blob: c4d9798e9f23c437b48004d877287dfd97f36fd9 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000021#include "llvm/DerivedTypes.h"
Owen Anderson1636de92007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000023#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000028#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000029#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000030#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000031
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032using namespace llvm;
33
Owen Anderson9a184ef2008-01-07 01:35:02 +000034namespace {
35 cl::opt<bool>
36 NoFusing("disable-spill-fusing",
37 cl::desc("Disable fusing of spill code into instructions"));
38 cl::opt<bool>
39 PrintFailedFusing("print-failed-fuse-candidates",
40 cl::desc("Print instructions that the allocator wants to"
41 " fuse, but the X86 backend currently can't"),
42 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000043 cl::opt<bool>
44 ReMatPICStubLoad("remat-pic-stub-load",
45 cl::desc("Re-materialize load from stub in PIC mode"),
46 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000047}
48
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000050 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000052 SmallVector<unsigned,16> AmbEntries;
53 static const unsigned OpTbl2Addr[][2] = {
54 { X86::ADC32ri, X86::ADC32mi },
55 { X86::ADC32ri8, X86::ADC32mi8 },
56 { X86::ADC32rr, X86::ADC32mr },
57 { X86::ADC64ri32, X86::ADC64mi32 },
58 { X86::ADC64ri8, X86::ADC64mi8 },
59 { X86::ADC64rr, X86::ADC64mr },
60 { X86::ADD16ri, X86::ADD16mi },
61 { X86::ADD16ri8, X86::ADD16mi8 },
62 { X86::ADD16rr, X86::ADD16mr },
63 { X86::ADD32ri, X86::ADD32mi },
64 { X86::ADD32ri8, X86::ADD32mi8 },
65 { X86::ADD32rr, X86::ADD32mr },
66 { X86::ADD64ri32, X86::ADD64mi32 },
67 { X86::ADD64ri8, X86::ADD64mi8 },
68 { X86::ADD64rr, X86::ADD64mr },
69 { X86::ADD8ri, X86::ADD8mi },
70 { X86::ADD8rr, X86::ADD8mr },
71 { X86::AND16ri, X86::AND16mi },
72 { X86::AND16ri8, X86::AND16mi8 },
73 { X86::AND16rr, X86::AND16mr },
74 { X86::AND32ri, X86::AND32mi },
75 { X86::AND32ri8, X86::AND32mi8 },
76 { X86::AND32rr, X86::AND32mr },
77 { X86::AND64ri32, X86::AND64mi32 },
78 { X86::AND64ri8, X86::AND64mi8 },
79 { X86::AND64rr, X86::AND64mr },
80 { X86::AND8ri, X86::AND8mi },
81 { X86::AND8rr, X86::AND8mr },
82 { X86::DEC16r, X86::DEC16m },
83 { X86::DEC32r, X86::DEC32m },
84 { X86::DEC64_16r, X86::DEC64_16m },
85 { X86::DEC64_32r, X86::DEC64_32m },
86 { X86::DEC64r, X86::DEC64m },
87 { X86::DEC8r, X86::DEC8m },
88 { X86::INC16r, X86::INC16m },
89 { X86::INC32r, X86::INC32m },
90 { X86::INC64_16r, X86::INC64_16m },
91 { X86::INC64_32r, X86::INC64_32m },
92 { X86::INC64r, X86::INC64m },
93 { X86::INC8r, X86::INC8m },
94 { X86::NEG16r, X86::NEG16m },
95 { X86::NEG32r, X86::NEG32m },
96 { X86::NEG64r, X86::NEG64m },
97 { X86::NEG8r, X86::NEG8m },
98 { X86::NOT16r, X86::NOT16m },
99 { X86::NOT32r, X86::NOT32m },
100 { X86::NOT64r, X86::NOT64m },
101 { X86::NOT8r, X86::NOT8m },
102 { X86::OR16ri, X86::OR16mi },
103 { X86::OR16ri8, X86::OR16mi8 },
104 { X86::OR16rr, X86::OR16mr },
105 { X86::OR32ri, X86::OR32mi },
106 { X86::OR32ri8, X86::OR32mi8 },
107 { X86::OR32rr, X86::OR32mr },
108 { X86::OR64ri32, X86::OR64mi32 },
109 { X86::OR64ri8, X86::OR64mi8 },
110 { X86::OR64rr, X86::OR64mr },
111 { X86::OR8ri, X86::OR8mi },
112 { X86::OR8rr, X86::OR8mr },
113 { X86::ROL16r1, X86::ROL16m1 },
114 { X86::ROL16rCL, X86::ROL16mCL },
115 { X86::ROL16ri, X86::ROL16mi },
116 { X86::ROL32r1, X86::ROL32m1 },
117 { X86::ROL32rCL, X86::ROL32mCL },
118 { X86::ROL32ri, X86::ROL32mi },
119 { X86::ROL64r1, X86::ROL64m1 },
120 { X86::ROL64rCL, X86::ROL64mCL },
121 { X86::ROL64ri, X86::ROL64mi },
122 { X86::ROL8r1, X86::ROL8m1 },
123 { X86::ROL8rCL, X86::ROL8mCL },
124 { X86::ROL8ri, X86::ROL8mi },
125 { X86::ROR16r1, X86::ROR16m1 },
126 { X86::ROR16rCL, X86::ROR16mCL },
127 { X86::ROR16ri, X86::ROR16mi },
128 { X86::ROR32r1, X86::ROR32m1 },
129 { X86::ROR32rCL, X86::ROR32mCL },
130 { X86::ROR32ri, X86::ROR32mi },
131 { X86::ROR64r1, X86::ROR64m1 },
132 { X86::ROR64rCL, X86::ROR64mCL },
133 { X86::ROR64ri, X86::ROR64mi },
134 { X86::ROR8r1, X86::ROR8m1 },
135 { X86::ROR8rCL, X86::ROR8mCL },
136 { X86::ROR8ri, X86::ROR8mi },
137 { X86::SAR16r1, X86::SAR16m1 },
138 { X86::SAR16rCL, X86::SAR16mCL },
139 { X86::SAR16ri, X86::SAR16mi },
140 { X86::SAR32r1, X86::SAR32m1 },
141 { X86::SAR32rCL, X86::SAR32mCL },
142 { X86::SAR32ri, X86::SAR32mi },
143 { X86::SAR64r1, X86::SAR64m1 },
144 { X86::SAR64rCL, X86::SAR64mCL },
145 { X86::SAR64ri, X86::SAR64mi },
146 { X86::SAR8r1, X86::SAR8m1 },
147 { X86::SAR8rCL, X86::SAR8mCL },
148 { X86::SAR8ri, X86::SAR8mi },
149 { X86::SBB32ri, X86::SBB32mi },
150 { X86::SBB32ri8, X86::SBB32mi8 },
151 { X86::SBB32rr, X86::SBB32mr },
152 { X86::SBB64ri32, X86::SBB64mi32 },
153 { X86::SBB64ri8, X86::SBB64mi8 },
154 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL16rCL, X86::SHL16mCL },
156 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL32rCL, X86::SHL32mCL },
158 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL64rCL, X86::SHL64mCL },
160 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000161 { X86::SHL8rCL, X86::SHL8mCL },
162 { X86::SHL8ri, X86::SHL8mi },
163 { X86::SHLD16rrCL, X86::SHLD16mrCL },
164 { X86::SHLD16rri8, X86::SHLD16mri8 },
165 { X86::SHLD32rrCL, X86::SHLD32mrCL },
166 { X86::SHLD32rri8, X86::SHLD32mri8 },
167 { X86::SHLD64rrCL, X86::SHLD64mrCL },
168 { X86::SHLD64rri8, X86::SHLD64mri8 },
169 { X86::SHR16r1, X86::SHR16m1 },
170 { X86::SHR16rCL, X86::SHR16mCL },
171 { X86::SHR16ri, X86::SHR16mi },
172 { X86::SHR32r1, X86::SHR32m1 },
173 { X86::SHR32rCL, X86::SHR32mCL },
174 { X86::SHR32ri, X86::SHR32mi },
175 { X86::SHR64r1, X86::SHR64m1 },
176 { X86::SHR64rCL, X86::SHR64mCL },
177 { X86::SHR64ri, X86::SHR64mi },
178 { X86::SHR8r1, X86::SHR8m1 },
179 { X86::SHR8rCL, X86::SHR8mCL },
180 { X86::SHR8ri, X86::SHR8mi },
181 { X86::SHRD16rrCL, X86::SHRD16mrCL },
182 { X86::SHRD16rri8, X86::SHRD16mri8 },
183 { X86::SHRD32rrCL, X86::SHRD32mrCL },
184 { X86::SHRD32rri8, X86::SHRD32mri8 },
185 { X86::SHRD64rrCL, X86::SHRD64mrCL },
186 { X86::SHRD64rri8, X86::SHRD64mri8 },
187 { X86::SUB16ri, X86::SUB16mi },
188 { X86::SUB16ri8, X86::SUB16mi8 },
189 { X86::SUB16rr, X86::SUB16mr },
190 { X86::SUB32ri, X86::SUB32mi },
191 { X86::SUB32ri8, X86::SUB32mi8 },
192 { X86::SUB32rr, X86::SUB32mr },
193 { X86::SUB64ri32, X86::SUB64mi32 },
194 { X86::SUB64ri8, X86::SUB64mi8 },
195 { X86::SUB64rr, X86::SUB64mr },
196 { X86::SUB8ri, X86::SUB8mi },
197 { X86::SUB8rr, X86::SUB8mr },
198 { X86::XOR16ri, X86::XOR16mi },
199 { X86::XOR16ri8, X86::XOR16mi8 },
200 { X86::XOR16rr, X86::XOR16mr },
201 { X86::XOR32ri, X86::XOR32mi },
202 { X86::XOR32ri8, X86::XOR32mi8 },
203 { X86::XOR32rr, X86::XOR32mr },
204 { X86::XOR64ri32, X86::XOR64mi32 },
205 { X86::XOR64ri8, X86::XOR64mi8 },
206 { X86::XOR64rr, X86::XOR64mr },
207 { X86::XOR8ri, X86::XOR8mi },
208 { X86::XOR8rr, X86::XOR8mr }
209 };
210
211 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
212 unsigned RegOp = OpTbl2Addr[i][0];
213 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000214 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
215 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000216 assert(false && "Duplicated entries?");
217 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
218 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000219 std::make_pair(RegOp,
220 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000221 AmbEntries.push_back(MemOp);
222 }
223
224 // If the third value is 1, then it's folding either a load or a store.
225 static const unsigned OpTbl0[][3] = {
Dan Gohman27a4bc02009-01-15 17:57:09 +0000226 { X86::BT16ri8, X86::BT16mi8, 1 },
227 { X86::BT32ri8, X86::BT32mi8, 1 },
228 { X86::BT64ri8, X86::BT64mi8, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000229 { X86::CALL32r, X86::CALL32m, 1 },
230 { X86::CALL64r, X86::CALL64m, 1 },
231 { X86::CMP16ri, X86::CMP16mi, 1 },
232 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000233 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000234 { X86::CMP32ri, X86::CMP32mi, 1 },
235 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::CMP64ri32, X86::CMP64mi32, 1 },
238 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000239 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000240 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000241 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000242 { X86::DIV16r, X86::DIV16m, 1 },
243 { X86::DIV32r, X86::DIV32m, 1 },
244 { X86::DIV64r, X86::DIV64m, 1 },
245 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000246 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000247 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
248 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
249 { X86::IDIV16r, X86::IDIV16m, 1 },
250 { X86::IDIV32r, X86::IDIV32m, 1 },
251 { X86::IDIV64r, X86::IDIV64m, 1 },
252 { X86::IDIV8r, X86::IDIV8m, 1 },
253 { X86::IMUL16r, X86::IMUL16m, 1 },
254 { X86::IMUL32r, X86::IMUL32m, 1 },
255 { X86::IMUL64r, X86::IMUL64m, 1 },
256 { X86::IMUL8r, X86::IMUL8m, 1 },
257 { X86::JMP32r, X86::JMP32m, 1 },
258 { X86::JMP64r, X86::JMP64m, 1 },
259 { X86::MOV16ri, X86::MOV16mi, 0 },
260 { X86::MOV16rr, X86::MOV16mr, 0 },
261 { X86::MOV16to16_, X86::MOV16_mr, 0 },
262 { X86::MOV32ri, X86::MOV32mi, 0 },
263 { X86::MOV32rr, X86::MOV32mr, 0 },
264 { X86::MOV32to32_, X86::MOV32_mr, 0 },
265 { X86::MOV64ri32, X86::MOV64mi32, 0 },
266 { X86::MOV64rr, X86::MOV64mr, 0 },
267 { X86::MOV8ri, X86::MOV8mi, 0 },
268 { X86::MOV8rr, X86::MOV8mr, 0 },
269 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
270 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
Dan Gohmana645d1a2009-01-09 02:40:34 +0000271 { X86::MOVDQArr, X86::MOVDQAmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000272 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
273 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
274 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
275 { X86::MOVSDrr, X86::MOVSDmr, 0 },
276 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
277 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
278 { X86::MOVSSrr, X86::MOVSSmr, 0 },
279 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
280 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
281 { X86::MUL16r, X86::MUL16m, 1 },
282 { X86::MUL32r, X86::MUL32m, 1 },
283 { X86::MUL64r, X86::MUL64m, 1 },
284 { X86::MUL8r, X86::MUL8m, 1 },
285 { X86::SETAEr, X86::SETAEm, 0 },
286 { X86::SETAr, X86::SETAm, 0 },
287 { X86::SETBEr, X86::SETBEm, 0 },
288 { X86::SETBr, X86::SETBm, 0 },
289 { X86::SETEr, X86::SETEm, 0 },
290 { X86::SETGEr, X86::SETGEm, 0 },
291 { X86::SETGr, X86::SETGm, 0 },
292 { X86::SETLEr, X86::SETLEm, 0 },
293 { X86::SETLr, X86::SETLm, 0 },
294 { X86::SETNEr, X86::SETNEm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000295 { X86::SETNOr, X86::SETNOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000296 { X86::SETNPr, X86::SETNPm, 0 },
297 { X86::SETNSr, X86::SETNSm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000298 { X86::SETOr, X86::SETOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000299 { X86::SETPr, X86::SETPm, 0 },
300 { X86::SETSr, X86::SETSm, 0 },
301 { X86::TAILJMPr, X86::TAILJMPm, 1 },
302 { X86::TEST16ri, X86::TEST16mi, 1 },
303 { X86::TEST32ri, X86::TEST32mi, 1 },
304 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000305 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000306 };
307
308 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
309 unsigned RegOp = OpTbl0[i][0];
310 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000311 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
312 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000313 assert(false && "Duplicated entries?");
314 unsigned FoldedLoad = OpTbl0[i][2];
315 // Index 0, folded load or store.
316 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
317 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
318 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000319 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000320 AmbEntries.push_back(MemOp);
321 }
322
323 static const unsigned OpTbl1[][2] = {
324 { X86::CMP16rr, X86::CMP16rm },
325 { X86::CMP32rr, X86::CMP32rm },
326 { X86::CMP64rr, X86::CMP64rm },
327 { X86::CMP8rr, X86::CMP8rm },
328 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
329 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
330 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
331 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
332 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
333 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
334 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
335 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
336 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
337 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
338 { X86::FsMOVAPDrr, X86::MOVSDrm },
339 { X86::FsMOVAPSrr, X86::MOVSSrm },
340 { X86::IMUL16rri, X86::IMUL16rmi },
341 { X86::IMUL16rri8, X86::IMUL16rmi8 },
342 { X86::IMUL32rri, X86::IMUL32rmi },
343 { X86::IMUL32rri8, X86::IMUL32rmi8 },
344 { X86::IMUL64rri32, X86::IMUL64rmi32 },
345 { X86::IMUL64rri8, X86::IMUL64rmi8 },
346 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
347 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
348 { X86::Int_COMISDrr, X86::Int_COMISDrm },
349 { X86::Int_COMISSrr, X86::Int_COMISSrm },
350 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
351 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
352 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
353 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
354 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
355 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
356 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
357 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
358 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
359 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
360 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
361 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
362 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
363 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
364 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
365 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
366 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
367 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
368 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
369 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
370 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
371 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
372 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
373 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
374 { X86::MOV16rr, X86::MOV16rm },
375 { X86::MOV16to16_, X86::MOV16_rm },
376 { X86::MOV32rr, X86::MOV32rm },
377 { X86::MOV32to32_, X86::MOV32_rm },
378 { X86::MOV64rr, X86::MOV64rm },
379 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
380 { X86::MOV64toSDrr, X86::MOV64toSDrm },
381 { X86::MOV8rr, X86::MOV8rm },
382 { X86::MOVAPDrr, X86::MOVAPDrm },
383 { X86::MOVAPSrr, X86::MOVAPSrm },
384 { X86::MOVDDUPrr, X86::MOVDDUPrm },
385 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
386 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
Dan Gohmana645d1a2009-01-09 02:40:34 +0000387 { X86::MOVDQArr, X86::MOVDQArm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000388 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
389 { X86::MOVSDrr, X86::MOVSDrm },
390 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
391 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
392 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
393 { X86::MOVSSrr, X86::MOVSSrm },
394 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
395 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
396 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
397 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
398 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
399 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
400 { X86::MOVUPDrr, X86::MOVUPDrm },
401 { X86::MOVUPSrr, X86::MOVUPSrm },
402 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
403 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
404 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
405 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
406 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
407 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
408 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000409 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000410 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
411 { X86::PSHUFDri, X86::PSHUFDmi },
412 { X86::PSHUFHWri, X86::PSHUFHWmi },
413 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000414 { X86::RCPPSr, X86::RCPPSm },
415 { X86::RCPPSr_Int, X86::RCPPSm_Int },
416 { X86::RSQRTPSr, X86::RSQRTPSm },
417 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
418 { X86::RSQRTSSr, X86::RSQRTSSm },
419 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
420 { X86::SQRTPDr, X86::SQRTPDm },
421 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
422 { X86::SQRTPSr, X86::SQRTPSm },
423 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
424 { X86::SQRTSDr, X86::SQRTSDm },
425 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
426 { X86::SQRTSSr, X86::SQRTSSm },
427 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
428 { X86::TEST16rr, X86::TEST16rm },
429 { X86::TEST32rr, X86::TEST32rm },
430 { X86::TEST64rr, X86::TEST64rm },
431 { X86::TEST8rr, X86::TEST8rm },
432 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
433 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000434 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000435 };
436
437 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
438 unsigned RegOp = OpTbl1[i][0];
439 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000440 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
441 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000442 assert(false && "Duplicated entries?");
443 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
444 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
445 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000446 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000447 AmbEntries.push_back(MemOp);
448 }
449
450 static const unsigned OpTbl2[][2] = {
451 { X86::ADC32rr, X86::ADC32rm },
452 { X86::ADC64rr, X86::ADC64rm },
453 { X86::ADD16rr, X86::ADD16rm },
454 { X86::ADD32rr, X86::ADD32rm },
455 { X86::ADD64rr, X86::ADD64rm },
456 { X86::ADD8rr, X86::ADD8rm },
457 { X86::ADDPDrr, X86::ADDPDrm },
458 { X86::ADDPSrr, X86::ADDPSrm },
459 { X86::ADDSDrr, X86::ADDSDrm },
460 { X86::ADDSSrr, X86::ADDSSrm },
461 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
462 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
463 { X86::AND16rr, X86::AND16rm },
464 { X86::AND32rr, X86::AND32rm },
465 { X86::AND64rr, X86::AND64rm },
466 { X86::AND8rr, X86::AND8rm },
467 { X86::ANDNPDrr, X86::ANDNPDrm },
468 { X86::ANDNPSrr, X86::ANDNPSrm },
469 { X86::ANDPDrr, X86::ANDPDrm },
470 { X86::ANDPSrr, X86::ANDPSrm },
471 { X86::CMOVA16rr, X86::CMOVA16rm },
472 { X86::CMOVA32rr, X86::CMOVA32rm },
473 { X86::CMOVA64rr, X86::CMOVA64rm },
474 { X86::CMOVAE16rr, X86::CMOVAE16rm },
475 { X86::CMOVAE32rr, X86::CMOVAE32rm },
476 { X86::CMOVAE64rr, X86::CMOVAE64rm },
477 { X86::CMOVB16rr, X86::CMOVB16rm },
478 { X86::CMOVB32rr, X86::CMOVB32rm },
479 { X86::CMOVB64rr, X86::CMOVB64rm },
480 { X86::CMOVBE16rr, X86::CMOVBE16rm },
481 { X86::CMOVBE32rr, X86::CMOVBE32rm },
482 { X86::CMOVBE64rr, X86::CMOVBE64rm },
483 { X86::CMOVE16rr, X86::CMOVE16rm },
484 { X86::CMOVE32rr, X86::CMOVE32rm },
485 { X86::CMOVE64rr, X86::CMOVE64rm },
486 { X86::CMOVG16rr, X86::CMOVG16rm },
487 { X86::CMOVG32rr, X86::CMOVG32rm },
488 { X86::CMOVG64rr, X86::CMOVG64rm },
489 { X86::CMOVGE16rr, X86::CMOVGE16rm },
490 { X86::CMOVGE32rr, X86::CMOVGE32rm },
491 { X86::CMOVGE64rr, X86::CMOVGE64rm },
492 { X86::CMOVL16rr, X86::CMOVL16rm },
493 { X86::CMOVL32rr, X86::CMOVL32rm },
494 { X86::CMOVL64rr, X86::CMOVL64rm },
495 { X86::CMOVLE16rr, X86::CMOVLE16rm },
496 { X86::CMOVLE32rr, X86::CMOVLE32rm },
497 { X86::CMOVLE64rr, X86::CMOVLE64rm },
498 { X86::CMOVNE16rr, X86::CMOVNE16rm },
499 { X86::CMOVNE32rr, X86::CMOVNE32rm },
500 { X86::CMOVNE64rr, X86::CMOVNE64rm },
Dan Gohmanac441ab2009-01-07 00:44:53 +0000501 { X86::CMOVNO16rr, X86::CMOVNO16rm },
502 { X86::CMOVNO32rr, X86::CMOVNO32rm },
503 { X86::CMOVNO64rr, X86::CMOVNO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000504 { X86::CMOVNP16rr, X86::CMOVNP16rm },
505 { X86::CMOVNP32rr, X86::CMOVNP32rm },
506 { X86::CMOVNP64rr, X86::CMOVNP64rm },
507 { X86::CMOVNS16rr, X86::CMOVNS16rm },
508 { X86::CMOVNS32rr, X86::CMOVNS32rm },
509 { X86::CMOVNS64rr, X86::CMOVNS64rm },
Dan Gohman12fd4d72009-01-07 00:35:10 +0000510 { X86::CMOVO16rr, X86::CMOVO16rm },
511 { X86::CMOVO32rr, X86::CMOVO32rm },
512 { X86::CMOVO64rr, X86::CMOVO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000513 { X86::CMOVP16rr, X86::CMOVP16rm },
514 { X86::CMOVP32rr, X86::CMOVP32rm },
515 { X86::CMOVP64rr, X86::CMOVP64rm },
516 { X86::CMOVS16rr, X86::CMOVS16rm },
517 { X86::CMOVS32rr, X86::CMOVS32rm },
518 { X86::CMOVS64rr, X86::CMOVS64rm },
519 { X86::CMPPDrri, X86::CMPPDrmi },
520 { X86::CMPPSrri, X86::CMPPSrmi },
521 { X86::CMPSDrr, X86::CMPSDrm },
522 { X86::CMPSSrr, X86::CMPSSrm },
523 { X86::DIVPDrr, X86::DIVPDrm },
524 { X86::DIVPSrr, X86::DIVPSrm },
525 { X86::DIVSDrr, X86::DIVSDrm },
526 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000527 { X86::FsANDNPDrr, X86::FsANDNPDrm },
528 { X86::FsANDNPSrr, X86::FsANDNPSrm },
529 { X86::FsANDPDrr, X86::FsANDPDrm },
530 { X86::FsANDPSrr, X86::FsANDPSrm },
531 { X86::FsORPDrr, X86::FsORPDrm },
532 { X86::FsORPSrr, X86::FsORPSrm },
533 { X86::FsXORPDrr, X86::FsXORPDrm },
534 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000535 { X86::HADDPDrr, X86::HADDPDrm },
536 { X86::HADDPSrr, X86::HADDPSrm },
537 { X86::HSUBPDrr, X86::HSUBPDrm },
538 { X86::HSUBPSrr, X86::HSUBPSrm },
539 { X86::IMUL16rr, X86::IMUL16rm },
540 { X86::IMUL32rr, X86::IMUL32rm },
541 { X86::IMUL64rr, X86::IMUL64rm },
542 { X86::MAXPDrr, X86::MAXPDrm },
543 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
544 { X86::MAXPSrr, X86::MAXPSrm },
545 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
546 { X86::MAXSDrr, X86::MAXSDrm },
547 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
548 { X86::MAXSSrr, X86::MAXSSrm },
549 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
550 { X86::MINPDrr, X86::MINPDrm },
551 { X86::MINPDrr_Int, X86::MINPDrm_Int },
552 { X86::MINPSrr, X86::MINPSrm },
553 { X86::MINPSrr_Int, X86::MINPSrm_Int },
554 { X86::MINSDrr, X86::MINSDrm },
555 { X86::MINSDrr_Int, X86::MINSDrm_Int },
556 { X86::MINSSrr, X86::MINSSrm },
557 { X86::MINSSrr_Int, X86::MINSSrm_Int },
558 { X86::MULPDrr, X86::MULPDrm },
559 { X86::MULPSrr, X86::MULPSrm },
560 { X86::MULSDrr, X86::MULSDrm },
561 { X86::MULSSrr, X86::MULSSrm },
562 { X86::OR16rr, X86::OR16rm },
563 { X86::OR32rr, X86::OR32rm },
564 { X86::OR64rr, X86::OR64rm },
565 { X86::OR8rr, X86::OR8rm },
566 { X86::ORPDrr, X86::ORPDrm },
567 { X86::ORPSrr, X86::ORPSrm },
568 { X86::PACKSSDWrr, X86::PACKSSDWrm },
569 { X86::PACKSSWBrr, X86::PACKSSWBrm },
570 { X86::PACKUSWBrr, X86::PACKUSWBrm },
571 { X86::PADDBrr, X86::PADDBrm },
572 { X86::PADDDrr, X86::PADDDrm },
573 { X86::PADDQrr, X86::PADDQrm },
574 { X86::PADDSBrr, X86::PADDSBrm },
575 { X86::PADDSWrr, X86::PADDSWrm },
576 { X86::PADDWrr, X86::PADDWrm },
577 { X86::PANDNrr, X86::PANDNrm },
578 { X86::PANDrr, X86::PANDrm },
579 { X86::PAVGBrr, X86::PAVGBrm },
580 { X86::PAVGWrr, X86::PAVGWrm },
581 { X86::PCMPEQBrr, X86::PCMPEQBrm },
582 { X86::PCMPEQDrr, X86::PCMPEQDrm },
583 { X86::PCMPEQWrr, X86::PCMPEQWrm },
584 { X86::PCMPGTBrr, X86::PCMPGTBrm },
585 { X86::PCMPGTDrr, X86::PCMPGTDrm },
586 { X86::PCMPGTWrr, X86::PCMPGTWrm },
587 { X86::PINSRWrri, X86::PINSRWrmi },
588 { X86::PMADDWDrr, X86::PMADDWDrm },
589 { X86::PMAXSWrr, X86::PMAXSWrm },
590 { X86::PMAXUBrr, X86::PMAXUBrm },
591 { X86::PMINSWrr, X86::PMINSWrm },
592 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000593 { X86::PMULDQrr, X86::PMULDQrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000594 { X86::PMULHUWrr, X86::PMULHUWrm },
595 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000596 { X86::PMULLDrr, X86::PMULLDrm },
597 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000598 { X86::PMULLWrr, X86::PMULLWrm },
599 { X86::PMULUDQrr, X86::PMULUDQrm },
600 { X86::PORrr, X86::PORrm },
601 { X86::PSADBWrr, X86::PSADBWrm },
602 { X86::PSLLDrr, X86::PSLLDrm },
603 { X86::PSLLQrr, X86::PSLLQrm },
604 { X86::PSLLWrr, X86::PSLLWrm },
605 { X86::PSRADrr, X86::PSRADrm },
606 { X86::PSRAWrr, X86::PSRAWrm },
607 { X86::PSRLDrr, X86::PSRLDrm },
608 { X86::PSRLQrr, X86::PSRLQrm },
609 { X86::PSRLWrr, X86::PSRLWrm },
610 { X86::PSUBBrr, X86::PSUBBrm },
611 { X86::PSUBDrr, X86::PSUBDrm },
612 { X86::PSUBSBrr, X86::PSUBSBrm },
613 { X86::PSUBSWrr, X86::PSUBSWrm },
614 { X86::PSUBWrr, X86::PSUBWrm },
615 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
616 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
617 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
618 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
619 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
620 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
621 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
622 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
623 { X86::PXORrr, X86::PXORrm },
624 { X86::SBB32rr, X86::SBB32rm },
625 { X86::SBB64rr, X86::SBB64rm },
626 { X86::SHUFPDrri, X86::SHUFPDrmi },
627 { X86::SHUFPSrri, X86::SHUFPSrmi },
628 { X86::SUB16rr, X86::SUB16rm },
629 { X86::SUB32rr, X86::SUB32rm },
630 { X86::SUB64rr, X86::SUB64rm },
631 { X86::SUB8rr, X86::SUB8rm },
632 { X86::SUBPDrr, X86::SUBPDrm },
633 { X86::SUBPSrr, X86::SUBPSrm },
634 { X86::SUBSDrr, X86::SUBSDrm },
635 { X86::SUBSSrr, X86::SUBSSrm },
636 // FIXME: TEST*rr -> swapped operand of TEST*mr.
637 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
638 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
639 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
640 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
641 { X86::XOR16rr, X86::XOR16rm },
642 { X86::XOR32rr, X86::XOR32rm },
643 { X86::XOR64rr, X86::XOR64rm },
644 { X86::XOR8rr, X86::XOR8rm },
645 { X86::XORPDrr, X86::XORPDrm },
646 { X86::XORPSrr, X86::XORPSrm }
647 };
648
649 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
650 unsigned RegOp = OpTbl2[i][0];
651 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000652 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
653 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000654 assert(false && "Duplicated entries?");
655 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
656 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000657 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000658 AmbEntries.push_back(MemOp);
659 }
660
661 // Remove ambiguous entries.
662 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000663}
664
665bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
666 unsigned& sourceReg,
667 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000668 switch (MI.getOpcode()) {
669 default:
670 return false;
671 case X86::MOV8rr:
672 case X86::MOV16rr:
673 case X86::MOV32rr:
674 case X86::MOV64rr:
675 case X86::MOV16to16_:
676 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000677 case X86::MOVSSrr:
678 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000679
680 // FP Stack register class copies
681 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
682 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
683 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
684
Chris Lattnerff195282008-03-11 19:28:17 +0000685 case X86::FsMOVAPSrr:
686 case X86::FsMOVAPDrr:
687 case X86::MOVAPSrr:
688 case X86::MOVAPDrr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000689 case X86::MOVDQArr:
Chris Lattnerff195282008-03-11 19:28:17 +0000690 case X86::MOVSS2PSrr:
691 case X86::MOVSD2PDrr:
692 case X86::MOVPS2SSrr:
693 case X86::MOVPD2SDrr:
694 case X86::MMX_MOVD64rr:
695 case X86::MMX_MOVQ64rr:
696 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000697 MI.getOperand(0).isReg() &&
698 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000699 "invalid register-register move instruction");
700 sourceReg = MI.getOperand(1).getReg();
701 destReg = MI.getOperand(0).getReg();
702 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000703 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704}
705
Dan Gohman90feee22008-11-18 19:49:32 +0000706unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 int &FrameIndex) const {
708 switch (MI->getOpcode()) {
709 default: break;
710 case X86::MOV8rm:
711 case X86::MOV16rm:
712 case X86::MOV16_rm:
713 case X86::MOV32rm:
714 case X86::MOV32_rm:
715 case X86::MOV64rm:
716 case X86::LD_Fp64m:
717 case X86::MOVSSrm:
718 case X86::MOVSDrm:
719 case X86::MOVAPSrm:
720 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000721 case X86::MOVDQArm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000722 case X86::MMX_MOVD64rm:
723 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000724 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
725 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000726 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000727 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000728 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000729 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000730 return MI->getOperand(0).getReg();
731 }
732 break;
733 }
734 return 0;
735}
736
Dan Gohman90feee22008-11-18 19:49:32 +0000737unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000738 int &FrameIndex) const {
739 switch (MI->getOpcode()) {
740 default: break;
741 case X86::MOV8mr:
742 case X86::MOV16mr:
743 case X86::MOV16_mr:
744 case X86::MOV32mr:
745 case X86::MOV32_mr:
746 case X86::MOV64mr:
747 case X86::ST_FpP64m:
748 case X86::MOVSSmr:
749 case X86::MOVSDmr:
750 case X86::MOVAPSmr:
751 case X86::MOVAPDmr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000752 case X86::MOVDQAmr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000753 case X86::MMX_MOVD64mr:
754 case X86::MMX_MOVQ64mr:
755 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000756 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
757 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000758 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000759 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000760 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000761 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000762 return MI->getOperand(4).getReg();
763 }
764 break;
765 }
766 return 0;
767}
768
769
Evan Chengb819a512008-03-27 01:45:11 +0000770/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
771/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000772static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000773 bool isPICBase = false;
774 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
775 E = MRI.def_end(); I != E; ++I) {
776 MachineInstr *DefMI = I.getOperand().getParent();
777 if (DefMI->getOpcode() != X86::MOVPC32r)
778 return false;
779 assert(!isPICBase && "More than one PIC base?");
780 isPICBase = true;
781 }
782 return isPICBase;
783}
Evan Chenge9caab52008-03-31 07:54:19 +0000784
785/// isGVStub - Return true if the GV requires an extra load to get the
786/// real address.
787static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
788 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
789}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000790
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000791bool
792X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000793 switch (MI->getOpcode()) {
794 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000795 case X86::MOV8rm:
796 case X86::MOV16rm:
797 case X86::MOV16_rm:
798 case X86::MOV32rm:
799 case X86::MOV32_rm:
800 case X86::MOV64rm:
801 case X86::LD_Fp64m:
802 case X86::MOVSSrm:
803 case X86::MOVSDrm:
804 case X86::MOVAPSrm:
805 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000806 case X86::MOVDQArm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000807 case X86::MMX_MOVD64rm:
808 case X86::MMX_MOVQ64rm: {
809 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000810 if (MI->getOperand(1).isReg() &&
811 MI->getOperand(2).isImm() &&
812 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
813 (MI->getOperand(4).isCPI() ||
814 (MI->getOperand(4).isGlobal() &&
Evan Chenge9caab52008-03-31 07:54:19 +0000815 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000816 unsigned BaseReg = MI->getOperand(1).getReg();
817 if (BaseReg == 0)
818 return true;
819 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000820 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000821 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000822 const MachineFunction &MF = *MI->getParent()->getParent();
823 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000824 bool isPICBase = false;
825 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
826 E = MRI.def_end(); I != E; ++I) {
827 MachineInstr *DefMI = I.getOperand().getParent();
828 if (DefMI->getOpcode() != X86::MOVPC32r)
829 return false;
830 assert(!isPICBase && "More than one PIC base?");
831 isPICBase = true;
832 }
833 return isPICBase;
834 }
835 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000836 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000837
838 case X86::LEA32r:
839 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000840 if (MI->getOperand(2).isImm() &&
841 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
842 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000843 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000844 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000845 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000846 unsigned BaseReg = MI->getOperand(1).getReg();
847 if (BaseReg == 0)
848 return true;
849 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000850 const MachineFunction &MF = *MI->getParent()->getParent();
851 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000852 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000853 }
854 return false;
855 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000856 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000857
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000858 // All other instructions marked M_REMATERIALIZABLE are always trivially
859 // rematerializable.
860 return true;
861}
862
Evan Chengc564ded2008-06-24 07:10:51 +0000863/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
864/// would clobber the EFLAGS condition register. Note the result may be
865/// conservative. If it cannot definitely determine the safety after visiting
866/// two instructions it assumes it's not safe.
867static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
868 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000869 // It's always safe to clobber EFLAGS at the end of a block.
870 if (I == MBB.end())
871 return true;
872
Evan Chengc564ded2008-06-24 07:10:51 +0000873 // For compile time consideration, if we are not able to determine the
874 // safety after visiting 2 instructions, we will assume it's not safe.
875 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000876 bool SeenDef = false;
877 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
878 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000879 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000880 continue;
881 if (MO.getReg() == X86::EFLAGS) {
882 if (MO.isUse())
883 return false;
884 SeenDef = true;
885 }
886 }
887
888 if (SeenDef)
889 // This instruction defines EFLAGS, no need to look any further.
890 return true;
891 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000892
893 // If we make it to the end of the block, it's safe to clobber EFLAGS.
894 if (I == MBB.end())
895 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000896 }
897
898 // Conservative answer.
899 return false;
900}
901
Evan Cheng7d73efc2008-03-31 20:40:39 +0000902void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
903 MachineBasicBlock::iterator I,
904 unsigned DestReg,
905 const MachineInstr *Orig) const {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000906 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000907 ? Orig->getOperand(0).getSubReg() : 0;
908 bool ChangeSubIdx = SubIdx != 0;
909 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
910 DestReg = RI.getSubReg(DestReg, SubIdx);
911 SubIdx = 0;
912 }
913
Evan Cheng7d73efc2008-03-31 20:40:39 +0000914 // MOV32r0 etc. are implemented with xor which clobbers condition code.
915 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000916 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000917 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000918 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000919 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000920 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000921 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000922 case X86::MOV64r0: {
923 if (!isSafeToClobberEFLAGS(MBB, I)) {
924 unsigned Opc = 0;
925 switch (Orig->getOpcode()) {
926 default: break;
927 case X86::MOV8r0: Opc = X86::MOV8ri; break;
928 case X86::MOV16r0: Opc = X86::MOV16ri; break;
929 case X86::MOV32r0: Opc = X86::MOV32ri; break;
930 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
931 }
932 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
933 Emitted = true;
934 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000935 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000936 }
937 }
938
939 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000940 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000941 MI->getOperand(0).setReg(DestReg);
942 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000943 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000944
945 if (ChangeSubIdx) {
946 MachineInstr *NewMI = prior(I);
947 NewMI->getOperand(0).setSubReg(SubIdx);
948 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000949}
950
Chris Lattnerea3a1812008-01-10 23:08:24 +0000951/// isInvariantLoad - Return true if the specified instruction (which is marked
952/// mayLoad) is loading from a location whose value is invariant across the
953/// function. For example, loading a value from the constant pool or from
954/// from the argument area of a function if it does not change. This should
955/// only return true of *all* loads the instruction does are invariant (if it
956/// does multiple loads).
Dan Gohman90feee22008-11-18 19:49:32 +0000957bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000958 // This code cares about loads from three cases: constant pool entries,
959 // invariant argument slots, and global stubs. In order to handle these cases
960 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000961 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000962 // none of these three cases is ever used as anything other than a load base
963 // and X86 doesn't have any instructions that load from multiple places.
964
965 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
966 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000967 // Loads from constant pools are trivially invariant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000968 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000969 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000970
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000971 if (MO.isGlobal())
Evan Chenge9caab52008-03-31 07:54:19 +0000972 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000973
974 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000975 if (MO.isFI()) {
Chris Lattner0875b572008-01-12 00:35:08 +0000976 const MachineFrameInfo &MFI =
977 *MI->getParent()->getParent()->getFrameInfo();
978 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000979 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
980 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000981 }
Chris Lattner0875b572008-01-12 00:35:08 +0000982
Chris Lattnerea3a1812008-01-10 23:08:24 +0000983 // All other instances of these instructions are presumed to have other
984 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000985 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000986}
987
Evan Chengfa1a4952007-10-05 08:04:01 +0000988/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
989/// is not marked dead.
990static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000991 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
992 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000993 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000994 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
995 return true;
996 }
997 }
998 return false;
999}
1000
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001001/// convertToThreeAddress - This method must be implemented by targets that
1002/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1003/// may be able to convert a two-address instruction into a true
1004/// three-address instruction on demand. This allows the X86 target (for
1005/// example) to convert ADD and SHL instructions into LEA instructions if they
1006/// would require register copies due to two-addressness.
1007///
1008/// This method returns a null pointer if the transformation cannot be
1009/// performed, otherwise it returns the new instruction.
1010///
1011MachineInstr *
1012X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1013 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +00001014 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001015 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +00001016 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001017 // All instructions input are two-addr instructions. Get the known operands.
1018 unsigned Dest = MI->getOperand(0).getReg();
1019 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +00001020 bool isDead = MI->getOperand(0).isDead();
1021 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001022
1023 MachineInstr *NewMI = NULL;
1024 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1025 // we have better subtarget support, enable the 16-bit LEA generation here.
1026 bool DisableLEA16 = true;
1027
Evan Cheng6b96ed32007-10-05 20:34:26 +00001028 unsigned MIOpc = MI->getOpcode();
1029 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001030 case X86::SHUFPSrri: {
1031 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1032 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1033
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001034 unsigned B = MI->getOperand(1).getReg();
1035 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001036 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001037 unsigned A = MI->getOperand(0).getReg();
1038 unsigned M = MI->getOperand(3).getImm();
Dan Gohman221a4372008-07-07 23:14:23 +00001039 NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001040 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 break;
1042 }
1043 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001044 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001045 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1046 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047 unsigned ShAmt = MI->getOperand(2).getImm();
1048 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001049
Dan Gohman221a4372008-07-07 23:14:23 +00001050 NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001051 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001052 break;
1053 }
1054 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001055 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001056 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1057 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001058 unsigned ShAmt = MI->getOperand(2).getImm();
1059 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001060
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001061 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1062 X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001063 NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001064 .addReg(0).addImm(1 << ShAmt)
1065 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001066 break;
1067 }
1068 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001069 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001070 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1071 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001072 unsigned ShAmt = MI->getOperand(2).getImm();
1073 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001074
Christopher Lamb380c6272007-08-10 21:18:25 +00001075 if (DisableLEA16) {
1076 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001077 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001078 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1079 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001080 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1081 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001082
Christopher Lamb8d226a22008-03-11 10:27:36 +00001083 // Build and insert into an implicit UNDEF value. This is OK because
1084 // well be shifting and then extracting the lower 16-bits.
Dan Gohman221a4372008-07-07 23:14:23 +00001085 BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1086 MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001087 .addReg(leaInReg).addReg(Src, false, false, isKill)
1088 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001089
Dan Gohman221a4372008-07-07 23:14:23 +00001090 NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001091 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001092
Dan Gohman221a4372008-07-07 23:14:23 +00001093 MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001094 .addReg(Dest, true, false, false, isDead)
1095 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Owen Andersonc6959722008-07-02 23:41:07 +00001096 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001097 // Update live variables
1098 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1099 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1100 if (isKill)
1101 LV->replaceKillInstruction(Src, MI, InsMI);
1102 if (isDead)
1103 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001104 }
Evan Chenge52c1912008-07-03 09:09:37 +00001105 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001106 } else {
Dan Gohman221a4372008-07-07 23:14:23 +00001107 NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001108 .addReg(0).addImm(1 << ShAmt)
1109 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001110 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001111 break;
1112 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001113 default: {
1114 // The following opcodes also sets the condition code register(s). Only
1115 // convert them to equivalent lea if the condition code register def's
1116 // are dead!
1117 if (hasLiveCondCodeDef(MI))
1118 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001119
Evan Chenga28a9562007-10-09 07:14:53 +00001120 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001121 switch (MIOpc) {
1122 default: return 0;
1123 case X86::INC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001124 case X86::INC32r:
1125 case X86::INC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001126 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001127 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1128 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001129 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001130 .addReg(Dest, true, false, false, isDead),
1131 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001132 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001133 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001134 case X86::INC16r:
1135 case X86::INC64_16r:
1136 if (DisableLEA16) return 0;
1137 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001138 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001139 .addReg(Dest, true, false, false, isDead),
1140 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001141 break;
1142 case X86::DEC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001143 case X86::DEC32r:
1144 case X86::DEC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001145 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001146 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1147 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001148 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001149 .addReg(Dest, true, false, false, isDead),
1150 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001151 break;
1152 }
1153 case X86::DEC16r:
1154 case X86::DEC64_16r:
1155 if (DisableLEA16) return 0;
1156 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001157 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001158 .addReg(Dest, true, false, false, isDead),
1159 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001160 break;
1161 case X86::ADD64rr:
1162 case X86::ADD32rr: {
1163 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001164 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1165 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001166 unsigned Src2 = MI->getOperand(2).getReg();
1167 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001168 NewMI = addRegReg(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001169 .addReg(Dest, true, false, false, isDead),
1170 Src, isKill, Src2, isKill2);
1171 if (LV && isKill2)
1172 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001173 break;
1174 }
Evan Chenge52c1912008-07-03 09:09:37 +00001175 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001176 if (DisableLEA16) return 0;
1177 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001178 unsigned Src2 = MI->getOperand(2).getReg();
1179 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001180 NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001181 .addReg(Dest, true, false, false, isDead),
1182 Src, isKill, Src2, isKill2);
1183 if (LV && isKill2)
1184 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001185 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001186 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001187 case X86::ADD64ri32:
1188 case X86::ADD64ri8:
1189 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001190 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001191 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
Evan Chenge52c1912008-07-03 09:09:37 +00001192 .addReg(Dest, true, false, false, isDead),
1193 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001194 break;
1195 case X86::ADD32ri:
1196 case X86::ADD32ri8:
1197 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001198 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001199 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001200 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001201 .addReg(Dest, true, false, false, isDead),
1202 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001203 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001204 break;
1205 case X86::ADD16ri:
1206 case X86::ADD16ri8:
1207 if (DisableLEA16) return 0;
1208 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001209 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001210 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001211 .addReg(Dest, true, false, false, isDead),
1212 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001213 break;
1214 case X86::SHL16ri:
1215 if (DisableLEA16) return 0;
1216 case X86::SHL32ri:
1217 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001218 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001219 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001220 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001221 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1222 X86AddressMode AM;
1223 AM.Scale = 1 << ShAmt;
1224 AM.IndexReg = Src;
1225 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001226 : (MIOpc == X86::SHL32ri
1227 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Dan Gohman221a4372008-07-07 23:14:23 +00001228 NewMI = addFullAddress(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001229 .addReg(Dest, true, false, false, isDead), AM);
1230 if (isKill)
1231 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001232 }
1233 break;
1234 }
1235 }
1236 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001237 }
1238
Evan Chengc3cb24d2008-02-07 08:29:53 +00001239 if (!NewMI) return 0;
1240
Evan Chenge52c1912008-07-03 09:09:37 +00001241 if (LV) { // Update live variables
1242 if (isKill)
1243 LV->replaceKillInstruction(Src, MI, NewMI);
1244 if (isDead)
1245 LV->replaceKillInstruction(Dest, MI, NewMI);
1246 }
1247
Evan Cheng6b96ed32007-10-05 20:34:26 +00001248 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 return NewMI;
1250}
1251
1252/// commuteInstruction - We have a few instructions that must be hacked on to
1253/// commute them.
1254///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001255MachineInstr *
1256X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001257 switch (MI->getOpcode()) {
1258 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1259 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1260 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001261 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1262 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1263 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001264 unsigned Opc;
1265 unsigned Size;
1266 switch (MI->getOpcode()) {
1267 default: assert(0 && "Unreachable!");
1268 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1269 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1270 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1271 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001272 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1273 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001274 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001275 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001276 if (NewMI) {
1277 MachineFunction &MF = *MI->getParent()->getParent();
1278 MI = MF.CloneMachineInstr(MI);
1279 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001280 }
Dan Gohman921581d2008-10-17 01:23:35 +00001281 MI->setDesc(get(Opc));
1282 MI->getOperand(3).setImm(Size-Amt);
1283 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001284 }
Evan Cheng926658c2007-10-05 23:13:21 +00001285 case X86::CMOVB16rr:
1286 case X86::CMOVB32rr:
1287 case X86::CMOVB64rr:
1288 case X86::CMOVAE16rr:
1289 case X86::CMOVAE32rr:
1290 case X86::CMOVAE64rr:
1291 case X86::CMOVE16rr:
1292 case X86::CMOVE32rr:
1293 case X86::CMOVE64rr:
1294 case X86::CMOVNE16rr:
1295 case X86::CMOVNE32rr:
1296 case X86::CMOVNE64rr:
1297 case X86::CMOVBE16rr:
1298 case X86::CMOVBE32rr:
1299 case X86::CMOVBE64rr:
1300 case X86::CMOVA16rr:
1301 case X86::CMOVA32rr:
1302 case X86::CMOVA64rr:
1303 case X86::CMOVL16rr:
1304 case X86::CMOVL32rr:
1305 case X86::CMOVL64rr:
1306 case X86::CMOVGE16rr:
1307 case X86::CMOVGE32rr:
1308 case X86::CMOVGE64rr:
1309 case X86::CMOVLE16rr:
1310 case X86::CMOVLE32rr:
1311 case X86::CMOVLE64rr:
1312 case X86::CMOVG16rr:
1313 case X86::CMOVG32rr:
1314 case X86::CMOVG64rr:
1315 case X86::CMOVS16rr:
1316 case X86::CMOVS32rr:
1317 case X86::CMOVS64rr:
1318 case X86::CMOVNS16rr:
1319 case X86::CMOVNS32rr:
1320 case X86::CMOVNS64rr:
1321 case X86::CMOVP16rr:
1322 case X86::CMOVP32rr:
1323 case X86::CMOVP64rr:
1324 case X86::CMOVNP16rr:
1325 case X86::CMOVNP32rr:
Dan Gohman12fd4d72009-01-07 00:35:10 +00001326 case X86::CMOVNP64rr:
1327 case X86::CMOVO16rr:
1328 case X86::CMOVO32rr:
1329 case X86::CMOVO64rr:
1330 case X86::CMOVNO16rr:
1331 case X86::CMOVNO32rr:
1332 case X86::CMOVNO64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001333 unsigned Opc = 0;
1334 switch (MI->getOpcode()) {
1335 default: break;
1336 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1337 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1338 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1339 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1340 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1341 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1342 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1343 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1344 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1345 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1346 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1347 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1348 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1349 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1350 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1351 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1352 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1353 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1354 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1355 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1356 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1357 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1358 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1359 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1360 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1361 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1362 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1363 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1364 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1365 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1366 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1367 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1368 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1369 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1370 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1371 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1372 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1373 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1374 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1375 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1376 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1377 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001378 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1379 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
1380 case X86::CMOVO64rr: Opc = X86::CMOVNO32rr; break;
1381 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1382 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1383 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001384 }
Dan Gohman921581d2008-10-17 01:23:35 +00001385 if (NewMI) {
1386 MachineFunction &MF = *MI->getParent()->getParent();
1387 MI = MF.CloneMachineInstr(MI);
1388 NewMI = false;
1389 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001390 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001391 // Fallthrough intended.
1392 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001393 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001394 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001395 }
1396}
1397
1398static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1399 switch (BrOpc) {
1400 default: return X86::COND_INVALID;
1401 case X86::JE: return X86::COND_E;
1402 case X86::JNE: return X86::COND_NE;
1403 case X86::JL: return X86::COND_L;
1404 case X86::JLE: return X86::COND_LE;
1405 case X86::JG: return X86::COND_G;
1406 case X86::JGE: return X86::COND_GE;
1407 case X86::JB: return X86::COND_B;
1408 case X86::JBE: return X86::COND_BE;
1409 case X86::JA: return X86::COND_A;
1410 case X86::JAE: return X86::COND_AE;
1411 case X86::JS: return X86::COND_S;
1412 case X86::JNS: return X86::COND_NS;
1413 case X86::JP: return X86::COND_P;
1414 case X86::JNP: return X86::COND_NP;
1415 case X86::JO: return X86::COND_O;
1416 case X86::JNO: return X86::COND_NO;
1417 }
1418}
1419
1420unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1421 switch (CC) {
1422 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001423 case X86::COND_E: return X86::JE;
1424 case X86::COND_NE: return X86::JNE;
1425 case X86::COND_L: return X86::JL;
1426 case X86::COND_LE: return X86::JLE;
1427 case X86::COND_G: return X86::JG;
1428 case X86::COND_GE: return X86::JGE;
1429 case X86::COND_B: return X86::JB;
1430 case X86::COND_BE: return X86::JBE;
1431 case X86::COND_A: return X86::JA;
1432 case X86::COND_AE: return X86::JAE;
1433 case X86::COND_S: return X86::JS;
1434 case X86::COND_NS: return X86::JNS;
1435 case X86::COND_P: return X86::JP;
1436 case X86::COND_NP: return X86::JNP;
1437 case X86::COND_O: return X86::JO;
1438 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001439 }
1440}
1441
1442/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1443/// e.g. turning COND_E to COND_NE.
1444X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1445 switch (CC) {
1446 default: assert(0 && "Illegal condition code!");
1447 case X86::COND_E: return X86::COND_NE;
1448 case X86::COND_NE: return X86::COND_E;
1449 case X86::COND_L: return X86::COND_GE;
1450 case X86::COND_LE: return X86::COND_G;
1451 case X86::COND_G: return X86::COND_LE;
1452 case X86::COND_GE: return X86::COND_L;
1453 case X86::COND_B: return X86::COND_AE;
1454 case X86::COND_BE: return X86::COND_A;
1455 case X86::COND_A: return X86::COND_BE;
1456 case X86::COND_AE: return X86::COND_B;
1457 case X86::COND_S: return X86::COND_NS;
1458 case X86::COND_NS: return X86::COND_S;
1459 case X86::COND_P: return X86::COND_NP;
1460 case X86::COND_NP: return X86::COND_P;
1461 case X86::COND_O: return X86::COND_NO;
1462 case X86::COND_NO: return X86::COND_O;
1463 }
1464}
1465
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001466bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001467 const TargetInstrDesc &TID = MI->getDesc();
1468 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001469
1470 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001471 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001472 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001473 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001474 return true;
1475 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001476}
1477
Evan Cheng12515792007-07-26 17:32:14 +00001478// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1479static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1480 const X86InstrInfo &TII) {
1481 if (MI->getOpcode() == X86::FP_REG_KILL)
1482 return false;
1483 return TII.isUnpredicatedTerminator(MI);
1484}
1485
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001486bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1487 MachineBasicBlock *&TBB,
1488 MachineBasicBlock *&FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001489 SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001490 // Start from the bottom of the block and work up, examining the
1491 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001492 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001493 while (I != MBB.begin()) {
1494 --I;
1495 // Working from the bottom, when we see a non-terminator
1496 // instruction, we're done.
1497 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1498 break;
1499 // A terminator that isn't a branch can't easily be handled
1500 // by this analysis.
1501 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001502 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001503 // Handle unconditional branches.
1504 if (I->getOpcode() == X86::JMP) {
1505 // If the block has any instructions after a JMP, delete them.
1506 while (next(I) != MBB.end())
1507 next(I)->eraseFromParent();
1508 Cond.clear();
1509 FBB = 0;
1510 // Delete the JMP if it's equivalent to a fall-through.
1511 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1512 TBB = 0;
1513 I->eraseFromParent();
1514 I = MBB.end();
1515 continue;
1516 }
1517 // TBB is used to indicate the unconditinal destination.
1518 TBB = I->getOperand(0).getMBB();
1519 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001520 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001521 // Handle conditional branches.
1522 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001523 if (BranchCode == X86::COND_INVALID)
1524 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001525 // Working from the bottom, handle the first conditional branch.
1526 if (Cond.empty()) {
1527 FBB = TBB;
1528 TBB = I->getOperand(0).getMBB();
1529 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1530 continue;
1531 }
1532 // Handle subsequent conditional branches. Only handle the case
1533 // where all conditional branches branch to the same destination
1534 // and their condition opcodes fit one of the special
1535 // multi-branch idioms.
1536 assert(Cond.size() == 1);
1537 assert(TBB);
1538 // Only handle the case where all conditional branches branch to
1539 // the same destination.
1540 if (TBB != I->getOperand(0).getMBB())
1541 return true;
1542 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1543 // If the conditions are the same, we can leave them alone.
1544 if (OldBranchCode == BranchCode)
1545 continue;
1546 // If they differ, see if they fit one of the known patterns.
1547 // Theoretically we could handle more patterns here, but
1548 // we shouldn't expect to see them if instruction selection
1549 // has done a reasonable job.
1550 if ((OldBranchCode == X86::COND_NP &&
1551 BranchCode == X86::COND_E) ||
1552 (OldBranchCode == X86::COND_E &&
1553 BranchCode == X86::COND_NP))
1554 BranchCode = X86::COND_NP_OR_E;
1555 else if ((OldBranchCode == X86::COND_P &&
1556 BranchCode == X86::COND_NE) ||
1557 (OldBranchCode == X86::COND_NE &&
1558 BranchCode == X86::COND_P))
1559 BranchCode = X86::COND_NE_OR_P;
1560 else
1561 return true;
1562 // Update the MachineOperand.
1563 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001564 }
1565
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001566 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001567}
1568
1569unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1570 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001571 unsigned Count = 0;
1572
1573 while (I != MBB.begin()) {
1574 --I;
1575 if (I->getOpcode() != X86::JMP &&
1576 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1577 break;
1578 // Remove the branch.
1579 I->eraseFromParent();
1580 I = MBB.end();
1581 ++Count;
1582 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001583
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001584 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001585}
1586
Owen Anderson81875432008-01-01 21:11:32 +00001587static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
Dan Gohman46b948e2008-10-16 01:49:15 +00001588 const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001589 if (MO.isReg())
Owen Anderson81875432008-01-01 21:11:32 +00001590 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001591 MO.isKill(), MO.isDead(), MO.getSubReg());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001592 else if (MO.isImm())
Owen Anderson81875432008-01-01 21:11:32 +00001593 MIB = MIB.addImm(MO.getImm());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001594 else if (MO.isFI())
Owen Anderson81875432008-01-01 21:11:32 +00001595 MIB = MIB.addFrameIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001596 else if (MO.isGlobal())
Owen Anderson81875432008-01-01 21:11:32 +00001597 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001598 else if (MO.isCPI())
Owen Anderson81875432008-01-01 21:11:32 +00001599 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001600 else if (MO.isJTI())
Owen Anderson81875432008-01-01 21:11:32 +00001601 MIB = MIB.addJumpTableIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001602 else if (MO.isSymbol())
Owen Anderson81875432008-01-01 21:11:32 +00001603 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1604 else
1605 assert(0 && "Unknown operand for X86InstrAddOperand!");
1606
1607 return MIB;
1608}
1609
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001610unsigned
1611X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1612 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001613 const SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001614 // Shouldn't be a fall through.
1615 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1616 assert((Cond.size() == 1 || Cond.size() == 0) &&
1617 "X86 branch conditions have one component!");
1618
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001619 if (Cond.empty()) {
1620 // Unconditional branch?
1621 assert(!FBB && "Unconditional branch with multiple successors!");
1622 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001623 return 1;
1624 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001625
1626 // Conditional branch.
1627 unsigned Count = 0;
1628 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1629 switch (CC) {
1630 case X86::COND_NP_OR_E:
1631 // Synthesize NP_OR_E with two branches.
1632 BuildMI(&MBB, get(X86::JNP)).addMBB(TBB);
1633 ++Count;
1634 BuildMI(&MBB, get(X86::JE)).addMBB(TBB);
1635 ++Count;
1636 break;
1637 case X86::COND_NE_OR_P:
1638 // Synthesize NE_OR_P with two branches.
1639 BuildMI(&MBB, get(X86::JNE)).addMBB(TBB);
1640 ++Count;
1641 BuildMI(&MBB, get(X86::JP)).addMBB(TBB);
1642 ++Count;
1643 break;
1644 default: {
1645 unsigned Opc = GetCondBranchFromCond(CC);
1646 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1647 ++Count;
1648 }
1649 }
1650 if (FBB) {
1651 // Two-way Conditional branch. Insert the second branch.
1652 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1653 ++Count;
1654 }
1655 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001656}
1657
Owen Anderson9fa72d92008-08-26 18:03:31 +00001658bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001659 MachineBasicBlock::iterator MI,
1660 unsigned DestReg, unsigned SrcReg,
1661 const TargetRegisterClass *DestRC,
1662 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001663 if (DestRC == SrcRC) {
1664 unsigned Opc;
1665 if (DestRC == &X86::GR64RegClass) {
1666 Opc = X86::MOV64rr;
1667 } else if (DestRC == &X86::GR32RegClass) {
1668 Opc = X86::MOV32rr;
1669 } else if (DestRC == &X86::GR16RegClass) {
1670 Opc = X86::MOV16rr;
1671 } else if (DestRC == &X86::GR8RegClass) {
1672 Opc = X86::MOV8rr;
1673 } else if (DestRC == &X86::GR32_RegClass) {
1674 Opc = X86::MOV32_rr;
1675 } else if (DestRC == &X86::GR16_RegClass) {
1676 Opc = X86::MOV16_rr;
1677 } else if (DestRC == &X86::RFP32RegClass) {
1678 Opc = X86::MOV_Fp3232;
1679 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1680 Opc = X86::MOV_Fp6464;
1681 } else if (DestRC == &X86::RFP80RegClass) {
1682 Opc = X86::MOV_Fp8080;
1683 } else if (DestRC == &X86::FR32RegClass) {
1684 Opc = X86::FsMOVAPSrr;
1685 } else if (DestRC == &X86::FR64RegClass) {
1686 Opc = X86::FsMOVAPDrr;
1687 } else if (DestRC == &X86::VR128RegClass) {
1688 Opc = X86::MOVAPSrr;
1689 } else if (DestRC == &X86::VR64RegClass) {
1690 Opc = X86::MMX_MOVQ64rr;
1691 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001692 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001693 }
Chris Lattner59707122008-03-09 07:58:04 +00001694 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001695 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001696 }
Chris Lattner59707122008-03-09 07:58:04 +00001697
1698 // Moving EFLAGS to / from another register requires a push and a pop.
1699 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001700 if (SrcReg != X86::EFLAGS)
1701 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001702 if (DestRC == &X86::GR64RegClass) {
1703 BuildMI(MBB, MI, get(X86::PUSHFQ));
1704 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001705 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001706 } else if (DestRC == &X86::GR32RegClass) {
1707 BuildMI(MBB, MI, get(X86::PUSHFD));
1708 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001709 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001710 }
1711 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001712 if (DestReg != X86::EFLAGS)
1713 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001714 if (SrcRC == &X86::GR64RegClass) {
1715 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1716 BuildMI(MBB, MI, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001717 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001718 } else if (SrcRC == &X86::GR32RegClass) {
1719 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1720 BuildMI(MBB, MI, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001721 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001722 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001723 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001724
Chris Lattner0d128722008-03-09 09:15:31 +00001725 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001726 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001727 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001728 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1729 // Can only copy from ST(0)/ST(1) right now
1730 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001731 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001732 unsigned Opc;
1733 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001734 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001735 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001736 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001737 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001738 if (DestRC != &X86::RFP80RegClass)
1739 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001740 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001741 }
1742 BuildMI(MBB, MI, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001743 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001744 }
Chris Lattner0d128722008-03-09 09:15:31 +00001745
1746 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1747 if (DestRC == &X86::RSTRegClass) {
1748 // Copying to ST(0). FIXME: handle ST(1) also
Owen Anderson9fa72d92008-08-26 18:03:31 +00001749 if (DestReg != X86::ST0)
1750 // Can only copy to TOS right now
1751 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001752 unsigned Opc;
1753 if (SrcRC == &X86::RFP32RegClass)
1754 Opc = X86::FpSET_ST0_32;
1755 else if (SrcRC == &X86::RFP64RegClass)
1756 Opc = X86::FpSET_ST0_64;
1757 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001758 if (SrcRC != &X86::RFP80RegClass)
1759 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001760 Opc = X86::FpSET_ST0_80;
1761 }
1762 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001763 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001764 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001765
Owen Anderson9fa72d92008-08-26 18:03:31 +00001766 // Not yet supported!
1767 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001768}
1769
Owen Anderson81875432008-01-01 21:11:32 +00001770static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001771 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001772 unsigned Opc = 0;
1773 if (RC == &X86::GR64RegClass) {
1774 Opc = X86::MOV64mr;
1775 } else if (RC == &X86::GR32RegClass) {
1776 Opc = X86::MOV32mr;
1777 } else if (RC == &X86::GR16RegClass) {
1778 Opc = X86::MOV16mr;
1779 } else if (RC == &X86::GR8RegClass) {
1780 Opc = X86::MOV8mr;
1781 } else if (RC == &X86::GR32_RegClass) {
1782 Opc = X86::MOV32_mr;
1783 } else if (RC == &X86::GR16_RegClass) {
1784 Opc = X86::MOV16_mr;
1785 } else if (RC == &X86::RFP80RegClass) {
1786 Opc = X86::ST_FpP80m; // pops
1787 } else if (RC == &X86::RFP64RegClass) {
1788 Opc = X86::ST_Fp64m;
1789 } else if (RC == &X86::RFP32RegClass) {
1790 Opc = X86::ST_Fp32m;
1791 } else if (RC == &X86::FR32RegClass) {
1792 Opc = X86::MOVSSmr;
1793 } else if (RC == &X86::FR64RegClass) {
1794 Opc = X86::MOVSDmr;
1795 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001796 // If stack is realigned we can use aligned stores.
1797 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001798 } else if (RC == &X86::VR64RegClass) {
1799 Opc = X86::MMX_MOVQ64mr;
1800 } else {
1801 assert(0 && "Unknown regclass");
1802 abort();
1803 }
1804
1805 return Opc;
1806}
1807
1808void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1809 MachineBasicBlock::iterator MI,
1810 unsigned SrcReg, bool isKill, int FrameIdx,
1811 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001812 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001813 bool isAligned = (RI.getStackAlignment() >= 16) ||
1814 RI.needsStackRealignment(MF);
1815 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001816 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1817 .addReg(SrcReg, false, false, isKill);
1818}
1819
1820void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1821 bool isKill,
1822 SmallVectorImpl<MachineOperand> &Addr,
1823 const TargetRegisterClass *RC,
1824 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001825 bool isAligned = (RI.getStackAlignment() >= 16) ||
1826 RI.needsStackRealignment(MF);
1827 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001828 MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001829 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1830 MIB = X86InstrAddOperand(MIB, Addr[i]);
1831 MIB.addReg(SrcReg, false, false, isKill);
1832 NewMIs.push_back(MIB);
1833}
1834
1835static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001836 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001837 unsigned Opc = 0;
1838 if (RC == &X86::GR64RegClass) {
1839 Opc = X86::MOV64rm;
1840 } else if (RC == &X86::GR32RegClass) {
1841 Opc = X86::MOV32rm;
1842 } else if (RC == &X86::GR16RegClass) {
1843 Opc = X86::MOV16rm;
1844 } else if (RC == &X86::GR8RegClass) {
1845 Opc = X86::MOV8rm;
1846 } else if (RC == &X86::GR32_RegClass) {
1847 Opc = X86::MOV32_rm;
1848 } else if (RC == &X86::GR16_RegClass) {
1849 Opc = X86::MOV16_rm;
1850 } else if (RC == &X86::RFP80RegClass) {
1851 Opc = X86::LD_Fp80m;
1852 } else if (RC == &X86::RFP64RegClass) {
1853 Opc = X86::LD_Fp64m;
1854 } else if (RC == &X86::RFP32RegClass) {
1855 Opc = X86::LD_Fp32m;
1856 } else if (RC == &X86::FR32RegClass) {
1857 Opc = X86::MOVSSrm;
1858 } else if (RC == &X86::FR64RegClass) {
1859 Opc = X86::MOVSDrm;
1860 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001861 // If stack is realigned we can use aligned loads.
1862 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001863 } else if (RC == &X86::VR64RegClass) {
1864 Opc = X86::MMX_MOVQ64rm;
1865 } else {
1866 assert(0 && "Unknown regclass");
1867 abort();
1868 }
1869
1870 return Opc;
1871}
1872
1873void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001874 MachineBasicBlock::iterator MI,
1875 unsigned DestReg, int FrameIdx,
1876 const TargetRegisterClass *RC) const{
1877 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001878 bool isAligned = (RI.getStackAlignment() >= 16) ||
1879 RI.needsStackRealignment(MF);
1880 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001881 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1882}
1883
1884void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001885 SmallVectorImpl<MachineOperand> &Addr,
1886 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001887 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001888 bool isAligned = (RI.getStackAlignment() >= 16) ||
1889 RI.needsStackRealignment(MF);
1890 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001891 MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001892 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1893 MIB = X86InstrAddOperand(MIB, Addr[i]);
1894 NewMIs.push_back(MIB);
1895}
1896
Owen Anderson6690c7f2008-01-04 23:57:37 +00001897bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001898 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001899 const std::vector<CalleeSavedInfo> &CSI) const {
1900 if (CSI.empty())
1901 return false;
1902
Evan Chengc275cf62008-09-26 19:14:21 +00001903 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001904 unsigned SlotSize = is64Bit ? 8 : 4;
1905
1906 MachineFunction &MF = *MBB.getParent();
1907 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1908 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1909
Owen Anderson6690c7f2008-01-04 23:57:37 +00001910 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1911 for (unsigned i = CSI.size(); i != 0; --i) {
1912 unsigned Reg = CSI[i-1].getReg();
1913 // Add the callee-saved register as live-in. It's killed at the spill.
1914 MBB.addLiveIn(Reg);
Dan Gohman4df0e362008-11-26 06:39:12 +00001915 BuildMI(MBB, MI, get(Opc))
1916 .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
Owen Anderson6690c7f2008-01-04 23:57:37 +00001917 }
1918 return true;
1919}
1920
1921bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001922 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001923 const std::vector<CalleeSavedInfo> &CSI) const {
1924 if (CSI.empty())
1925 return false;
1926
1927 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1928
1929 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1930 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1931 unsigned Reg = CSI[i].getReg();
1932 BuildMI(MBB, MI, get(Opc), Reg);
1933 }
1934 return true;
1935}
1936
Dan Gohman221a4372008-07-07 23:14:23 +00001937static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001938 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001939 MachineInstr *MI, const TargetInstrInfo &TII) {
1940 // Create the base instruction with the memory operand as the first part.
Dan Gohman221a4372008-07-07 23:14:23 +00001941 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001942 MachineInstrBuilder MIB(NewMI);
1943 unsigned NumAddrOps = MOs.size();
1944 for (unsigned i = 0; i != NumAddrOps; ++i)
1945 MIB = X86InstrAddOperand(MIB, MOs[i]);
1946 if (NumAddrOps < 4) // FrameIndex only
1947 MIB.addImm(1).addReg(0).addImm(0);
1948
1949 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001950 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001951 for (unsigned i = 0; i != NumOps; ++i) {
1952 MachineOperand &MO = MI->getOperand(i+2);
1953 MIB = X86InstrAddOperand(MIB, MO);
1954 }
1955 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1956 MachineOperand &MO = MI->getOperand(i);
1957 MIB = X86InstrAddOperand(MIB, MO);
1958 }
1959 return MIB;
1960}
1961
Dan Gohman221a4372008-07-07 23:14:23 +00001962static MachineInstr *FuseInst(MachineFunction &MF,
1963 unsigned Opcode, unsigned OpNo,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001964 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001965 MachineInstr *MI, const TargetInstrInfo &TII) {
Dan Gohman221a4372008-07-07 23:14:23 +00001966 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001967 MachineInstrBuilder MIB(NewMI);
1968
1969 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1970 MachineOperand &MO = MI->getOperand(i);
1971 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001972 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00001973 unsigned NumAddrOps = MOs.size();
1974 for (unsigned i = 0; i != NumAddrOps; ++i)
1975 MIB = X86InstrAddOperand(MIB, MOs[i]);
1976 if (NumAddrOps < 4) // FrameIndex only
1977 MIB.addImm(1).addReg(0).addImm(0);
1978 } else {
1979 MIB = X86InstrAddOperand(MIB, MO);
1980 }
1981 }
1982 return MIB;
1983}
1984
1985static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001986 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001987 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00001988 MachineFunction &MF = *MI->getParent()->getParent();
1989 MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001990
1991 unsigned NumAddrOps = MOs.size();
1992 for (unsigned i = 0; i != NumAddrOps; ++i)
1993 MIB = X86InstrAddOperand(MIB, MOs[i]);
1994 if (NumAddrOps < 4) // FrameIndex only
1995 MIB.addImm(1).addReg(0).addImm(0);
1996 return MIB.addImm(0);
1997}
1998
1999MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00002000X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2001 MachineInstr *MI, unsigned i,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002002 const SmallVectorImpl<MachineOperand> &MOs) const{
Owen Anderson9a184ef2008-01-07 01:35:02 +00002003 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2004 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00002005 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002006 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002007 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002008
2009 MachineInstr *NewMI = NULL;
2010 // Folding a memory location into the two-address part of a two-address
2011 // instruction is different than folding it other places. It requires
2012 // replacing the *two* registers with the memory location.
2013 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002014 MI->getOperand(0).isReg() &&
2015 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00002016 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2017 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2018 isTwoAddrFold = true;
2019 } else if (i == 0) { // If operand 0
2020 if (MI->getOpcode() == X86::MOV16r0)
2021 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2022 else if (MI->getOpcode() == X86::MOV32r0)
2023 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2024 else if (MI->getOpcode() == X86::MOV64r0)
2025 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2026 else if (MI->getOpcode() == X86::MOV8r0)
2027 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002028 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002029 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002030
2031 OpcodeTablePtr = &RegOp2MemOpTable0;
2032 } else if (i == 1) {
2033 OpcodeTablePtr = &RegOp2MemOpTable1;
2034 } else if (i == 2) {
2035 OpcodeTablePtr = &RegOp2MemOpTable2;
2036 }
2037
2038 // If table selected...
2039 if (OpcodeTablePtr) {
2040 // Find the Opcode to fuse
2041 DenseMap<unsigned*, unsigned>::iterator I =
2042 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2043 if (I != OpcodeTablePtr->end()) {
2044 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00002045 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002046 else
Dan Gohman221a4372008-07-07 23:14:23 +00002047 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002048 return NewMI;
2049 }
2050 }
2051
2052 // No fusion
2053 if (PrintFailedFusing)
Dan Gohman5f599f62008-12-23 00:19:20 +00002054 cerr << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002055 return NULL;
2056}
2057
2058
Dan Gohmanedc83d62008-12-03 18:43:12 +00002059MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2060 MachineInstr *MI,
2061 const SmallVectorImpl<unsigned> &Ops,
2062 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002063 // Check switch flag
2064 if (NoFusing) return NULL;
2065
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002066 const MachineFrameInfo *MFI = MF.getFrameInfo();
2067 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2068 // FIXME: Move alignment requirement into tables?
2069 if (Alignment < 16) {
2070 switch (MI->getOpcode()) {
2071 default: break;
2072 // Not always safe to fold movsd into these instructions since their load
2073 // folding variants expects the address to be 16 byte aligned.
2074 case X86::FsANDNPDrr:
2075 case X86::FsANDNPSrr:
2076 case X86::FsANDPDrr:
2077 case X86::FsANDPSrr:
2078 case X86::FsORPDrr:
2079 case X86::FsORPSrr:
2080 case X86::FsXORPDrr:
2081 case X86::FsXORPSrr:
2082 return NULL;
2083 }
2084 }
2085
Owen Anderson9a184ef2008-01-07 01:35:02 +00002086 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2087 unsigned NewOpc = 0;
2088 switch (MI->getOpcode()) {
2089 default: return NULL;
2090 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2091 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2092 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2093 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2094 }
2095 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002096 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002097 MI->getOperand(1).ChangeToImmediate(0);
2098 } else if (Ops.size() != 1)
2099 return NULL;
2100
2101 SmallVector<MachineOperand,4> MOs;
2102 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohmanedc83d62008-12-03 18:43:12 +00002103 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002104}
2105
Dan Gohmanedc83d62008-12-03 18:43:12 +00002106MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2107 MachineInstr *MI,
2108 const SmallVectorImpl<unsigned> &Ops,
2109 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002110 // Check switch flag
2111 if (NoFusing) return NULL;
2112
Dan Gohmand0e8c752008-07-12 00:10:52 +00002113 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002114 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002115 if (LoadMI->hasOneMemOperand())
2116 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002117
2118 // FIXME: Move alignment requirement into tables?
2119 if (Alignment < 16) {
2120 switch (MI->getOpcode()) {
2121 default: break;
2122 // Not always safe to fold movsd into these instructions since their load
2123 // folding variants expects the address to be 16 byte aligned.
2124 case X86::FsANDNPDrr:
2125 case X86::FsANDNPSrr:
2126 case X86::FsANDPDrr:
2127 case X86::FsANDPSrr:
2128 case X86::FsORPDrr:
2129 case X86::FsORPSrr:
2130 case X86::FsXORPDrr:
2131 case X86::FsXORPSrr:
2132 return NULL;
2133 }
2134 }
2135
Owen Anderson9a184ef2008-01-07 01:35:02 +00002136 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2137 unsigned NewOpc = 0;
2138 switch (MI->getOpcode()) {
2139 default: return NULL;
2140 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2141 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2142 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2143 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2144 }
2145 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002146 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002147 MI->getOperand(1).ChangeToImmediate(0);
2148 } else if (Ops.size() != 1)
2149 return NULL;
2150
2151 SmallVector<MachineOperand,4> MOs;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002152 if (LoadMI->getOpcode() == X86::V_SET0 ||
2153 LoadMI->getOpcode() == X86::V_SETALLONES) {
2154 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2155 // Create a constant-pool entry and operands to load from it.
2156
2157 // x86-32 PIC requires a PIC base register for constant pools.
2158 unsigned PICBase = 0;
2159 if (TM.getRelocationModel() == Reloc::PIC_ &&
2160 !TM.getSubtarget<X86Subtarget>().is64Bit())
Evan Chengf95d0fc2008-12-05 17:23:48 +00002161 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2162 // This doesn't work for several reasons.
2163 // 1. GlobalBaseReg may have been spilled.
2164 // 2. It may not be live at MI.
Evan Chengf95d0fc2008-12-05 17:23:48 +00002165 return false;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002166
2167 // Create a v4i32 constant-pool entry.
2168 MachineConstantPool &MCP = *MF.getConstantPool();
2169 const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2170 Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2171 ConstantVector::getNullValue(Ty) :
2172 ConstantVector::getAllOnesValue(Ty);
2173 unsigned CPI = MCP.getConstantPoolIndex(C, /*AlignmentLog2=*/4);
2174
2175 // Create operands to load from the constant pool entry.
2176 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2177 MOs.push_back(MachineOperand::CreateImm(1));
2178 MOs.push_back(MachineOperand::CreateReg(0, false));
2179 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2180 } else {
2181 // Folding a normal load. Just copy the load's address operands.
2182 unsigned NumOps = LoadMI->getDesc().getNumOperands();
2183 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2184 MOs.push_back(LoadMI->getOperand(i));
2185 }
Dan Gohmanedc83d62008-12-03 18:43:12 +00002186 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002187}
2188
2189
Dan Gohman46b948e2008-10-16 01:49:15 +00002190bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2191 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002192 // Check switch flag
2193 if (NoFusing) return 0;
2194
2195 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2196 switch (MI->getOpcode()) {
2197 default: return false;
2198 case X86::TEST8rr:
2199 case X86::TEST16rr:
2200 case X86::TEST32rr:
2201 case X86::TEST64rr:
2202 return true;
2203 }
2204 }
2205
2206 if (Ops.size() != 1)
2207 return false;
2208
2209 unsigned OpNum = Ops[0];
2210 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002211 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002212 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002213 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002214
2215 // Folding a memory location into the two-address part of a two-address
2216 // instruction is different than folding it other places. It requires
2217 // replacing the *two* registers with the memory location.
2218 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2219 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2220 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2221 } else if (OpNum == 0) { // If operand 0
2222 switch (Opc) {
2223 case X86::MOV16r0:
2224 case X86::MOV32r0:
2225 case X86::MOV64r0:
2226 case X86::MOV8r0:
2227 return true;
2228 default: break;
2229 }
2230 OpcodeTablePtr = &RegOp2MemOpTable0;
2231 } else if (OpNum == 1) {
2232 OpcodeTablePtr = &RegOp2MemOpTable1;
2233 } else if (OpNum == 2) {
2234 OpcodeTablePtr = &RegOp2MemOpTable2;
2235 }
2236
2237 if (OpcodeTablePtr) {
2238 // Find the Opcode to fuse
2239 DenseMap<unsigned*, unsigned>::iterator I =
2240 OpcodeTablePtr->find((unsigned*)Opc);
2241 if (I != OpcodeTablePtr->end())
2242 return true;
2243 }
2244 return false;
2245}
2246
2247bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2248 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2249 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2250 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2251 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2252 if (I == MemOp2RegOpTable.end())
2253 return false;
2254 unsigned Opc = I->second.first;
2255 unsigned Index = I->second.second & 0xf;
2256 bool FoldedLoad = I->second.second & (1 << 4);
2257 bool FoldedStore = I->second.second & (1 << 5);
2258 if (UnfoldLoad && !FoldedLoad)
2259 return false;
2260 UnfoldLoad &= FoldedLoad;
2261 if (UnfoldStore && !FoldedStore)
2262 return false;
2263 UnfoldStore &= FoldedStore;
2264
Chris Lattner5b930372008-01-07 07:27:27 +00002265 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002266 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002267 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002268 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2269 SmallVector<MachineOperand,4> AddrOps;
2270 SmallVector<MachineOperand,2> BeforeOps;
2271 SmallVector<MachineOperand,2> AfterOps;
2272 SmallVector<MachineOperand,4> ImpOps;
2273 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2274 MachineOperand &Op = MI->getOperand(i);
2275 if (i >= Index && i < Index+4)
2276 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002277 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002278 ImpOps.push_back(Op);
2279 else if (i < Index)
2280 BeforeOps.push_back(Op);
2281 else if (i > Index)
2282 AfterOps.push_back(Op);
2283 }
2284
2285 // Emit the load instruction.
2286 if (UnfoldLoad) {
2287 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2288 if (UnfoldStore) {
2289 // Address operands cannot be marked isKill.
2290 for (unsigned i = 1; i != 5; ++i) {
2291 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002292 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002293 MO.setIsKill(false);
2294 }
2295 }
2296 }
2297
2298 // Emit the data processing instruction.
Dan Gohman221a4372008-07-07 23:14:23 +00002299 MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002300 MachineInstrBuilder MIB(DataMI);
2301
2302 if (FoldedStore)
2303 MIB.addReg(Reg, true);
2304 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2305 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2306 if (FoldedLoad)
2307 MIB.addReg(Reg);
2308 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2309 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2310 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2311 MachineOperand &MO = ImpOps[i];
2312 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2313 }
2314 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2315 unsigned NewOpc = 0;
2316 switch (DataMI->getOpcode()) {
2317 default: break;
2318 case X86::CMP64ri32:
2319 case X86::CMP32ri:
2320 case X86::CMP16ri:
2321 case X86::CMP8ri: {
2322 MachineOperand &MO0 = DataMI->getOperand(0);
2323 MachineOperand &MO1 = DataMI->getOperand(1);
2324 if (MO1.getImm() == 0) {
2325 switch (DataMI->getOpcode()) {
2326 default: break;
2327 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2328 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2329 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2330 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2331 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002332 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002333 MO1.ChangeToRegister(MO0.getReg(), false);
2334 }
2335 }
2336 }
2337 NewMIs.push_back(DataMI);
2338
2339 // Emit the store instruction.
2340 if (UnfoldStore) {
2341 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002342 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002343 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2344 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2345 }
2346
2347 return true;
2348}
2349
2350bool
2351X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2352 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002353 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002354 return false;
2355
2356 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002357 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002358 if (I == MemOp2RegOpTable.end())
2359 return false;
2360 unsigned Opc = I->second.first;
2361 unsigned Index = I->second.second & 0xf;
2362 bool FoldedLoad = I->second.second & (1 << 4);
2363 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002364 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002365 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002366 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002367 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman8181bd12008-07-27 21:46:04 +00002368 std::vector<SDValue> AddrOps;
2369 std::vector<SDValue> BeforeOps;
2370 std::vector<SDValue> AfterOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002371 unsigned NumOps = N->getNumOperands();
2372 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002373 SDValue Op = N->getOperand(i);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002374 if (i >= Index && i < Index+4)
2375 AddrOps.push_back(Op);
2376 else if (i < Index)
2377 BeforeOps.push_back(Op);
2378 else if (i > Index)
2379 AfterOps.push_back(Op);
2380 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002381 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002382 AddrOps.push_back(Chain);
2383
2384 // Emit the load instruction.
2385 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002386 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002387 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002388 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002389 bool isAligned = (RI.getStackAlignment() >= 16) ||
2390 RI.needsStackRealignment(MF);
2391 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002392 VT, MVT::Other,
2393 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002394 NewNodes.push_back(Load);
2395 }
2396
2397 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002398 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002399 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002400 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002401 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002402 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002403 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2404 VTs.push_back(*DstRC->vt_begin());
2405 }
2406 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002407 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002408 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002409 VTs.push_back(VT);
2410 }
2411 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002412 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002413 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2414 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2415 NewNodes.push_back(NewNode);
2416
2417 // Emit the store instruction.
2418 if (FoldedStore) {
2419 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002420 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002421 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002422 bool isAligned = (RI.getStackAlignment() >= 16) ||
2423 RI.needsStackRealignment(MF);
2424 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2425 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002426 NewNodes.push_back(Store);
2427 }
2428
2429 return true;
2430}
2431
2432unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2433 bool UnfoldLoad, bool UnfoldStore) const {
2434 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2435 MemOp2RegOpTable.find((unsigned*)Opc);
2436 if (I == MemOp2RegOpTable.end())
2437 return 0;
2438 bool FoldedLoad = I->second.second & (1 << 4);
2439 bool FoldedStore = I->second.second & (1 << 5);
2440 if (UnfoldLoad && !FoldedLoad)
2441 return 0;
2442 if (UnfoldStore && !FoldedStore)
2443 return 0;
2444 return I->second.first;
2445}
2446
Dan Gohman46b948e2008-10-16 01:49:15 +00002447bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002448 if (MBB.empty()) return false;
2449
2450 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002451 case X86::TCRETURNri:
2452 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002453 case X86::RET: // Return.
2454 case X86::RETI:
2455 case X86::TAILJMPd:
2456 case X86::TAILJMPr:
2457 case X86::TAILJMPm:
2458 case X86::JMP: // Uncond branch.
2459 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002460 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002461 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002462 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002463 return true;
2464 default: return false;
2465 }
2466}
2467
2468bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002469ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002470 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002471 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002472 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2473 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002474 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002475 return false;
2476}
2477
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002478bool X86InstrInfo::
2479IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const {
2480 // FIXME: Ignore bariers of x87 stack registers for now. We can't
2481 // allow any loads of these registers before FpGet_ST0_80.
2482 return RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2483 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass;
2484}
2485
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002486const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2487 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2488 if (Subtarget->is64Bit())
2489 return &X86::GR64RegClass;
2490 else
2491 return &X86::GR32RegClass;
2492}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002493
2494unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2495 switch (Desc->TSFlags & X86II::ImmMask) {
2496 case X86II::Imm8: return 1;
2497 case X86II::Imm16: return 2;
2498 case X86II::Imm32: return 4;
2499 case X86II::Imm64: return 8;
2500 default: assert(0 && "Immediate size not set!");
2501 return 0;
2502 }
2503}
2504
2505/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2506/// e.g. r8, xmm8, etc.
2507bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002508 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002509 switch (MO.getReg()) {
2510 default: break;
2511 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2512 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2513 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2514 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2515 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2516 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2517 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2518 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2519 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2520 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2521 return true;
2522 }
2523 return false;
2524}
2525
2526
2527/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2528/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2529/// size, and 3) use of X86-64 extended registers.
2530unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2531 unsigned REX = 0;
2532 const TargetInstrDesc &Desc = MI.getDesc();
2533
2534 // Pseudo instructions do not need REX prefix byte.
2535 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2536 return 0;
2537 if (Desc.TSFlags & X86II::REX_W)
2538 REX |= 1 << 3;
2539
2540 unsigned NumOps = Desc.getNumOperands();
2541 if (NumOps) {
2542 bool isTwoAddr = NumOps > 1 &&
2543 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2544
2545 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2546 unsigned i = isTwoAddr ? 1 : 0;
2547 for (unsigned e = NumOps; i != e; ++i) {
2548 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002549 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002550 unsigned Reg = MO.getReg();
2551 if (isX86_64NonExtLowByteReg(Reg))
2552 REX |= 0x40;
2553 }
2554 }
2555
2556 switch (Desc.TSFlags & X86II::FormMask) {
2557 case X86II::MRMInitReg:
2558 if (isX86_64ExtendedReg(MI.getOperand(0)))
2559 REX |= (1 << 0) | (1 << 2);
2560 break;
2561 case X86II::MRMSrcReg: {
2562 if (isX86_64ExtendedReg(MI.getOperand(0)))
2563 REX |= 1 << 2;
2564 i = isTwoAddr ? 2 : 1;
2565 for (unsigned e = NumOps; i != e; ++i) {
2566 const MachineOperand& MO = MI.getOperand(i);
2567 if (isX86_64ExtendedReg(MO))
2568 REX |= 1 << 0;
2569 }
2570 break;
2571 }
2572 case X86II::MRMSrcMem: {
2573 if (isX86_64ExtendedReg(MI.getOperand(0)))
2574 REX |= 1 << 2;
2575 unsigned Bit = 0;
2576 i = isTwoAddr ? 2 : 1;
2577 for (; i != NumOps; ++i) {
2578 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002579 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002580 if (isX86_64ExtendedReg(MO))
2581 REX |= 1 << Bit;
2582 Bit++;
2583 }
2584 }
2585 break;
2586 }
2587 case X86II::MRM0m: case X86II::MRM1m:
2588 case X86II::MRM2m: case X86II::MRM3m:
2589 case X86II::MRM4m: case X86II::MRM5m:
2590 case X86II::MRM6m: case X86II::MRM7m:
2591 case X86II::MRMDestMem: {
2592 unsigned e = isTwoAddr ? 5 : 4;
2593 i = isTwoAddr ? 1 : 0;
2594 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2595 REX |= 1 << 2;
2596 unsigned Bit = 0;
2597 for (; i != e; ++i) {
2598 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002599 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002600 if (isX86_64ExtendedReg(MO))
2601 REX |= 1 << Bit;
2602 Bit++;
2603 }
2604 }
2605 break;
2606 }
2607 default: {
2608 if (isX86_64ExtendedReg(MI.getOperand(0)))
2609 REX |= 1 << 0;
2610 i = isTwoAddr ? 2 : 1;
2611 for (unsigned e = NumOps; i != e; ++i) {
2612 const MachineOperand& MO = MI.getOperand(i);
2613 if (isX86_64ExtendedReg(MO))
2614 REX |= 1 << 2;
2615 }
2616 break;
2617 }
2618 }
2619 }
2620 return REX;
2621}
2622
2623/// sizePCRelativeBlockAddress - This method returns the size of a PC
2624/// relative block address instruction
2625///
2626static unsigned sizePCRelativeBlockAddress() {
2627 return 4;
2628}
2629
2630/// sizeGlobalAddress - Give the size of the emission of this global address
2631///
2632static unsigned sizeGlobalAddress(bool dword) {
2633 return dword ? 8 : 4;
2634}
2635
2636/// sizeConstPoolAddress - Give the size of the emission of this constant
2637/// pool address
2638///
2639static unsigned sizeConstPoolAddress(bool dword) {
2640 return dword ? 8 : 4;
2641}
2642
2643/// sizeExternalSymbolAddress - Give the size of the emission of this external
2644/// symbol
2645///
2646static unsigned sizeExternalSymbolAddress(bool dword) {
2647 return dword ? 8 : 4;
2648}
2649
2650/// sizeJumpTableAddress - Give the size of the emission of this jump
2651/// table address
2652///
2653static unsigned sizeJumpTableAddress(bool dword) {
2654 return dword ? 8 : 4;
2655}
2656
2657static unsigned sizeConstant(unsigned Size) {
2658 return Size;
2659}
2660
2661static unsigned sizeRegModRMByte(){
2662 return 1;
2663}
2664
2665static unsigned sizeSIBByte(){
2666 return 1;
2667}
2668
2669static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2670 unsigned FinalSize = 0;
2671 // If this is a simple integer displacement that doesn't require a relocation.
2672 if (!RelocOp) {
2673 FinalSize += sizeConstant(4);
2674 return FinalSize;
2675 }
2676
2677 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002678 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002679 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002680 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002681 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002682 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002683 FinalSize += sizeJumpTableAddress(false);
2684 } else {
2685 assert(0 && "Unknown value to relocate!");
2686 }
2687 return FinalSize;
2688}
2689
2690static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2691 bool IsPIC, bool Is64BitMode) {
2692 const MachineOperand &Op3 = MI.getOperand(Op+3);
2693 int DispVal = 0;
2694 const MachineOperand *DispForReloc = 0;
2695 unsigned FinalSize = 0;
2696
2697 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002698 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002699 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002700 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002701 if (Is64BitMode || IsPIC) {
2702 DispForReloc = &Op3;
2703 } else {
2704 DispVal = 1;
2705 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002706 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002707 if (Is64BitMode || IsPIC) {
2708 DispForReloc = &Op3;
2709 } else {
2710 DispVal = 1;
2711 }
2712 } else {
2713 DispVal = 1;
2714 }
2715
2716 const MachineOperand &Base = MI.getOperand(Op);
2717 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2718
2719 unsigned BaseReg = Base.getReg();
2720
2721 // Is a SIB byte needed?
2722 if (IndexReg.getReg() == 0 &&
2723 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2724 if (BaseReg == 0) { // Just a displacement?
2725 // Emit special case [disp32] encoding
2726 ++FinalSize;
2727 FinalSize += getDisplacementFieldSize(DispForReloc);
2728 } else {
2729 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2730 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2731 // Emit simple indirect register encoding... [EAX] f.e.
2732 ++FinalSize;
2733 // Be pessimistic and assume it's a disp32, not a disp8
2734 } else {
2735 // Emit the most general non-SIB encoding: [REG+disp32]
2736 ++FinalSize;
2737 FinalSize += getDisplacementFieldSize(DispForReloc);
2738 }
2739 }
2740
2741 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2742 assert(IndexReg.getReg() != X86::ESP &&
2743 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2744
2745 bool ForceDisp32 = false;
2746 if (BaseReg == 0 || DispForReloc) {
2747 // Emit the normal disp32 encoding.
2748 ++FinalSize;
2749 ForceDisp32 = true;
2750 } else {
2751 ++FinalSize;
2752 }
2753
2754 FinalSize += sizeSIBByte();
2755
2756 // Do we need to output a displacement?
2757 if (DispVal != 0 || ForceDisp32) {
2758 FinalSize += getDisplacementFieldSize(DispForReloc);
2759 }
2760 }
2761 return FinalSize;
2762}
2763
2764
2765static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2766 const TargetInstrDesc *Desc,
2767 bool IsPIC, bool Is64BitMode) {
2768
2769 unsigned Opcode = Desc->Opcode;
2770 unsigned FinalSize = 0;
2771
2772 // Emit the lock opcode prefix as needed.
2773 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2774
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002775 // Emit segment overrid opcode prefix as needed.
2776 switch (Desc->TSFlags & X86II::SegOvrMask) {
2777 case X86II::FS:
2778 case X86II::GS:
2779 ++FinalSize;
2780 break;
2781 default: assert(0 && "Invalid segment!");
2782 case 0: break; // No segment override!
2783 }
2784
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002785 // Emit the repeat opcode prefix as needed.
2786 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2787
2788 // Emit the operand size opcode prefix as needed.
2789 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2790
2791 // Emit the address size opcode prefix as needed.
2792 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2793
2794 bool Need0FPrefix = false;
2795 switch (Desc->TSFlags & X86II::Op0Mask) {
2796 case X86II::TB: // Two-byte opcode prefix
2797 case X86II::T8: // 0F 38
2798 case X86II::TA: // 0F 3A
2799 Need0FPrefix = true;
2800 break;
2801 case X86II::REP: break; // already handled.
2802 case X86II::XS: // F3 0F
2803 ++FinalSize;
2804 Need0FPrefix = true;
2805 break;
2806 case X86II::XD: // F2 0F
2807 ++FinalSize;
2808 Need0FPrefix = true;
2809 break;
2810 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2811 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2812 ++FinalSize;
2813 break; // Two-byte opcode prefix
2814 default: assert(0 && "Invalid prefix!");
2815 case 0: break; // No prefix!
2816 }
2817
2818 if (Is64BitMode) {
2819 // REX prefix
2820 unsigned REX = X86InstrInfo::determineREX(MI);
2821 if (REX)
2822 ++FinalSize;
2823 }
2824
2825 // 0x0F escape code must be emitted just before the opcode.
2826 if (Need0FPrefix)
2827 ++FinalSize;
2828
2829 switch (Desc->TSFlags & X86II::Op0Mask) {
2830 case X86II::T8: // 0F 38
2831 ++FinalSize;
2832 break;
2833 case X86II::TA: // 0F 3A
2834 ++FinalSize;
2835 break;
2836 }
2837
2838 // If this is a two-address instruction, skip one of the register operands.
2839 unsigned NumOps = Desc->getNumOperands();
2840 unsigned CurOp = 0;
2841 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2842 CurOp++;
2843
2844 switch (Desc->TSFlags & X86II::FormMask) {
2845 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2846 case X86II::Pseudo:
2847 // Remember the current PC offset, this is the PIC relocation
2848 // base address.
2849 switch (Opcode) {
2850 default:
2851 break;
2852 case TargetInstrInfo::INLINEASM: {
2853 const MachineFunction *MF = MI.getParent()->getParent();
2854 const char *AsmStr = MI.getOperand(0).getSymbolName();
2855 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2856 FinalSize += AI->getInlineAsmLength(AsmStr);
2857 break;
2858 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002859 case TargetInstrInfo::DBG_LABEL:
2860 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002861 break;
2862 case TargetInstrInfo::IMPLICIT_DEF:
2863 case TargetInstrInfo::DECLARE:
2864 case X86::DWARF_LOC:
2865 case X86::FP_REG_KILL:
2866 break;
2867 case X86::MOVPC32r: {
2868 // This emits the "call" portion of this pseudo instruction.
2869 ++FinalSize;
2870 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2871 break;
2872 }
Nicolas Geoffray81580792008-10-25 15:22:06 +00002873 case X86::TLS_tp:
2874 case X86::TLS_gs_ri:
2875 FinalSize += 2;
2876 FinalSize += sizeGlobalAddress(false);
2877 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002878 }
2879 CurOp = NumOps;
2880 break;
2881 case X86II::RawFrm:
2882 ++FinalSize;
2883
2884 if (CurOp != NumOps) {
2885 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002886 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002887 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002888 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002889 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002890 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002891 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002892 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002893 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2894 } else {
2895 assert(0 && "Unknown RawFrm operand!");
2896 }
2897 }
2898 break;
2899
2900 case X86II::AddRegFrm:
2901 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002902 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002903
2904 if (CurOp != NumOps) {
2905 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2906 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002907 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002908 FinalSize += sizeConstant(Size);
2909 else {
2910 bool dword = false;
2911 if (Opcode == X86::MOV64ri)
2912 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002913 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002914 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002915 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002916 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002917 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002918 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002919 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002920 FinalSize += sizeJumpTableAddress(dword);
2921 }
2922 }
2923 break;
2924
2925 case X86II::MRMDestReg: {
2926 ++FinalSize;
2927 FinalSize += sizeRegModRMByte();
2928 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002929 if (CurOp != NumOps) {
2930 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002931 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002932 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002933 break;
2934 }
2935 case X86II::MRMDestMem: {
2936 ++FinalSize;
2937 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2938 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002939 if (CurOp != NumOps) {
2940 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002941 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002942 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002943 break;
2944 }
2945
2946 case X86II::MRMSrcReg:
2947 ++FinalSize;
2948 FinalSize += sizeRegModRMByte();
2949 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002950 if (CurOp != NumOps) {
2951 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002952 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002953 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002954 break;
2955
2956 case X86II::MRMSrcMem: {
2957
2958 ++FinalSize;
2959 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2960 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002961 if (CurOp != NumOps) {
2962 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002963 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002964 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002965 break;
2966 }
2967
2968 case X86II::MRM0r: case X86II::MRM1r:
2969 case X86II::MRM2r: case X86II::MRM3r:
2970 case X86II::MRM4r: case X86II::MRM5r:
2971 case X86II::MRM6r: case X86II::MRM7r:
2972 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002973 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002974 FinalSize += sizeRegModRMByte();
2975
2976 if (CurOp != NumOps) {
2977 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2978 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002979 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002980 FinalSize += sizeConstant(Size);
2981 else {
2982 bool dword = false;
2983 if (Opcode == X86::MOV64ri32)
2984 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002985 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002986 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002987 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002988 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002989 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002990 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002991 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002992 FinalSize += sizeJumpTableAddress(dword);
2993 }
2994 }
2995 break;
2996
2997 case X86II::MRM0m: case X86II::MRM1m:
2998 case X86II::MRM2m: case X86II::MRM3m:
2999 case X86II::MRM4m: case X86II::MRM5m:
3000 case X86II::MRM6m: case X86II::MRM7m: {
3001
3002 ++FinalSize;
3003 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3004 CurOp += 4;
3005
3006 if (CurOp != NumOps) {
3007 const MachineOperand &MO = MI.getOperand(CurOp++);
3008 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003009 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003010 FinalSize += sizeConstant(Size);
3011 else {
3012 bool dword = false;
3013 if (Opcode == X86::MOV64mi32)
3014 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003015 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003016 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003017 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003018 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003019 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003020 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003021 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003022 FinalSize += sizeJumpTableAddress(dword);
3023 }
3024 }
3025 break;
3026 }
3027
3028 case X86II::MRMInitReg:
3029 ++FinalSize;
3030 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3031 FinalSize += sizeRegModRMByte();
3032 ++CurOp;
3033 break;
3034 }
3035
3036 if (!Desc->isVariadic() && CurOp != NumOps) {
3037 cerr << "Cannot determine size: ";
3038 MI.dump();
3039 cerr << '\n';
3040 abort();
3041 }
3042
3043
3044 return FinalSize;
3045}
3046
3047
3048unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3049 const TargetInstrDesc &Desc = MI->getDesc();
3050 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003051 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003052 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3053 if (Desc.getOpcode() == X86::MOVPC32r) {
3054 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3055 }
3056 return Size;
3057}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003058
Dan Gohman882ab732008-09-30 00:58:23 +00003059/// getGlobalBaseReg - Return a virtual register initialized with the
3060/// the global base register value. Output instructions required to
3061/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003062///
Dan Gohman882ab732008-09-30 00:58:23 +00003063unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3064 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3065 "X86-64 PIC uses RIP relative addressing");
3066
3067 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3068 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3069 if (GlobalBaseReg != 0)
3070 return GlobalBaseReg;
3071
Dan Gohmanb60482f2008-09-23 18:22:58 +00003072 // Insert the set of GlobalBaseReg into the first MBB of the function
3073 MachineBasicBlock &FirstMBB = MF->front();
3074 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3075 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3076 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3077
3078 const TargetInstrInfo *TII = TM.getInstrInfo();
3079 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3080 // only used in JIT code emission as displacement to pc.
3081 BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
3082
3083 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3084 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3085 if (TM.getRelocationModel() == Reloc::PIC_ &&
3086 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman882ab732008-09-30 00:58:23 +00003087 GlobalBaseReg =
Dan Gohmanb60482f2008-09-23 18:22:58 +00003088 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3089 BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
3090 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman882ab732008-09-30 00:58:23 +00003091 } else {
3092 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003093 }
3094
Dan Gohman882ab732008-09-30 00:58:23 +00003095 X86FI->setGlobalBaseReg(GlobalBaseReg);
3096 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003097}