blob: 2df69acc7bff5ab301185b77199499570fa4f589 [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00006//
7//===----------------------------------------------------------------------===//
8//
9// The LoopPredication pass tries to convert loop variant range checks to loop
10// invariant by widening checks across loop iterations. For example, it will
11// convert
12//
13// for (i = 0; i < n; i++) {
14// guard(i < len);
15// ...
16// }
17//
18// to
19//
20// for (i = 0; i < n; i++) {
21// guard(n - 1 < len);
22// ...
23// }
24//
25// After this transformation the condition of the guard is loop invariant, so
26// loop-unswitch can later unswitch the loop by this condition which basically
27// predicates the loop by the widened condition:
28//
29// if (n - 1 < len)
30// for (i = 0; i < n; i++) {
31// ...
32// }
33// else
34// deoptimize
35//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000036// It's tempting to rely on SCEV here, but it has proven to be problematic.
37// Generally the facts SCEV provides about the increment step of add
38// recurrences are true if the backedge of the loop is taken, which implicitly
39// assumes that the guard doesn't fail. Using these facts to optimize the
40// guard results in a circular logic where the guard is optimized under the
41// assumption that it never fails.
42//
43// For example, in the loop below the induction variable will be marked as nuw
44// basing on the guard. Basing on nuw the guard predicate will be considered
45// monotonic. Given a monotonic condition it's tempting to replace the induction
46// variable in the condition with its value on the last iteration. But this
47// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48//
49// for (int i = b; i != e; i++)
50// guard(i u< len)
51//
52// One of the ways to reason about this problem is to use an inductive proof
53// approach. Given the loop:
54//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000055// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000056// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000057// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000058// I.INC = I + Step
59// guard(G(I));
Artur Pilipenko8aadc642017-10-27 14:46:17 +000060// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000061// }
62//
63// where B(x) and G(x) are predicates that map integers to booleans, we want a
64// loop invariant expression M such the following program has the same semantics
65// as the above:
66//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000067// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000068// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000069// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000070// I.INC = I + Step
Artur Pilipenko8aadc642017-10-27 14:46:17 +000071// guard(G(0) && M);
72// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000073// }
74//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000075// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
Fangrui Songf78650a2018-07-30 19:41:25 +000076//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000077// Informal proof that the transformation above is correct:
78//
79// By the definition of guards we can rewrite the guard condition to:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000080// G(I) && G(0) && M
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000081//
82// Let's prove that for each iteration of the loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000083// G(0) && M => G(I)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000084// And the condition above can be simplified to G(Start) && M.
Fangrui Songf78650a2018-07-30 19:41:25 +000085//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000086// Induction base.
Artur Pilipenko8aadc642017-10-27 14:46:17 +000087// G(0) && M => G(0)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000088//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000089// Induction step. Assuming G(0) && M => G(I) on the subsequent
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000090// iteration:
91//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000092// B(I) is true because it's the backedge condition.
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000093// G(I) is true because the backedge is guarded by this condition.
94//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000095// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000096//
97// Note that we can use anything stronger than M, i.e. any condition which
98// implies M.
99//
Anna Thomas7b360432017-12-04 15:11:48 +0000100// When S = 1 (i.e. forward iterating loop), the transformation is supported
101// when:
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000102// * The loop has a single latch with the condition of the form:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000103// B(X) = latchStart + X <pred> latchLimit,
104// where <pred> is u<, u<=, s<, or s<=.
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000105// * The guard condition is of the form
106// G(X) = guardStart + X u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000107//
Anna Thomas7b360432017-12-04 15:11:48 +0000108// For the ult latch comparison case M is:
109// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110// guardStart + X + 1 u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000111//
Anna Thomas7b360432017-12-04 15:11:48 +0000112// The only way the antecedent can be true and the consequent can be false is
113// if
114// X == guardLimit - 1 - guardStart
115// (and guardLimit is non-zero, but we won't use this latter fact).
116// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117// latchStart + guardLimit - 1 - guardStart u< latchLimit
118// and its negation is
119// latchStart + guardLimit - 1 - guardStart u>= latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000120//
Anna Thomas7b360432017-12-04 15:11:48 +0000121// In other words, if
122// latchLimit u<= latchStart + guardLimit - 1 - guardStart
123// then:
124// (the ranges below are written in ConstantRange notation, where [A, B) is the
125// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000126//
Anna Thomas7b360432017-12-04 15:11:48 +0000127// forall X . guardStart + X u< guardLimit &&
128// latchStart + X u< latchLimit =>
129// guardStart + X + 1 u< guardLimit
130// == forall X . guardStart + X u< guardLimit &&
131// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132// guardStart + X + 1 u< guardLimit
133// == forall X . (guardStart + X) in [0, guardLimit) &&
134// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135// (guardStart + X + 1) in [0, guardLimit)
136// == forall X . X in [-guardStart, guardLimit - guardStart) &&
137// X in [-latchStart, guardLimit - 1 - guardStart) =>
138// X in [-guardStart - 1, guardLimit - guardStart - 1)
139// == true
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000140//
Anna Thomas7b360432017-12-04 15:11:48 +0000141// So the widened condition is:
142// guardStart u< guardLimit &&
143// latchStart + guardLimit - 1 - guardStart u>= latchLimit
144// Similarly for ule condition the widened condition is:
145// guardStart u< guardLimit &&
146// latchStart + guardLimit - 1 - guardStart u> latchLimit
147// For slt condition the widened condition is:
148// guardStart u< guardLimit &&
149// latchStart + guardLimit - 1 - guardStart s>= latchLimit
150// For sle condition the widened condition is:
151// guardStart u< guardLimit &&
152// latchStart + guardLimit - 1 - guardStart s> latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000153//
Anna Thomas7b360432017-12-04 15:11:48 +0000154// When S = -1 (i.e. reverse iterating loop), the transformation is supported
155// when:
156// * The loop has a single latch with the condition of the form:
Serguei Katkovc8016e72018-02-08 10:34:08 +0000157// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
Anna Thomas7b360432017-12-04 15:11:48 +0000158// * The guard condition is of the form
159// G(X) = X - 1 u< guardLimit
160//
161// For the ugt latch comparison case M is:
162// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163//
164// The only way the antecedent can be true and the consequent can be false is if
165// X == 1.
166// If X == 1 then the second half of the antecedent is
167// 1 u> latchLimit, and its negation is latchLimit u>= 1.
168//
169// So the widened condition is:
170// guardStart u< guardLimit && latchLimit u>= 1.
171// Similarly for sgt condition the widened condition is:
172// guardStart u< guardLimit && latchLimit s>= 1.
Serguei Katkovc8016e72018-02-08 10:34:08 +0000173// For uge condition the widened condition is:
174// guardStart u< guardLimit && latchLimit u> 1.
175// For sge condition the widened condition is:
176// guardStart u< guardLimit && latchLimit s> 1.
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000177//===----------------------------------------------------------------------===//
178
179#include "llvm/Transforms/Scalar/LoopPredication.h"
Fedor Sergeevc297e842018-10-17 09:02:54 +0000180#include "llvm/ADT/Statistic.h"
Philip Reames92a71772019-04-18 16:33:17 +0000181#include "llvm/Analysis/AliasAnalysis.h"
Anna Thomas9b1176b2018-03-22 16:03:59 +0000182#include "llvm/Analysis/BranchProbabilityInfo.h"
Max Kazantsev28298e92018-12-26 08:22:25 +0000183#include "llvm/Analysis/GuardUtils.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000184#include "llvm/Analysis/LoopInfo.h"
185#include "llvm/Analysis/LoopPass.h"
186#include "llvm/Analysis/ScalarEvolution.h"
187#include "llvm/Analysis/ScalarEvolutionExpander.h"
188#include "llvm/Analysis/ScalarEvolutionExpressions.h"
189#include "llvm/IR/Function.h"
190#include "llvm/IR/GlobalValue.h"
191#include "llvm/IR/IntrinsicInst.h"
192#include "llvm/IR/Module.h"
193#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000194#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000195#include "llvm/Support/Debug.h"
196#include "llvm/Transforms/Scalar.h"
Philip Reamesd109e2a2019-04-01 16:05:15 +0000197#include "llvm/Transforms/Utils/Local.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000198#include "llvm/Transforms/Utils/LoopUtils.h"
199
200#define DEBUG_TYPE "loop-predication"
201
Fedor Sergeevc297e842018-10-17 09:02:54 +0000202STATISTIC(TotalConsidered, "Number of guards considered");
203STATISTIC(TotalWidened, "Number of checks widened");
204
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000205using namespace llvm;
206
Anna Thomas1d02b132017-11-02 21:21:02 +0000207static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
208 cl::Hidden, cl::init(true));
209
Anna Thomas7b360432017-12-04 15:11:48 +0000210static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
211 cl::Hidden, cl::init(true));
Anna Thomas9b1176b2018-03-22 16:03:59 +0000212
213static cl::opt<bool>
214 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
215 cl::Hidden, cl::init(false));
216
217// This is the scale factor for the latch probability. We use this during
218// profitability analysis to find other exiting blocks that have a much higher
219// probability of exiting the loop instead of loop exiting via latch.
220// This value should be greater than 1 for a sane profitability check.
221static cl::opt<float> LatchExitProbabilityScale(
222 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
223 cl::desc("scale factor for the latch probability. Value should be greater "
224 "than 1. Lower values are ignored"));
225
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000226static cl::opt<bool> PredicateWidenableBranchGuards(
227 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
228 cl::desc("Whether or not we should predicate guards "
229 "expressed as widenable branches to deoptimize blocks"),
230 cl::init(true));
231
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000232namespace {
Philip Reames099eca82019-06-01 00:31:58 +0000233/// Represents an induction variable check:
234/// icmp Pred, <induction variable>, <loop invariant limit>
235struct LoopICmp {
236 ICmpInst::Predicate Pred;
237 const SCEVAddRecExpr *IV;
238 const SCEV *Limit;
239 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
240 const SCEV *Limit)
241 : Pred(Pred), IV(IV), Limit(Limit) {}
242 LoopICmp() {}
243 void dump() {
244 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
245 << ", Limit = " << *Limit << "\n";
246 }
247};
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000248
Philip Reames099eca82019-06-01 00:31:58 +0000249class LoopPredication {
Philip Reames92a71772019-04-18 16:33:17 +0000250 AliasAnalysis *AA;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000251 ScalarEvolution *SE;
Anna Thomas9b1176b2018-03-22 16:03:59 +0000252 BranchProbabilityInfo *BPI;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000253
254 Loop *L;
255 const DataLayout *DL;
256 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000257 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000258
Anna Thomas68797212017-11-03 14:25:39 +0000259 bool isSupportedStep(const SCEV* Step);
Philip Reames19afdf72019-06-01 03:09:28 +0000260 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000261 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000262
Philip Reamesfbe64a22019-04-15 15:53:25 +0000263 /// Return an insertion point suitable for inserting a safe to speculate
264 /// instruction whose only user will be 'User' which has operands 'Ops'. A
265 /// trivial result would be the at the User itself, but we try to return a
266 /// loop invariant location if possible.
267 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
Philip Reamese46d77d2019-04-15 18:15:08 +0000268 /// Same as above, *except* that this uses the SCEV definition of invariant
269 /// which is that an expression *can be made* invariant via SCEVExpander.
270 /// Thus, this version is only suitable for finding an insert point to be be
271 /// passed to SCEVExpander!
272 Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
Philip Reamesfbe64a22019-04-15 15:53:25 +0000273
Philip Reames92a71772019-04-18 16:33:17 +0000274 /// Return true if the value is known to produce a single fixed value across
275 /// all iterations on which it executes. Note that this does not imply
276 /// speculation safety. That must be established seperately.
277 bool isLoopInvariantValue(const SCEV* S);
278
Philip Reamese46d77d2019-04-15 18:15:08 +0000279 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
Philip Reames3d4e1082019-03-29 23:06:57 +0000280 ICmpInst::Predicate Pred, const SCEV *LHS,
281 const SCEV *RHS);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000282
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000283 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000284 Instruction *Guard);
Anna Thomas68797212017-11-03 14:25:39 +0000285 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
286 LoopICmp RangeCheck,
287 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000288 Instruction *Guard);
Anna Thomas7b360432017-12-04 15:11:48 +0000289 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
290 LoopICmp RangeCheck,
291 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000292 Instruction *Guard);
Max Kazantsevca450872019-01-22 10:13:36 +0000293 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
Philip Reamese46d77d2019-04-15 18:15:08 +0000294 SCEVExpander &Expander, Instruction *Guard);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000295 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000296 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
Anna Thomas9b1176b2018-03-22 16:03:59 +0000297 // If the loop always exits through another block in the loop, we should not
298 // predicate based on the latch check. For example, the latch check can be a
299 // very coarse grained check and there can be more fine grained exit checks
300 // within the loop. We identify such unprofitable loops through BPI.
301 bool isLoopProfitableToPredicate();
302
Anna Thomas1d02b132017-11-02 21:21:02 +0000303 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
304 // so.
305 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
Serguei Katkovebc90312018-02-07 06:53:37 +0000306
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000307public:
Philip Reames92a71772019-04-18 16:33:17 +0000308 LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE,
309 BranchProbabilityInfo *BPI)
310 : AA(AA), SE(SE), BPI(BPI){};
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000311 bool runOnLoop(Loop *L);
312};
313
314class LoopPredicationLegacyPass : public LoopPass {
315public:
316 static char ID;
317 LoopPredicationLegacyPass() : LoopPass(ID) {
318 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
319 }
320
321 void getAnalysisUsage(AnalysisUsage &AU) const override {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000322 AU.addRequired<BranchProbabilityInfoWrapperPass>();
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000323 getLoopAnalysisUsage(AU);
324 }
325
326 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
327 if (skipLoop(L))
328 return false;
329 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Anna Thomas9b1176b2018-03-22 16:03:59 +0000330 BranchProbabilityInfo &BPI =
331 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
Philip Reames92a71772019-04-18 16:33:17 +0000332 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
333 LoopPredication LP(AA, SE, &BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000334 return LP.runOnLoop(L);
335 }
336};
337
338char LoopPredicationLegacyPass::ID = 0;
339} // end namespace llvm
340
341INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
342 "Loop predication", false, false)
Anna Thomas9b1176b2018-03-22 16:03:59 +0000343INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000344INITIALIZE_PASS_DEPENDENCY(LoopPass)
345INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
346 "Loop predication", false, false)
347
348Pass *llvm::createLoopPredicationPass() {
349 return new LoopPredicationLegacyPass();
350}
351
352PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
353 LoopStandardAnalysisResults &AR,
354 LPMUpdater &U) {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000355 const auto &FAM =
356 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
357 Function *F = L.getHeader()->getParent();
358 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
Philip Reames92a71772019-04-18 16:33:17 +0000359 LoopPredication LP(&AR.AA, &AR.SE, BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000360 if (!LP.runOnLoop(&L))
361 return PreservedAnalyses::all();
362
363 return getLoopPassPreservedAnalyses();
364}
365
Philip Reames099eca82019-06-01 00:31:58 +0000366Optional<LoopICmp>
Philip Reames19afdf72019-06-01 03:09:28 +0000367LoopPredication::parseLoopICmp(ICmpInst *ICI) {
368 auto Pred = ICI->getPredicate();
369 auto *LHS = ICI->getOperand(0);
370 auto *RHS = ICI->getOperand(1);
371
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000372 const SCEV *LHSS = SE->getSCEV(LHS);
373 if (isa<SCEVCouldNotCompute>(LHSS))
374 return None;
375 const SCEV *RHSS = SE->getSCEV(RHS);
376 if (isa<SCEVCouldNotCompute>(RHSS))
377 return None;
378
379 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
380 if (SE->isLoopInvariant(LHSS, L)) {
381 std::swap(LHS, RHS);
382 std::swap(LHSS, RHSS);
383 Pred = ICmpInst::getSwappedPredicate(Pred);
384 }
385
386 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
387 if (!AR || AR->getLoop() != L)
388 return None;
389
390 return LoopICmp(Pred, AR, RHSS);
391}
392
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000393Value *LoopPredication::expandCheck(SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000394 Instruction *Guard,
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000395 ICmpInst::Predicate Pred, const SCEV *LHS,
Philip Reames3d4e1082019-03-29 23:06:57 +0000396 const SCEV *RHS) {
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000397 Type *Ty = LHS->getType();
398 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000399
Philip Reamese46d77d2019-04-15 18:15:08 +0000400 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
401 IRBuilder<> Builder(Guard);
402 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
403 return Builder.getTrue();
404 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
405 LHS, RHS))
406 return Builder.getFalse();
407 }
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000408
Philip Reamese46d77d2019-04-15 18:15:08 +0000409 Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
410 Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
411 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000412 return Builder.CreateICmp(Pred, LHSV, RHSV);
413}
414
Philip Reames0912b062019-06-03 16:17:14 +0000415
416// Returns true if its safe to truncate the IV to RangeCheckType.
417// When the IV type is wider than the range operand type, we can still do loop
418// predication, by generating SCEVs for the range and latch that are of the
419// same type. We achieve this by generating a SCEV truncate expression for the
420// latch IV. This is done iff truncation of the IV is a safe operation,
421// without loss of information.
422// Another way to achieve this is by generating a wider type SCEV for the
423// range check operand, however, this needs a more involved check that
424// operands do not overflow. This can lead to loss of information when the
425// range operand is of the form: add i32 %offset, %iv. We need to prove that
426// sext(x + y) is same as sext(x) + sext(y).
427// This function returns true if we can safely represent the IV type in
428// the RangeCheckType without loss of information.
429bool isSafeToTruncateWideIVType(const DataLayout &DL, ScalarEvolution &SE,
430 const LoopICmp LatchCheck,
431 Type *RangeCheckType) {
432 if (!EnableIVTruncation)
433 return false;
434 assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) >
435 DL.getTypeSizeInBits(RangeCheckType) &&
436 "Expected latch check IV type to be larger than range check operand "
437 "type!");
438 // The start and end values of the IV should be known. This is to guarantee
439 // that truncating the wide type will not lose information.
440 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
441 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
442 if (!Limit || !Start)
443 return false;
444 // This check makes sure that the IV does not change sign during loop
445 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
446 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
447 // IV wraps around, and the truncation of the IV would lose the range of
448 // iterations between 2^32 and 2^64.
449 bool Increasing;
450 if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
451 return false;
452 // The active bits should be less than the bits in the RangeCheckType. This
453 // guarantees that truncating the latch check to RangeCheckType is a safe
454 // operation.
455 auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType);
456 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
457 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
458}
459
460
Philip Reames099eca82019-06-01 00:31:58 +0000461Optional<LoopICmp>
Anna Thomas1d02b132017-11-02 21:21:02 +0000462LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
463
464 auto *LatchType = LatchCheck.IV->getType();
465 if (RangeCheckType == LatchType)
466 return LatchCheck;
467 // For now, bail out if latch type is narrower than range type.
468 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
469 return None;
Philip Reames0912b062019-06-03 16:17:14 +0000470 if (!isSafeToTruncateWideIVType(*DL, *SE, LatchCheck, RangeCheckType))
Anna Thomas1d02b132017-11-02 21:21:02 +0000471 return None;
472 // We can now safely identify the truncated version of the IV and limit for
473 // RangeCheckType.
474 LoopICmp NewLatchCheck;
475 NewLatchCheck.Pred = LatchCheck.Pred;
476 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
477 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
478 if (!NewLatchCheck.IV)
479 return None;
480 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000481 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
482 << "can be represented as range check type:"
483 << *RangeCheckType << "\n");
484 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
485 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
Anna Thomas1d02b132017-11-02 21:21:02 +0000486 return NewLatchCheck;
487}
488
Anna Thomas68797212017-11-03 14:25:39 +0000489bool LoopPredication::isSupportedStep(const SCEV* Step) {
Anna Thomas7b360432017-12-04 15:11:48 +0000490 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
Anna Thomas68797212017-11-03 14:25:39 +0000491}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000492
Philip Reamesfbe64a22019-04-15 15:53:25 +0000493Instruction *LoopPredication::findInsertPt(Instruction *Use,
494 ArrayRef<Value*> Ops) {
495 for (Value *Op : Ops)
496 if (!L->isLoopInvariant(Op))
497 return Use;
498 return Preheader->getTerminator();
499}
500
Philip Reamese46d77d2019-04-15 18:15:08 +0000501Instruction *LoopPredication::findInsertPt(Instruction *Use,
502 ArrayRef<const SCEV*> Ops) {
Philip Reames92a71772019-04-18 16:33:17 +0000503 // Subtlety: SCEV considers things to be invariant if the value produced is
504 // the same across iterations. This is not the same as being able to
505 // evaluate outside the loop, which is what we actually need here.
Philip Reamese46d77d2019-04-15 18:15:08 +0000506 for (const SCEV *Op : Ops)
Philip Reames92a71772019-04-18 16:33:17 +0000507 if (!SE->isLoopInvariant(Op, L) ||
508 !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
Philip Reamese46d77d2019-04-15 18:15:08 +0000509 return Use;
510 return Preheader->getTerminator();
511}
512
Philip Reames92a71772019-04-18 16:33:17 +0000513bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
514 // Handling expressions which produce invariant results, but *haven't* yet
515 // been removed from the loop serves two important purposes.
516 // 1) Most importantly, it resolves a pass ordering cycle which would
517 // otherwise need us to iteration licm, loop-predication, and either
518 // loop-unswitch or loop-peeling to make progress on examples with lots of
519 // predicable range checks in a row. (Since, in the general case, we can't
520 // hoist the length checks until the dominating checks have been discharged
521 // as we can't prove doing so is safe.)
522 // 2) As a nice side effect, this exposes the value of peeling or unswitching
523 // much more obviously in the IR. Otherwise, the cost modeling for other
524 // transforms would end up needing to duplicate all of this logic to model a
525 // check which becomes predictable based on a modeled peel or unswitch.
526 //
527 // The cost of doing so in the worst case is an extra fill from the stack in
528 // the loop to materialize the loop invariant test value instead of checking
529 // against the original IV which is presumable in a register inside the loop.
530 // Such cases are presumably rare, and hint at missing oppurtunities for
531 // other passes.
Philip Reamese46d77d2019-04-15 18:15:08 +0000532
Philip Reames92a71772019-04-18 16:33:17 +0000533 if (SE->isLoopInvariant(S, L))
534 // Note: This the SCEV variant, so the original Value* may be within the
535 // loop even though SCEV has proven it is loop invariant.
536 return true;
537
538 // Handle a particular important case which SCEV doesn't yet know about which
539 // shows up in range checks on arrays with immutable lengths.
540 // TODO: This should be sunk inside SCEV.
541 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
542 if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
Philip Reamesadf288c2019-04-18 17:01:19 +0000543 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
Philip Reames92a71772019-04-18 16:33:17 +0000544 if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
545 LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
546 return true;
547 return false;
Anna Thomas68797212017-11-03 14:25:39 +0000548}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000549
Anna Thomas68797212017-11-03 14:25:39 +0000550Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
Philip Reames099eca82019-06-01 00:31:58 +0000551 LoopICmp LatchCheck, LoopICmp RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000552 SCEVExpander &Expander, Instruction *Guard) {
Anna Thomas68797212017-11-03 14:25:39 +0000553 auto *Ty = RangeCheck.IV->getType();
554 // Generate the widened condition for the forward loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000555 // guardStart u< guardLimit &&
556 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000557 // where <pred> depends on the latch condition predicate. See the file
558 // header comment for the reasoning.
Anna Thomas68797212017-11-03 14:25:39 +0000559 // guardLimit - guardStart + latchStart - 1
560 const SCEV *GuardStart = RangeCheck.IV->getStart();
561 const SCEV *GuardLimit = RangeCheck.Limit;
562 const SCEV *LatchStart = LatchCheck.IV->getStart();
563 const SCEV *LatchLimit = LatchCheck.Limit;
Philip Reames92a71772019-04-18 16:33:17 +0000564 // Subtlety: We need all the values to be *invariant* across all iterations,
565 // but we only need to check expansion safety for those which *aren't*
566 // already guaranteed to dominate the guard.
567 if (!isLoopInvariantValue(GuardStart) ||
568 !isLoopInvariantValue(GuardLimit) ||
569 !isLoopInvariantValue(LatchStart) ||
570 !isLoopInvariantValue(LatchLimit)) {
571 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
572 return None;
573 }
574 if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
575 !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
576 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
577 return None;
578 }
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000579
580 // guardLimit - guardStart + latchStart - 1
581 const SCEV *RHS =
582 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
583 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000584 auto LimitCheckPred =
585 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000586
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000587 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
588 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
589 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
Philip Reames3d4e1082019-03-29 23:06:57 +0000590
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000591 auto *LimitCheck =
Philip Reamese46d77d2019-04-15 18:15:08 +0000592 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
593 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
Philip Reames3d4e1082019-03-29 23:06:57 +0000594 GuardStart, GuardLimit);
Philip Reamese46d77d2019-04-15 18:15:08 +0000595 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000596 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000597}
Anna Thomas7b360432017-12-04 15:11:48 +0000598
599Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
Philip Reames099eca82019-06-01 00:31:58 +0000600 LoopICmp LatchCheck, LoopICmp RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000601 SCEVExpander &Expander, Instruction *Guard) {
Anna Thomas7b360432017-12-04 15:11:48 +0000602 auto *Ty = RangeCheck.IV->getType();
603 const SCEV *GuardStart = RangeCheck.IV->getStart();
604 const SCEV *GuardLimit = RangeCheck.Limit;
Philip Reames92a71772019-04-18 16:33:17 +0000605 const SCEV *LatchStart = LatchCheck.IV->getStart();
Anna Thomas7b360432017-12-04 15:11:48 +0000606 const SCEV *LatchLimit = LatchCheck.Limit;
Philip Reames92a71772019-04-18 16:33:17 +0000607 // Subtlety: We need all the values to be *invariant* across all iterations,
608 // but we only need to check expansion safety for those which *aren't*
609 // already guaranteed to dominate the guard.
610 if (!isLoopInvariantValue(GuardStart) ||
611 !isLoopInvariantValue(GuardLimit) ||
612 !isLoopInvariantValue(LatchStart) ||
613 !isLoopInvariantValue(LatchLimit)) {
614 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
615 return None;
616 }
617 if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
618 !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000619 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000620 return None;
621 }
622 // The decrement of the latch check IV should be the same as the
623 // rangeCheckIV.
624 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
625 if (RangeCheck.IV != PostDecLatchCheckIV) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000626 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
627 << *PostDecLatchCheckIV
628 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000629 return None;
630 }
631
632 // Generate the widened condition for CountDownLoop:
633 // guardStart u< guardLimit &&
634 // latchLimit <pred> 1.
635 // See the header comment for reasoning of the checks.
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000636 auto LimitCheckPred =
637 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Philip Reamese46d77d2019-04-15 18:15:08 +0000638 auto *FirstIterationCheck = expandCheck(Expander, Guard,
639 ICmpInst::ICMP_ULT,
Philip Reames3d4e1082019-03-29 23:06:57 +0000640 GuardStart, GuardLimit);
Philip Reamese46d77d2019-04-15 18:15:08 +0000641 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
Philip Reames3d4e1082019-03-29 23:06:57 +0000642 SE->getOne(Ty));
Philip Reamese46d77d2019-04-15 18:15:08 +0000643 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
Anna Thomas7b360432017-12-04 15:11:48 +0000644 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
645}
646
Philip Reames099eca82019-06-01 00:31:58 +0000647static void normalizePredicate(ScalarEvolution *SE, Loop *L,
648 LoopICmp& RC) {
649 // LFTR canonicalizes checks to the ICMP_NE form instead of an ULT/SLT form.
650 // Normalize back to the ULT/SLT form for ease of handling.
651 if (RC.Pred == ICmpInst::ICMP_NE &&
652 RC.IV->getStepRecurrence(*SE)->isOne() &&
653 SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
654 RC.Pred = ICmpInst::ICMP_ULT;
655}
656
657
Anna Thomas68797212017-11-03 14:25:39 +0000658/// If ICI can be widened to a loop invariant condition emits the loop
659/// invariant condition in the loop preheader and return it, otherwise
660/// returns None.
661Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
662 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000663 Instruction *Guard) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000664 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
665 LLVM_DEBUG(ICI->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000666
667 // parseLoopStructure guarantees that the latch condition is:
668 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
669 // We are looking for the range checks of the form:
670 // i u< guardLimit
671 auto RangeCheck = parseLoopICmp(ICI);
672 if (!RangeCheck) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000673 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000674 return None;
675 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000676 LLVM_DEBUG(dbgs() << "Guard check:\n");
677 LLVM_DEBUG(RangeCheck->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000678 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000679 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
680 << RangeCheck->Pred << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000681 return None;
682 }
683 auto *RangeCheckIV = RangeCheck->IV;
684 if (!RangeCheckIV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000685 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000686 return None;
687 }
688 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
689 // We cannot just compare with latch IV step because the latch and range IVs
690 // may have different types.
691 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000692 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000693 return None;
694 }
695 auto *Ty = RangeCheckIV->getType();
696 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
697 if (!CurrLatchCheckOpt) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000698 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
699 "corresponding to range type: "
700 << *Ty << "\n");
Anna Thomas68797212017-11-03 14:25:39 +0000701 return None;
702 }
703
704 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
Anna Thomas7b360432017-12-04 15:11:48 +0000705 // At this point, the range and latch step should have the same type, but need
706 // not have the same value (we support both 1 and -1 steps).
707 assert(Step->getType() ==
708 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
709 "Range and latch steps should be of same type!");
710 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000711 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000712 return None;
713 }
Anna Thomas68797212017-11-03 14:25:39 +0000714
Anna Thomas7b360432017-12-04 15:11:48 +0000715 if (Step->isOne())
716 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000717 Expander, Guard);
Anna Thomas7b360432017-12-04 15:11:48 +0000718 else {
719 assert(Step->isAllOnesValue() && "Step should be -1!");
720 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000721 Expander, Guard);
Anna Thomas7b360432017-12-04 15:11:48 +0000722 }
Anna Thomas68797212017-11-03 14:25:39 +0000723}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000724
Max Kazantsevca450872019-01-22 10:13:36 +0000725unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
726 Value *Condition,
727 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000728 Instruction *Guard) {
Max Kazantsevca450872019-01-22 10:13:36 +0000729 unsigned NumWidened = 0;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000730 // The guard condition is expected to be in form of:
731 // cond1 && cond2 && cond3 ...
Hiroshi Inoue0909ca12018-01-26 08:15:29 +0000732 // Iterate over subconditions looking for icmp conditions which can be
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000733 // widened across loop iterations. Widening these conditions remember the
734 // resulting list of subconditions in Checks vector.
Max Kazantsevca450872019-01-22 10:13:36 +0000735 SmallVector<Value *, 4> Worklist(1, Condition);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000736 SmallPtrSet<Value *, 4> Visited;
Philip Reamesadb3ece2019-04-02 02:42:57 +0000737 Value *WideableCond = nullptr;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000738 do {
739 Value *Condition = Worklist.pop_back_val();
740 if (!Visited.insert(Condition).second)
741 continue;
742
743 Value *LHS, *RHS;
744 using namespace llvm::PatternMatch;
745 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
746 Worklist.push_back(LHS);
747 Worklist.push_back(RHS);
748 continue;
749 }
750
Philip Reamesadb3ece2019-04-02 02:42:57 +0000751 if (match(Condition,
752 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
753 // Pick any, we don't care which
754 WideableCond = Condition;
755 continue;
756 }
757
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000758 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
Philip Reames3d4e1082019-03-29 23:06:57 +0000759 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000760 Guard)) {
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000761 Checks.push_back(NewRangeCheck.getValue());
762 NumWidened++;
763 continue;
764 }
765 }
766
767 // Save the condition as is if we can't widen it
768 Checks.push_back(Condition);
Max Kazantsevca450872019-01-22 10:13:36 +0000769 } while (!Worklist.empty());
Philip Reamesadb3ece2019-04-02 02:42:57 +0000770 // At the moment, our matching logic for wideable conditions implicitly
771 // assumes we preserve the form: (br (and Cond, WC())). FIXME
772 // Note that if there were multiple calls to wideable condition in the
773 // traversal, we only need to keep one, and which one is arbitrary.
774 if (WideableCond)
775 Checks.push_back(WideableCond);
Max Kazantsevca450872019-01-22 10:13:36 +0000776 return NumWidened;
777}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000778
Max Kazantsevca450872019-01-22 10:13:36 +0000779bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
780 SCEVExpander &Expander) {
781 LLVM_DEBUG(dbgs() << "Processing guard:\n");
782 LLVM_DEBUG(Guard->dump());
783
784 TotalConsidered++;
785 SmallVector<Value *, 4> Checks;
Max Kazantsevca450872019-01-22 10:13:36 +0000786 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000787 Guard);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000788 if (NumWidened == 0)
789 return false;
790
Fedor Sergeevc297e842018-10-17 09:02:54 +0000791 TotalWidened += NumWidened;
792
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000793 // Emit the new guard condition
Philip Reamese46d77d2019-04-15 18:15:08 +0000794 IRBuilder<> Builder(findInsertPt(Guard, Checks));
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000795 Value *LastCheck = nullptr;
796 for (auto *Check : Checks)
797 if (!LastCheck)
798 LastCheck = Check;
799 else
800 LastCheck = Builder.CreateAnd(LastCheck, Check);
Philip Reamesd109e2a2019-04-01 16:05:15 +0000801 auto *OldCond = Guard->getOperand(0);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000802 Guard->setOperand(0, LastCheck);
Philip Reamesd109e2a2019-04-01 16:05:15 +0000803 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000804
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000805 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000806 return true;
807}
808
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000809bool LoopPredication::widenWidenableBranchGuardConditions(
Philip Reamesf6086782019-04-01 22:39:54 +0000810 BranchInst *BI, SCEVExpander &Expander) {
811 assert(isGuardAsWidenableBranch(BI) && "Must be!");
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000812 LLVM_DEBUG(dbgs() << "Processing guard:\n");
Philip Reamesf6086782019-04-01 22:39:54 +0000813 LLVM_DEBUG(BI->dump());
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000814
815 TotalConsidered++;
816 SmallVector<Value *, 4> Checks;
Philip Reamesadb3ece2019-04-02 02:42:57 +0000817 unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
Philip Reamese46d77d2019-04-15 18:15:08 +0000818 Expander, BI);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000819 if (NumWidened == 0)
820 return false;
821
822 TotalWidened += NumWidened;
823
824 // Emit the new guard condition
Philip Reamese46d77d2019-04-15 18:15:08 +0000825 IRBuilder<> Builder(findInsertPt(BI, Checks));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000826 Value *LastCheck = nullptr;
827 for (auto *Check : Checks)
828 if (!LastCheck)
829 LastCheck = Check;
830 else
831 LastCheck = Builder.CreateAnd(LastCheck, Check);
Philip Reamesadb3ece2019-04-02 02:42:57 +0000832 auto *OldCond = BI->getCondition();
833 BI->setCondition(LastCheck);
Philip Reamesf6086782019-04-01 22:39:54 +0000834 assert(isGuardAsWidenableBranch(BI) &&
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000835 "Stopped being a guard after transform?");
Philip Reamesd109e2a2019-04-01 16:05:15 +0000836 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000837
838 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
839 return true;
840}
841
Philip Reames099eca82019-06-01 00:31:58 +0000842Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000843 using namespace PatternMatch;
844
845 BasicBlock *LoopLatch = L->getLoopLatch();
846 if (!LoopLatch) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000847 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000848 return None;
849 }
850
Philip Reames19afdf72019-06-01 03:09:28 +0000851 auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
852 if (!BI) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000853 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000854 return None;
855 }
Philip Reames19afdf72019-06-01 03:09:28 +0000856 BasicBlock *TrueDest = BI->getSuccessor(0);
Richard Trieu4e875462019-06-01 03:32:20 +0000857 assert(
858 (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
859 "One of the latch's destinations must be the header");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000860
Philip Reames19afdf72019-06-01 03:09:28 +0000861 auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
862 if (!ICI || !BI->isConditional()) {
863 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
864 return None;
865 }
866 auto Result = parseLoopICmp(ICI);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000867 if (!Result) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000868 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000869 return None;
870 }
871
Philip Reames19afdf72019-06-01 03:09:28 +0000872 if (TrueDest != L->getHeader())
873 Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
874
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000875 // Check affine first, so if it's not we don't try to compute the step
876 // recurrence.
877 if (!Result->IV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000878 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000879 return None;
880 }
881
882 auto *Step = Result->IV->getStepRecurrence(*SE);
Anna Thomas68797212017-11-03 14:25:39 +0000883 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000884 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000885 return None;
886 }
887
Anna Thomas68797212017-11-03 14:25:39 +0000888 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
Anna Thomas7b360432017-12-04 15:11:48 +0000889 if (Step->isOne()) {
890 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
891 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
892 } else {
893 assert(Step->isAllOnesValue() && "Step should be -1!");
Serguei Katkovc8016e72018-02-08 10:34:08 +0000894 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
895 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
Anna Thomas7b360432017-12-04 15:11:48 +0000896 }
Anna Thomas68797212017-11-03 14:25:39 +0000897 };
898
Philip Reames099eca82019-06-01 00:31:58 +0000899 normalizePredicate(SE, L, *Result);
Anna Thomas68797212017-11-03 14:25:39 +0000900 if (IsUnsupportedPredicate(Step, Result->Pred)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000901 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
902 << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000903 return None;
904 }
Philip Reames19afdf72019-06-01 03:09:28 +0000905
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000906 return Result;
907}
908
Anna Thomas1d02b132017-11-02 21:21:02 +0000909
Anna Thomas9b1176b2018-03-22 16:03:59 +0000910bool LoopPredication::isLoopProfitableToPredicate() {
911 if (SkipProfitabilityChecks || !BPI)
912 return true;
913
914 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
915 L->getExitEdges(ExitEdges);
916 // If there is only one exiting edge in the loop, it is always profitable to
917 // predicate the loop.
918 if (ExitEdges.size() == 1)
919 return true;
920
921 // Calculate the exiting probabilities of all exiting edges from the loop,
922 // starting with the LatchExitProbability.
923 // Heuristic for profitability: If any of the exiting blocks' probability of
924 // exiting the loop is larger than exiting through the latch block, it's not
925 // profitable to predicate the loop.
926 auto *LatchBlock = L->getLoopLatch();
927 assert(LatchBlock && "Should have a single latch at this point!");
928 auto *LatchTerm = LatchBlock->getTerminator();
929 assert(LatchTerm->getNumSuccessors() == 2 &&
930 "expected to be an exiting block with 2 succs!");
931 unsigned LatchBrExitIdx =
932 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
933 BranchProbability LatchExitProbability =
934 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
935
936 // Protect against degenerate inputs provided by the user. Providing a value
937 // less than one, can invert the definition of profitable loop predication.
938 float ScaleFactor = LatchExitProbabilityScale;
939 if (ScaleFactor < 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000940 LLVM_DEBUG(
Anna Thomas9b1176b2018-03-22 16:03:59 +0000941 dbgs()
942 << "Ignored user setting for loop-predication-latch-probability-scale: "
943 << LatchExitProbabilityScale << "\n");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000944 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000945 ScaleFactor = 1.0;
946 }
947 const auto LatchProbabilityThreshold =
948 LatchExitProbability * ScaleFactor;
949
950 for (const auto &ExitEdge : ExitEdges) {
951 BranchProbability ExitingBlockProbability =
952 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
953 // Some exiting edge has higher probability than the latch exiting edge.
954 // No longer profitable to predicate.
955 if (ExitingBlockProbability > LatchProbabilityThreshold)
956 return false;
957 }
958 // Using BPI, we have concluded that the most probable way to exit from the
959 // loop is through the latch (or there's no profile information and all
960 // exits are equally likely).
961 return true;
962}
963
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000964bool LoopPredication::runOnLoop(Loop *Loop) {
965 L = Loop;
966
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000967 LLVM_DEBUG(dbgs() << "Analyzing ");
968 LLVM_DEBUG(L->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000969
970 Module *M = L->getHeader()->getModule();
971
972 // There is nothing to do if the module doesn't use guards
973 auto *GuardDecl =
974 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000975 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
976 auto *WCDecl = M->getFunction(
977 Intrinsic::getName(Intrinsic::experimental_widenable_condition));
978 bool HasWidenableConditions =
979 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
980 if (!HasIntrinsicGuards && !HasWidenableConditions)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000981 return false;
982
983 DL = &M->getDataLayout();
984
985 Preheader = L->getLoopPreheader();
986 if (!Preheader)
987 return false;
988
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000989 auto LatchCheckOpt = parseLoopLatchICmp();
990 if (!LatchCheckOpt)
991 return false;
992 LatchCheck = *LatchCheckOpt;
993
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000994 LLVM_DEBUG(dbgs() << "Latch check:\n");
995 LLVM_DEBUG(LatchCheck.dump());
Anna Thomas68797212017-11-03 14:25:39 +0000996
Anna Thomas9b1176b2018-03-22 16:03:59 +0000997 if (!isLoopProfitableToPredicate()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000998 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000999 return false;
1000 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001001 // Collect all the guards into a vector and process later, so as not
1002 // to invalidate the instruction iterator.
1003 SmallVector<IntrinsicInst *, 4> Guards;
Max Kazantsevfeb475f2019-01-22 11:49:06 +00001004 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1005 for (const auto BB : L->blocks()) {
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001006 for (auto &I : *BB)
Max Kazantsev28298e92018-12-26 08:22:25 +00001007 if (isGuard(&I))
1008 Guards.push_back(cast<IntrinsicInst>(&I));
Max Kazantsevfeb475f2019-01-22 11:49:06 +00001009 if (PredicateWidenableBranchGuards &&
1010 isGuardAsWidenableBranch(BB->getTerminator()))
1011 GuardsAsWidenableBranches.push_back(
1012 cast<BranchInst>(BB->getTerminator()));
1013 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001014
Max Kazantsevfeb475f2019-01-22 11:49:06 +00001015 if (Guards.empty() && GuardsAsWidenableBranches.empty())
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +00001016 return false;
1017
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001018 SCEVExpander Expander(*SE, *DL, "loop-predication");
1019
1020 bool Changed = false;
1021 for (auto *Guard : Guards)
1022 Changed |= widenGuardConditions(Guard, Expander);
Max Kazantsevfeb475f2019-01-22 11:49:06 +00001023 for (auto *Guard : GuardsAsWidenableBranches)
1024 Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001025
1026 return Changed;
1027}