blob: 3018600613f84cbb477efdf375a008792bfb9a4b [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200105 The file :file:`tests/test_operator_overloading.cpp` contains a
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400106 complete example that demonstrates how to work with overloaded operators in
107 more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200108
109Callbacks and passing anonymous functions
110=========================================
111
112The C++11 standard brought lambda functions and the generic polymorphic
113function wrapper ``std::function<>`` to the C++ programming language, which
114enable powerful new ways of working with functions. Lambda functions come in
115two flavors: stateless lambda function resemble classic function pointers that
116link to an anonymous piece of code, while stateful lambda functions
117additionally depend on captured variables that are stored in an anonymous
118*lambda closure object*.
119
120Here is a simple example of a C++ function that takes an arbitrary function
121(stateful or stateless) with signature ``int -> int`` as an argument and runs
122it with the value 10.
123
124.. code-block:: cpp
125
126 int func_arg(const std::function<int(int)> &f) {
127 return f(10);
128 }
129
130The example below is more involved: it takes a function of signature ``int -> int``
131and returns another function of the same kind. The return value is a stateful
132lambda function, which stores the value ``f`` in the capture object and adds 1 to
133its return value upon execution.
134
135.. code-block:: cpp
136
137 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
138 return [f](int i) {
139 return f(i) + 1;
140 };
141 }
142
Brad Harmon835fc062016-06-16 13:19:15 -0500143This example demonstrates using python named parameters in C++ callbacks which
144requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
145methods of classes:
146
147.. code-block:: cpp
148
149 py::cpp_function func_cpp() {
150 return py::cpp_function([](int i) { return i+1; },
151 py::arg("number"));
152 }
153
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200154After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500155trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200156
157.. code-block:: cpp
158
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200159 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200160
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200161 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200162 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200163
164 m.def("func_arg", &func_arg);
165 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500166 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200167
168 return m.ptr();
169 }
170
171The following interactive session shows how to call them from Python.
172
Wenzel Jakob99279f72016-06-03 11:19:29 +0200173.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200174
175 $ python
176 >>> import example
177 >>> def square(i):
178 ... return i * i
179 ...
180 >>> example.func_arg(square)
181 100L
182 >>> square_plus_1 = example.func_ret(square)
183 >>> square_plus_1(4)
184 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500185 >>> plus_1 = func_cpp()
186 >>> plus_1(number=43)
187 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200188
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100189.. warning::
190
191 Keep in mind that passing a function from C++ to Python (or vice versa)
192 will instantiate a piece of wrapper code that translates function
Wenzel Jakob954b7932016-07-10 10:13:18 +0200193 invocations between the two languages. Naturally, this translation
194 increases the computational cost of each function call somewhat. A
195 problematic situation can arise when a function is copied back and forth
196 between Python and C++ many times in a row, in which case the underlying
197 wrappers will accumulate correspondingly. The resulting long sequence of
198 C++ -> Python -> C++ -> ... roundtrips can significantly decrease
199 performance.
200
201 There is one exception: pybind11 detects case where a stateless function
202 (i.e. a function pointer or a lambda function without captured variables)
203 is passed as an argument to another C++ function exposed in Python. In this
204 case, there is no overhead. Pybind11 will extract the underlying C++
205 function pointer from the wrapped function to sidestep a potential C++ ->
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200206 Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`.
Wenzel Jakob954b7932016-07-10 10:13:18 +0200207
208.. note::
209
210 This functionality is very useful when generating bindings for callbacks in
211 C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
212
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200213 The file :file:`tests/test_callbacks.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400214 that demonstrates how to work with callbacks and anonymous functions in
215 more detail.
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100216
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200217Overriding virtual functions in Python
218======================================
219
Wenzel Jakob93296692015-10-13 23:21:54 +0200220Suppose that a C++ class or interface has a virtual function that we'd like to
221to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
222given as a specific example of how one would do this with traditional C++
223code).
224
225.. code-block:: cpp
226
227 class Animal {
228 public:
229 virtual ~Animal() { }
230 virtual std::string go(int n_times) = 0;
231 };
232
233 class Dog : public Animal {
234 public:
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400235 std::string go(int n_times) override {
Wenzel Jakob93296692015-10-13 23:21:54 +0200236 std::string result;
237 for (int i=0; i<n_times; ++i)
238 result += "woof! ";
239 return result;
240 }
241 };
242
243Let's also suppose that we are given a plain function which calls the
244function ``go()`` on an arbitrary ``Animal`` instance.
245
246.. code-block:: cpp
247
248 std::string call_go(Animal *animal) {
249 return animal->go(3);
250 }
251
252Normally, the binding code for these classes would look as follows:
253
254.. code-block:: cpp
255
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200256 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200257 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200258
259 py::class_<Animal> animal(m, "Animal");
260 animal
261 .def("go", &Animal::go);
262
263 py::class_<Dog>(m, "Dog", animal)
264 .def(py::init<>());
265
266 m.def("call_go", &call_go);
267
268 return m.ptr();
269 }
270
271However, these bindings are impossible to extend: ``Animal`` is not
272constructible, and we clearly require some kind of "trampoline" that
273redirects virtual calls back to Python.
274
275Defining a new type of ``Animal`` from within Python is possible but requires a
276helper class that is defined as follows:
277
278.. code-block:: cpp
279
280 class PyAnimal : public Animal {
281 public:
282 /* Inherit the constructors */
283 using Animal::Animal;
284
285 /* Trampoline (need one for each virtual function) */
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400286 std::string go(int n_times) override {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200287 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200288 std::string, /* Return type */
289 Animal, /* Parent class */
290 go, /* Name of function */
291 n_times /* Argument(s) */
292 );
293 }
294 };
295
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200296The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
297functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob0d3fc352016-07-08 10:52:10 +0200298a default implementation.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200299
300There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
Jason Rhinelander64830e32016-08-29 16:58:59 -0400301:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument between
302the *Parent class* and *Name of the function* slots. This is useful when the
303C++ and Python versions of the function have different names, e.g.
304``operator()`` vs ``__call__``.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200305
306The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200307
308.. code-block:: cpp
309 :emphasize-lines: 4,6,7
310
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200311 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200312 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200313
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200314 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200315 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200316 .def(py::init<>())
317 .def("go", &Animal::go);
318
319 py::class_<Dog>(m, "Dog", animal)
320 .def(py::init<>());
321
322 m.def("call_go", &call_go);
323
324 return m.ptr();
325 }
326
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200327Importantly, pybind11 is made aware of the trampoline trampoline helper class
328by specifying it as the *third* template argument to :class:`class_`. The
329second argument with the unique pointer is simply the default holder type used
330by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200331
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400332Note, however, that the above is sufficient for allowing python classes to
333extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
334necessary steps required to providing proper overload support for inherited
335classes.
336
Wenzel Jakob93296692015-10-13 23:21:54 +0200337The Python session below shows how to override ``Animal::go`` and invoke it via
338a virtual method call.
339
Wenzel Jakob99279f72016-06-03 11:19:29 +0200340.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200341
342 >>> from example import *
343 >>> d = Dog()
344 >>> call_go(d)
345 u'woof! woof! woof! '
346 >>> class Cat(Animal):
347 ... def go(self, n_times):
348 ... return "meow! " * n_times
349 ...
350 >>> c = Cat()
351 >>> call_go(c)
352 u'meow! meow! meow! '
353
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200354Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200355
Wenzel Jakob93296692015-10-13 23:21:54 +0200356.. seealso::
357
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200358 The file :file:`tests/test_virtual_functions.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400359 example that demonstrates how to override virtual functions using pybind11
360 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200361
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400362.. _virtual_and_inheritance:
363
364Combining virtual functions and inheritance
365===========================================
366
367When combining virtual methods with inheritance, you need to be sure to provide
368an override for each method for which you want to allow overrides from derived
369python classes. For example, suppose we extend the above ``Animal``/``Dog``
370example as follows:
371
372.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200373
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400374 class Animal {
375 public:
376 virtual std::string go(int n_times) = 0;
377 virtual std::string name() { return "unknown"; }
378 };
379 class Dog : public class Animal {
380 public:
381 std::string go(int n_times) override {
382 std::string result;
383 for (int i=0; i<n_times; ++i)
384 result += bark() + " ";
385 return result;
386 }
387 virtual std::string bark() { return "woof!"; }
388 };
389
390then the trampoline class for ``Animal`` must, as described in the previous
391section, override ``go()`` and ``name()``, but in order to allow python code to
392inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
393overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
394methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
395override the ``name()`` method):
396
397.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200398
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400399 class PyAnimal : public Animal {
400 public:
401 using Animal::Animal; // Inherit constructors
402 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
403 std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
404 };
405 class PyDog : public Dog {
406 public:
407 using Dog::Dog; // Inherit constructors
408 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
409 std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
410 std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
411 };
412
413A registered class derived from a pybind11-registered class with virtual
414methods requires a similar trampoline class, *even if* it doesn't explicitly
415declare or override any virtual methods itself:
416
417.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200418
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400419 class Husky : public Dog {};
420 class PyHusky : public Husky {
421 using Dog::Dog; // Inherit constructors
422 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
423 std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
424 std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
425 };
426
427There is, however, a technique that can be used to avoid this duplication
428(which can be especially helpful for a base class with several virtual
429methods). The technique involves using template trampoline classes, as
430follows:
431
432.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200433
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400434 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
435 using AnimalBase::AnimalBase; // Inherit constructors
436 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
437 std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
438 };
439 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
440 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
441 // Override PyAnimal's pure virtual go() with a non-pure one:
442 std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
443 std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
444 };
445
446This technique has the advantage of requiring just one trampoline method to be
447declared per virtual method and pure virtual method override. It does,
448however, require the compiler to generate at least as many methods (and
449possibly more, if both pure virtual and overridden pure virtual methods are
450exposed, as above).
451
452The classes are then registered with pybind11 using:
453
454.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200455
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400456 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal<>> animal(m, "Animal");
457 py::class_<Dog, std::unique_ptr<Dog>, PyDog<>> dog(m, "Dog");
458 py::class_<Husky, std::unique_ptr<Husky>, PyDog<Husky>> husky(m, "Husky");
459 // ... add animal, dog, husky definitions
460
461Note that ``Husky`` did not require a dedicated trampoline template class at
462all, since it neither declares any new virtual methods nor provides any pure
463virtual method implementations.
464
465With either the repeated-virtuals or templated trampoline methods in place, you
466can now create a python class that inherits from ``Dog``:
467
468.. code-block:: python
469
470 class ShihTzu(Dog):
471 def bark(self):
472 return "yip!"
473
474.. seealso::
475
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200476 See the file :file:`tests/test_virtual_functions.cpp` for complete examples
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400477 using both the duplication and templated trampoline approaches.
478
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200479.. _macro_notes:
480
481General notes regarding convenience macros
482==========================================
483
484pybind11 provides a few convenience macros such as
485:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
486``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
487in the preprocessor (which has no concept of types), they *will* get confused
488by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
489T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
490the beginnning of the next parameter. Use a ``typedef`` to bind the template to
491another name and use it in the macro to avoid this problem.
492
493
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100494Global Interpreter Lock (GIL)
495=============================
496
497The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
498used to acquire and release the global interpreter lock in the body of a C++
499function call. In this way, long-running C++ code can be parallelized using
500multiple Python threads. Taking the previous section as an example, this could
501be realized as follows (important changes highlighted):
502
503.. code-block:: cpp
504 :emphasize-lines: 8,9,33,34
505
506 class PyAnimal : public Animal {
507 public:
508 /* Inherit the constructors */
509 using Animal::Animal;
510
511 /* Trampoline (need one for each virtual function) */
512 std::string go(int n_times) {
513 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100514 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100515
516 PYBIND11_OVERLOAD_PURE(
517 std::string, /* Return type */
518 Animal, /* Parent class */
519 go, /* Name of function */
520 n_times /* Argument(s) */
521 );
522 }
523 };
524
525 PYBIND11_PLUGIN(example) {
526 py::module m("example", "pybind11 example plugin");
527
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200528 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100529 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100530 .def(py::init<>())
531 .def("go", &Animal::go);
532
533 py::class_<Dog>(m, "Dog", animal)
534 .def(py::init<>());
535
536 m.def("call_go", [](Animal *animal) -> std::string {
537 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100538 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100539 return call_go(animal);
540 });
541
542 return m.ptr();
543 }
544
Wenzel Jakob93296692015-10-13 23:21:54 +0200545Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200546===========================
547
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200548When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200549between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
550and the Python ``list``, ``set`` and ``dict`` data structures are automatically
551enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
552out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200553
554.. note::
555
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100556 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200557
558.. seealso::
559
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200560 The file :file:`tests/test_python_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400561 example that demonstrates how to pass STL data types in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200562
Wenzel Jakobb2825952016-04-13 23:33:00 +0200563Binding sequence data types, iterators, the slicing protocol, etc.
564==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200565
566Please refer to the supplemental example for details.
567
568.. seealso::
569
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200570 The file :file:`tests/test_sequences_and_iterators.cpp` contains a
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400571 complete example that shows how to bind a sequence data type, including
572 length queries (``__len__``), iterators (``__iter__``), the slicing
573 protocol and other kinds of useful operations.
Wenzel Jakob93296692015-10-13 23:21:54 +0200574
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200575Return value policies
576=====================
577
Wenzel Jakob93296692015-10-13 23:21:54 +0200578Python and C++ use wildly different ways of managing the memory and lifetime of
579objects managed by them. This can lead to issues when creating bindings for
580functions that return a non-trivial type. Just by looking at the type
581information, it is not clear whether Python should take charge of the returned
582value and eventually free its resources, or if this is handled on the C++ side.
583For this reason, pybind11 provides a several `return value policy` annotations
584that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100585functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200586
Wenzel Jakobbf099582016-08-22 12:52:02 +0200587Return value policies can also be applied to properties, in which case the
588arguments must be passed through the :class:`cpp_function` constructor:
589
590.. code-block:: cpp
591
592 class_<MyClass>(m, "MyClass")
593 def_property("data"
594 py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
595 py::cpp_function(&MyClass::setData)
596 );
597
598The following table provides an overview of the available return value policies:
599
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200600.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
601
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200602+--------------------------------------------------+----------------------------------------------------------------------------+
603| Return value policy | Description |
604+==================================================+============================================================================+
605| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
606| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200607| | pointer. Otherwise, it uses :enum:`return_value::move` or |
608| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200609| | See below for a description of what all of these different policies do. |
610+--------------------------------------------------+----------------------------------------------------------------------------+
611| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200612| | return value is a pointer. This is the default conversion policy for |
613| | function arguments when calling Python functions manually from C++ code |
614| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200615+--------------------------------------------------+----------------------------------------------------------------------------+
616| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
617| | ownership. Python will call the destructor and delete operator when the |
618| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200619| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200620+--------------------------------------------------+----------------------------------------------------------------------------+
621| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
622| | This policy is comparably safe because the lifetimes of the two instances |
623| | are decoupled. |
624+--------------------------------------------------+----------------------------------------------------------------------------+
625| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
626| | that will be owned by Python. This policy is comparably safe because the |
627| | lifetimes of the two instances (move source and destination) are decoupled.|
628+--------------------------------------------------+----------------------------------------------------------------------------+
629| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
630| | responsible for managing the object's lifetime and deallocating it when |
631| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200632| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200633+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobbf099582016-08-22 12:52:02 +0200634| :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime |
635| | of a parent object, namely the implicit ``this``, or ``self`` argument of |
636| | the called method or property. Internally, this policy works just like |
637| | :enum:`return_value_policy::reference` but additionally applies a |
638| | ``keep_alive<0, 1>`` *call policy* (described in the next section) that |
639| | prevents the parent object from being garbage collected as long as the |
640| | return value is referenced by Python. This is the default policy for |
641| | property getters created via ``def_property``, ``def_readwrite``, etc.) |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200642+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200643
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200644.. warning::
645
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400646 Code with invalid return value policies might access unitialized memory or
647 free data structures multiple times, which can lead to hard-to-debug
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200648 non-determinism and segmentation faults, hence it is worth spending the
649 time to understand all the different options in the table above.
650
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400651One important aspect of the above policies is that they only apply to instances
652which pybind11 has *not* seen before, in which case the policy clarifies
653essential questions about the return value's lifetime and ownership. When
654pybind11 knows the instance already (as identified by its type and address in
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200655memory), it will return the existing Python object wrapper rather than creating
Wenzel Jakobbf099582016-08-22 12:52:02 +0200656a new copy.
nafur717df752016-06-28 18:07:11 +0200657
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200658.. note::
659
660 The next section on :ref:`call_policies` discusses *call policies* that can be
661 specified *in addition* to a return value policy from the list above. Call
662 policies indicate reference relationships that can involve both return values
663 and parameters of functions.
664
665.. note::
666
667 As an alternative to elaborate call policies and lifetime management logic,
668 consider using smart pointers (see the section on :ref:`smart_pointers` for
669 details). Smart pointers can tell whether an object is still referenced from
670 C++ or Python, which generally eliminates the kinds of inconsistencies that
671 can lead to crashes or undefined behavior. For functions returning smart
672 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100673
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200674.. _call_policies:
675
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100676Additional call policies
677========================
678
679In addition to the above return value policies, further `call policies` can be
680specified to indicate dependencies between parameters. There is currently just
681one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
682argument with index ``Patient`` should be kept alive at least until the
Wenzel Jakob0b632312016-08-18 10:58:21 +0200683argument with index ``Nurse`` is freed by the garbage collector. Argument
684indices start at one, while zero refers to the return value. For methods, index
685``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
686index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
687with value ``None`` is detected at runtime, the call policy does nothing.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100688
Wenzel Jakob0b632312016-08-18 10:58:21 +0200689This feature internally relies on the ability to create a *weak reference* to
690the nurse object, which is permitted by all classes exposed via pybind11. When
691the nurse object does not support weak references, an exception will be thrown.
692
693Consider the following example: here, the binding code for a list append
694operation ties the lifetime of the newly added element to the underlying
695container:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100696
697.. code-block:: cpp
698
699 py::class_<List>(m, "List")
700 .def("append", &List::append, py::keep_alive<1, 2>());
701
702.. note::
703
704 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
705 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
706 0) policies from Boost.Python.
707
Wenzel Jakob61587162016-01-18 22:38:52 +0100708.. seealso::
709
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200710 The file :file:`tests/test_keep_alive.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400711 that demonstrates using :class:`keep_alive` in more detail.
Wenzel Jakob61587162016-01-18 22:38:52 +0100712
Wenzel Jakob93296692015-10-13 23:21:54 +0200713Implicit type conversions
714=========================
715
716Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200717that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200718could be a fixed and an arbitrary precision number type).
719
720.. code-block:: cpp
721
722 py::class_<A>(m, "A")
723 /// ... members ...
724
725 py::class_<B>(m, "B")
726 .def(py::init<A>())
727 /// ... members ...
728
729 m.def("func",
730 [](const B &) { /* .... */ }
731 );
732
733To invoke the function ``func`` using a variable ``a`` containing an ``A``
734instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
735will automatically apply an implicit type conversion, which makes it possible
736to directly write ``func(a)``.
737
738In this situation (i.e. where ``B`` has a constructor that converts from
739``A``), the following statement enables similar implicit conversions on the
740Python side:
741
742.. code-block:: cpp
743
744 py::implicitly_convertible<A, B>();
745
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200746.. note::
747
748 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
749 data type that is exposed to Python via pybind11.
750
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200751.. _static_properties:
752
753Static properties
754=================
755
756The section on :ref:`properties` discussed the creation of instance properties
757that are implemented in terms of C++ getters and setters.
758
759Static properties can also be created in a similar way to expose getters and
760setters of static class attributes. It is important to note that the implicit
761``self`` argument also exists in this case and is used to pass the Python
762``type`` subclass instance. This parameter will often not be needed by the C++
763side, and the following example illustrates how to instantiate a lambda getter
764function that ignores it:
765
766.. code-block:: cpp
767
768 py::class_<Foo>(m, "Foo")
769 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
770
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200771Unique pointers
772===============
773
774Given a class ``Example`` with Python bindings, it's possible to return
775instances wrapped in C++11 unique pointers, like so
776
777.. code-block:: cpp
778
779 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
780
781.. code-block:: cpp
782
783 m.def("create_example", &create_example);
784
785In other words, there is nothing special that needs to be done. While returning
786unique pointers in this way is allowed, it is *illegal* to use them as function
787arguments. For instance, the following function signature cannot be processed
788by pybind11.
789
790.. code-block:: cpp
791
792 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
793
794The above signature would imply that Python needs to give up ownership of an
795object that is passed to this function, which is generally not possible (for
796instance, the object might be referenced elsewhere).
797
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200798.. _smart_pointers:
799
Wenzel Jakob93296692015-10-13 23:21:54 +0200800Smart pointers
801==============
802
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200803This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200804types with internal reference counting. For the simpler C++11 unique pointers,
805refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200806
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200807The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200808template type, which denotes a special *holder* type that is used to manage
809references to the object. When wrapping a type named ``Type``, the default
810value of this template parameter is ``std::unique_ptr<Type>``, which means that
811the object is deallocated when Python's reference count goes to zero.
812
Wenzel Jakob1853b652015-10-18 15:38:50 +0200813It is possible to switch to other types of reference counting wrappers or smart
814pointers, which is useful in codebases that rely on them. For instance, the
815following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200816
817.. code-block:: cpp
818
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100819 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100820
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100821Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200822
Wenzel Jakob1853b652015-10-18 15:38:50 +0200823To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100824argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200825be declared at the top level before any binding code:
826
827.. code-block:: cpp
828
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200829 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200830
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100831.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100832
833 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
834 placeholder name that is used as a template parameter of the second
835 argument. Thus, feel free to use any identifier, but use it consistently on
836 both sides; also, don't use the name of a type that already exists in your
837 codebase.
838
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100839One potential stumbling block when using holder types is that they need to be
840applied consistently. Can you guess what's broken about the following binding
841code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100842
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100843.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100844
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100845 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100846
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100847 class Parent {
848 public:
849 Parent() : child(std::make_shared<Child>()) { }
850 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
851 private:
852 std::shared_ptr<Child> child;
853 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100854
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100855 PYBIND11_PLUGIN(example) {
856 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100857
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100858 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
859
860 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
861 .def(py::init<>())
862 .def("get_child", &Parent::get_child);
863
864 return m.ptr();
865 }
866
867The following Python code will cause undefined behavior (and likely a
868segmentation fault).
869
870.. code-block:: python
871
872 from example import Parent
873 print(Parent().get_child())
874
875The problem is that ``Parent::get_child()`` returns a pointer to an instance of
876``Child``, but the fact that this instance is already managed by
877``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
878pybind11 will create a second independent ``std::shared_ptr<...>`` that also
879claims ownership of the pointer. In the end, the object will be freed **twice**
880since these shared pointers have no way of knowing about each other.
881
882There are two ways to resolve this issue:
883
8841. For types that are managed by a smart pointer class, never use raw pointers
885 in function arguments or return values. In other words: always consistently
886 wrap pointers into their designated holder types (such as
887 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
888 should be modified as follows:
889
890.. code-block:: cpp
891
892 std::shared_ptr<Child> get_child() { return child; }
893
8942. Adjust the definition of ``Child`` by specifying
895 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
896 base class. This adds a small bit of information to ``Child`` that allows
897 pybind11 to realize that there is already an existing
898 ``std::shared_ptr<...>`` and communicate with it. In this case, the
899 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100900
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100901.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
902
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100903.. code-block:: cpp
904
905 class Child : public std::enable_shared_from_this<Child> { };
906
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200907
908Please take a look at the :ref:`macro_notes` before using this feature.
909
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100910.. seealso::
911
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200912 The file :file:`tests/test_smart_ptr.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400913 that demonstrates how to work with custom reference-counting holder types
914 in more detail.
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100915
Wenzel Jakob93296692015-10-13 23:21:54 +0200916.. _custom_constructors:
917
918Custom constructors
919===================
920
921The syntax for binding constructors was previously introduced, but it only
922works when a constructor with the given parameters actually exists on the C++
923side. To extend this to more general cases, let's take a look at what actually
924happens under the hood: the following statement
925
926.. code-block:: cpp
927
928 py::class_<Example>(m, "Example")
929 .def(py::init<int>());
930
931is short hand notation for
932
933.. code-block:: cpp
934
935 py::class_<Example>(m, "Example")
936 .def("__init__",
937 [](Example &instance, int arg) {
938 new (&instance) Example(arg);
939 }
940 );
941
942In other words, :func:`init` creates an anonymous function that invokes an
943in-place constructor. Memory allocation etc. is already take care of beforehand
944within pybind11.
945
Nickolai Belakovski63338252016-08-27 11:57:55 -0700946.. _classes_with_non_public_destructors:
947
948Classes with non-public destructors
949===================================
950
Wenzel Jakob5e4e4772016-08-28 02:03:15 +0200951If a class has a private or protected destructor (as might e.g. be the case in
952a singleton pattern), a compile error will occur when creating bindings via
953pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
954is responsible for managing the lifetime of instances will reference the
955destructor even if no deallocations ever take place. In order to expose classes
956with private or protected destructors, it is possible to override the holder
957type via the second argument to ``class_``. Pybind11 provides a helper class
958``py::nodelete`` that disables any destructor invocations. In this case, it is
959crucial that instances are deallocated on the C++ side to avoid memory leaks.
Nickolai Belakovski63338252016-08-27 11:57:55 -0700960
961.. code-block:: cpp
962
963 /* ... definition ... */
964
965 class MyClass {
Wenzel Jakob5e4e4772016-08-28 02:03:15 +0200966 private:
967 ~MyClass() { }
Nickolai Belakovski63338252016-08-27 11:57:55 -0700968 };
969
970 /* ... binding code ... */
971
Wenzel Jakob5e4e4772016-08-28 02:03:15 +0200972 py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
Nickolai Belakovski63338252016-08-27 11:57:55 -0700973 .def(py::init<>)
974
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400975.. _catching_and_throwing_exceptions:
976
Wenzel Jakob93296692015-10-13 23:21:54 +0200977Catching and throwing exceptions
978================================
979
980When C++ code invoked from Python throws an ``std::exception``, it is
981automatically converted into a Python ``Exception``. pybind11 defines multiple
982special exception classes that will map to different types of Python
983exceptions:
984
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200985.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
986
Wenzel Jakob978e3762016-04-07 18:00:41 +0200987+--------------------------------------+------------------------------+
988| C++ exception type | Python exception type |
989+======================================+==============================+
990| :class:`std::exception` | ``RuntimeError`` |
991+--------------------------------------+------------------------------+
992| :class:`std::bad_alloc` | ``MemoryError`` |
993+--------------------------------------+------------------------------+
994| :class:`std::domain_error` | ``ValueError`` |
995+--------------------------------------+------------------------------+
996| :class:`std::invalid_argument` | ``ValueError`` |
997+--------------------------------------+------------------------------+
998| :class:`std::length_error` | ``ValueError`` |
999+--------------------------------------+------------------------------+
1000| :class:`std::out_of_range` | ``ValueError`` |
1001+--------------------------------------+------------------------------+
1002| :class:`std::range_error` | ``ValueError`` |
1003+--------------------------------------+------------------------------+
1004| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
1005| | implement custom iterators) |
1006+--------------------------------------+------------------------------+
1007| :class:`pybind11::index_error` | ``IndexError`` (used to |
1008| | indicate out of bounds |
1009| | accesses in ``__getitem__``, |
1010| | ``__setitem__``, etc.) |
1011+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -04001012| :class:`pybind11::value_error` | ``ValueError`` (used to |
1013| | indicate wrong value passed |
1014| | in ``container.remove(...)`` |
1015+--------------------------------------+------------------------------+
Jason Rhinelander5aa85be2016-08-11 21:22:05 -04001016| :class:`pybind11::key_error` | ``KeyError`` (used to |
1017| | indicate out of bounds |
1018| | accesses in ``__getitem__``, |
1019| | ``__setitem__`` in dict-like |
1020| | objects, etc.) |
1021+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +02001022| :class:`pybind11::error_already_set` | Indicates that the Python |
1023| | exception flag has already |
1024| | been initialized |
1025+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +02001026
1027When a Python function invoked from C++ throws an exception, it is converted
1028into a C++ exception of type :class:`error_already_set` whose string payload
1029contains a textual summary.
1030
1031There is also a special exception :class:`cast_error` that is thrown by
1032:func:`handle::call` when the input arguments cannot be converted to Python
1033objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001034
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001035Registering custom exception translators
1036========================================
1037
1038If the default exception conversion policy described
1039:ref:`above <catching_and_throwing_exceptions>`
1040is insufficient, pybind11 also provides support for registering custom
1041exception translators.
1042
1043The function ``register_exception_translator(translator)`` takes a stateless
1044callable (e.g. a function pointer or a lambda function without captured
1045variables) with the following call signature: ``void(std::exception_ptr)``.
1046
1047When a C++ exception is thrown, registered exception translators are tried
1048in reverse order of registration (i.e. the last registered translator gets
1049a first shot at handling the exception).
1050
1051Inside the translator, ``std::rethrow_exception`` should be used within
1052a try block to re-throw the exception. A catch clause can then use
1053``PyErr_SetString`` to set a Python exception as demonstrated
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001054in :file:`tests/test_exceptions.cpp`.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001055
1056This example also demonstrates how to create custom exception types
1057with ``py::exception``.
1058
1059The following example demonstrates this for a hypothetical exception class
1060``MyCustomException``:
1061
1062.. code-block:: cpp
1063
1064 py::register_exception_translator([](std::exception_ptr p) {
1065 try {
1066 if (p) std::rethrow_exception(p);
1067 } catch (const MyCustomException &e) {
1068 PyErr_SetString(PyExc_RuntimeError, e.what());
1069 }
1070 });
1071
1072Multiple exceptions can be handled by a single translator. If the exception is
1073not caught by the current translator, the previously registered one gets a
1074chance.
1075
1076If none of the registered exception translators is able to handle the
1077exception, it is handled by the default converter as described in the previous
1078section.
1079
1080.. note::
1081
1082 You must either call ``PyErr_SetString`` for every exception caught in a
1083 custom exception translator. Failure to do so will cause Python to crash
1084 with ``SystemError: error return without exception set``.
1085
1086 Exceptions that you do not plan to handle should simply not be caught.
1087
1088 You may also choose to explicity (re-)throw the exception to delegate it to
1089 the other existing exception translators.
1090
1091 The ``py::exception`` wrapper for creating custom exceptions cannot (yet)
1092 be used as a ``py::base``.
1093
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001094.. _opaque:
1095
1096Treating STL data structures as opaque objects
1097==============================================
1098
1099pybind11 heavily relies on a template matching mechanism to convert parameters
1100and return values that are constructed from STL data types such as vectors,
1101linked lists, hash tables, etc. This even works in a recursive manner, for
1102instance to deal with lists of hash maps of pairs of elementary and custom
1103types, etc.
1104
1105However, a fundamental limitation of this approach is that internal conversions
1106between Python and C++ types involve a copy operation that prevents
1107pass-by-reference semantics. What does this mean?
1108
1109Suppose we bind the following function
1110
1111.. code-block:: cpp
1112
1113 void append_1(std::vector<int> &v) {
1114 v.push_back(1);
1115 }
1116
1117and call it from Python, the following happens:
1118
Wenzel Jakob99279f72016-06-03 11:19:29 +02001119.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001120
1121 >>> v = [5, 6]
1122 >>> append_1(v)
1123 >>> print(v)
1124 [5, 6]
1125
1126As you can see, when passing STL data structures by reference, modifications
1127are not propagated back the Python side. A similar situation arises when
1128exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
1129functions:
1130
1131.. code-block:: cpp
1132
1133 /* ... definition ... */
1134
1135 class MyClass {
1136 std::vector<int> contents;
1137 };
1138
1139 /* ... binding code ... */
1140
1141 py::class_<MyClass>(m, "MyClass")
1142 .def(py::init<>)
1143 .def_readwrite("contents", &MyClass::contents);
1144
1145In this case, properties can be read and written in their entirety. However, an
1146``append`` operaton involving such a list type has no effect:
1147
Wenzel Jakob99279f72016-06-03 11:19:29 +02001148.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001149
1150 >>> m = MyClass()
1151 >>> m.contents = [5, 6]
1152 >>> print(m.contents)
1153 [5, 6]
1154 >>> m.contents.append(7)
1155 >>> print(m.contents)
1156 [5, 6]
1157
1158To deal with both of the above situations, pybind11 provides a macro named
1159``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
1160machinery of types, thus rendering them *opaque*. The contents of opaque
1161objects are never inspected or extracted, hence they can be passed by
1162reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
1163the declaration
1164
1165.. code-block:: cpp
1166
1167 PYBIND11_MAKE_OPAQUE(std::vector<int>);
1168
1169before any binding code (e.g. invocations to ``class_::def()``, etc.). This
1170macro must be specified at the top level, since instantiates a partial template
1171overload. If your binding code consists of multiple compilation units, it must
1172be present in every file preceding any usage of ``std::vector<int>``. Opaque
1173types must also have a corresponding ``class_`` declaration to associate them
1174with a name in Python, and to define a set of available operations:
1175
1176.. code-block:: cpp
1177
1178 py::class_<std::vector<int>>(m, "IntVector")
1179 .def(py::init<>())
1180 .def("clear", &std::vector<int>::clear)
1181 .def("pop_back", &std::vector<int>::pop_back)
1182 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
1183 .def("__iter__", [](std::vector<int> &v) {
1184 return py::make_iterator(v.begin(), v.end());
1185 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
1186 // ....
1187
Wenzel Jakob9bb97c12016-06-03 11:19:41 +02001188Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001189
1190.. seealso::
1191
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001192 The file :file:`tests/test_opaque_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001193 example that demonstrates how to create and expose opaque types using
1194 pybind11 in more detail.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001195
1196.. _eigen:
1197
1198Transparent conversion of dense and sparse Eigen data types
1199===========================================================
1200
1201Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
1202its popularity and widespread adoption, pybind11 provides transparent
1203conversion support between Eigen and Scientific Python linear algebra data types.
1204
1205Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001206pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001207
12081. Static and dynamic Eigen dense vectors and matrices to instances of
1209 ``numpy.ndarray`` (and vice versa).
1210
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012112. Returned matrix expressions such as blocks (including columns or rows) and
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001212 diagonals will be converted to ``numpy.ndarray`` of the expression
1213 values.
1214
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012153. Returned matrix-like objects such as Eigen::DiagonalMatrix or
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001216 Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the
1217 expressed value.
1218
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012194. Eigen sparse vectors and matrices to instances of
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001220 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
1221
1222This makes it possible to bind most kinds of functions that rely on these types.
1223One major caveat are functions that take Eigen matrices *by reference* and modify
1224them somehow, in which case the information won't be propagated to the caller.
1225
1226.. code-block:: cpp
1227
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001228 /* The Python bindings of these functions won't replicate
1229 the intended effect of modifying the function arguments */
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001230 void scale_by_2(Eigen::Vector3f &v) {
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001231 v *= 2;
1232 }
1233 void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) {
1234 v *= 2;
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001235 }
1236
1237To see why this is, refer to the section on :ref:`opaque` (although that
1238section specifically covers STL data types, the underlying issue is the same).
1239The next two sections discuss an efficient alternative for exposing the
1240underlying native Eigen types as opaque objects in a way that still integrates
1241with NumPy and SciPy.
1242
1243.. [#f1] http://eigen.tuxfamily.org
1244
1245.. seealso::
1246
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001247 The file :file:`tests/test_eigen.cpp` contains a complete example that
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001248 shows how to pass Eigen sparse and dense data types in more detail.
1249
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001250Buffer protocol
1251===============
1252
1253Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001254data between plugin libraries. Types can expose a buffer view [#f2]_, which
1255provides fast direct access to the raw internal data representation. Suppose we
1256want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001257
1258.. code-block:: cpp
1259
1260 class Matrix {
1261 public:
1262 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1263 m_data = new float[rows*cols];
1264 }
1265 float *data() { return m_data; }
1266 size_t rows() const { return m_rows; }
1267 size_t cols() const { return m_cols; }
1268 private:
1269 size_t m_rows, m_cols;
1270 float *m_data;
1271 };
1272
1273The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001274making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001275completely avoid copy operations with Python expressions like
1276``np.array(matrix_instance, copy = False)``.
1277
1278.. code-block:: cpp
1279
1280 py::class_<Matrix>(m, "Matrix")
1281 .def_buffer([](Matrix &m) -> py::buffer_info {
1282 return py::buffer_info(
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001283 m.data(), /* Pointer to buffer */
1284 sizeof(float), /* Size of one scalar */
1285 py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
1286 2, /* Number of dimensions */
1287 { m.rows(), m.cols() }, /* Buffer dimensions */
1288 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001289 sizeof(float) }
1290 );
1291 });
1292
1293The snippet above binds a lambda function, which can create ``py::buffer_info``
1294description records on demand describing a given matrix. The contents of
1295``py::buffer_info`` mirror the Python buffer protocol specification.
1296
1297.. code-block:: cpp
1298
1299 struct buffer_info {
1300 void *ptr;
1301 size_t itemsize;
1302 std::string format;
1303 int ndim;
1304 std::vector<size_t> shape;
1305 std::vector<size_t> strides;
1306 };
1307
1308To create a C++ function that can take a Python buffer object as an argument,
1309simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1310in a great variety of configurations, hence some safety checks are usually
1311necessary in the function body. Below, you can see an basic example on how to
1312define a custom constructor for the Eigen double precision matrix
1313(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001314buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001315
1316.. code-block:: cpp
1317
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001318 /* Bind MatrixXd (or some other Eigen type) to Python */
1319 typedef Eigen::MatrixXd Matrix;
1320
1321 typedef Matrix::Scalar Scalar;
1322 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1323
1324 py::class_<Matrix>(m, "Matrix")
1325 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001326 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001327
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001328 /* Request a buffer descriptor from Python */
1329 py::buffer_info info = b.request();
1330
1331 /* Some sanity checks ... */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001332 if (info.format != py::format_descriptor<Scalar>::format())
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001333 throw std::runtime_error("Incompatible format: expected a double array!");
1334
1335 if (info.ndim != 2)
1336 throw std::runtime_error("Incompatible buffer dimension!");
1337
Wenzel Jakobe7628532016-05-05 10:04:44 +02001338 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001339 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1340 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001341
1342 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001343 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001344
1345 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001346 });
1347
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001348For reference, the ``def_buffer()`` call for this Eigen data type should look
1349as follows:
1350
1351.. code-block:: cpp
1352
1353 .def_buffer([](Matrix &m) -> py::buffer_info {
1354 return py::buffer_info(
1355 m.data(), /* Pointer to buffer */
1356 sizeof(Scalar), /* Size of one scalar */
1357 /* Python struct-style format descriptor */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001358 py::format_descriptor<Scalar>::format(),
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001359 /* Number of dimensions */
1360 2,
1361 /* Buffer dimensions */
1362 { (size_t) m.rows(),
1363 (size_t) m.cols() },
1364 /* Strides (in bytes) for each index */
1365 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1366 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1367 );
1368 })
1369
1370For a much easier approach of binding Eigen types (although with some
1371limitations), refer to the section on :ref:`eigen`.
1372
Wenzel Jakob93296692015-10-13 23:21:54 +02001373.. seealso::
1374
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001375 The file :file:`tests/test_buffers.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001376 that demonstrates using the buffer protocol with pybind11 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +02001377
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001378.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001379
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001380NumPy support
1381=============
1382
1383By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1384restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001385type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001386
1387In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001388array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001389template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001390NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001391
1392.. code-block:: cpp
1393
Wenzel Jakob93296692015-10-13 23:21:54 +02001394 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001395
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001396When it is invoked with a different type (e.g. an integer or a list of
1397integers), the binding code will attempt to cast the input into a NumPy array
1398of the requested type. Note that this feature requires the
1399:file:``pybind11/numpy.h`` header to be included.
1400
1401Data in NumPy arrays is not guaranteed to packed in a dense manner;
1402furthermore, entries can be separated by arbitrary column and row strides.
1403Sometimes, it can be useful to require a function to only accept dense arrays
1404using either the C (row-major) or Fortran (column-major) ordering. This can be
1405accomplished via a second template argument with values ``py::array::c_style``
1406or ``py::array::f_style``.
1407
1408.. code-block:: cpp
1409
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001410 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001411
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001412The ``py::array::forcecast`` argument is the default value of the second
1413template paramenter, and it ensures that non-conforming arguments are converted
1414into an array satisfying the specified requirements instead of trying the next
1415function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001416
Ivan Smirnov223afe32016-07-02 15:33:04 +01001417NumPy structured types
1418======================
1419
1420In order for ``py::array_t`` to work with structured (record) types, we first need
Ivan Smirnov5412a052016-07-02 16:18:42 +01001421to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE``
Ivan Smirnov223afe32016-07-02 15:33:04 +01001422macro which expects the type followed by field names:
1423
1424.. code-block:: cpp
1425
1426 struct A {
1427 int x;
1428 double y;
1429 };
1430
1431 struct B {
1432 int z;
1433 A a;
1434 };
1435
Ivan Smirnov5412a052016-07-02 16:18:42 +01001436 PYBIND11_NUMPY_DTYPE(A, x, y);
1437 PYBIND11_NUMPY_DTYPE(B, z, a);
Ivan Smirnov223afe32016-07-02 15:33:04 +01001438
1439 /* now both A and B can be used as template arguments to py::array_t */
1440
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001441Vectorizing functions
1442=====================
1443
1444Suppose we want to bind a function with the following signature to Python so
1445that it can process arbitrary NumPy array arguments (vectors, matrices, general
1446N-D arrays) in addition to its normal arguments:
1447
1448.. code-block:: cpp
1449
1450 double my_func(int x, float y, double z);
1451
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001452After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001453
1454.. code-block:: cpp
1455
1456 m.def("vectorized_func", py::vectorize(my_func));
1457
1458Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001459each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001460solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1461entirely on the C++ side and can be crunched down into a tight, optimized loop
1462by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001463``numpy.dtype.float64``.
1464
Wenzel Jakob99279f72016-06-03 11:19:29 +02001465.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001466
1467 >>> x = np.array([[1, 3],[5, 7]])
1468 >>> y = np.array([[2, 4],[6, 8]])
1469 >>> z = 3
1470 >>> result = vectorized_func(x, y, z)
1471
1472The scalar argument ``z`` is transparently replicated 4 times. The input
1473arrays ``x`` and ``y`` are automatically converted into the right types (they
1474are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1475``numpy.dtype.float32``, respectively)
1476
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001477Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001478because it makes little sense to wrap it in a NumPy array. For instance,
1479suppose the function signature was
1480
1481.. code-block:: cpp
1482
1483 double my_func(int x, float y, my_custom_type *z);
1484
1485This can be done with a stateful Lambda closure:
1486
1487.. code-block:: cpp
1488
1489 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1490 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001491 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001492 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1493 return py::vectorize(stateful_closure)(x, y);
1494 }
1495 );
1496
Wenzel Jakob61587162016-01-18 22:38:52 +01001497In cases where the computation is too complicated to be reduced to
1498``vectorize``, it will be necessary to create and access the buffer contents
1499manually. The following snippet contains a complete example that shows how this
1500works (the code is somewhat contrived, since it could have been done more
1501simply using ``vectorize``).
1502
1503.. code-block:: cpp
1504
1505 #include <pybind11/pybind11.h>
1506 #include <pybind11/numpy.h>
1507
1508 namespace py = pybind11;
1509
1510 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1511 auto buf1 = input1.request(), buf2 = input2.request();
1512
1513 if (buf1.ndim != 1 || buf2.ndim != 1)
1514 throw std::runtime_error("Number of dimensions must be one");
1515
Ivan Smirnovb6518592016-08-13 13:28:56 +01001516 if (buf1.size != buf2.size)
Wenzel Jakob61587162016-01-18 22:38:52 +01001517 throw std::runtime_error("Input shapes must match");
1518
Ivan Smirnovb6518592016-08-13 13:28:56 +01001519 /* No pointer is passed, so NumPy will allocate the buffer */
1520 auto result = py::array_t<double>(buf1.size);
Wenzel Jakob61587162016-01-18 22:38:52 +01001521
1522 auto buf3 = result.request();
1523
1524 double *ptr1 = (double *) buf1.ptr,
1525 *ptr2 = (double *) buf2.ptr,
1526 *ptr3 = (double *) buf3.ptr;
1527
1528 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1529 ptr3[idx] = ptr1[idx] + ptr2[idx];
1530
1531 return result;
1532 }
1533
1534 PYBIND11_PLUGIN(test) {
1535 py::module m("test");
1536 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1537 return m.ptr();
1538 }
1539
Wenzel Jakob93296692015-10-13 23:21:54 +02001540.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001541
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001542 The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001543 example that demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001544
Wenzel Jakob93296692015-10-13 23:21:54 +02001545Functions taking Python objects as arguments
1546============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001547
Wenzel Jakob93296692015-10-13 23:21:54 +02001548pybind11 exposes all major Python types using thin C++ wrapper classes. These
1549wrapper classes can also be used as parameters of functions in bindings, which
1550makes it possible to directly work with native Python types on the C++ side.
1551For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001552
Wenzel Jakob93296692015-10-13 23:21:54 +02001553.. code-block:: cpp
1554
1555 void print_dict(py::dict dict) {
1556 /* Easily interact with Python types */
1557 for (auto item : dict)
1558 std::cout << "key=" << item.first << ", "
1559 << "value=" << item.second << std::endl;
1560 }
1561
1562Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001563:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001564:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1565:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1566:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001567
Wenzel Jakob436b7312015-10-20 01:04:30 +02001568In this kind of mixed code, it is often necessary to convert arbitrary C++
1569types to Python, which can be done using :func:`cast`:
1570
1571.. code-block:: cpp
1572
1573 MyClass *cls = ..;
1574 py::object obj = py::cast(cls);
1575
1576The reverse direction uses the following syntax:
1577
1578.. code-block:: cpp
1579
1580 py::object obj = ...;
1581 MyClass *cls = obj.cast<MyClass *>();
1582
1583When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001584It is also possible to call python functions via ``operator()``.
1585
1586.. code-block:: cpp
1587
1588 py::function f = <...>;
1589 py::object result_py = f(1234, "hello", some_instance);
1590 MyClass &result = result_py.cast<MyClass>();
1591
1592The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1593supply arbitrary argument and keyword lists, although these cannot be mixed
1594with other parameters.
1595
1596.. code-block:: cpp
1597
1598 py::function f = <...>;
1599 py::tuple args = py::make_tuple(1234);
1600 py::dict kwargs;
1601 kwargs["y"] = py::cast(5678);
1602 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001603
Wenzel Jakob93296692015-10-13 23:21:54 +02001604.. seealso::
1605
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001606 The file :file:`tests/test_python_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001607 example that demonstrates passing native Python types in more detail. The
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001608 file :file:`tests/test_kwargs_and_defaults.cpp` discusses usage
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001609 of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001610
1611Default arguments revisited
1612===========================
1613
1614The section on :ref:`default_args` previously discussed basic usage of default
1615arguments using pybind11. One noteworthy aspect of their implementation is that
1616default arguments are converted to Python objects right at declaration time.
1617Consider the following example:
1618
1619.. code-block:: cpp
1620
1621 py::class_<MyClass>("MyClass")
1622 .def("myFunction", py::arg("arg") = SomeType(123));
1623
1624In this case, pybind11 must already be set up to deal with values of the type
1625``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1626exception will be thrown.
1627
1628Another aspect worth highlighting is that the "preview" of the default argument
1629in the function signature is generated using the object's ``__repr__`` method.
1630If not available, the signature may not be very helpful, e.g.:
1631
Wenzel Jakob99279f72016-06-03 11:19:29 +02001632.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001633
1634 FUNCTIONS
1635 ...
1636 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001637 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001638 ...
1639
1640The first way of addressing this is by defining ``SomeType.__repr__``.
1641Alternatively, it is possible to specify the human-readable preview of the
1642default argument manually using the ``arg_t`` notation:
1643
1644.. code-block:: cpp
1645
1646 py::class_<MyClass>("MyClass")
1647 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1648
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001649Sometimes it may be necessary to pass a null pointer value as a default
1650argument. In this case, remember to cast it to the underlying type in question,
1651like so:
1652
1653.. code-block:: cpp
1654
1655 py::class_<MyClass>("MyClass")
1656 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1657
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001658Binding functions that accept arbitrary numbers of arguments and keywords arguments
1659===================================================================================
1660
1661Python provides a useful mechanism to define functions that accept arbitrary
1662numbers of arguments and keyword arguments:
1663
1664.. code-block:: cpp
1665
1666 def generic(*args, **kwargs):
1667 # .. do something with args and kwargs
1668
1669Such functions can also be created using pybind11:
1670
1671.. code-block:: cpp
1672
1673 void generic(py::args args, py::kwargs kwargs) {
1674 /// .. do something with args
1675 if (kwargs)
1676 /// .. do something with kwargs
1677 }
1678
1679 /// Binding code
1680 m.def("generic", &generic);
1681
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001682(See ``tests/test_kwargs_and_defaults.cpp``). The class ``py::args``
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001683derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note
1684that the ``kwargs`` argument is invalid if no keyword arguments were actually
1685provided. Please refer to the other examples for details on how to iterate
1686over these, and on how to cast their entries into C++ objects.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001687
Wenzel Jakob3764e282016-08-01 23:34:48 +02001688.. warning::
1689
1690 Unlike Python, pybind11 does not allow combining normal parameters with the
1691 ``args`` / ``kwargs`` special parameters.
1692
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001693Partitioning code over multiple extension modules
1694=================================================
1695
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001696It's straightforward to split binding code over multiple extension modules,
1697while referencing types that are declared elsewhere. Everything "just" works
1698without any special precautions. One exception to this rule occurs when
1699extending a type declared in another extension module. Recall the basic example
1700from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001701
1702.. code-block:: cpp
1703
1704 py::class_<Pet> pet(m, "Pet");
1705 pet.def(py::init<const std::string &>())
1706 .def_readwrite("name", &Pet::name);
1707
1708 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1709 .def(py::init<const std::string &>())
1710 .def("bark", &Dog::bark);
1711
1712Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1713whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1714course that the variable ``pet`` is not available anymore though it is needed
1715to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1716However, it can be acquired as follows:
1717
1718.. code-block:: cpp
1719
1720 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1721
1722 py::class_<Dog>(m, "Dog", pet)
1723 .def(py::init<const std::string &>())
1724 .def("bark", &Dog::bark);
1725
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001726Alternatively, we can rely on the ``base`` tag, which performs an automated
1727lookup of the corresponding Python type. However, this also requires invoking
1728the ``import`` function once to ensure that the pybind11 binding code of the
1729module ``basic`` has been executed.
1730
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001731.. code-block:: cpp
1732
1733 py::module::import("basic");
1734
1735 py::class_<Dog>(m, "Dog", py::base<Pet>())
1736 .def(py::init<const std::string &>())
1737 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001738
Wenzel Jakob978e3762016-04-07 18:00:41 +02001739Naturally, both methods will fail when there are cyclic dependencies.
1740
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001741Note that compiling code which has its default symbol visibility set to
1742*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1743ability to access types defined in another extension module. Workarounds
1744include changing the global symbol visibility (not recommended, because it will
1745lead unnecessarily large binaries) or manually exporting types that are
1746accessed by multiple extension modules:
1747
1748.. code-block:: cpp
1749
1750 #ifdef _WIN32
1751 # define EXPORT_TYPE __declspec(dllexport)
1752 #else
1753 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1754 #endif
1755
1756 class EXPORT_TYPE Dog : public Animal {
1757 ...
1758 };
1759
1760
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001761Pickling support
1762================
1763
1764Python's ``pickle`` module provides a powerful facility to serialize and
1765de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001766unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001767Suppose the class in question has the following signature:
1768
1769.. code-block:: cpp
1770
1771 class Pickleable {
1772 public:
1773 Pickleable(const std::string &value) : m_value(value) { }
1774 const std::string &value() const { return m_value; }
1775
1776 void setExtra(int extra) { m_extra = extra; }
1777 int extra() const { return m_extra; }
1778 private:
1779 std::string m_value;
1780 int m_extra = 0;
1781 };
1782
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001783The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001784looks as follows:
1785
1786.. code-block:: cpp
1787
1788 py::class_<Pickleable>(m, "Pickleable")
1789 .def(py::init<std::string>())
1790 .def("value", &Pickleable::value)
1791 .def("extra", &Pickleable::extra)
1792 .def("setExtra", &Pickleable::setExtra)
1793 .def("__getstate__", [](const Pickleable &p) {
1794 /* Return a tuple that fully encodes the state of the object */
1795 return py::make_tuple(p.value(), p.extra());
1796 })
1797 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1798 if (t.size() != 2)
1799 throw std::runtime_error("Invalid state!");
1800
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001801 /* Invoke the in-place constructor. Note that this is needed even
1802 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001803 new (&p) Pickleable(t[0].cast<std::string>());
1804
1805 /* Assign any additional state */
1806 p.setExtra(t[1].cast<int>());
1807 });
1808
1809An instance can now be pickled as follows:
1810
1811.. code-block:: python
1812
1813 try:
1814 import cPickle as pickle # Use cPickle on Python 2.7
1815 except ImportError:
1816 import pickle
1817
1818 p = Pickleable("test_value")
1819 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001820 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001821
Wenzel Jakob81e09752016-04-30 23:13:03 +02001822Note that only the cPickle module is supported on Python 2.7. The second
1823argument to ``dumps`` is also crucial: it selects the pickle protocol version
18242, since the older version 1 is not supported. Newer versions are also fine—for
1825instance, specify ``-1`` to always use the latest available version. Beware:
1826failure to follow these instructions will cause important pybind11 memory
1827allocation routines to be skipped during unpickling, which will likely lead to
1828memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001829
1830.. seealso::
1831
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001832 The file :file:`tests/test_pickling.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001833 that demonstrates how to pickle and unpickle types using pybind11 in more
1834 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001835
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001836.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001837
1838Generating documentation using Sphinx
1839=====================================
1840
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001841Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001842strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001843documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001844simple example repository which uses this approach.
1845
1846There are two potential gotchas when using this approach: first, make sure that
1847the resulting strings do not contain any :kbd:`TAB` characters, which break the
1848docstring parsing routines. You may want to use C++11 raw string literals,
1849which are convenient for multi-line comments. Conveniently, any excess
1850indentation will be automatically be removed by Sphinx. However, for this to
1851work, it is important that all lines are indented consistently, i.e.:
1852
1853.. code-block:: cpp
1854
1855 // ok
1856 m.def("foo", &foo, R"mydelimiter(
1857 The foo function
1858
1859 Parameters
1860 ----------
1861 )mydelimiter");
1862
1863 // *not ok*
1864 m.def("foo", &foo, R"mydelimiter(The foo function
1865
1866 Parameters
1867 ----------
1868 )mydelimiter");
1869
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001870.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001871.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001872
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001873Evaluating Python expressions from strings and files
1874====================================================
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001875
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001876pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
1877Python expressions and statements. The following example illustrates how they
1878can be used.
1879
1880Both functions accept a template parameter that describes how the argument
1881should be interpreted. Possible choices include ``eval_expr`` (isolated
1882expression), ``eval_single_statement`` (a single statement, return value is
1883always ``none``), and ``eval_statements`` (sequence of statements, return value
1884is always ``none``).
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001885
1886.. code-block:: cpp
1887
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001888 // At beginning of file
1889 #include <pybind11/eval.h>
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001890
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001891 ...
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001892
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001893 // Evaluate in scope of main module
1894 py::object scope = py::module::import("__main__").attr("__dict__");
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001895
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001896 // Evaluate an isolated expression
1897 int result = py::eval("my_variable + 10", scope).cast<int>();
1898
1899 // Evaluate a sequence of statements
1900 py::eval<py::eval_statements>(
1901 "print('Hello')\n"
1902 "print('world!');",
1903 scope);
1904
1905 // Evaluate the statements in an separate Python file on disk
1906 py::eval_file("script.py", scope);