blob: d164089936e679a4211b5780d290e4c95de66642 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
Terry Jan Reedy4ba76b62012-01-13 23:41:31 -050038 :const:`1.1` and :const:`2.2` do not have exact representations in binary
Mark Dickinson6b87f112009-11-24 14:27:02 +000039 floating point. End users typically would not expect ``1.1 + 2.2`` to display
40 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl8ec7f652007-08-15 14:28:01 +000041
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
Mark Dickinson03335172010-11-07 11:29:03 +000060 >>> from decimal import *
Georg Brandl8ec7f652007-08-15 14:28:01 +000061 >>> getcontext().prec = 6
62 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000063 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000064 >>> getcontext().prec = 28
65 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000066 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000067
68* Both binary and decimal floating point are implemented in terms of published
69 standards. While the built-in float type exposes only a modest portion of its
70 capabilities, the decimal module exposes all required parts of the standard.
71 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000072 This includes an option to enforce exact arithmetic by using exceptions
73 to block any inexact operations.
74
75* The decimal module was designed to support "without prejudice, both exact
76 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
77 and rounded floating-point arithmetic." -- excerpt from the decimal
78 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000079
80The module design is centered around three concepts: the decimal number, the
81context for arithmetic, and signals.
82
83A decimal number is immutable. It has a sign, coefficient digits, and an
84exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000085trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000086:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
87differentiates :const:`-0` from :const:`+0`.
88
89The context for arithmetic is an environment specifying precision, rounding
90rules, limits on exponents, flags indicating the results of operations, and trap
91enablers which determine whether signals are treated as exceptions. Rounding
92options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
93:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000094:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000095
96Signals are groups of exceptional conditions arising during the course of
97computation. Depending on the needs of the application, signals may be ignored,
98considered as informational, or treated as exceptions. The signals in the
99decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
100:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
101:const:`Overflow`, and :const:`Underflow`.
102
103For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000104encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000105set to one, an exception is raised. Flags are sticky, so the user needs to
106reset them before monitoring a calculation.
107
108
109.. seealso::
110
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000111 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettingerf345a212009-03-10 01:07:30 +0000112 Specification <http://speleotrove.com/decimal/>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000113
Georg Brandlb19be572007-12-29 10:57:00 +0000114.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000115
116
117.. _decimal-tutorial:
118
119Quick-start Tutorial
120--------------------
121
122The usual start to using decimals is importing the module, viewing the current
123context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000124precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000125
126 >>> from decimal import *
127 >>> getcontext()
128 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000129 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
130 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000131
132 >>> getcontext().prec = 7 # Set a new precision
133
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000134Decimal instances can be constructed from integers, strings, floats, or tuples.
135Construction from an integer or a float performs an exact conversion of the
136value of that integer or float. Decimal numbers include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +0000137:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000138:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000139
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000140 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000141 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000142 Decimal('10')
143 >>> Decimal('3.14')
144 Decimal('3.14')
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000145 >>> Decimal(3.14)
146 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000147 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000148 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000149 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000150 Decimal('1.41421356237')
151 >>> Decimal(2) ** Decimal('0.5')
152 Decimal('1.414213562373095048801688724')
153 >>> Decimal('NaN')
154 Decimal('NaN')
155 >>> Decimal('-Infinity')
156 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000157
158The significance of a new Decimal is determined solely by the number of digits
159input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000160operations.
161
162.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000163
164 >>> getcontext().prec = 6
165 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000166 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000167 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000168 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000169 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000170 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000171 >>> getcontext().rounding = ROUND_UP
172 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000173 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000174
175Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000176floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000177
Georg Brandl838b4b02008-03-22 13:07:06 +0000178.. doctest::
179 :options: +NORMALIZE_WHITESPACE
180
Georg Brandl8ec7f652007-08-15 14:28:01 +0000181 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
182 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000183 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000184 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000185 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000186 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000187 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
188 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000189 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000190 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000191 >>> a,b,c = data[:3]
192 >>> str(a)
193 '1.34'
194 >>> float(a)
Mark Dickinson6b87f112009-11-24 14:27:02 +0000195 1.34
Georg Brandl8ec7f652007-08-15 14:28:01 +0000196 >>> round(a, 1) # round() first converts to binary floating point
197 1.3
198 >>> int(a)
199 1
200 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000201 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000202 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000203 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000204 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000205 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000206
Georg Brandl9f662322008-03-22 11:47:10 +0000207And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000208
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000209 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000210 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000211 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000212 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000213 Decimal('2.718281828459045235360287471')
214 >>> Decimal('10').ln()
215 Decimal('2.302585092994045684017991455')
216 >>> Decimal('10').log10()
217 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000218
Georg Brandl8ec7f652007-08-15 14:28:01 +0000219The :meth:`quantize` method rounds a number to a fixed exponent. This method is
220useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000221places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000222
223 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000224 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000225 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000226 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000227
228As shown above, the :func:`getcontext` function accesses the current context and
229allows the settings to be changed. This approach meets the needs of most
230applications.
231
232For more advanced work, it may be useful to create alternate contexts using the
233Context() constructor. To make an alternate active, use the :func:`setcontext`
234function.
235
Serhiy Storchaka251aede2015-03-14 21:32:41 +0200236In accordance with the standard, the :mod:`decimal` module provides two ready to
Georg Brandl8ec7f652007-08-15 14:28:01 +0000237use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
238former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000239enabled:
240
241.. doctest:: newcontext
242 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000243
244 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
245 >>> setcontext(myothercontext)
246 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000247 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000248
249 >>> ExtendedContext
250 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
251 capitals=1, flags=[], traps=[])
252 >>> setcontext(ExtendedContext)
253 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000254 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000255 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000256 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000257
258 >>> setcontext(BasicContext)
259 >>> Decimal(42) / Decimal(0)
260 Traceback (most recent call last):
261 File "<pyshell#143>", line 1, in -toplevel-
262 Decimal(42) / Decimal(0)
263 DivisionByZero: x / 0
264
265Contexts also have signal flags for monitoring exceptional conditions
266encountered during computations. The flags remain set until explicitly cleared,
267so it is best to clear the flags before each set of monitored computations by
268using the :meth:`clear_flags` method. ::
269
270 >>> setcontext(ExtendedContext)
271 >>> getcontext().clear_flags()
272 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000273 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000274 >>> getcontext()
275 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000276 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000277
278The *flags* entry shows that the rational approximation to :const:`Pi` was
279rounded (digits beyond the context precision were thrown away) and that the
280result is inexact (some of the discarded digits were non-zero).
281
282Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000283context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000284
Georg Brandl9f662322008-03-22 11:47:10 +0000285.. doctest:: newcontext
286
287 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000288 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000289 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000290 >>> getcontext().traps[DivisionByZero] = 1
291 >>> Decimal(1) / Decimal(0)
292 Traceback (most recent call last):
293 File "<pyshell#112>", line 1, in -toplevel-
294 Decimal(1) / Decimal(0)
295 DivisionByZero: x / 0
296
297Most programs adjust the current context only once, at the beginning of the
298program. And, in many applications, data is converted to :class:`Decimal` with
299a single cast inside a loop. With context set and decimals created, the bulk of
300the program manipulates the data no differently than with other Python numeric
301types.
302
Georg Brandlb19be572007-12-29 10:57:00 +0000303.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000304
305
306.. _decimal-decimal:
307
308Decimal objects
309---------------
310
311
312.. class:: Decimal([value [, context]])
313
Georg Brandlb19be572007-12-29 10:57:00 +0000314 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000315
Raymond Hettingered171ab2010-04-02 18:39:24 +0000316 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000317 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000318 string, it should conform to the decimal numeric string syntax after leading
319 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000320
321 sign ::= '+' | '-'
322 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
323 indicator ::= 'e' | 'E'
324 digits ::= digit [digit]...
325 decimal-part ::= digits '.' [digits] | ['.'] digits
326 exponent-part ::= indicator [sign] digits
327 infinity ::= 'Infinity' | 'Inf'
328 nan ::= 'NaN' [digits] | 'sNaN' [digits]
329 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000330 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl8ec7f652007-08-15 14:28:01 +0000331
Mark Dickinson4326ad82009-08-02 10:59:36 +0000332 If *value* is a unicode string then other Unicode decimal digits
333 are also permitted where ``digit`` appears above. These include
334 decimal digits from various other alphabets (for example,
335 Arabic-Indic and Devanāgarī digits) along with the fullwidth digits
336 ``u'\uff10'`` through ``u'\uff19'``.
337
Georg Brandl8ec7f652007-08-15 14:28:01 +0000338 If *value* is a :class:`tuple`, it should have three components, a sign
339 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
340 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000341 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000342
Raymond Hettingered171ab2010-04-02 18:39:24 +0000343 If *value* is a :class:`float`, the binary floating point value is losslessly
344 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000345 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
346 converts to
347 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettingered171ab2010-04-02 18:39:24 +0000348
Georg Brandl8ec7f652007-08-15 14:28:01 +0000349 The *context* precision does not affect how many digits are stored. That is
350 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000351 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000352 only three.
353
354 The purpose of the *context* argument is determining what to do if *value* is a
355 malformed string. If the context traps :const:`InvalidOperation`, an exception
356 is raised; otherwise, the constructor returns a new Decimal with the value of
357 :const:`NaN`.
358
359 Once constructed, :class:`Decimal` objects are immutable.
360
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000361 .. versionchanged:: 2.6
362 leading and trailing whitespace characters are permitted when
363 creating a Decimal instance from a string.
364
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000365 .. versionchanged:: 2.7
Ezio Melotti6f65d2d2010-04-04 23:21:53 +0000366 The argument to the constructor is now permitted to be a :class:`float` instance.
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000367
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000368 Decimal floating point objects share many properties with the other built-in
369 numeric types such as :class:`float` and :class:`int`. All of the usual math
370 operations and special methods apply. Likewise, decimal objects can be
371 copied, pickled, printed, used as dictionary keys, used as set elements,
372 compared, sorted, and coerced to another type (such as :class:`float` or
373 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000374
Mark Dickinson0d187312012-11-18 10:20:28 +0000375 There are some small differences between arithmetic on Decimal objects and
376 arithmetic on integers and floats. When the remainder operator ``%`` is
377 applied to Decimal objects, the sign of the result is the sign of the
378 *dividend* rather than the sign of the divisor::
379
380 >>> (-7) % 4
381 1
382 >>> Decimal(-7) % Decimal(4)
383 Decimal('-3')
384
385 The integer division operator ``//`` behaves analogously, returning the
386 integer part of the true quotient (truncating towards zero) rather than its
Mark Dickinson3c9181b2012-11-18 10:41:29 +0000387 floor, so as to preserve the usual identity ``x == (x // y) * y + x % y``::
Mark Dickinson0d187312012-11-18 10:20:28 +0000388
389 >>> -7 // 4
390 -2
391 >>> Decimal(-7) // Decimal(4)
392 Decimal('-1')
393
394 The ``%`` and ``//`` operators implement the ``remainder`` and
395 ``divide-integer`` operations (respectively) as described in the
396 specification.
397
Mark Dickinson99d80962010-04-02 08:53:22 +0000398 Decimal objects cannot generally be combined with floats in
399 arithmetic operations: an attempt to add a :class:`Decimal` to a
400 :class:`float`, for example, will raise a :exc:`TypeError`.
401 There's one exception to this rule: it's possible to use Python's
402 comparison operators to compare a :class:`float` instance ``x``
403 with a :class:`Decimal` instance ``y``. Without this exception,
404 comparisons between :class:`Decimal` and :class:`float` instances
405 would follow the general rules for comparing objects of different
406 types described in the :ref:`expressions` section of the reference
407 manual, leading to confusing results.
408
409 .. versionchanged:: 2.7
410 A comparison between a :class:`float` instance ``x`` and a
411 :class:`Decimal` instance ``y`` now returns a result based on
412 the values of ``x`` and ``y``. In earlier versions ``x < y``
413 returned the same (arbitrary) result for any :class:`Decimal`
414 instance ``x`` and any :class:`float` instance ``y``.
415
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000416 In addition to the standard numeric properties, decimal floating point
417 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000418
419
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000420 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000421
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000422 Return the adjusted exponent after shifting out the coefficient's
423 rightmost digits until only the lead digit remains:
424 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
425 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000426
427
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000428 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000429
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000430 Return a :term:`named tuple` representation of the number:
431 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000432
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000433 .. versionchanged:: 2.6
434 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000435
436
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000437 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000438
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000439 Return the canonical encoding of the argument. Currently, the encoding of
440 a :class:`Decimal` instance is always canonical, so this operation returns
441 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000442
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000443 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000444
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000445 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000446
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000447 Compare the values of two Decimal instances. This operation behaves in
448 the same way as the usual comparison method :meth:`__cmp__`, except that
449 :meth:`compare` returns a Decimal instance rather than an integer, and if
450 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000451
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000452 a or b is a NaN ==> Decimal('NaN')
453 a < b ==> Decimal('-1')
454 a == b ==> Decimal('0')
455 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000456
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000457 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000458
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000459 This operation is identical to the :meth:`compare` method, except that all
460 NaNs signal. That is, if neither operand is a signaling NaN then any
461 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000462
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000463 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000464
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000465 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000466
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000467 Compare two operands using their abstract representation rather than their
468 numerical value. Similar to the :meth:`compare` method, but the result
469 gives a total ordering on :class:`Decimal` instances. Two
470 :class:`Decimal` instances with the same numeric value but different
471 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000472
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000473 >>> Decimal('12.0').compare_total(Decimal('12'))
474 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000475
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000476 Quiet and signaling NaNs are also included in the total ordering. The
477 result of this function is ``Decimal('0')`` if both operands have the same
478 representation, ``Decimal('-1')`` if the first operand is lower in the
479 total order than the second, and ``Decimal('1')`` if the first operand is
480 higher in the total order than the second operand. See the specification
481 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000482
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000483 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000484
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000485 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000486
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000487 Compare two operands using their abstract representation rather than their
488 value as in :meth:`compare_total`, but ignoring the sign of each operand.
489 ``x.compare_total_mag(y)`` is equivalent to
490 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000491
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000492 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000493
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000494 .. method:: conjugate()
495
496 Just returns self, this method is only to comply with the Decimal
497 Specification.
498
499 .. versionadded:: 2.6
500
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000501 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000502
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000503 Return the absolute value of the argument. This operation is unaffected
504 by the context and is quiet: no flags are changed and no rounding is
505 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000506
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000507 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000508
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000509 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000510
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000511 Return the negation of the argument. This operation is unaffected by the
512 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000513
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000514 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000515
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000516 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000517
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000518 Return a copy of the first operand with the sign set to be the same as the
519 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000520
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000521 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
522 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000523
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000524 This operation is unaffected by the context and is quiet: no flags are
525 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000526
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000527 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000528
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000529 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000530
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000531 Return the value of the (natural) exponential function ``e**x`` at the
532 given number. The result is correctly rounded using the
533 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000534
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000535 >>> Decimal(1).exp()
536 Decimal('2.718281828459045235360287471')
537 >>> Decimal(321).exp()
538 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000539
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000540 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000541
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000542 .. method:: from_float(f)
543
544 Classmethod that converts a float to a decimal number, exactly.
545
546 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
547 Since 0.1 is not exactly representable in binary floating point, the
548 value is stored as the nearest representable value which is
549 `0x1.999999999999ap-4`. That equivalent value in decimal is
550 `0.1000000000000000055511151231257827021181583404541015625`.
551
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000552 .. note:: From Python 2.7 onwards, a :class:`Decimal` instance
553 can also be constructed directly from a :class:`float`.
554
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000555 .. doctest::
556
557 >>> Decimal.from_float(0.1)
558 Decimal('0.1000000000000000055511151231257827021181583404541015625')
559 >>> Decimal.from_float(float('nan'))
560 Decimal('NaN')
561 >>> Decimal.from_float(float('inf'))
562 Decimal('Infinity')
563 >>> Decimal.from_float(float('-inf'))
564 Decimal('-Infinity')
565
566 .. versionadded:: 2.7
567
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000568 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000569
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000570 Fused multiply-add. Return self*other+third with no rounding of the
571 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000572
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000573 >>> Decimal(2).fma(3, 5)
574 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000575
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000576 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000577
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000578 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000579
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000580 Return :const:`True` if the argument is canonical and :const:`False`
581 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
582 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000583
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000584 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000585
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000586 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000587
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000588 Return :const:`True` if the argument is a finite number, and
589 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000590
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000591 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000592
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000593 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000594
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000595 Return :const:`True` if the argument is either positive or negative
596 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000597
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000598 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000599
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000600 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000601
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000602 Return :const:`True` if the argument is a (quiet or signaling) NaN and
603 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000604
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000605 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000606
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000607 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000608
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000609 Return :const:`True` if the argument is a *normal* finite non-zero
610 number with an adjusted exponent greater than or equal to *Emin*.
611 Return :const:`False` if the argument is zero, subnormal, infinite or a
612 NaN. Note, the term *normal* is used here in a different sense with
613 the :meth:`normalize` method which is used to create canonical values.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000614
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000615 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000616
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000617 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000618
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000619 Return :const:`True` if the argument is a quiet NaN, and
620 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000621
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000622 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000623
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000624 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000625
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000626 Return :const:`True` if the argument has a negative sign and
627 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000628
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000629 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000630
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000631 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000632
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000633 Return :const:`True` if the argument is a signaling NaN and :const:`False`
634 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000635
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000636 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000637
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000638 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000639
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000640 Return :const:`True` if the argument is subnormal, and :const:`False`
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000641 otherwise. A number is subnormal is if it is nonzero, finite, and has an
642 adjusted exponent less than *Emin*.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000643
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000644 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000645
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000646 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000647
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000648 Return :const:`True` if the argument is a (positive or negative) zero and
649 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000650
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000651 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000652
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000653 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000654
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000655 Return the natural (base e) logarithm of the operand. The result is
656 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000657
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000658 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000659
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000660 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000661
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000662 Return the base ten logarithm of the operand. The result is correctly
663 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000664
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000665 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000666
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000667 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000668
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000669 For a nonzero number, return the adjusted exponent of its operand as a
670 :class:`Decimal` instance. If the operand is a zero then
671 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
672 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
673 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000674
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000675 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000676
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000677 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000678
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000679 :meth:`logical_and` is a logical operation which takes two *logical
680 operands* (see :ref:`logical_operands_label`). The result is the
681 digit-wise ``and`` of the two operands.
682
683 .. versionadded:: 2.6
684
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000685 .. method:: logical_invert([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000686
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000687 :meth:`logical_invert` is a logical operation. The
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000688 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000689
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000690 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000691
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000692 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000693
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000694 :meth:`logical_or` is a logical operation which takes two *logical
695 operands* (see :ref:`logical_operands_label`). The result is the
696 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000697
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000698 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000699
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000700 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000701
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000702 :meth:`logical_xor` is a logical operation which takes two *logical
703 operands* (see :ref:`logical_operands_label`). The result is the
704 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000705
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000706 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000707
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000708 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000709
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000710 Like ``max(self, other)`` except that the context rounding rule is applied
711 before returning and that :const:`NaN` values are either signaled or
712 ignored (depending on the context and whether they are signaling or
713 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000714
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000715 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000716
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000717 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000718 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000719
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000720 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000721
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000722 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000723
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000724 Like ``min(self, other)`` except that the context rounding rule is applied
725 before returning and that :const:`NaN` values are either signaled or
726 ignored (depending on the context and whether they are signaling or
727 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000728
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000729 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000730
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000731 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000732 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000733
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000734 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000735
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000736 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000737
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000738 Return the largest number representable in the given context (or in the
739 current thread's context if no context is given) that is smaller than the
740 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000741
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000742 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000743
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000744 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000745
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000746 Return the smallest number representable in the given context (or in the
747 current thread's context if no context is given) that is larger than the
748 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000749
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000750 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000751
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000752 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000753
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000754 If the two operands are unequal, return the number closest to the first
755 operand in the direction of the second operand. If both operands are
756 numerically equal, return a copy of the first operand with the sign set to
757 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000758
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000759 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000760
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000761 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000762
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000763 Normalize the number by stripping the rightmost trailing zeros and
764 converting any result equal to :const:`Decimal('0')` to
Senthil Kumaran6f18b982011-07-04 12:50:02 -0700765 :const:`Decimal('0e0')`. Used for producing canonical values for attributes
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000766 of an equivalence class. For example, ``Decimal('32.100')`` and
767 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
768 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000769
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000770 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000771
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000772 Return a string describing the *class* of the operand. The returned value
773 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000774
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000775 * ``"-Infinity"``, indicating that the operand is negative infinity.
776 * ``"-Normal"``, indicating that the operand is a negative normal number.
777 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
778 * ``"-Zero"``, indicating that the operand is a negative zero.
779 * ``"+Zero"``, indicating that the operand is a positive zero.
780 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
781 * ``"+Normal"``, indicating that the operand is a positive normal number.
782 * ``"+Infinity"``, indicating that the operand is positive infinity.
783 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
784 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000785
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000786 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000787
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000788 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000789
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000790 Return a value equal to the first operand after rounding and having the
791 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000792
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000793 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
794 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000795
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000796 Unlike other operations, if the length of the coefficient after the
797 quantize operation would be greater than precision, then an
798 :const:`InvalidOperation` is signaled. This guarantees that, unless there
799 is an error condition, the quantized exponent is always equal to that of
800 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000801
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000802 Also unlike other operations, quantize never signals Underflow, even if
803 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000804
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000805 If the exponent of the second operand is larger than that of the first
806 then rounding may be necessary. In this case, the rounding mode is
807 determined by the ``rounding`` argument if given, else by the given
808 ``context`` argument; if neither argument is given the rounding mode of
809 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000810
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000811 If *watchexp* is set (default), then an error is returned whenever the
812 resulting exponent is greater than :attr:`Emax` or less than
813 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000814
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000815 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000816
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000817 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
818 class does all its arithmetic. Included for compatibility with the
819 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000820
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000821 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000822
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000823 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000824
Mark Dickinson89e8f542012-10-31 19:44:09 +0000825 Return the remainder from dividing *self* by *other*. This differs from
826 ``self % other`` in that the sign of the remainder is chosen so as to
827 minimize its absolute value. More precisely, the return value is
828 ``self - n * other`` where ``n`` is the integer nearest to the exact
829 value of ``self / other``, and if two integers are equally near then the
830 even one is chosen.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000831
Mark Dickinson89e8f542012-10-31 19:44:09 +0000832 If the result is zero then its sign will be the sign of *self*.
833
834 >>> Decimal(18).remainder_near(Decimal(10))
835 Decimal('-2')
836 >>> Decimal(25).remainder_near(Decimal(10))
837 Decimal('5')
838 >>> Decimal(35).remainder_near(Decimal(10))
839 Decimal('-5')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000840
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000841 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000842
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000843 Return the result of rotating the digits of the first operand by an amount
844 specified by the second operand. The second operand must be an integer in
845 the range -precision through precision. The absolute value of the second
846 operand gives the number of places to rotate. If the second operand is
847 positive then rotation is to the left; otherwise rotation is to the right.
848 The coefficient of the first operand is padded on the left with zeros to
849 length precision if necessary. The sign and exponent of the first operand
850 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000851
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000852 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000853
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000854 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000855
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000856 Test whether self and other have the same exponent or whether both are
857 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000858
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000859 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000860
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000861 Return the first operand with exponent adjusted by the second.
862 Equivalently, return the first operand multiplied by ``10**other``. The
863 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000864
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000865 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000866
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000867 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000868
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000869 Return the result of shifting the digits of the first operand by an amount
870 specified by the second operand. The second operand must be an integer in
871 the range -precision through precision. The absolute value of the second
872 operand gives the number of places to shift. If the second operand is
873 positive then the shift is to the left; otherwise the shift is to the
874 right. Digits shifted into the coefficient are zeros. The sign and
875 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000876
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000877 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000878
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000879 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000880
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000881 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000882
883
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000884 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000885
Raymond Hettingeraf0b38f2016-08-13 11:10:23 -0700886 Convert to a string, using engineering notation if an exponent is needed.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000887
Raymond Hettingeraf0b38f2016-08-13 11:10:23 -0700888 Engineering notation has an exponent which is a multiple of 3. This
889 can leave up to 3 digits to the left of the decimal place and may
890 require the addition of either one or two trailing zeros.
891
892 For example, this converts ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000893
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000894 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000895
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000896 Identical to the :meth:`to_integral_value` method. The ``to_integral``
897 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000898
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000899 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000900
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000901 Round to the nearest integer, signaling :const:`Inexact` or
902 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
903 determined by the ``rounding`` parameter if given, else by the given
904 ``context``. If neither parameter is given then the rounding mode of the
905 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000906
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000907 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000908
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000909 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000910
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000911 Round to the nearest integer without signaling :const:`Inexact` or
912 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
913 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000914
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000915 .. versionchanged:: 2.6
916 renamed from ``to_integral`` to ``to_integral_value``. The old name
917 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000918
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000919.. _logical_operands_label:
920
921Logical operands
922^^^^^^^^^^^^^^^^
923
924The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
925and :meth:`logical_xor` methods expect their arguments to be *logical
926operands*. A *logical operand* is a :class:`Decimal` instance whose
927exponent and sign are both zero, and whose digits are all either
928:const:`0` or :const:`1`.
929
Georg Brandlb19be572007-12-29 10:57:00 +0000930.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000931
932
933.. _decimal-context:
934
935Context objects
936---------------
937
938Contexts are environments for arithmetic operations. They govern precision, set
939rules for rounding, determine which signals are treated as exceptions, and limit
940the range for exponents.
941
942Each thread has its own current context which is accessed or changed using the
943:func:`getcontext` and :func:`setcontext` functions:
944
945
946.. function:: getcontext()
947
948 Return the current context for the active thread.
949
950
951.. function:: setcontext(c)
952
953 Set the current context for the active thread to *c*.
954
955Beginning with Python 2.5, you can also use the :keyword:`with` statement and
956the :func:`localcontext` function to temporarily change the active context.
957
958
959.. function:: localcontext([c])
960
961 Return a context manager that will set the current context for the active thread
962 to a copy of *c* on entry to the with-statement and restore the previous context
963 when exiting the with-statement. If no context is specified, a copy of the
964 current context is used.
965
966 .. versionadded:: 2.5
967
968 For example, the following code sets the current decimal precision to 42 places,
969 performs a calculation, and then automatically restores the previous context::
970
Georg Brandl8ec7f652007-08-15 14:28:01 +0000971 from decimal import localcontext
972
973 with localcontext() as ctx:
974 ctx.prec = 42 # Perform a high precision calculation
975 s = calculate_something()
976 s = +s # Round the final result back to the default precision
977
Raymond Hettinger56f5c382012-05-11 12:50:11 -0700978 with localcontext(BasicContext): # temporarily use the BasicContext
979 print Decimal(1) / Decimal(7)
980 print Decimal(355) / Decimal(113)
981
Georg Brandl8ec7f652007-08-15 14:28:01 +0000982New contexts can also be created using the :class:`Context` constructor
983described below. In addition, the module provides three pre-made contexts:
984
985
986.. class:: BasicContext
987
988 This is a standard context defined by the General Decimal Arithmetic
989 Specification. Precision is set to nine. Rounding is set to
990 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
991 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
992 :const:`Subnormal`.
993
994 Because many of the traps are enabled, this context is useful for debugging.
995
996
997.. class:: ExtendedContext
998
999 This is a standard context defined by the General Decimal Arithmetic
1000 Specification. Precision is set to nine. Rounding is set to
1001 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
1002 exceptions are not raised during computations).
1003
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001004 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +00001005 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
1006 raising exceptions. This allows an application to complete a run in the
1007 presence of conditions that would otherwise halt the program.
1008
1009
1010.. class:: DefaultContext
1011
1012 This context is used by the :class:`Context` constructor as a prototype for new
1013 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Krah3d08d882010-05-29 12:54:35 +00001014 default for new contexts created by the :class:`Context` constructor.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001015
1016 This context is most useful in multi-threaded environments. Changing one of the
1017 fields before threads are started has the effect of setting system-wide
1018 defaults. Changing the fields after threads have started is not recommended as
1019 it would require thread synchronization to prevent race conditions.
1020
1021 In single threaded environments, it is preferable to not use this context at
1022 all. Instead, simply create contexts explicitly as described below.
1023
1024 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
1025 for Overflow, InvalidOperation, and DivisionByZero.
1026
1027In addition to the three supplied contexts, new contexts can be created with the
1028:class:`Context` constructor.
1029
1030
1031.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
1032
1033 Creates a new context. If a field is not specified or is :const:`None`, the
1034 default values are copied from the :const:`DefaultContext`. If the *flags*
1035 field is not specified or is :const:`None`, all flags are cleared.
1036
1037 The *prec* field is a positive integer that sets the precision for arithmetic
1038 operations in the context.
1039
1040 The *rounding* option is one of:
1041
1042 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
1043 * :const:`ROUND_DOWN` (towards zero),
1044 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
1045 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
1046 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
1047 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
1048 * :const:`ROUND_UP` (away from zero).
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001049 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001050 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001051
1052 The *traps* and *flags* fields list any signals to be set. Generally, new
1053 contexts should only set traps and leave the flags clear.
1054
1055 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
1056 for exponents.
1057
1058 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
1059 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
1060 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
1061
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001062 .. versionchanged:: 2.6
1063 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001064
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001065 The :class:`Context` class defines several general purpose methods as well as
1066 a large number of methods for doing arithmetic directly in a given context.
1067 In addition, for each of the :class:`Decimal` methods described above (with
1068 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson6d8effb2010-02-18 14:27:02 +00001069 a corresponding :class:`Context` method. For example, for a :class:`Context`
1070 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
1071 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
1072 Python integer (an instance of :class:`int` or :class:`long`) anywhere that a
1073 Decimal instance is accepted.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001074
1075
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001076 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001077
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001078 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001079
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001080 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001081
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001082 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001083
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001084 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001085
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001086 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001087
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001088 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +00001089
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001090 Creates a new Decimal instance from *num* but using *self* as
1091 context. Unlike the :class:`Decimal` constructor, the context precision,
1092 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001093
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001094 This is useful because constants are often given to a greater precision
1095 than is needed by the application. Another benefit is that rounding
1096 immediately eliminates unintended effects from digits beyond the current
1097 precision. In the following example, using unrounded inputs means that
1098 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001099
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001100 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001101
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001102 >>> getcontext().prec = 3
1103 >>> Decimal('3.4445') + Decimal('1.0023')
1104 Decimal('4.45')
1105 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1106 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001107
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001108 This method implements the to-number operation of the IBM specification.
1109 If the argument is a string, no leading or trailing whitespace is
1110 permitted.
1111
Georg Brandlaa5bb322009-01-03 19:44:48 +00001112 .. method:: create_decimal_from_float(f)
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001113
1114 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandla24067e2009-01-03 20:15:14 +00001115 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001116 the context precision, rounding method, flags, and traps are applied to
1117 the conversion.
1118
1119 .. doctest::
1120
Georg Brandlaa5bb322009-01-03 19:44:48 +00001121 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1122 >>> context.create_decimal_from_float(math.pi)
1123 Decimal('3.1415')
1124 >>> context = Context(prec=5, traps=[Inexact])
1125 >>> context.create_decimal_from_float(math.pi)
1126 Traceback (most recent call last):
1127 ...
1128 Inexact: None
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001129
1130 .. versionadded:: 2.7
1131
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001132 .. method:: Etiny()
1133
1134 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1135 value for subnormal results. When underflow occurs, the exponent is set
1136 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001137
1138
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001139 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001140
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001141 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001142
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001143 The usual approach to working with decimals is to create :class:`Decimal`
1144 instances and then apply arithmetic operations which take place within the
1145 current context for the active thread. An alternative approach is to use
1146 context methods for calculating within a specific context. The methods are
1147 similar to those for the :class:`Decimal` class and are only briefly
1148 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001149
1150
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001151 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001152
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001153 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001154
1155
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001156 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001157
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001158 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001159
1160
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001161 .. method:: canonical(x)
1162
1163 Returns the same Decimal object *x*.
1164
1165
1166 .. method:: compare(x, y)
1167
1168 Compares *x* and *y* numerically.
1169
1170
1171 .. method:: compare_signal(x, y)
1172
1173 Compares the values of the two operands numerically.
1174
1175
1176 .. method:: compare_total(x, y)
1177
1178 Compares two operands using their abstract representation.
1179
1180
1181 .. method:: compare_total_mag(x, y)
1182
1183 Compares two operands using their abstract representation, ignoring sign.
1184
1185
1186 .. method:: copy_abs(x)
1187
1188 Returns a copy of *x* with the sign set to 0.
1189
1190
1191 .. method:: copy_negate(x)
1192
1193 Returns a copy of *x* with the sign inverted.
1194
1195
1196 .. method:: copy_sign(x, y)
1197
1198 Copies the sign from *y* to *x*.
1199
1200
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001201 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001202
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001203 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001204
1205
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001206 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001207
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001208 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001209
1210
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001211 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001212
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001213 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001214
1215
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001216 .. method:: exp(x)
1217
1218 Returns `e ** x`.
1219
1220
1221 .. method:: fma(x, y, z)
1222
1223 Returns *x* multiplied by *y*, plus *z*.
1224
1225
1226 .. method:: is_canonical(x)
1227
Serhiy Storchaka9f91d352013-11-26 17:32:03 +02001228 Returns ``True`` if *x* is canonical; otherwise returns ``False``.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001229
1230
1231 .. method:: is_finite(x)
1232
Serhiy Storchaka9f91d352013-11-26 17:32:03 +02001233 Returns ``True`` if *x* is finite; otherwise returns ``False``.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001234
1235
1236 .. method:: is_infinite(x)
1237
Serhiy Storchaka9f91d352013-11-26 17:32:03 +02001238 Returns ``True`` if *x* is infinite; otherwise returns ``False``.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001239
1240
1241 .. method:: is_nan(x)
1242
Serhiy Storchaka9f91d352013-11-26 17:32:03 +02001243 Returns ``True`` if *x* is a qNaN or sNaN; otherwise returns ``False``.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001244
1245
1246 .. method:: is_normal(x)
1247
Serhiy Storchaka9f91d352013-11-26 17:32:03 +02001248 Returns ``True`` if *x* is a normal number; otherwise returns ``False``.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001249
1250
1251 .. method:: is_qnan(x)
1252
Serhiy Storchaka9f91d352013-11-26 17:32:03 +02001253 Returns ``True`` if *x* is a quiet NaN; otherwise returns ``False``.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001254
1255
1256 .. method:: is_signed(x)
1257
Serhiy Storchaka9f91d352013-11-26 17:32:03 +02001258 Returns ``True`` if *x* is negative; otherwise returns ``False``.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001259
1260
1261 .. method:: is_snan(x)
1262
Serhiy Storchaka9f91d352013-11-26 17:32:03 +02001263 Returns ``True`` if *x* is a signaling NaN; otherwise returns ``False``.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001264
1265
1266 .. method:: is_subnormal(x)
1267
Serhiy Storchaka9f91d352013-11-26 17:32:03 +02001268 Returns ``True`` if *x* is subnormal; otherwise returns ``False``.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001269
1270
1271 .. method:: is_zero(x)
1272
Serhiy Storchaka9f91d352013-11-26 17:32:03 +02001273 Returns ``True`` if *x* is a zero; otherwise returns ``False``.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001274
1275
1276 .. method:: ln(x)
1277
1278 Returns the natural (base e) logarithm of *x*.
1279
1280
1281 .. method:: log10(x)
1282
1283 Returns the base 10 logarithm of *x*.
1284
1285
1286 .. method:: logb(x)
1287
1288 Returns the exponent of the magnitude of the operand's MSD.
1289
1290
1291 .. method:: logical_and(x, y)
1292
Georg Brandle92818f2009-01-03 20:47:01 +00001293 Applies the logical operation *and* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001294
1295
1296 .. method:: logical_invert(x)
1297
1298 Invert all the digits in *x*.
1299
1300
1301 .. method:: logical_or(x, y)
1302
Georg Brandle92818f2009-01-03 20:47:01 +00001303 Applies the logical operation *or* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001304
1305
1306 .. method:: logical_xor(x, y)
1307
Georg Brandle92818f2009-01-03 20:47:01 +00001308 Applies the logical operation *xor* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001309
1310
1311 .. method:: max(x, y)
1312
1313 Compares two values numerically and returns the maximum.
1314
1315
1316 .. method:: max_mag(x, y)
1317
1318 Compares the values numerically with their sign ignored.
1319
1320
1321 .. method:: min(x, y)
1322
1323 Compares two values numerically and returns the minimum.
1324
1325
1326 .. method:: min_mag(x, y)
1327
1328 Compares the values numerically with their sign ignored.
1329
1330
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001331 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001332
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001333 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001334
1335
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001336 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001337
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001338 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001339
1340
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001341 .. method:: next_minus(x)
1342
1343 Returns the largest representable number smaller than *x*.
1344
1345
1346 .. method:: next_plus(x)
1347
1348 Returns the smallest representable number larger than *x*.
1349
1350
1351 .. method:: next_toward(x, y)
1352
1353 Returns the number closest to *x*, in direction towards *y*.
1354
1355
1356 .. method:: normalize(x)
1357
1358 Reduces *x* to its simplest form.
1359
1360
1361 .. method:: number_class(x)
1362
1363 Returns an indication of the class of *x*.
1364
1365
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001366 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001367
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001368 Plus corresponds to the unary prefix plus operator in Python. This
1369 operation applies the context precision and rounding, so it is *not* an
1370 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001371
1372
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001373 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001374
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001375 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001376
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001377 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1378 must be integral. The result will be inexact unless ``y`` is integral and
1379 the result is finite and can be expressed exactly in 'precision' digits.
1380 The result should always be correctly rounded, using the rounding mode of
1381 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001382
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001383 With three arguments, compute ``(x**y) % modulo``. For the three argument
1384 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001385
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001386 - all three arguments must be integral
1387 - ``y`` must be nonnegative
1388 - at least one of ``x`` or ``y`` must be nonzero
1389 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001390
Mark Dickinsonf5be4e62010-02-22 15:40:28 +00001391 The value resulting from ``Context.power(x, y, modulo)`` is
1392 equal to the value that would be obtained by computing ``(x**y)
1393 % modulo`` with unbounded precision, but is computed more
1394 efficiently. The exponent of the result is zero, regardless of
1395 the exponents of ``x``, ``y`` and ``modulo``. The result is
1396 always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001397
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001398 .. versionchanged:: 2.6
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001399 ``y`` may now be nonintegral in ``x**y``.
1400 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001401
1402
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001403 .. method:: quantize(x, y)
1404
1405 Returns a value equal to *x* (rounded), having the exponent of *y*.
1406
1407
1408 .. method:: radix()
1409
1410 Just returns 10, as this is Decimal, :)
1411
1412
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001413 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001414
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001415 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001416
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001417 The sign of the result, if non-zero, is the same as that of the original
1418 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001419
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001420 .. method:: remainder_near(x, y)
1421
Georg Brandle92818f2009-01-03 20:47:01 +00001422 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1423 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001424
1425
1426 .. method:: rotate(x, y)
1427
1428 Returns a rotated copy of *x*, *y* times.
1429
1430
1431 .. method:: same_quantum(x, y)
1432
Serhiy Storchaka9f91d352013-11-26 17:32:03 +02001433 Returns ``True`` if the two operands have the same exponent.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001434
1435
1436 .. method:: scaleb (x, y)
1437
1438 Returns the first operand after adding the second value its exp.
1439
1440
1441 .. method:: shift(x, y)
1442
1443 Returns a shifted copy of *x*, *y* times.
1444
1445
1446 .. method:: sqrt(x)
1447
1448 Square root of a non-negative number to context precision.
1449
1450
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001451 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001452
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001453 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001454
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001455
1456 .. method:: to_eng_string(x)
1457
Raymond Hettingeraf0b38f2016-08-13 11:10:23 -07001458 Convert to a string, using engineering notation if an exponent is needed.
1459
1460 Engineering notation has an exponent which is a multiple of 3. This
1461 can leave up to 3 digits to the left of the decimal place and may
1462 require the addition of either one or two trailing zeros.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001463
1464
1465 .. method:: to_integral_exact(x)
1466
1467 Rounds to an integer.
1468
1469
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001470 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001471
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001472 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001473
Georg Brandlb19be572007-12-29 10:57:00 +00001474.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001475
1476
1477.. _decimal-signals:
1478
1479Signals
1480-------
1481
1482Signals represent conditions that arise during computation. Each corresponds to
1483one context flag and one context trap enabler.
1484
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001485The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001486computation, flags may be checked for informational purposes (for instance, to
1487determine whether a computation was exact). After checking the flags, be sure to
1488clear all flags before starting the next computation.
1489
1490If the context's trap enabler is set for the signal, then the condition causes a
1491Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1492is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1493condition.
1494
1495
1496.. class:: Clamped
1497
1498 Altered an exponent to fit representation constraints.
1499
1500 Typically, clamping occurs when an exponent falls outside the context's
1501 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001502 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001503
1504
1505.. class:: DecimalException
1506
1507 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1508
1509
1510.. class:: DivisionByZero
1511
1512 Signals the division of a non-infinite number by zero.
1513
1514 Can occur with division, modulo division, or when raising a number to a negative
1515 power. If this signal is not trapped, returns :const:`Infinity` or
1516 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1517
1518
1519.. class:: Inexact
1520
1521 Indicates that rounding occurred and the result is not exact.
1522
1523 Signals when non-zero digits were discarded during rounding. The rounded result
1524 is returned. The signal flag or trap is used to detect when results are
1525 inexact.
1526
1527
1528.. class:: InvalidOperation
1529
1530 An invalid operation was performed.
1531
1532 Indicates that an operation was requested that does not make sense. If not
1533 trapped, returns :const:`NaN`. Possible causes include::
1534
1535 Infinity - Infinity
1536 0 * Infinity
1537 Infinity / Infinity
1538 x % 0
1539 Infinity % x
1540 x._rescale( non-integer )
1541 sqrt(-x) and x > 0
1542 0 ** 0
1543 x ** (non-integer)
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001544 x ** Infinity
Georg Brandl8ec7f652007-08-15 14:28:01 +00001545
1546
1547.. class:: Overflow
1548
1549 Numerical overflow.
1550
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001551 Indicates the exponent is larger than :attr:`Emax` after rounding has
1552 occurred. If not trapped, the result depends on the rounding mode, either
1553 pulling inward to the largest representable finite number or rounding outward
1554 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1555 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001556
1557
1558.. class:: Rounded
1559
1560 Rounding occurred though possibly no information was lost.
1561
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001562 Signaled whenever rounding discards digits; even if those digits are zero
1563 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1564 the result unchanged. This signal is used to detect loss of significant
1565 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001566
1567
1568.. class:: Subnormal
1569
1570 Exponent was lower than :attr:`Emin` prior to rounding.
1571
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001572 Occurs when an operation result is subnormal (the exponent is too small). If
1573 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001574
1575
1576.. class:: Underflow
1577
1578 Numerical underflow with result rounded to zero.
1579
1580 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1581 and :class:`Subnormal` are also signaled.
1582
1583The following table summarizes the hierarchy of signals::
1584
1585 exceptions.ArithmeticError(exceptions.StandardError)
1586 DecimalException
1587 Clamped
1588 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1589 Inexact
1590 Overflow(Inexact, Rounded)
1591 Underflow(Inexact, Rounded, Subnormal)
1592 InvalidOperation
1593 Rounded
1594 Subnormal
1595
Georg Brandlb19be572007-12-29 10:57:00 +00001596.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001597
1598
1599.. _decimal-notes:
1600
1601Floating Point Notes
1602--------------------
1603
1604
1605Mitigating round-off error with increased precision
1606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1607
1608The use of decimal floating point eliminates decimal representation error
1609(making it possible to represent :const:`0.1` exactly); however, some operations
1610can still incur round-off error when non-zero digits exceed the fixed precision.
1611
1612The effects of round-off error can be amplified by the addition or subtraction
1613of nearly offsetting quantities resulting in loss of significance. Knuth
1614provides two instructive examples where rounded floating point arithmetic with
1615insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001616properties of addition:
1617
1618.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001619
1620 # Examples from Seminumerical Algorithms, Section 4.2.2.
1621 >>> from decimal import Decimal, getcontext
1622 >>> getcontext().prec = 8
1623
1624 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1625 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001626 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001627 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001628 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001629
1630 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1631 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001632 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001633 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001634 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001635
1636The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001637expanding the precision sufficiently to avoid loss of significance:
1638
1639.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001640
1641 >>> getcontext().prec = 20
1642 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1643 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001644 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001645 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001646 Decimal('9.51111111')
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001647 >>>
Georg Brandl8ec7f652007-08-15 14:28:01 +00001648 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1649 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001650 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001651 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001652 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001653
1654
1655Special values
1656^^^^^^^^^^^^^^
1657
1658The number system for the :mod:`decimal` module provides special values
1659including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001660and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001661
1662Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1663they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1664not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1665can result from rounding beyond the limits of the largest representable number.
1666
1667The infinities are signed (affine) and can be used in arithmetic operations
1668where they get treated as very large, indeterminate numbers. For instance,
1669adding a constant to infinity gives another infinite result.
1670
1671Some operations are indeterminate and return :const:`NaN`, or if the
1672:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1673``0/0`` returns :const:`NaN` which means "not a number". This variety of
1674:const:`NaN` is quiet and, once created, will flow through other computations
1675always resulting in another :const:`NaN`. This behavior can be useful for a
1676series of computations that occasionally have missing inputs --- it allows the
1677calculation to proceed while flagging specific results as invalid.
1678
1679A variant is :const:`sNaN` which signals rather than remaining quiet after every
1680operation. This is a useful return value when an invalid result needs to
1681interrupt a calculation for special handling.
1682
Mark Dickinson2fc92632008-02-06 22:10:50 +00001683The behavior of Python's comparison operators can be a little surprising where a
1684:const:`NaN` is involved. A test for equality where one of the operands is a
1685quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1686``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001687:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001688``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1689if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001690not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001691specify the behavior of direct comparisons; these rules for comparisons
1692involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1693section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001694and :meth:`compare-signal` methods instead.
1695
Georg Brandl8ec7f652007-08-15 14:28:01 +00001696The signed zeros can result from calculations that underflow. They keep the sign
1697that would have resulted if the calculation had been carried out to greater
1698precision. Since their magnitude is zero, both positive and negative zeros are
1699treated as equal and their sign is informational.
1700
1701In addition to the two signed zeros which are distinct yet equal, there are
1702various representations of zero with differing precisions yet equivalent in
1703value. This takes a bit of getting used to. For an eye accustomed to
1704normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001705the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001706
1707 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001708 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001709
Georg Brandlb19be572007-12-29 10:57:00 +00001710.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001711
1712
1713.. _decimal-threads:
1714
1715Working with threads
1716--------------------
1717
1718The :func:`getcontext` function accesses a different :class:`Context` object for
1719each thread. Having separate thread contexts means that threads may make
1720changes (such as ``getcontext.prec=10``) without interfering with other threads.
1721
1722Likewise, the :func:`setcontext` function automatically assigns its target to
1723the current thread.
1724
1725If :func:`setcontext` has not been called before :func:`getcontext`, then
1726:func:`getcontext` will automatically create a new context for use in the
1727current thread.
1728
1729The new context is copied from a prototype context called *DefaultContext*. To
1730control the defaults so that each thread will use the same values throughout the
1731application, directly modify the *DefaultContext* object. This should be done
1732*before* any threads are started so that there won't be a race condition between
1733threads calling :func:`getcontext`. For example::
1734
1735 # Set applicationwide defaults for all threads about to be launched
1736 DefaultContext.prec = 12
1737 DefaultContext.rounding = ROUND_DOWN
1738 DefaultContext.traps = ExtendedContext.traps.copy()
1739 DefaultContext.traps[InvalidOperation] = 1
1740 setcontext(DefaultContext)
1741
1742 # Afterwards, the threads can be started
1743 t1.start()
1744 t2.start()
1745 t3.start()
1746 . . .
1747
Georg Brandlb19be572007-12-29 10:57:00 +00001748.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001749
1750
1751.. _decimal-recipes:
1752
1753Recipes
1754-------
1755
1756Here are a few recipes that serve as utility functions and that demonstrate ways
1757to work with the :class:`Decimal` class::
1758
1759 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1760 pos='', neg='-', trailneg=''):
1761 """Convert Decimal to a money formatted string.
1762
1763 places: required number of places after the decimal point
1764 curr: optional currency symbol before the sign (may be blank)
1765 sep: optional grouping separator (comma, period, space, or blank)
1766 dp: decimal point indicator (comma or period)
1767 only specify as blank when places is zero
1768 pos: optional sign for positive numbers: '+', space or blank
1769 neg: optional sign for negative numbers: '-', '(', space or blank
1770 trailneg:optional trailing minus indicator: '-', ')', space or blank
1771
1772 >>> d = Decimal('-1234567.8901')
1773 >>> moneyfmt(d, curr='$')
1774 '-$1,234,567.89'
1775 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1776 '1.234.568-'
1777 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1778 '($1,234,567.89)'
1779 >>> moneyfmt(Decimal(123456789), sep=' ')
1780 '123 456 789.00'
1781 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001782 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001783
1784 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001785 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001786 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001787 result = []
1788 digits = map(str, digits)
1789 build, next = result.append, digits.pop
1790 if sign:
1791 build(trailneg)
1792 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001793 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001794 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001795 if not digits:
1796 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001797 i = 0
1798 while digits:
1799 build(next())
1800 i += 1
1801 if i == 3 and digits:
1802 i = 0
1803 build(sep)
1804 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001805 build(neg if sign else pos)
1806 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001807
1808 def pi():
1809 """Compute Pi to the current precision.
1810
1811 >>> print pi()
1812 3.141592653589793238462643383
1813
1814 """
1815 getcontext().prec += 2 # extra digits for intermediate steps
1816 three = Decimal(3) # substitute "three=3.0" for regular floats
1817 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1818 while s != lasts:
1819 lasts = s
1820 n, na = n+na, na+8
1821 d, da = d+da, da+32
1822 t = (t * n) / d
1823 s += t
1824 getcontext().prec -= 2
1825 return +s # unary plus applies the new precision
1826
1827 def exp(x):
1828 """Return e raised to the power of x. Result type matches input type.
1829
1830 >>> print exp(Decimal(1))
1831 2.718281828459045235360287471
1832 >>> print exp(Decimal(2))
1833 7.389056098930650227230427461
1834 >>> print exp(2.0)
1835 7.38905609893
1836 >>> print exp(2+0j)
1837 (7.38905609893+0j)
1838
1839 """
1840 getcontext().prec += 2
1841 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1842 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001843 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001844 i += 1
1845 fact *= i
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001846 num *= x
1847 s += num / fact
1848 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001849 return +s
1850
1851 def cos(x):
1852 """Return the cosine of x as measured in radians.
1853
1854 >>> print cos(Decimal('0.5'))
1855 0.8775825618903727161162815826
1856 >>> print cos(0.5)
1857 0.87758256189
1858 >>> print cos(0.5+0j)
1859 (0.87758256189+0j)
1860
1861 """
1862 getcontext().prec += 2
1863 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1864 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001865 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001866 i += 2
1867 fact *= i * (i-1)
1868 num *= x * x
1869 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001870 s += num / fact * sign
1871 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001872 return +s
1873
1874 def sin(x):
1875 """Return the sine of x as measured in radians.
1876
1877 >>> print sin(Decimal('0.5'))
1878 0.4794255386042030002732879352
1879 >>> print sin(0.5)
1880 0.479425538604
1881 >>> print sin(0.5+0j)
1882 (0.479425538604+0j)
1883
1884 """
1885 getcontext().prec += 2
1886 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1887 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001888 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001889 i += 2
1890 fact *= i * (i-1)
1891 num *= x * x
1892 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001893 s += num / fact * sign
1894 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001895 return +s
1896
1897
Georg Brandlb19be572007-12-29 10:57:00 +00001898.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001899
1900
1901.. _decimal-faq:
1902
1903Decimal FAQ
1904-----------
1905
1906Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1907minimize typing when using the interactive interpreter?
1908
Georg Brandl9f662322008-03-22 11:47:10 +00001909A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001910
1911 >>> D = decimal.Decimal
1912 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001913 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001914
1915Q. In a fixed-point application with two decimal places, some inputs have many
1916places and need to be rounded. Others are not supposed to have excess digits
1917and need to be validated. What methods should be used?
1918
1919A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001920the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001921
1922 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1923
1924 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001925 >>> Decimal('3.214').quantize(TWOPLACES)
1926 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001927
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001928 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001929 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1930 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001931
Raymond Hettingerabe32372008-02-14 02:41:22 +00001932 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001933 Traceback (most recent call last):
1934 ...
Georg Brandlf6dab952009-04-28 21:48:35 +00001935 Inexact: None
Georg Brandl8ec7f652007-08-15 14:28:01 +00001936
1937Q. Once I have valid two place inputs, how do I maintain that invariant
1938throughout an application?
1939
Raymond Hettinger46314812008-02-14 10:46:57 +00001940A. Some operations like addition, subtraction, and multiplication by an integer
1941will automatically preserve fixed point. Others operations, like division and
1942non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001943be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001944
1945 >>> a = Decimal('102.72') # Initial fixed-point values
1946 >>> b = Decimal('3.17')
1947 >>> a + b # Addition preserves fixed-point
1948 Decimal('105.89')
1949 >>> a - b
1950 Decimal('99.55')
1951 >>> a * 42 # So does integer multiplication
1952 Decimal('4314.24')
1953 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1954 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001955 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001956 Decimal('0.03')
1957
1958In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001959to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001960
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001961 >>> def mul(x, y, fp=TWOPLACES):
1962 ... return (x * y).quantize(fp)
1963 >>> def div(x, y, fp=TWOPLACES):
1964 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001965
Raymond Hettinger46314812008-02-14 10:46:57 +00001966 >>> mul(a, b) # Automatically preserve fixed-point
1967 Decimal('325.62')
1968 >>> div(b, a)
1969 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001970
1971Q. There are many ways to express the same value. The numbers :const:`200`,
1972:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1973various precisions. Is there a way to transform them to a single recognizable
1974canonical value?
1975
1976A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001977representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001978
1979 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1980 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001981 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001982
1983Q. Some decimal values always print with exponential notation. Is there a way
1984to get a non-exponential representation?
1985
1986A. For some values, exponential notation is the only way to express the number
1987of significant places in the coefficient. For example, expressing
1988:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1989original's two-place significance.
1990
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001991If an application does not care about tracking significance, it is easy to
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001992remove the exponent and trailing zeros, losing significance, but keeping the
1993value unchanged::
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001994
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001995 def remove_exponent(d):
1996 '''Remove exponent and trailing zeros.
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001997
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001998 >>> remove_exponent(Decimal('5E+3'))
1999 Decimal('5000')
Raymond Hettingerd68bf022008-02-14 11:57:25 +00002000
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00002001 '''
2002 return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
Georg Brandl8ec7f652007-08-15 14:28:01 +00002003
Raymond Hettingered171ab2010-04-02 18:39:24 +00002004Q. Is there a way to convert a regular float to a :class:`Decimal`?
Georg Brandl9f662322008-03-22 11:47:10 +00002005
Mark Dickinsonb1affc52010-04-04 22:09:21 +00002006A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettingered171ab2010-04-02 18:39:24 +00002007Decimal though an exact conversion may take more precision than intuition would
2008suggest:
Georg Brandl8ec7f652007-08-15 14:28:01 +00002009
Raymond Hettingered171ab2010-04-02 18:39:24 +00002010.. doctest::
Georg Brandl8ec7f652007-08-15 14:28:01 +00002011
Raymond Hettingered171ab2010-04-02 18:39:24 +00002012 >>> Decimal(math.pi)
2013 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002014
2015Q. Within a complex calculation, how can I make sure that I haven't gotten a
2016spurious result because of insufficient precision or rounding anomalies.
2017
2018A. The decimal module makes it easy to test results. A best practice is to
2019re-run calculations using greater precision and with various rounding modes.
2020Widely differing results indicate insufficient precision, rounding mode issues,
2021ill-conditioned inputs, or a numerically unstable algorithm.
2022
2023Q. I noticed that context precision is applied to the results of operations but
2024not to the inputs. Is there anything to watch out for when mixing values of
2025different precisions?
2026
2027A. Yes. The principle is that all values are considered to be exact and so is
2028the arithmetic on those values. Only the results are rounded. The advantage
2029for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00002030results can look odd if you forget that the inputs haven't been rounded:
2031
2032.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00002033
2034 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00002035 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00002036 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00002037 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00002038 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002039
2040The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00002041using the unary plus operation:
2042
2043.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00002044
2045 >>> getcontext().prec = 3
2046 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00002047 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002048
2049Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00002050:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00002051
2052 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00002053 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002054