOffs;
3216
Dan Gohman572645c2010-02-12 10:34:29 +00003217 // Check that this scale is legal.
3218 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
3219 continue;
3220
3221 // Compensate for the use having MinOffset built into it.
3222 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
3223
Dan Gohmandeff6212010-05-03 22:09:21 +00003224 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00003225
3226 // Check that multiplying with each base register doesn't overflow.
3227 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3228 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00003229 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
Dan Gohman572645c2010-02-12 10:34:29 +00003230 goto next;
3231 }
3232
3233 // Check that multiplying with the scaled register doesn't overflow.
3234 if (F.ScaledReg) {
3235 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00003236 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
Dan Gohman572645c2010-02-12 10:34:29 +00003237 continue;
3238 }
3239
Dan Gohmancca82142011-05-03 00:46:49 +00003240 // Check that multiplying with the unfolded offset doesn't overflow.
3241 if (F.UnfoldedOffset != 0) {
Dan Gohman1b58d452011-05-23 21:07:39 +00003242 if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3243 continue;
Dan Gohmancca82142011-05-03 00:46:49 +00003244 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3245 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3246 continue;
3247 }
3248
Dan Gohman572645c2010-02-12 10:34:29 +00003249 // If we make it here and it's legal, add it.
3250 (void)InsertFormula(LU, LUIdx, F);
3251 next:;
3252 }
3253}
3254
3255/// GenerateScales - Generate stride factor reuse formulae by making use of
3256/// scaled-offset address modes, for example.
Dan Gohmanea507f52010-05-20 19:44:23 +00003257void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00003258 // Determine the integer type for the base formula.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003259 Type *IntTy = Base.getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003260 if (!IntTy) return;
3261
3262 // If this Formula already has a scaled register, we can't add another one.
3263 if (Base.AM.Scale != 0) return;
3264
3265 // Check each interesting stride.
3266 for (SmallSetVector<int64_t, 8>::const_iterator
3267 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3268 int64_t Factor = *I;
3269
3270 Base.AM.Scale = Factor;
3271 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
3272 // Check whether this scale is going to be legal.
3273 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3274 LU.Kind, LU.AccessTy, TLI)) {
3275 // As a special-case, handle special out-of-loop Basic users specially.
3276 // TODO: Reconsider this special case.
3277 if (LU.Kind == LSRUse::Basic &&
3278 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3279 LSRUse::Special, LU.AccessTy, TLI) &&
3280 LU.AllFixupsOutsideLoop)
3281 LU.Kind = LSRUse::Special;
3282 else
3283 continue;
3284 }
3285 // For an ICmpZero, negating a solitary base register won't lead to
3286 // new solutions.
3287 if (LU.Kind == LSRUse::ICmpZero &&
3288 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
3289 continue;
3290 // For each addrec base reg, apply the scale, if possible.
3291 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3292 if (const SCEVAddRecExpr *AR =
3293 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
Dan Gohmandeff6212010-05-03 22:09:21 +00003294 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00003295 if (FactorS->isZero())
3296 continue;
3297 // Divide out the factor, ignoring high bits, since we'll be
3298 // scaling the value back up in the end.
Dan Gohmanf09b7122010-02-19 19:35:48 +00003299 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
Dan Gohman572645c2010-02-12 10:34:29 +00003300 // TODO: This could be optimized to avoid all the copying.
3301 Formula F = Base;
3302 F.ScaledReg = Quotient;
Dan Gohman5ce6d052010-05-20 15:17:54 +00003303 F.DeleteBaseReg(F.BaseRegs[i]);
Dan Gohman572645c2010-02-12 10:34:29 +00003304 (void)InsertFormula(LU, LUIdx, F);
3305 }
3306 }
3307 }
3308}
3309
3310/// GenerateTruncates - Generate reuse formulae from different IV types.
Dan Gohmanea507f52010-05-20 19:44:23 +00003311void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00003312 // This requires TargetLowering to tell us which truncates are free.
3313 if (!TLI) return;
3314
3315 // Don't bother truncating symbolic values.
3316 if (Base.AM.BaseGV) return;
3317
3318 // Determine the integer type for the base formula.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003319 Type *DstTy = Base.getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003320 if (!DstTy) return;
3321 DstTy = SE.getEffectiveSCEVType(DstTy);
3322
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003323 for (SmallSetVector<Type *, 4>::const_iterator
Dan Gohman572645c2010-02-12 10:34:29 +00003324 I = Types.begin(), E = Types.end(); I != E; ++I) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003325 Type *SrcTy = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00003326 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
3327 Formula F = Base;
3328
3329 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
3330 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
3331 JE = F.BaseRegs.end(); J != JE; ++J)
3332 *J = SE.getAnyExtendExpr(*J, SrcTy);
3333
3334 // TODO: This assumes we've done basic processing on all uses and
3335 // have an idea what the register usage is.
3336 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3337 continue;
3338
3339 (void)InsertFormula(LU, LUIdx, F);
3340 }
3341 }
3342}
3343
3344namespace {
3345
Dan Gohman6020d852010-02-14 18:51:20 +00003346/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
Dan Gohman572645c2010-02-12 10:34:29 +00003347/// defer modifications so that the search phase doesn't have to worry about
3348/// the data structures moving underneath it.
3349struct WorkItem {
3350 size_t LUIdx;
3351 int64_t Imm;
3352 const SCEV *OrigReg;
3353
3354 WorkItem(size_t LI, int64_t I, const SCEV *R)
3355 : LUIdx(LI), Imm(I), OrigReg(R) {}
3356
3357 void print(raw_ostream &OS) const;
3358 void dump() const;
3359};
3360
3361}
3362
3363void WorkItem::print(raw_ostream &OS) const {
3364 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3365 << " , add offset " << Imm;
3366}
3367
3368void WorkItem::dump() const {
3369 print(errs()); errs() << '\n';
3370}
3371
3372/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
3373/// distance apart and try to form reuse opportunities between them.
3374void LSRInstance::GenerateCrossUseConstantOffsets() {
3375 // Group the registers by their value without any added constant offset.
3376 typedef std::map<int64_t, const SCEV *> ImmMapTy;
3377 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
3378 RegMapTy Map;
3379 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3380 SmallVector<const SCEV *, 8> Sequence;
3381 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3382 I != E; ++I) {
3383 const SCEV *Reg = *I;
3384 int64_t Imm = ExtractImmediate(Reg, SE);
3385 std::pair<RegMapTy::iterator, bool> Pair =
3386 Map.insert(std::make_pair(Reg, ImmMapTy()));
3387 if (Pair.second)
3388 Sequence.push_back(Reg);
3389 Pair.first->second.insert(std::make_pair(Imm, *I));
3390 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
3391 }
3392
3393 // Now examine each set of registers with the same base value. Build up
3394 // a list of work to do and do the work in a separate step so that we're
3395 // not adding formulae and register counts while we're searching.
Dan Gohman191bd642010-09-01 01:45:53 +00003396 SmallVector<WorkItem, 32> WorkItems;
3397 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
Dan Gohman572645c2010-02-12 10:34:29 +00003398 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
3399 E = Sequence.end(); I != E; ++I) {
3400 const SCEV *Reg = *I;
3401 const ImmMapTy &Imms = Map.find(Reg)->second;
3402
Dan Gohmancd045c02010-02-12 19:20:37 +00003403 // It's not worthwhile looking for reuse if there's only one offset.
3404 if (Imms.size() == 1)
3405 continue;
3406
Dan Gohman572645c2010-02-12 10:34:29 +00003407 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3408 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3409 J != JE; ++J)
3410 dbgs() << ' ' << J->first;
3411 dbgs() << '\n');
3412
3413 // Examine each offset.
3414 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3415 J != JE; ++J) {
3416 const SCEV *OrigReg = J->second;
3417
3418 int64_t JImm = J->first;
3419 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3420
3421 if (!isa<SCEVConstant>(OrigReg) &&
3422 UsedByIndicesMap[Reg].count() == 1) {
3423 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3424 continue;
3425 }
3426
3427 // Conservatively examine offsets between this orig reg a few selected
3428 // other orig regs.
3429 ImmMapTy::const_iterator OtherImms[] = {
3430 Imms.begin(), prior(Imms.end()),
Dan Gohmancca82142011-05-03 00:46:49 +00003431 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
Dan Gohman572645c2010-02-12 10:34:29 +00003432 };
3433 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3434 ImmMapTy::const_iterator M = OtherImms[i];
Dan Gohmancd045c02010-02-12 19:20:37 +00003435 if (M == J || M == JE) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00003436
3437 // Compute the difference between the two.
3438 int64_t Imm = (uint64_t)JImm - M->first;
3439 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
Dan Gohman191bd642010-09-01 01:45:53 +00003440 LUIdx = UsedByIndices.find_next(LUIdx))
Dan Gohman572645c2010-02-12 10:34:29 +00003441 // Make a memo of this use, offset, and register tuple.
Dan Gohman191bd642010-09-01 01:45:53 +00003442 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
3443 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
Evan Cheng586f69a2009-11-12 07:35:05 +00003444 }
3445 }
3446 }
3447
Dan Gohman572645c2010-02-12 10:34:29 +00003448 Map.clear();
3449 Sequence.clear();
3450 UsedByIndicesMap.clear();
Dan Gohman191bd642010-09-01 01:45:53 +00003451 UniqueItems.clear();
Dan Gohman572645c2010-02-12 10:34:29 +00003452
3453 // Now iterate through the worklist and add new formulae.
3454 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
3455 E = WorkItems.end(); I != E; ++I) {
3456 const WorkItem &WI = *I;
3457 size_t LUIdx = WI.LUIdx;
3458 LSRUse &LU = Uses[LUIdx];
3459 int64_t Imm = WI.Imm;
3460 const SCEV *OrigReg = WI.OrigReg;
3461
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003462 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
Dan Gohman572645c2010-02-12 10:34:29 +00003463 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3464 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3465
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003466 // TODO: Use a more targeted data structure.
Dan Gohman572645c2010-02-12 10:34:29 +00003467 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
Dan Gohman9f383eb2010-05-20 22:25:20 +00003468 const Formula &F = LU.Formulae[L];
Dan Gohman572645c2010-02-12 10:34:29 +00003469 // Use the immediate in the scaled register.
3470 if (F.ScaledReg == OrigReg) {
3471 int64_t Offs = (uint64_t)F.AM.BaseOffs +
3472 Imm * (uint64_t)F.AM.Scale;
3473 // Don't create 50 + reg(-50).
3474 if (F.referencesReg(SE.getSCEV(
3475 ConstantInt::get(IntTy, -(uint64_t)Offs))))
3476 continue;
3477 Formula NewF = F;
3478 NewF.AM.BaseOffs = Offs;
3479 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
3480 LU.Kind, LU.AccessTy, TLI))
3481 continue;
3482 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3483
3484 // If the new scale is a constant in a register, and adding the constant
3485 // value to the immediate would produce a value closer to zero than the
3486 // immediate itself, then the formula isn't worthwhile.
3487 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
Chris Lattnerc73b24d2011-07-15 06:08:15 +00003488 if (C->getValue()->isNegative() !=
Dan Gohman572645c2010-02-12 10:34:29 +00003489 (NewF.AM.BaseOffs < 0) &&
3490 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
Dan Gohmane0567812010-04-08 23:03:40 +00003491 .ule(abs64(NewF.AM.BaseOffs)))
Dan Gohman572645c2010-02-12 10:34:29 +00003492 continue;
3493
3494 // OK, looks good.
3495 (void)InsertFormula(LU, LUIdx, NewF);
3496 } else {
3497 // Use the immediate in a base register.
3498 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3499 const SCEV *BaseReg = F.BaseRegs[N];
3500 if (BaseReg != OrigReg)
3501 continue;
3502 Formula NewF = F;
3503 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
3504 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
Dan Gohmancca82142011-05-03 00:46:49 +00003505 LU.Kind, LU.AccessTy, TLI)) {
3506 if (!TLI ||
3507 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3508 continue;
3509 NewF = F;
3510 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3511 }
Dan Gohman572645c2010-02-12 10:34:29 +00003512 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3513
3514 // If the new formula has a constant in a register, and adding the
3515 // constant value to the immediate would produce a value closer to
3516 // zero than the immediate itself, then the formula isn't worthwhile.
3517 for (SmallVectorImpl<const SCEV *>::const_iterator
3518 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
3519 J != JE; ++J)
3520 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
Dan Gohman360026f2010-05-18 23:48:08 +00003521 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
3522 abs64(NewF.AM.BaseOffs)) &&
3523 (C->getValue()->getValue() +
3524 NewF.AM.BaseOffs).countTrailingZeros() >=
3525 CountTrailingZeros_64(NewF.AM.BaseOffs))
Dan Gohman572645c2010-02-12 10:34:29 +00003526 goto skip_formula;
3527
3528 // Ok, looks good.
3529 (void)InsertFormula(LU, LUIdx, NewF);
3530 break;
3531 skip_formula:;
3532 }
3533 }
3534 }
3535 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00003536}
3537
Dan Gohman572645c2010-02-12 10:34:29 +00003538/// GenerateAllReuseFormulae - Generate formulae for each use.
3539void
3540LSRInstance::GenerateAllReuseFormulae() {
Dan Gohmanc2385a02010-02-16 01:42:53 +00003541 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
Dan Gohman572645c2010-02-12 10:34:29 +00003542 // queries are more precise.
3543 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3544 LSRUse &LU = Uses[LUIdx];
3545 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3546 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3547 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3548 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3549 }
3550 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3551 LSRUse &LU = Uses[LUIdx];
3552 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3553 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3554 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3555 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3556 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3557 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3558 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3559 GenerateScales(LU, LUIdx, LU.Formulae[i]);
Dan Gohmanc2385a02010-02-16 01:42:53 +00003560 }
3561 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3562 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00003563 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3564 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3565 }
3566
3567 GenerateCrossUseConstantOffsets();
Dan Gohman3902f9f2010-08-29 15:21:38 +00003568
3569 DEBUG(dbgs() << "\n"
3570 "After generating reuse formulae:\n";
3571 print_uses(dbgs()));
Dan Gohman572645c2010-02-12 10:34:29 +00003572}
3573
Dan Gohmanf63d70f2010-10-07 23:43:09 +00003574/// If there are multiple formulae with the same set of registers used
Dan Gohman572645c2010-02-12 10:34:29 +00003575/// by other uses, pick the best one and delete the others.
3576void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
Dan Gohmanfc7744b2010-10-07 23:52:18 +00003577 DenseSet<const SCEV *> VisitedRegs;
3578 SmallPtrSet<const SCEV *, 16> Regs;
Andrew Trick8a5d7922011-12-06 03:13:31 +00003579 SmallPtrSet<const SCEV *, 16> LoserRegs;
Dan Gohman572645c2010-02-12 10:34:29 +00003580#ifndef NDEBUG
Dan Gohmanc6519f92010-05-20 20:05:31 +00003581 bool ChangedFormulae = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003582#endif
3583
3584 // Collect the best formula for each unique set of shared registers. This
3585 // is reset for each use.
3586 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
3587 BestFormulaeTy;
3588 BestFormulaeTy BestFormulae;
3589
3590 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3591 LSRUse &LU = Uses[LUIdx];
Dan Gohmanea507f52010-05-20 19:44:23 +00003592 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
Dan Gohman572645c2010-02-12 10:34:29 +00003593
Dan Gohmanb2df4332010-05-18 23:42:37 +00003594 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003595 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3596 FIdx != NumForms; ++FIdx) {
3597 Formula &F = LU.Formulae[FIdx];
3598
Andrew Trick8a5d7922011-12-06 03:13:31 +00003599 // Some formulas are instant losers. For example, they may depend on
3600 // nonexistent AddRecs from other loops. These need to be filtered
3601 // immediately, otherwise heuristics could choose them over others leading
3602 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3603 // avoids the need to recompute this information across formulae using the
3604 // same bad AddRec. Passing LoserRegs is also essential unless we remove
3605 // the corresponding bad register from the Regs set.
3606 Cost CostF;
3607 Regs.clear();
3608 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT,
3609 &LoserRegs);
3610 if (CostF.isLoser()) {
3611 // During initial formula generation, undesirable formulae are generated
3612 // by uses within other loops that have some non-trivial address mode or
3613 // use the postinc form of the IV. LSR needs to provide these formulae
3614 // as the basis of rediscovering the desired formula that uses an AddRec
3615 // corresponding to the existing phi. Once all formulae have been
3616 // generated, these initial losers may be pruned.
3617 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
3618 dbgs() << "\n");
Dan Gohman572645c2010-02-12 10:34:29 +00003619 }
Andrew Trick8a5d7922011-12-06 03:13:31 +00003620 else {
3621 SmallVector<const SCEV *, 2> Key;
3622 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
3623 JE = F.BaseRegs.end(); J != JE; ++J) {
3624 const SCEV *Reg = *J;
3625 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3626 Key.push_back(Reg);
3627 }
3628 if (F.ScaledReg &&
3629 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3630 Key.push_back(F.ScaledReg);
3631 // Unstable sort by host order ok, because this is only used for
3632 // uniquifying.
3633 std::sort(Key.begin(), Key.end());
Dan Gohman572645c2010-02-12 10:34:29 +00003634
Andrew Trick8a5d7922011-12-06 03:13:31 +00003635 std::pair<BestFormulaeTy::const_iterator, bool> P =
3636 BestFormulae.insert(std::make_pair(Key, FIdx));
3637 if (P.second)
3638 continue;
3639
Dan Gohman572645c2010-02-12 10:34:29 +00003640 Formula &Best = LU.Formulae[P.first->second];
Dan Gohmanfc7744b2010-10-07 23:52:18 +00003641
Dan Gohmanfc7744b2010-10-07 23:52:18 +00003642 Cost CostBest;
Dan Gohmanfc7744b2010-10-07 23:52:18 +00003643 Regs.clear();
Andrew Trick8a5d7922011-12-06 03:13:31 +00003644 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
Dan Gohmanfc7744b2010-10-07 23:52:18 +00003645 if (CostF < CostBest)
Dan Gohman572645c2010-02-12 10:34:29 +00003646 std::swap(F, Best);
Dan Gohman6458ff92010-05-18 22:37:37 +00003647 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00003648 dbgs() << "\n"
Dan Gohman6458ff92010-05-18 22:37:37 +00003649 " in favor of formula "; Best.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00003650 dbgs() << '\n');
Dan Gohman572645c2010-02-12 10:34:29 +00003651 }
Andrew Trick8a5d7922011-12-06 03:13:31 +00003652#ifndef NDEBUG
3653 ChangedFormulae = true;
3654#endif
3655 LU.DeleteFormula(F);
3656 --FIdx;
3657 --NumForms;
3658 Any = true;
Dan Gohman59dc6032010-05-07 23:36:59 +00003659 }
3660
Dan Gohman57aaa0b2010-05-18 23:55:57 +00003661 // Now that we've filtered out some formulae, recompute the Regs set.
Dan Gohmanb2df4332010-05-18 23:42:37 +00003662 if (Any)
3663 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman59dc6032010-05-07 23:36:59 +00003664
3665 // Reset this to prepare for the next use.
Dan Gohman572645c2010-02-12 10:34:29 +00003666 BestFormulae.clear();
3667 }
3668
Dan Gohmanc6519f92010-05-20 20:05:31 +00003669 DEBUG(if (ChangedFormulae) {
Dan Gohman9214b822010-02-13 02:06:02 +00003670 dbgs() << "\n"
3671 "After filtering out undesirable candidates:\n";
Dan Gohman572645c2010-02-12 10:34:29 +00003672 print_uses(dbgs());
3673 });
3674}
3675
Dan Gohmand079c302010-05-18 22:51:59 +00003676// This is a rough guess that seems to work fairly well.
3677static const size_t ComplexityLimit = UINT16_MAX;
3678
3679/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
3680/// solutions the solver might have to consider. It almost never considers
3681/// this many solutions because it prune the search space, but the pruning
3682/// isn't always sufficient.
3683size_t LSRInstance::EstimateSearchSpaceComplexity() const {
Dan Gohman0d6715a2010-10-07 23:37:58 +00003684 size_t Power = 1;
Dan Gohmand079c302010-05-18 22:51:59 +00003685 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3686 E = Uses.end(); I != E; ++I) {
3687 size_t FSize = I->Formulae.size();
3688 if (FSize >= ComplexityLimit) {
3689 Power = ComplexityLimit;
3690 break;
3691 }
3692 Power *= FSize;
3693 if (Power >= ComplexityLimit)
3694 break;
3695 }
3696 return Power;
3697}
3698
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003699/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
3700/// of the registers of another formula, it won't help reduce register
3701/// pressure (though it may not necessarily hurt register pressure); remove
3702/// it to simplify the system.
3703void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
Dan Gohmana2086b32010-05-19 23:43:12 +00003704 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3705 DEBUG(dbgs() << "The search space is too complex.\n");
3706
3707 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3708 "which use a superset of registers used by other "
3709 "formulae.\n");
3710
3711 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3712 LSRUse &LU = Uses[LUIdx];
3713 bool Any = false;
3714 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3715 Formula &F = LU.Formulae[i];
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00003716 // Look for a formula with a constant or GV in a register. If the use
3717 // also has a formula with that same value in an immediate field,
3718 // delete the one that uses a register.
Dan Gohmana2086b32010-05-19 23:43:12 +00003719 for (SmallVectorImpl<const SCEV *>::const_iterator
3720 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
3721 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
3722 Formula NewF = F;
3723 NewF.AM.BaseOffs += C->getValue()->getSExtValue();
3724 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3725 (I - F.BaseRegs.begin()));
3726 if (LU.HasFormulaWithSameRegs(NewF)) {
3727 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
3728 LU.DeleteFormula(F);
3729 --i;
3730 --e;
3731 Any = true;
3732 break;
3733 }
3734 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
3735 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
3736 if (!F.AM.BaseGV) {
3737 Formula NewF = F;
3738 NewF.AM.BaseGV = GV;
3739 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3740 (I - F.BaseRegs.begin()));
3741 if (LU.HasFormulaWithSameRegs(NewF)) {
3742 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
3743 dbgs() << '\n');
3744 LU.DeleteFormula(F);
3745 --i;
3746 --e;
3747 Any = true;
3748 break;
3749 }
3750 }
3751 }
3752 }
3753 }
3754 if (Any)
3755 LU.RecomputeRegs(LUIdx, RegUses);
3756 }
3757
3758 DEBUG(dbgs() << "After pre-selection:\n";
3759 print_uses(dbgs()));
3760 }
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003761}
Dan Gohmana2086b32010-05-19 23:43:12 +00003762
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003763/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
3764/// for expressions like A, A+1, A+2, etc., allocate a single register for
3765/// them.
3766void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
Dan Gohmana2086b32010-05-19 23:43:12 +00003767 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3768 DEBUG(dbgs() << "The search space is too complex.\n");
3769
3770 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
3771 "separated by a constant offset will use the same "
3772 "registers.\n");
3773
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00003774 // This is especially useful for unrolled loops.
3775
Dan Gohmana2086b32010-05-19 23:43:12 +00003776 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3777 LSRUse &LU = Uses[LUIdx];
Dan Gohman402d4352010-05-20 20:33:18 +00003778 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3779 E = LU.Formulae.end(); I != E; ++I) {
3780 const Formula &F = *I;
Dan Gohmana2086b32010-05-19 23:43:12 +00003781 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
Dan Gohman191bd642010-09-01 01:45:53 +00003782 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
3783 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
Dan Gohmana2086b32010-05-19 23:43:12 +00003784 /*HasBaseReg=*/false,
3785 LU.Kind, LU.AccessTy)) {
3786 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
3787 dbgs() << '\n');
3788
3789 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
3790
Dan Gohman191bd642010-09-01 01:45:53 +00003791 // Update the relocs to reference the new use.
3792 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
3793 E = Fixups.end(); I != E; ++I) {
3794 LSRFixup &Fixup = *I;
3795 if (Fixup.LUIdx == LUIdx) {
3796 Fixup.LUIdx = LUThatHas - &Uses.front();
3797 Fixup.Offset += F.AM.BaseOffs;
Dan Gohmandd3db0e2010-10-07 23:36:45 +00003798 // Add the new offset to LUThatHas' offset list.
3799 if (LUThatHas->Offsets.back() != Fixup.Offset) {
3800 LUThatHas->Offsets.push_back(Fixup.Offset);
3801 if (Fixup.Offset > LUThatHas->MaxOffset)
3802 LUThatHas->MaxOffset = Fixup.Offset;
3803 if (Fixup.Offset < LUThatHas->MinOffset)
3804 LUThatHas->MinOffset = Fixup.Offset;
3805 }
Dan Gohman191bd642010-09-01 01:45:53 +00003806 DEBUG(dbgs() << "New fixup has offset "
3807 << Fixup.Offset << '\n');
3808 }
3809 if (Fixup.LUIdx == NumUses-1)
3810 Fixup.LUIdx = LUIdx;
3811 }
3812
Dan Gohmanc2921ea2010-10-08 19:33:26 +00003813 // Delete formulae from the new use which are no longer legal.
3814 bool Any = false;
3815 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3816 Formula &F = LUThatHas->Formulae[i];
3817 if (!isLegalUse(F.AM,
3818 LUThatHas->MinOffset, LUThatHas->MaxOffset,
3819 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3820 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
3821 dbgs() << '\n');
3822 LUThatHas->DeleteFormula(F);
3823 --i;
3824 --e;
3825 Any = true;
3826 }
3827 }
3828 if (Any)
3829 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3830
Dan Gohmana2086b32010-05-19 23:43:12 +00003831 // Delete the old use.
Dan Gohmanc6897702010-10-07 23:33:43 +00003832 DeleteUse(LU, LUIdx);
Dan Gohmana2086b32010-05-19 23:43:12 +00003833 --LUIdx;
3834 --NumUses;
3835 break;
3836 }
3837 }
3838 }
3839 }
3840 }
3841
3842 DEBUG(dbgs() << "After pre-selection:\n";
3843 print_uses(dbgs()));
3844 }
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003845}
Dan Gohmana2086b32010-05-19 23:43:12 +00003846
Andrew Trick3228cc22011-03-14 16:50:06 +00003847/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
Dan Gohman4f7e18d2010-08-29 16:39:22 +00003848/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3849/// we've done more filtering, as it may be able to find more formulae to
3850/// eliminate.
3851void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3852 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3853 DEBUG(dbgs() << "The search space is too complex.\n");
3854
3855 DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3856 "undesirable dedicated registers.\n");
3857
3858 FilterOutUndesirableDedicatedRegisters();
3859
3860 DEBUG(dbgs() << "After pre-selection:\n";
3861 print_uses(dbgs()));
3862 }
3863}
3864
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003865/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3866/// to be profitable, and then in any use which has any reference to that
3867/// register, delete all formulae which do not reference that register.
3868void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
Dan Gohman76c315a2010-05-20 20:52:00 +00003869 // With all other options exhausted, loop until the system is simple
3870 // enough to handle.
Dan Gohman572645c2010-02-12 10:34:29 +00003871 SmallPtrSet<const SCEV *, 4> Taken;
Dan Gohmand079c302010-05-18 22:51:59 +00003872 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
Dan Gohman572645c2010-02-12 10:34:29 +00003873 // Ok, we have too many of formulae on our hands to conveniently handle.
3874 // Use a rough heuristic to thin out the list.
Dan Gohman0da751b2010-05-18 22:41:32 +00003875 DEBUG(dbgs() << "The search space is too complex.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00003876
3877 // Pick the register which is used by the most LSRUses, which is likely
3878 // to be a good reuse register candidate.
3879 const SCEV *Best = 0;
3880 unsigned BestNum = 0;
3881 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3882 I != E; ++I) {
3883 const SCEV *Reg = *I;
3884 if (Taken.count(Reg))
3885 continue;
3886 if (!Best)
3887 Best = Reg;
3888 else {
3889 unsigned Count = RegUses.getUsedByIndices(Reg).count();
3890 if (Count > BestNum) {
3891 Best = Reg;
3892 BestNum = Count;
3893 }
3894 }
3895 }
3896
3897 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003898 << " will yield profitable reuse.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00003899 Taken.insert(Best);
3900
3901 // In any use with formulae which references this register, delete formulae
3902 // which don't reference it.
Dan Gohmanb2df4332010-05-18 23:42:37 +00003903 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3904 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00003905 if (!LU.Regs.count(Best)) continue;
3906
Dan Gohmanb2df4332010-05-18 23:42:37 +00003907 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003908 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3909 Formula &F = LU.Formulae[i];
3910 if (!F.referencesReg(Best)) {
3911 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
Dan Gohmand69d6282010-05-18 22:39:15 +00003912 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00003913 --e;
3914 --i;
Dan Gohmanb2df4332010-05-18 23:42:37 +00003915 Any = true;
Dan Gohman59dc6032010-05-07 23:36:59 +00003916 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
Dan Gohman572645c2010-02-12 10:34:29 +00003917 continue;
3918 }
Dan Gohman572645c2010-02-12 10:34:29 +00003919 }
Dan Gohmanb2df4332010-05-18 23:42:37 +00003920
3921 if (Any)
3922 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman572645c2010-02-12 10:34:29 +00003923 }
3924
3925 DEBUG(dbgs() << "After pre-selection:\n";
3926 print_uses(dbgs()));
3927 }
3928}
3929
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003930/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3931/// formulae to choose from, use some rough heuristics to prune down the number
3932/// of formulae. This keeps the main solver from taking an extraordinary amount
3933/// of time in some worst-case scenarios.
3934void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3935 NarrowSearchSpaceByDetectingSupersets();
3936 NarrowSearchSpaceByCollapsingUnrolledCode();
Dan Gohman4f7e18d2010-08-29 16:39:22 +00003937 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
Dan Gohman4aa5c2e2010-08-29 16:09:42 +00003938 NarrowSearchSpaceByPickingWinnerRegs();
3939}
3940
Dan Gohman572645c2010-02-12 10:34:29 +00003941/// SolveRecurse - This is the recursive solver.
3942void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3943 Cost &SolutionCost,
3944 SmallVectorImpl<const Formula *> &Workspace,
3945 const Cost &CurCost,
3946 const SmallPtrSet<const SCEV *, 16> &CurRegs,
3947 DenseSet<const SCEV *> &VisitedRegs) const {
3948 // Some ideas:
3949 // - prune more:
3950 // - use more aggressive filtering
3951 // - sort the formula so that the most profitable solutions are found first
3952 // - sort the uses too
3953 // - search faster:
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003954 // - don't compute a cost, and then compare. compare while computing a cost
Dan Gohman572645c2010-02-12 10:34:29 +00003955 // and bail early.
3956 // - track register sets with SmallBitVector
3957
3958 const LSRUse &LU = Uses[Workspace.size()];
3959
3960 // If this use references any register that's already a part of the
3961 // in-progress solution, consider it a requirement that a formula must
3962 // reference that register in order to be considered. This prunes out
3963 // unprofitable searching.
3964 SmallSetVector<const SCEV *, 4> ReqRegs;
3965 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3966 E = CurRegs.end(); I != E; ++I)
Dan Gohman9214b822010-02-13 02:06:02 +00003967 if (LU.Regs.count(*I))
Dan Gohman572645c2010-02-12 10:34:29 +00003968 ReqRegs.insert(*I);
Dan Gohman572645c2010-02-12 10:34:29 +00003969
Dan Gohman9214b822010-02-13 02:06:02 +00003970 bool AnySatisfiedReqRegs = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003971 SmallPtrSet<const SCEV *, 16> NewRegs;
3972 Cost NewCost;
Dan Gohman9214b822010-02-13 02:06:02 +00003973retry:
Dan Gohman572645c2010-02-12 10:34:29 +00003974 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3975 E = LU.Formulae.end(); I != E; ++I) {
3976 const Formula &F = *I;
3977
3978 // Ignore formulae which do not use any of the required registers.
3979 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3980 JE = ReqRegs.end(); J != JE; ++J) {
3981 const SCEV *Reg = *J;
3982 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3983 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3984 F.BaseRegs.end())
3985 goto skip;
3986 }
Dan Gohman9214b822010-02-13 02:06:02 +00003987 AnySatisfiedReqRegs = true;
Dan Gohman572645c2010-02-12 10:34:29 +00003988
3989 // Evaluate the cost of the current formula. If it's already worse than
3990 // the current best, prune the search at that point.
3991 NewCost = CurCost;
3992 NewRegs = CurRegs;
3993 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3994 if (NewCost < SolutionCost) {
3995 Workspace.push_back(&F);
3996 if (Workspace.size() != Uses.size()) {
3997 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3998 NewRegs, VisitedRegs);
3999 if (F.getNumRegs() == 1 && Workspace.size() == 1)
4000 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4001 } else {
4002 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
Andrew Trick8bf295b2012-01-09 18:58:16 +00004003 dbgs() << ".\n Regs:";
Dan Gohman572645c2010-02-12 10:34:29 +00004004 for (SmallPtrSet<const SCEV *, 16>::const_iterator
4005 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
4006 dbgs() << ' ' << **I;
4007 dbgs() << '\n');
4008
4009 SolutionCost = NewCost;
4010 Solution = Workspace;
4011 }
4012 Workspace.pop_back();
4013 }
4014 skip:;
4015 }
Dan Gohman9214b822010-02-13 02:06:02 +00004016
Andrew Trick80ef1b22011-09-27 00:44:14 +00004017 if (!EnableRetry && !AnySatisfiedReqRegs)
4018 return;
4019
Dan Gohman9214b822010-02-13 02:06:02 +00004020 // If none of the formulae had all of the required registers, relax the
4021 // constraint so that we don't exclude all formulae.
4022 if (!AnySatisfiedReqRegs) {
Dan Gohman59dc6032010-05-07 23:36:59 +00004023 assert(!ReqRegs.empty() && "Solver failed even without required registers");
Dan Gohman9214b822010-02-13 02:06:02 +00004024 ReqRegs.clear();
4025 goto retry;
4026 }
Dan Gohman572645c2010-02-12 10:34:29 +00004027}
4028
Dan Gohman76c315a2010-05-20 20:52:00 +00004029/// Solve - Choose one formula from each use. Return the results in the given
4030/// Solution vector.
Dan Gohman572645c2010-02-12 10:34:29 +00004031void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4032 SmallVector<const Formula *, 8> Workspace;
4033 Cost SolutionCost;
4034 SolutionCost.Loose();
4035 Cost CurCost;
4036 SmallPtrSet<const SCEV *, 16> CurRegs;
4037 DenseSet<const SCEV *> VisitedRegs;
4038 Workspace.reserve(Uses.size());
4039
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00004040 // SolveRecurse does all the work.
Dan Gohman572645c2010-02-12 10:34:29 +00004041 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4042 CurRegs, VisitedRegs);
Andrew Trick80ef1b22011-09-27 00:44:14 +00004043 if (Solution.empty()) {
4044 DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4045 return;
4046 }
Dan Gohman572645c2010-02-12 10:34:29 +00004047
4048 // Ok, we've now made all our decisions.
4049 DEBUG(dbgs() << "\n"
4050 "The chosen solution requires "; SolutionCost.print(dbgs());
4051 dbgs() << ":\n";
4052 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4053 dbgs() << " ";
4054 Uses[i].print(dbgs());
4055 dbgs() << "\n"
4056 " ";
4057 Solution[i]->print(dbgs());
4058 dbgs() << '\n';
4059 });
Dan Gohmana5528782010-05-20 20:59:23 +00004060
4061 assert(Solution.size() == Uses.size() && "Malformed solution!");
Dan Gohman572645c2010-02-12 10:34:29 +00004062}
4063
Dan Gohmane5f76872010-04-09 22:07:05 +00004064/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
4065/// the dominator tree far as we can go while still being dominated by the
4066/// input positions. This helps canonicalize the insert position, which
4067/// encourages sharing.
4068BasicBlock::iterator
4069LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4070 const SmallVectorImpl<Instruction *> &Inputs)
4071 const {
4072 for (;;) {
4073 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4074 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4075
4076 BasicBlock *IDom;
Dan Gohmand974a0e2010-05-20 20:00:25 +00004077 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
Dan Gohman0fe46d92010-05-20 22:46:54 +00004078 if (!Rung) return IP;
Dan Gohmand974a0e2010-05-20 20:00:25 +00004079 Rung = Rung->getIDom();
4080 if (!Rung) return IP;
4081 IDom = Rung->getBlock();
Dan Gohmane5f76872010-04-09 22:07:05 +00004082
4083 // Don't climb into a loop though.
4084 const Loop *IDomLoop = LI.getLoopFor(IDom);
4085 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4086 if (IDomDepth <= IPLoopDepth &&
4087 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4088 break;
4089 }
4090
4091 bool AllDominate = true;
4092 Instruction *BetterPos = 0;
4093 Instruction *Tentative = IDom->getTerminator();
4094 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
4095 E = Inputs.end(); I != E; ++I) {
4096 Instruction *Inst = *I;
4097 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4098 AllDominate = false;
4099 break;
4100 }
4101 // Attempt to find an insert position in the middle of the block,
4102 // instead of at the end, so that it can be used for other expansions.
4103 if (IDom == Inst->getParent() &&
4104 (!BetterPos || DT.dominates(BetterPos, Inst)))
Douglas Gregor7d9663c2010-05-11 06:17:44 +00004105 BetterPos = llvm::next(BasicBlock::iterator(Inst));
Dan Gohmane5f76872010-04-09 22:07:05 +00004106 }
4107 if (!AllDominate)
4108 break;
4109 if (BetterPos)
4110 IP = BetterPos;
4111 else
4112 IP = Tentative;
4113 }
4114
4115 return IP;
4116}
4117
4118/// AdjustInsertPositionForExpand - Determine an input position which will be
Dan Gohmand96eae82010-04-09 02:00:38 +00004119/// dominated by the operands and which will dominate the result.
4120BasicBlock::iterator
Andrew Trickb5c26ef2012-01-20 07:41:13 +00004121LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
Dan Gohmane5f76872010-04-09 22:07:05 +00004122 const LSRFixup &LF,
Andrew Trickb5c26ef2012-01-20 07:41:13 +00004123 const LSRUse &LU,
4124 SCEVExpander &Rewriter) const {
Dan Gohmand96eae82010-04-09 02:00:38 +00004125 // Collect some instructions which must be dominated by the
Dan Gohman448db1c2010-04-07 22:27:08 +00004126 // expanding replacement. These must be dominated by any operands that
Dan Gohman572645c2010-02-12 10:34:29 +00004127 // will be required in the expansion.
4128 SmallVector<Instruction *, 4> Inputs;
4129 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4130 Inputs.push_back(I);
4131 if (LU.Kind == LSRUse::ICmpZero)
4132 if (Instruction *I =
4133 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4134 Inputs.push_back(I);
Dan Gohman448db1c2010-04-07 22:27:08 +00004135 if (LF.PostIncLoops.count(L)) {
4136 if (LF.isUseFullyOutsideLoop(L))
Dan Gohman069d6f32010-03-02 01:59:21 +00004137 Inputs.push_back(L->getLoopLatch()->getTerminator());
4138 else
4139 Inputs.push_back(IVIncInsertPos);
4140 }
Dan Gohman701a4ae2010-04-08 05:57:57 +00004141 // The expansion must also be dominated by the increment positions of any
4142 // loops it for which it is using post-inc mode.
4143 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
4144 E = LF.PostIncLoops.end(); I != E; ++I) {
4145 const Loop *PIL = *I;
4146 if (PIL == L) continue;
4147
Dan Gohmane5f76872010-04-09 22:07:05 +00004148 // Be dominated by the loop exit.
Dan Gohman701a4ae2010-04-08 05:57:57 +00004149 SmallVector<BasicBlock *, 4> ExitingBlocks;
4150 PIL->getExitingBlocks(ExitingBlocks);
4151 if (!ExitingBlocks.empty()) {
4152 BasicBlock *BB = ExitingBlocks[0];
4153 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4154 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4155 Inputs.push_back(BB->getTerminator());
4156 }
4157 }
Dan Gohman572645c2010-02-12 10:34:29 +00004158
Andrew Trickb5c26ef2012-01-20 07:41:13 +00004159 assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
4160 && !isa<DbgInfoIntrinsic>(LowestIP) &&
4161 "Insertion point must be a normal instruction");
4162
Dan Gohman572645c2010-02-12 10:34:29 +00004163 // Then, climb up the immediate dominator tree as far as we can go while
4164 // still being dominated by the input positions.
Andrew Trickb5c26ef2012-01-20 07:41:13 +00004165 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
Dan Gohmand96eae82010-04-09 02:00:38 +00004166
4167 // Don't insert instructions before PHI nodes.
Dan Gohman572645c2010-02-12 10:34:29 +00004168 while (isa<PHINode>(IP)) ++IP;
Dan Gohmand96eae82010-04-09 02:00:38 +00004169
Bill Wendlinga4c86ab2011-08-24 21:06:46 +00004170 // Ignore landingpad instructions.
4171 while (isa<LandingPadInst>(IP)) ++IP;
4172
Dan Gohmand96eae82010-04-09 02:00:38 +00004173 // Ignore debug intrinsics.
Dan Gohman449f31c2010-03-26 00:33:27 +00004174 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
Dan Gohman572645c2010-02-12 10:34:29 +00004175
Andrew Trickb5c26ef2012-01-20 07:41:13 +00004176 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4177 // IP consistent across expansions and allows the previously inserted
4178 // instructions to be reused by subsequent expansion.
4179 while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
4180
Dan Gohmand96eae82010-04-09 02:00:38 +00004181 return IP;
4182}
4183
Dan Gohman76c315a2010-05-20 20:52:00 +00004184/// Expand - Emit instructions for the leading candidate expression for this
4185/// LSRUse (this is called "expanding").
Dan Gohmand96eae82010-04-09 02:00:38 +00004186Value *LSRInstance::Expand(const LSRFixup &LF,
4187 const Formula &F,
4188 BasicBlock::iterator IP,
4189 SCEVExpander &Rewriter,
4190 SmallVectorImpl<WeakVH> &DeadInsts) const {
4191 const LSRUse &LU = Uses[LF.LUIdx];
4192
4193 // Determine an input position which will be dominated by the operands and
4194 // which will dominate the result.
Andrew Trickb5c26ef2012-01-20 07:41:13 +00004195 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
Dan Gohmand96eae82010-04-09 02:00:38 +00004196
Dan Gohman572645c2010-02-12 10:34:29 +00004197 // Inform the Rewriter if we have a post-increment use, so that it can
4198 // perform an advantageous expansion.
Dan Gohman448db1c2010-04-07 22:27:08 +00004199 Rewriter.setPostInc(LF.PostIncLoops);
Dan Gohman572645c2010-02-12 10:34:29 +00004200
4201 // This is the type that the user actually needs.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004202 Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00004203 // This will be the type that we'll initially expand to.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004204 Type *Ty = F.getType();
Dan Gohman572645c2010-02-12 10:34:29 +00004205 if (!Ty)
4206 // No type known; just expand directly to the ultimate type.
4207 Ty = OpTy;
4208 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4209 // Expand directly to the ultimate type if it's the right size.
4210 Ty = OpTy;
4211 // This is the type to do integer arithmetic in.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004212 Type *IntTy = SE.getEffectiveSCEVType(Ty);
Dan Gohman572645c2010-02-12 10:34:29 +00004213
4214 // Build up a list of operands to add together to form the full base.
4215 SmallVector<const SCEV *, 8> Ops;
4216
4217 // Expand the BaseRegs portion.
4218 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
4219 E = F.BaseRegs.end(); I != E; ++I) {
4220 const SCEV *Reg = *I;
4221 assert(!Reg->isZero() && "Zero allocated in a base register!");
4222
Dan Gohman448db1c2010-04-07 22:27:08 +00004223 // If we're expanding for a post-inc user, make the post-inc adjustment.
4224 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4225 Reg = TransformForPostIncUse(Denormalize, Reg,
4226 LF.UserInst, LF.OperandValToReplace,
4227 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00004228
4229 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
4230 }
4231
Dan Gohman087bd1e2010-03-03 05:29:13 +00004232 // Flush the operand list to suppress SCEVExpander hoisting.
4233 if (!Ops.empty()) {
4234 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4235 Ops.clear();
4236 Ops.push_back(SE.getUnknown(FullV));
4237 }
4238
Dan Gohman572645c2010-02-12 10:34:29 +00004239 // Expand the ScaledReg portion.
4240 Value *ICmpScaledV = 0;
4241 if (F.AM.Scale != 0) {
4242 const SCEV *ScaledS = F.ScaledReg;
4243
Dan Gohman448db1c2010-04-07 22:27:08 +00004244 // If we're expanding for a post-inc user, make the post-inc adjustment.
4245 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4246 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4247 LF.UserInst, LF.OperandValToReplace,
4248 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00004249
4250 if (LU.Kind == LSRUse::ICmpZero) {
4251 // An interesting way of "folding" with an icmp is to use a negated
4252 // scale, which we'll implement by inserting it into the other operand
4253 // of the icmp.
4254 assert(F.AM.Scale == -1 &&
4255 "The only scale supported by ICmpZero uses is -1!");
4256 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
4257 } else {
4258 // Otherwise just expand the scaled register and an explicit scale,
4259 // which is expected to be matched as part of the address.
4260 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
4261 ScaledS = SE.getMulExpr(ScaledS,
Dan Gohmandeff6212010-05-03 22:09:21 +00004262 SE.getConstant(ScaledS->getType(), F.AM.Scale));
Dan Gohman572645c2010-02-12 10:34:29 +00004263 Ops.push_back(ScaledS);
Dan Gohman087bd1e2010-03-03 05:29:13 +00004264
4265 // Flush the operand list to suppress SCEVExpander hoisting.
4266 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4267 Ops.clear();
4268 Ops.push_back(SE.getUnknown(FullV));
Dan Gohman572645c2010-02-12 10:34:29 +00004269 }
4270 }
4271
Dan Gohman087bd1e2010-03-03 05:29:13 +00004272 // Expand the GV portion.
4273 if (F.AM.BaseGV) {
4274 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
4275
4276 // Flush the operand list to suppress SCEVExpander hoisting.
4277 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4278 Ops.clear();
4279 Ops.push_back(SE.getUnknown(FullV));
4280 }
4281
4282 // Expand the immediate portion.
Dan Gohman572645c2010-02-12 10:34:29 +00004283 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
4284 if (Offset != 0) {
4285 if (LU.Kind == LSRUse::ICmpZero) {
4286 // The other interesting way of "folding" with an ICmpZero is to use a
4287 // negated immediate.
4288 if (!ICmpScaledV)
Eli Friedmandae36ba2011-10-13 23:48:33 +00004289 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
Dan Gohman572645c2010-02-12 10:34:29 +00004290 else {
4291 Ops.push_back(SE.getUnknown(ICmpScaledV));
4292 ICmpScaledV = ConstantInt::get(IntTy, Offset);
4293 }
4294 } else {
4295 // Just add the immediate values. These again are expected to be matched
4296 // as part of the address.
Dan Gohman087bd1e2010-03-03 05:29:13 +00004297 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
Dan Gohman572645c2010-02-12 10:34:29 +00004298 }
4299 }
4300
Dan Gohmancca82142011-05-03 00:46:49 +00004301 // Expand the unfolded offset portion.
4302 int64_t UnfoldedOffset = F.UnfoldedOffset;
4303 if (UnfoldedOffset != 0) {
4304 // Just add the immediate values.
4305 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4306 UnfoldedOffset)));
4307 }
4308
Dan Gohman572645c2010-02-12 10:34:29 +00004309 // Emit instructions summing all the operands.
4310 const SCEV *FullS = Ops.empty() ?
Dan Gohmandeff6212010-05-03 22:09:21 +00004311 SE.getConstant(IntTy, 0) :
Dan Gohman572645c2010-02-12 10:34:29 +00004312 SE.getAddExpr(Ops);
4313 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
4314
4315 // We're done expanding now, so reset the rewriter.
Dan Gohman448db1c2010-04-07 22:27:08 +00004316 Rewriter.clearPostInc();
Dan Gohman572645c2010-02-12 10:34:29 +00004317
4318 // An ICmpZero Formula represents an ICmp which we're handling as a
4319 // comparison against zero. Now that we've expanded an expression for that
4320 // form, update the ICmp's other operand.
4321 if (LU.Kind == LSRUse::ICmpZero) {
4322 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4323 DeadInsts.push_back(CI->getOperand(1));
4324 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
4325 "a scale at the same time!");
4326 if (F.AM.Scale == -1) {
4327 if (ICmpScaledV->getType() != OpTy) {
4328 Instruction *Cast =
4329 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4330 OpTy, false),
4331 ICmpScaledV, OpTy, "tmp", CI);
4332 ICmpScaledV = Cast;
4333 }
4334 CI->setOperand(1, ICmpScaledV);
4335 } else {
4336 assert(F.AM.Scale == 0 &&
4337 "ICmp does not support folding a global value and "
4338 "a scale at the same time!");
4339 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4340 -(uint64_t)Offset);
4341 if (C->getType() != OpTy)
4342 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4343 OpTy, false),
4344 C, OpTy);
4345
4346 CI->setOperand(1, C);
4347 }
4348 }
4349
4350 return FullV;
4351}
4352
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004353/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
4354/// of their operands effectively happens in their predecessor blocks, so the
4355/// expression may need to be expanded in multiple places.
4356void LSRInstance::RewriteForPHI(PHINode *PN,
4357 const LSRFixup &LF,
4358 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004359 SCEVExpander &Rewriter,
4360 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004361 Pass *P) const {
4362 DenseMap<BasicBlock *, Value *> Inserted;
4363 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4364 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4365 BasicBlock *BB = PN->getIncomingBlock(i);
4366
4367 // If this is a critical edge, split the edge so that we do not insert
4368 // the code on all predecessor/successor paths. We do this unless this
4369 // is the canonical backedge for this loop, which complicates post-inc
4370 // users.
4371 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
Dan Gohman3ef98382011-02-08 00:55:13 +00004372 !isa<IndirectBrInst>(BB->getTerminator())) {
Bill Wendling89d44112011-08-25 01:08:34 +00004373 BasicBlock *Parent = PN->getParent();
4374 Loop *PNLoop = LI.getLoopFor(Parent);
4375 if (!PNLoop || Parent != PNLoop->getHeader()) {
Dan Gohman3ef98382011-02-08 00:55:13 +00004376 // Split the critical edge.
Bill Wendling8b6af8a2011-08-25 05:55:40 +00004377 BasicBlock *NewBB = 0;
4378 if (!Parent->isLandingPad()) {
Andrew Trickf143b792011-10-04 03:50:44 +00004379 NewBB = SplitCriticalEdge(BB, Parent, P,
4380 /*MergeIdenticalEdges=*/true,
4381 /*DontDeleteUselessPhis=*/true);
Bill Wendling8b6af8a2011-08-25 05:55:40 +00004382 } else {
4383 SmallVector<BasicBlock*, 2> NewBBs;
4384 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
4385 NewBB = NewBBs[0];
4386 }
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004387
Dan Gohman3ef98382011-02-08 00:55:13 +00004388 // If PN is outside of the loop and BB is in the loop, we want to
4389 // move the block to be immediately before the PHI block, not
4390 // immediately after BB.
4391 if (L->contains(BB) && !L->contains(PN))
4392 NewBB->moveBefore(PN->getParent());
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004393
Dan Gohman3ef98382011-02-08 00:55:13 +00004394 // Splitting the edge can reduce the number of PHI entries we have.
4395 e = PN->getNumIncomingValues();
4396 BB = NewBB;
4397 i = PN->getBasicBlockIndex(BB);
4398 }
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004399 }
4400
4401 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4402 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
4403 if (!Pair.second)
4404 PN->setIncomingValue(i, Pair.first->second);
4405 else {
Dan Gohman454d26d2010-02-22 04:11:59 +00004406 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004407
4408 // If this is reuse-by-noop-cast, insert the noop cast.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004409 Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman3a02cbc2010-02-16 20:25:07 +00004410 if (FullV->getType() != OpTy)
4411 FullV =
4412 CastInst::Create(CastInst::getCastOpcode(FullV, false,
4413 OpTy, false),
4414 FullV, LF.OperandValToReplace->getType(),
4415 "tmp", BB->getTerminator());
4416
4417 PN->setIncomingValue(i, FullV);
4418 Pair.first->second = FullV;
4419 }
4420 }
4421}
4422
Dan Gohman572645c2010-02-12 10:34:29 +00004423/// Rewrite - Emit instructions for the leading candidate expression for this
4424/// LSRUse (this is called "expanding"), and update the UserInst to reference
4425/// the newly expanded value.
4426void LSRInstance::Rewrite(const LSRFixup &LF,
4427 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00004428 SCEVExpander &Rewriter,
4429 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00004430 Pass *P) const {
Dan Gohman572645c2010-02-12 10:34:29 +00004431 // First, find an insertion point that dominates UserInst. For PHI nodes,
4432 // find the nearest block which dominates all the relevant uses.
4433 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
Dan Gohman454d26d2010-02-22 04:11:59 +00004434 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00004435 } else {
Dan Gohman454d26d2010-02-22 04:11:59 +00004436 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
Dan Gohman572645c2010-02-12 10:34:29 +00004437
4438 // If this is reuse-by-noop-cast, insert the noop cast.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004439 Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00004440 if (FullV->getType() != OpTy) {
4441 Instruction *Cast =
4442 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4443 FullV, OpTy, "tmp", LF.UserInst);
4444 FullV = Cast;
4445 }
4446
4447 // Update the user. ICmpZero is handled specially here (for now) because
4448 // Expand may have updated one of the operands of the icmp already, and
4449 // its new value may happen to be equal to LF.OperandValToReplace, in
4450 // which case doing replaceUsesOfWith leads to replacing both operands
4451 // with the same value. TODO: Reorganize this.
4452 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4453 LF.UserInst->setOperand(0, FullV);
4454 else
4455 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4456 }
4457
4458 DeadInsts.push_back(LF.OperandValToReplace);
4459}
4460
Dan Gohman76c315a2010-05-20 20:52:00 +00004461/// ImplementSolution - Rewrite all the fixup locations with new values,
4462/// following the chosen solution.
Dan Gohman572645c2010-02-12 10:34:29 +00004463void
4464LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
4465 Pass *P) {
4466 // Keep track of instructions we may have made dead, so that
4467 // we can remove them after we are done working.
4468 SmallVector<WeakVH, 16> DeadInsts;
4469
Andrew Trick5e7645b2011-06-28 05:07:32 +00004470 SCEVExpander Rewriter(SE, "lsr");
Andrew Trick8bf295b2012-01-09 18:58:16 +00004471#ifndef NDEBUG
4472 Rewriter.setDebugType(DEBUG_TYPE);
4473#endif
Dan Gohman572645c2010-02-12 10:34:29 +00004474 Rewriter.disableCanonicalMode();
Andrew Trickc5701912011-10-07 23:46:21 +00004475 Rewriter.enableLSRMode();
Dan Gohman572645c2010-02-12 10:34:29 +00004476 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4477
Andrew Trick64925c52012-01-10 01:45:08 +00004478 // Mark phi nodes that terminate chains so the expander tries to reuse them.
4479 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4480 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4481 if (PHINode *PN = dyn_cast<PHINode>(ChainI->back().UserInst))
4482 Rewriter.setChainedPhi(PN);
4483 }
4484
Dan Gohman572645c2010-02-12 10:34:29 +00004485 // Expand the new value definitions and update the users.
Dan Gohman402d4352010-05-20 20:33:18 +00004486 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4487 E = Fixups.end(); I != E; ++I) {
4488 const LSRFixup &Fixup = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00004489
Dan Gohman402d4352010-05-20 20:33:18 +00004490 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00004491
4492 Changed = true;
4493 }
4494
Andrew Trick22d20c22012-01-09 21:18:52 +00004495 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4496 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4497 GenerateIVChain(*ChainI, Rewriter, DeadInsts);
4498 Changed = true;
4499 }
Dan Gohman572645c2010-02-12 10:34:29 +00004500 // Clean up after ourselves. This must be done before deleting any
4501 // instructions.
4502 Rewriter.clear();
4503
4504 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4505}
4506
4507LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
4508 : IU(P->getAnalysis<IVUsers>()),
4509 SE(P->getAnalysis<ScalarEvolution>()),
4510 DT(P->getAnalysis<DominatorTree>()),
Dan Gohmane5f76872010-04-09 22:07:05 +00004511 LI(P->getAnalysis<LoopInfo>()),
Dan Gohman572645c2010-02-12 10:34:29 +00004512 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
Devang Patel0f54dcb2007-03-06 21:14:09 +00004513
Dan Gohman03e896b2009-11-05 21:11:53 +00004514 // If LoopSimplify form is not available, stay out of trouble.
Andrew Trickacdb4aa2012-01-07 03:16:50 +00004515 if (!L->isLoopSimplifyForm())
4516 return;
Dan Gohman03e896b2009-11-05 21:11:53 +00004517
Andrew Trick75ae2032012-03-16 03:16:56 +00004518 // If there's no interesting work to be done, bail early.
4519 if (IU.empty()) return;
4520
4521#ifndef NDEBUG
Andrew Trick0f080912012-01-17 06:45:52 +00004522 // All dominating loops must have preheaders, or SCEVExpander may not be able
4523 // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4524 //
Andrew Trick75ae2032012-03-16 03:16:56 +00004525 // IVUsers analysis should only create users that are dominated by simple loop
4526 // headers. Since this loop should dominate all of its users, its user list
4527 // should be empty if this loop itself is not within a simple loop nest.
Andrew Trick0f080912012-01-17 06:45:52 +00004528 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4529 Rung; Rung = Rung->getIDom()) {
4530 BasicBlock *BB = Rung->getBlock();
4531 const Loop *DomLoop = LI.getLoopFor(BB);
4532 if (DomLoop && DomLoop->getHeader() == BB) {
Andrew Trick75ae2032012-03-16 03:16:56 +00004533 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
Andrew Trick0f080912012-01-17 06:45:52 +00004534 }
Andrew Trickacdb4aa2012-01-07 03:16:50 +00004535 }
Andrew Trick75ae2032012-03-16 03:16:56 +00004536#endif // DEBUG
Dan Gohman80b0f8c2009-03-09 20:34:59 +00004537
Dan Gohman572645c2010-02-12 10:34:29 +00004538 DEBUG(dbgs() << "\nLSR on loop ";
4539 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
4540 dbgs() << ":\n");
Dan Gohmanf7912df2009-03-09 20:46:50 +00004541
Dan Gohman402d4352010-05-20 20:33:18 +00004542 // First, perform some low-level loop optimizations.
Dan Gohman572645c2010-02-12 10:34:29 +00004543 OptimizeShadowIV();
Dan Gohmanc6519f92010-05-20 20:05:31 +00004544 OptimizeLoopTermCond();
Evan Cheng5792f512009-05-11 22:33:01 +00004545
Andrew Trick37eb38d2011-07-21 00:40:04 +00004546 // If loop preparation eliminates all interesting IV users, bail.
4547 if (IU.empty()) return;
4548
Andrew Trick5219f862011-09-29 01:53:08 +00004549 // Skip nested loops until we can model them better with formulae.
Andrew Trickbd618f12012-03-22 22:42:45 +00004550 if (!L->empty()) {
Andrew Trick0c01bc32011-09-29 01:33:38 +00004551 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
Andrew Trick5219f862011-09-29 01:53:08 +00004552 return;
Andrew Trick0c01bc32011-09-29 01:33:38 +00004553 }
4554
Dan Gohman402d4352010-05-20 20:33:18 +00004555 // Start collecting data and preparing for the solver.
Andrew Trick6c7d0ae2012-01-09 19:50:34 +00004556 CollectChains();
Dan Gohman572645c2010-02-12 10:34:29 +00004557 CollectInterestingTypesAndFactors();
4558 CollectFixupsAndInitialFormulae();
4559 CollectLoopInvariantFixupsAndFormulae();
Chris Lattner010de252005-08-08 05:28:22 +00004560
Andrew Trick22d20c22012-01-09 21:18:52 +00004561 assert(!Uses.empty() && "IVUsers reported at least one use");
Dan Gohman572645c2010-02-12 10:34:29 +00004562 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4563 print_uses(dbgs()));
Misha Brukmanfd939082005-04-21 23:48:37 +00004564
Dan Gohman572645c2010-02-12 10:34:29 +00004565 // Now use the reuse data to generate a bunch of interesting ways
4566 // to formulate the values needed for the uses.
4567 GenerateAllReuseFormulae();
Evan Chengd1d6b5c2006-03-16 21:53:05 +00004568
Dan Gohman572645c2010-02-12 10:34:29 +00004569 FilterOutUndesirableDedicatedRegisters();
4570 NarrowSearchSpaceUsingHeuristics();
Dan Gohman6bec5bb2009-12-18 00:06:20 +00004571
Dan Gohman572645c2010-02-12 10:34:29 +00004572 SmallVector<const Formula *, 8> Solution;
4573 Solve(Solution);
Dan Gohman6bec5bb2009-12-18 00:06:20 +00004574
Dan Gohman572645c2010-02-12 10:34:29 +00004575 // Release memory that is no longer needed.
4576 Factors.clear();
4577 Types.clear();
4578 RegUses.clear();
4579
Andrew Trick80ef1b22011-09-27 00:44:14 +00004580 if (Solution.empty())
4581 return;
4582
Dan Gohman572645c2010-02-12 10:34:29 +00004583#ifndef NDEBUG
4584 // Formulae should be legal.
4585 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4586 E = Uses.end(); I != E; ++I) {
4587 const LSRUse &LU = *I;
4588 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4589 JE = LU.Formulae.end(); J != JE; ++J)
4590 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
4591 LU.Kind, LU.AccessTy, TLI) &&
4592 "Illegal formula generated!");
4593 };
4594#endif
4595
4596 // Now that we've decided what we want, make it so.
4597 ImplementSolution(Solution, P);
4598}
4599
4600void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4601 if (Factors.empty() && Types.empty()) return;
4602
4603 OS << "LSR has identified the following interesting factors and types: ";
4604 bool First = true;
4605
4606 for (SmallSetVector<int64_t, 8>::const_iterator
4607 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
4608 if (!First) OS << ", ";
4609 First = false;
4610 OS << '*' << *I;
Evan Cheng81ebdcf2009-11-10 21:14:05 +00004611 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00004612
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004613 for (SmallSetVector<Type *, 4>::const_iterator
Dan Gohman572645c2010-02-12 10:34:29 +00004614 I = Types.begin(), E = Types.end(); I != E; ++I) {
4615 if (!First) OS << ", ";
4616 First = false;
4617 OS << '(' << **I << ')';
4618 }
4619 OS << '\n';
4620}
4621
4622void LSRInstance::print_fixups(raw_ostream &OS) const {
4623 OS << "LSR is examining the following fixup sites:\n";
4624 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4625 E = Fixups.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +00004626 dbgs() << " ";
Dan Gohman9f383eb2010-05-20 22:25:20 +00004627 I->print(OS);
Dan Gohman572645c2010-02-12 10:34:29 +00004628 OS << '\n';
4629 }
4630}
4631
4632void LSRInstance::print_uses(raw_ostream &OS) const {
4633 OS << "LSR is examining the following uses:\n";
4634 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4635 E = Uses.end(); I != E; ++I) {
4636 const LSRUse &LU = *I;
4637 dbgs() << " ";
4638 LU.print(OS);
4639 OS << '\n';
4640 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4641 JE = LU.Formulae.end(); J != JE; ++J) {
4642 OS << " ";
4643 J->print(OS);
4644 OS << '\n';
4645 }
4646 }
4647}
4648
4649void LSRInstance::print(raw_ostream &OS) const {
4650 print_factors_and_types(OS);
4651 print_fixups(OS);
4652 print_uses(OS);
4653}
4654
4655void LSRInstance::dump() const {
4656 print(errs()); errs() << '\n';
4657}
4658
4659namespace {
4660
4661class LoopStrengthReduce : public LoopPass {
4662 /// TLI - Keep a pointer of a TargetLowering to consult for determining
4663 /// transformation profitability.
4664 const TargetLowering *const TLI;
4665
4666public:
4667 static char ID; // Pass ID, replacement for typeid
4668 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
4669
4670private:
4671 bool runOnLoop(Loop *L, LPPassManager &LPM);
4672 void getAnalysisUsage(AnalysisUsage &AU) const;
4673};
4674
4675}
4676
4677char LoopStrengthReduce::ID = 0;
Owen Anderson2ab36d32010-10-12 19:48:12 +00004678INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
Owen Andersonce665bd2010-10-07 22:25:06 +00004679 "Loop Strength Reduction", false, false)
Owen Anderson2ab36d32010-10-12 19:48:12 +00004680INITIALIZE_PASS_DEPENDENCY(DominatorTree)
4681INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4682INITIALIZE_PASS_DEPENDENCY(IVUsers)
Owen Anderson205942a2010-10-19 20:08:44 +00004683INITIALIZE_PASS_DEPENDENCY(LoopInfo)
4684INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
Owen Anderson2ab36d32010-10-12 19:48:12 +00004685INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4686 "Loop Strength Reduction", false, false)
4687
Dan Gohman572645c2010-02-12 10:34:29 +00004688
4689Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
4690 return new LoopStrengthReduce(TLI);
4691}
4692
4693LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
Owen Anderson081c34b2010-10-19 17:21:58 +00004694 : LoopPass(ID), TLI(tli) {
4695 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4696 }
Dan Gohman572645c2010-02-12 10:34:29 +00004697
4698void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4699 // We split critical edges, so we change the CFG. However, we do update
4700 // many analyses if they are around.
Eric Christopher6793c492011-02-10 01:48:24 +00004701 AU.addPreservedID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00004702
Eric Christopher6793c492011-02-10 01:48:24 +00004703 AU.addRequired<LoopInfo>();
4704 AU.addPreserved<LoopInfo>();
4705 AU.addRequiredID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00004706 AU.addRequired<DominatorTree>();
4707 AU.addPreserved<DominatorTree>();
4708 AU.addRequired<ScalarEvolution>();
4709 AU.addPreserved<ScalarEvolution>();
Cameron Zwarich2c2b9332011-02-10 23:53:14 +00004710 // Requiring LoopSimplify a second time here prevents IVUsers from running
4711 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4712 AU.addRequiredID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00004713 AU.addRequired<IVUsers>();
4714 AU.addPreserved<IVUsers>();
4715}
4716
4717bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4718 bool Changed = false;
4719
4720 // Run the main LSR transformation.
4721 Changed |= LSRInstance(TLI, L, this).getChanged();
4722
Andrew Trickf231a6d2012-01-07 01:36:44 +00004723 // Remove any extra phis created by processing inner loops.
Dan Gohman9fff2182010-01-05 16:31:45 +00004724 Changed |= DeleteDeadPHIs(L->getHeader());
Andrew Trickf231a6d2012-01-07 01:36:44 +00004725 if (EnablePhiElim) {
4726 SmallVector<WeakVH, 16> DeadInsts;
4727 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
4728#ifndef NDEBUG
4729 Rewriter.setDebugType(DEBUG_TYPE);
4730#endif
4731 unsigned numFolded = Rewriter.
4732 replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
4733 if (numFolded) {
4734 Changed = true;
4735 DeleteTriviallyDeadInstructions(DeadInsts);
4736 DeleteDeadPHIs(L->getHeader());
4737 }
4738 }
Evan Cheng1ce75dc2008-07-07 19:51:32 +00004739 return Changed;
Nate Begemaneaa13852004-10-18 21:08:22 +00004740}