blob: fc9a5034e6c8c610ab57ab5c0f9f37e06341b64f [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +000025#include "llvm/Transforms/Utils/Local.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000026#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000027#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000028#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000029#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000030#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000032#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000033#include "llvm/Support/CFG.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000034#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000035#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000036#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000037#include "llvm/ADT/PostOrderIterator.h"
38#include "llvm/ADT/Statistic.h"
Chris Lattnerec531232009-12-31 07:33:14 +000039#include "llvm/ADT/DenseMap.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000040#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000041using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000042
Chris Lattner0e5f4992006-12-19 21:40:18 +000043STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000047
Chris Lattner0e5f4992006-12-19 21:40:18 +000048namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000049 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000050 unsigned Rank;
51 Value *Op;
52 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53 };
54 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
56 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000057}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000058
Devang Patel50cacb22008-11-21 21:00:20 +000059#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000060/// PrintOps - Print out the expression identified in the Ops list.
61///
Chris Lattner9f7b7082009-12-31 18:40:32 +000062static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000063 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000064 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000065 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000066 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000067 dbgs() << "[ ";
68 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
69 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000070 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000071}
Devang Patel59500c82008-11-21 20:00:59 +000072#endif
Chris Lattnere5022fe2006-03-04 09:31:13 +000073
Dan Gohman844731a2008-05-13 00:00:25 +000074namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000075 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +000076 DenseMap<BasicBlock*, unsigned> RankMap;
77 DenseMap<AssertingVH<>, unsigned> ValueRankMap;
Dan Gohmandac5dba2011-04-12 00:11:56 +000078 SmallVector<WeakVH, 8> RedoInsts;
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +000079 SmallVector<WeakVH, 8> DeadInsts;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000080 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000081 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000082 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +000083 Reassociate() : FunctionPass(ID) {
84 initializeReassociatePass(*PassRegistry::getPassRegistry());
85 }
Devang Patel794fd752007-05-01 21:15:47 +000086
Chris Lattner7e708292002-06-25 16:13:24 +000087 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000088
89 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000090 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000091 }
92 private:
Chris Lattner7e708292002-06-25 16:13:24 +000093 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000094 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +000095 Value *ReassociateExpression(BinaryOperator *I);
Chris Lattner9f7b7082009-12-31 18:40:32 +000096 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +000097 unsigned Idx = 0);
Chris Lattner9f7b7082009-12-31 18:40:32 +000098 Value *OptimizeExpression(BinaryOperator *I,
99 SmallVectorImpl<ValueEntry> &Ops);
100 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
101 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000102 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000103 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Dan Gohmandac5dba2011-04-12 00:11:56 +0000104 void ReassociateInst(BasicBlock::iterator &BBI);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000105
106 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +0000107 };
108}
109
Dan Gohman844731a2008-05-13 00:00:25 +0000110char Reassociate::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000111INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Reassociate expressions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000113
Brian Gaeked0fde302003-11-11 22:41:34 +0000114// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000115FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000116
Chris Lattnere5022fe2006-03-04 09:31:13 +0000117void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000118 Instruction *Op = dyn_cast<Instruction>(V);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000119 if (!Op || !isa<BinaryOperator>(Op))
Reid Spencere4d87aa2006-12-23 06:05:41 +0000120 return;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000121
Reid Spencere4d87aa2006-12-23 06:05:41 +0000122 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattner69e98e22009-12-31 19:24:52 +0000123
124 ValueRankMap.erase(Op);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000125 DeadInsts.push_back(Op);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000126 RemoveDeadBinaryOp(LHS);
127 RemoveDeadBinaryOp(RHS);
128}
129
Chris Lattner9c723192005-05-08 20:57:04 +0000130
131static bool isUnmovableInstruction(Instruction *I) {
132 if (I->getOpcode() == Instruction::PHI ||
133 I->getOpcode() == Instruction::Alloca ||
134 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000135 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000136 (I->getOpcode() == Instruction::Call &&
137 !isa<DbgInfoIntrinsic>(I)) ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000138 I->getOpcode() == Instruction::UDiv ||
139 I->getOpcode() == Instruction::SDiv ||
140 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000141 I->getOpcode() == Instruction::URem ||
142 I->getOpcode() == Instruction::SRem ||
143 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000144 return true;
145 return false;
146}
147
Chris Lattner7e708292002-06-25 16:13:24 +0000148void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000149 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000150
151 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000152 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000153 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000154
Chris Lattner7e708292002-06-25 16:13:24 +0000155 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000156 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000157 E = RPOT.end(); I != E; ++I) {
158 BasicBlock *BB = *I;
159 unsigned BBRank = RankMap[BB] = ++i << 16;
160
161 // Walk the basic block, adding precomputed ranks for any instructions that
162 // we cannot move. This ensures that the ranks for these instructions are
163 // all different in the block.
164 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
165 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000166 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000167 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000168}
169
170unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000171 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000172 if (I == 0) {
173 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
174 return 0; // Otherwise it's a global or constant, rank 0.
175 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000176
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000177 if (unsigned Rank = ValueRankMap[I])
178 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000179
Chris Lattner08b43922005-05-07 04:08:02 +0000180 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
181 // we can reassociate expressions for code motion! Since we do not recurse
182 // for PHI nodes, we cannot have infinite recursion here, because there
183 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000184 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
185 for (unsigned i = 0, e = I->getNumOperands();
186 i != e && Rank != MaxRank; ++i)
187 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000188
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000189 // If this is a not or neg instruction, do not count it for rank. This
190 // assures us that X and ~X will have the same rank.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000191 if (!I->getType()->isIntegerTy() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000192 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000193 ++Rank;
194
David Greenea1fa76c2010-01-05 01:27:24 +0000195 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000196 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000197
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000198 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000199}
200
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000201/// isReassociableOp - Return true if V is an instruction of the specified
202/// opcode and if it only has one use.
203static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000204 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000205 cast<Instruction>(V)->getOpcode() == Opcode)
206 return cast<BinaryOperator>(V);
207 return 0;
208}
Chris Lattner4fd56002002-05-08 22:19:27 +0000209
Chris Lattnerf33151a2005-05-08 21:28:52 +0000210/// LowerNegateToMultiply - Replace 0-X with X*-1.
211///
Dale Johannesenf4978e22009-03-19 17:22:53 +0000212static Instruction *LowerNegateToMultiply(Instruction *Neg,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000213 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000214 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000215
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000216 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000217 ValueRankMap.erase(Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000218 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000219 Neg->replaceAllUsesWith(Res);
220 Neg->eraseFromParent();
221 return Res;
222}
223
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000224// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
225// Note that if D is also part of the expression tree that we recurse to
226// linearize it as well. Besides that case, this does not recurse into A,B, or
227// C.
228void Reassociate::LinearizeExpr(BinaryOperator *I) {
229 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
230 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000231 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000232 isReassociableOp(RHS, I->getOpcode()) &&
233 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000234
David Greenea1fa76c2010-01-05 01:27:24 +0000235 DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Chris Lattner4fd56002002-05-08 22:19:27 +0000236
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000237 // Move the RHS instruction to live immediately before I, avoiding breaking
238 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000239 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000240
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000241 // Move operands around to do the linearization.
242 I->setOperand(1, RHS->getOperand(0));
243 RHS->setOperand(0, LHS);
244 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000245
Dan Gohman46985a12011-02-02 02:02:34 +0000246 // Conservatively clear all the optional flags, which may not hold
247 // after the reassociation.
248 I->clearSubclassOptionalData();
249 LHS->clearSubclassOptionalData();
250 RHS->clearSubclassOptionalData();
251
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000252 ++NumLinear;
253 MadeChange = true;
David Greenea1fa76c2010-01-05 01:27:24 +0000254 DEBUG(dbgs() << "Linearized: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000255
256 // If D is part of this expression tree, tail recurse.
257 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
258 LinearizeExpr(I);
259}
260
261
262/// LinearizeExprTree - Given an associative binary expression tree, traverse
263/// all of the uses putting it into canonical form. This forces a left-linear
Dan Gohmanf451cb82010-02-10 16:03:48 +0000264/// form of the expression (((a+b)+c)+d), and collects information about the
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000265/// rank of the non-tree operands.
266///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000267/// NOTE: These intentionally destroys the expression tree operands (turning
268/// them into undef values) to reduce #uses of the values. This means that the
269/// caller MUST use something like RewriteExprTree to put the values back in.
270///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000271void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000272 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000273 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
274 unsigned Opcode = I->getOpcode();
275
276 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
277 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
278 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
279
Chris Lattnerf33151a2005-05-08 21:28:52 +0000280 // If this is a multiply expression tree and it contains internal negations,
281 // transform them into multiplies by -1 so they can be reassociated.
282 if (I->getOpcode() == Instruction::Mul) {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000283 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000284 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000285 LHSBO = isReassociableOp(LHS, Opcode);
286 }
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000287 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000288 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000289 RHSBO = isReassociableOp(RHS, Opcode);
290 }
291 }
292
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000293 if (!LHSBO) {
294 if (!RHSBO) {
295 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
296 // such, just remember these operands and their rank.
297 Ops.push_back(ValueEntry(getRank(LHS), LHS));
298 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000299
300 // Clear the leaves out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000301 I->setOperand(0, UndefValue::get(I->getType()));
302 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000303 return;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000304 }
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000305
306 // Turn X+(Y+Z) -> (Y+Z)+X
307 std::swap(LHSBO, RHSBO);
308 std::swap(LHS, RHS);
309 bool Success = !I->swapOperands();
310 assert(Success && "swapOperands failed");
311 Success = false;
312 MadeChange = true;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000313 } else if (RHSBO) {
Dan Gohmanf451cb82010-02-10 16:03:48 +0000314 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the RHS is not
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000315 // part of the expression tree.
316 LinearizeExpr(I);
317 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
318 RHS = I->getOperand(1);
319 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000320 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000321
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000322 // Okay, now we know that the LHS is a nested expression and that the RHS is
323 // not. Perform reassociation.
324 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000325
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000326 // Move LHS right before I to make sure that the tree expression dominates all
327 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000328 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000329
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000330 // Linearize the expression tree on the LHS.
331 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000332
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000333 // Remember the RHS operand and its rank.
334 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000335
336 // Clear the RHS leaf out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000337 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000338}
339
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000340// RewriteExprTree - Now that the operands for this expression tree are
341// linearized and optimized, emit them in-order. This function is written to be
342// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000343void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000344 SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +0000345 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000346 if (i+2 == Ops.size()) {
347 if (I->getOperand(0) != Ops[i].Op ||
348 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000349 Value *OldLHS = I->getOperand(0);
David Greenea1fa76c2010-01-05 01:27:24 +0000350 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000351 I->setOperand(0, Ops[i].Op);
352 I->setOperand(1, Ops[i+1].Op);
Dan Gohman46985a12011-02-02 02:02:34 +0000353
Chris Lattnerde1d8a52011-02-17 01:29:24 +0000354 // Clear all the optional flags, which may not hold after the
355 // reassociation if the expression involved more than just this operation.
356 if (Ops.size() != 2)
357 I->clearSubclassOptionalData();
Dan Gohman46985a12011-02-02 02:02:34 +0000358
David Greenea1fa76c2010-01-05 01:27:24 +0000359 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000360 MadeChange = true;
361 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000362
363 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
364 // delete the extra, now dead, nodes.
365 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000366 }
367 return;
368 }
369 assert(i+2 < Ops.size() && "Ops index out of range!");
370
371 if (I->getOperand(1) != Ops[i].Op) {
David Greenea1fa76c2010-01-05 01:27:24 +0000372 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000373 I->setOperand(1, Ops[i].Op);
Dan Gohman46985a12011-02-02 02:02:34 +0000374
375 // Conservatively clear all the optional flags, which may not hold
376 // after the reassociation.
377 I->clearSubclassOptionalData();
378
David Greenea1fa76c2010-01-05 01:27:24 +0000379 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000380 MadeChange = true;
381 ++NumChanged;
382 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000383
384 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
385 assert(LHS->getOpcode() == I->getOpcode() &&
386 "Improper expression tree!");
387
388 // Compactify the tree instructions together with each other to guarantee
389 // that the expression tree is dominated by all of Ops.
390 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000391 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000392}
393
394
Chris Lattner4fd56002002-05-08 22:19:27 +0000395
Chris Lattnera36e6c82002-05-16 04:37:07 +0000396// NegateValue - Insert instructions before the instruction pointed to by BI,
397// that computes the negative version of the value specified. The negative
398// version of the value is returned, and BI is left pointing at the instruction
399// that should be processed next by the reassociation pass.
400//
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000401static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000402 if (Constant *C = dyn_cast<Constant>(V))
403 return ConstantExpr::getNeg(C);
404
Chris Lattnera36e6c82002-05-16 04:37:07 +0000405 // We are trying to expose opportunity for reassociation. One of the things
406 // that we want to do to achieve this is to push a negation as deep into an
407 // expression chain as possible, to expose the add instructions. In practice,
408 // this means that we turn this:
409 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
410 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
411 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000412 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000413 //
414 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000415 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000416 // Push the negates through the add.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000417 I->setOperand(0, NegateValue(I->getOperand(0), BI));
418 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000419
Chris Lattner2cd85da2005-09-02 06:38:04 +0000420 // We must move the add instruction here, because the neg instructions do
421 // not dominate the old add instruction in general. By moving it, we are
422 // assured that the neg instructions we just inserted dominate the
423 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000424 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000425 I->moveBefore(BI);
426 I->setName(I->getName()+".neg");
427 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000428 }
Chris Lattner35239932009-12-31 20:34:32 +0000429
430 // Okay, we need to materialize a negated version of V with an instruction.
431 // Scan the use lists of V to see if we have one already.
432 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif110b75a2010-07-12 12:03:02 +0000433 User *U = *UI;
434 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattner35239932009-12-31 20:34:32 +0000435
436 // We found one! Now we have to make sure that the definition dominates
437 // this use. We do this by moving it to the entry block (if it is a
438 // non-instruction value) or right after the definition. These negates will
439 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif110b75a2010-07-12 12:03:02 +0000440 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000441
442 // Verify that the negate is in this function, V might be a constant expr.
443 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
444 continue;
Chris Lattner35239932009-12-31 20:34:32 +0000445
446 BasicBlock::iterator InsertPt;
447 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
448 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
449 InsertPt = II->getNormalDest()->begin();
450 } else {
451 InsertPt = InstInput;
452 ++InsertPt;
453 }
454 while (isa<PHINode>(InsertPt)) ++InsertPt;
455 } else {
456 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
457 }
458 TheNeg->moveBefore(InsertPt);
459 return TheNeg;
460 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000461
462 // Insert a 'neg' instruction that subtracts the value from zero to get the
463 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000464 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000465}
466
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000467/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
468/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000469static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000470 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000471 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000472 return false;
473
474 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000475 // subtract or if this is only used by one.
476 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
477 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000478 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000479 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000480 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000481 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000482 if (Sub->hasOneUse() &&
483 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
484 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000485 return true;
486
487 return false;
488}
489
Chris Lattner08b43922005-05-07 04:08:02 +0000490/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
491/// only used by an add, transform this into (X+(0-Y)) to promote better
492/// reassociation.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000493static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000494 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner90461932010-01-01 00:04:26 +0000495 // Convert a subtract into an add and a neg instruction. This allows sub
496 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000497 //
Chris Lattner90461932010-01-01 00:04:26 +0000498 // Calculate the negative value of Operand 1 of the sub instruction,
499 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000500 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000501 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000502 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000503 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000504 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000505
506 // Everyone now refers to the add instruction.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000507 ValueRankMap.erase(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000508 Sub->replaceAllUsesWith(New);
509 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000510
David Greenea1fa76c2010-01-05 01:27:24 +0000511 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000512 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000513}
514
Chris Lattner0975ed52005-05-07 04:24:13 +0000515/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
516/// by one, change this into a multiply by a constant to assist with further
517/// reassociation.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000518static Instruction *ConvertShiftToMul(Instruction *Shl,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000519 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000520 // If an operand of this shift is a reassociable multiply, or if the shift
521 // is used by a reassociable multiply or add, turn into a multiply.
522 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
523 (Shl->hasOneUse() &&
524 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
525 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000526 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000527 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Chris Lattner22a66c42006-03-14 06:55:18 +0000528
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000529 Instruction *Mul =
530 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000531 ValueRankMap.erase(Shl);
Chris Lattner6934a042007-02-11 01:23:03 +0000532 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000533 Shl->replaceAllUsesWith(Mul);
534 Shl->eraseFromParent();
535 return Mul;
536 }
537 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000538}
539
Chris Lattner109d34d2005-05-08 18:59:37 +0000540// Scan backwards and forwards among values with the same rank as element i to
Chris Lattner9506c932010-01-01 01:13:15 +0000541// see if X exists. If X does not exist, return i. This is useful when
542// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000543static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000544 Value *X) {
545 unsigned XRank = Ops[i].Rank;
546 unsigned e = Ops.size();
547 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
548 if (Ops[j].Op == X)
549 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000550 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000551 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
552 if (Ops[j].Op == X)
553 return j;
554 return i;
555}
556
Chris Lattnere5022fe2006-03-04 09:31:13 +0000557/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
558/// and returning the result. Insert the tree before I.
Chris Lattner8d93b252009-12-31 07:48:51 +0000559static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000560 if (Ops.size() == 1) return Ops.back();
561
562 Value *V1 = Ops.back();
563 Ops.pop_back();
564 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000565 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000566}
567
568/// RemoveFactorFromExpression - If V is an expression tree that is a
569/// multiplication sequence, and if this sequence contains a multiply by Factor,
570/// remove Factor from the tree and return the new tree.
571Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
572 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
573 if (!BO) return 0;
574
Chris Lattner9f7b7082009-12-31 18:40:32 +0000575 SmallVector<ValueEntry, 8> Factors;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000576 LinearizeExprTree(BO, Factors);
577
578 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000579 bool NeedsNegate = false;
580 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000581 if (Factors[i].Op == Factor) {
582 FoundFactor = true;
583 Factors.erase(Factors.begin()+i);
584 break;
585 }
Chris Lattner9506c932010-01-01 01:13:15 +0000586
587 // If this is a negative version of this factor, remove it.
588 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
589 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
590 if (FC1->getValue() == -FC2->getValue()) {
591 FoundFactor = NeedsNegate = true;
592 Factors.erase(Factors.begin()+i);
593 break;
594 }
595 }
596
Chris Lattnere9efecb2006-03-14 16:04:29 +0000597 if (!FoundFactor) {
598 // Make sure to restore the operands to the expression tree.
599 RewriteExprTree(BO, Factors);
600 return 0;
601 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000602
Chris Lattner9506c932010-01-01 01:13:15 +0000603 BasicBlock::iterator InsertPt = BO; ++InsertPt;
604
Chris Lattner1e7558b2009-12-31 19:34:45 +0000605 // If this was just a single multiply, remove the multiply and return the only
606 // remaining operand.
607 if (Factors.size() == 1) {
608 ValueRankMap.erase(BO);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000609 DeadInsts.push_back(BO);
Chris Lattner9506c932010-01-01 01:13:15 +0000610 V = Factors[0].Op;
611 } else {
612 RewriteExprTree(BO, Factors);
613 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +0000614 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000615
Chris Lattner9506c932010-01-01 01:13:15 +0000616 if (NeedsNegate)
617 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
618
619 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000620}
621
Chris Lattnere9efecb2006-03-14 16:04:29 +0000622/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
623/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000624///
625/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000626static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner893075f2010-03-05 07:18:54 +0000627 SmallVectorImpl<Value*> &Factors,
628 const SmallVectorImpl<ValueEntry> &Ops,
629 bool IsRoot) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000630 BinaryOperator *BO;
Chris Lattner893075f2010-03-05 07:18:54 +0000631 if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000632 !(BO = dyn_cast<BinaryOperator>(V)) ||
633 BO->getOpcode() != Instruction::Mul) {
634 Factors.push_back(V);
635 return;
636 }
637
Chris Lattner893075f2010-03-05 07:18:54 +0000638 // If this value has a single use because it is another input to the add
639 // tree we're reassociating and we dropped its use, it actually has two
640 // uses and we can't factor it.
641 if (!IsRoot) {
642 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
643 if (Ops[i].Op == V) {
644 Factors.push_back(V);
645 return;
646 }
647 }
648
649
Chris Lattnere9efecb2006-03-14 16:04:29 +0000650 // Otherwise, add the LHS and RHS to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000651 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
652 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000653}
654
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000655/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
656/// instruction. This optimizes based on identities. If it can be reduced to
657/// a single Value, it is returned, otherwise the Ops list is mutated as
658/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000659static Value *OptimizeAndOrXor(unsigned Opcode,
660 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000661 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
662 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
663 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
664 // First, check for X and ~X in the operand list.
665 assert(i < Ops.size());
666 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
667 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
668 unsigned FoundX = FindInOperandList(Ops, i, X);
669 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000670 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000671 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000672
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000673 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000674 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000675 }
676 }
677
678 // Next, check for duplicate pairs of values, which we assume are next to
679 // each other, due to our sorting criteria.
680 assert(i < Ops.size());
681 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
682 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000683 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000684 Ops.erase(Ops.begin()+i);
685 --i; --e;
686 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000687 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000688 }
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000689
690 // Drop pairs of values for Xor.
691 assert(Opcode == Instruction::Xor);
692 if (e == 2)
693 return Constant::getNullValue(Ops[0].Op->getType());
694
Chris Lattner90461932010-01-01 00:04:26 +0000695 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000696 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
697 i -= 1; e -= 2;
698 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000699 }
700 }
701 return 0;
702}
Chris Lattnere9efecb2006-03-14 16:04:29 +0000703
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000704/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
705/// optimizes based on identities. If it can be reduced to a single Value, it
706/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000707Value *Reassociate::OptimizeAdd(Instruction *I,
708 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000709 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +0000710 // can simplify the expression. X+-X == 0. While we're at it, scan for any
711 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +0000712 //
713 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
714 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000715 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000716 Value *TheOp = Ops[i].Op;
717 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000718 // instances of the operand together. Due to our sorting criteria, we know
719 // that these need to be next to each other in the vector.
720 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
721 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +0000722 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000723 do {
724 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +0000725 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000726 } while (i != Ops.size() && Ops[i].Op == TheOp);
727
Chris Lattnerf8a447d2009-12-31 19:25:19 +0000728 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +0000729 ++NumFactor;
Chris Lattner69e98e22009-12-31 19:24:52 +0000730
731 // Insert a new multiply.
732 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
733 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
734
735 // Now that we have inserted a multiply, optimize it. This allows us to
736 // handle cases that require multiple factoring steps, such as this:
737 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Dan Gohmandac5dba2011-04-12 00:11:56 +0000738 RedoInsts.push_back(Mul);
Chris Lattner69e98e22009-12-31 19:24:52 +0000739
740 // If every add operand was a duplicate, return the multiply.
741 if (Ops.empty())
742 return Mul;
743
744 // Otherwise, we had some input that didn't have the dupe, such as
745 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
746 // things being added by this operation.
747 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000748
749 --i;
750 e = Ops.size();
751 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +0000752 }
753
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000754 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +0000755 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000756 continue;
757
Chris Lattner69e98e22009-12-31 19:24:52 +0000758 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000759 unsigned FoundX = FindInOperandList(Ops, i, X);
760 if (FoundX == i)
761 continue;
762
763 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000764 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000765 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000766
767 Ops.erase(Ops.begin()+i);
768 if (i < FoundX)
769 --FoundX;
770 else
771 --i; // Need to back up an extra one.
772 Ops.erase(Ops.begin()+FoundX);
773 ++NumAnnihil;
774 --i; // Revisit element.
775 e -= 2; // Removed two elements.
776 }
Chris Lattner94285e62009-12-31 18:17:13 +0000777
778 // Scan the operand list, checking to see if there are any common factors
779 // between operands. Consider something like A*A+A*B*C+D. We would like to
780 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
781 // To efficiently find this, we count the number of times a factor occurs
782 // for any ADD operands that are MULs.
783 DenseMap<Value*, unsigned> FactorOccurrences;
784
785 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
786 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +0000787 unsigned MaxOcc = 0;
788 Value *MaxOccVal = 0;
789 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
790 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
791 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
792 continue;
793
Chris Lattner94285e62009-12-31 18:17:13 +0000794 // Compute all of the factors of this added value.
795 SmallVector<Value*, 8> Factors;
Chris Lattner893075f2010-03-05 07:18:54 +0000796 FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
Chris Lattner94285e62009-12-31 18:17:13 +0000797 assert(Factors.size() > 1 && "Bad linearize!");
798
799 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +0000800 SmallPtrSet<Value*, 8> Duplicates;
801 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
802 Value *Factor = Factors[i];
803 if (!Duplicates.insert(Factor)) continue;
804
805 unsigned Occ = ++FactorOccurrences[Factor];
806 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
807
808 // If Factor is a negative constant, add the negated value as a factor
809 // because we can percolate the negate out. Watch for minint, which
810 // cannot be positivified.
811 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
812 if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
813 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
814 assert(!Duplicates.count(Factor) &&
815 "Shouldn't have two constant factors, missed a canonicalize");
816
817 unsigned Occ = ++FactorOccurrences[Factor];
818 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
819 }
Chris Lattner94285e62009-12-31 18:17:13 +0000820 }
821 }
822
823 // If any factor occurred more than one time, we can pull it out.
824 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000825 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +0000826 ++NumFactor;
827
828 // Create a new instruction that uses the MaxOccVal twice. If we don't do
829 // this, we could otherwise run into situations where removing a factor
830 // from an expression will drop a use of maxocc, and this can cause
831 // RemoveFactorFromExpression on successive values to behave differently.
832 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
833 SmallVector<Value*, 4> NewMulOps;
Duncan Sands37f87c72011-01-26 10:08:38 +0000834 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerc2d1b692010-01-09 06:01:36 +0000835 // Only try to remove factors from expressions we're allowed to.
836 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
837 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
838 continue;
839
Chris Lattner94285e62009-12-31 18:17:13 +0000840 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands37f87c72011-01-26 10:08:38 +0000841 // The factorized operand may occur several times. Convert them all in
842 // one fell swoop.
843 for (unsigned j = Ops.size(); j != i;) {
844 --j;
845 if (Ops[j].Op == Ops[i].Op) {
846 NewMulOps.push_back(V);
847 Ops.erase(Ops.begin()+j);
848 }
849 }
850 --i;
Chris Lattner94285e62009-12-31 18:17:13 +0000851 }
852 }
853
854 // No need for extra uses anymore.
855 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +0000856
Chris Lattner94285e62009-12-31 18:17:13 +0000857 unsigned NumAddedValues = NewMulOps.size();
858 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +0000859
Chris Lattner69e98e22009-12-31 19:24:52 +0000860 // Now that we have inserted the add tree, optimize it. This allows us to
861 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +0000862 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000863 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +0000864 (void)NumAddedValues;
Chris Lattner69e98e22009-12-31 19:24:52 +0000865 V = ReassociateExpression(cast<BinaryOperator>(V));
866
867 // Create the multiply.
868 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
869
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000870 // Rerun associate on the multiply in case the inner expression turned into
871 // a multiply. We want to make sure that we keep things in canonical form.
872 V2 = ReassociateExpression(cast<BinaryOperator>(V2));
Chris Lattner94285e62009-12-31 18:17:13 +0000873
874 // If every add operand included the factor (e.g. "A*B + A*C"), then the
875 // entire result expression is just the multiply "A*(B+C)".
876 if (Ops.empty())
877 return V2;
878
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000879 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +0000880 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000881 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +0000882 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
883 }
884
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000885 return 0;
886}
Chris Lattnere5022fe2006-03-04 09:31:13 +0000887
888Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000889 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000890 // Now that we have the linearized expression tree, try to optimize it.
891 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000892 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000893 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000894
Chris Lattnere5022fe2006-03-04 09:31:13 +0000895 unsigned Opcode = I->getOpcode();
896
Chris Lattner46900102005-05-08 00:19:31 +0000897 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
898 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
899 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +0000900 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000901 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000902 }
903
904 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000905 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +0000906 switch (Opcode) {
907 default: break;
908 case Instruction::And:
Chris Lattner90461932010-01-01 00:04:26 +0000909 if (CstVal->isZero()) // X & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +0000910 return CstVal;
Chris Lattner90461932010-01-01 00:04:26 +0000911 if (CstVal->isAllOnesValue()) // X & -1 -> X
Chris Lattner8d93b252009-12-31 07:48:51 +0000912 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +0000913 break;
914 case Instruction::Mul:
Chris Lattner90461932010-01-01 00:04:26 +0000915 if (CstVal->isZero()) { // X * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000916 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000917 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000918 }
Chris Lattner8d93b252009-12-31 07:48:51 +0000919
920 if (cast<ConstantInt>(CstVal)->isOne())
Chris Lattner90461932010-01-01 00:04:26 +0000921 Ops.pop_back(); // X * 1 -> X
Chris Lattner46900102005-05-08 00:19:31 +0000922 break;
923 case Instruction::Or:
Chris Lattner90461932010-01-01 00:04:26 +0000924 if (CstVal->isAllOnesValue()) // X | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +0000925 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000926 // FALLTHROUGH!
927 case Instruction::Add:
928 case Instruction::Xor:
Chris Lattner90461932010-01-01 00:04:26 +0000929 if (CstVal->isZero()) // X [|^+] 0 -> X
Chris Lattner46900102005-05-08 00:19:31 +0000930 Ops.pop_back();
931 break;
932 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000933 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000934
Chris Lattnerec531232009-12-31 07:33:14 +0000935 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +0000936 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000937 switch (Opcode) {
938 default: break;
939 case Instruction::And:
940 case Instruction::Or:
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000941 case Instruction::Xor: {
942 unsigned NumOps = Ops.size();
943 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
944 return Result;
945 IterateOptimization |= Ops.size() != NumOps;
Chris Lattner109d34d2005-05-08 18:59:37 +0000946 break;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000947 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000948
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000949 case Instruction::Add: {
950 unsigned NumOps = Ops.size();
Chris Lattner94285e62009-12-31 18:17:13 +0000951 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000952 return Result;
953 IterateOptimization |= Ops.size() != NumOps;
954 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000955
Chris Lattner109d34d2005-05-08 18:59:37 +0000956 break;
957 //case Instruction::Mul:
958 }
959
Jeff Cohen00b168892005-07-27 06:12:32 +0000960 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000961 return OptimizeExpression(I, Ops);
962 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000963}
964
Chris Lattnera36e6c82002-05-16 04:37:07 +0000965
Dan Gohmandac5dba2011-04-12 00:11:56 +0000966/// ReassociateInst - Inspect and reassociate the instruction at the
967/// given position, post-incrementing the position.
968void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) {
969 Instruction *BI = BBI++;
970 if (BI->getOpcode() == Instruction::Shl &&
971 isa<ConstantInt>(BI->getOperand(1)))
972 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
973 MadeChange = true;
974 BI = NI;
Chris Lattnerf33151a2005-05-08 21:28:52 +0000975 }
Chris Lattnere4b73042002-10-31 17:12:59 +0000976
Dan Gohmandac5dba2011-04-12 00:11:56 +0000977 // Reject cases where it is pointless to do this.
978 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
979 BI->getType()->isVectorTy())
980 return; // Floating point ops are not associative.
Jeff Cohen00b168892005-07-27 06:12:32 +0000981
Dan Gohmandac5dba2011-04-12 00:11:56 +0000982 // Do not reassociate boolean (i1) expressions. We want to preserve the
983 // original order of evaluation for short-circuited comparisons that
984 // SimplifyCFG has folded to AND/OR expressions. If the expression
985 // is not further optimized, it is likely to be transformed back to a
986 // short-circuited form for code gen, and the source order may have been
987 // optimized for the most likely conditions.
988 if (BI->getType()->isIntegerTy(1))
989 return;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000990
Dan Gohmandac5dba2011-04-12 00:11:56 +0000991 // If this is a subtract instruction which is not already in negate form,
992 // see if we can convert it to X+-Y.
993 if (BI->getOpcode() == Instruction::Sub) {
994 if (ShouldBreakUpSubtract(BI)) {
995 BI = BreakUpSubtract(BI, ValueRankMap);
996 // Reset the BBI iterator in case BreakUpSubtract changed the
997 // instruction it points to.
998 BBI = BI;
999 ++BBI;
1000 MadeChange = true;
1001 } else if (BinaryOperator::isNeg(BI)) {
1002 // Otherwise, this is a negation. See if the operand is a multiply tree
1003 // and if this is not an inner node of a multiply tree.
1004 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
1005 (!BI->hasOneUse() ||
1006 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
1007 BI = LowerNegateToMultiply(BI, ValueRankMap);
1008 MadeChange = true;
1009 }
1010 }
Chris Lattner895b3922006-03-14 07:11:11 +00001011 }
Dan Gohmandac5dba2011-04-12 00:11:56 +00001012
1013 // If this instruction is a commutative binary operator, process it.
1014 if (!BI->isAssociative()) return;
1015 BinaryOperator *I = cast<BinaryOperator>(BI);
1016
1017 // If this is an interior node of a reassociable tree, ignore it until we
1018 // get to the root of the tree, to avoid N^2 analysis.
1019 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1020 return;
1021
1022 // If this is an add tree that is used by a sub instruction, ignore it
1023 // until we process the subtract.
1024 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1025 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1026 return;
1027
1028 ReassociateExpression(I);
Chris Lattner895b3922006-03-14 07:11:11 +00001029}
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001030
Chris Lattner69e98e22009-12-31 19:24:52 +00001031Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner895b3922006-03-14 07:11:11 +00001032
Chris Lattner69e98e22009-12-31 19:24:52 +00001033 // First, walk the expression tree, linearizing the tree, collecting the
1034 // operand information.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001035 SmallVector<ValueEntry, 8> Ops;
Chris Lattner895b3922006-03-14 07:11:11 +00001036 LinearizeExprTree(I, Ops);
1037
David Greenea1fa76c2010-01-05 01:27:24 +00001038 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001039
1040 // Now that we have linearized the tree to a list and have gathered all of
1041 // the operands and their ranks, sort the operands by their rank. Use a
1042 // stable_sort so that values with equal ranks will have their relative
1043 // positions maintained (and so the compiler is deterministic). Note that
1044 // this sorts so that the highest ranking values end up at the beginning of
1045 // the vector.
1046 std::stable_sort(Ops.begin(), Ops.end());
1047
1048 // OptimizeExpression - Now that we have the expression tree in a convenient
1049 // sorted form, optimize it globally if possible.
1050 if (Value *V = OptimizeExpression(I, Ops)) {
1051 // This expression tree simplified to something that isn't a tree,
1052 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +00001053 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001054 I->replaceAllUsesWith(V);
1055 RemoveDeadBinaryOp(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001056 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +00001057 return V;
Chris Lattner895b3922006-03-14 07:11:11 +00001058 }
1059
1060 // We want to sink immediates as deeply as possible except in the case where
1061 // this is a multiply tree used only by an add, and the immediate is a -1.
1062 // In this case we reassociate to put the negation on the outside so that we
1063 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1064 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1065 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1066 isa<ConstantInt>(Ops.back().Op) &&
1067 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001068 ValueEntry Tmp = Ops.pop_back_val();
1069 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001070 }
1071
David Greenea1fa76c2010-01-05 01:27:24 +00001072 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001073
1074 if (Ops.size() == 1) {
1075 // This expression tree simplified to something that isn't a tree,
1076 // eliminate it.
1077 I->replaceAllUsesWith(Ops[0].Op);
1078 RemoveDeadBinaryOp(I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001079 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +00001080 }
Chris Lattner69e98e22009-12-31 19:24:52 +00001081
1082 // Now that we ordered and optimized the expressions, splat them back into
1083 // the expression tree, removing any unneeded nodes.
1084 RewriteExprTree(I, Ops);
1085 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +00001086}
1087
1088
Chris Lattner7e708292002-06-25 16:13:24 +00001089bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +00001090 // Recalculate the rank map for F
1091 BuildRankMap(F);
1092
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001093 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +00001094 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Dan Gohmandac5dba2011-04-12 00:11:56 +00001095 for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); )
1096 ReassociateInst(BBI);
1097
1098 // Now that we're done, revisit any instructions which are likely to
1099 // have secondary reassociation opportunities.
1100 while (!RedoInsts.empty())
1101 if (Value *V = RedoInsts.pop_back_val()) {
1102 BasicBlock::iterator BBI = cast<Instruction>(V);
1103 ReassociateInst(BBI);
1104 }
Chris Lattner4fd56002002-05-08 22:19:27 +00001105
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +00001106 // Now that we're done, delete any instructions which are no longer used.
1107 while (!DeadInsts.empty())
Dan Gohmanc9f2f612011-03-10 20:57:44 +00001108 if (Value *V = DeadInsts.pop_back_val())
1109 RecursivelyDeleteTriviallyDeadInstructions(V);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +00001110
Chris Lattnerf55e7f52010-01-01 00:01:34 +00001111 // We are done with the rank map.
Chris Lattner4fd56002002-05-08 22:19:27 +00001112 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +00001113 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001114 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001115}
Brian Gaeked0fde302003-11-11 22:41:34 +00001116