blob: 1612d895f21bb3ad9e15b558489b12e5a469991e [file] [log] [blame]
Dan Gohman2d1be872009-04-16 03:18:22 +00001//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
Nate Begemaneaa13852004-10-18 21:08:22 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
Nate Begemaneaa13852004-10-18 21:08:22 +00008//===----------------------------------------------------------------------===//
9//
Dan Gohmancec8f9d2009-05-19 20:37:36 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
Nate Begemaneaa13852004-10-18 21:08:22 +000014// This pass performs a strength reduction on array references inside loops that
Dan Gohmancec8f9d2009-05-19 20:37:36 +000015// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
Nate Begemaneaa13852004-10-18 21:08:22 +000019//
Dan Gohman572645c2010-02-12 10:34:29 +000020// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24// %i = phi [ 0, %entry ], [ %i.next, %latch ]
25// ...
26// %i.next = add %i, 1
27// %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41// instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44// smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47// multiple base registers, or as the increment expression in an addrec),
48// we may not actually need both reg and (-1 * reg) in registers; the
49// negation can be implemented by using a sub instead of an add. The
50// lack of support for taking this into consideration when making
51// register pressure decisions is partly worked around by the "Special"
52// use kind.
53//
Nate Begemaneaa13852004-10-18 21:08:22 +000054//===----------------------------------------------------------------------===//
55
Chris Lattnerbe3e5212005-08-03 23:30:08 +000056#define DEBUG_TYPE "loop-reduce"
Nate Begemaneaa13852004-10-18 21:08:22 +000057#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
Dan Gohmane5b01be2007-05-04 14:59:09 +000060#include "llvm/IntrinsicInst.h"
Jeff Cohen2f3c9b72005-03-04 04:04:26 +000061#include "llvm/DerivedTypes.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000062#include "llvm/Analysis/IVUsers.h"
Dan Gohman572645c2010-02-12 10:34:29 +000063#include "llvm/Analysis/Dominators.h"
Devang Patel0f54dcb2007-03-06 21:14:09 +000064#include "llvm/Analysis/LoopPass.h"
Nate Begeman16997482005-07-30 00:15:07 +000065#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chris Lattnere0391be2005-08-12 22:06:11 +000066#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Nate Begemaneaa13852004-10-18 21:08:22 +000067#include "llvm/Transforms/Utils/Local.h"
Dan Gohman572645c2010-02-12 10:34:29 +000068#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
Nate Begeman16997482005-07-30 00:15:07 +000071#include "llvm/Support/Debug.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000072#include "llvm/Support/ValueHandle.h"
Daniel Dunbar460f6562009-07-26 09:48:23 +000073#include "llvm/Support/raw_ostream.h"
Evan Chengd277f2c2006-03-13 23:14:23 +000074#include "llvm/Target/TargetLowering.h"
Jeff Cohencfb1d422005-07-30 18:22:27 +000075#include <algorithm>
Nate Begemaneaa13852004-10-18 21:08:22 +000076using namespace llvm;
77
Dan Gohman572645c2010-02-12 10:34:29 +000078namespace {
Nate Begemaneaa13852004-10-18 21:08:22 +000079
Dan Gohman572645c2010-02-12 10:34:29 +000080/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83 /// UsedByIndices - This represents the set of LSRUse indices which reference
84 /// a particular register.
85 SmallBitVector UsedByIndices;
86
87 RegSortData() {}
88
89 void print(raw_ostream &OS) const;
90 void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96 OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100 print(errs()); errs() << '\n';
101}
Dan Gohmanc17e0cf2009-02-20 04:17:46 +0000102
Chris Lattner0e5f4992006-12-19 21:40:18 +0000103namespace {
Dale Johannesendc42f482007-03-20 00:47:50 +0000104
Dan Gohman572645c2010-02-12 10:34:29 +0000105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
Dale Johannesendc42f482007-03-20 00:47:50 +0000109
Dan Gohman90bb3552010-05-18 22:33:00 +0000110 RegUsesTy RegUsesMap;
Dan Gohman572645c2010-02-12 10:34:29 +0000111 SmallVector<const SCEV *, 16> RegSequence;
Evan Chengd1d6b5c2006-03-16 21:53:05 +0000112
Dan Gohman572645c2010-02-12 10:34:29 +0000113public:
114 void CountRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000115 void DropRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmana2086b32010-05-19 23:43:12 +0000116 void DropUse(size_t LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000117
Dan Gohman572645c2010-02-12 10:34:29 +0000118 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000119
Dan Gohman572645c2010-02-12 10:34:29 +0000120 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000121
Dan Gohman572645c2010-02-12 10:34:29 +0000122 void clear();
Dan Gohmana10756e2010-01-21 02:09:26 +0000123
Dan Gohman572645c2010-02-12 10:34:29 +0000124 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
125 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
126 iterator begin() { return RegSequence.begin(); }
127 iterator end() { return RegSequence.end(); }
128 const_iterator begin() const { return RegSequence.begin(); }
129 const_iterator end() const { return RegSequence.end(); }
130};
Dan Gohmana10756e2010-01-21 02:09:26 +0000131
Dan Gohmana10756e2010-01-21 02:09:26 +0000132}
133
Dan Gohman572645c2010-02-12 10:34:29 +0000134void
135RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
136 std::pair<RegUsesTy::iterator, bool> Pair =
Dan Gohman90bb3552010-05-18 22:33:00 +0000137 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
Dan Gohman572645c2010-02-12 10:34:29 +0000138 RegSortData &RSD = Pair.first->second;
139 if (Pair.second)
140 RegSequence.push_back(Reg);
141 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
142 RSD.UsedByIndices.set(LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000143}
144
Dan Gohmanb2df4332010-05-18 23:42:37 +0000145void
146RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
147 RegUsesTy::iterator It = RegUsesMap.find(Reg);
148 assert(It != RegUsesMap.end());
149 RegSortData &RSD = It->second;
150 assert(RSD.UsedByIndices.size() > LUIdx);
151 RSD.UsedByIndices.reset(LUIdx);
152}
153
Dan Gohmana2086b32010-05-19 23:43:12 +0000154void
155RegUseTracker::DropUse(size_t LUIdx) {
156 // Remove the use index from every register's use list.
157 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
158 I != E; ++I)
159 I->second.UsedByIndices.reset(LUIdx);
160}
161
Dan Gohman572645c2010-02-12 10:34:29 +0000162bool
163RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000164 if (!RegUsesMap.count(Reg)) return false;
Dan Gohman572645c2010-02-12 10:34:29 +0000165 const SmallBitVector &UsedByIndices =
Dan Gohman90bb3552010-05-18 22:33:00 +0000166 RegUsesMap.find(Reg)->second.UsedByIndices;
Dan Gohman572645c2010-02-12 10:34:29 +0000167 int i = UsedByIndices.find_first();
168 if (i == -1) return false;
169 if ((size_t)i != LUIdx) return true;
170 return UsedByIndices.find_next(i) != -1;
171}
Dan Gohmana10756e2010-01-21 02:09:26 +0000172
Dan Gohman572645c2010-02-12 10:34:29 +0000173const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000174 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
175 assert(I != RegUsesMap.end() && "Unknown register!");
Dan Gohman572645c2010-02-12 10:34:29 +0000176 return I->second.UsedByIndices;
177}
Dan Gohmana10756e2010-01-21 02:09:26 +0000178
Dan Gohman572645c2010-02-12 10:34:29 +0000179void RegUseTracker::clear() {
Dan Gohman90bb3552010-05-18 22:33:00 +0000180 RegUsesMap.clear();
Dan Gohman572645c2010-02-12 10:34:29 +0000181 RegSequence.clear();
182}
Dan Gohmana10756e2010-01-21 02:09:26 +0000183
Dan Gohman572645c2010-02-12 10:34:29 +0000184namespace {
185
186/// Formula - This class holds information that describes a formula for
187/// computing satisfying a use. It may include broken-out immediates and scaled
188/// registers.
189struct Formula {
190 /// AM - This is used to represent complex addressing, as well as other kinds
191 /// of interesting uses.
192 TargetLowering::AddrMode AM;
193
194 /// BaseRegs - The list of "base" registers for this use. When this is
195 /// non-empty, AM.HasBaseReg should be set to true.
196 SmallVector<const SCEV *, 2> BaseRegs;
197
198 /// ScaledReg - The 'scaled' register for this use. This should be non-null
199 /// when AM.Scale is not zero.
200 const SCEV *ScaledReg;
201
202 Formula() : ScaledReg(0) {}
203
204 void InitialMatch(const SCEV *S, Loop *L,
205 ScalarEvolution &SE, DominatorTree &DT);
206
207 unsigned getNumRegs() const;
208 const Type *getType() const;
209
Dan Gohman5ce6d052010-05-20 15:17:54 +0000210 void DeleteBaseReg(const SCEV *&S);
211
Dan Gohman572645c2010-02-12 10:34:29 +0000212 bool referencesReg(const SCEV *S) const;
213 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
214 const RegUseTracker &RegUses) const;
215
216 void print(raw_ostream &OS) const;
217 void dump() const;
218};
219
220}
221
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000222/// DoInitialMatch - Recursion helper for InitialMatch.
Dan Gohman572645c2010-02-12 10:34:29 +0000223static void DoInitialMatch(const SCEV *S, Loop *L,
224 SmallVectorImpl<const SCEV *> &Good,
225 SmallVectorImpl<const SCEV *> &Bad,
226 ScalarEvolution &SE, DominatorTree &DT) {
227 // Collect expressions which properly dominate the loop header.
228 if (S->properlyDominates(L->getHeader(), &DT)) {
229 Good.push_back(S);
230 return;
Dan Gohmana10756e2010-01-21 02:09:26 +0000231 }
Dan Gohman572645c2010-02-12 10:34:29 +0000232
233 // Look at add operands.
234 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
235 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
236 I != E; ++I)
237 DoInitialMatch(*I, L, Good, Bad, SE, DT);
238 return;
239 }
240
241 // Look at addrec operands.
242 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
243 if (!AR->getStart()->isZero()) {
244 DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
Dan Gohmandeff6212010-05-03 22:09:21 +0000245 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +0000246 AR->getStepRecurrence(SE),
247 AR->getLoop()),
248 L, Good, Bad, SE, DT);
249 return;
250 }
251
252 // Handle a multiplication by -1 (negation) if it didn't fold.
253 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
254 if (Mul->getOperand(0)->isAllOnesValue()) {
255 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
256 const SCEV *NewMul = SE.getMulExpr(Ops);
257
258 SmallVector<const SCEV *, 4> MyGood;
259 SmallVector<const SCEV *, 4> MyBad;
260 DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
261 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
262 SE.getEffectiveSCEVType(NewMul->getType())));
263 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
264 E = MyGood.end(); I != E; ++I)
265 Good.push_back(SE.getMulExpr(NegOne, *I));
266 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
267 E = MyBad.end(); I != E; ++I)
268 Bad.push_back(SE.getMulExpr(NegOne, *I));
269 return;
270 }
271
272 // Ok, we can't do anything interesting. Just stuff the whole thing into a
273 // register and hope for the best.
274 Bad.push_back(S);
275}
276
277/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
278/// attempting to keep all loop-invariant and loop-computable values in a
279/// single base register.
280void Formula::InitialMatch(const SCEV *S, Loop *L,
281 ScalarEvolution &SE, DominatorTree &DT) {
282 SmallVector<const SCEV *, 4> Good;
283 SmallVector<const SCEV *, 4> Bad;
284 DoInitialMatch(S, L, Good, Bad, SE, DT);
285 if (!Good.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000286 const SCEV *Sum = SE.getAddExpr(Good);
287 if (!Sum->isZero())
288 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000289 AM.HasBaseReg = true;
290 }
291 if (!Bad.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000292 const SCEV *Sum = SE.getAddExpr(Bad);
293 if (!Sum->isZero())
294 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000295 AM.HasBaseReg = true;
296 }
297}
298
299/// getNumRegs - Return the total number of register operands used by this
300/// formula. This does not include register uses implied by non-constant
301/// addrec strides.
302unsigned Formula::getNumRegs() const {
303 return !!ScaledReg + BaseRegs.size();
304}
305
306/// getType - Return the type of this formula, if it has one, or null
307/// otherwise. This type is meaningless except for the bit size.
308const Type *Formula::getType() const {
309 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
310 ScaledReg ? ScaledReg->getType() :
311 AM.BaseGV ? AM.BaseGV->getType() :
312 0;
313}
314
Dan Gohman5ce6d052010-05-20 15:17:54 +0000315/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
316void Formula::DeleteBaseReg(const SCEV *&S) {
317 if (&S != &BaseRegs.back())
318 std::swap(S, BaseRegs.back());
319 BaseRegs.pop_back();
320}
321
Dan Gohman572645c2010-02-12 10:34:29 +0000322/// referencesReg - Test if this formula references the given register.
323bool Formula::referencesReg(const SCEV *S) const {
324 return S == ScaledReg ||
325 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
326}
327
328/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
329/// which are used by uses other than the use with the given index.
330bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
331 const RegUseTracker &RegUses) const {
332 if (ScaledReg)
333 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
334 return true;
335 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
336 E = BaseRegs.end(); I != E; ++I)
337 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
338 return true;
339 return false;
340}
341
342void Formula::print(raw_ostream &OS) const {
343 bool First = true;
344 if (AM.BaseGV) {
345 if (!First) OS << " + "; else First = false;
346 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
347 }
348 if (AM.BaseOffs != 0) {
349 if (!First) OS << " + "; else First = false;
350 OS << AM.BaseOffs;
351 }
352 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
353 E = BaseRegs.end(); I != E; ++I) {
354 if (!First) OS << " + "; else First = false;
355 OS << "reg(" << **I << ')';
356 }
Dan Gohmanc4cfbaf2010-05-18 22:35:55 +0000357 if (AM.HasBaseReg && BaseRegs.empty()) {
358 if (!First) OS << " + "; else First = false;
359 OS << "**error: HasBaseReg**";
360 } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
361 if (!First) OS << " + "; else First = false;
362 OS << "**error: !HasBaseReg**";
363 }
Dan Gohman572645c2010-02-12 10:34:29 +0000364 if (AM.Scale != 0) {
365 if (!First) OS << " + "; else First = false;
366 OS << AM.Scale << "*reg(";
367 if (ScaledReg)
368 OS << *ScaledReg;
369 else
370 OS << "<unknown>";
371 OS << ')';
372 }
373}
374
375void Formula::dump() const {
376 print(errs()); errs() << '\n';
377}
378
Dan Gohmanaae01f12010-02-19 19:32:49 +0000379/// isAddRecSExtable - Return true if the given addrec can be sign-extended
380/// without changing its value.
381static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
382 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000383 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000384 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
385}
386
387/// isAddSExtable - Return true if the given add can be sign-extended
388/// without changing its value.
389static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
390 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000391 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000392 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
393}
394
Dan Gohman473e6352010-06-24 16:45:11 +0000395/// isMulSExtable - Return true if the given mul can be sign-extended
Dan Gohmanaae01f12010-02-19 19:32:49 +0000396/// without changing its value.
Dan Gohman473e6352010-06-24 16:45:11 +0000397static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000398 const Type *WideTy =
Dan Gohman473e6352010-06-24 16:45:11 +0000399 IntegerType::get(SE.getContext(),
400 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
401 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
Dan Gohmanaae01f12010-02-19 19:32:49 +0000402}
403
Dan Gohmanf09b7122010-02-19 19:35:48 +0000404/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
405/// and if the remainder is known to be zero, or null otherwise. If
406/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
407/// to Y, ignoring that the multiplication may overflow, which is useful when
408/// the result will be used in a context where the most significant bits are
409/// ignored.
410static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
411 ScalarEvolution &SE,
412 bool IgnoreSignificantBits = false) {
Dan Gohman572645c2010-02-12 10:34:29 +0000413 // Handle the trivial case, which works for any SCEV type.
414 if (LHS == RHS)
Dan Gohmandeff6212010-05-03 22:09:21 +0000415 return SE.getConstant(LHS->getType(), 1);
Dan Gohman572645c2010-02-12 10:34:29 +0000416
Dan Gohmand42819a2010-06-24 16:51:25 +0000417 // Handle a few RHS special cases.
418 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
419 if (RC) {
420 const APInt &RA = RC->getValue()->getValue();
421 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
422 // some folding.
423 if (RA.isAllOnesValue())
424 return SE.getMulExpr(LHS, RC);
425 // Handle x /s 1 as x.
426 if (RA == 1)
427 return LHS;
428 }
Dan Gohman572645c2010-02-12 10:34:29 +0000429
430 // Check for a division of a constant by a constant.
431 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000432 if (!RC)
433 return 0;
Dan Gohmand42819a2010-06-24 16:51:25 +0000434 const APInt &LA = C->getValue()->getValue();
435 const APInt &RA = RC->getValue()->getValue();
436 if (LA.srem(RA) != 0)
Dan Gohman572645c2010-02-12 10:34:29 +0000437 return 0;
Dan Gohmand42819a2010-06-24 16:51:25 +0000438 return SE.getConstant(LA.sdiv(RA));
Dan Gohman572645c2010-02-12 10:34:29 +0000439 }
440
Dan Gohmanaae01f12010-02-19 19:32:49 +0000441 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000442 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000443 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000444 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
445 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000446 if (!Start) return 0;
Dan Gohmanf09b7122010-02-19 19:35:48 +0000447 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
448 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000449 if (!Step) return 0;
450 return SE.getAddRecExpr(Start, Step, AR->getLoop());
451 }
Dan Gohman2ea09e02010-06-24 16:57:52 +0000452 return 0;
Dan Gohman572645c2010-02-12 10:34:29 +0000453 }
454
Dan Gohmanaae01f12010-02-19 19:32:49 +0000455 // Distribute the sdiv over add operands, if the add doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000456 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000457 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
458 SmallVector<const SCEV *, 8> Ops;
459 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
460 I != E; ++I) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000461 const SCEV *Op = getExactSDiv(*I, RHS, SE,
462 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000463 if (!Op) return 0;
464 Ops.push_back(Op);
465 }
466 return SE.getAddExpr(Ops);
Dan Gohman572645c2010-02-12 10:34:29 +0000467 }
Dan Gohman2ea09e02010-06-24 16:57:52 +0000468 return 0;
Dan Gohman572645c2010-02-12 10:34:29 +0000469 }
470
471 // Check for a multiply operand that we can pull RHS out of.
Dan Gohman2ea09e02010-06-24 16:57:52 +0000472 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000473 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000474 SmallVector<const SCEV *, 4> Ops;
475 bool Found = false;
476 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
477 I != E; ++I) {
Dan Gohman47667442010-05-20 16:23:28 +0000478 const SCEV *S = *I;
Dan Gohman572645c2010-02-12 10:34:29 +0000479 if (!Found)
Dan Gohman47667442010-05-20 16:23:28 +0000480 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
Dan Gohmanf09b7122010-02-19 19:35:48 +0000481 IgnoreSignificantBits)) {
Dan Gohman47667442010-05-20 16:23:28 +0000482 S = Q;
Dan Gohman572645c2010-02-12 10:34:29 +0000483 Found = true;
Dan Gohman572645c2010-02-12 10:34:29 +0000484 }
Dan Gohman47667442010-05-20 16:23:28 +0000485 Ops.push_back(S);
Dan Gohman572645c2010-02-12 10:34:29 +0000486 }
487 return Found ? SE.getMulExpr(Ops) : 0;
488 }
Dan Gohman2ea09e02010-06-24 16:57:52 +0000489 return 0;
490 }
Dan Gohman572645c2010-02-12 10:34:29 +0000491
492 // Otherwise we don't know.
493 return 0;
494}
495
496/// ExtractImmediate - If S involves the addition of a constant integer value,
497/// return that integer value, and mutate S to point to a new SCEV with that
498/// value excluded.
499static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
500 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
501 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000502 S = SE.getConstant(C->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000503 return C->getValue()->getSExtValue();
504 }
505 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
506 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
507 int64_t Result = ExtractImmediate(NewOps.front(), SE);
508 S = SE.getAddExpr(NewOps);
509 return Result;
510 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
511 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
512 int64_t Result = ExtractImmediate(NewOps.front(), SE);
513 S = SE.getAddRecExpr(NewOps, AR->getLoop());
514 return Result;
515 }
516 return 0;
517}
518
519/// ExtractSymbol - If S involves the addition of a GlobalValue address,
520/// return that symbol, and mutate S to point to a new SCEV with that
521/// value excluded.
522static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
523 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
524 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000525 S = SE.getConstant(GV->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000526 return GV;
527 }
528 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
529 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
530 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
531 S = SE.getAddExpr(NewOps);
532 return Result;
533 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
534 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
535 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
536 S = SE.getAddRecExpr(NewOps, AR->getLoop());
537 return Result;
538 }
539 return 0;
Nate Begemaneaa13852004-10-18 21:08:22 +0000540}
541
Dan Gohmanf284ce22009-02-18 00:08:39 +0000542/// isAddressUse - Returns true if the specified instruction is using the
Dale Johannesen203af582008-12-05 21:47:27 +0000543/// specified value as an address.
544static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
545 bool isAddress = isa<LoadInst>(Inst);
546 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
547 if (SI->getOperand(1) == OperandVal)
548 isAddress = true;
549 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
550 // Addressing modes can also be folded into prefetches and a variety
551 // of intrinsics.
552 switch (II->getIntrinsicID()) {
553 default: break;
554 case Intrinsic::prefetch:
555 case Intrinsic::x86_sse2_loadu_dq:
556 case Intrinsic::x86_sse2_loadu_pd:
557 case Intrinsic::x86_sse_loadu_ps:
558 case Intrinsic::x86_sse_storeu_ps:
559 case Intrinsic::x86_sse2_storeu_pd:
560 case Intrinsic::x86_sse2_storeu_dq:
561 case Intrinsic::x86_sse2_storel_dq:
Gabor Greifad72e732010-06-30 09:15:28 +0000562 if (II->getArgOperand(0) == OperandVal)
Dale Johannesen203af582008-12-05 21:47:27 +0000563 isAddress = true;
564 break;
565 }
566 }
567 return isAddress;
568}
Chris Lattner0ae33eb2005-10-03 01:04:44 +0000569
Dan Gohman21e77222009-03-09 21:01:17 +0000570/// getAccessType - Return the type of the memory being accessed.
571static const Type *getAccessType(const Instruction *Inst) {
Dan Gohmana537bf82009-05-18 16:45:28 +0000572 const Type *AccessTy = Inst->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000573 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
Dan Gohmana537bf82009-05-18 16:45:28 +0000574 AccessTy = SI->getOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000575 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
576 // Addressing modes can also be folded into prefetches and a variety
577 // of intrinsics.
578 switch (II->getIntrinsicID()) {
579 default: break;
580 case Intrinsic::x86_sse_storeu_ps:
581 case Intrinsic::x86_sse2_storeu_pd:
582 case Intrinsic::x86_sse2_storeu_dq:
583 case Intrinsic::x86_sse2_storel_dq:
Gabor Greifad72e732010-06-30 09:15:28 +0000584 AccessTy = II->getArgOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000585 break;
586 }
587 }
Dan Gohman572645c2010-02-12 10:34:29 +0000588
589 // All pointers have the same requirements, so canonicalize them to an
590 // arbitrary pointer type to minimize variation.
591 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
592 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
593 PTy->getAddressSpace());
594
Dan Gohmana537bf82009-05-18 16:45:28 +0000595 return AccessTy;
Dan Gohman21e77222009-03-09 21:01:17 +0000596}
597
Dan Gohman572645c2010-02-12 10:34:29 +0000598/// DeleteTriviallyDeadInstructions - If any of the instructions is the
599/// specified set are trivially dead, delete them and see if this makes any of
600/// their operands subsequently dead.
601static bool
602DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
603 bool Changed = false;
604
605 while (!DeadInsts.empty()) {
606 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
607
608 if (I == 0 || !isInstructionTriviallyDead(I))
609 continue;
610
611 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
612 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
613 *OI = 0;
614 if (U->use_empty())
615 DeadInsts.push_back(U);
616 }
617
618 I->eraseFromParent();
619 Changed = true;
620 }
621
622 return Changed;
623}
624
Dan Gohman7979b722010-01-22 00:46:49 +0000625namespace {
Jim Grosbach56a1f802009-11-17 17:53:56 +0000626
Dan Gohman572645c2010-02-12 10:34:29 +0000627/// Cost - This class is used to measure and compare candidate formulae.
628class Cost {
629 /// TODO: Some of these could be merged. Also, a lexical ordering
630 /// isn't always optimal.
631 unsigned NumRegs;
632 unsigned AddRecCost;
633 unsigned NumIVMuls;
634 unsigned NumBaseAdds;
635 unsigned ImmCost;
636 unsigned SetupCost;
Nate Begeman16997482005-07-30 00:15:07 +0000637
Dan Gohman572645c2010-02-12 10:34:29 +0000638public:
639 Cost()
640 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
641 SetupCost(0) {}
Jim Grosbach56a1f802009-11-17 17:53:56 +0000642
Dan Gohman572645c2010-02-12 10:34:29 +0000643 unsigned getNumRegs() const { return NumRegs; }
Dan Gohman7979b722010-01-22 00:46:49 +0000644
Dan Gohman572645c2010-02-12 10:34:29 +0000645 bool operator<(const Cost &Other) const;
Dan Gohman7979b722010-01-22 00:46:49 +0000646
Dan Gohman572645c2010-02-12 10:34:29 +0000647 void Loose();
Dan Gohman7979b722010-01-22 00:46:49 +0000648
Dan Gohman572645c2010-02-12 10:34:29 +0000649 void RateFormula(const Formula &F,
650 SmallPtrSet<const SCEV *, 16> &Regs,
651 const DenseSet<const SCEV *> &VisitedRegs,
652 const Loop *L,
653 const SmallVectorImpl<int64_t> &Offsets,
654 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman7979b722010-01-22 00:46:49 +0000655
Dan Gohman572645c2010-02-12 10:34:29 +0000656 void print(raw_ostream &OS) const;
657 void dump() const;
Dan Gohman7979b722010-01-22 00:46:49 +0000658
Dan Gohman572645c2010-02-12 10:34:29 +0000659private:
660 void RateRegister(const SCEV *Reg,
661 SmallPtrSet<const SCEV *, 16> &Regs,
662 const Loop *L,
663 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman9214b822010-02-13 02:06:02 +0000664 void RatePrimaryRegister(const SCEV *Reg,
665 SmallPtrSet<const SCEV *, 16> &Regs,
666 const Loop *L,
667 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000668};
669
670}
671
672/// RateRegister - Tally up interesting quantities from the given register.
673void Cost::RateRegister(const SCEV *Reg,
674 SmallPtrSet<const SCEV *, 16> &Regs,
675 const Loop *L,
676 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000677 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
678 if (AR->getLoop() == L)
679 AddRecCost += 1; /// TODO: This should be a function of the stride.
Dan Gohman572645c2010-02-12 10:34:29 +0000680
Dan Gohman9214b822010-02-13 02:06:02 +0000681 // If this is an addrec for a loop that's already been visited by LSR,
682 // don't second-guess its addrec phi nodes. LSR isn't currently smart
683 // enough to reason about more than one loop at a time. Consider these
684 // registers free and leave them alone.
685 else if (L->contains(AR->getLoop()) ||
686 (!AR->getLoop()->contains(L) &&
687 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
688 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
689 PHINode *PN = dyn_cast<PHINode>(I); ++I)
690 if (SE.isSCEVable(PN->getType()) &&
691 (SE.getEffectiveSCEVType(PN->getType()) ==
692 SE.getEffectiveSCEVType(AR->getType())) &&
693 SE.getSCEV(PN) == AR)
694 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000695
Dan Gohman9214b822010-02-13 02:06:02 +0000696 // If this isn't one of the addrecs that the loop already has, it
697 // would require a costly new phi and add. TODO: This isn't
698 // precisely modeled right now.
699 ++NumBaseAdds;
700 if (!Regs.count(AR->getStart()))
Dan Gohman572645c2010-02-12 10:34:29 +0000701 RateRegister(AR->getStart(), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000702 }
Dan Gohman572645c2010-02-12 10:34:29 +0000703
Dan Gohman9214b822010-02-13 02:06:02 +0000704 // Add the step value register, if it needs one.
705 // TODO: The non-affine case isn't precisely modeled here.
706 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
707 if (!Regs.count(AR->getStart()))
708 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000709 }
Dan Gohman9214b822010-02-13 02:06:02 +0000710 ++NumRegs;
711
712 // Rough heuristic; favor registers which don't require extra setup
713 // instructions in the preheader.
714 if (!isa<SCEVUnknown>(Reg) &&
715 !isa<SCEVConstant>(Reg) &&
716 !(isa<SCEVAddRecExpr>(Reg) &&
717 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
718 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
719 ++SetupCost;
720}
721
722/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
723/// before, rate it.
724void Cost::RatePrimaryRegister(const SCEV *Reg,
Dan Gohman7fca2292010-02-16 19:42:34 +0000725 SmallPtrSet<const SCEV *, 16> &Regs,
726 const Loop *L,
727 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000728 if (Regs.insert(Reg))
729 RateRegister(Reg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000730}
731
732void Cost::RateFormula(const Formula &F,
733 SmallPtrSet<const SCEV *, 16> &Regs,
734 const DenseSet<const SCEV *> &VisitedRegs,
735 const Loop *L,
736 const SmallVectorImpl<int64_t> &Offsets,
737 ScalarEvolution &SE, DominatorTree &DT) {
738 // Tally up the registers.
739 if (const SCEV *ScaledReg = F.ScaledReg) {
740 if (VisitedRegs.count(ScaledReg)) {
741 Loose();
742 return;
743 }
Dan Gohman9214b822010-02-13 02:06:02 +0000744 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000745 }
746 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
747 E = F.BaseRegs.end(); I != E; ++I) {
748 const SCEV *BaseReg = *I;
749 if (VisitedRegs.count(BaseReg)) {
750 Loose();
751 return;
752 }
Dan Gohman9214b822010-02-13 02:06:02 +0000753 RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000754
755 NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
756 BaseReg->hasComputableLoopEvolution(L);
757 }
758
759 if (F.BaseRegs.size() > 1)
760 NumBaseAdds += F.BaseRegs.size() - 1;
761
762 // Tally up the non-zero immediates.
763 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
764 E = Offsets.end(); I != E; ++I) {
765 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
766 if (F.AM.BaseGV)
767 ImmCost += 64; // Handle symbolic values conservatively.
768 // TODO: This should probably be the pointer size.
769 else if (Offset != 0)
770 ImmCost += APInt(64, Offset, true).getMinSignedBits();
771 }
772}
773
774/// Loose - Set this cost to a loosing value.
775void Cost::Loose() {
776 NumRegs = ~0u;
777 AddRecCost = ~0u;
778 NumIVMuls = ~0u;
779 NumBaseAdds = ~0u;
780 ImmCost = ~0u;
781 SetupCost = ~0u;
782}
783
784/// operator< - Choose the lower cost.
785bool Cost::operator<(const Cost &Other) const {
786 if (NumRegs != Other.NumRegs)
787 return NumRegs < Other.NumRegs;
788 if (AddRecCost != Other.AddRecCost)
789 return AddRecCost < Other.AddRecCost;
790 if (NumIVMuls != Other.NumIVMuls)
791 return NumIVMuls < Other.NumIVMuls;
792 if (NumBaseAdds != Other.NumBaseAdds)
793 return NumBaseAdds < Other.NumBaseAdds;
794 if (ImmCost != Other.ImmCost)
795 return ImmCost < Other.ImmCost;
796 if (SetupCost != Other.SetupCost)
797 return SetupCost < Other.SetupCost;
798 return false;
799}
800
801void Cost::print(raw_ostream &OS) const {
802 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
803 if (AddRecCost != 0)
804 OS << ", with addrec cost " << AddRecCost;
805 if (NumIVMuls != 0)
806 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
807 if (NumBaseAdds != 0)
808 OS << ", plus " << NumBaseAdds << " base add"
809 << (NumBaseAdds == 1 ? "" : "s");
810 if (ImmCost != 0)
811 OS << ", plus " << ImmCost << " imm cost";
812 if (SetupCost != 0)
813 OS << ", plus " << SetupCost << " setup cost";
814}
815
816void Cost::dump() const {
817 print(errs()); errs() << '\n';
818}
819
820namespace {
821
822/// LSRFixup - An operand value in an instruction which is to be replaced
823/// with some equivalent, possibly strength-reduced, replacement.
824struct LSRFixup {
825 /// UserInst - The instruction which will be updated.
826 Instruction *UserInst;
827
828 /// OperandValToReplace - The operand of the instruction which will
829 /// be replaced. The operand may be used more than once; every instance
830 /// will be replaced.
831 Value *OperandValToReplace;
832
Dan Gohman448db1c2010-04-07 22:27:08 +0000833 /// PostIncLoops - If this user is to use the post-incremented value of an
Dan Gohman572645c2010-02-12 10:34:29 +0000834 /// induction variable, this variable is non-null and holds the loop
835 /// associated with the induction variable.
Dan Gohman448db1c2010-04-07 22:27:08 +0000836 PostIncLoopSet PostIncLoops;
Dan Gohman572645c2010-02-12 10:34:29 +0000837
838 /// LUIdx - The index of the LSRUse describing the expression which
839 /// this fixup needs, minus an offset (below).
840 size_t LUIdx;
841
842 /// Offset - A constant offset to be added to the LSRUse expression.
843 /// This allows multiple fixups to share the same LSRUse with different
844 /// offsets, for example in an unrolled loop.
845 int64_t Offset;
846
Dan Gohman448db1c2010-04-07 22:27:08 +0000847 bool isUseFullyOutsideLoop(const Loop *L) const;
848
Dan Gohman572645c2010-02-12 10:34:29 +0000849 LSRFixup();
850
851 void print(raw_ostream &OS) const;
852 void dump() const;
853};
854
855}
856
857LSRFixup::LSRFixup()
Dan Gohmanea507f52010-05-20 19:44:23 +0000858 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
Dan Gohman572645c2010-02-12 10:34:29 +0000859
Dan Gohman448db1c2010-04-07 22:27:08 +0000860/// isUseFullyOutsideLoop - Test whether this fixup always uses its
861/// value outside of the given loop.
862bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
863 // PHI nodes use their value in their incoming blocks.
864 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
865 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
866 if (PN->getIncomingValue(i) == OperandValToReplace &&
867 L->contains(PN->getIncomingBlock(i)))
868 return false;
869 return true;
870 }
871
872 return !L->contains(UserInst);
873}
874
Dan Gohman572645c2010-02-12 10:34:29 +0000875void LSRFixup::print(raw_ostream &OS) const {
876 OS << "UserInst=";
877 // Store is common and interesting enough to be worth special-casing.
878 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
879 OS << "store ";
880 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
881 } else if (UserInst->getType()->isVoidTy())
882 OS << UserInst->getOpcodeName();
883 else
884 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
885
886 OS << ", OperandValToReplace=";
887 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
888
Dan Gohman448db1c2010-04-07 22:27:08 +0000889 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
890 E = PostIncLoops.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +0000891 OS << ", PostIncLoop=";
Dan Gohman448db1c2010-04-07 22:27:08 +0000892 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
Dan Gohman572645c2010-02-12 10:34:29 +0000893 }
894
895 if (LUIdx != ~size_t(0))
896 OS << ", LUIdx=" << LUIdx;
897
898 if (Offset != 0)
899 OS << ", Offset=" << Offset;
900}
901
902void LSRFixup::dump() const {
903 print(errs()); errs() << '\n';
904}
905
906namespace {
907
908/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
909/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
910struct UniquifierDenseMapInfo {
911 static SmallVector<const SCEV *, 2> getEmptyKey() {
912 SmallVector<const SCEV *, 2> V;
913 V.push_back(reinterpret_cast<const SCEV *>(-1));
914 return V;
915 }
916
917 static SmallVector<const SCEV *, 2> getTombstoneKey() {
918 SmallVector<const SCEV *, 2> V;
919 V.push_back(reinterpret_cast<const SCEV *>(-2));
920 return V;
921 }
922
923 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
924 unsigned Result = 0;
925 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
926 E = V.end(); I != E; ++I)
927 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
928 return Result;
929 }
930
931 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
932 const SmallVector<const SCEV *, 2> &RHS) {
933 return LHS == RHS;
934 }
935};
936
937/// LSRUse - This class holds the state that LSR keeps for each use in
938/// IVUsers, as well as uses invented by LSR itself. It includes information
939/// about what kinds of things can be folded into the user, information about
940/// the user itself, and information about how the use may be satisfied.
941/// TODO: Represent multiple users of the same expression in common?
942class LSRUse {
943 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
944
945public:
946 /// KindType - An enum for a kind of use, indicating what types of
947 /// scaled and immediate operands it might support.
948 enum KindType {
949 Basic, ///< A normal use, with no folding.
950 Special, ///< A special case of basic, allowing -1 scales.
951 Address, ///< An address use; folding according to TargetLowering
952 ICmpZero ///< An equality icmp with both operands folded into one.
953 // TODO: Add a generic icmp too?
Dan Gohman7979b722010-01-22 00:46:49 +0000954 };
Dan Gohman572645c2010-02-12 10:34:29 +0000955
956 KindType Kind;
957 const Type *AccessTy;
958
959 SmallVector<int64_t, 8> Offsets;
960 int64_t MinOffset;
961 int64_t MaxOffset;
962
963 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
964 /// LSRUse are outside of the loop, in which case some special-case heuristics
965 /// may be used.
966 bool AllFixupsOutsideLoop;
967
968 /// Formulae - A list of ways to build a value that can satisfy this user.
969 /// After the list is populated, one of these is selected heuristically and
970 /// used to formulate a replacement for OperandValToReplace in UserInst.
971 SmallVector<Formula, 12> Formulae;
972
973 /// Regs - The set of register candidates used by all formulae in this LSRUse.
974 SmallPtrSet<const SCEV *, 4> Regs;
975
976 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
977 MinOffset(INT64_MAX),
978 MaxOffset(INT64_MIN),
979 AllFixupsOutsideLoop(true) {}
980
Dan Gohmana2086b32010-05-19 23:43:12 +0000981 bool HasFormulaWithSameRegs(const Formula &F) const;
Dan Gohman454d26d2010-02-22 04:11:59 +0000982 bool InsertFormula(const Formula &F);
Dan Gohmand69d6282010-05-18 22:39:15 +0000983 void DeleteFormula(Formula &F);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000984 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
Dan Gohman572645c2010-02-12 10:34:29 +0000985
986 void check() const;
987
988 void print(raw_ostream &OS) const;
989 void dump() const;
990};
991
Dan Gohmanb6211712010-06-19 21:21:39 +0000992}
993
Dan Gohmana2086b32010-05-19 23:43:12 +0000994/// HasFormula - Test whether this use as a formula which has the same
995/// registers as the given formula.
996bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
997 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
998 if (F.ScaledReg) Key.push_back(F.ScaledReg);
999 // Unstable sort by host order ok, because this is only used for uniquifying.
1000 std::sort(Key.begin(), Key.end());
1001 return Uniquifier.count(Key);
1002}
1003
Dan Gohman572645c2010-02-12 10:34:29 +00001004/// InsertFormula - If the given formula has not yet been inserted, add it to
1005/// the list, and return true. Return false otherwise.
Dan Gohman454d26d2010-02-22 04:11:59 +00001006bool LSRUse::InsertFormula(const Formula &F) {
Dan Gohman572645c2010-02-12 10:34:29 +00001007 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1008 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1009 // Unstable sort by host order ok, because this is only used for uniquifying.
1010 std::sort(Key.begin(), Key.end());
1011
1012 if (!Uniquifier.insert(Key).second)
1013 return false;
1014
1015 // Using a register to hold the value of 0 is not profitable.
1016 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1017 "Zero allocated in a scaled register!");
1018#ifndef NDEBUG
1019 for (SmallVectorImpl<const SCEV *>::const_iterator I =
1020 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1021 assert(!(*I)->isZero() && "Zero allocated in a base register!");
1022#endif
1023
1024 // Add the formula to the list.
1025 Formulae.push_back(F);
1026
1027 // Record registers now being used by this use.
1028 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1029 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1030
1031 return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001032}
1033
Dan Gohmand69d6282010-05-18 22:39:15 +00001034/// DeleteFormula - Remove the given formula from this use's list.
1035void LSRUse::DeleteFormula(Formula &F) {
Dan Gohman5ce6d052010-05-20 15:17:54 +00001036 if (&F != &Formulae.back())
1037 std::swap(F, Formulae.back());
Dan Gohmand69d6282010-05-18 22:39:15 +00001038 Formulae.pop_back();
Dan Gohmana2086b32010-05-19 23:43:12 +00001039 assert(!Formulae.empty() && "LSRUse has no formulae left!");
Dan Gohmand69d6282010-05-18 22:39:15 +00001040}
1041
Dan Gohmanb2df4332010-05-18 23:42:37 +00001042/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1043void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1044 // Now that we've filtered out some formulae, recompute the Regs set.
1045 SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1046 Regs.clear();
Dan Gohman402d4352010-05-20 20:33:18 +00001047 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1048 E = Formulae.end(); I != E; ++I) {
1049 const Formula &F = *I;
Dan Gohmanb2df4332010-05-18 23:42:37 +00001050 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1051 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1052 }
1053
1054 // Update the RegTracker.
1055 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1056 E = OldRegs.end(); I != E; ++I)
1057 if (!Regs.count(*I))
1058 RegUses.DropRegister(*I, LUIdx);
1059}
1060
Dan Gohman572645c2010-02-12 10:34:29 +00001061void LSRUse::print(raw_ostream &OS) const {
1062 OS << "LSR Use: Kind=";
1063 switch (Kind) {
1064 case Basic: OS << "Basic"; break;
1065 case Special: OS << "Special"; break;
1066 case ICmpZero: OS << "ICmpZero"; break;
1067 case Address:
1068 OS << "Address of ";
Duncan Sands1df98592010-02-16 11:11:14 +00001069 if (AccessTy->isPointerTy())
Dan Gohman572645c2010-02-12 10:34:29 +00001070 OS << "pointer"; // the full pointer type could be really verbose
1071 else
1072 OS << *AccessTy;
Evan Chengcdf43b12007-10-25 09:11:16 +00001073 }
1074
Dan Gohman572645c2010-02-12 10:34:29 +00001075 OS << ", Offsets={";
1076 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1077 E = Offsets.end(); I != E; ++I) {
1078 OS << *I;
1079 if (next(I) != E)
1080 OS << ',';
Dan Gohman7979b722010-01-22 00:46:49 +00001081 }
Dan Gohman572645c2010-02-12 10:34:29 +00001082 OS << '}';
Dan Gohman7979b722010-01-22 00:46:49 +00001083
Dan Gohman572645c2010-02-12 10:34:29 +00001084 if (AllFixupsOutsideLoop)
1085 OS << ", all-fixups-outside-loop";
Dan Gohman7979b722010-01-22 00:46:49 +00001086}
1087
Dan Gohman572645c2010-02-12 10:34:29 +00001088void LSRUse::dump() const {
1089 print(errs()); errs() << '\n';
1090}
Dan Gohman7979b722010-01-22 00:46:49 +00001091
Dan Gohman572645c2010-02-12 10:34:29 +00001092/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1093/// be completely folded into the user instruction at isel time. This includes
1094/// address-mode folding and special icmp tricks.
1095static bool isLegalUse(const TargetLowering::AddrMode &AM,
1096 LSRUse::KindType Kind, const Type *AccessTy,
1097 const TargetLowering *TLI) {
1098 switch (Kind) {
1099 case LSRUse::Address:
1100 // If we have low-level target information, ask the target if it can
1101 // completely fold this address.
1102 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1103
1104 // Otherwise, just guess that reg+reg addressing is legal.
1105 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1106
1107 case LSRUse::ICmpZero:
1108 // There's not even a target hook for querying whether it would be legal to
1109 // fold a GV into an ICmp.
1110 if (AM.BaseGV)
1111 return false;
1112
1113 // ICmp only has two operands; don't allow more than two non-trivial parts.
1114 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1115 return false;
1116
1117 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1118 // putting the scaled register in the other operand of the icmp.
1119 if (AM.Scale != 0 && AM.Scale != -1)
1120 return false;
1121
1122 // If we have low-level target information, ask the target if it can fold an
1123 // integer immediate on an icmp.
1124 if (AM.BaseOffs != 0) {
1125 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1126 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001127 }
Dan Gohman572645c2010-02-12 10:34:29 +00001128
1129 return true;
1130
1131 case LSRUse::Basic:
1132 // Only handle single-register values.
1133 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1134
1135 case LSRUse::Special:
1136 // Only handle -1 scales, or no scale.
1137 return AM.Scale == 0 || AM.Scale == -1;
Dan Gohman7979b722010-01-22 00:46:49 +00001138 }
1139
Dan Gohman7979b722010-01-22 00:46:49 +00001140 return false;
1141}
1142
Dan Gohman572645c2010-02-12 10:34:29 +00001143static bool isLegalUse(TargetLowering::AddrMode AM,
1144 int64_t MinOffset, int64_t MaxOffset,
1145 LSRUse::KindType Kind, const Type *AccessTy,
1146 const TargetLowering *TLI) {
1147 // Check for overflow.
1148 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1149 (MinOffset > 0))
1150 return false;
1151 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1152 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1153 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1154 // Check for overflow.
1155 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1156 (MaxOffset > 0))
1157 return false;
1158 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1159 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001160 }
Dan Gohman572645c2010-02-12 10:34:29 +00001161 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001162}
1163
Dan Gohman572645c2010-02-12 10:34:29 +00001164static bool isAlwaysFoldable(int64_t BaseOffs,
1165 GlobalValue *BaseGV,
1166 bool HasBaseReg,
1167 LSRUse::KindType Kind, const Type *AccessTy,
Dan Gohman454d26d2010-02-22 04:11:59 +00001168 const TargetLowering *TLI) {
Dan Gohman572645c2010-02-12 10:34:29 +00001169 // Fast-path: zero is always foldable.
1170 if (BaseOffs == 0 && !BaseGV) return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001171
Dan Gohman572645c2010-02-12 10:34:29 +00001172 // Conservatively, create an address with an immediate and a
1173 // base and a scale.
1174 TargetLowering::AddrMode AM;
1175 AM.BaseOffs = BaseOffs;
1176 AM.BaseGV = BaseGV;
1177 AM.HasBaseReg = HasBaseReg;
1178 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001179
Dan Gohmana2086b32010-05-19 23:43:12 +00001180 // Canonicalize a scale of 1 to a base register if the formula doesn't
1181 // already have a base register.
1182 if (!AM.HasBaseReg && AM.Scale == 1) {
1183 AM.Scale = 0;
1184 AM.HasBaseReg = true;
1185 }
1186
Dan Gohman572645c2010-02-12 10:34:29 +00001187 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001188}
1189
Dan Gohman572645c2010-02-12 10:34:29 +00001190static bool isAlwaysFoldable(const SCEV *S,
1191 int64_t MinOffset, int64_t MaxOffset,
1192 bool HasBaseReg,
1193 LSRUse::KindType Kind, const Type *AccessTy,
1194 const TargetLowering *TLI,
1195 ScalarEvolution &SE) {
1196 // Fast-path: zero is always foldable.
1197 if (S->isZero()) return true;
1198
1199 // Conservatively, create an address with an immediate and a
1200 // base and a scale.
1201 int64_t BaseOffs = ExtractImmediate(S, SE);
1202 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1203
1204 // If there's anything else involved, it's not foldable.
1205 if (!S->isZero()) return false;
1206
1207 // Fast-path: zero is always foldable.
1208 if (BaseOffs == 0 && !BaseGV) return true;
1209
1210 // Conservatively, create an address with an immediate and a
1211 // base and a scale.
1212 TargetLowering::AddrMode AM;
1213 AM.BaseOffs = BaseOffs;
1214 AM.BaseGV = BaseGV;
1215 AM.HasBaseReg = HasBaseReg;
1216 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1217
1218 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001219}
1220
Dan Gohmanb6211712010-06-19 21:21:39 +00001221namespace {
1222
Dan Gohman1e3121c2010-06-19 21:29:59 +00001223/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1224/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1225struct UseMapDenseMapInfo {
1226 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1227 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1228 }
1229
1230 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1231 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1232 }
1233
1234 static unsigned
1235 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1236 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1237 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1238 return Result;
1239 }
1240
1241 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1242 const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1243 return LHS == RHS;
1244 }
1245};
1246
Dan Gohman572645c2010-02-12 10:34:29 +00001247/// FormulaSorter - This class implements an ordering for formulae which sorts
1248/// the by their standalone cost.
1249class FormulaSorter {
1250 /// These two sets are kept empty, so that we compute standalone costs.
1251 DenseSet<const SCEV *> VisitedRegs;
1252 SmallPtrSet<const SCEV *, 16> Regs;
1253 Loop *L;
1254 LSRUse *LU;
1255 ScalarEvolution &SE;
1256 DominatorTree &DT;
1257
1258public:
1259 FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1260 : L(l), LU(&lu), SE(se), DT(dt) {}
1261
1262 bool operator()(const Formula &A, const Formula &B) {
1263 Cost CostA;
1264 CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1265 Regs.clear();
1266 Cost CostB;
1267 CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1268 Regs.clear();
1269 return CostA < CostB;
1270 }
1271};
1272
1273/// LSRInstance - This class holds state for the main loop strength reduction
1274/// logic.
1275class LSRInstance {
1276 IVUsers &IU;
1277 ScalarEvolution &SE;
1278 DominatorTree &DT;
Dan Gohmane5f76872010-04-09 22:07:05 +00001279 LoopInfo &LI;
Dan Gohman572645c2010-02-12 10:34:29 +00001280 const TargetLowering *const TLI;
1281 Loop *const L;
1282 bool Changed;
1283
1284 /// IVIncInsertPos - This is the insert position that the current loop's
1285 /// induction variable increment should be placed. In simple loops, this is
1286 /// the latch block's terminator. But in more complicated cases, this is a
1287 /// position which will dominate all the in-loop post-increment users.
1288 Instruction *IVIncInsertPos;
1289
1290 /// Factors - Interesting factors between use strides.
1291 SmallSetVector<int64_t, 8> Factors;
1292
1293 /// Types - Interesting use types, to facilitate truncation reuse.
1294 SmallSetVector<const Type *, 4> Types;
1295
1296 /// Fixups - The list of operands which are to be replaced.
1297 SmallVector<LSRFixup, 16> Fixups;
1298
1299 /// Uses - The list of interesting uses.
1300 SmallVector<LSRUse, 16> Uses;
1301
1302 /// RegUses - Track which uses use which register candidates.
1303 RegUseTracker RegUses;
1304
1305 void OptimizeShadowIV();
1306 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1307 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
Dan Gohmanc6519f92010-05-20 20:05:31 +00001308 void OptimizeLoopTermCond();
Dan Gohman572645c2010-02-12 10:34:29 +00001309
1310 void CollectInterestingTypesAndFactors();
1311 void CollectFixupsAndInitialFormulae();
1312
1313 LSRFixup &getNewFixup() {
1314 Fixups.push_back(LSRFixup());
1315 return Fixups.back();
1316 }
1317
1318 // Support for sharing of LSRUses between LSRFixups.
Dan Gohman1e3121c2010-06-19 21:29:59 +00001319 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1320 size_t,
1321 UseMapDenseMapInfo> UseMapTy;
Dan Gohman572645c2010-02-12 10:34:29 +00001322 UseMapTy UseMap;
1323
Dan Gohmanea507f52010-05-20 19:44:23 +00001324 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Dan Gohman572645c2010-02-12 10:34:29 +00001325 LSRUse::KindType Kind, const Type *AccessTy);
1326
1327 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1328 LSRUse::KindType Kind,
1329 const Type *AccessTy);
1330
Dan Gohman5ce6d052010-05-20 15:17:54 +00001331 void DeleteUse(LSRUse &LU);
1332
Dan Gohmana2086b32010-05-19 23:43:12 +00001333 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1334
Dan Gohman572645c2010-02-12 10:34:29 +00001335public:
Dan Gohman454d26d2010-02-22 04:11:59 +00001336 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001337 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1338 void CountRegisters(const Formula &F, size_t LUIdx);
1339 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1340
1341 void CollectLoopInvariantFixupsAndFormulae();
1342
1343 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1344 unsigned Depth = 0);
1345 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1346 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1347 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1348 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1349 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1350 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1351 void GenerateCrossUseConstantOffsets();
1352 void GenerateAllReuseFormulae();
1353
1354 void FilterOutUndesirableDedicatedRegisters();
Dan Gohmand079c302010-05-18 22:51:59 +00001355
1356 size_t EstimateSearchSpaceComplexity() const;
Dan Gohman572645c2010-02-12 10:34:29 +00001357 void NarrowSearchSpaceUsingHeuristics();
1358
1359 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1360 Cost &SolutionCost,
1361 SmallVectorImpl<const Formula *> &Workspace,
1362 const Cost &CurCost,
1363 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1364 DenseSet<const SCEV *> &VisitedRegs) const;
1365 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1366
Dan Gohmane5f76872010-04-09 22:07:05 +00001367 BasicBlock::iterator
1368 HoistInsertPosition(BasicBlock::iterator IP,
1369 const SmallVectorImpl<Instruction *> &Inputs) const;
1370 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1371 const LSRFixup &LF,
1372 const LSRUse &LU) const;
Dan Gohmand96eae82010-04-09 02:00:38 +00001373
Dan Gohman572645c2010-02-12 10:34:29 +00001374 Value *Expand(const LSRFixup &LF,
1375 const Formula &F,
Dan Gohman454d26d2010-02-22 04:11:59 +00001376 BasicBlock::iterator IP,
Dan Gohman572645c2010-02-12 10:34:29 +00001377 SCEVExpander &Rewriter,
Dan Gohman454d26d2010-02-22 04:11:59 +00001378 SmallVectorImpl<WeakVH> &DeadInsts) const;
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001379 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1380 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001381 SCEVExpander &Rewriter,
1382 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001383 Pass *P) const;
Dan Gohman572645c2010-02-12 10:34:29 +00001384 void Rewrite(const LSRFixup &LF,
1385 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00001386 SCEVExpander &Rewriter,
1387 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00001388 Pass *P) const;
1389 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1390 Pass *P);
1391
1392 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1393
1394 bool getChanged() const { return Changed; }
1395
1396 void print_factors_and_types(raw_ostream &OS) const;
1397 void print_fixups(raw_ostream &OS) const;
1398 void print_uses(raw_ostream &OS) const;
1399 void print(raw_ostream &OS) const;
1400 void dump() const;
1401};
1402
1403}
1404
1405/// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001406/// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00001407void LSRInstance::OptimizeShadowIV() {
1408 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1409 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1410 return;
1411
1412 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1413 UI != E; /* empty */) {
1414 IVUsers::const_iterator CandidateUI = UI;
1415 ++UI;
1416 Instruction *ShadowUse = CandidateUI->getUser();
1417 const Type *DestTy = NULL;
1418
1419 /* If shadow use is a int->float cast then insert a second IV
1420 to eliminate this cast.
1421
1422 for (unsigned i = 0; i < n; ++i)
1423 foo((double)i);
1424
1425 is transformed into
1426
1427 double d = 0.0;
1428 for (unsigned i = 0; i < n; ++i, ++d)
1429 foo(d);
1430 */
1431 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1432 DestTy = UCast->getDestTy();
1433 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1434 DestTy = SCast->getDestTy();
1435 if (!DestTy) continue;
1436
1437 if (TLI) {
1438 // If target does not support DestTy natively then do not apply
1439 // this transformation.
1440 EVT DVT = TLI->getValueType(DestTy);
1441 if (!TLI->isTypeLegal(DVT)) continue;
1442 }
1443
1444 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1445 if (!PH) continue;
1446 if (PH->getNumIncomingValues() != 2) continue;
1447
1448 const Type *SrcTy = PH->getType();
1449 int Mantissa = DestTy->getFPMantissaWidth();
1450 if (Mantissa == -1) continue;
1451 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1452 continue;
1453
1454 unsigned Entry, Latch;
1455 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1456 Entry = 0;
1457 Latch = 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001458 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001459 Entry = 1;
1460 Latch = 0;
Dan Gohman7979b722010-01-22 00:46:49 +00001461 }
Dan Gohman7979b722010-01-22 00:46:49 +00001462
Dan Gohman572645c2010-02-12 10:34:29 +00001463 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1464 if (!Init) continue;
1465 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
Dan Gohman7979b722010-01-22 00:46:49 +00001466
Dan Gohman572645c2010-02-12 10:34:29 +00001467 BinaryOperator *Incr =
1468 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1469 if (!Incr) continue;
1470 if (Incr->getOpcode() != Instruction::Add
1471 && Incr->getOpcode() != Instruction::Sub)
Dan Gohman7979b722010-01-22 00:46:49 +00001472 continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001473
Dan Gohman572645c2010-02-12 10:34:29 +00001474 /* Initialize new IV, double d = 0.0 in above example. */
1475 ConstantInt *C = NULL;
1476 if (Incr->getOperand(0) == PH)
1477 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1478 else if (Incr->getOperand(1) == PH)
1479 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001480 else
Dan Gohman7979b722010-01-22 00:46:49 +00001481 continue;
1482
Dan Gohman572645c2010-02-12 10:34:29 +00001483 if (!C) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001484
Dan Gohman572645c2010-02-12 10:34:29 +00001485 // Ignore negative constants, as the code below doesn't handle them
1486 // correctly. TODO: Remove this restriction.
1487 if (!C->getValue().isStrictlyPositive()) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001488
Dan Gohman572645c2010-02-12 10:34:29 +00001489 /* Add new PHINode. */
1490 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
Dan Gohman7979b722010-01-22 00:46:49 +00001491
Dan Gohman572645c2010-02-12 10:34:29 +00001492 /* create new increment. '++d' in above example. */
1493 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1494 BinaryOperator *NewIncr =
1495 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1496 Instruction::FAdd : Instruction::FSub,
1497 NewPH, CFP, "IV.S.next.", Incr);
Dan Gohman7979b722010-01-22 00:46:49 +00001498
Dan Gohman572645c2010-02-12 10:34:29 +00001499 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1500 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
Dan Gohman7979b722010-01-22 00:46:49 +00001501
Dan Gohman572645c2010-02-12 10:34:29 +00001502 /* Remove cast operation */
1503 ShadowUse->replaceAllUsesWith(NewPH);
1504 ShadowUse->eraseFromParent();
Dan Gohmanc6519f92010-05-20 20:05:31 +00001505 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00001506 break;
Dan Gohman7979b722010-01-22 00:46:49 +00001507 }
1508}
1509
1510/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1511/// set the IV user and stride information and return true, otherwise return
1512/// false.
Dan Gohmanea507f52010-05-20 19:44:23 +00001513bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
Dan Gohman572645c2010-02-12 10:34:29 +00001514 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1515 if (UI->getUser() == Cond) {
1516 // NOTE: we could handle setcc instructions with multiple uses here, but
1517 // InstCombine does it as well for simple uses, it's not clear that it
1518 // occurs enough in real life to handle.
1519 CondUse = UI;
1520 return true;
1521 }
Dan Gohman7979b722010-01-22 00:46:49 +00001522 return false;
Evan Chengcdf43b12007-10-25 09:11:16 +00001523}
1524
Dan Gohman7979b722010-01-22 00:46:49 +00001525/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1526/// a max computation.
1527///
1528/// This is a narrow solution to a specific, but acute, problem. For loops
1529/// like this:
1530///
1531/// i = 0;
1532/// do {
1533/// p[i] = 0.0;
1534/// } while (++i < n);
1535///
1536/// the trip count isn't just 'n', because 'n' might not be positive. And
1537/// unfortunately this can come up even for loops where the user didn't use
1538/// a C do-while loop. For example, seemingly well-behaved top-test loops
1539/// will commonly be lowered like this:
1540//
1541/// if (n > 0) {
1542/// i = 0;
1543/// do {
1544/// p[i] = 0.0;
1545/// } while (++i < n);
1546/// }
1547///
1548/// and then it's possible for subsequent optimization to obscure the if
1549/// test in such a way that indvars can't find it.
1550///
1551/// When indvars can't find the if test in loops like this, it creates a
1552/// max expression, which allows it to give the loop a canonical
1553/// induction variable:
1554///
1555/// i = 0;
1556/// max = n < 1 ? 1 : n;
1557/// do {
1558/// p[i] = 0.0;
1559/// } while (++i != max);
1560///
1561/// Canonical induction variables are necessary because the loop passes
1562/// are designed around them. The most obvious example of this is the
1563/// LoopInfo analysis, which doesn't remember trip count values. It
1564/// expects to be able to rediscover the trip count each time it is
Dan Gohman572645c2010-02-12 10:34:29 +00001565/// needed, and it does this using a simple analysis that only succeeds if
Dan Gohman7979b722010-01-22 00:46:49 +00001566/// the loop has a canonical induction variable.
1567///
1568/// However, when it comes time to generate code, the maximum operation
1569/// can be quite costly, especially if it's inside of an outer loop.
1570///
1571/// This function solves this problem by detecting this type of loop and
1572/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1573/// the instructions for the maximum computation.
1574///
Dan Gohman572645c2010-02-12 10:34:29 +00001575ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
Dan Gohman7979b722010-01-22 00:46:49 +00001576 // Check that the loop matches the pattern we're looking for.
1577 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1578 Cond->getPredicate() != CmpInst::ICMP_NE)
1579 return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001580
Dan Gohman7979b722010-01-22 00:46:49 +00001581 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1582 if (!Sel || !Sel->hasOneUse()) return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001583
Dan Gohman572645c2010-02-12 10:34:29 +00001584 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
Dan Gohman7979b722010-01-22 00:46:49 +00001585 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1586 return Cond;
Dan Gohmandeff6212010-05-03 22:09:21 +00001587 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
Dan Gohmana10756e2010-01-21 02:09:26 +00001588
Dan Gohman7979b722010-01-22 00:46:49 +00001589 // Add one to the backedge-taken count to get the trip count.
Dan Gohman572645c2010-02-12 10:34:29 +00001590 const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
Dan Gohman1d367982010-04-24 03:13:44 +00001591 if (IterationCount != SE.getSCEV(Sel)) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001592
Dan Gohman1d367982010-04-24 03:13:44 +00001593 // Check for a max calculation that matches the pattern. There's no check
1594 // for ICMP_ULE here because the comparison would be with zero, which
1595 // isn't interesting.
1596 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1597 const SCEVNAryExpr *Max = 0;
1598 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1599 Pred = ICmpInst::ICMP_SLE;
1600 Max = S;
1601 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1602 Pred = ICmpInst::ICMP_SLT;
1603 Max = S;
1604 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1605 Pred = ICmpInst::ICMP_ULT;
1606 Max = U;
1607 } else {
1608 // No match; bail.
Dan Gohman7979b722010-01-22 00:46:49 +00001609 return Cond;
Dan Gohman1d367982010-04-24 03:13:44 +00001610 }
Dan Gohman7979b722010-01-22 00:46:49 +00001611
1612 // To handle a max with more than two operands, this optimization would
1613 // require additional checking and setup.
1614 if (Max->getNumOperands() != 2)
1615 return Cond;
1616
1617 const SCEV *MaxLHS = Max->getOperand(0);
1618 const SCEV *MaxRHS = Max->getOperand(1);
Dan Gohman1d367982010-04-24 03:13:44 +00001619
1620 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1621 // for a comparison with 1. For <= and >=, a comparison with zero.
1622 if (!MaxLHS ||
1623 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1624 return Cond;
1625
Dan Gohman7979b722010-01-22 00:46:49 +00001626 // Check the relevant induction variable for conformance to
1627 // the pattern.
Dan Gohman572645c2010-02-12 10:34:29 +00001628 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001629 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1630 if (!AR || !AR->isAffine() ||
1631 AR->getStart() != One ||
Dan Gohman572645c2010-02-12 10:34:29 +00001632 AR->getStepRecurrence(SE) != One)
Dan Gohman7979b722010-01-22 00:46:49 +00001633 return Cond;
1634
1635 assert(AR->getLoop() == L &&
1636 "Loop condition operand is an addrec in a different loop!");
1637
1638 // Check the right operand of the select, and remember it, as it will
1639 // be used in the new comparison instruction.
1640 Value *NewRHS = 0;
Dan Gohman1d367982010-04-24 03:13:44 +00001641 if (ICmpInst::isTrueWhenEqual(Pred)) {
1642 // Look for n+1, and grab n.
1643 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1644 if (isa<ConstantInt>(BO->getOperand(1)) &&
1645 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1646 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1647 NewRHS = BO->getOperand(0);
1648 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1649 if (isa<ConstantInt>(BO->getOperand(1)) &&
1650 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1651 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1652 NewRHS = BO->getOperand(0);
1653 if (!NewRHS)
1654 return Cond;
1655 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001656 NewRHS = Sel->getOperand(1);
Dan Gohman572645c2010-02-12 10:34:29 +00001657 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001658 NewRHS = Sel->getOperand(2);
Dan Gohmancaf71ab2010-06-22 23:07:13 +00001659 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1660 NewRHS = SU->getValue();
Dan Gohman1d367982010-04-24 03:13:44 +00001661 else
Dan Gohmancaf71ab2010-06-22 23:07:13 +00001662 // Max doesn't match expected pattern.
1663 return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001664
1665 // Determine the new comparison opcode. It may be signed or unsigned,
1666 // and the original comparison may be either equality or inequality.
Dan Gohman7979b722010-01-22 00:46:49 +00001667 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1668 Pred = CmpInst::getInversePredicate(Pred);
1669
1670 // Ok, everything looks ok to change the condition into an SLT or SGE and
1671 // delete the max calculation.
1672 ICmpInst *NewCond =
1673 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1674
1675 // Delete the max calculation instructions.
1676 Cond->replaceAllUsesWith(NewCond);
1677 CondUse->setUser(NewCond);
1678 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1679 Cond->eraseFromParent();
1680 Sel->eraseFromParent();
1681 if (Cmp->use_empty())
1682 Cmp->eraseFromParent();
1683 return NewCond;
Dan Gohmanad7321f2008-09-15 21:22:06 +00001684}
1685
Jim Grosbach56a1f802009-11-17 17:53:56 +00001686/// OptimizeLoopTermCond - Change loop terminating condition to use the
Evan Cheng586f69a2009-11-12 07:35:05 +00001687/// postinc iv when possible.
Dan Gohmanc6519f92010-05-20 20:05:31 +00001688void
Dan Gohman572645c2010-02-12 10:34:29 +00001689LSRInstance::OptimizeLoopTermCond() {
1690 SmallPtrSet<Instruction *, 4> PostIncs;
1691
Evan Cheng586f69a2009-11-12 07:35:05 +00001692 BasicBlock *LatchBlock = L->getLoopLatch();
Evan Cheng076e0852009-11-17 18:10:11 +00001693 SmallVector<BasicBlock*, 8> ExitingBlocks;
1694 L->getExitingBlocks(ExitingBlocks);
Jim Grosbach56a1f802009-11-17 17:53:56 +00001695
Evan Cheng076e0852009-11-17 18:10:11 +00001696 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1697 BasicBlock *ExitingBlock = ExitingBlocks[i];
Evan Cheng586f69a2009-11-12 07:35:05 +00001698
Dan Gohman572645c2010-02-12 10:34:29 +00001699 // Get the terminating condition for the loop if possible. If we
Evan Cheng076e0852009-11-17 18:10:11 +00001700 // can, we want to change it to use a post-incremented version of its
1701 // induction variable, to allow coalescing the live ranges for the IV into
1702 // one register value.
Evan Cheng586f69a2009-11-12 07:35:05 +00001703
Evan Cheng076e0852009-11-17 18:10:11 +00001704 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1705 if (!TermBr)
1706 continue;
1707 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1708 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1709 continue;
Evan Cheng586f69a2009-11-12 07:35:05 +00001710
Evan Cheng076e0852009-11-17 18:10:11 +00001711 // Search IVUsesByStride to find Cond's IVUse if there is one.
1712 IVStrideUse *CondUse = 0;
Evan Cheng076e0852009-11-17 18:10:11 +00001713 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
Dan Gohman572645c2010-02-12 10:34:29 +00001714 if (!FindIVUserForCond(Cond, CondUse))
Evan Cheng076e0852009-11-17 18:10:11 +00001715 continue;
1716
Evan Cheng076e0852009-11-17 18:10:11 +00001717 // If the trip count is computed in terms of a max (due to ScalarEvolution
1718 // being unable to find a sufficient guard, for example), change the loop
1719 // comparison to use SLT or ULT instead of NE.
Dan Gohman572645c2010-02-12 10:34:29 +00001720 // One consequence of doing this now is that it disrupts the count-down
1721 // optimization. That's not always a bad thing though, because in such
1722 // cases it may still be worthwhile to avoid a max.
1723 Cond = OptimizeMax(Cond, CondUse);
Evan Cheng076e0852009-11-17 18:10:11 +00001724
Dan Gohman572645c2010-02-12 10:34:29 +00001725 // If this exiting block dominates the latch block, it may also use
1726 // the post-inc value if it won't be shared with other uses.
1727 // Check for dominance.
1728 if (!DT.dominates(ExitingBlock, LatchBlock))
Dan Gohman7979b722010-01-22 00:46:49 +00001729 continue;
Evan Cheng076e0852009-11-17 18:10:11 +00001730
Dan Gohman572645c2010-02-12 10:34:29 +00001731 // Conservatively avoid trying to use the post-inc value in non-latch
1732 // exits if there may be pre-inc users in intervening blocks.
Dan Gohman590bfe82010-02-14 03:21:49 +00001733 if (LatchBlock != ExitingBlock)
Dan Gohman572645c2010-02-12 10:34:29 +00001734 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1735 // Test if the use is reachable from the exiting block. This dominator
1736 // query is a conservative approximation of reachability.
1737 if (&*UI != CondUse &&
1738 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1739 // Conservatively assume there may be reuse if the quotient of their
1740 // strides could be a legal scale.
Dan Gohmanc0564542010-04-19 21:48:58 +00001741 const SCEV *A = IU.getStride(*CondUse, L);
1742 const SCEV *B = IU.getStride(*UI, L);
Dan Gohman448db1c2010-04-07 22:27:08 +00001743 if (!A || !B) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001744 if (SE.getTypeSizeInBits(A->getType()) !=
1745 SE.getTypeSizeInBits(B->getType())) {
1746 if (SE.getTypeSizeInBits(A->getType()) >
1747 SE.getTypeSizeInBits(B->getType()))
1748 B = SE.getSignExtendExpr(B, A->getType());
1749 else
1750 A = SE.getSignExtendExpr(A, B->getType());
1751 }
1752 if (const SCEVConstant *D =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001753 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
Dan Gohman9f383eb2010-05-20 22:25:20 +00001754 const ConstantInt *C = D->getValue();
Dan Gohman572645c2010-02-12 10:34:29 +00001755 // Stride of one or negative one can have reuse with non-addresses.
Dan Gohman9f383eb2010-05-20 22:25:20 +00001756 if (C->isOne() || C->isAllOnesValue())
Dan Gohman572645c2010-02-12 10:34:29 +00001757 goto decline_post_inc;
1758 // Avoid weird situations.
Dan Gohman9f383eb2010-05-20 22:25:20 +00001759 if (C->getValue().getMinSignedBits() >= 64 ||
1760 C->getValue().isMinSignedValue())
Dan Gohman572645c2010-02-12 10:34:29 +00001761 goto decline_post_inc;
Dan Gohman590bfe82010-02-14 03:21:49 +00001762 // Without TLI, assume that any stride might be valid, and so any
1763 // use might be shared.
1764 if (!TLI)
1765 goto decline_post_inc;
Dan Gohman572645c2010-02-12 10:34:29 +00001766 // Check for possible scaled-address reuse.
1767 const Type *AccessTy = getAccessType(UI->getUser());
1768 TargetLowering::AddrMode AM;
Dan Gohman9f383eb2010-05-20 22:25:20 +00001769 AM.Scale = C->getSExtValue();
Dan Gohman2763dfd2010-02-14 02:45:21 +00001770 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001771 goto decline_post_inc;
1772 AM.Scale = -AM.Scale;
Dan Gohman2763dfd2010-02-14 02:45:21 +00001773 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001774 goto decline_post_inc;
1775 }
1776 }
1777
David Greene63c94632009-12-23 22:58:38 +00001778 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
Dan Gohman572645c2010-02-12 10:34:29 +00001779 << *Cond << '\n');
Evan Cheng076e0852009-11-17 18:10:11 +00001780
1781 // It's possible for the setcc instruction to be anywhere in the loop, and
1782 // possible for it to have multiple users. If it is not immediately before
1783 // the exiting block branch, move it.
Dan Gohman572645c2010-02-12 10:34:29 +00001784 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1785 if (Cond->hasOneUse()) {
Evan Cheng076e0852009-11-17 18:10:11 +00001786 Cond->moveBefore(TermBr);
1787 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001788 // Clone the terminating condition and insert into the loopend.
1789 ICmpInst *OldCond = Cond;
Evan Cheng076e0852009-11-17 18:10:11 +00001790 Cond = cast<ICmpInst>(Cond->clone());
1791 Cond->setName(L->getHeader()->getName() + ".termcond");
1792 ExitingBlock->getInstList().insert(TermBr, Cond);
1793
1794 // Clone the IVUse, as the old use still exists!
Dan Gohmanc0564542010-04-19 21:48:58 +00001795 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
Dan Gohman572645c2010-02-12 10:34:29 +00001796 TermBr->replaceUsesOfWith(OldCond, Cond);
Evan Cheng076e0852009-11-17 18:10:11 +00001797 }
Evan Cheng586f69a2009-11-12 07:35:05 +00001798 }
1799
Evan Cheng076e0852009-11-17 18:10:11 +00001800 // If we get to here, we know that we can transform the setcc instruction to
1801 // use the post-incremented version of the IV, allowing us to coalesce the
1802 // live ranges for the IV correctly.
Dan Gohman448db1c2010-04-07 22:27:08 +00001803 CondUse->transformToPostInc(L);
Evan Cheng076e0852009-11-17 18:10:11 +00001804 Changed = true;
1805
Dan Gohman572645c2010-02-12 10:34:29 +00001806 PostIncs.insert(Cond);
1807 decline_post_inc:;
Dan Gohmana10756e2010-01-21 02:09:26 +00001808 }
Dan Gohman572645c2010-02-12 10:34:29 +00001809
1810 // Determine an insertion point for the loop induction variable increment. It
1811 // must dominate all the post-inc comparisons we just set up, and it must
1812 // dominate the loop latch edge.
1813 IVIncInsertPos = L->getLoopLatch()->getTerminator();
1814 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1815 E = PostIncs.end(); I != E; ++I) {
1816 BasicBlock *BB =
1817 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1818 (*I)->getParent());
1819 if (BB == (*I)->getParent())
1820 IVIncInsertPos = *I;
1821 else if (BB != IVIncInsertPos->getParent())
1822 IVIncInsertPos = BB->getTerminator();
1823 }
Dan Gohmana10756e2010-01-21 02:09:26 +00001824}
1825
Dan Gohman76c315a2010-05-20 20:52:00 +00001826/// reconcileNewOffset - Determine if the given use can accomodate a fixup
1827/// at the given offset and other details. If so, update the use and
1828/// return true.
Dan Gohman572645c2010-02-12 10:34:29 +00001829bool
Dan Gohmanea507f52010-05-20 19:44:23 +00001830LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Dan Gohman572645c2010-02-12 10:34:29 +00001831 LSRUse::KindType Kind, const Type *AccessTy) {
1832 int64_t NewMinOffset = LU.MinOffset;
1833 int64_t NewMaxOffset = LU.MaxOffset;
1834 const Type *NewAccessTy = AccessTy;
Dan Gohman7979b722010-01-22 00:46:49 +00001835
Dan Gohman572645c2010-02-12 10:34:29 +00001836 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1837 // something conservative, however this can pessimize in the case that one of
1838 // the uses will have all its uses outside the loop, for example.
1839 if (LU.Kind != Kind)
Dan Gohman7979b722010-01-22 00:46:49 +00001840 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001841 // Conservatively assume HasBaseReg is true for now.
1842 if (NewOffset < LU.MinOffset) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001843 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00001844 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001845 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001846 NewMinOffset = NewOffset;
1847 } else if (NewOffset > LU.MaxOffset) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001848 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00001849 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001850 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001851 NewMaxOffset = NewOffset;
Dan Gohmana10756e2010-01-21 02:09:26 +00001852 }
Dan Gohman572645c2010-02-12 10:34:29 +00001853 // Check for a mismatched access type, and fall back conservatively as needed.
Dan Gohman74e5ef02010-06-19 21:30:18 +00001854 // TODO: Be less conservative when the type is similar and can use the same
1855 // addressing modes.
Dan Gohman572645c2010-02-12 10:34:29 +00001856 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1857 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
Dan Gohmana10756e2010-01-21 02:09:26 +00001858
Dan Gohman572645c2010-02-12 10:34:29 +00001859 // Update the use.
1860 LU.MinOffset = NewMinOffset;
1861 LU.MaxOffset = NewMaxOffset;
1862 LU.AccessTy = NewAccessTy;
1863 if (NewOffset != LU.Offsets.back())
1864 LU.Offsets.push_back(NewOffset);
Dan Gohman8b0ade32010-01-21 22:42:49 +00001865 return true;
1866}
1867
Dan Gohman572645c2010-02-12 10:34:29 +00001868/// getUse - Return an LSRUse index and an offset value for a fixup which
1869/// needs the given expression, with the given kind and optional access type.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001870/// Either reuse an existing use or create a new one, as needed.
Dan Gohman572645c2010-02-12 10:34:29 +00001871std::pair<size_t, int64_t>
1872LSRInstance::getUse(const SCEV *&Expr,
1873 LSRUse::KindType Kind, const Type *AccessTy) {
1874 const SCEV *Copy = Expr;
1875 int64_t Offset = ExtractImmediate(Expr, SE);
Evan Cheng586f69a2009-11-12 07:35:05 +00001876
Dan Gohman572645c2010-02-12 10:34:29 +00001877 // Basic uses can't accept any offset, for example.
Dan Gohman454d26d2010-02-22 04:11:59 +00001878 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
Dan Gohman572645c2010-02-12 10:34:29 +00001879 Expr = Copy;
1880 Offset = 0;
1881 }
1882
1883 std::pair<UseMapTy::iterator, bool> P =
Dan Gohman1e3121c2010-06-19 21:29:59 +00001884 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
Dan Gohman572645c2010-02-12 10:34:29 +00001885 if (!P.second) {
1886 // A use already existed with this base.
1887 size_t LUIdx = P.first->second;
1888 LSRUse &LU = Uses[LUIdx];
Dan Gohmana2086b32010-05-19 23:43:12 +00001889 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001890 // Reuse this use.
1891 return std::make_pair(LUIdx, Offset);
1892 }
1893
1894 // Create a new use.
1895 size_t LUIdx = Uses.size();
1896 P.first->second = LUIdx;
1897 Uses.push_back(LSRUse(Kind, AccessTy));
1898 LSRUse &LU = Uses[LUIdx];
1899
1900 // We don't need to track redundant offsets, but we don't need to go out
1901 // of our way here to avoid them.
1902 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1903 LU.Offsets.push_back(Offset);
1904
1905 LU.MinOffset = Offset;
1906 LU.MaxOffset = Offset;
1907 return std::make_pair(LUIdx, Offset);
1908}
1909
Dan Gohman5ce6d052010-05-20 15:17:54 +00001910/// DeleteUse - Delete the given use from the Uses list.
1911void LSRInstance::DeleteUse(LSRUse &LU) {
1912 if (&LU != &Uses.back())
1913 std::swap(LU, Uses.back());
1914 Uses.pop_back();
1915}
1916
Dan Gohmana2086b32010-05-19 23:43:12 +00001917/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1918/// a formula that has the same registers as the given formula.
1919LSRUse *
1920LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1921 const LSRUse &OrigLU) {
1922 // Search all uses for the formula. This could be more clever. Ignore
1923 // ICmpZero uses because they may contain formulae generated by
1924 // GenerateICmpZeroScales, in which case adding fixup offsets may
1925 // be invalid.
1926 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1927 LSRUse &LU = Uses[LUIdx];
1928 if (&LU != &OrigLU &&
1929 LU.Kind != LSRUse::ICmpZero &&
1930 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1931 LU.HasFormulaWithSameRegs(OrigF)) {
Dan Gohman402d4352010-05-20 20:33:18 +00001932 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1933 E = LU.Formulae.end(); I != E; ++I) {
1934 const Formula &F = *I;
Dan Gohmana2086b32010-05-19 23:43:12 +00001935 if (F.BaseRegs == OrigF.BaseRegs &&
1936 F.ScaledReg == OrigF.ScaledReg &&
1937 F.AM.BaseGV == OrigF.AM.BaseGV &&
1938 F.AM.Scale == OrigF.AM.Scale &&
1939 LU.Kind) {
1940 if (F.AM.BaseOffs == 0)
1941 return &LU;
1942 break;
1943 }
1944 }
1945 }
1946 }
1947
1948 return 0;
1949}
1950
Dan Gohman572645c2010-02-12 10:34:29 +00001951void LSRInstance::CollectInterestingTypesAndFactors() {
1952 SmallSetVector<const SCEV *, 4> Strides;
1953
Dan Gohman1b7bf182010-02-19 00:05:23 +00001954 // Collect interesting types and strides.
Dan Gohman448db1c2010-04-07 22:27:08 +00001955 SmallVector<const SCEV *, 4> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00001956 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
Dan Gohmanc0564542010-04-19 21:48:58 +00001957 const SCEV *Expr = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001958
1959 // Collect interesting types.
Dan Gohman448db1c2010-04-07 22:27:08 +00001960 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
Dan Gohman572645c2010-02-12 10:34:29 +00001961
Dan Gohman448db1c2010-04-07 22:27:08 +00001962 // Add strides for mentioned loops.
1963 Worklist.push_back(Expr);
1964 do {
1965 const SCEV *S = Worklist.pop_back_val();
1966 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1967 Strides.insert(AR->getStepRecurrence(SE));
1968 Worklist.push_back(AR->getStart());
1969 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001970 Worklist.append(Add->op_begin(), Add->op_end());
Dan Gohman448db1c2010-04-07 22:27:08 +00001971 }
1972 } while (!Worklist.empty());
Dan Gohman1b7bf182010-02-19 00:05:23 +00001973 }
1974
1975 // Compute interesting factors from the set of interesting strides.
1976 for (SmallSetVector<const SCEV *, 4>::const_iterator
1977 I = Strides.begin(), E = Strides.end(); I != E; ++I)
Dan Gohman572645c2010-02-12 10:34:29 +00001978 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
Dan Gohman1b7bf182010-02-19 00:05:23 +00001979 next(I); NewStrideIter != E; ++NewStrideIter) {
1980 const SCEV *OldStride = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00001981 const SCEV *NewStride = *NewStrideIter;
Dan Gohman572645c2010-02-12 10:34:29 +00001982
1983 if (SE.getTypeSizeInBits(OldStride->getType()) !=
1984 SE.getTypeSizeInBits(NewStride->getType())) {
1985 if (SE.getTypeSizeInBits(OldStride->getType()) >
1986 SE.getTypeSizeInBits(NewStride->getType()))
1987 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1988 else
1989 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1990 }
1991 if (const SCEVConstant *Factor =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001992 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1993 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001994 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1995 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1996 } else if (const SCEVConstant *Factor =
Dan Gohman454d26d2010-02-22 04:11:59 +00001997 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1998 NewStride,
Dan Gohmanf09b7122010-02-19 19:35:48 +00001999 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00002000 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2001 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2002 }
2003 }
Dan Gohman572645c2010-02-12 10:34:29 +00002004
2005 // If all uses use the same type, don't bother looking for truncation-based
2006 // reuse.
2007 if (Types.size() == 1)
2008 Types.clear();
2009
2010 DEBUG(print_factors_and_types(dbgs()));
2011}
2012
2013void LSRInstance::CollectFixupsAndInitialFormulae() {
2014 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2015 // Record the uses.
2016 LSRFixup &LF = getNewFixup();
2017 LF.UserInst = UI->getUser();
2018 LF.OperandValToReplace = UI->getOperandValToReplace();
Dan Gohman448db1c2010-04-07 22:27:08 +00002019 LF.PostIncLoops = UI->getPostIncLoops();
Dan Gohman572645c2010-02-12 10:34:29 +00002020
2021 LSRUse::KindType Kind = LSRUse::Basic;
2022 const Type *AccessTy = 0;
2023 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2024 Kind = LSRUse::Address;
2025 AccessTy = getAccessType(LF.UserInst);
2026 }
2027
Dan Gohmanc0564542010-04-19 21:48:58 +00002028 const SCEV *S = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00002029
2030 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2031 // (N - i == 0), and this allows (N - i) to be the expression that we work
2032 // with rather than just N or i, so we can consider the register
2033 // requirements for both N and i at the same time. Limiting this code to
2034 // equality icmps is not a problem because all interesting loops use
2035 // equality icmps, thanks to IndVarSimplify.
2036 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2037 if (CI->isEquality()) {
2038 // Swap the operands if needed to put the OperandValToReplace on the
2039 // left, for consistency.
2040 Value *NV = CI->getOperand(1);
2041 if (NV == LF.OperandValToReplace) {
2042 CI->setOperand(1, CI->getOperand(0));
2043 CI->setOperand(0, NV);
Dan Gohmanf182b232010-05-20 19:26:52 +00002044 NV = CI->getOperand(1);
Dan Gohman9da1bf42010-05-20 19:16:03 +00002045 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002046 }
2047
2048 // x == y --> x - y == 0
2049 const SCEV *N = SE.getSCEV(NV);
2050 if (N->isLoopInvariant(L)) {
2051 Kind = LSRUse::ICmpZero;
2052 S = SE.getMinusSCEV(N, S);
2053 }
2054
2055 // -1 and the negations of all interesting strides (except the negation
2056 // of -1) are now also interesting.
2057 for (size_t i = 0, e = Factors.size(); i != e; ++i)
2058 if (Factors[i] != -1)
2059 Factors.insert(-(uint64_t)Factors[i]);
2060 Factors.insert(-1);
2061 }
2062
2063 // Set up the initial formula for this use.
2064 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2065 LF.LUIdx = P.first;
2066 LF.Offset = P.second;
2067 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002068 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00002069
2070 // If this is the first use of this LSRUse, give it a formula.
2071 if (LU.Formulae.empty()) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002072 InsertInitialFormula(S, LU, LF.LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00002073 CountRegisters(LU.Formulae.back(), LF.LUIdx);
2074 }
2075 }
2076
2077 DEBUG(print_fixups(dbgs()));
2078}
2079
Dan Gohman76c315a2010-05-20 20:52:00 +00002080/// InsertInitialFormula - Insert a formula for the given expression into
2081/// the given use, separating out loop-variant portions from loop-invariant
2082/// and loop-computable portions.
Dan Gohman572645c2010-02-12 10:34:29 +00002083void
Dan Gohman454d26d2010-02-22 04:11:59 +00002084LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Dan Gohman572645c2010-02-12 10:34:29 +00002085 Formula F;
2086 F.InitialMatch(S, L, SE, DT);
2087 bool Inserted = InsertFormula(LU, LUIdx, F);
2088 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2089}
2090
Dan Gohman76c315a2010-05-20 20:52:00 +00002091/// InsertSupplementalFormula - Insert a simple single-register formula for
2092/// the given expression into the given use.
Dan Gohman572645c2010-02-12 10:34:29 +00002093void
2094LSRInstance::InsertSupplementalFormula(const SCEV *S,
2095 LSRUse &LU, size_t LUIdx) {
2096 Formula F;
2097 F.BaseRegs.push_back(S);
2098 F.AM.HasBaseReg = true;
2099 bool Inserted = InsertFormula(LU, LUIdx, F);
2100 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2101}
2102
2103/// CountRegisters - Note which registers are used by the given formula,
2104/// updating RegUses.
2105void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2106 if (F.ScaledReg)
2107 RegUses.CountRegister(F.ScaledReg, LUIdx);
2108 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2109 E = F.BaseRegs.end(); I != E; ++I)
2110 RegUses.CountRegister(*I, LUIdx);
2111}
2112
2113/// InsertFormula - If the given formula has not yet been inserted, add it to
2114/// the list, and return true. Return false otherwise.
2115bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002116 if (!LU.InsertFormula(F))
Dan Gohman572645c2010-02-12 10:34:29 +00002117 return false;
2118
2119 CountRegisters(F, LUIdx);
2120 return true;
2121}
2122
2123/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2124/// loop-invariant values which we're tracking. These other uses will pin these
2125/// values in registers, making them less profitable for elimination.
2126/// TODO: This currently misses non-constant addrec step registers.
2127/// TODO: Should this give more weight to users inside the loop?
2128void
2129LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2130 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2131 SmallPtrSet<const SCEV *, 8> Inserted;
2132
2133 while (!Worklist.empty()) {
2134 const SCEV *S = Worklist.pop_back_val();
2135
2136 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
Dan Gohman403a8cd2010-06-21 19:47:52 +00002137 Worklist.append(N->op_begin(), N->op_end());
Dan Gohman572645c2010-02-12 10:34:29 +00002138 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2139 Worklist.push_back(C->getOperand());
2140 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2141 Worklist.push_back(D->getLHS());
2142 Worklist.push_back(D->getRHS());
2143 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2144 if (!Inserted.insert(U)) continue;
2145 const Value *V = U->getValue();
Dan Gohmana15ec5d2010-06-04 23:16:05 +00002146 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2147 // Look for instructions defined outside the loop.
Dan Gohman572645c2010-02-12 10:34:29 +00002148 if (L->contains(Inst)) continue;
Dan Gohmana15ec5d2010-06-04 23:16:05 +00002149 } else if (isa<UndefValue>(V))
2150 // Undef doesn't have a live range, so it doesn't matter.
2151 continue;
Gabor Greif60ad7812010-03-25 23:06:16 +00002152 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
Dan Gohman572645c2010-02-12 10:34:29 +00002153 UI != UE; ++UI) {
2154 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2155 // Ignore non-instructions.
2156 if (!UserInst)
Dan Gohman7979b722010-01-22 00:46:49 +00002157 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002158 // Ignore instructions in other functions (as can happen with
2159 // Constants).
2160 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
Dan Gohman7979b722010-01-22 00:46:49 +00002161 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002162 // Ignore instructions not dominated by the loop.
2163 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2164 UserInst->getParent() :
2165 cast<PHINode>(UserInst)->getIncomingBlock(
2166 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2167 if (!DT.dominates(L->getHeader(), UseBB))
2168 continue;
2169 // Ignore uses which are part of other SCEV expressions, to avoid
2170 // analyzing them multiple times.
Dan Gohman4a2a6832010-04-09 19:12:34 +00002171 if (SE.isSCEVable(UserInst->getType())) {
2172 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2173 // If the user is a no-op, look through to its uses.
2174 if (!isa<SCEVUnknown>(UserS))
2175 continue;
2176 if (UserS == U) {
2177 Worklist.push_back(
2178 SE.getUnknown(const_cast<Instruction *>(UserInst)));
2179 continue;
2180 }
2181 }
Dan Gohman572645c2010-02-12 10:34:29 +00002182 // Ignore icmp instructions which are already being analyzed.
2183 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2184 unsigned OtherIdx = !UI.getOperandNo();
2185 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2186 if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
2187 continue;
2188 }
2189
2190 LSRFixup &LF = getNewFixup();
2191 LF.UserInst = const_cast<Instruction *>(UserInst);
2192 LF.OperandValToReplace = UI.getUse();
2193 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2194 LF.LUIdx = P.first;
2195 LF.Offset = P.second;
2196 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002197 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00002198 InsertSupplementalFormula(U, LU, LF.LUIdx);
2199 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2200 break;
2201 }
2202 }
2203 }
2204}
2205
2206/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2207/// separate registers. If C is non-null, multiply each subexpression by C.
2208static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2209 SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman3e3f15b2010-06-25 22:32:18 +00002210 SmallVectorImpl<const SCEV *> &UninterestingOps,
2211 const Loop *L,
Dan Gohman572645c2010-02-12 10:34:29 +00002212 ScalarEvolution &SE) {
2213 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2214 // Break out add operands.
2215 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2216 I != E; ++I)
Dan Gohman3e3f15b2010-06-25 22:32:18 +00002217 CollectSubexprs(*I, C, Ops, UninterestingOps, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002218 return;
2219 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2220 // Split a non-zero base out of an addrec.
2221 if (!AR->getStart()->isZero()) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002222 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +00002223 AR->getStepRecurrence(SE),
Dan Gohman3e3f15b2010-06-25 22:32:18 +00002224 AR->getLoop()),
2225 C, Ops, UninterestingOps, L, SE);
2226 CollectSubexprs(AR->getStart(), C, Ops, UninterestingOps, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002227 return;
2228 }
2229 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2230 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2231 if (Mul->getNumOperands() == 2)
2232 if (const SCEVConstant *Op0 =
2233 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2234 CollectSubexprs(Mul->getOperand(1),
2235 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
Dan Gohman3e3f15b2010-06-25 22:32:18 +00002236 Ops, UninterestingOps, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002237 return;
2238 }
2239 }
2240
Dan Gohman3e3f15b2010-06-25 22:32:18 +00002241 // Otherwise use the value itself. Loop-variant "unknown" values are
2242 // uninteresting; we won't be able to do anything meaningful with them.
2243 if (!C && isa<SCEVUnknown>(S) && !S->isLoopInvariant(L))
2244 UninterestingOps.push_back(S);
2245 else
2246 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
Dan Gohman572645c2010-02-12 10:34:29 +00002247}
2248
2249/// GenerateReassociations - Split out subexpressions from adds and the bases of
2250/// addrecs.
2251void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2252 Formula Base,
2253 unsigned Depth) {
2254 // Arbitrarily cap recursion to protect compile time.
2255 if (Depth >= 3) return;
2256
2257 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2258 const SCEV *BaseReg = Base.BaseRegs[i];
2259
Dan Gohman3e3f15b2010-06-25 22:32:18 +00002260 SmallVector<const SCEV *, 8> AddOps, UninterestingAddOps;
2261 CollectSubexprs(BaseReg, 0, AddOps, UninterestingAddOps, L, SE);
2262
2263 // Add any uninteresting values as one register, as we won't be able to
2264 // form any interesting reassociation opportunities with them. They'll
2265 // just have to be added inside the loop no matter what we do.
2266 if (!UninterestingAddOps.empty())
2267 AddOps.push_back(SE.getAddExpr(UninterestingAddOps));
2268
Dan Gohman572645c2010-02-12 10:34:29 +00002269 if (AddOps.size() == 1) continue;
2270
2271 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2272 JE = AddOps.end(); J != JE; ++J) {
2273 // Don't pull a constant into a register if the constant could be folded
2274 // into an immediate field.
2275 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2276 Base.getNumRegs() > 1,
2277 LU.Kind, LU.AccessTy, TLI, SE))
2278 continue;
2279
2280 // Collect all operands except *J.
Dan Gohman403a8cd2010-06-21 19:47:52 +00002281 SmallVector<const SCEV *, 8> InnerAddOps
2282 ( ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
2283 InnerAddOps.append
2284 (next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
Dan Gohman572645c2010-02-12 10:34:29 +00002285
2286 // Don't leave just a constant behind in a register if the constant could
2287 // be folded into an immediate field.
2288 if (InnerAddOps.size() == 1 &&
2289 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2290 Base.getNumRegs() > 1,
2291 LU.Kind, LU.AccessTy, TLI, SE))
2292 continue;
2293
Dan Gohmanfafb8902010-04-23 01:55:05 +00002294 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2295 if (InnerSum->isZero())
2296 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002297 Formula F = Base;
Dan Gohmanfafb8902010-04-23 01:55:05 +00002298 F.BaseRegs[i] = InnerSum;
Dan Gohman572645c2010-02-12 10:34:29 +00002299 F.BaseRegs.push_back(*J);
2300 if (InsertFormula(LU, LUIdx, F))
2301 // If that formula hadn't been seen before, recurse to find more like
2302 // it.
2303 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2304 }
2305 }
2306}
2307
2308/// GenerateCombinations - Generate a formula consisting of all of the
2309/// loop-dominating registers added into a single register.
2310void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Dan Gohman441a3892010-02-14 18:51:39 +00002311 Formula Base) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002312 // This method is only interesting on a plurality of registers.
Dan Gohman572645c2010-02-12 10:34:29 +00002313 if (Base.BaseRegs.size() <= 1) return;
2314
2315 Formula F = Base;
2316 F.BaseRegs.clear();
2317 SmallVector<const SCEV *, 4> Ops;
2318 for (SmallVectorImpl<const SCEV *>::const_iterator
2319 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2320 const SCEV *BaseReg = *I;
2321 if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2322 !BaseReg->hasComputableLoopEvolution(L))
2323 Ops.push_back(BaseReg);
2324 else
2325 F.BaseRegs.push_back(BaseReg);
2326 }
2327 if (Ops.size() > 1) {
Dan Gohmance947362010-02-14 18:50:49 +00002328 const SCEV *Sum = SE.getAddExpr(Ops);
2329 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2330 // opportunity to fold something. For now, just ignore such cases
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002331 // rather than proceed with zero in a register.
Dan Gohmance947362010-02-14 18:50:49 +00002332 if (!Sum->isZero()) {
2333 F.BaseRegs.push_back(Sum);
2334 (void)InsertFormula(LU, LUIdx, F);
2335 }
Dan Gohman572645c2010-02-12 10:34:29 +00002336 }
2337}
2338
2339/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2340void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2341 Formula Base) {
2342 // We can't add a symbolic offset if the address already contains one.
2343 if (Base.AM.BaseGV) return;
2344
2345 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2346 const SCEV *G = Base.BaseRegs[i];
2347 GlobalValue *GV = ExtractSymbol(G, SE);
2348 if (G->isZero() || !GV)
2349 continue;
2350 Formula F = Base;
2351 F.AM.BaseGV = GV;
2352 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2353 LU.Kind, LU.AccessTy, TLI))
2354 continue;
2355 F.BaseRegs[i] = G;
2356 (void)InsertFormula(LU, LUIdx, F);
2357 }
2358}
2359
2360/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2361void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2362 Formula Base) {
2363 // TODO: For now, just add the min and max offset, because it usually isn't
2364 // worthwhile looking at everything inbetween.
Dan Gohmanc88c1a42010-07-15 15:14:45 +00002365 SmallVector<int64_t, 2> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00002366 Worklist.push_back(LU.MinOffset);
2367 if (LU.MaxOffset != LU.MinOffset)
2368 Worklist.push_back(LU.MaxOffset);
2369
2370 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2371 const SCEV *G = Base.BaseRegs[i];
2372
2373 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2374 E = Worklist.end(); I != E; ++I) {
2375 Formula F = Base;
2376 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2377 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2378 LU.Kind, LU.AccessTy, TLI)) {
Dan Gohmanc88c1a42010-07-15 15:14:45 +00002379 // Add the offset to the base register.
2380 const SCEV *NewG = SE.getAddExpr(G, SE.getConstant(G->getType(), *I));
2381 // If it cancelled out, drop the base register, otherwise update it.
2382 if (NewG->isZero()) {
2383 std::swap(F.BaseRegs[i], F.BaseRegs.back());
2384 F.BaseRegs.pop_back();
2385 } else
2386 F.BaseRegs[i] = NewG;
Dan Gohman572645c2010-02-12 10:34:29 +00002387
2388 (void)InsertFormula(LU, LUIdx, F);
2389 }
2390 }
2391
2392 int64_t Imm = ExtractImmediate(G, SE);
2393 if (G->isZero() || Imm == 0)
2394 continue;
2395 Formula F = Base;
2396 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2397 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2398 LU.Kind, LU.AccessTy, TLI))
2399 continue;
2400 F.BaseRegs[i] = G;
2401 (void)InsertFormula(LU, LUIdx, F);
2402 }
2403}
2404
2405/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2406/// the comparison. For example, x == y -> x*c == y*c.
2407void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2408 Formula Base) {
2409 if (LU.Kind != LSRUse::ICmpZero) return;
2410
2411 // Determine the integer type for the base formula.
2412 const Type *IntTy = Base.getType();
2413 if (!IntTy) return;
2414 if (SE.getTypeSizeInBits(IntTy) > 64) return;
2415
2416 // Don't do this if there is more than one offset.
2417 if (LU.MinOffset != LU.MaxOffset) return;
2418
2419 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2420
2421 // Check each interesting stride.
2422 for (SmallSetVector<int64_t, 8>::const_iterator
2423 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2424 int64_t Factor = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00002425
2426 // Check that the multiplication doesn't overflow.
Dan Gohman2ea09e02010-06-24 16:57:52 +00002427 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
Dan Gohman968cb932010-02-17 00:41:53 +00002428 continue;
Dan Gohman2ea09e02010-06-24 16:57:52 +00002429 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2430 if (NewBaseOffs / Factor != Base.AM.BaseOffs)
Dan Gohman572645c2010-02-12 10:34:29 +00002431 continue;
2432
2433 // Check that multiplying with the use offset doesn't overflow.
2434 int64_t Offset = LU.MinOffset;
Dan Gohman968cb932010-02-17 00:41:53 +00002435 if (Offset == INT64_MIN && Factor == -1)
2436 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002437 Offset = (uint64_t)Offset * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002438 if (Offset / Factor != LU.MinOffset)
Dan Gohman572645c2010-02-12 10:34:29 +00002439 continue;
2440
Dan Gohman2ea09e02010-06-24 16:57:52 +00002441 Formula F = Base;
2442 F.AM.BaseOffs = NewBaseOffs;
2443
Dan Gohman572645c2010-02-12 10:34:29 +00002444 // Check that this scale is legal.
2445 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2446 continue;
2447
2448 // Compensate for the use having MinOffset built into it.
2449 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2450
Dan Gohmandeff6212010-05-03 22:09:21 +00002451 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002452
2453 // Check that multiplying with each base register doesn't overflow.
2454 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2455 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002456 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
Dan Gohman572645c2010-02-12 10:34:29 +00002457 goto next;
2458 }
2459
2460 // Check that multiplying with the scaled register doesn't overflow.
2461 if (F.ScaledReg) {
2462 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002463 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
Dan Gohman572645c2010-02-12 10:34:29 +00002464 continue;
2465 }
2466
2467 // If we make it here and it's legal, add it.
2468 (void)InsertFormula(LU, LUIdx, F);
2469 next:;
2470 }
2471}
2472
2473/// GenerateScales - Generate stride factor reuse formulae by making use of
2474/// scaled-offset address modes, for example.
Dan Gohmanea507f52010-05-20 19:44:23 +00002475void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00002476 // Determine the integer type for the base formula.
2477 const Type *IntTy = Base.getType();
2478 if (!IntTy) return;
2479
2480 // If this Formula already has a scaled register, we can't add another one.
2481 if (Base.AM.Scale != 0) return;
2482
2483 // Check each interesting stride.
2484 for (SmallSetVector<int64_t, 8>::const_iterator
2485 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2486 int64_t Factor = *I;
2487
2488 Base.AM.Scale = Factor;
2489 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2490 // Check whether this scale is going to be legal.
2491 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2492 LU.Kind, LU.AccessTy, TLI)) {
2493 // As a special-case, handle special out-of-loop Basic users specially.
2494 // TODO: Reconsider this special case.
2495 if (LU.Kind == LSRUse::Basic &&
2496 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2497 LSRUse::Special, LU.AccessTy, TLI) &&
2498 LU.AllFixupsOutsideLoop)
2499 LU.Kind = LSRUse::Special;
2500 else
2501 continue;
2502 }
2503 // For an ICmpZero, negating a solitary base register won't lead to
2504 // new solutions.
2505 if (LU.Kind == LSRUse::ICmpZero &&
2506 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2507 continue;
2508 // For each addrec base reg, apply the scale, if possible.
2509 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2510 if (const SCEVAddRecExpr *AR =
2511 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002512 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002513 if (FactorS->isZero())
2514 continue;
2515 // Divide out the factor, ignoring high bits, since we'll be
2516 // scaling the value back up in the end.
Dan Gohmanf09b7122010-02-19 19:35:48 +00002517 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
Dan Gohman572645c2010-02-12 10:34:29 +00002518 // TODO: This could be optimized to avoid all the copying.
2519 Formula F = Base;
2520 F.ScaledReg = Quotient;
Dan Gohman5ce6d052010-05-20 15:17:54 +00002521 F.DeleteBaseReg(F.BaseRegs[i]);
Dan Gohman572645c2010-02-12 10:34:29 +00002522 (void)InsertFormula(LU, LUIdx, F);
2523 }
2524 }
2525 }
2526}
2527
2528/// GenerateTruncates - Generate reuse formulae from different IV types.
Dan Gohmanea507f52010-05-20 19:44:23 +00002529void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00002530 // This requires TargetLowering to tell us which truncates are free.
2531 if (!TLI) return;
2532
2533 // Don't bother truncating symbolic values.
2534 if (Base.AM.BaseGV) return;
2535
2536 // Determine the integer type for the base formula.
2537 const Type *DstTy = Base.getType();
2538 if (!DstTy) return;
2539 DstTy = SE.getEffectiveSCEVType(DstTy);
2540
2541 for (SmallSetVector<const Type *, 4>::const_iterator
2542 I = Types.begin(), E = Types.end(); I != E; ++I) {
2543 const Type *SrcTy = *I;
2544 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2545 Formula F = Base;
2546
2547 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2548 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2549 JE = F.BaseRegs.end(); J != JE; ++J)
2550 *J = SE.getAnyExtendExpr(*J, SrcTy);
2551
2552 // TODO: This assumes we've done basic processing on all uses and
2553 // have an idea what the register usage is.
2554 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2555 continue;
2556
2557 (void)InsertFormula(LU, LUIdx, F);
2558 }
2559 }
2560}
2561
2562namespace {
2563
Dan Gohman6020d852010-02-14 18:51:20 +00002564/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
Dan Gohman572645c2010-02-12 10:34:29 +00002565/// defer modifications so that the search phase doesn't have to worry about
2566/// the data structures moving underneath it.
2567struct WorkItem {
2568 size_t LUIdx;
2569 int64_t Imm;
2570 const SCEV *OrigReg;
2571
2572 WorkItem(size_t LI, int64_t I, const SCEV *R)
2573 : LUIdx(LI), Imm(I), OrigReg(R) {}
2574
2575 void print(raw_ostream &OS) const;
2576 void dump() const;
2577};
2578
2579}
2580
2581void WorkItem::print(raw_ostream &OS) const {
2582 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2583 << " , add offset " << Imm;
2584}
2585
2586void WorkItem::dump() const {
2587 print(errs()); errs() << '\n';
2588}
2589
2590/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2591/// distance apart and try to form reuse opportunities between them.
2592void LSRInstance::GenerateCrossUseConstantOffsets() {
2593 // Group the registers by their value without any added constant offset.
2594 typedef std::map<int64_t, const SCEV *> ImmMapTy;
2595 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2596 RegMapTy Map;
2597 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2598 SmallVector<const SCEV *, 8> Sequence;
2599 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2600 I != E; ++I) {
2601 const SCEV *Reg = *I;
2602 int64_t Imm = ExtractImmediate(Reg, SE);
2603 std::pair<RegMapTy::iterator, bool> Pair =
2604 Map.insert(std::make_pair(Reg, ImmMapTy()));
2605 if (Pair.second)
2606 Sequence.push_back(Reg);
2607 Pair.first->second.insert(std::make_pair(Imm, *I));
2608 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2609 }
2610
2611 // Now examine each set of registers with the same base value. Build up
2612 // a list of work to do and do the work in a separate step so that we're
2613 // not adding formulae and register counts while we're searching.
2614 SmallVector<WorkItem, 32> WorkItems;
2615 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2616 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2617 E = Sequence.end(); I != E; ++I) {
2618 const SCEV *Reg = *I;
2619 const ImmMapTy &Imms = Map.find(Reg)->second;
2620
Dan Gohmancd045c02010-02-12 19:20:37 +00002621 // It's not worthwhile looking for reuse if there's only one offset.
2622 if (Imms.size() == 1)
2623 continue;
2624
Dan Gohman572645c2010-02-12 10:34:29 +00002625 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2626 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2627 J != JE; ++J)
2628 dbgs() << ' ' << J->first;
2629 dbgs() << '\n');
2630
2631 // Examine each offset.
2632 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2633 J != JE; ++J) {
2634 const SCEV *OrigReg = J->second;
2635
2636 int64_t JImm = J->first;
2637 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2638
2639 if (!isa<SCEVConstant>(OrigReg) &&
2640 UsedByIndicesMap[Reg].count() == 1) {
2641 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2642 continue;
2643 }
2644
2645 // Conservatively examine offsets between this orig reg a few selected
2646 // other orig regs.
2647 ImmMapTy::const_iterator OtherImms[] = {
2648 Imms.begin(), prior(Imms.end()),
2649 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2650 };
2651 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2652 ImmMapTy::const_iterator M = OtherImms[i];
Dan Gohmancd045c02010-02-12 19:20:37 +00002653 if (M == J || M == JE) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002654
2655 // Compute the difference between the two.
2656 int64_t Imm = (uint64_t)JImm - M->first;
2657 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2658 LUIdx = UsedByIndices.find_next(LUIdx))
2659 // Make a memo of this use, offset, and register tuple.
2660 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2661 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
Evan Cheng586f69a2009-11-12 07:35:05 +00002662 }
2663 }
2664 }
2665
Dan Gohman572645c2010-02-12 10:34:29 +00002666 Map.clear();
2667 Sequence.clear();
2668 UsedByIndicesMap.clear();
2669 UniqueItems.clear();
2670
2671 // Now iterate through the worklist and add new formulae.
2672 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2673 E = WorkItems.end(); I != E; ++I) {
2674 const WorkItem &WI = *I;
2675 size_t LUIdx = WI.LUIdx;
2676 LSRUse &LU = Uses[LUIdx];
2677 int64_t Imm = WI.Imm;
2678 const SCEV *OrigReg = WI.OrigReg;
2679
2680 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2681 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2682 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2683
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002684 // TODO: Use a more targeted data structure.
Dan Gohman572645c2010-02-12 10:34:29 +00002685 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
Dan Gohman9f383eb2010-05-20 22:25:20 +00002686 const Formula &F = LU.Formulae[L];
Dan Gohman572645c2010-02-12 10:34:29 +00002687 // Use the immediate in the scaled register.
2688 if (F.ScaledReg == OrigReg) {
2689 int64_t Offs = (uint64_t)F.AM.BaseOffs +
2690 Imm * (uint64_t)F.AM.Scale;
2691 // Don't create 50 + reg(-50).
2692 if (F.referencesReg(SE.getSCEV(
2693 ConstantInt::get(IntTy, -(uint64_t)Offs))))
2694 continue;
2695 Formula NewF = F;
2696 NewF.AM.BaseOffs = Offs;
2697 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2698 LU.Kind, LU.AccessTy, TLI))
2699 continue;
2700 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2701
2702 // If the new scale is a constant in a register, and adding the constant
2703 // value to the immediate would produce a value closer to zero than the
2704 // immediate itself, then the formula isn't worthwhile.
2705 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2706 if (C->getValue()->getValue().isNegative() !=
2707 (NewF.AM.BaseOffs < 0) &&
2708 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
Dan Gohmane0567812010-04-08 23:03:40 +00002709 .ule(abs64(NewF.AM.BaseOffs)))
Dan Gohman572645c2010-02-12 10:34:29 +00002710 continue;
2711
2712 // OK, looks good.
2713 (void)InsertFormula(LU, LUIdx, NewF);
2714 } else {
2715 // Use the immediate in a base register.
2716 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2717 const SCEV *BaseReg = F.BaseRegs[N];
2718 if (BaseReg != OrigReg)
2719 continue;
2720 Formula NewF = F;
2721 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2722 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2723 LU.Kind, LU.AccessTy, TLI))
2724 continue;
2725 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2726
2727 // If the new formula has a constant in a register, and adding the
2728 // constant value to the immediate would produce a value closer to
2729 // zero than the immediate itself, then the formula isn't worthwhile.
2730 for (SmallVectorImpl<const SCEV *>::const_iterator
2731 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2732 J != JE; ++J)
2733 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
Dan Gohman360026f2010-05-18 23:48:08 +00002734 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2735 abs64(NewF.AM.BaseOffs)) &&
2736 (C->getValue()->getValue() +
2737 NewF.AM.BaseOffs).countTrailingZeros() >=
2738 CountTrailingZeros_64(NewF.AM.BaseOffs))
Dan Gohman572645c2010-02-12 10:34:29 +00002739 goto skip_formula;
2740
2741 // Ok, looks good.
2742 (void)InsertFormula(LU, LUIdx, NewF);
2743 break;
2744 skip_formula:;
2745 }
2746 }
2747 }
2748 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00002749}
2750
Dan Gohman572645c2010-02-12 10:34:29 +00002751/// GenerateAllReuseFormulae - Generate formulae for each use.
2752void
2753LSRInstance::GenerateAllReuseFormulae() {
Dan Gohmanc2385a02010-02-16 01:42:53 +00002754 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
Dan Gohman572645c2010-02-12 10:34:29 +00002755 // queries are more precise.
2756 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2757 LSRUse &LU = Uses[LUIdx];
2758 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2759 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2760 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2761 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2762 }
2763 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2764 LSRUse &LU = Uses[LUIdx];
2765 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2766 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2767 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2768 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2769 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2770 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2771 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2772 GenerateScales(LU, LUIdx, LU.Formulae[i]);
Dan Gohmanc2385a02010-02-16 01:42:53 +00002773 }
2774 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2775 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002776 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2777 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2778 }
2779
2780 GenerateCrossUseConstantOffsets();
2781}
2782
2783/// If their are multiple formulae with the same set of registers used
2784/// by other uses, pick the best one and delete the others.
2785void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2786#ifndef NDEBUG
Dan Gohmanc6519f92010-05-20 20:05:31 +00002787 bool ChangedFormulae = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002788#endif
2789
2790 // Collect the best formula for each unique set of shared registers. This
2791 // is reset for each use.
2792 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2793 BestFormulaeTy;
2794 BestFormulaeTy BestFormulae;
2795
2796 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2797 LSRUse &LU = Uses[LUIdx];
2798 FormulaSorter Sorter(L, LU, SE, DT);
Dan Gohmanea507f52010-05-20 19:44:23 +00002799 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
Dan Gohman572645c2010-02-12 10:34:29 +00002800
Dan Gohmanb2df4332010-05-18 23:42:37 +00002801 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002802 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2803 FIdx != NumForms; ++FIdx) {
2804 Formula &F = LU.Formulae[FIdx];
2805
2806 SmallVector<const SCEV *, 2> Key;
2807 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2808 JE = F.BaseRegs.end(); J != JE; ++J) {
2809 const SCEV *Reg = *J;
2810 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2811 Key.push_back(Reg);
2812 }
2813 if (F.ScaledReg &&
2814 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2815 Key.push_back(F.ScaledReg);
2816 // Unstable sort by host order ok, because this is only used for
2817 // uniquifying.
2818 std::sort(Key.begin(), Key.end());
2819
2820 std::pair<BestFormulaeTy::const_iterator, bool> P =
2821 BestFormulae.insert(std::make_pair(Key, FIdx));
2822 if (!P.second) {
2823 Formula &Best = LU.Formulae[P.first->second];
2824 if (Sorter.operator()(F, Best))
2825 std::swap(F, Best);
Dan Gohman6458ff92010-05-18 22:37:37 +00002826 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002827 dbgs() << "\n"
Dan Gohman6458ff92010-05-18 22:37:37 +00002828 " in favor of formula "; Best.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002829 dbgs() << '\n');
2830#ifndef NDEBUG
Dan Gohmanc6519f92010-05-20 20:05:31 +00002831 ChangedFormulae = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002832#endif
Dan Gohmand69d6282010-05-18 22:39:15 +00002833 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00002834 --FIdx;
2835 --NumForms;
Dan Gohmanb2df4332010-05-18 23:42:37 +00002836 Any = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002837 continue;
2838 }
Dan Gohman59dc6032010-05-07 23:36:59 +00002839 }
2840
Dan Gohman57aaa0b2010-05-18 23:55:57 +00002841 // Now that we've filtered out some formulae, recompute the Regs set.
Dan Gohmanb2df4332010-05-18 23:42:37 +00002842 if (Any)
2843 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman59dc6032010-05-07 23:36:59 +00002844
2845 // Reset this to prepare for the next use.
Dan Gohman572645c2010-02-12 10:34:29 +00002846 BestFormulae.clear();
2847 }
2848
Dan Gohmanc6519f92010-05-20 20:05:31 +00002849 DEBUG(if (ChangedFormulae) {
Dan Gohman9214b822010-02-13 02:06:02 +00002850 dbgs() << "\n"
2851 "After filtering out undesirable candidates:\n";
Dan Gohman572645c2010-02-12 10:34:29 +00002852 print_uses(dbgs());
2853 });
2854}
2855
Dan Gohmand079c302010-05-18 22:51:59 +00002856// This is a rough guess that seems to work fairly well.
2857static const size_t ComplexityLimit = UINT16_MAX;
2858
2859/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2860/// solutions the solver might have to consider. It almost never considers
2861/// this many solutions because it prune the search space, but the pruning
2862/// isn't always sufficient.
2863size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2864 uint32_t Power = 1;
2865 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2866 E = Uses.end(); I != E; ++I) {
2867 size_t FSize = I->Formulae.size();
2868 if (FSize >= ComplexityLimit) {
2869 Power = ComplexityLimit;
2870 break;
2871 }
2872 Power *= FSize;
2873 if (Power >= ComplexityLimit)
2874 break;
2875 }
2876 return Power;
2877}
2878
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002879/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
Dan Gohman572645c2010-02-12 10:34:29 +00002880/// formulae to choose from, use some rough heuristics to prune down the number
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002881/// of formulae. This keeps the main solver from taking an extraordinary amount
Dan Gohman572645c2010-02-12 10:34:29 +00002882/// of time in some worst-case scenarios.
2883void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
Dan Gohmana2086b32010-05-19 23:43:12 +00002884 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2885 DEBUG(dbgs() << "The search space is too complex.\n");
2886
2887 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2888 "which use a superset of registers used by other "
2889 "formulae.\n");
2890
2891 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2892 LSRUse &LU = Uses[LUIdx];
2893 bool Any = false;
2894 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2895 Formula &F = LU.Formulae[i];
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00002896 // Look for a formula with a constant or GV in a register. If the use
2897 // also has a formula with that same value in an immediate field,
2898 // delete the one that uses a register.
Dan Gohmana2086b32010-05-19 23:43:12 +00002899 for (SmallVectorImpl<const SCEV *>::const_iterator
2900 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2901 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2902 Formula NewF = F;
2903 NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2904 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2905 (I - F.BaseRegs.begin()));
2906 if (LU.HasFormulaWithSameRegs(NewF)) {
2907 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
2908 LU.DeleteFormula(F);
2909 --i;
2910 --e;
2911 Any = true;
2912 break;
2913 }
2914 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2915 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2916 if (!F.AM.BaseGV) {
2917 Formula NewF = F;
2918 NewF.AM.BaseGV = GV;
2919 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2920 (I - F.BaseRegs.begin()));
2921 if (LU.HasFormulaWithSameRegs(NewF)) {
2922 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2923 dbgs() << '\n');
2924 LU.DeleteFormula(F);
2925 --i;
2926 --e;
2927 Any = true;
2928 break;
2929 }
2930 }
2931 }
2932 }
2933 }
2934 if (Any)
2935 LU.RecomputeRegs(LUIdx, RegUses);
2936 }
2937
2938 DEBUG(dbgs() << "After pre-selection:\n";
2939 print_uses(dbgs()));
2940 }
2941
2942 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2943 DEBUG(dbgs() << "The search space is too complex.\n");
2944
2945 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2946 "separated by a constant offset will use the same "
2947 "registers.\n");
2948
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00002949 // This is especially useful for unrolled loops.
2950
Dan Gohmana2086b32010-05-19 23:43:12 +00002951 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2952 LSRUse &LU = Uses[LUIdx];
Dan Gohman402d4352010-05-20 20:33:18 +00002953 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2954 E = LU.Formulae.end(); I != E; ++I) {
2955 const Formula &F = *I;
Dan Gohmana2086b32010-05-19 23:43:12 +00002956 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2957 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2958 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2959 /*HasBaseReg=*/false,
2960 LU.Kind, LU.AccessTy)) {
2961 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
2962 dbgs() << '\n');
2963
2964 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
2965
2966 // Delete formulae from the new use which are no longer legal.
2967 bool Any = false;
2968 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
2969 Formula &F = LUThatHas->Formulae[i];
2970 if (!isLegalUse(F.AM,
2971 LUThatHas->MinOffset, LUThatHas->MaxOffset,
2972 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
2973 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2974 dbgs() << '\n');
2975 LUThatHas->DeleteFormula(F);
2976 --i;
2977 --e;
2978 Any = true;
2979 }
2980 }
2981 if (Any)
2982 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
2983
2984 // Update the relocs to reference the new use.
Dan Gohman402d4352010-05-20 20:33:18 +00002985 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
2986 E = Fixups.end(); I != E; ++I) {
2987 LSRFixup &Fixup = *I;
2988 if (Fixup.LUIdx == LUIdx) {
2989 Fixup.LUIdx = LUThatHas - &Uses.front();
2990 Fixup.Offset += F.AM.BaseOffs;
Dan Gohmanef4308d2010-07-15 20:12:42 +00002991 DEBUG(dbgs() << "New fixup has offset "
Dan Gohman402d4352010-05-20 20:33:18 +00002992 << Fixup.Offset << '\n');
Dan Gohmana2086b32010-05-19 23:43:12 +00002993 }
Dan Gohman402d4352010-05-20 20:33:18 +00002994 if (Fixup.LUIdx == NumUses-1)
2995 Fixup.LUIdx = LUIdx;
Dan Gohmana2086b32010-05-19 23:43:12 +00002996 }
2997
2998 // Delete the old use.
Dan Gohman5ce6d052010-05-20 15:17:54 +00002999 DeleteUse(LU);
Dan Gohmana2086b32010-05-19 23:43:12 +00003000 --LUIdx;
3001 --NumUses;
3002 break;
3003 }
3004 }
3005 }
3006 }
3007 }
3008
3009 DEBUG(dbgs() << "After pre-selection:\n";
3010 print_uses(dbgs()));
3011 }
3012
Dan Gohman76c315a2010-05-20 20:52:00 +00003013 // With all other options exhausted, loop until the system is simple
3014 // enough to handle.
Dan Gohman572645c2010-02-12 10:34:29 +00003015 SmallPtrSet<const SCEV *, 4> Taken;
Dan Gohmand079c302010-05-18 22:51:59 +00003016 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
Dan Gohman572645c2010-02-12 10:34:29 +00003017 // Ok, we have too many of formulae on our hands to conveniently handle.
3018 // Use a rough heuristic to thin out the list.
Dan Gohman0da751b2010-05-18 22:41:32 +00003019 DEBUG(dbgs() << "The search space is too complex.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00003020
3021 // Pick the register which is used by the most LSRUses, which is likely
3022 // to be a good reuse register candidate.
3023 const SCEV *Best = 0;
3024 unsigned BestNum = 0;
3025 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3026 I != E; ++I) {
3027 const SCEV *Reg = *I;
3028 if (Taken.count(Reg))
3029 continue;
3030 if (!Best)
3031 Best = Reg;
3032 else {
3033 unsigned Count = RegUses.getUsedByIndices(Reg).count();
3034 if (Count > BestNum) {
3035 Best = Reg;
3036 BestNum = Count;
3037 }
3038 }
3039 }
3040
3041 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003042 << " will yield profitable reuse.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00003043 Taken.insert(Best);
3044
3045 // In any use with formulae which references this register, delete formulae
3046 // which don't reference it.
Dan Gohmanb2df4332010-05-18 23:42:37 +00003047 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3048 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00003049 if (!LU.Regs.count(Best)) continue;
3050
Dan Gohmanb2df4332010-05-18 23:42:37 +00003051 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003052 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3053 Formula &F = LU.Formulae[i];
3054 if (!F.referencesReg(Best)) {
3055 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
Dan Gohmand69d6282010-05-18 22:39:15 +00003056 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00003057 --e;
3058 --i;
Dan Gohmanb2df4332010-05-18 23:42:37 +00003059 Any = true;
Dan Gohman59dc6032010-05-07 23:36:59 +00003060 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
Dan Gohman572645c2010-02-12 10:34:29 +00003061 continue;
3062 }
Dan Gohman572645c2010-02-12 10:34:29 +00003063 }
Dan Gohmanb2df4332010-05-18 23:42:37 +00003064
3065 if (Any)
3066 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman572645c2010-02-12 10:34:29 +00003067 }
3068
3069 DEBUG(dbgs() << "After pre-selection:\n";
3070 print_uses(dbgs()));
3071 }
3072}
3073
3074/// SolveRecurse - This is the recursive solver.
3075void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3076 Cost &SolutionCost,
3077 SmallVectorImpl<const Formula *> &Workspace,
3078 const Cost &CurCost,
3079 const SmallPtrSet<const SCEV *, 16> &CurRegs,
3080 DenseSet<const SCEV *> &VisitedRegs) const {
3081 // Some ideas:
3082 // - prune more:
3083 // - use more aggressive filtering
3084 // - sort the formula so that the most profitable solutions are found first
3085 // - sort the uses too
3086 // - search faster:
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003087 // - don't compute a cost, and then compare. compare while computing a cost
Dan Gohman572645c2010-02-12 10:34:29 +00003088 // and bail early.
3089 // - track register sets with SmallBitVector
3090
3091 const LSRUse &LU = Uses[Workspace.size()];
3092
3093 // If this use references any register that's already a part of the
3094 // in-progress solution, consider it a requirement that a formula must
3095 // reference that register in order to be considered. This prunes out
3096 // unprofitable searching.
3097 SmallSetVector<const SCEV *, 4> ReqRegs;
3098 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3099 E = CurRegs.end(); I != E; ++I)
Dan Gohman9214b822010-02-13 02:06:02 +00003100 if (LU.Regs.count(*I))
Dan Gohman572645c2010-02-12 10:34:29 +00003101 ReqRegs.insert(*I);
Dan Gohman572645c2010-02-12 10:34:29 +00003102
Dan Gohman9214b822010-02-13 02:06:02 +00003103 bool AnySatisfiedReqRegs = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003104 SmallPtrSet<const SCEV *, 16> NewRegs;
3105 Cost NewCost;
Dan Gohman9214b822010-02-13 02:06:02 +00003106retry:
Dan Gohman572645c2010-02-12 10:34:29 +00003107 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3108 E = LU.Formulae.end(); I != E; ++I) {
3109 const Formula &F = *I;
3110
3111 // Ignore formulae which do not use any of the required registers.
3112 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3113 JE = ReqRegs.end(); J != JE; ++J) {
3114 const SCEV *Reg = *J;
3115 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3116 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3117 F.BaseRegs.end())
3118 goto skip;
3119 }
Dan Gohman9214b822010-02-13 02:06:02 +00003120 AnySatisfiedReqRegs = true;
Dan Gohman572645c2010-02-12 10:34:29 +00003121
3122 // Evaluate the cost of the current formula. If it's already worse than
3123 // the current best, prune the search at that point.
3124 NewCost = CurCost;
3125 NewRegs = CurRegs;
3126 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3127 if (NewCost < SolutionCost) {
3128 Workspace.push_back(&F);
3129 if (Workspace.size() != Uses.size()) {
3130 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3131 NewRegs, VisitedRegs);
3132 if (F.getNumRegs() == 1 && Workspace.size() == 1)
3133 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3134 } else {
3135 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3136 dbgs() << ". Regs:";
3137 for (SmallPtrSet<const SCEV *, 16>::const_iterator
3138 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3139 dbgs() << ' ' << **I;
3140 dbgs() << '\n');
3141
3142 SolutionCost = NewCost;
3143 Solution = Workspace;
3144 }
3145 Workspace.pop_back();
3146 }
3147 skip:;
3148 }
Dan Gohman9214b822010-02-13 02:06:02 +00003149
3150 // If none of the formulae had all of the required registers, relax the
3151 // constraint so that we don't exclude all formulae.
3152 if (!AnySatisfiedReqRegs) {
Dan Gohman59dc6032010-05-07 23:36:59 +00003153 assert(!ReqRegs.empty() && "Solver failed even without required registers");
Dan Gohman9214b822010-02-13 02:06:02 +00003154 ReqRegs.clear();
3155 goto retry;
3156 }
Dan Gohman572645c2010-02-12 10:34:29 +00003157}
3158
Dan Gohman76c315a2010-05-20 20:52:00 +00003159/// Solve - Choose one formula from each use. Return the results in the given
3160/// Solution vector.
Dan Gohman572645c2010-02-12 10:34:29 +00003161void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3162 SmallVector<const Formula *, 8> Workspace;
3163 Cost SolutionCost;
3164 SolutionCost.Loose();
3165 Cost CurCost;
3166 SmallPtrSet<const SCEV *, 16> CurRegs;
3167 DenseSet<const SCEV *> VisitedRegs;
3168 Workspace.reserve(Uses.size());
3169
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00003170 // SolveRecurse does all the work.
Dan Gohman572645c2010-02-12 10:34:29 +00003171 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3172 CurRegs, VisitedRegs);
3173
3174 // Ok, we've now made all our decisions.
3175 DEBUG(dbgs() << "\n"
3176 "The chosen solution requires "; SolutionCost.print(dbgs());
3177 dbgs() << ":\n";
3178 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3179 dbgs() << " ";
3180 Uses[i].print(dbgs());
3181 dbgs() << "\n"
3182 " ";
3183 Solution[i]->print(dbgs());
3184 dbgs() << '\n';
3185 });
Dan Gohmana5528782010-05-20 20:59:23 +00003186
3187 assert(Solution.size() == Uses.size() && "Malformed solution!");
Dan Gohman572645c2010-02-12 10:34:29 +00003188}
3189
Dan Gohmane5f76872010-04-09 22:07:05 +00003190/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3191/// the dominator tree far as we can go while still being dominated by the
3192/// input positions. This helps canonicalize the insert position, which
3193/// encourages sharing.
3194BasicBlock::iterator
3195LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3196 const SmallVectorImpl<Instruction *> &Inputs)
3197 const {
3198 for (;;) {
3199 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3200 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3201
3202 BasicBlock *IDom;
Dan Gohmand974a0e2010-05-20 20:00:25 +00003203 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
Dan Gohman0fe46d92010-05-20 22:46:54 +00003204 if (!Rung) return IP;
Dan Gohmand974a0e2010-05-20 20:00:25 +00003205 Rung = Rung->getIDom();
3206 if (!Rung) return IP;
3207 IDom = Rung->getBlock();
Dan Gohmane5f76872010-04-09 22:07:05 +00003208
3209 // Don't climb into a loop though.
3210 const Loop *IDomLoop = LI.getLoopFor(IDom);
3211 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3212 if (IDomDepth <= IPLoopDepth &&
3213 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3214 break;
3215 }
3216
3217 bool AllDominate = true;
3218 Instruction *BetterPos = 0;
3219 Instruction *Tentative = IDom->getTerminator();
3220 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3221 E = Inputs.end(); I != E; ++I) {
3222 Instruction *Inst = *I;
3223 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3224 AllDominate = false;
3225 break;
3226 }
3227 // Attempt to find an insert position in the middle of the block,
3228 // instead of at the end, so that it can be used for other expansions.
3229 if (IDom == Inst->getParent() &&
3230 (!BetterPos || DT.dominates(BetterPos, Inst)))
Douglas Gregor7d9663c2010-05-11 06:17:44 +00003231 BetterPos = llvm::next(BasicBlock::iterator(Inst));
Dan Gohmane5f76872010-04-09 22:07:05 +00003232 }
3233 if (!AllDominate)
3234 break;
3235 if (BetterPos)
3236 IP = BetterPos;
3237 else
3238 IP = Tentative;
3239 }
3240
3241 return IP;
3242}
3243
3244/// AdjustInsertPositionForExpand - Determine an input position which will be
Dan Gohmand96eae82010-04-09 02:00:38 +00003245/// dominated by the operands and which will dominate the result.
3246BasicBlock::iterator
Dan Gohmane5f76872010-04-09 22:07:05 +00003247LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3248 const LSRFixup &LF,
3249 const LSRUse &LU) const {
Dan Gohmand96eae82010-04-09 02:00:38 +00003250 // Collect some instructions which must be dominated by the
Dan Gohman448db1c2010-04-07 22:27:08 +00003251 // expanding replacement. These must be dominated by any operands that
Dan Gohman572645c2010-02-12 10:34:29 +00003252 // will be required in the expansion.
3253 SmallVector<Instruction *, 4> Inputs;
3254 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3255 Inputs.push_back(I);
3256 if (LU.Kind == LSRUse::ICmpZero)
3257 if (Instruction *I =
3258 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3259 Inputs.push_back(I);
Dan Gohman448db1c2010-04-07 22:27:08 +00003260 if (LF.PostIncLoops.count(L)) {
3261 if (LF.isUseFullyOutsideLoop(L))
Dan Gohman069d6f32010-03-02 01:59:21 +00003262 Inputs.push_back(L->getLoopLatch()->getTerminator());
3263 else
3264 Inputs.push_back(IVIncInsertPos);
3265 }
Dan Gohman701a4ae2010-04-08 05:57:57 +00003266 // The expansion must also be dominated by the increment positions of any
3267 // loops it for which it is using post-inc mode.
3268 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3269 E = LF.PostIncLoops.end(); I != E; ++I) {
3270 const Loop *PIL = *I;
3271 if (PIL == L) continue;
3272
Dan Gohmane5f76872010-04-09 22:07:05 +00003273 // Be dominated by the loop exit.
Dan Gohman701a4ae2010-04-08 05:57:57 +00003274 SmallVector<BasicBlock *, 4> ExitingBlocks;
3275 PIL->getExitingBlocks(ExitingBlocks);
3276 if (!ExitingBlocks.empty()) {
3277 BasicBlock *BB = ExitingBlocks[0];
3278 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3279 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3280 Inputs.push_back(BB->getTerminator());
3281 }
3282 }
Dan Gohman572645c2010-02-12 10:34:29 +00003283
3284 // Then, climb up the immediate dominator tree as far as we can go while
3285 // still being dominated by the input positions.
Dan Gohmane5f76872010-04-09 22:07:05 +00003286 IP = HoistInsertPosition(IP, Inputs);
Dan Gohmand96eae82010-04-09 02:00:38 +00003287
3288 // Don't insert instructions before PHI nodes.
Dan Gohman572645c2010-02-12 10:34:29 +00003289 while (isa<PHINode>(IP)) ++IP;
Dan Gohmand96eae82010-04-09 02:00:38 +00003290
3291 // Ignore debug intrinsics.
Dan Gohman449f31c2010-03-26 00:33:27 +00003292 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
Dan Gohman572645c2010-02-12 10:34:29 +00003293
Dan Gohmand96eae82010-04-09 02:00:38 +00003294 return IP;
3295}
3296
Dan Gohman76c315a2010-05-20 20:52:00 +00003297/// Expand - Emit instructions for the leading candidate expression for this
3298/// LSRUse (this is called "expanding").
Dan Gohmand96eae82010-04-09 02:00:38 +00003299Value *LSRInstance::Expand(const LSRFixup &LF,
3300 const Formula &F,
3301 BasicBlock::iterator IP,
3302 SCEVExpander &Rewriter,
3303 SmallVectorImpl<WeakVH> &DeadInsts) const {
3304 const LSRUse &LU = Uses[LF.LUIdx];
3305
3306 // Determine an input position which will be dominated by the operands and
3307 // which will dominate the result.
Dan Gohmane5f76872010-04-09 22:07:05 +00003308 IP = AdjustInsertPositionForExpand(IP, LF, LU);
Dan Gohmand96eae82010-04-09 02:00:38 +00003309
Dan Gohman572645c2010-02-12 10:34:29 +00003310 // Inform the Rewriter if we have a post-increment use, so that it can
3311 // perform an advantageous expansion.
Dan Gohman448db1c2010-04-07 22:27:08 +00003312 Rewriter.setPostInc(LF.PostIncLoops);
Dan Gohman572645c2010-02-12 10:34:29 +00003313
3314 // This is the type that the user actually needs.
3315 const Type *OpTy = LF.OperandValToReplace->getType();
3316 // This will be the type that we'll initially expand to.
3317 const Type *Ty = F.getType();
3318 if (!Ty)
3319 // No type known; just expand directly to the ultimate type.
3320 Ty = OpTy;
3321 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3322 // Expand directly to the ultimate type if it's the right size.
3323 Ty = OpTy;
3324 // This is the type to do integer arithmetic in.
3325 const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3326
3327 // Build up a list of operands to add together to form the full base.
3328 SmallVector<const SCEV *, 8> Ops;
3329
3330 // Expand the BaseRegs portion.
3331 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3332 E = F.BaseRegs.end(); I != E; ++I) {
3333 const SCEV *Reg = *I;
3334 assert(!Reg->isZero() && "Zero allocated in a base register!");
3335
Dan Gohman448db1c2010-04-07 22:27:08 +00003336 // If we're expanding for a post-inc user, make the post-inc adjustment.
3337 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3338 Reg = TransformForPostIncUse(Denormalize, Reg,
3339 LF.UserInst, LF.OperandValToReplace,
3340 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003341
3342 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3343 }
3344
Dan Gohman087bd1e2010-03-03 05:29:13 +00003345 // Flush the operand list to suppress SCEVExpander hoisting.
3346 if (!Ops.empty()) {
3347 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3348 Ops.clear();
3349 Ops.push_back(SE.getUnknown(FullV));
3350 }
3351
Dan Gohman572645c2010-02-12 10:34:29 +00003352 // Expand the ScaledReg portion.
3353 Value *ICmpScaledV = 0;
3354 if (F.AM.Scale != 0) {
3355 const SCEV *ScaledS = F.ScaledReg;
3356
Dan Gohman448db1c2010-04-07 22:27:08 +00003357 // If we're expanding for a post-inc user, make the post-inc adjustment.
3358 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3359 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3360 LF.UserInst, LF.OperandValToReplace,
3361 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003362
3363 if (LU.Kind == LSRUse::ICmpZero) {
3364 // An interesting way of "folding" with an icmp is to use a negated
3365 // scale, which we'll implement by inserting it into the other operand
3366 // of the icmp.
3367 assert(F.AM.Scale == -1 &&
3368 "The only scale supported by ICmpZero uses is -1!");
3369 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3370 } else {
3371 // Otherwise just expand the scaled register and an explicit scale,
3372 // which is expected to be matched as part of the address.
3373 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3374 ScaledS = SE.getMulExpr(ScaledS,
Dan Gohmandeff6212010-05-03 22:09:21 +00003375 SE.getConstant(ScaledS->getType(), F.AM.Scale));
Dan Gohman572645c2010-02-12 10:34:29 +00003376 Ops.push_back(ScaledS);
Dan Gohman087bd1e2010-03-03 05:29:13 +00003377
3378 // Flush the operand list to suppress SCEVExpander hoisting.
3379 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3380 Ops.clear();
3381 Ops.push_back(SE.getUnknown(FullV));
Dan Gohman572645c2010-02-12 10:34:29 +00003382 }
3383 }
3384
Dan Gohman087bd1e2010-03-03 05:29:13 +00003385 // Expand the GV portion.
3386 if (F.AM.BaseGV) {
3387 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3388
3389 // Flush the operand list to suppress SCEVExpander hoisting.
3390 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3391 Ops.clear();
3392 Ops.push_back(SE.getUnknown(FullV));
3393 }
3394
3395 // Expand the immediate portion.
Dan Gohman572645c2010-02-12 10:34:29 +00003396 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3397 if (Offset != 0) {
3398 if (LU.Kind == LSRUse::ICmpZero) {
3399 // The other interesting way of "folding" with an ICmpZero is to use a
3400 // negated immediate.
3401 if (!ICmpScaledV)
3402 ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3403 else {
3404 Ops.push_back(SE.getUnknown(ICmpScaledV));
3405 ICmpScaledV = ConstantInt::get(IntTy, Offset);
3406 }
3407 } else {
3408 // Just add the immediate values. These again are expected to be matched
3409 // as part of the address.
Dan Gohman087bd1e2010-03-03 05:29:13 +00003410 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
Dan Gohman572645c2010-02-12 10:34:29 +00003411 }
3412 }
3413
3414 // Emit instructions summing all the operands.
3415 const SCEV *FullS = Ops.empty() ?
Dan Gohmandeff6212010-05-03 22:09:21 +00003416 SE.getConstant(IntTy, 0) :
Dan Gohman572645c2010-02-12 10:34:29 +00003417 SE.getAddExpr(Ops);
3418 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3419
3420 // We're done expanding now, so reset the rewriter.
Dan Gohman448db1c2010-04-07 22:27:08 +00003421 Rewriter.clearPostInc();
Dan Gohman572645c2010-02-12 10:34:29 +00003422
3423 // An ICmpZero Formula represents an ICmp which we're handling as a
3424 // comparison against zero. Now that we've expanded an expression for that
3425 // form, update the ICmp's other operand.
3426 if (LU.Kind == LSRUse::ICmpZero) {
3427 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3428 DeadInsts.push_back(CI->getOperand(1));
3429 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3430 "a scale at the same time!");
3431 if (F.AM.Scale == -1) {
3432 if (ICmpScaledV->getType() != OpTy) {
3433 Instruction *Cast =
3434 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3435 OpTy, false),
3436 ICmpScaledV, OpTy, "tmp", CI);
3437 ICmpScaledV = Cast;
3438 }
3439 CI->setOperand(1, ICmpScaledV);
3440 } else {
3441 assert(F.AM.Scale == 0 &&
3442 "ICmp does not support folding a global value and "
3443 "a scale at the same time!");
3444 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3445 -(uint64_t)Offset);
3446 if (C->getType() != OpTy)
3447 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3448 OpTy, false),
3449 C, OpTy);
3450
3451 CI->setOperand(1, C);
3452 }
3453 }
3454
3455 return FullV;
3456}
3457
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003458/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3459/// of their operands effectively happens in their predecessor blocks, so the
3460/// expression may need to be expanded in multiple places.
3461void LSRInstance::RewriteForPHI(PHINode *PN,
3462 const LSRFixup &LF,
3463 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003464 SCEVExpander &Rewriter,
3465 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003466 Pass *P) const {
3467 DenseMap<BasicBlock *, Value *> Inserted;
3468 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3469 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3470 BasicBlock *BB = PN->getIncomingBlock(i);
3471
3472 // If this is a critical edge, split the edge so that we do not insert
3473 // the code on all predecessor/successor paths. We do this unless this
3474 // is the canonical backedge for this loop, which complicates post-inc
3475 // users.
3476 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3477 !isa<IndirectBrInst>(BB->getTerminator()) &&
3478 (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3479 // Split the critical edge.
3480 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3481
3482 // If PN is outside of the loop and BB is in the loop, we want to
3483 // move the block to be immediately before the PHI block, not
3484 // immediately after BB.
3485 if (L->contains(BB) && !L->contains(PN))
3486 NewBB->moveBefore(PN->getParent());
3487
3488 // Splitting the edge can reduce the number of PHI entries we have.
3489 e = PN->getNumIncomingValues();
3490 BB = NewBB;
3491 i = PN->getBasicBlockIndex(BB);
3492 }
3493
3494 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3495 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3496 if (!Pair.second)
3497 PN->setIncomingValue(i, Pair.first->second);
3498 else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003499 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003500
3501 // If this is reuse-by-noop-cast, insert the noop cast.
3502 const Type *OpTy = LF.OperandValToReplace->getType();
3503 if (FullV->getType() != OpTy)
3504 FullV =
3505 CastInst::Create(CastInst::getCastOpcode(FullV, false,
3506 OpTy, false),
3507 FullV, LF.OperandValToReplace->getType(),
3508 "tmp", BB->getTerminator());
3509
3510 PN->setIncomingValue(i, FullV);
3511 Pair.first->second = FullV;
3512 }
3513 }
3514}
3515
Dan Gohman572645c2010-02-12 10:34:29 +00003516/// Rewrite - Emit instructions for the leading candidate expression for this
3517/// LSRUse (this is called "expanding"), and update the UserInst to reference
3518/// the newly expanded value.
3519void LSRInstance::Rewrite(const LSRFixup &LF,
3520 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00003521 SCEVExpander &Rewriter,
3522 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00003523 Pass *P) const {
Dan Gohman572645c2010-02-12 10:34:29 +00003524 // First, find an insertion point that dominates UserInst. For PHI nodes,
3525 // find the nearest block which dominates all the relevant uses.
3526 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
Dan Gohman454d26d2010-02-22 04:11:59 +00003527 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003528 } else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003529 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
Dan Gohman572645c2010-02-12 10:34:29 +00003530
3531 // If this is reuse-by-noop-cast, insert the noop cast.
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003532 const Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003533 if (FullV->getType() != OpTy) {
3534 Instruction *Cast =
3535 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3536 FullV, OpTy, "tmp", LF.UserInst);
3537 FullV = Cast;
3538 }
3539
3540 // Update the user. ICmpZero is handled specially here (for now) because
3541 // Expand may have updated one of the operands of the icmp already, and
3542 // its new value may happen to be equal to LF.OperandValToReplace, in
3543 // which case doing replaceUsesOfWith leads to replacing both operands
3544 // with the same value. TODO: Reorganize this.
3545 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3546 LF.UserInst->setOperand(0, FullV);
3547 else
3548 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3549 }
3550
3551 DeadInsts.push_back(LF.OperandValToReplace);
3552}
3553
Dan Gohman76c315a2010-05-20 20:52:00 +00003554/// ImplementSolution - Rewrite all the fixup locations with new values,
3555/// following the chosen solution.
Dan Gohman572645c2010-02-12 10:34:29 +00003556void
3557LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3558 Pass *P) {
3559 // Keep track of instructions we may have made dead, so that
3560 // we can remove them after we are done working.
3561 SmallVector<WeakVH, 16> DeadInsts;
3562
3563 SCEVExpander Rewriter(SE);
3564 Rewriter.disableCanonicalMode();
3565 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3566
3567 // Expand the new value definitions and update the users.
Dan Gohman402d4352010-05-20 20:33:18 +00003568 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3569 E = Fixups.end(); I != E; ++I) {
3570 const LSRFixup &Fixup = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00003571
Dan Gohman402d4352010-05-20 20:33:18 +00003572 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003573
3574 Changed = true;
3575 }
3576
3577 // Clean up after ourselves. This must be done before deleting any
3578 // instructions.
3579 Rewriter.clear();
3580
3581 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3582}
3583
3584LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3585 : IU(P->getAnalysis<IVUsers>()),
3586 SE(P->getAnalysis<ScalarEvolution>()),
3587 DT(P->getAnalysis<DominatorTree>()),
Dan Gohmane5f76872010-04-09 22:07:05 +00003588 LI(P->getAnalysis<LoopInfo>()),
Dan Gohman572645c2010-02-12 10:34:29 +00003589 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
Devang Patel0f54dcb2007-03-06 21:14:09 +00003590
Dan Gohman03e896b2009-11-05 21:11:53 +00003591 // If LoopSimplify form is not available, stay out of trouble.
Dan Gohman572645c2010-02-12 10:34:29 +00003592 if (!L->isLoopSimplifyForm()) return;
Dan Gohman03e896b2009-11-05 21:11:53 +00003593
Dan Gohman572645c2010-02-12 10:34:29 +00003594 // If there's no interesting work to be done, bail early.
3595 if (IU.empty()) return;
Dan Gohman80b0f8c2009-03-09 20:34:59 +00003596
Dan Gohman572645c2010-02-12 10:34:29 +00003597 DEBUG(dbgs() << "\nLSR on loop ";
3598 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3599 dbgs() << ":\n");
Dan Gohmanf7912df2009-03-09 20:46:50 +00003600
Dan Gohman402d4352010-05-20 20:33:18 +00003601 // First, perform some low-level loop optimizations.
Dan Gohman572645c2010-02-12 10:34:29 +00003602 OptimizeShadowIV();
Dan Gohmanc6519f92010-05-20 20:05:31 +00003603 OptimizeLoopTermCond();
Evan Cheng5792f512009-05-11 22:33:01 +00003604
Dan Gohman402d4352010-05-20 20:33:18 +00003605 // Start collecting data and preparing for the solver.
Dan Gohman572645c2010-02-12 10:34:29 +00003606 CollectInterestingTypesAndFactors();
3607 CollectFixupsAndInitialFormulae();
3608 CollectLoopInvariantFixupsAndFormulae();
Chris Lattner010de252005-08-08 05:28:22 +00003609
Dan Gohman572645c2010-02-12 10:34:29 +00003610 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3611 print_uses(dbgs()));
Misha Brukmanfd939082005-04-21 23:48:37 +00003612
Dan Gohman572645c2010-02-12 10:34:29 +00003613 // Now use the reuse data to generate a bunch of interesting ways
3614 // to formulate the values needed for the uses.
3615 GenerateAllReuseFormulae();
Evan Chengd1d6b5c2006-03-16 21:53:05 +00003616
Dan Gohman572645c2010-02-12 10:34:29 +00003617 DEBUG(dbgs() << "\n"
3618 "After generating reuse formulae:\n";
3619 print_uses(dbgs()));
Nate Begemaneaa13852004-10-18 21:08:22 +00003620
Dan Gohman572645c2010-02-12 10:34:29 +00003621 FilterOutUndesirableDedicatedRegisters();
3622 NarrowSearchSpaceUsingHeuristics();
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003623
Dan Gohman572645c2010-02-12 10:34:29 +00003624 SmallVector<const Formula *, 8> Solution;
3625 Solve(Solution);
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003626
Dan Gohman572645c2010-02-12 10:34:29 +00003627 // Release memory that is no longer needed.
3628 Factors.clear();
3629 Types.clear();
3630 RegUses.clear();
3631
3632#ifndef NDEBUG
3633 // Formulae should be legal.
3634 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3635 E = Uses.end(); I != E; ++I) {
3636 const LSRUse &LU = *I;
3637 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3638 JE = LU.Formulae.end(); J != JE; ++J)
3639 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3640 LU.Kind, LU.AccessTy, TLI) &&
3641 "Illegal formula generated!");
3642 };
3643#endif
3644
3645 // Now that we've decided what we want, make it so.
3646 ImplementSolution(Solution, P);
3647}
3648
3649void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3650 if (Factors.empty() && Types.empty()) return;
3651
3652 OS << "LSR has identified the following interesting factors and types: ";
3653 bool First = true;
3654
3655 for (SmallSetVector<int64_t, 8>::const_iterator
3656 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3657 if (!First) OS << ", ";
3658 First = false;
3659 OS << '*' << *I;
Evan Cheng81ebdcf2009-11-10 21:14:05 +00003660 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00003661
Dan Gohman572645c2010-02-12 10:34:29 +00003662 for (SmallSetVector<const Type *, 4>::const_iterator
3663 I = Types.begin(), E = Types.end(); I != E; ++I) {
3664 if (!First) OS << ", ";
3665 First = false;
3666 OS << '(' << **I << ')';
3667 }
3668 OS << '\n';
3669}
3670
3671void LSRInstance::print_fixups(raw_ostream &OS) const {
3672 OS << "LSR is examining the following fixup sites:\n";
3673 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3674 E = Fixups.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +00003675 dbgs() << " ";
Dan Gohman9f383eb2010-05-20 22:25:20 +00003676 I->print(OS);
Dan Gohman572645c2010-02-12 10:34:29 +00003677 OS << '\n';
3678 }
3679}
3680
3681void LSRInstance::print_uses(raw_ostream &OS) const {
3682 OS << "LSR is examining the following uses:\n";
3683 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3684 E = Uses.end(); I != E; ++I) {
3685 const LSRUse &LU = *I;
3686 dbgs() << " ";
3687 LU.print(OS);
3688 OS << '\n';
3689 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3690 JE = LU.Formulae.end(); J != JE; ++J) {
3691 OS << " ";
3692 J->print(OS);
3693 OS << '\n';
3694 }
3695 }
3696}
3697
3698void LSRInstance::print(raw_ostream &OS) const {
3699 print_factors_and_types(OS);
3700 print_fixups(OS);
3701 print_uses(OS);
3702}
3703
3704void LSRInstance::dump() const {
3705 print(errs()); errs() << '\n';
3706}
3707
3708namespace {
3709
3710class LoopStrengthReduce : public LoopPass {
3711 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3712 /// transformation profitability.
3713 const TargetLowering *const TLI;
3714
3715public:
3716 static char ID; // Pass ID, replacement for typeid
3717 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3718
3719private:
3720 bool runOnLoop(Loop *L, LPPassManager &LPM);
3721 void getAnalysisUsage(AnalysisUsage &AU) const;
3722};
3723
3724}
3725
3726char LoopStrengthReduce::ID = 0;
3727static RegisterPass<LoopStrengthReduce>
3728X("loop-reduce", "Loop Strength Reduction");
3729
3730Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3731 return new LoopStrengthReduce(TLI);
3732}
3733
3734LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3735 : LoopPass(&ID), TLI(tli) {}
3736
3737void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3738 // We split critical edges, so we change the CFG. However, we do update
3739 // many analyses if they are around.
3740 AU.addPreservedID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00003741 AU.addPreserved("domfrontier");
3742
Dan Gohmane5f76872010-04-09 22:07:05 +00003743 AU.addRequired<LoopInfo>();
3744 AU.addPreserved<LoopInfo>();
Dan Gohman572645c2010-02-12 10:34:29 +00003745 AU.addRequiredID(LoopSimplifyID);
3746 AU.addRequired<DominatorTree>();
3747 AU.addPreserved<DominatorTree>();
3748 AU.addRequired<ScalarEvolution>();
3749 AU.addPreserved<ScalarEvolution>();
3750 AU.addRequired<IVUsers>();
3751 AU.addPreserved<IVUsers>();
3752}
3753
3754bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3755 bool Changed = false;
3756
3757 // Run the main LSR transformation.
3758 Changed |= LSRInstance(TLI, L, this).getChanged();
3759
Dan Gohmanafc36a92009-05-02 18:29:22 +00003760 // At this point, it is worth checking to see if any recurrence PHIs are also
Dan Gohman35738ac2009-05-04 22:30:44 +00003761 // dead, so that we can remove them as well.
Dan Gohman9fff2182010-01-05 16:31:45 +00003762 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohmanafc36a92009-05-02 18:29:22 +00003763
Evan Cheng1ce75dc2008-07-07 19:51:32 +00003764 return Changed;
Nate Begemaneaa13852004-10-18 21:08:22 +00003765}