blob: c9f2a383312f396a93f7f426e4c5082c4b94a0a9 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
Łukasz Langa288234f2013-01-18 13:40:43 +01007.. testsetup::
8
9 from math import fsum
Georg Brandl116aa622007-08-15 14:28:22 +000010
Terry Jan Reedyfa089b92016-06-11 15:02:54 -040011--------------
12
Ned Batchelder6faad352019-05-17 05:59:14 -040013This module provides access to the mathematical functions defined by the C
14standard.
Georg Brandl116aa622007-08-15 14:28:22 +000015
16These functions cannot be used with complex numbers; use the functions of the
17same name from the :mod:`cmath` module if you require support for complex
18numbers. The distinction between functions which support complex numbers and
19those which don't is made since most users do not want to learn quite as much
20mathematics as required to understand complex numbers. Receiving an exception
21instead of a complex result allows earlier detection of the unexpected complex
22number used as a parameter, so that the programmer can determine how and why it
23was generated in the first place.
24
25The following functions are provided by this module. Except when explicitly
26noted otherwise, all return values are floats.
27
Georg Brandl116aa622007-08-15 14:28:22 +000028
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000029Number-theoretic and representation functions
30---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000031
32.. function:: ceil(x)
33
Georg Brandl2a033732008-04-05 17:37:09 +000034 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
35 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030036 :class:`~numbers.Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000037
38
Raymond Hettingerb7fade42019-06-01 15:01:46 -070039.. function:: comb(n, k)
40
41 Return the number of ways to choose *k* items from *n* items without repetition
42 and without order.
43
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070044 Evaluates to ``n! / (k! * (n - k)!)`` when ``k <= n`` and evaluates
45 to zero when ``k > n``.
Raymond Hettingerb7fade42019-06-01 15:01:46 -070046
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070047 Also called the binomial coefficient because it is equivalent
48 to the coefficient of k-th term in polynomial expansion of the
49 expression ``(1 + x) ** n``.
50
Raymond Hettinger8f4bbb52019-06-04 03:40:23 -070051 Raises :exc:`TypeError` if either of the arguments are not integers.
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070052 Raises :exc:`ValueError` if either of the arguments are negative.
Raymond Hettingerb7fade42019-06-01 15:01:46 -070053
54 .. versionadded:: 3.8
55
56
Christian Heimes072c0f12008-01-03 23:01:04 +000057.. function:: copysign(x, y)
58
Andrew Kuchling8cb1ec32014-02-16 11:11:25 -050059 Return a float with the magnitude (absolute value) of *x* but the sign of
60 *y*. On platforms that support signed zeros, ``copysign(1.0, -0.0)``
61 returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000062
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030063
Georg Brandl116aa622007-08-15 14:28:22 +000064.. function:: fabs(x)
65
66 Return the absolute value of *x*.
67
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030068
Georg Brandlc28e1fa2008-06-10 19:20:26 +000069.. function:: factorial(x)
70
Akshay Sharma46126712019-05-31 22:11:17 +053071 Return *x* factorial as an integer. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000072 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000073
Serhiy Storchaka231aad32019-06-17 16:57:27 +030074 .. deprecated:: 3.9
75 Accepting floats with integral values (like ``5.0``) is deprecated.
76
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030077
Georg Brandl116aa622007-08-15 14:28:22 +000078.. function:: floor(x)
79
Georg Brandl2a033732008-04-05 17:37:09 +000080 Return the floor of *x*, the largest integer less than or equal to *x*.
81 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030082 :class:`~numbers.Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000083
84
85.. function:: fmod(x, y)
86
87 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
88 Python expression ``x % y`` may not return the same result. The intent of the C
89 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
90 precision) equal to ``x - n*y`` for some integer *n* such that the result has
91 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
92 returns a result with the sign of *y* instead, and may not be exactly computable
93 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
94 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
95 represented exactly as a float, and rounds to the surprising ``1e100``. For
96 this reason, function :func:`fmod` is generally preferred when working with
97 floats, while Python's ``x % y`` is preferred when working with integers.
98
99
100.. function:: frexp(x)
101
102 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
103 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
104 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
105 apart" the internal representation of a float in a portable way.
106
107
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000108.. function:: fsum(iterable)
109
110 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000111 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000112
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000113 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +0000114 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000115 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
116 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000117
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000118 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
119 typical case where the rounding mode is half-even. On some non-Windows
120 builds, the underlying C library uses extended precision addition and may
121 occasionally double-round an intermediate sum causing it to be off in its
122 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000123
Raymond Hettinger477be822009-02-19 06:44:30 +0000124 For further discussion and two alternative approaches, see the `ASPN cookbook
125 recipes for accurate floating point summation
Georg Brandl5d941342016-02-26 19:37:12 +0100126 <https://code.activestate.com/recipes/393090/>`_\.
Raymond Hettinger477be822009-02-19 06:44:30 +0000127
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000128
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300129.. function:: gcd(a, b)
130
131 Return the greatest common divisor of the integers *a* and *b*. If either
132 *a* or *b* is nonzero, then the value of ``gcd(a, b)`` is the largest
133 positive integer that divides both *a* and *b*. ``gcd(0, 0)`` returns
134 ``0``.
135
Benjamin Petersone960d182015-05-12 17:24:17 -0400136 .. versionadded:: 3.5
137
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300138
Tal Einatd5519ed2015-05-31 22:05:00 +0300139.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
140
141 Return ``True`` if the values *a* and *b* are close to each other and
142 ``False`` otherwise.
143
144 Whether or not two values are considered close is determined according to
145 given absolute and relative tolerances.
146
147 *rel_tol* is the relative tolerance -- it is the maximum allowed difference
148 between *a* and *b*, relative to the larger absolute value of *a* or *b*.
149 For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default
150 tolerance is ``1e-09``, which assures that the two values are the same
151 within about 9 decimal digits. *rel_tol* must be greater than zero.
152
153 *abs_tol* is the minimum absolute tolerance -- useful for comparisons near
154 zero. *abs_tol* must be at least zero.
155
156 If no errors occur, the result will be:
157 ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
158
159 The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
160 handled according to IEEE rules. Specifically, ``NaN`` is not considered
161 close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only
162 considered close to themselves.
163
164 .. versionadded:: 3.5
165
166 .. seealso::
167
168 :pep:`485` -- A function for testing approximate equality
169
170
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000171.. function:: isfinite(x)
172
173 Return ``True`` if *x* is neither an infinity nor a NaN, and
174 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
175
Mark Dickinsonc7622422010-07-11 19:47:37 +0000176 .. versionadded:: 3.2
177
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000178
Christian Heimes072c0f12008-01-03 23:01:04 +0000179.. function:: isinf(x)
180
Mark Dickinsonc7622422010-07-11 19:47:37 +0000181 Return ``True`` if *x* is a positive or negative infinity, and
182 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000183
Christian Heimes072c0f12008-01-03 23:01:04 +0000184
185.. function:: isnan(x)
186
Mark Dickinsonc7622422010-07-11 19:47:37 +0000187 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000188
Christian Heimes072c0f12008-01-03 23:01:04 +0000189
Mark Dickinson73934b92019-05-18 12:29:50 +0100190.. function:: isqrt(n)
191
192 Return the integer square root of the nonnegative integer *n*. This is the
193 floor of the exact square root of *n*, or equivalently the greatest integer
194 *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.
195
196 For some applications, it may be more convenient to have the least integer
197 *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
198 the exact square root of *n*. For positive *n*, this can be computed using
199 ``a = 1 + isqrt(n - 1)``.
200
201 .. versionadded:: 3.8
202
203
Georg Brandl116aa622007-08-15 14:28:22 +0000204.. function:: ldexp(x, i)
205
206 Return ``x * (2**i)``. This is essentially the inverse of function
207 :func:`frexp`.
208
209
210.. function:: modf(x)
211
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000212 Return the fractional and integer parts of *x*. Both results carry the sign
213 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000214
Christian Heimes400adb02008-02-01 08:12:03 +0000215
Victor Stinner100fafc2020-01-12 02:15:42 +0100216.. function:: nextafter(x, y)
217
218 Return the next floating-point value after *x* towards *y*.
219
220 If *x* is equal to *y*, return *y*.
221
Victor Stinner54cfbb22020-01-12 12:57:47 +0100222 Examples:
223
224 * ``math.nextafter(x, math.inf)`` goes up: towards positive infinity.
225 * ``math.nextafter(x, -math.inf)`` goes down: towards minus infinity.
226 * ``math.nextafter(x, 0.0)`` goes towards zero.
227 * ``math.nextafter(x, math.copysign(math.inf, x))`` goes away from zero.
228
Victor Stinner100fafc2020-01-12 02:15:42 +0100229 .. versionadded:: 3.9
230
Raymond Hettingere119b3d2019-06-08 08:58:11 -0700231.. function:: perm(n, k=None)
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300232
233 Return the number of ways to choose *k* items from *n* items
234 without repetition and with order.
235
Raymond Hettinger963eb0f2019-06-04 01:23:06 -0700236 Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates
237 to zero when ``k > n``.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300238
Raymond Hettingere119b3d2019-06-08 08:58:11 -0700239 If *k* is not specified or is None, then *k* defaults to *n*
240 and the function returns ``n!``.
241
Raymond Hettinger8f4bbb52019-06-04 03:40:23 -0700242 Raises :exc:`TypeError` if either of the arguments are not integers.
Raymond Hettinger963eb0f2019-06-04 01:23:06 -0700243 Raises :exc:`ValueError` if either of the arguments are negative.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300244
245 .. versionadded:: 3.8
246
247
Pablo Galindobc098512019-02-07 07:04:02 +0000248.. function:: prod(iterable, *, start=1)
249
250 Calculate the product of all the elements in the input *iterable*.
251 The default *start* value for the product is ``1``.
252
253 When the iterable is empty, return the start value. This function is
254 intended specifically for use with numeric values and may reject
255 non-numeric types.
256
257 .. versionadded:: 3.8
258
259
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100260.. function:: remainder(x, y)
261
262 Return the IEEE 754-style remainder of *x* with respect to *y*. For
263 finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
264 where ``n`` is the closest integer to the exact value of the quotient ``x /
265 y``. If ``x / y`` is exactly halfway between two consecutive integers, the
266 nearest *even* integer is used for ``n``. The remainder ``r = remainder(x,
267 y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
268
269 Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
270 *x* for any finite *x*, and ``remainder(x, 0)`` and
271 ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
272 If the result of the remainder operation is zero, that zero will have
273 the same sign as *x*.
274
275 On platforms using IEEE 754 binary floating-point, the result of this
276 operation is always exactly representable: no rounding error is introduced.
277
278 .. versionadded:: 3.7
279
280
Christian Heimes400adb02008-02-01 08:12:03 +0000281.. function:: trunc(x)
282
Serhiy Storchakabfdcd432013-10-13 23:09:14 +0300283 Return the :class:`~numbers.Real` value *x* truncated to an
284 :class:`~numbers.Integral` (usually an integer). Delegates to
Eric Appelt308eab92018-03-10 02:44:12 -0600285 :meth:`x.__trunc__() <object.__trunc__>`.
Christian Heimes400adb02008-02-01 08:12:03 +0000286
Christian Heimes400adb02008-02-01 08:12:03 +0000287
Georg Brandl116aa622007-08-15 14:28:22 +0000288Note that :func:`frexp` and :func:`modf` have a different call/return pattern
289than their C equivalents: they take a single argument and return a pair of
290values, rather than returning their second return value through an 'output
291parameter' (there is no such thing in Python).
292
293For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
294floating-point numbers of sufficiently large magnitude are exact integers.
295Python floats typically carry no more than 53 bits of precision (the same as the
296platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
297necessarily has no fractional bits.
298
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000299
300Power and logarithmic functions
301-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000302
Georg Brandl116aa622007-08-15 14:28:22 +0000303.. function:: exp(x)
304
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300305 Return *e* raised to the power *x*, where *e* = 2.718281... is the base
306 of natural logarithms. This is usually more accurate than ``math.e ** x``
307 or ``pow(math.e, x)``.
308
Georg Brandl116aa622007-08-15 14:28:22 +0000309
Mark Dickinson664b5112009-12-16 20:23:42 +0000310.. function:: expm1(x)
311
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300312 Return *e* raised to the power *x*, minus 1. Here *e* is the base of natural
313 logarithms. For small floats *x*, the subtraction in ``exp(x) - 1``
Raymond Hettinger1081d482011-03-31 12:04:53 -0700314 can result in a `significant loss of precision
Georg Brandl5d941342016-02-26 19:37:12 +0100315 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
Raymond Hettinger1081d482011-03-31 12:04:53 -0700316 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000317
318 >>> from math import exp, expm1
319 >>> exp(1e-5) - 1 # gives result accurate to 11 places
320 1.0000050000069649e-05
321 >>> expm1(1e-5) # result accurate to full precision
322 1.0000050000166668e-05
323
Mark Dickinson45f992a2009-12-19 11:20:49 +0000324 .. versionadded:: 3.2
325
Mark Dickinson664b5112009-12-16 20:23:42 +0000326
Georg Brandl116aa622007-08-15 14:28:22 +0000327.. function:: log(x[, base])
328
Georg Brandla6053b42009-09-01 08:11:14 +0000329 With one argument, return the natural logarithm of *x* (to base *e*).
330
331 With two arguments, return the logarithm of *x* to the given *base*,
332 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000333
Georg Brandl116aa622007-08-15 14:28:22 +0000334
Christian Heimes53876d92008-04-19 00:31:39 +0000335.. function:: log1p(x)
336
337 Return the natural logarithm of *1+x* (base *e*). The
338 result is calculated in a way which is accurate for *x* near zero.
339
Christian Heimes53876d92008-04-19 00:31:39 +0000340
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200341.. function:: log2(x)
342
Benjamin Petersoneaee1382011-05-08 19:48:08 -0500343 Return the base-2 logarithm of *x*. This is usually more accurate than
344 ``log(x, 2)``.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200345
346 .. versionadded:: 3.3
347
Victor Stinner9415afc2011-09-21 03:35:18 +0200348 .. seealso::
349
350 :meth:`int.bit_length` returns the number of bits necessary to represent
351 an integer in binary, excluding the sign and leading zeros.
352
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200353
Georg Brandl116aa622007-08-15 14:28:22 +0000354.. function:: log10(x)
355
Georg Brandla6053b42009-09-01 08:11:14 +0000356 Return the base-10 logarithm of *x*. This is usually more accurate
357 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000358
359
360.. function:: pow(x, y)
361
Christian Heimesa342c012008-04-20 21:01:16 +0000362 Return ``x`` raised to the power ``y``. Exceptional cases follow
363 Annex 'F' of the C99 standard as far as possible. In particular,
364 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
365 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
366 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
367 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000368
Ezio Melotti739d5492013-02-23 04:53:44 +0200369 Unlike the built-in ``**`` operator, :func:`math.pow` converts both
370 its arguments to type :class:`float`. Use ``**`` or the built-in
371 :func:`pow` function for computing exact integer powers.
372
Georg Brandl116aa622007-08-15 14:28:22 +0000373
374.. function:: sqrt(x)
375
376 Return the square root of *x*.
377
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300378
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000379Trigonometric functions
380-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000381
Georg Brandl116aa622007-08-15 14:28:22 +0000382.. function:: acos(x)
383
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -0400384 Return the arc cosine of *x*, in radians. The result is between ``0`` and
385 ``pi``.
Georg Brandl116aa622007-08-15 14:28:22 +0000386
387
388.. function:: asin(x)
389
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -0400390 Return the arc sine of *x*, in radians. The result is between ``-pi/2`` and
391 ``pi/2``.
Georg Brandl116aa622007-08-15 14:28:22 +0000392
393
394.. function:: atan(x)
395
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -0400396 Return the arc tangent of *x*, in radians. The result is between ``-pi/2`` and
397 ``pi/2``.
Georg Brandl116aa622007-08-15 14:28:22 +0000398
399
400.. function:: atan2(y, x)
401
402 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
403 The vector in the plane from the origin to point ``(x, y)`` makes this angle
404 with the positive X axis. The point of :func:`atan2` is that the signs of both
405 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000406 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000407 -1)`` is ``-3*pi/4``.
408
409
410.. function:: cos(x)
411
412 Return the cosine of *x* radians.
413
414
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -0700415.. function:: dist(p, q)
416
417 Return the Euclidean distance between two points *p* and *q*, each
Raymond Hettinger6b5f1b42019-07-27 14:04:29 -0700418 given as a sequence (or iterable) of coordinates. The two points
419 must have the same dimension.
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -0700420
421 Roughly equivalent to::
422
423 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
424
425 .. versionadded:: 3.8
426
427
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700428.. function:: hypot(*coordinates)
Georg Brandl116aa622007-08-15 14:28:22 +0000429
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700430 Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
431 This is the length of the vector from the origin to the point
432 given by the coordinates.
433
434 For a two dimensional point ``(x, y)``, this is equivalent to computing
435 the hypotenuse of a right triangle using the Pythagorean theorem,
436 ``sqrt(x*x + y*y)``.
437
438 .. versionchanged:: 3.8
439 Added support for n-dimensional points. Formerly, only the two
440 dimensional case was supported.
Georg Brandl116aa622007-08-15 14:28:22 +0000441
442
443.. function:: sin(x)
444
445 Return the sine of *x* radians.
446
447
448.. function:: tan(x)
449
450 Return the tangent of *x* radians.
451
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300452
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000453Angular conversion
454------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000455
Georg Brandl116aa622007-08-15 14:28:22 +0000456.. function:: degrees(x)
457
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400458 Convert angle *x* from radians to degrees.
Georg Brandl116aa622007-08-15 14:28:22 +0000459
460
461.. function:: radians(x)
462
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400463 Convert angle *x* from degrees to radians.
Georg Brandl116aa622007-08-15 14:28:22 +0000464
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300465
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000466Hyperbolic functions
467--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000468
Georg Brandl5d941342016-02-26 19:37:12 +0100469`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_
Raymond Hettinger1081d482011-03-31 12:04:53 -0700470are analogs of trigonometric functions that are based on hyperbolas
471instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000472
Christian Heimesa342c012008-04-20 21:01:16 +0000473.. function:: acosh(x)
474
475 Return the inverse hyperbolic cosine of *x*.
476
Christian Heimesa342c012008-04-20 21:01:16 +0000477
478.. function:: asinh(x)
479
480 Return the inverse hyperbolic sine of *x*.
481
Christian Heimesa342c012008-04-20 21:01:16 +0000482
483.. function:: atanh(x)
484
485 Return the inverse hyperbolic tangent of *x*.
486
Christian Heimesa342c012008-04-20 21:01:16 +0000487
Georg Brandl116aa622007-08-15 14:28:22 +0000488.. function:: cosh(x)
489
490 Return the hyperbolic cosine of *x*.
491
492
493.. function:: sinh(x)
494
495 Return the hyperbolic sine of *x*.
496
497
498.. function:: tanh(x)
499
500 Return the hyperbolic tangent of *x*.
501
Christian Heimes53876d92008-04-19 00:31:39 +0000502
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000503Special functions
504-----------------
505
Mark Dickinson45f992a2009-12-19 11:20:49 +0000506.. function:: erf(x)
507
Georg Brandl5d941342016-02-26 19:37:12 +0100508 Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
Raymond Hettinger1081d482011-03-31 12:04:53 -0700509 *x*.
510
511 The :func:`erf` function can be used to compute traditional statistical
512 functions such as the `cumulative standard normal distribution
Georg Brandl5d941342016-02-26 19:37:12 +0100513 <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
Raymond Hettinger1081d482011-03-31 12:04:53 -0700514
515 def phi(x):
516 'Cumulative distribution function for the standard normal distribution'
517 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000518
519 .. versionadded:: 3.2
520
521
522.. function:: erfc(x)
523
Raymond Hettinger1081d482011-03-31 12:04:53 -0700524 Return the complementary error function at *x*. The `complementary error
Georg Brandl5d941342016-02-26 19:37:12 +0100525 function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700526 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
527 from one would cause a `loss of significance
Georg Brandl5d941342016-02-26 19:37:12 +0100528 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000529
530 .. versionadded:: 3.2
531
532
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000533.. function:: gamma(x)
534
Georg Brandl5d941342016-02-26 19:37:12 +0100535 Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700536 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000537
Mark Dickinson56e09662009-10-01 16:13:29 +0000538 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000539
540
Mark Dickinson05d2e082009-12-11 20:17:17 +0000541.. function:: lgamma(x)
542
543 Return the natural logarithm of the absolute value of the Gamma
544 function at *x*.
545
Mark Dickinson45f992a2009-12-19 11:20:49 +0000546 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000547
548
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000549Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000550---------
Georg Brandl116aa622007-08-15 14:28:22 +0000551
552.. data:: pi
553
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300554 The mathematical constant *π* = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000555
556
557.. data:: e
558
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300559 The mathematical constant *e* = 2.718281..., to available precision.
560
Georg Brandl116aa622007-08-15 14:28:22 +0000561
Guido van Rossum0a891d72016-08-15 09:12:52 -0700562.. data:: tau
563
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300564 The mathematical constant *τ* = 6.283185..., to available precision.
565 Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
Guido van Rossum0a891d72016-08-15 09:12:52 -0700566 its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
567 Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating
Sanyam Khurana338cd832018-01-20 05:55:37 +0530568 `Tau day <https://tauday.com/>`_ by eating twice as much pie!
Christian Heimes53876d92008-04-19 00:31:39 +0000569
Georg Brandl4770d6e2016-08-16 07:08:46 +0200570 .. versionadded:: 3.6
571
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300572
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000573.. data:: inf
574
575 A floating-point positive infinity. (For negative infinity, use
576 ``-math.inf``.) Equivalent to the output of ``float('inf')``.
577
578 .. versionadded:: 3.5
579
580
581.. data:: nan
582
583 A floating-point "not a number" (NaN) value. Equivalent to the output of
584 ``float('nan')``.
585
586 .. versionadded:: 3.5
587
588
Georg Brandl495f7b52009-10-27 15:28:25 +0000589.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000590
591 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000592 math library functions. Behavior in exceptional cases follows Annex F of
593 the C99 standard where appropriate. The current implementation will raise
594 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
595 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
596 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000597 ``exp(1000.0)``). A NaN will not be returned from any of the functions
598 above unless one or more of the input arguments was a NaN; in that case,
599 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000600 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
601 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000602
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000603 Note that Python makes no effort to distinguish signaling NaNs from
604 quiet NaNs, and behavior for signaling NaNs remains unspecified.
605 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000606
Georg Brandl116aa622007-08-15 14:28:22 +0000607
608.. seealso::
609
610 Module :mod:`cmath`
611 Complex number versions of many of these functions.
Mark Dickinson73934b92019-05-18 12:29:50 +0100612
613.. |nbsp| unicode:: 0xA0
614 :trim: