blob: 2b78c7e809064aebc90424f06cfbf389fc80a7c7 [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400105 The file :file:`example/example-operator-overloading.cpp` contains a
106 complete example that demonstrates how to work with overloaded operators in
107 more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200108
109Callbacks and passing anonymous functions
110=========================================
111
112The C++11 standard brought lambda functions and the generic polymorphic
113function wrapper ``std::function<>`` to the C++ programming language, which
114enable powerful new ways of working with functions. Lambda functions come in
115two flavors: stateless lambda function resemble classic function pointers that
116link to an anonymous piece of code, while stateful lambda functions
117additionally depend on captured variables that are stored in an anonymous
118*lambda closure object*.
119
120Here is a simple example of a C++ function that takes an arbitrary function
121(stateful or stateless) with signature ``int -> int`` as an argument and runs
122it with the value 10.
123
124.. code-block:: cpp
125
126 int func_arg(const std::function<int(int)> &f) {
127 return f(10);
128 }
129
130The example below is more involved: it takes a function of signature ``int -> int``
131and returns another function of the same kind. The return value is a stateful
132lambda function, which stores the value ``f`` in the capture object and adds 1 to
133its return value upon execution.
134
135.. code-block:: cpp
136
137 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
138 return [f](int i) {
139 return f(i) + 1;
140 };
141 }
142
Brad Harmon835fc062016-06-16 13:19:15 -0500143This example demonstrates using python named parameters in C++ callbacks which
144requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
145methods of classes:
146
147.. code-block:: cpp
148
149 py::cpp_function func_cpp() {
150 return py::cpp_function([](int i) { return i+1; },
151 py::arg("number"));
152 }
153
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200154After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500155trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200156
157.. code-block:: cpp
158
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200159 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200160
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200161 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200162 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200163
164 m.def("func_arg", &func_arg);
165 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500166 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200167
168 return m.ptr();
169 }
170
171The following interactive session shows how to call them from Python.
172
Wenzel Jakob99279f72016-06-03 11:19:29 +0200173.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200174
175 $ python
176 >>> import example
177 >>> def square(i):
178 ... return i * i
179 ...
180 >>> example.func_arg(square)
181 100L
182 >>> square_plus_1 = example.func_ret(square)
183 >>> square_plus_1(4)
184 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500185 >>> plus_1 = func_cpp()
186 >>> plus_1(number=43)
187 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200188
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100189.. warning::
190
191 Keep in mind that passing a function from C++ to Python (or vice versa)
192 will instantiate a piece of wrapper code that translates function
Wenzel Jakob954b7932016-07-10 10:13:18 +0200193 invocations between the two languages. Naturally, this translation
194 increases the computational cost of each function call somewhat. A
195 problematic situation can arise when a function is copied back and forth
196 between Python and C++ many times in a row, in which case the underlying
197 wrappers will accumulate correspondingly. The resulting long sequence of
198 C++ -> Python -> C++ -> ... roundtrips can significantly decrease
199 performance.
200
201 There is one exception: pybind11 detects case where a stateless function
202 (i.e. a function pointer or a lambda function without captured variables)
203 is passed as an argument to another C++ function exposed in Python. In this
204 case, there is no overhead. Pybind11 will extract the underlying C++
205 function pointer from the wrapped function to sidestep a potential C++ ->
206 Python -> C++ roundtrip. This is demonstrated in Example 5.
207
208.. note::
209
210 This functionality is very useful when generating bindings for callbacks in
211 C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
212
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400213 The file :file:`example/example-callbacks.cpp` contains a complete example
214 that demonstrates how to work with callbacks and anonymous functions in
215 more detail.
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100216
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200217Overriding virtual functions in Python
218======================================
219
Wenzel Jakob93296692015-10-13 23:21:54 +0200220Suppose that a C++ class or interface has a virtual function that we'd like to
221to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
222given as a specific example of how one would do this with traditional C++
223code).
224
225.. code-block:: cpp
226
227 class Animal {
228 public:
229 virtual ~Animal() { }
230 virtual std::string go(int n_times) = 0;
231 };
232
233 class Dog : public Animal {
234 public:
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400235 std::string go(int n_times) override {
Wenzel Jakob93296692015-10-13 23:21:54 +0200236 std::string result;
237 for (int i=0; i<n_times; ++i)
238 result += "woof! ";
239 return result;
240 }
241 };
242
243Let's also suppose that we are given a plain function which calls the
244function ``go()`` on an arbitrary ``Animal`` instance.
245
246.. code-block:: cpp
247
248 std::string call_go(Animal *animal) {
249 return animal->go(3);
250 }
251
252Normally, the binding code for these classes would look as follows:
253
254.. code-block:: cpp
255
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200256 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200257 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200258
259 py::class_<Animal> animal(m, "Animal");
260 animal
261 .def("go", &Animal::go);
262
263 py::class_<Dog>(m, "Dog", animal)
264 .def(py::init<>());
265
266 m.def("call_go", &call_go);
267
268 return m.ptr();
269 }
270
271However, these bindings are impossible to extend: ``Animal`` is not
272constructible, and we clearly require some kind of "trampoline" that
273redirects virtual calls back to Python.
274
275Defining a new type of ``Animal`` from within Python is possible but requires a
276helper class that is defined as follows:
277
278.. code-block:: cpp
279
280 class PyAnimal : public Animal {
281 public:
282 /* Inherit the constructors */
283 using Animal::Animal;
284
285 /* Trampoline (need one for each virtual function) */
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400286 std::string go(int n_times) override {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200287 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200288 std::string, /* Return type */
289 Animal, /* Parent class */
290 go, /* Name of function */
291 n_times /* Argument(s) */
292 );
293 }
294 };
295
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200296The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
297functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob0d3fc352016-07-08 10:52:10 +0200298a default implementation.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200299
300There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
301:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument
302after the *Name of the function* slot. This is useful when the C++ and Python
303versions of the function have different names, e.g. ``operator()`` vs ``__call__``.
304
305The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200306
307.. code-block:: cpp
308 :emphasize-lines: 4,6,7
309
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200310 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200311 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200312
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200313 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200314 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200315 .def(py::init<>())
316 .def("go", &Animal::go);
317
318 py::class_<Dog>(m, "Dog", animal)
319 .def(py::init<>());
320
321 m.def("call_go", &call_go);
322
323 return m.ptr();
324 }
325
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200326Importantly, pybind11 is made aware of the trampoline trampoline helper class
327by specifying it as the *third* template argument to :class:`class_`. The
328second argument with the unique pointer is simply the default holder type used
329by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200330
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400331Note, however, that the above is sufficient for allowing python classes to
332extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
333necessary steps required to providing proper overload support for inherited
334classes.
335
Wenzel Jakob93296692015-10-13 23:21:54 +0200336The Python session below shows how to override ``Animal::go`` and invoke it via
337a virtual method call.
338
Wenzel Jakob99279f72016-06-03 11:19:29 +0200339.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200340
341 >>> from example import *
342 >>> d = Dog()
343 >>> call_go(d)
344 u'woof! woof! woof! '
345 >>> class Cat(Animal):
346 ... def go(self, n_times):
347 ... return "meow! " * n_times
348 ...
349 >>> c = Cat()
350 >>> call_go(c)
351 u'meow! meow! meow! '
352
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200353Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200354
Wenzel Jakob93296692015-10-13 23:21:54 +0200355.. seealso::
356
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400357 The file :file:`example/example-virtual-functions.cpp` contains a complete
358 example that demonstrates how to override virtual functions using pybind11
359 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200360
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400361.. _virtual_and_inheritance:
362
363Combining virtual functions and inheritance
364===========================================
365
366When combining virtual methods with inheritance, you need to be sure to provide
367an override for each method for which you want to allow overrides from derived
368python classes. For example, suppose we extend the above ``Animal``/``Dog``
369example as follows:
370
371.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200372
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400373 class Animal {
374 public:
375 virtual std::string go(int n_times) = 0;
376 virtual std::string name() { return "unknown"; }
377 };
378 class Dog : public class Animal {
379 public:
380 std::string go(int n_times) override {
381 std::string result;
382 for (int i=0; i<n_times; ++i)
383 result += bark() + " ";
384 return result;
385 }
386 virtual std::string bark() { return "woof!"; }
387 };
388
389then the trampoline class for ``Animal`` must, as described in the previous
390section, override ``go()`` and ``name()``, but in order to allow python code to
391inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
392overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
393methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
394override the ``name()`` method):
395
396.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200397
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400398 class PyAnimal : public Animal {
399 public:
400 using Animal::Animal; // Inherit constructors
401 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
402 std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
403 };
404 class PyDog : public Dog {
405 public:
406 using Dog::Dog; // Inherit constructors
407 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
408 std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
409 std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
410 };
411
412A registered class derived from a pybind11-registered class with virtual
413methods requires a similar trampoline class, *even if* it doesn't explicitly
414declare or override any virtual methods itself:
415
416.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200417
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400418 class Husky : public Dog {};
419 class PyHusky : public Husky {
420 using Dog::Dog; // Inherit constructors
421 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
422 std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
423 std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
424 };
425
426There is, however, a technique that can be used to avoid this duplication
427(which can be especially helpful for a base class with several virtual
428methods). The technique involves using template trampoline classes, as
429follows:
430
431.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200432
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400433 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
434 using AnimalBase::AnimalBase; // Inherit constructors
435 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
436 std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
437 };
438 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
439 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
440 // Override PyAnimal's pure virtual go() with a non-pure one:
441 std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
442 std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
443 };
444
445This technique has the advantage of requiring just one trampoline method to be
446declared per virtual method and pure virtual method override. It does,
447however, require the compiler to generate at least as many methods (and
448possibly more, if both pure virtual and overridden pure virtual methods are
449exposed, as above).
450
451The classes are then registered with pybind11 using:
452
453.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200454
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400455 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal<>> animal(m, "Animal");
456 py::class_<Dog, std::unique_ptr<Dog>, PyDog<>> dog(m, "Dog");
457 py::class_<Husky, std::unique_ptr<Husky>, PyDog<Husky>> husky(m, "Husky");
458 // ... add animal, dog, husky definitions
459
460Note that ``Husky`` did not require a dedicated trampoline template class at
461all, since it neither declares any new virtual methods nor provides any pure
462virtual method implementations.
463
464With either the repeated-virtuals or templated trampoline methods in place, you
465can now create a python class that inherits from ``Dog``:
466
467.. code-block:: python
468
469 class ShihTzu(Dog):
470 def bark(self):
471 return "yip!"
472
473.. seealso::
474
475 See the file :file:`example-virtual-functions.cpp` for complete examples
476 using both the duplication and templated trampoline approaches.
477
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200478.. _macro_notes:
479
480General notes regarding convenience macros
481==========================================
482
483pybind11 provides a few convenience macros such as
484:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
485``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
486in the preprocessor (which has no concept of types), they *will* get confused
487by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
488T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
489the beginnning of the next parameter. Use a ``typedef`` to bind the template to
490another name and use it in the macro to avoid this problem.
491
492
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100493Global Interpreter Lock (GIL)
494=============================
495
496The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
497used to acquire and release the global interpreter lock in the body of a C++
498function call. In this way, long-running C++ code can be parallelized using
499multiple Python threads. Taking the previous section as an example, this could
500be realized as follows (important changes highlighted):
501
502.. code-block:: cpp
503 :emphasize-lines: 8,9,33,34
504
505 class PyAnimal : public Animal {
506 public:
507 /* Inherit the constructors */
508 using Animal::Animal;
509
510 /* Trampoline (need one for each virtual function) */
511 std::string go(int n_times) {
512 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100513 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100514
515 PYBIND11_OVERLOAD_PURE(
516 std::string, /* Return type */
517 Animal, /* Parent class */
518 go, /* Name of function */
519 n_times /* Argument(s) */
520 );
521 }
522 };
523
524 PYBIND11_PLUGIN(example) {
525 py::module m("example", "pybind11 example plugin");
526
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200527 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100528 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100529 .def(py::init<>())
530 .def("go", &Animal::go);
531
532 py::class_<Dog>(m, "Dog", animal)
533 .def(py::init<>());
534
535 m.def("call_go", [](Animal *animal) -> std::string {
536 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100537 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100538 return call_go(animal);
539 });
540
541 return m.ptr();
542 }
543
Wenzel Jakob93296692015-10-13 23:21:54 +0200544Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200545===========================
546
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200547When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200548between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
549and the Python ``list``, ``set`` and ``dict`` data structures are automatically
550enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
551out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200552
553.. note::
554
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100555 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200556
557.. seealso::
558
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400559 The file :file:`example/example-python-types.cpp` contains a complete
560 example that demonstrates how to pass STL data types in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200561
Wenzel Jakobb2825952016-04-13 23:33:00 +0200562Binding sequence data types, iterators, the slicing protocol, etc.
563==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200564
565Please refer to the supplemental example for details.
566
567.. seealso::
568
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400569 The file :file:`example/example-sequences-and-iterators.cpp` contains a
570 complete example that shows how to bind a sequence data type, including
571 length queries (``__len__``), iterators (``__iter__``), the slicing
572 protocol and other kinds of useful operations.
Wenzel Jakob93296692015-10-13 23:21:54 +0200573
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200574Return value policies
575=====================
576
Wenzel Jakob93296692015-10-13 23:21:54 +0200577Python and C++ use wildly different ways of managing the memory and lifetime of
578objects managed by them. This can lead to issues when creating bindings for
579functions that return a non-trivial type. Just by looking at the type
580information, it is not clear whether Python should take charge of the returned
581value and eventually free its resources, or if this is handled on the C++ side.
582For this reason, pybind11 provides a several `return value policy` annotations
583that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100584functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200585
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200586.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
587
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200588+--------------------------------------------------+----------------------------------------------------------------------------+
589| Return value policy | Description |
590+==================================================+============================================================================+
591| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
592| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200593| | pointer. Otherwise, it uses :enum:`return_value::move` or |
594| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200595| | See below for a description of what all of these different policies do. |
596+--------------------------------------------------+----------------------------------------------------------------------------+
597| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200598| | return value is a pointer. This is the default conversion policy for |
599| | function arguments when calling Python functions manually from C++ code |
600| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200601+--------------------------------------------------+----------------------------------------------------------------------------+
602| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
603| | ownership. Python will call the destructor and delete operator when the |
604| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200605| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200606+--------------------------------------------------+----------------------------------------------------------------------------+
607| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
608| | This policy is comparably safe because the lifetimes of the two instances |
609| | are decoupled. |
610+--------------------------------------------------+----------------------------------------------------------------------------+
611| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
612| | that will be owned by Python. This policy is comparably safe because the |
613| | lifetimes of the two instances (move source and destination) are decoupled.|
614+--------------------------------------------------+----------------------------------------------------------------------------+
615| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
616| | responsible for managing the object's lifetime and deallocating it when |
617| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200618| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200619+--------------------------------------------------+----------------------------------------------------------------------------+
Jason Rhinelanderf2ecd892016-08-10 12:08:04 -0400620| :enum:`return_value_policy::reference_internal` | Like :enum:`return_value_policy::reference` but additionally applies a |
Dean Moldovanaebca122016-08-16 01:26:02 +0200621| | ``keep_alive<0, 1>`` call policy (described next) that keeps the |
Jason Rhinelanderf2ecd892016-08-10 12:08:04 -0400622| | ``this`` argument of the function or property from being garbage collected |
623| | as long as the return value remains referenced. See the |
624| | :class:`keep_alive` call policy (described next) for details. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200625+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200626
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200627.. warning::
628
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400629 Code with invalid return value policies might access unitialized memory or
630 free data structures multiple times, which can lead to hard-to-debug
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200631 non-determinism and segmentation faults, hence it is worth spending the
632 time to understand all the different options in the table above.
633
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400634One important aspect of the above policies is that they only apply to instances
635which pybind11 has *not* seen before, in which case the policy clarifies
636essential questions about the return value's lifetime and ownership. When
637pybind11 knows the instance already (as identified by its type and address in
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200638memory), it will return the existing Python object wrapper rather than creating
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400639a copy.
nafur717df752016-06-28 18:07:11 +0200640
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200641.. note::
642
643 The next section on :ref:`call_policies` discusses *call policies* that can be
644 specified *in addition* to a return value policy from the list above. Call
645 policies indicate reference relationships that can involve both return values
646 and parameters of functions.
647
648.. note::
649
650 As an alternative to elaborate call policies and lifetime management logic,
651 consider using smart pointers (see the section on :ref:`smart_pointers` for
652 details). Smart pointers can tell whether an object is still referenced from
653 C++ or Python, which generally eliminates the kinds of inconsistencies that
654 can lead to crashes or undefined behavior. For functions returning smart
655 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100656
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200657.. _call_policies:
658
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100659Additional call policies
660========================
661
662In addition to the above return value policies, further `call policies` can be
663specified to indicate dependencies between parameters. There is currently just
664one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
665argument with index ``Patient`` should be kept alive at least until the
Wenzel Jakob0b632312016-08-18 10:58:21 +0200666argument with index ``Nurse`` is freed by the garbage collector. Argument
667indices start at one, while zero refers to the return value. For methods, index
668``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
669index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
670with value ``None`` is detected at runtime, the call policy does nothing.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100671
Wenzel Jakob0b632312016-08-18 10:58:21 +0200672This feature internally relies on the ability to create a *weak reference* to
673the nurse object, which is permitted by all classes exposed via pybind11. When
674the nurse object does not support weak references, an exception will be thrown.
675
676Consider the following example: here, the binding code for a list append
677operation ties the lifetime of the newly added element to the underlying
678container:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100679
680.. code-block:: cpp
681
682 py::class_<List>(m, "List")
683 .def("append", &List::append, py::keep_alive<1, 2>());
684
685.. note::
686
687 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
688 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
689 0) policies from Boost.Python.
690
Wenzel Jakob61587162016-01-18 22:38:52 +0100691.. seealso::
692
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400693 The file :file:`example/example-keep-alive.cpp` contains a complete example
694 that demonstrates using :class:`keep_alive` in more detail.
Wenzel Jakob61587162016-01-18 22:38:52 +0100695
Wenzel Jakob93296692015-10-13 23:21:54 +0200696Implicit type conversions
697=========================
698
699Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200700that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200701could be a fixed and an arbitrary precision number type).
702
703.. code-block:: cpp
704
705 py::class_<A>(m, "A")
706 /// ... members ...
707
708 py::class_<B>(m, "B")
709 .def(py::init<A>())
710 /// ... members ...
711
712 m.def("func",
713 [](const B &) { /* .... */ }
714 );
715
716To invoke the function ``func`` using a variable ``a`` containing an ``A``
717instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
718will automatically apply an implicit type conversion, which makes it possible
719to directly write ``func(a)``.
720
721In this situation (i.e. where ``B`` has a constructor that converts from
722``A``), the following statement enables similar implicit conversions on the
723Python side:
724
725.. code-block:: cpp
726
727 py::implicitly_convertible<A, B>();
728
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200729.. note::
730
731 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
732 data type that is exposed to Python via pybind11.
733
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200734.. _static_properties:
735
736Static properties
737=================
738
739The section on :ref:`properties` discussed the creation of instance properties
740that are implemented in terms of C++ getters and setters.
741
742Static properties can also be created in a similar way to expose getters and
743setters of static class attributes. It is important to note that the implicit
744``self`` argument also exists in this case and is used to pass the Python
745``type`` subclass instance. This parameter will often not be needed by the C++
746side, and the following example illustrates how to instantiate a lambda getter
747function that ignores it:
748
749.. code-block:: cpp
750
751 py::class_<Foo>(m, "Foo")
752 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
753
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200754Unique pointers
755===============
756
757Given a class ``Example`` with Python bindings, it's possible to return
758instances wrapped in C++11 unique pointers, like so
759
760.. code-block:: cpp
761
762 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
763
764.. code-block:: cpp
765
766 m.def("create_example", &create_example);
767
768In other words, there is nothing special that needs to be done. While returning
769unique pointers in this way is allowed, it is *illegal* to use them as function
770arguments. For instance, the following function signature cannot be processed
771by pybind11.
772
773.. code-block:: cpp
774
775 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
776
777The above signature would imply that Python needs to give up ownership of an
778object that is passed to this function, which is generally not possible (for
779instance, the object might be referenced elsewhere).
780
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200781.. _smart_pointers:
782
Wenzel Jakob93296692015-10-13 23:21:54 +0200783Smart pointers
784==============
785
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200786This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200787types with internal reference counting. For the simpler C++11 unique pointers,
788refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200789
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200790The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200791template type, which denotes a special *holder* type that is used to manage
792references to the object. When wrapping a type named ``Type``, the default
793value of this template parameter is ``std::unique_ptr<Type>``, which means that
794the object is deallocated when Python's reference count goes to zero.
795
Wenzel Jakob1853b652015-10-18 15:38:50 +0200796It is possible to switch to other types of reference counting wrappers or smart
797pointers, which is useful in codebases that rely on them. For instance, the
798following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200799
800.. code-block:: cpp
801
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100802 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100803
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100804Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200805
Wenzel Jakob1853b652015-10-18 15:38:50 +0200806To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100807argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200808be declared at the top level before any binding code:
809
810.. code-block:: cpp
811
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200812 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200813
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100814.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100815
816 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
817 placeholder name that is used as a template parameter of the second
818 argument. Thus, feel free to use any identifier, but use it consistently on
819 both sides; also, don't use the name of a type that already exists in your
820 codebase.
821
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100822One potential stumbling block when using holder types is that they need to be
823applied consistently. Can you guess what's broken about the following binding
824code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100825
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100826.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100827
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100828 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100829
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100830 class Parent {
831 public:
832 Parent() : child(std::make_shared<Child>()) { }
833 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
834 private:
835 std::shared_ptr<Child> child;
836 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100837
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100838 PYBIND11_PLUGIN(example) {
839 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100840
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100841 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
842
843 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
844 .def(py::init<>())
845 .def("get_child", &Parent::get_child);
846
847 return m.ptr();
848 }
849
850The following Python code will cause undefined behavior (and likely a
851segmentation fault).
852
853.. code-block:: python
854
855 from example import Parent
856 print(Parent().get_child())
857
858The problem is that ``Parent::get_child()`` returns a pointer to an instance of
859``Child``, but the fact that this instance is already managed by
860``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
861pybind11 will create a second independent ``std::shared_ptr<...>`` that also
862claims ownership of the pointer. In the end, the object will be freed **twice**
863since these shared pointers have no way of knowing about each other.
864
865There are two ways to resolve this issue:
866
8671. For types that are managed by a smart pointer class, never use raw pointers
868 in function arguments or return values. In other words: always consistently
869 wrap pointers into their designated holder types (such as
870 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
871 should be modified as follows:
872
873.. code-block:: cpp
874
875 std::shared_ptr<Child> get_child() { return child; }
876
8772. Adjust the definition of ``Child`` by specifying
878 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
879 base class. This adds a small bit of information to ``Child`` that allows
880 pybind11 to realize that there is already an existing
881 ``std::shared_ptr<...>`` and communicate with it. In this case, the
882 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100883
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100884.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
885
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100886.. code-block:: cpp
887
888 class Child : public std::enable_shared_from_this<Child> { };
889
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200890
891Please take a look at the :ref:`macro_notes` before using this feature.
892
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100893.. seealso::
894
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400895 The file :file:`example/example-smart-ptr.cpp` contains a complete example
896 that demonstrates how to work with custom reference-counting holder types
897 in more detail.
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100898
Wenzel Jakob93296692015-10-13 23:21:54 +0200899.. _custom_constructors:
900
901Custom constructors
902===================
903
904The syntax for binding constructors was previously introduced, but it only
905works when a constructor with the given parameters actually exists on the C++
906side. To extend this to more general cases, let's take a look at what actually
907happens under the hood: the following statement
908
909.. code-block:: cpp
910
911 py::class_<Example>(m, "Example")
912 .def(py::init<int>());
913
914is short hand notation for
915
916.. code-block:: cpp
917
918 py::class_<Example>(m, "Example")
919 .def("__init__",
920 [](Example &instance, int arg) {
921 new (&instance) Example(arg);
922 }
923 );
924
925In other words, :func:`init` creates an anonymous function that invokes an
926in-place constructor. Memory allocation etc. is already take care of beforehand
927within pybind11.
928
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400929.. _catching_and_throwing_exceptions:
930
Wenzel Jakob93296692015-10-13 23:21:54 +0200931Catching and throwing exceptions
932================================
933
934When C++ code invoked from Python throws an ``std::exception``, it is
935automatically converted into a Python ``Exception``. pybind11 defines multiple
936special exception classes that will map to different types of Python
937exceptions:
938
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200939.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
940
Wenzel Jakob978e3762016-04-07 18:00:41 +0200941+--------------------------------------+------------------------------+
942| C++ exception type | Python exception type |
943+======================================+==============================+
944| :class:`std::exception` | ``RuntimeError`` |
945+--------------------------------------+------------------------------+
946| :class:`std::bad_alloc` | ``MemoryError`` |
947+--------------------------------------+------------------------------+
948| :class:`std::domain_error` | ``ValueError`` |
949+--------------------------------------+------------------------------+
950| :class:`std::invalid_argument` | ``ValueError`` |
951+--------------------------------------+------------------------------+
952| :class:`std::length_error` | ``ValueError`` |
953+--------------------------------------+------------------------------+
954| :class:`std::out_of_range` | ``ValueError`` |
955+--------------------------------------+------------------------------+
956| :class:`std::range_error` | ``ValueError`` |
957+--------------------------------------+------------------------------+
958| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
959| | implement custom iterators) |
960+--------------------------------------+------------------------------+
961| :class:`pybind11::index_error` | ``IndexError`` (used to |
962| | indicate out of bounds |
963| | accesses in ``__getitem__``, |
964| | ``__setitem__``, etc.) |
965+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -0400966| :class:`pybind11::value_error` | ``ValueError`` (used to |
967| | indicate wrong value passed |
968| | in ``container.remove(...)`` |
969+--------------------------------------+------------------------------+
Jason Rhinelander5aa85be2016-08-11 21:22:05 -0400970| :class:`pybind11::key_error` | ``KeyError`` (used to |
971| | indicate out of bounds |
972| | accesses in ``__getitem__``, |
973| | ``__setitem__`` in dict-like |
974| | objects, etc.) |
975+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +0200976| :class:`pybind11::error_already_set` | Indicates that the Python |
977| | exception flag has already |
978| | been initialized |
979+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200980
981When a Python function invoked from C++ throws an exception, it is converted
982into a C++ exception of type :class:`error_already_set` whose string payload
983contains a textual summary.
984
985There is also a special exception :class:`cast_error` that is thrown by
986:func:`handle::call` when the input arguments cannot be converted to Python
987objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200988
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400989Registering custom exception translators
990========================================
991
992If the default exception conversion policy described
993:ref:`above <catching_and_throwing_exceptions>`
994is insufficient, pybind11 also provides support for registering custom
995exception translators.
996
997The function ``register_exception_translator(translator)`` takes a stateless
998callable (e.g. a function pointer or a lambda function without captured
999variables) with the following call signature: ``void(std::exception_ptr)``.
1000
1001When a C++ exception is thrown, registered exception translators are tried
1002in reverse order of registration (i.e. the last registered translator gets
1003a first shot at handling the exception).
1004
1005Inside the translator, ``std::rethrow_exception`` should be used within
1006a try block to re-throw the exception. A catch clause can then use
1007``PyErr_SetString`` to set a Python exception as demonstrated
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001008in :file:`example-custom-exceptions.cpp``.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001009
1010This example also demonstrates how to create custom exception types
1011with ``py::exception``.
1012
1013The following example demonstrates this for a hypothetical exception class
1014``MyCustomException``:
1015
1016.. code-block:: cpp
1017
1018 py::register_exception_translator([](std::exception_ptr p) {
1019 try {
1020 if (p) std::rethrow_exception(p);
1021 } catch (const MyCustomException &e) {
1022 PyErr_SetString(PyExc_RuntimeError, e.what());
1023 }
1024 });
1025
1026Multiple exceptions can be handled by a single translator. If the exception is
1027not caught by the current translator, the previously registered one gets a
1028chance.
1029
1030If none of the registered exception translators is able to handle the
1031exception, it is handled by the default converter as described in the previous
1032section.
1033
1034.. note::
1035
1036 You must either call ``PyErr_SetString`` for every exception caught in a
1037 custom exception translator. Failure to do so will cause Python to crash
1038 with ``SystemError: error return without exception set``.
1039
1040 Exceptions that you do not plan to handle should simply not be caught.
1041
1042 You may also choose to explicity (re-)throw the exception to delegate it to
1043 the other existing exception translators.
1044
1045 The ``py::exception`` wrapper for creating custom exceptions cannot (yet)
1046 be used as a ``py::base``.
1047
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001048.. _opaque:
1049
1050Treating STL data structures as opaque objects
1051==============================================
1052
1053pybind11 heavily relies on a template matching mechanism to convert parameters
1054and return values that are constructed from STL data types such as vectors,
1055linked lists, hash tables, etc. This even works in a recursive manner, for
1056instance to deal with lists of hash maps of pairs of elementary and custom
1057types, etc.
1058
1059However, a fundamental limitation of this approach is that internal conversions
1060between Python and C++ types involve a copy operation that prevents
1061pass-by-reference semantics. What does this mean?
1062
1063Suppose we bind the following function
1064
1065.. code-block:: cpp
1066
1067 void append_1(std::vector<int> &v) {
1068 v.push_back(1);
1069 }
1070
1071and call it from Python, the following happens:
1072
Wenzel Jakob99279f72016-06-03 11:19:29 +02001073.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001074
1075 >>> v = [5, 6]
1076 >>> append_1(v)
1077 >>> print(v)
1078 [5, 6]
1079
1080As you can see, when passing STL data structures by reference, modifications
1081are not propagated back the Python side. A similar situation arises when
1082exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
1083functions:
1084
1085.. code-block:: cpp
1086
1087 /* ... definition ... */
1088
1089 class MyClass {
1090 std::vector<int> contents;
1091 };
1092
1093 /* ... binding code ... */
1094
1095 py::class_<MyClass>(m, "MyClass")
1096 .def(py::init<>)
1097 .def_readwrite("contents", &MyClass::contents);
1098
1099In this case, properties can be read and written in their entirety. However, an
1100``append`` operaton involving such a list type has no effect:
1101
Wenzel Jakob99279f72016-06-03 11:19:29 +02001102.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001103
1104 >>> m = MyClass()
1105 >>> m.contents = [5, 6]
1106 >>> print(m.contents)
1107 [5, 6]
1108 >>> m.contents.append(7)
1109 >>> print(m.contents)
1110 [5, 6]
1111
1112To deal with both of the above situations, pybind11 provides a macro named
1113``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
1114machinery of types, thus rendering them *opaque*. The contents of opaque
1115objects are never inspected or extracted, hence they can be passed by
1116reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
1117the declaration
1118
1119.. code-block:: cpp
1120
1121 PYBIND11_MAKE_OPAQUE(std::vector<int>);
1122
1123before any binding code (e.g. invocations to ``class_::def()``, etc.). This
1124macro must be specified at the top level, since instantiates a partial template
1125overload. If your binding code consists of multiple compilation units, it must
1126be present in every file preceding any usage of ``std::vector<int>``. Opaque
1127types must also have a corresponding ``class_`` declaration to associate them
1128with a name in Python, and to define a set of available operations:
1129
1130.. code-block:: cpp
1131
1132 py::class_<std::vector<int>>(m, "IntVector")
1133 .def(py::init<>())
1134 .def("clear", &std::vector<int>::clear)
1135 .def("pop_back", &std::vector<int>::pop_back)
1136 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
1137 .def("__iter__", [](std::vector<int> &v) {
1138 return py::make_iterator(v.begin(), v.end());
1139 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
1140 // ....
1141
Wenzel Jakob9bb97c12016-06-03 11:19:41 +02001142Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001143
1144.. seealso::
1145
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001146 The file :file:`example/example-opaque-types.cpp` contains a complete
1147 example that demonstrates how to create and expose opaque types using
1148 pybind11 in more detail.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001149
1150.. _eigen:
1151
1152Transparent conversion of dense and sparse Eigen data types
1153===========================================================
1154
1155Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
1156its popularity and widespread adoption, pybind11 provides transparent
1157conversion support between Eigen and Scientific Python linear algebra data types.
1158
1159Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001160pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001161
11621. Static and dynamic Eigen dense vectors and matrices to instances of
1163 ``numpy.ndarray`` (and vice versa).
1164
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040011652. Returned matrix expressions such as blocks (including columns or rows) and
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001166 diagonals will be converted to ``numpy.ndarray`` of the expression
1167 values.
1168
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040011693. Returned matrix-like objects such as Eigen::DiagonalMatrix or
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001170 Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the
1171 expressed value.
1172
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040011734. Eigen sparse vectors and matrices to instances of
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001174 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
1175
1176This makes it possible to bind most kinds of functions that rely on these types.
1177One major caveat are functions that take Eigen matrices *by reference* and modify
1178them somehow, in which case the information won't be propagated to the caller.
1179
1180.. code-block:: cpp
1181
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001182 /* The Python bindings of these functions won't replicate
1183 the intended effect of modifying the function arguments */
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001184 void scale_by_2(Eigen::Vector3f &v) {
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001185 v *= 2;
1186 }
1187 void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) {
1188 v *= 2;
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001189 }
1190
1191To see why this is, refer to the section on :ref:`opaque` (although that
1192section specifically covers STL data types, the underlying issue is the same).
1193The next two sections discuss an efficient alternative for exposing the
1194underlying native Eigen types as opaque objects in a way that still integrates
1195with NumPy and SciPy.
1196
1197.. [#f1] http://eigen.tuxfamily.org
1198
1199.. seealso::
1200
1201 The file :file:`example/eigen.cpp` contains a complete example that
1202 shows how to pass Eigen sparse and dense data types in more detail.
1203
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001204Buffer protocol
1205===============
1206
1207Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001208data between plugin libraries. Types can expose a buffer view [#f2]_, which
1209provides fast direct access to the raw internal data representation. Suppose we
1210want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001211
1212.. code-block:: cpp
1213
1214 class Matrix {
1215 public:
1216 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1217 m_data = new float[rows*cols];
1218 }
1219 float *data() { return m_data; }
1220 size_t rows() const { return m_rows; }
1221 size_t cols() const { return m_cols; }
1222 private:
1223 size_t m_rows, m_cols;
1224 float *m_data;
1225 };
1226
1227The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001228making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001229completely avoid copy operations with Python expressions like
1230``np.array(matrix_instance, copy = False)``.
1231
1232.. code-block:: cpp
1233
1234 py::class_<Matrix>(m, "Matrix")
1235 .def_buffer([](Matrix &m) -> py::buffer_info {
1236 return py::buffer_info(
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001237 m.data(), /* Pointer to buffer */
1238 sizeof(float), /* Size of one scalar */
1239 py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
1240 2, /* Number of dimensions */
1241 { m.rows(), m.cols() }, /* Buffer dimensions */
1242 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001243 sizeof(float) }
1244 );
1245 });
1246
1247The snippet above binds a lambda function, which can create ``py::buffer_info``
1248description records on demand describing a given matrix. The contents of
1249``py::buffer_info`` mirror the Python buffer protocol specification.
1250
1251.. code-block:: cpp
1252
1253 struct buffer_info {
1254 void *ptr;
1255 size_t itemsize;
1256 std::string format;
1257 int ndim;
1258 std::vector<size_t> shape;
1259 std::vector<size_t> strides;
1260 };
1261
1262To create a C++ function that can take a Python buffer object as an argument,
1263simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1264in a great variety of configurations, hence some safety checks are usually
1265necessary in the function body. Below, you can see an basic example on how to
1266define a custom constructor for the Eigen double precision matrix
1267(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001268buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001269
1270.. code-block:: cpp
1271
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001272 /* Bind MatrixXd (or some other Eigen type) to Python */
1273 typedef Eigen::MatrixXd Matrix;
1274
1275 typedef Matrix::Scalar Scalar;
1276 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1277
1278 py::class_<Matrix>(m, "Matrix")
1279 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001280 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001281
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001282 /* Request a buffer descriptor from Python */
1283 py::buffer_info info = b.request();
1284
1285 /* Some sanity checks ... */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001286 if (info.format != py::format_descriptor<Scalar>::format())
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001287 throw std::runtime_error("Incompatible format: expected a double array!");
1288
1289 if (info.ndim != 2)
1290 throw std::runtime_error("Incompatible buffer dimension!");
1291
Wenzel Jakobe7628532016-05-05 10:04:44 +02001292 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001293 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1294 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001295
1296 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001297 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001298
1299 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001300 });
1301
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001302For reference, the ``def_buffer()`` call for this Eigen data type should look
1303as follows:
1304
1305.. code-block:: cpp
1306
1307 .def_buffer([](Matrix &m) -> py::buffer_info {
1308 return py::buffer_info(
1309 m.data(), /* Pointer to buffer */
1310 sizeof(Scalar), /* Size of one scalar */
1311 /* Python struct-style format descriptor */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001312 py::format_descriptor<Scalar>::format(),
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001313 /* Number of dimensions */
1314 2,
1315 /* Buffer dimensions */
1316 { (size_t) m.rows(),
1317 (size_t) m.cols() },
1318 /* Strides (in bytes) for each index */
1319 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1320 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1321 );
1322 })
1323
1324For a much easier approach of binding Eigen types (although with some
1325limitations), refer to the section on :ref:`eigen`.
1326
Wenzel Jakob93296692015-10-13 23:21:54 +02001327.. seealso::
1328
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001329 The file :file:`example/example-buffers.cpp` contains a complete example
1330 that demonstrates using the buffer protocol with pybind11 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +02001331
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001332.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001333
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001334NumPy support
1335=============
1336
1337By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1338restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001339type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001340
1341In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001342array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001343template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001344NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001345
1346.. code-block:: cpp
1347
Wenzel Jakob93296692015-10-13 23:21:54 +02001348 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001349
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001350When it is invoked with a different type (e.g. an integer or a list of
1351integers), the binding code will attempt to cast the input into a NumPy array
1352of the requested type. Note that this feature requires the
1353:file:``pybind11/numpy.h`` header to be included.
1354
1355Data in NumPy arrays is not guaranteed to packed in a dense manner;
1356furthermore, entries can be separated by arbitrary column and row strides.
1357Sometimes, it can be useful to require a function to only accept dense arrays
1358using either the C (row-major) or Fortran (column-major) ordering. This can be
1359accomplished via a second template argument with values ``py::array::c_style``
1360or ``py::array::f_style``.
1361
1362.. code-block:: cpp
1363
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001364 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001365
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001366The ``py::array::forcecast`` argument is the default value of the second
1367template paramenter, and it ensures that non-conforming arguments are converted
1368into an array satisfying the specified requirements instead of trying the next
1369function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001370
Ivan Smirnov223afe32016-07-02 15:33:04 +01001371NumPy structured types
1372======================
1373
1374In order for ``py::array_t`` to work with structured (record) types, we first need
Ivan Smirnov5412a052016-07-02 16:18:42 +01001375to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE``
Ivan Smirnov223afe32016-07-02 15:33:04 +01001376macro which expects the type followed by field names:
1377
1378.. code-block:: cpp
1379
1380 struct A {
1381 int x;
1382 double y;
1383 };
1384
1385 struct B {
1386 int z;
1387 A a;
1388 };
1389
Ivan Smirnov5412a052016-07-02 16:18:42 +01001390 PYBIND11_NUMPY_DTYPE(A, x, y);
1391 PYBIND11_NUMPY_DTYPE(B, z, a);
Ivan Smirnov223afe32016-07-02 15:33:04 +01001392
1393 /* now both A and B can be used as template arguments to py::array_t */
1394
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001395Vectorizing functions
1396=====================
1397
1398Suppose we want to bind a function with the following signature to Python so
1399that it can process arbitrary NumPy array arguments (vectors, matrices, general
1400N-D arrays) in addition to its normal arguments:
1401
1402.. code-block:: cpp
1403
1404 double my_func(int x, float y, double z);
1405
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001406After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001407
1408.. code-block:: cpp
1409
1410 m.def("vectorized_func", py::vectorize(my_func));
1411
1412Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001413each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001414solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1415entirely on the C++ side and can be crunched down into a tight, optimized loop
1416by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001417``numpy.dtype.float64``.
1418
Wenzel Jakob99279f72016-06-03 11:19:29 +02001419.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001420
1421 >>> x = np.array([[1, 3],[5, 7]])
1422 >>> y = np.array([[2, 4],[6, 8]])
1423 >>> z = 3
1424 >>> result = vectorized_func(x, y, z)
1425
1426The scalar argument ``z`` is transparently replicated 4 times. The input
1427arrays ``x`` and ``y`` are automatically converted into the right types (they
1428are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1429``numpy.dtype.float32``, respectively)
1430
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001431Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001432because it makes little sense to wrap it in a NumPy array. For instance,
1433suppose the function signature was
1434
1435.. code-block:: cpp
1436
1437 double my_func(int x, float y, my_custom_type *z);
1438
1439This can be done with a stateful Lambda closure:
1440
1441.. code-block:: cpp
1442
1443 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1444 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001445 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001446 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1447 return py::vectorize(stateful_closure)(x, y);
1448 }
1449 );
1450
Wenzel Jakob61587162016-01-18 22:38:52 +01001451In cases where the computation is too complicated to be reduced to
1452``vectorize``, it will be necessary to create and access the buffer contents
1453manually. The following snippet contains a complete example that shows how this
1454works (the code is somewhat contrived, since it could have been done more
1455simply using ``vectorize``).
1456
1457.. code-block:: cpp
1458
1459 #include <pybind11/pybind11.h>
1460 #include <pybind11/numpy.h>
1461
1462 namespace py = pybind11;
1463
1464 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1465 auto buf1 = input1.request(), buf2 = input2.request();
1466
1467 if (buf1.ndim != 1 || buf2.ndim != 1)
1468 throw std::runtime_error("Number of dimensions must be one");
1469
Ivan Smirnovb6518592016-08-13 13:28:56 +01001470 if (buf1.size != buf2.size)
Wenzel Jakob61587162016-01-18 22:38:52 +01001471 throw std::runtime_error("Input shapes must match");
1472
Ivan Smirnovb6518592016-08-13 13:28:56 +01001473 /* No pointer is passed, so NumPy will allocate the buffer */
1474 auto result = py::array_t<double>(buf1.size);
Wenzel Jakob61587162016-01-18 22:38:52 +01001475
1476 auto buf3 = result.request();
1477
1478 double *ptr1 = (double *) buf1.ptr,
1479 *ptr2 = (double *) buf2.ptr,
1480 *ptr3 = (double *) buf3.ptr;
1481
1482 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1483 ptr3[idx] = ptr1[idx] + ptr2[idx];
1484
1485 return result;
1486 }
1487
1488 PYBIND11_PLUGIN(test) {
1489 py::module m("test");
1490 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1491 return m.ptr();
1492 }
1493
Wenzel Jakob93296692015-10-13 23:21:54 +02001494.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001495
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001496 The file :file:`example/example-numpy-vectorize.cpp` contains a complete
1497 example that demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001498
Wenzel Jakob93296692015-10-13 23:21:54 +02001499Functions taking Python objects as arguments
1500============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001501
Wenzel Jakob93296692015-10-13 23:21:54 +02001502pybind11 exposes all major Python types using thin C++ wrapper classes. These
1503wrapper classes can also be used as parameters of functions in bindings, which
1504makes it possible to directly work with native Python types on the C++ side.
1505For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001506
Wenzel Jakob93296692015-10-13 23:21:54 +02001507.. code-block:: cpp
1508
1509 void print_dict(py::dict dict) {
1510 /* Easily interact with Python types */
1511 for (auto item : dict)
1512 std::cout << "key=" << item.first << ", "
1513 << "value=" << item.second << std::endl;
1514 }
1515
1516Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001517:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001518:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1519:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1520:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001521
Wenzel Jakob436b7312015-10-20 01:04:30 +02001522In this kind of mixed code, it is often necessary to convert arbitrary C++
1523types to Python, which can be done using :func:`cast`:
1524
1525.. code-block:: cpp
1526
1527 MyClass *cls = ..;
1528 py::object obj = py::cast(cls);
1529
1530The reverse direction uses the following syntax:
1531
1532.. code-block:: cpp
1533
1534 py::object obj = ...;
1535 MyClass *cls = obj.cast<MyClass *>();
1536
1537When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001538It is also possible to call python functions via ``operator()``.
1539
1540.. code-block:: cpp
1541
1542 py::function f = <...>;
1543 py::object result_py = f(1234, "hello", some_instance);
1544 MyClass &result = result_py.cast<MyClass>();
1545
1546The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1547supply arbitrary argument and keyword lists, although these cannot be mixed
1548with other parameters.
1549
1550.. code-block:: cpp
1551
1552 py::function f = <...>;
1553 py::tuple args = py::make_tuple(1234);
1554 py::dict kwargs;
1555 kwargs["y"] = py::cast(5678);
1556 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001557
Wenzel Jakob93296692015-10-13 23:21:54 +02001558.. seealso::
1559
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001560 The file :file:`example/example-python-types.cpp` contains a complete
1561 example that demonstrates passing native Python types in more detail. The
1562 file :file:`example/example-arg-keywords-and-defaults.cpp` discusses usage
1563 of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001564
1565Default arguments revisited
1566===========================
1567
1568The section on :ref:`default_args` previously discussed basic usage of default
1569arguments using pybind11. One noteworthy aspect of their implementation is that
1570default arguments are converted to Python objects right at declaration time.
1571Consider the following example:
1572
1573.. code-block:: cpp
1574
1575 py::class_<MyClass>("MyClass")
1576 .def("myFunction", py::arg("arg") = SomeType(123));
1577
1578In this case, pybind11 must already be set up to deal with values of the type
1579``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1580exception will be thrown.
1581
1582Another aspect worth highlighting is that the "preview" of the default argument
1583in the function signature is generated using the object's ``__repr__`` method.
1584If not available, the signature may not be very helpful, e.g.:
1585
Wenzel Jakob99279f72016-06-03 11:19:29 +02001586.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001587
1588 FUNCTIONS
1589 ...
1590 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001591 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001592 ...
1593
1594The first way of addressing this is by defining ``SomeType.__repr__``.
1595Alternatively, it is possible to specify the human-readable preview of the
1596default argument manually using the ``arg_t`` notation:
1597
1598.. code-block:: cpp
1599
1600 py::class_<MyClass>("MyClass")
1601 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1602
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001603Sometimes it may be necessary to pass a null pointer value as a default
1604argument. In this case, remember to cast it to the underlying type in question,
1605like so:
1606
1607.. code-block:: cpp
1608
1609 py::class_<MyClass>("MyClass")
1610 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1611
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001612Binding functions that accept arbitrary numbers of arguments and keywords arguments
1613===================================================================================
1614
1615Python provides a useful mechanism to define functions that accept arbitrary
1616numbers of arguments and keyword arguments:
1617
1618.. code-block:: cpp
1619
1620 def generic(*args, **kwargs):
1621 # .. do something with args and kwargs
1622
1623Such functions can also be created using pybind11:
1624
1625.. code-block:: cpp
1626
1627 void generic(py::args args, py::kwargs kwargs) {
1628 /// .. do something with args
1629 if (kwargs)
1630 /// .. do something with kwargs
1631 }
1632
1633 /// Binding code
1634 m.def("generic", &generic);
1635
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001636(See ``example/example-arg-keywords-and-defaults.cpp``). The class ``py::args``
1637derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note
1638that the ``kwargs`` argument is invalid if no keyword arguments were actually
1639provided. Please refer to the other examples for details on how to iterate
1640over these, and on how to cast their entries into C++ objects.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001641
Wenzel Jakob3764e282016-08-01 23:34:48 +02001642.. warning::
1643
1644 Unlike Python, pybind11 does not allow combining normal parameters with the
1645 ``args`` / ``kwargs`` special parameters.
1646
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001647Partitioning code over multiple extension modules
1648=================================================
1649
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001650It's straightforward to split binding code over multiple extension modules,
1651while referencing types that are declared elsewhere. Everything "just" works
1652without any special precautions. One exception to this rule occurs when
1653extending a type declared in another extension module. Recall the basic example
1654from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001655
1656.. code-block:: cpp
1657
1658 py::class_<Pet> pet(m, "Pet");
1659 pet.def(py::init<const std::string &>())
1660 .def_readwrite("name", &Pet::name);
1661
1662 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1663 .def(py::init<const std::string &>())
1664 .def("bark", &Dog::bark);
1665
1666Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1667whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1668course that the variable ``pet`` is not available anymore though it is needed
1669to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1670However, it can be acquired as follows:
1671
1672.. code-block:: cpp
1673
1674 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1675
1676 py::class_<Dog>(m, "Dog", pet)
1677 .def(py::init<const std::string &>())
1678 .def("bark", &Dog::bark);
1679
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001680Alternatively, we can rely on the ``base`` tag, which performs an automated
1681lookup of the corresponding Python type. However, this also requires invoking
1682the ``import`` function once to ensure that the pybind11 binding code of the
1683module ``basic`` has been executed.
1684
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001685.. code-block:: cpp
1686
1687 py::module::import("basic");
1688
1689 py::class_<Dog>(m, "Dog", py::base<Pet>())
1690 .def(py::init<const std::string &>())
1691 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001692
Wenzel Jakob978e3762016-04-07 18:00:41 +02001693Naturally, both methods will fail when there are cyclic dependencies.
1694
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001695Note that compiling code which has its default symbol visibility set to
1696*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1697ability to access types defined in another extension module. Workarounds
1698include changing the global symbol visibility (not recommended, because it will
1699lead unnecessarily large binaries) or manually exporting types that are
1700accessed by multiple extension modules:
1701
1702.. code-block:: cpp
1703
1704 #ifdef _WIN32
1705 # define EXPORT_TYPE __declspec(dllexport)
1706 #else
1707 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1708 #endif
1709
1710 class EXPORT_TYPE Dog : public Animal {
1711 ...
1712 };
1713
1714
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001715Pickling support
1716================
1717
1718Python's ``pickle`` module provides a powerful facility to serialize and
1719de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001720unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001721Suppose the class in question has the following signature:
1722
1723.. code-block:: cpp
1724
1725 class Pickleable {
1726 public:
1727 Pickleable(const std::string &value) : m_value(value) { }
1728 const std::string &value() const { return m_value; }
1729
1730 void setExtra(int extra) { m_extra = extra; }
1731 int extra() const { return m_extra; }
1732 private:
1733 std::string m_value;
1734 int m_extra = 0;
1735 };
1736
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001737The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001738looks as follows:
1739
1740.. code-block:: cpp
1741
1742 py::class_<Pickleable>(m, "Pickleable")
1743 .def(py::init<std::string>())
1744 .def("value", &Pickleable::value)
1745 .def("extra", &Pickleable::extra)
1746 .def("setExtra", &Pickleable::setExtra)
1747 .def("__getstate__", [](const Pickleable &p) {
1748 /* Return a tuple that fully encodes the state of the object */
1749 return py::make_tuple(p.value(), p.extra());
1750 })
1751 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1752 if (t.size() != 2)
1753 throw std::runtime_error("Invalid state!");
1754
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001755 /* Invoke the in-place constructor. Note that this is needed even
1756 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001757 new (&p) Pickleable(t[0].cast<std::string>());
1758
1759 /* Assign any additional state */
1760 p.setExtra(t[1].cast<int>());
1761 });
1762
1763An instance can now be pickled as follows:
1764
1765.. code-block:: python
1766
1767 try:
1768 import cPickle as pickle # Use cPickle on Python 2.7
1769 except ImportError:
1770 import pickle
1771
1772 p = Pickleable("test_value")
1773 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001774 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001775
Wenzel Jakob81e09752016-04-30 23:13:03 +02001776Note that only the cPickle module is supported on Python 2.7. The second
1777argument to ``dumps`` is also crucial: it selects the pickle protocol version
17782, since the older version 1 is not supported. Newer versions are also fine—for
1779instance, specify ``-1`` to always use the latest available version. Beware:
1780failure to follow these instructions will cause important pybind11 memory
1781allocation routines to be skipped during unpickling, which will likely lead to
1782memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001783
1784.. seealso::
1785
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001786 The file :file:`example/example-pickling.cpp` contains a complete example
1787 that demonstrates how to pickle and unpickle types using pybind11 in more
1788 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001789
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001790.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001791
1792Generating documentation using Sphinx
1793=====================================
1794
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001795Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001796strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001797documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001798simple example repository which uses this approach.
1799
1800There are two potential gotchas when using this approach: first, make sure that
1801the resulting strings do not contain any :kbd:`TAB` characters, which break the
1802docstring parsing routines. You may want to use C++11 raw string literals,
1803which are convenient for multi-line comments. Conveniently, any excess
1804indentation will be automatically be removed by Sphinx. However, for this to
1805work, it is important that all lines are indented consistently, i.e.:
1806
1807.. code-block:: cpp
1808
1809 // ok
1810 m.def("foo", &foo, R"mydelimiter(
1811 The foo function
1812
1813 Parameters
1814 ----------
1815 )mydelimiter");
1816
1817 // *not ok*
1818 m.def("foo", &foo, R"mydelimiter(The foo function
1819
1820 Parameters
1821 ----------
1822 )mydelimiter");
1823
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001824.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001825.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001826
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001827Evaluating Python expressions from strings and files
1828====================================================
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001829
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001830pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
1831Python expressions and statements. The following example illustrates how they
1832can be used.
1833
1834Both functions accept a template parameter that describes how the argument
1835should be interpreted. Possible choices include ``eval_expr`` (isolated
1836expression), ``eval_single_statement`` (a single statement, return value is
1837always ``none``), and ``eval_statements`` (sequence of statements, return value
1838is always ``none``).
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001839
1840.. code-block:: cpp
1841
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001842 // At beginning of file
1843 #include <pybind11/eval.h>
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001844
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001845 ...
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001846
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001847 // Evaluate in scope of main module
1848 py::object scope = py::module::import("__main__").attr("__dict__");
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001849
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001850 // Evaluate an isolated expression
1851 int result = py::eval("my_variable + 10", scope).cast<int>();
1852
1853 // Evaluate a sequence of statements
1854 py::eval<py::eval_statements>(
1855 "print('Hello')\n"
1856 "print('world!');",
1857 scope);
1858
1859 // Evaluate the statements in an separate Python file on disk
1860 py::eval_file("script.py", scope);