blob: 2a9cc29dec1815f0b900a3f07d0893758cf139fc [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
George Burgess IVe1100f52016-02-02 22:46:49 +00006//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00007//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00008//
9// This file implements the MemorySSA class.
10//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000011//===----------------------------------------------------------------------===//
12
Daniel Berlin554dcd82017-04-11 20:06:36 +000013#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000014#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000015#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000016#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000018#include "llvm/ADT/Hashing.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000021#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000023#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/iterator.h"
25#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000026#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/IteratedDominanceFrontier.h"
28#include "llvm/Analysis/MemoryLocation.h"
Nico Weber432a3882018-04-30 14:59:11 +000029#include "llvm/Config/llvm-config.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000030#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000031#include "llvm/IR/BasicBlock.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000032#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000033#include "llvm/IR/Function.h"
34#include "llvm/IR/Instruction.h"
35#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000036#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000037#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000038#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000039#include "llvm/IR/PassManager.h"
40#include "llvm/IR/Use.h"
41#include "llvm/Pass.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000046#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000047#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000048#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000049#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000050#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000051#include <cassert>
52#include <iterator>
53#include <memory>
54#include <utility>
55
56using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000057
58#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000059
Geoff Berryefb0dd12016-06-14 21:19:40 +000060INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000061 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000062INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
63INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000064INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
65 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000066
Chad Rosier232e29e2016-07-06 21:20:47 +000067INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
68 "Memory SSA Printer", false, false)
69INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
70INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
71 "Memory SSA Printer", false, false)
72
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000073static cl::opt<unsigned> MaxCheckLimit(
74 "memssa-check-limit", cl::Hidden, cl::init(100),
75 cl::desc("The maximum number of stores/phis MemorySSA"
76 "will consider trying to walk past (default = 100)"));
77
Alina Sbirleacc2e8cc2018-08-15 17:34:55 +000078// Always verify MemorySSA if expensive checking is enabled.
79#ifdef EXPENSIVE_CHECKS
80bool llvm::VerifyMemorySSA = true;
81#else
82bool llvm::VerifyMemorySSA = false;
83#endif
84static cl::opt<bool, true>
85 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
86 cl::Hidden, cl::desc("Enable verification of MemorySSA."));
Chad Rosier232e29e2016-07-06 21:20:47 +000087
George Burgess IVe1100f52016-02-02 22:46:49 +000088namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000089
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000090/// An assembly annotator class to print Memory SSA information in
George Burgess IVe1100f52016-02-02 22:46:49 +000091/// comments.
92class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
93 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000094
George Burgess IVe1100f52016-02-02 22:46:49 +000095 const MemorySSA *MSSA;
96
97public:
98 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
99
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000100 void emitBasicBlockStartAnnot(const BasicBlock *BB,
101 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000102 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
103 OS << "; " << *MA << "\n";
104 }
105
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000106 void emitInstructionAnnot(const Instruction *I,
107 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000108 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
109 OS << "; " << *MA << "\n";
110 }
111};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000112
113} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000114
George Burgess IV5f308972016-07-19 01:29:15 +0000115namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000116
Daniel Berlindff31de2016-08-02 21:57:52 +0000117/// Our current alias analysis API differentiates heavily between calls and
118/// non-calls, and functions called on one usually assert on the other.
119/// This class encapsulates the distinction to simplify other code that wants
120/// "Memory affecting instructions and related data" to use as a key.
121/// For example, this class is used as a densemap key in the use optimizer.
122class MemoryLocOrCall {
123public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000124 bool IsCall = false;
125
Daniel Berlindff31de2016-08-02 21:57:52 +0000126 MemoryLocOrCall(MemoryUseOrDef *MUD)
127 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000128 MemoryLocOrCall(const MemoryUseOrDef *MUD)
129 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000130
131 MemoryLocOrCall(Instruction *Inst) {
Chandler Carruth363ac682019-01-07 05:42:51 +0000132 if (auto *C = dyn_cast<CallBase>(Inst)) {
Daniel Berlindff31de2016-08-02 21:57:52 +0000133 IsCall = true;
Chandler Carruth363ac682019-01-07 05:42:51 +0000134 Call = C;
Daniel Berlindff31de2016-08-02 21:57:52 +0000135 } else {
136 IsCall = false;
137 // There is no such thing as a memorylocation for a fence inst, and it is
138 // unique in that regard.
139 if (!isa<FenceInst>(Inst))
140 Loc = MemoryLocation::get(Inst);
141 }
142 }
143
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000144 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000145
Chandler Carruth363ac682019-01-07 05:42:51 +0000146 const CallBase *getCall() const {
Daniel Berlindff31de2016-08-02 21:57:52 +0000147 assert(IsCall);
Chandler Carruth363ac682019-01-07 05:42:51 +0000148 return Call;
Daniel Berlindff31de2016-08-02 21:57:52 +0000149 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000150
Daniel Berlindff31de2016-08-02 21:57:52 +0000151 MemoryLocation getLoc() const {
152 assert(!IsCall);
153 return Loc;
154 }
155
156 bool operator==(const MemoryLocOrCall &Other) const {
157 if (IsCall != Other.IsCall)
158 return false;
159
George Burgess IV3588fd42018-03-29 00:54:39 +0000160 if (!IsCall)
161 return Loc == Other.Loc;
162
Chandler Carruth363ac682019-01-07 05:42:51 +0000163 if (Call->getCalledValue() != Other.Call->getCalledValue())
George Burgess IV3588fd42018-03-29 00:54:39 +0000164 return false;
165
Chandler Carruth363ac682019-01-07 05:42:51 +0000166 return Call->arg_size() == Other.Call->arg_size() &&
167 std::equal(Call->arg_begin(), Call->arg_end(),
168 Other.Call->arg_begin());
Daniel Berlindff31de2016-08-02 21:57:52 +0000169 }
170
171private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000172 union {
Chandler Carruth363ac682019-01-07 05:42:51 +0000173 const CallBase *Call;
Daniel Berlind602e042017-01-25 20:56:19 +0000174 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000175 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000176};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000177
178} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000179
180namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000181
Daniel Berlindff31de2016-08-02 21:57:52 +0000182template <> struct DenseMapInfo<MemoryLocOrCall> {
183 static inline MemoryLocOrCall getEmptyKey() {
184 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
185 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000186
Daniel Berlindff31de2016-08-02 21:57:52 +0000187 static inline MemoryLocOrCall getTombstoneKey() {
188 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
189 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000190
Daniel Berlindff31de2016-08-02 21:57:52 +0000191 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
George Burgess IV3588fd42018-03-29 00:54:39 +0000192 if (!MLOC.IsCall)
193 return hash_combine(
194 MLOC.IsCall,
195 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
196
197 hash_code hash =
198 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
Chandler Carruth363ac682019-01-07 05:42:51 +0000199 MLOC.getCall()->getCalledValue()));
George Burgess IV3588fd42018-03-29 00:54:39 +0000200
Chandler Carruth363ac682019-01-07 05:42:51 +0000201 for (const Value *Arg : MLOC.getCall()->args())
George Burgess IV3588fd42018-03-29 00:54:39 +0000202 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
203 return hash;
Daniel Berlindff31de2016-08-02 21:57:52 +0000204 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000205
Daniel Berlindff31de2016-08-02 21:57:52 +0000206 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
207 return LHS == RHS;
208 }
209};
Daniel Berlindf101192016-08-03 00:01:46 +0000210
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000211} // end namespace llvm
212
George Burgess IV82e355c2016-08-03 19:39:54 +0000213/// This does one-way checks to see if Use could theoretically be hoisted above
214/// MayClobber. This will not check the other way around.
215///
216/// This assumes that, for the purposes of MemorySSA, Use comes directly after
217/// MayClobber, with no potentially clobbering operations in between them.
218/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000219static bool areLoadsReorderable(const LoadInst *Use,
220 const LoadInst *MayClobber) {
George Burgess IV82e355c2016-08-03 19:39:54 +0000221 bool VolatileUse = Use->isVolatile();
222 bool VolatileClobber = MayClobber->isVolatile();
223 // Volatile operations may never be reordered with other volatile operations.
224 if (VolatileUse && VolatileClobber)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000225 return false;
226 // Otherwise, volatile doesn't matter here. From the language reference:
227 // 'optimizers may change the order of volatile operations relative to
228 // non-volatile operations.'"
George Burgess IV82e355c2016-08-03 19:39:54 +0000229
230 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
231 // is weaker, it can be moved above other loads. We just need to be sure that
232 // MayClobber isn't an acquire load, because loads can't be moved above
233 // acquire loads.
234 //
235 // Note that this explicitly *does* allow the free reordering of monotonic (or
236 // weaker) loads of the same address.
237 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
238 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
239 AtomicOrdering::Acquire);
Alina Sbirleaca741a82017-12-22 19:54:03 +0000240 return !(SeqCstUse || MayClobberIsAcquire);
George Burgess IV82e355c2016-08-03 19:39:54 +0000241}
242
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000243namespace {
244
245struct ClobberAlias {
246 bool IsClobber;
247 Optional<AliasResult> AR;
248};
249
250} // end anonymous namespace
251
252// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
253// ignored if IsClobber = false.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000254static ClobberAlias instructionClobbersQuery(const MemoryDef *MD,
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000255 const MemoryLocation &UseLoc,
256 const Instruction *UseInst,
257 AliasAnalysis &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000258 Instruction *DefInst = MD->getMemoryInst();
259 assert(DefInst && "Defining instruction not actually an instruction");
Chandler Carruth363ac682019-01-07 05:42:51 +0000260 const auto *UseCall = dyn_cast<CallBase>(UseInst);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000261 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000262
Daniel Berlindf101192016-08-03 00:01:46 +0000263 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
264 // These intrinsics will show up as affecting memory, but they are just
George Burgess IVff08c802018-08-10 05:14:43 +0000265 // markers, mostly.
266 //
267 // FIXME: We probably don't actually want MemorySSA to model these at all
268 // (including creating MemoryAccesses for them): we just end up inventing
269 // clobbers where they don't really exist at all. Please see D43269 for
270 // context.
Daniel Berlindf101192016-08-03 00:01:46 +0000271 switch (II->getIntrinsicID()) {
272 case Intrinsic::lifetime_start:
Chandler Carruth363ac682019-01-07 05:42:51 +0000273 if (UseCall)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000274 return {false, NoAlias};
275 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
George Burgess IVff08c802018-08-10 05:14:43 +0000276 return {AR != NoAlias, AR};
Daniel Berlindf101192016-08-03 00:01:46 +0000277 case Intrinsic::lifetime_end:
278 case Intrinsic::invariant_start:
279 case Intrinsic::invariant_end:
280 case Intrinsic::assume:
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000281 return {false, NoAlias};
Daniel Berlindf101192016-08-03 00:01:46 +0000282 default:
283 break;
284 }
285 }
286
Chandler Carruth363ac682019-01-07 05:42:51 +0000287 if (UseCall) {
288 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000289 AR = isMustSet(I) ? MustAlias : MayAlias;
290 return {isModOrRefSet(I), AR};
Hans Wennborg70e22d12017-11-21 18:00:01 +0000291 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000292
Alina Sbirleaca741a82017-12-22 19:54:03 +0000293 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
294 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000295 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
George Burgess IV82e355c2016-08-03 19:39:54 +0000296
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000297 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
298 AR = isMustSet(I) ? MustAlias : MayAlias;
299 return {isModSet(I), AR};
Daniel Berlindff31de2016-08-02 21:57:52 +0000300}
301
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000302static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
303 const MemoryUseOrDef *MU,
304 const MemoryLocOrCall &UseMLOC,
305 AliasAnalysis &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000306 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
307 // to exist while MemoryLocOrCall is pushed through places.
308 if (UseMLOC.IsCall)
309 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
310 AA);
311 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
312 AA);
313}
314
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000315// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000316bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
317 AliasAnalysis &AA) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000318 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000319}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000320
321namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000322
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000323struct UpwardsMemoryQuery {
324 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000325 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000326 // The pointer location we started the query with. This will be empty if
327 // IsCall is true.
328 MemoryLocation StartingLoc;
329 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000330 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000331 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000332 const MemoryAccess *OriginalAccess = nullptr;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000333 Optional<AliasResult> AR = MayAlias;
Alina Sbirleaf7230202019-01-07 18:40:27 +0000334 bool SkipSelfAccess = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000335
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000336 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000337
338 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
Chandler Carruth363ac682019-01-07 05:42:51 +0000339 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000340 if (!IsCall)
341 StartingLoc = MemoryLocation::get(Inst);
342 }
343};
344
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000345} // end anonymous namespace
346
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000347static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
348 AliasAnalysis &AA) {
349 Instruction *Inst = MD->getMemoryInst();
350 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
351 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000352 case Intrinsic::lifetime_end:
353 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
354 default:
355 return false;
356 }
357 }
358 return false;
359}
360
361static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
362 const Instruction *I) {
363 // If the memory can't be changed, then loads of the memory can't be
364 // clobbered.
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000365 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
Hal Finkela9d67cf2017-04-09 12:57:50 +0000366 AA.pointsToConstantMemory(cast<LoadInst>(I)->
367 getPointerOperand()));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000368}
369
George Burgess IV5f308972016-07-19 01:29:15 +0000370/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
371/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
372///
373/// This is meant to be as simple and self-contained as possible. Because it
374/// uses no cache, etc., it can be relatively expensive.
375///
376/// \param Start The MemoryAccess that we want to walk from.
377/// \param ClobberAt A clobber for Start.
378/// \param StartLoc The MemoryLocation for Start.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000379/// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
George Burgess IV5f308972016-07-19 01:29:15 +0000380/// \param Query The UpwardsMemoryQuery we used for our search.
381/// \param AA The AliasAnalysis we used for our search.
Alina Sbirlea65f385d2018-09-07 23:51:41 +0000382/// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000383static void
384checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
George Burgess IV5f308972016-07-19 01:29:15 +0000385 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
Alina Sbirlea65f385d2018-09-07 23:51:41 +0000386 const UpwardsMemoryQuery &Query, AliasAnalysis &AA,
387 bool AllowImpreciseClobber = false) {
George Burgess IV5f308972016-07-19 01:29:15 +0000388 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
389
390 if (MSSA.isLiveOnEntryDef(Start)) {
391 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
392 "liveOnEntry must clobber itself");
393 return;
394 }
395
George Burgess IV5f308972016-07-19 01:29:15 +0000396 bool FoundClobber = false;
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000397 DenseSet<ConstMemoryAccessPair> VisitedPhis;
398 SmallVector<ConstMemoryAccessPair, 8> Worklist;
George Burgess IV5f308972016-07-19 01:29:15 +0000399 Worklist.emplace_back(Start, StartLoc);
400 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
401 // is found, complain.
402 while (!Worklist.empty()) {
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000403 auto MAP = Worklist.pop_back_val();
George Burgess IV5f308972016-07-19 01:29:15 +0000404 // All we care about is that nothing from Start to ClobberAt clobbers Start.
405 // We learn nothing from revisiting nodes.
406 if (!VisitedPhis.insert(MAP).second)
407 continue;
408
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000409 for (const auto *MA : def_chain(MAP.first)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000410 if (MA == ClobberAt) {
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000411 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000412 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
413 // since it won't let us short-circuit.
414 //
415 // Also, note that this can't be hoisted out of the `Worklist` loop,
416 // since MD may only act as a clobber for 1 of N MemoryLocations.
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000417 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
418 if (!FoundClobber) {
419 ClobberAlias CA =
420 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
421 if (CA.IsClobber) {
422 FoundClobber = true;
423 // Not used: CA.AR;
424 }
425 }
George Burgess IV5f308972016-07-19 01:29:15 +0000426 }
427 break;
428 }
429
430 // We should never hit liveOnEntry, unless it's the clobber.
431 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
432
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000433 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000434 // If Start is a Def, skip self.
435 if (MD == Start)
436 continue;
437
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000438 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
439 .IsClobber &&
George Burgess IV5f308972016-07-19 01:29:15 +0000440 "Found clobber before reaching ClobberAt!");
441 continue;
442 }
443
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000444 if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
Alina Sbirlea6edcc9e2018-08-29 23:20:29 +0000445 (void)MU;
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000446 assert (MU == Start &&
447 "Can only find use in def chain if Start is a use");
448 continue;
449 }
450
George Burgess IV5f308972016-07-19 01:29:15 +0000451 assert(isa<MemoryPhi>(MA));
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000452 Worklist.append(
453 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
454 upward_defs_end());
George Burgess IV5f308972016-07-19 01:29:15 +0000455 }
456 }
457
Alina Sbirlea65f385d2018-09-07 23:51:41 +0000458 // If the verify is done following an optimization, it's possible that
459 // ClobberAt was a conservative clobbering, that we can now infer is not a
460 // true clobbering access. Don't fail the verify if that's the case.
461 // We do have accesses that claim they're optimized, but could be optimized
462 // further. Updating all these can be expensive, so allow it for now (FIXME).
463 if (AllowImpreciseClobber)
464 return;
465
George Burgess IV5f308972016-07-19 01:29:15 +0000466 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
467 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
468 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
469 "ClobberAt never acted as a clobber");
470}
471
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000472namespace {
473
George Burgess IV5f308972016-07-19 01:29:15 +0000474/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
475/// in one class.
476class ClobberWalker {
477 /// Save a few bytes by using unsigned instead of size_t.
478 using ListIndex = unsigned;
479
480 /// Represents a span of contiguous MemoryDefs, potentially ending in a
481 /// MemoryPhi.
482 struct DefPath {
483 MemoryLocation Loc;
484 // Note that, because we always walk in reverse, Last will always dominate
485 // First. Also note that First and Last are inclusive.
486 MemoryAccess *First;
487 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000488 Optional<ListIndex> Previous;
489
490 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
491 Optional<ListIndex> Previous)
492 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
493
494 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
495 Optional<ListIndex> Previous)
496 : DefPath(Loc, Init, Init, Previous) {}
497 };
498
499 const MemorySSA &MSSA;
500 AliasAnalysis &AA;
501 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000502 UpwardsMemoryQuery *Query;
George Burgess IV5f308972016-07-19 01:29:15 +0000503
504 // Phi optimization bookkeeping
505 SmallVector<DefPath, 32> Paths;
506 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000507
George Burgess IV5f308972016-07-19 01:29:15 +0000508 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000509 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000510 assert(From->getNumOperands() && "Phi with no operands?");
511
512 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000513 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
514 DomTreeNode *Node = DT.getNode(BB);
515 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000516 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
517 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000518 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000519 }
George Burgess IV5f308972016-07-19 01:29:15 +0000520 return Result;
521 }
522
523 /// Result of calling walkToPhiOrClobber.
524 struct UpwardsWalkResult {
525 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000526 /// both. Include alias info when clobber found.
George Burgess IV5f308972016-07-19 01:29:15 +0000527 MemoryAccess *Result;
528 bool IsKnownClobber;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000529 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000530 };
531
532 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
533 /// This will update Desc.Last as it walks. It will (optionally) also stop at
534 /// StopAt.
535 ///
536 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000537 UpwardsWalkResult
Alina Sbirleaf7230202019-01-07 18:40:27 +0000538 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
539 const MemoryAccess *SkipStopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000540 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
541
542 for (MemoryAccess *Current : def_chain(Desc.Last)) {
543 Desc.Last = Current;
Alina Sbirleaf7230202019-01-07 18:40:27 +0000544 if (Current == StopAt || Current == SkipStopAt)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000545 return {Current, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000546
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000547 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
548 if (MSSA.isLiveOnEntryDef(MD))
549 return {MD, true, MustAlias};
550 ClobberAlias CA =
551 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
552 if (CA.IsClobber)
553 return {MD, true, CA.AR};
554 }
George Burgess IV5f308972016-07-19 01:29:15 +0000555 }
556
557 assert(isa<MemoryPhi>(Desc.Last) &&
558 "Ended at a non-clobber that's not a phi?");
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000559 return {Desc.Last, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000560 }
561
562 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
563 ListIndex PriorNode) {
564 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
565 upward_defs_end());
566 for (const MemoryAccessPair &P : UpwardDefs) {
567 PausedSearches.push_back(Paths.size());
568 Paths.emplace_back(P.second, P.first, PriorNode);
569 }
570 }
571
572 /// Represents a search that terminated after finding a clobber. This clobber
573 /// may or may not be present in the path of defs from LastNode..SearchStart,
574 /// since it may have been retrieved from cache.
575 struct TerminatedPath {
576 MemoryAccess *Clobber;
577 ListIndex LastNode;
578 };
579
580 /// Get an access that keeps us from optimizing to the given phi.
581 ///
582 /// PausedSearches is an array of indices into the Paths array. Its incoming
583 /// value is the indices of searches that stopped at the last phi optimization
584 /// target. It's left in an unspecified state.
585 ///
586 /// If this returns None, NewPaused is a vector of searches that terminated
587 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000588 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000589 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000590 SmallVectorImpl<ListIndex> &PausedSearches,
591 SmallVectorImpl<ListIndex> &NewPaused,
592 SmallVectorImpl<TerminatedPath> &Terminated) {
593 assert(!PausedSearches.empty() && "No searches to continue?");
594
595 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
596 // PausedSearches as our stack.
597 while (!PausedSearches.empty()) {
598 ListIndex PathIndex = PausedSearches.pop_back_val();
599 DefPath &Node = Paths[PathIndex];
600
601 // If we've already visited this path with this MemoryLocation, we don't
602 // need to do so again.
603 //
604 // NOTE: That we just drop these paths on the ground makes caching
605 // behavior sporadic. e.g. given a diamond:
606 // A
607 // B C
608 // D
609 //
610 // ...If we walk D, B, A, C, we'll only cache the result of phi
611 // optimization for A, B, and D; C will be skipped because it dies here.
612 // This arguably isn't the worst thing ever, since:
613 // - We generally query things in a top-down order, so if we got below D
614 // without needing cache entries for {C, MemLoc}, then chances are
615 // that those cache entries would end up ultimately unused.
616 // - We still cache things for A, so C only needs to walk up a bit.
617 // If this behavior becomes problematic, we can fix without a ton of extra
618 // work.
619 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
620 continue;
621
Alina Sbirleaf7230202019-01-07 18:40:27 +0000622 const MemoryAccess *SkipStopWhere = nullptr;
623 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
624 assert(isa<MemoryDef>(Query->OriginalAccess));
625 SkipStopWhere = Query->OriginalAccess;
626 }
627
628 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere,
629 /*SkipStopAt=*/SkipStopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000630 if (Res.IsKnownClobber) {
Alina Sbirleaf7230202019-01-07 18:40:27 +0000631 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000632 // If this wasn't a cache hit, we hit a clobber when walking. That's a
633 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000634 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000635 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000636 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000637
638 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000639 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000640 continue;
641 }
642
Alina Sbirleaf7230202019-01-07 18:40:27 +0000643 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
George Burgess IV5f308972016-07-19 01:29:15 +0000644 // We've hit our target. Save this path off for if we want to continue
Alina Sbirleaf7230202019-01-07 18:40:27 +0000645 // walking. If we are in the mode of skipping the OriginalAccess, and
646 // we've reached back to the OriginalAccess, do not save path, we've
647 // just looped back to self.
648 if (Res.Result != SkipStopWhere)
649 NewPaused.push_back(PathIndex);
George Burgess IV5f308972016-07-19 01:29:15 +0000650 continue;
651 }
652
653 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
654 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
655 }
656
657 return None;
658 }
659
660 template <typename T, typename Walker>
661 struct generic_def_path_iterator
662 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
663 std::forward_iterator_tag, T *> {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000664 generic_def_path_iterator() = default;
George Burgess IV5f308972016-07-19 01:29:15 +0000665 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
666
667 T &operator*() const { return curNode(); }
668
669 generic_def_path_iterator &operator++() {
670 N = curNode().Previous;
671 return *this;
672 }
673
674 bool operator==(const generic_def_path_iterator &O) const {
675 if (N.hasValue() != O.N.hasValue())
676 return false;
677 return !N.hasValue() || *N == *O.N;
678 }
679
680 private:
681 T &curNode() const { return W->Paths[*N]; }
682
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000683 Walker *W = nullptr;
684 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000685 };
686
687 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
688 using const_def_path_iterator =
689 generic_def_path_iterator<const DefPath, const ClobberWalker>;
690
691 iterator_range<def_path_iterator> def_path(ListIndex From) {
692 return make_range(def_path_iterator(this, From), def_path_iterator());
693 }
694
695 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
696 return make_range(const_def_path_iterator(this, From),
697 const_def_path_iterator());
698 }
699
700 struct OptznResult {
701 /// The path that contains our result.
702 TerminatedPath PrimaryClobber;
703 /// The paths that we can legally cache back from, but that aren't
704 /// necessarily the result of the Phi optimization.
705 SmallVector<TerminatedPath, 4> OtherClobbers;
706 };
707
708 ListIndex defPathIndex(const DefPath &N) const {
709 // The assert looks nicer if we don't need to do &N
710 const DefPath *NP = &N;
711 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
712 "Out of bounds DefPath!");
713 return NP - &Paths.front();
714 }
715
716 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
717 /// that act as legal clobbers. Note that this won't return *all* clobbers.
718 ///
719 /// Phi optimization algorithm tl;dr:
720 /// - Find the earliest def/phi, A, we can optimize to
721 /// - Find if all paths from the starting memory access ultimately reach A
722 /// - If not, optimization isn't possible.
723 /// - Otherwise, walk from A to another clobber or phi, A'.
724 /// - If A' is a def, we're done.
725 /// - If A' is a phi, try to optimize it.
726 ///
727 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
728 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
729 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
730 const MemoryLocation &Loc) {
731 assert(Paths.empty() && VisitedPhis.empty() &&
732 "Reset the optimization state.");
733
734 Paths.emplace_back(Loc, Start, Phi, None);
735 // Stores how many "valid" optimization nodes we had prior to calling
736 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
737 auto PriorPathsSize = Paths.size();
738
739 SmallVector<ListIndex, 16> PausedSearches;
740 SmallVector<ListIndex, 8> NewPaused;
741 SmallVector<TerminatedPath, 4> TerminatedPaths;
742
743 addSearches(Phi, PausedSearches, 0);
744
745 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
746 // Paths.
747 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
748 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000749 auto Dom = Paths.begin();
750 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
751 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
752 Dom = I;
753 auto Last = Paths.end() - 1;
754 if (Last != Dom)
755 std::iter_swap(Last, Dom);
756 };
757
758 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000759 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000760 assert(!MSSA.isLiveOnEntryDef(Current) &&
761 "liveOnEntry wasn't treated as a clobber?");
762
Daniel Berlind0420312017-04-01 09:01:12 +0000763 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000764 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
765 // optimization for the prior phi.
766 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
767 return MSSA.dominates(P.Clobber, Target);
768 }));
769
770 // FIXME: This is broken, because the Blocker may be reported to be
771 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000772 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000773 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000774 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000775
776 // Find the node we started at. We can't search based on N->Last, since
777 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000778 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000779 return defPathIndex(N) < PriorPathsSize;
780 });
781 assert(Iter != def_path_iterator());
782
783 DefPath &CurNode = *Iter;
784 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000785
786 // Two things:
787 // A. We can't reliably cache all of NewPaused back. Consider a case
788 // where we have two paths in NewPaused; one of which can't optimize
789 // above this phi, whereas the other can. If we cache the second path
790 // back, we'll end up with suboptimal cache entries. We can handle
791 // cases like this a bit better when we either try to find all
792 // clobbers that block phi optimization, or when our cache starts
793 // supporting unfinished searches.
794 // B. We can't reliably cache TerminatedPaths back here without doing
795 // extra checks; consider a case like:
796 // T
797 // / \
798 // D C
799 // \ /
800 // S
801 // Where T is our target, C is a node with a clobber on it, D is a
802 // diamond (with a clobber *only* on the left or right node, N), and
803 // S is our start. Say we walk to D, through the node opposite N
804 // (read: ignoring the clobber), and see a cache entry in the top
805 // node of D. That cache entry gets put into TerminatedPaths. We then
806 // walk up to C (N is later in our worklist), find the clobber, and
807 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
808 // the bottom part of D to the cached clobber, ignoring the clobber
809 // in N. Again, this problem goes away if we start tracking all
810 // blockers for a given phi optimization.
811 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
812 return {Result, {}};
813 }
814
815 // If there's nothing left to search, then all paths led to valid clobbers
816 // that we got from our cache; pick the nearest to the start, and allow
817 // the rest to be cached back.
818 if (NewPaused.empty()) {
819 MoveDominatedPathToEnd(TerminatedPaths);
820 TerminatedPath Result = TerminatedPaths.pop_back_val();
821 return {Result, std::move(TerminatedPaths)};
822 }
823
824 MemoryAccess *DefChainEnd = nullptr;
825 SmallVector<TerminatedPath, 4> Clobbers;
826 for (ListIndex Paused : NewPaused) {
827 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
828 if (WR.IsKnownClobber)
829 Clobbers.push_back({WR.Result, Paused});
830 else
831 // Micro-opt: If we hit the end of the chain, save it.
832 DefChainEnd = WR.Result;
833 }
834
835 if (!TerminatedPaths.empty()) {
836 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
837 // do it now.
838 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000839 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000840 DefChainEnd = MA;
841
842 // If any of the terminated paths don't dominate the phi we'll try to
843 // optimize, we need to figure out what they are and quit.
844 const BasicBlock *ChainBB = DefChainEnd->getBlock();
845 for (const TerminatedPath &TP : TerminatedPaths) {
846 // Because we know that DefChainEnd is as "high" as we can go, we
847 // don't need local dominance checks; BB dominance is sufficient.
848 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
849 Clobbers.push_back(TP);
850 }
851 }
852
853 // If we have clobbers in the def chain, find the one closest to Current
854 // and quit.
855 if (!Clobbers.empty()) {
856 MoveDominatedPathToEnd(Clobbers);
857 TerminatedPath Result = Clobbers.pop_back_val();
858 return {Result, std::move(Clobbers)};
859 }
860
861 assert(all_of(NewPaused,
862 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
863
864 // Because liveOnEntry is a clobber, this must be a phi.
865 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
866
867 PriorPathsSize = Paths.size();
868 PausedSearches.clear();
869 for (ListIndex I : NewPaused)
870 addSearches(DefChainPhi, PausedSearches, I);
871 NewPaused.clear();
872
873 Current = DefChainPhi;
874 }
875 }
876
George Burgess IV5f308972016-07-19 01:29:15 +0000877 void verifyOptResult(const OptznResult &R) const {
878 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
879 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
880 }));
881 }
882
883 void resetPhiOptznState() {
884 Paths.clear();
885 VisitedPhis.clear();
886 }
887
888public:
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000889 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
890 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000891
George Burgess IV5f308972016-07-19 01:29:15 +0000892 /// Finds the nearest clobber for the given query, optimizing phis if
893 /// possible.
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000894 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +0000895 Query = &Q;
896
897 MemoryAccess *Current = Start;
898 // This walker pretends uses don't exist. If we're handed one, silently grab
899 // its def. (This has the nice side-effect of ensuring we never cache uses)
900 if (auto *MU = dyn_cast<MemoryUse>(Start))
901 Current = MU->getDefiningAccess();
902
903 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
904 // Fast path for the overly-common case (no crazy phi optimization
905 // necessary)
906 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000907 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000908 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000909 Result = WalkResult.Result;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000910 Q.AR = WalkResult.AR;
George Burgess IV93ea19b2016-07-24 07:03:49 +0000911 } else {
912 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
913 Current, Q.StartingLoc);
914 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000915 resetPhiOptznState();
916 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000917 }
918
George Burgess IV5f308972016-07-19 01:29:15 +0000919#ifdef EXPENSIVE_CHECKS
Alina Sbirleae41f4b32019-01-10 21:47:15 +0000920 if (!Q.SkipSelfAccess)
921 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000922#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000923 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000924 }
Geoff Berrycdf53332016-08-08 17:52:01 +0000925
926 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
George Burgess IV5f308972016-07-19 01:29:15 +0000927};
928
929struct RenamePassData {
930 DomTreeNode *DTN;
931 DomTreeNode::const_iterator ChildIt;
932 MemoryAccess *IncomingVal;
933
934 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
935 MemoryAccess *M)
936 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000937
George Burgess IV5f308972016-07-19 01:29:15 +0000938 void swap(RenamePassData &RHS) {
939 std::swap(DTN, RHS.DTN);
940 std::swap(ChildIt, RHS.ChildIt);
941 std::swap(IncomingVal, RHS.IncomingVal);
942 }
943};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000944
945} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000946
947namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000948
Alina Sbirleabc8aa242019-01-07 19:22:37 +0000949class MemorySSA::ClobberWalkerBase {
950 ClobberWalker Walker;
951 MemorySSA *MSSA;
952
953public:
954 ClobberWalkerBase(MemorySSA *M, AliasAnalysis *A, DominatorTree *D)
955 : Walker(*M, *A, *D), MSSA(M) {}
956
957 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
958 const MemoryLocation &);
959 // Second argument (bool), defines whether the clobber search should skip the
960 // original queried access. If true, there will be a follow-up query searching
961 // for a clobber access past "self". Note that the Optimized access is not
962 // updated if a new clobber is found by this SkipSelf search. If this
963 // additional query becomes heavily used we may decide to cache the result.
964 // Walker instantiations will decide how to set the SkipSelf bool.
965 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, bool);
966 void verify(const MemorySSA *MSSA) { Walker.verify(MSSA); }
967};
968
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000969/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
George Burgess IV45f263d2018-05-26 02:28:55 +0000970/// longer does caching on its own, but the name has been retained for the
971/// moment.
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000972class MemorySSA::CachingWalker final : public MemorySSAWalker {
Alina Sbirleabc8aa242019-01-07 19:22:37 +0000973 ClobberWalkerBase *Walker;
George Burgess IV5f308972016-07-19 01:29:15 +0000974
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000975public:
Alina Sbirleabc8aa242019-01-07 19:22:37 +0000976 CachingWalker(MemorySSA *M, ClobberWalkerBase *W)
977 : MemorySSAWalker(M), Walker(W) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000978 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000979
George Burgess IV400ae402016-07-20 19:51:34 +0000980 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000981
Alina Sbirleabc8aa242019-01-07 19:22:37 +0000982 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override;
983 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
984 const MemoryLocation &Loc) override;
985
986 void invalidateInfo(MemoryAccess *MA) override {
987 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
988 MUD->resetOptimized();
989 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000990
Geoff Berrycdf53332016-08-08 17:52:01 +0000991 void verify(const MemorySSA *MSSA) override {
992 MemorySSAWalker::verify(MSSA);
Alina Sbirleabc8aa242019-01-07 19:22:37 +0000993 Walker->verify(MSSA);
Geoff Berrycdf53332016-08-08 17:52:01 +0000994 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000995};
George Burgess IVe1100f52016-02-02 22:46:49 +0000996
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +0000997class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
998 ClobberWalkerBase *Walker;
999
1000public:
1001 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W)
1002 : MemorySSAWalker(M), Walker(W) {}
1003 ~SkipSelfWalker() override = default;
1004
1005 using MemorySSAWalker::getClobberingMemoryAccess;
1006
1007 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override;
1008 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1009 const MemoryLocation &Loc) override;
1010
1011 void invalidateInfo(MemoryAccess *MA) override {
1012 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1013 MUD->resetOptimized();
1014 }
1015
1016 void verify(const MemorySSA *MSSA) override {
1017 MemorySSAWalker::verify(MSSA);
1018 Walker->verify(MSSA);
1019 }
1020};
1021
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001022} // end namespace llvm
1023
Daniel Berlin78cbd282017-02-20 22:26:03 +00001024void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1025 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001026 // Pass through values to our successors
1027 for (const BasicBlock *S : successors(BB)) {
1028 auto It = PerBlockAccesses.find(S);
1029 // Rename the phi nodes in our successor block
1030 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1031 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +00001032 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001033 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +00001034 if (RenameAllUses) {
1035 int PhiIndex = Phi->getBasicBlockIndex(BB);
1036 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
1037 Phi->setIncomingValue(PhiIndex, IncomingVal);
1038 } else
1039 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +00001040 }
Daniel Berlin78cbd282017-02-20 22:26:03 +00001041}
George Burgess IVe1100f52016-02-02 22:46:49 +00001042
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001043/// Rename a single basic block into MemorySSA form.
Daniel Berlin78cbd282017-02-20 22:26:03 +00001044/// Uses the standard SSA renaming algorithm.
1045/// \returns The new incoming value.
1046MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1047 bool RenameAllUses) {
1048 auto It = PerBlockAccesses.find(BB);
1049 // Skip most processing if the list is empty.
1050 if (It != PerBlockAccesses.end()) {
1051 AccessList *Accesses = It->second.get();
1052 for (MemoryAccess &L : *Accesses) {
1053 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1054 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1055 MUD->setDefiningAccess(IncomingVal);
1056 if (isa<MemoryDef>(&L))
1057 IncomingVal = &L;
1058 } else {
1059 IncomingVal = &L;
1060 }
1061 }
1062 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001063 return IncomingVal;
1064}
1065
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001066/// This is the standard SSA renaming algorithm.
George Burgess IVe1100f52016-02-02 22:46:49 +00001067///
1068/// We walk the dominator tree in preorder, renaming accesses, and then filling
1069/// in phi nodes in our successors.
1070void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +00001071 SmallPtrSetImpl<BasicBlock *> &Visited,
1072 bool SkipVisited, bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001073 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +00001074 // Skip everything if we already renamed this block and we are skipping.
1075 // Note: You can't sink this into the if, because we need it to occur
1076 // regardless of whether we skip blocks or not.
1077 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1078 if (SkipVisited && AlreadyVisited)
1079 return;
1080
1081 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1082 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001083 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +00001084
1085 while (!WorkStack.empty()) {
1086 DomTreeNode *Node = WorkStack.back().DTN;
1087 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1088 IncomingVal = WorkStack.back().IncomingVal;
1089
1090 if (ChildIt == Node->end()) {
1091 WorkStack.pop_back();
1092 } else {
1093 DomTreeNode *Child = *ChildIt;
1094 ++WorkStack.back().ChildIt;
1095 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +00001096 // Note: You can't sink this into the if, because we need it to occur
1097 // regardless of whether we skip blocks or not.
1098 AlreadyVisited = !Visited.insert(BB).second;
1099 if (SkipVisited && AlreadyVisited) {
1100 // We already visited this during our renaming, which can happen when
1101 // being asked to rename multiple blocks. Figure out the incoming val,
1102 // which is the last def.
1103 // Incoming value can only change if there is a block def, and in that
1104 // case, it's the last block def in the list.
1105 if (auto *BlockDefs = getWritableBlockDefs(BB))
1106 IncomingVal = &*BlockDefs->rbegin();
1107 } else
1108 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1109 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001110 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1111 }
1112 }
1113}
1114
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001115/// This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +00001116/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1117/// being uses of the live on entry definition.
1118void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1119 assert(!DT->isReachableFromEntry(BB) &&
1120 "Reachable block found while handling unreachable blocks");
1121
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001122 // Make sure phi nodes in our reachable successors end up with a
1123 // LiveOnEntryDef for our incoming edge, even though our block is forward
1124 // unreachable. We could just disconnect these blocks from the CFG fully,
1125 // but we do not right now.
1126 for (const BasicBlock *S : successors(BB)) {
1127 if (!DT->isReachableFromEntry(S))
1128 continue;
1129 auto It = PerBlockAccesses.find(S);
1130 // Rename the phi nodes in our successor block
1131 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1132 continue;
1133 AccessList *Accesses = It->second.get();
1134 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1135 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1136 }
1137
George Burgess IVe1100f52016-02-02 22:46:49 +00001138 auto It = PerBlockAccesses.find(BB);
1139 if (It == PerBlockAccesses.end())
1140 return;
1141
1142 auto &Accesses = It->second;
1143 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1144 auto Next = std::next(AI);
1145 // If we have a phi, just remove it. We are going to replace all
1146 // users with live on entry.
1147 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1148 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1149 else
1150 Accesses->erase(AI);
1151 AI = Next;
1152 }
1153}
1154
Geoff Berryb96d3b22016-06-01 21:30:40 +00001155MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1156 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00001157 SkipWalker(nullptr), NextID(0) {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001158 buildMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001159}
1160
George Burgess IVe1100f52016-02-02 22:46:49 +00001161MemorySSA::~MemorySSA() {
1162 // Drop all our references
1163 for (const auto &Pair : PerBlockAccesses)
1164 for (MemoryAccess &MA : *Pair.second)
1165 MA.dropAllReferences();
1166}
1167
Daniel Berlin14300262016-06-21 18:39:20 +00001168MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001169 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1170
1171 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001172 Res.first->second = llvm::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001173 return Res.first->second.get();
1174}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001175
Daniel Berlind602e042017-01-25 20:56:19 +00001176MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1177 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1178
1179 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001180 Res.first->second = llvm::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001181 return Res.first->second.get();
1182}
George Burgess IVe1100f52016-02-02 22:46:49 +00001183
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001184namespace llvm {
1185
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001186/// This class is a batch walker of all MemoryUse's in the program, and points
1187/// their defining access at the thing that actually clobbers them. Because it
1188/// is a batch walker that touches everything, it does not operate like the
1189/// other walkers. This walker is basically performing a top-down SSA renaming
1190/// pass, where the version stack is used as the cache. This enables it to be
1191/// significantly more time and memory efficient than using the regular walker,
1192/// which is walking bottom-up.
1193class MemorySSA::OptimizeUses {
1194public:
1195 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1196 DominatorTree *DT)
1197 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1198 Walker = MSSA->getWalker();
1199 }
1200
1201 void optimizeUses();
1202
1203private:
1204 /// This represents where a given memorylocation is in the stack.
1205 struct MemlocStackInfo {
1206 // This essentially is keeping track of versions of the stack. Whenever
1207 // the stack changes due to pushes or pops, these versions increase.
1208 unsigned long StackEpoch;
1209 unsigned long PopEpoch;
1210 // This is the lower bound of places on the stack to check. It is equal to
1211 // the place the last stack walk ended.
1212 // Note: Correctness depends on this being initialized to 0, which densemap
1213 // does
1214 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001215 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001216 // This is where the last walk for this memory location ended.
1217 unsigned long LastKill;
1218 bool LastKillValid;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001219 Optional<AliasResult> AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001220 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001221
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001222 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1223 SmallVectorImpl<MemoryAccess *> &,
1224 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001225
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001226 MemorySSA *MSSA;
1227 MemorySSAWalker *Walker;
1228 AliasAnalysis *AA;
1229 DominatorTree *DT;
1230};
1231
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001232} // end namespace llvm
1233
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001234/// Optimize the uses in a given block This is basically the SSA renaming
1235/// algorithm, with one caveat: We are able to use a single stack for all
1236/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1237/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1238/// going to be some position in that stack of possible ones.
1239///
1240/// We track the stack positions that each MemoryLocation needs
1241/// to check, and last ended at. This is because we only want to check the
1242/// things that changed since last time. The same MemoryLocation should
1243/// get clobbered by the same store (getModRefInfo does not use invariantness or
1244/// things like this, and if they start, we can modify MemoryLocOrCall to
1245/// include relevant data)
1246void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1247 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1248 SmallVectorImpl<MemoryAccess *> &VersionStack,
1249 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1250
1251 /// If no accesses, nothing to do.
1252 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1253 if (Accesses == nullptr)
1254 return;
1255
1256 // Pop everything that doesn't dominate the current block off the stack,
1257 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001258 while (true) {
1259 assert(
1260 !VersionStack.empty() &&
1261 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001262 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1263 if (DT->dominates(BackBlock, BB))
1264 break;
1265 while (VersionStack.back()->getBlock() == BackBlock)
1266 VersionStack.pop_back();
1267 ++PopEpoch;
1268 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001269
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001270 for (MemoryAccess &MA : *Accesses) {
1271 auto *MU = dyn_cast<MemoryUse>(&MA);
1272 if (!MU) {
1273 VersionStack.push_back(&MA);
1274 ++StackEpoch;
1275 continue;
1276 }
1277
George Burgess IV024f3d22016-08-03 19:57:02 +00001278 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001279 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
George Burgess IV024f3d22016-08-03 19:57:02 +00001280 continue;
1281 }
1282
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001283 MemoryLocOrCall UseMLOC(MU);
1284 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001285 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001286 // stack due to changing blocks. We may have to reset the lower bound or
1287 // last kill info.
1288 if (LocInfo.PopEpoch != PopEpoch) {
1289 LocInfo.PopEpoch = PopEpoch;
1290 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001291 // If the lower bound was in something that no longer dominates us, we
1292 // have to reset it.
1293 // We can't simply track stack size, because the stack may have had
1294 // pushes/pops in the meantime.
1295 // XXX: This is non-optimal, but only is slower cases with heavily
1296 // branching dominator trees. To get the optimal number of queries would
1297 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1298 // the top of that stack dominates us. This does not seem worth it ATM.
1299 // A much cheaper optimization would be to always explore the deepest
1300 // branch of the dominator tree first. This will guarantee this resets on
1301 // the smallest set of blocks.
1302 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001303 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001304 // Reset the lower bound of things to check.
1305 // TODO: Some day we should be able to reset to last kill, rather than
1306 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001307 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001308 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001309 LocInfo.LastKillValid = false;
1310 }
1311 } else if (LocInfo.StackEpoch != StackEpoch) {
1312 // If all that has changed is the StackEpoch, we only have to check the
1313 // new things on the stack, because we've checked everything before. In
1314 // this case, the lower bound of things to check remains the same.
1315 LocInfo.PopEpoch = PopEpoch;
1316 LocInfo.StackEpoch = StackEpoch;
1317 }
1318 if (!LocInfo.LastKillValid) {
1319 LocInfo.LastKill = VersionStack.size() - 1;
1320 LocInfo.LastKillValid = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001321 LocInfo.AR = MayAlias;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001322 }
1323
1324 // At this point, we should have corrected last kill and LowerBound to be
1325 // in bounds.
1326 assert(LocInfo.LowerBound < VersionStack.size() &&
1327 "Lower bound out of range");
1328 assert(LocInfo.LastKill < VersionStack.size() &&
1329 "Last kill info out of range");
1330 // In any case, the new upper bound is the top of the stack.
1331 unsigned long UpperBound = VersionStack.size() - 1;
1332
1333 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001334 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1335 << *(MU->getMemoryInst()) << ")"
1336 << " because there are "
1337 << UpperBound - LocInfo.LowerBound
1338 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001339 // Because we did not walk, LastKill is no longer valid, as this may
1340 // have been a kill.
1341 LocInfo.LastKillValid = false;
1342 continue;
1343 }
1344 bool FoundClobberResult = false;
1345 while (UpperBound > LocInfo.LowerBound) {
1346 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1347 // For phis, use the walker, see where we ended up, go there
1348 Instruction *UseInst = MU->getMemoryInst();
1349 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1350 // We are guaranteed to find it or something is wrong
1351 while (VersionStack[UpperBound] != Result) {
1352 assert(UpperBound != 0);
1353 --UpperBound;
1354 }
1355 FoundClobberResult = true;
1356 break;
1357 }
1358
1359 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001360 // If the lifetime of the pointer ends at this instruction, it's live on
1361 // entry.
1362 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1363 // Reset UpperBound to liveOnEntryDef's place in the stack
1364 UpperBound = 0;
1365 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001366 LocInfo.AR = MustAlias;
Daniel Berlindf101192016-08-03 00:01:46 +00001367 break;
1368 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001369 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1370 if (CA.IsClobber) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001371 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001372 LocInfo.AR = CA.AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001373 break;
1374 }
1375 --UpperBound;
1376 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001377
1378 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1379
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001380 // At the end of this loop, UpperBound is either a clobber, or lower bound
1381 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1382 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001383 // We were last killed now by where we got to
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001384 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1385 LocInfo.AR = None;
1386 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001387 LocInfo.LastKill = UpperBound;
1388 } else {
1389 // Otherwise, we checked all the new ones, and now we know we can get to
1390 // LastKill.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001391 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001392 }
1393 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001394 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001395 }
1396}
1397
1398/// Optimize uses to point to their actual clobbering definitions.
1399void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001400 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001401 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001402 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1403
1404 unsigned long StackEpoch = 1;
1405 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001406 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001407 for (const auto *DomNode : depth_first(DT->getRootNode()))
1408 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1409 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001410}
1411
Daniel Berlin3d512a22016-08-22 19:14:30 +00001412void MemorySSA::placePHINodes(
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001413 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001414 // Determine where our MemoryPhi's should go
1415 ForwardIDFCalculator IDFs(*DT);
1416 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001417 SmallVector<BasicBlock *, 32> IDFBlocks;
1418 IDFs.calculate(IDFBlocks);
1419
1420 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001421 for (auto &BB : IDFBlocks)
1422 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001423}
1424
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001425void MemorySSA::buildMemorySSA() {
George Burgess IVe1100f52016-02-02 22:46:49 +00001426 // We create an access to represent "live on entry", for things like
1427 // arguments or users of globals, where the memory they use is defined before
1428 // the beginning of the function. We do not actually insert it into the IR.
1429 // We do not define a live on exit for the immediate uses, and thus our
1430 // semantics do *not* imply that something with no immediate uses can simply
1431 // be removed.
1432 BasicBlock &StartingPoint = F.getEntryBlock();
George Burgess IV612cf212018-02-27 06:43:19 +00001433 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1434 &StartingPoint, NextID++));
George Burgess IVe1100f52016-02-02 22:46:49 +00001435
1436 // We maintain lists of memory accesses per-block, trading memory for time. We
1437 // could just look up the memory access for every possible instruction in the
1438 // stream.
1439 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001440 // Go through each block, figure out where defs occur, and chain together all
1441 // the accesses.
1442 for (BasicBlock &B : F) {
Daniel Berlin7898ca62016-02-07 01:52:15 +00001443 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001444 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001445 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001446 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +00001447 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +00001448 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001449 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001450
George Burgess IVe1100f52016-02-02 22:46:49 +00001451 if (!Accesses)
1452 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001453 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001454 if (isa<MemoryDef>(MUD)) {
1455 InsertIntoDef = true;
1456 if (!Defs)
1457 Defs = getOrCreateDefsList(&B);
1458 Defs->push_back(*MUD);
1459 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001460 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001461 if (InsertIntoDef)
1462 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001463 }
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001464 placePHINodes(DefiningBlocks);
George Burgess IVe1100f52016-02-02 22:46:49 +00001465
1466 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1467 // filled in with all blocks.
1468 SmallPtrSet<BasicBlock *, 16> Visited;
1469 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1470
George Burgess IV5f308972016-07-19 01:29:15 +00001471 CachingWalker *Walker = getWalkerImpl();
1472
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001473 OptimizeUses(this, Walker, AA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001474
George Burgess IVe1100f52016-02-02 22:46:49 +00001475 // Mark the uses in unreachable blocks as live on entry, so that they go
1476 // somewhere.
1477 for (auto &BB : F)
1478 if (!Visited.count(&BB))
1479 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001480}
George Burgess IVe1100f52016-02-02 22:46:49 +00001481
George Burgess IV5f308972016-07-19 01:29:15 +00001482MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1483
1484MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001485 if (Walker)
1486 return Walker.get();
1487
Alina Sbirleabc8aa242019-01-07 19:22:37 +00001488 if (!WalkerBase)
1489 WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT);
1490
1491 Walker = llvm::make_unique<CachingWalker>(this, WalkerBase.get());
Geoff Berryb96d3b22016-06-01 21:30:40 +00001492 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001493}
1494
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00001495MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1496 if (SkipWalker)
1497 return SkipWalker.get();
1498
1499 if (!WalkerBase)
1500 WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT);
1501
1502 SkipWalker = llvm::make_unique<SkipSelfWalker>(this, WalkerBase.get());
1503 return SkipWalker.get();
1504 }
1505
1506
Daniel Berlind602e042017-01-25 20:56:19 +00001507// This is a helper function used by the creation routines. It places NewAccess
1508// into the access and defs lists for a given basic block, at the given
1509// insertion point.
1510void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1511 const BasicBlock *BB,
1512 InsertionPlace Point) {
1513 auto *Accesses = getOrCreateAccessList(BB);
1514 if (Point == Beginning) {
1515 // If it's a phi node, it goes first, otherwise, it goes after any phi
1516 // nodes.
1517 if (isa<MemoryPhi>(NewAccess)) {
1518 Accesses->push_front(NewAccess);
1519 auto *Defs = getOrCreateDefsList(BB);
1520 Defs->push_front(*NewAccess);
1521 } else {
1522 auto AI = find_if_not(
1523 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1524 Accesses->insert(AI, NewAccess);
1525 if (!isa<MemoryUse>(NewAccess)) {
1526 auto *Defs = getOrCreateDefsList(BB);
1527 auto DI = find_if_not(
1528 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1529 Defs->insert(DI, *NewAccess);
1530 }
1531 }
1532 } else {
1533 Accesses->push_back(NewAccess);
1534 if (!isa<MemoryUse>(NewAccess)) {
1535 auto *Defs = getOrCreateDefsList(BB);
1536 Defs->push_back(*NewAccess);
1537 }
1538 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001539 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001540}
1541
1542void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1543 AccessList::iterator InsertPt) {
1544 auto *Accesses = getWritableBlockAccesses(BB);
1545 bool WasEnd = InsertPt == Accesses->end();
1546 Accesses->insert(AccessList::iterator(InsertPt), What);
1547 if (!isa<MemoryUse>(What)) {
1548 auto *Defs = getOrCreateDefsList(BB);
1549 // If we got asked to insert at the end, we have an easy job, just shove it
1550 // at the end. If we got asked to insert before an existing def, we also get
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001551 // an iterator. If we got asked to insert before a use, we have to hunt for
Daniel Berlind602e042017-01-25 20:56:19 +00001552 // the next def.
1553 if (WasEnd) {
1554 Defs->push_back(*What);
1555 } else if (isa<MemoryDef>(InsertPt)) {
1556 Defs->insert(InsertPt->getDefsIterator(), *What);
1557 } else {
1558 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1559 ++InsertPt;
1560 // Either we found a def, or we are inserting at the end
1561 if (InsertPt == Accesses->end())
1562 Defs->push_back(*What);
1563 else
1564 Defs->insert(InsertPt->getDefsIterator(), *What);
1565 }
1566 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001567 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001568}
1569
George Burgess IV5676a5d2018-08-22 22:34:38 +00001570void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1571 // Keep it in the lookup tables, remove from the lists
1572 removeFromLists(What, false);
1573
1574 // Note that moving should implicitly invalidate the optimized state of a
1575 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1576 // MemoryDef.
1577 if (auto *MD = dyn_cast<MemoryDef>(What))
1578 MD->resetOptimized();
1579 What->setBlock(BB);
1580}
1581
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001582// Move What before Where in the IR. The end result is that What will belong to
Daniel Berlin60ead052017-01-28 01:23:13 +00001583// the right lists and have the right Block set, but will not otherwise be
1584// correct. It will not have the right defining access, and if it is a def,
1585// things below it will not properly be updated.
1586void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1587 AccessList::iterator Where) {
George Burgess IV5676a5d2018-08-22 22:34:38 +00001588 prepareForMoveTo(What, BB);
Daniel Berlin60ead052017-01-28 01:23:13 +00001589 insertIntoListsBefore(What, BB, Where);
1590}
1591
Alina Sbirlea0f533552018-07-11 22:11:46 +00001592void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001593 InsertionPlace Point) {
Alina Sbirlea0f533552018-07-11 22:11:46 +00001594 if (isa<MemoryPhi>(What)) {
1595 assert(Point == Beginning &&
1596 "Can only move a Phi at the beginning of the block");
1597 // Update lookup table entry
1598 ValueToMemoryAccess.erase(What->getBlock());
1599 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1600 (void)Inserted;
1601 assert(Inserted && "Cannot move a Phi to a block that already has one");
1602 }
1603
George Burgess IV5676a5d2018-08-22 22:34:38 +00001604 prepareForMoveTo(What, BB);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001605 insertIntoListsForBlock(What, BB, Point);
1606}
1607
Daniel Berlin14300262016-06-21 18:39:20 +00001608MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1609 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001610 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001611 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001612 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001613 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001614 return Phi;
1615}
1616
1617MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
Alina Sbirlea79800992018-09-10 20:13:01 +00001618 MemoryAccess *Definition,
1619 const MemoryUseOrDef *Template) {
Daniel Berlin14300262016-06-21 18:39:20 +00001620 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
Alina Sbirlea79800992018-09-10 20:13:01 +00001621 MemoryUseOrDef *NewAccess = createNewAccess(I, Template);
Daniel Berlin14300262016-06-21 18:39:20 +00001622 assert(
1623 NewAccess != nullptr &&
1624 "Tried to create a memory access for a non-memory touching instruction");
1625 NewAccess->setDefiningAccess(Definition);
1626 return NewAccess;
1627}
1628
Daniel Berlind952cea2017-04-07 01:28:36 +00001629// Return true if the instruction has ordering constraints.
1630// Note specifically that this only considers stores and loads
1631// because others are still considered ModRef by getModRefInfo.
1632static inline bool isOrdered(const Instruction *I) {
1633 if (auto *SI = dyn_cast<StoreInst>(I)) {
1634 if (!SI->isUnordered())
1635 return true;
1636 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1637 if (!LI->isUnordered())
1638 return true;
1639 }
1640 return false;
1641}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001642
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001643/// Helper function to create new memory accesses
Alina Sbirlea79800992018-09-10 20:13:01 +00001644MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1645 const MemoryUseOrDef *Template) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001646 // The assume intrinsic has a control dependency which we model by claiming
1647 // that it writes arbitrarily. Ignore that fake memory dependency here.
1648 // FIXME: Replace this special casing with a more accurate modelling of
1649 // assume's control dependency.
1650 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1651 if (II->getIntrinsicID() == Intrinsic::assume)
1652 return nullptr;
1653
Alina Sbirlea79800992018-09-10 20:13:01 +00001654 bool Def, Use;
1655 if (Template) {
1656 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1657 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1658#if !defined(NDEBUG)
1659 ModRefInfo ModRef = AA->getModRefInfo(I, None);
1660 bool DefCheck, UseCheck;
1661 DefCheck = isModSet(ModRef) || isOrdered(I);
1662 UseCheck = isRefSet(ModRef);
1663 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1664#endif
1665 } else {
1666 // Find out what affect this instruction has on memory.
1667 ModRefInfo ModRef = AA->getModRefInfo(I, None);
1668 // The isOrdered check is used to ensure that volatiles end up as defs
1669 // (atomics end up as ModRef right now anyway). Until we separate the
1670 // ordering chain from the memory chain, this enables people to see at least
1671 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1672 // will still give an answer that bypasses other volatile loads. TODO:
1673 // Separate memory aliasing and ordering into two different chains so that
1674 // we can precisely represent both "what memory will this read/write/is
1675 // clobbered by" and "what instructions can I move this past".
1676 Def = isModSet(ModRef) || isOrdered(I);
1677 Use = isRefSet(ModRef);
1678 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001679
1680 // It's possible for an instruction to not modify memory at all. During
1681 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001682 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001683 return nullptr;
1684
George Burgess IVb42b7622016-03-11 19:34:03 +00001685 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001686 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001687 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001688 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001689 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001690 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001691 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001692}
1693
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001694/// Returns true if \p Replacer dominates \p Replacee .
George Burgess IVe1100f52016-02-02 22:46:49 +00001695bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1696 const MemoryAccess *Replacee) const {
1697 if (isa<MemoryUseOrDef>(Replacee))
1698 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1699 const auto *MP = cast<MemoryPhi>(Replacee);
1700 // For a phi node, the use occurs in the predecessor block of the phi node.
1701 // Since we may occur multiple times in the phi node, we have to check each
1702 // operand to ensure Replacer dominates each operand where Replacee occurs.
1703 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001704 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001705 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1706 return false;
1707 }
1708 return true;
1709}
1710
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001711/// Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001712void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1713 assert(MA->use_empty() &&
1714 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001715 BlockNumbering.erase(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001716 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001717 MUD->setDefiningAccess(nullptr);
1718 // Invalidate our walker's cache if necessary
1719 if (!isa<MemoryUse>(MA))
1720 Walker->invalidateInfo(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001721
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001722 Value *MemoryInst;
George Burgess IV2cbf9732018-06-22 22:34:07 +00001723 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001724 MemoryInst = MUD->getMemoryInst();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001725 else
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001726 MemoryInst = MA->getBlock();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001727
Daniel Berlin5130cc82016-07-31 21:08:20 +00001728 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1729 if (VMA->second == MA)
1730 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001731}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001732
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001733/// Properly remove \p MA from all of MemorySSA's lists.
Daniel Berlin60ead052017-01-28 01:23:13 +00001734///
1735/// Because of the way the intrusive list and use lists work, it is important to
1736/// do removal in the right order.
1737/// ShouldDelete defaults to true, and will cause the memory access to also be
1738/// deleted, not just removed.
1739void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001740 BasicBlock *BB = MA->getBlock();
Daniel Berlind602e042017-01-25 20:56:19 +00001741 // The access list owns the reference, so we erase it from the non-owning list
1742 // first.
1743 if (!isa<MemoryUse>(MA)) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001744 auto DefsIt = PerBlockDefs.find(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001745 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1746 Defs->remove(*MA);
1747 if (Defs->empty())
1748 PerBlockDefs.erase(DefsIt);
1749 }
1750
Daniel Berlin60ead052017-01-28 01:23:13 +00001751 // The erase call here will delete it. If we don't want it deleted, we call
1752 // remove instead.
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001753 auto AccessIt = PerBlockAccesses.find(BB);
Daniel Berlinada263d2016-06-20 20:21:33 +00001754 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001755 if (ShouldDelete)
1756 Accesses->erase(MA);
1757 else
1758 Accesses->remove(MA);
1759
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001760 if (Accesses->empty()) {
George Burgess IVe0e6e482016-03-02 02:35:04 +00001761 PerBlockAccesses.erase(AccessIt);
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001762 BlockNumberingValid.erase(BB);
1763 }
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001764}
1765
George Burgess IVe1100f52016-02-02 22:46:49 +00001766void MemorySSA::print(raw_ostream &OS) const {
1767 MemorySSAAnnotatedWriter Writer(this);
1768 F.print(OS, &Writer);
1769}
1770
Aaron Ballman615eb472017-10-15 14:32:27 +00001771#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Daniel Berlin78cbd282017-02-20 22:26:03 +00001772LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001773#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001774
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001775void MemorySSA::verifyMemorySSA() const {
1776 verifyDefUses(F);
1777 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001778 verifyOrdering(F);
George Burgess IV97ec6242018-06-25 05:30:36 +00001779 verifyDominationNumbers(F);
Geoff Berrycdf53332016-08-08 17:52:01 +00001780 Walker->verify(this);
Alina Sbirleaf5403d82018-08-29 18:26:04 +00001781 verifyClobberSanity(F);
1782}
1783
1784/// Check sanity of the clobbering instruction for access MA.
1785void MemorySSA::checkClobberSanityAccess(const MemoryAccess *MA) const {
1786 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1787 if (!MUD->isOptimized())
1788 return;
1789 auto *I = MUD->getMemoryInst();
1790 auto Loc = MemoryLocation::getOrNone(I);
1791 if (Loc == None)
1792 return;
1793 auto *Clobber = MUD->getOptimized();
1794 UpwardsMemoryQuery Q(I, MUD);
Alina Sbirlea65f385d2018-09-07 23:51:41 +00001795 checkClobberSanity(MUD, Clobber, *Loc, *this, Q, *AA, true);
Alina Sbirleaf5403d82018-08-29 18:26:04 +00001796 }
1797}
1798
1799void MemorySSA::verifyClobberSanity(const Function &F) const {
1800#if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1801 for (const BasicBlock &BB : F) {
1802 const AccessList *Accesses = getBlockAccesses(&BB);
1803 if (!Accesses)
1804 continue;
1805 for (const MemoryAccess &MA : *Accesses)
1806 checkClobberSanityAccess(&MA);
1807 }
1808#endif
Daniel Berlin14300262016-06-21 18:39:20 +00001809}
1810
George Burgess IV97ec6242018-06-25 05:30:36 +00001811/// Verify that all of the blocks we believe to have valid domination numbers
1812/// actually have valid domination numbers.
1813void MemorySSA::verifyDominationNumbers(const Function &F) const {
1814#ifndef NDEBUG
1815 if (BlockNumberingValid.empty())
1816 return;
1817
1818 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1819 for (const BasicBlock &BB : F) {
1820 if (!ValidBlocks.count(&BB))
1821 continue;
1822
1823 ValidBlocks.erase(&BB);
1824
1825 const AccessList *Accesses = getBlockAccesses(&BB);
1826 // It's correct to say an empty block has valid numbering.
1827 if (!Accesses)
1828 continue;
1829
1830 // Block numbering starts at 1.
1831 unsigned long LastNumber = 0;
1832 for (const MemoryAccess &MA : *Accesses) {
1833 auto ThisNumberIter = BlockNumbering.find(&MA);
1834 assert(ThisNumberIter != BlockNumbering.end() &&
1835 "MemoryAccess has no domination number in a valid block!");
1836
1837 unsigned long ThisNumber = ThisNumberIter->second;
1838 assert(ThisNumber > LastNumber &&
1839 "Domination numbers should be strictly increasing!");
1840 LastNumber = ThisNumber;
1841 }
1842 }
1843
1844 assert(ValidBlocks.empty() &&
1845 "All valid BasicBlocks should exist in F -- dangling pointers?");
1846#endif
1847}
1848
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001849/// Verify that the order and existence of MemoryAccesses matches the
Daniel Berlin14300262016-06-21 18:39:20 +00001850/// order and existence of memory affecting instructions.
1851void MemorySSA::verifyOrdering(Function &F) const {
George Burgess IV6a9aa022018-08-28 00:32:32 +00001852#ifndef NDEBUG
Daniel Berlin14300262016-06-21 18:39:20 +00001853 // Walk all the blocks, comparing what the lookups think and what the access
1854 // lists think, as well as the order in the blocks vs the order in the access
1855 // lists.
1856 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001857 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001858 for (BasicBlock &B : F) {
1859 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001860 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001861 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001862 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001863 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001864 ActualDefs.push_back(Phi);
1865 }
1866
Daniel Berlin14300262016-06-21 18:39:20 +00001867 for (Instruction &I : B) {
1868 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001869 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1870 "We have memory affecting instructions "
1871 "in this block but they are not in the "
1872 "access list or defs list");
1873 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001874 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001875 if (isa<MemoryDef>(MA))
1876 ActualDefs.push_back(MA);
1877 }
Daniel Berlin14300262016-06-21 18:39:20 +00001878 }
1879 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001880 // accesses and an access list.
1881 // Same with defs.
1882 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001883 continue;
1884 assert(AL->size() == ActualAccesses.size() &&
1885 "We don't have the same number of accesses in the block as on the "
1886 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001887 assert((DL || ActualDefs.size() == 0) &&
1888 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001889 assert((!DL || DL->size() == ActualDefs.size()) &&
1890 "We don't have the same number of defs in the block as on the "
1891 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001892 auto ALI = AL->begin();
1893 auto AAI = ActualAccesses.begin();
1894 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1895 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1896 ++ALI;
1897 ++AAI;
1898 }
1899 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00001900 if (DL) {
1901 auto DLI = DL->begin();
1902 auto ADI = ActualDefs.begin();
1903 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1904 assert(&*DLI == *ADI && "Not the same defs in the same order");
1905 ++DLI;
1906 ++ADI;
1907 }
1908 }
1909 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00001910 }
George Burgess IV6a9aa022018-08-28 00:32:32 +00001911#endif
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001912}
1913
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001914/// Verify the domination properties of MemorySSA by checking that each
George Burgess IVe1100f52016-02-02 22:46:49 +00001915/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001916void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001917#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001918 for (BasicBlock &B : F) {
1919 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001920 if (MemoryPhi *MP = getMemoryAccess(&B))
1921 for (const Use &U : MP->uses())
1922 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00001923
George Burgess IVe1100f52016-02-02 22:46:49 +00001924 for (Instruction &I : B) {
1925 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1926 if (!MD)
1927 continue;
1928
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001929 for (const Use &U : MD->uses())
1930 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00001931 }
1932 }
Daniel Berlin7af95872016-08-05 21:47:20 +00001933#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001934}
1935
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001936/// Verify the def-use lists in MemorySSA, by verifying that \p Use
George Burgess IVe1100f52016-02-02 22:46:49 +00001937/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001938void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001939#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001940 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00001941 if (!Def)
1942 assert(isLiveOnEntryDef(Use) &&
1943 "Null def but use not point to live on entry def");
1944 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00001945 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00001946 "Did not find use in def's use list");
1947#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001948}
1949
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001950/// Verify the immediate use information, by walking all the memory
George Burgess IVe1100f52016-02-02 22:46:49 +00001951/// accesses and verifying that, for each use, it appears in the
1952/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001953void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IV6a9aa022018-08-28 00:32:32 +00001954#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001955 for (BasicBlock &B : F) {
1956 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00001957 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00001958 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1959 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00001960 "Incomplete MemoryPhi Node");
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001961 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001962 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001963 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1964 pred_end(&B) &&
1965 "Incoming phi block not a block predecessor");
1966 }
Daniel Berlin14300262016-06-21 18:39:20 +00001967 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001968
1969 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00001970 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1971 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00001972 }
1973 }
1974 }
George Burgess IV6a9aa022018-08-28 00:32:32 +00001975#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001976}
1977
Daniel Berlin5c46b942016-07-19 22:49:43 +00001978/// Perform a local numbering on blocks so that instruction ordering can be
1979/// determined in constant time.
1980/// TODO: We currently just number in order. If we numbered by N, we could
1981/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1982/// log2(N) sequences of mixed before and after) without needing to invalidate
1983/// the numbering.
1984void MemorySSA::renumberBlock(const BasicBlock *B) const {
1985 // The pre-increment ensures the numbers really start at 1.
1986 unsigned long CurrentNumber = 0;
1987 const AccessList *AL = getBlockAccesses(B);
1988 assert(AL != nullptr && "Asking to renumber an empty block");
1989 for (const auto &I : *AL)
1990 BlockNumbering[&I] = ++CurrentNumber;
1991 BlockNumberingValid.insert(B);
1992}
1993
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001994/// Determine, for two memory accesses in the same block,
George Burgess IVe1100f52016-02-02 22:46:49 +00001995/// whether \p Dominator dominates \p Dominatee.
1996/// \returns True if \p Dominator dominates \p Dominatee.
1997bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1998 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00001999 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00002000
Daniel Berlin19860302016-07-19 23:08:08 +00002001 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00002002 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00002003 // A node dominates itself.
2004 if (Dominatee == Dominator)
2005 return true;
2006
2007 // When Dominatee is defined on function entry, it is not dominated by another
2008 // memory access.
2009 if (isLiveOnEntryDef(Dominatee))
2010 return false;
2011
2012 // When Dominator is defined on function entry, it dominates the other memory
2013 // access.
2014 if (isLiveOnEntryDef(Dominator))
2015 return true;
2016
Daniel Berlin5c46b942016-07-19 22:49:43 +00002017 if (!BlockNumberingValid.count(DominatorBlock))
2018 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00002019
Daniel Berlin5c46b942016-07-19 22:49:43 +00002020 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2021 // All numbers start with 1
2022 assert(DominatorNum != 0 && "Block was not numbered properly");
2023 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2024 assert(DominateeNum != 0 && "Block was not numbered properly");
2025 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00002026}
2027
George Burgess IV5f308972016-07-19 01:29:15 +00002028bool MemorySSA::dominates(const MemoryAccess *Dominator,
2029 const MemoryAccess *Dominatee) const {
2030 if (Dominator == Dominatee)
2031 return true;
2032
2033 if (isLiveOnEntryDef(Dominatee))
2034 return false;
2035
2036 if (Dominator->getBlock() != Dominatee->getBlock())
2037 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2038 return locallyDominates(Dominator, Dominatee);
2039}
2040
Daniel Berlin2919b1c2016-08-05 21:46:52 +00002041bool MemorySSA::dominates(const MemoryAccess *Dominator,
2042 const Use &Dominatee) const {
2043 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2044 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2045 // The def must dominate the incoming block of the phi.
2046 if (UseBB != Dominator->getBlock())
2047 return DT->dominates(Dominator->getBlock(), UseBB);
2048 // If the UseBB and the DefBB are the same, compare locally.
2049 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2050 }
2051 // If it's not a PHI node use, the normal dominates can already handle it.
2052 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2053}
2054
George Burgess IVe1100f52016-02-02 22:46:49 +00002055const static char LiveOnEntryStr[] = "liveOnEntry";
2056
Reid Kleckner96ab8722017-05-18 17:24:10 +00002057void MemoryAccess::print(raw_ostream &OS) const {
2058 switch (getValueID()) {
2059 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2060 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2061 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2062 }
2063 llvm_unreachable("invalid value id");
2064}
2065
George Burgess IVe1100f52016-02-02 22:46:49 +00002066void MemoryDef::print(raw_ostream &OS) const {
2067 MemoryAccess *UO = getDefiningAccess();
2068
George Burgess IVaa283d82018-06-14 19:55:53 +00002069 auto printID = [&OS](MemoryAccess *A) {
2070 if (A && A->getID())
2071 OS << A->getID();
2072 else
2073 OS << LiveOnEntryStr;
2074 };
2075
George Burgess IVe1100f52016-02-02 22:46:49 +00002076 OS << getID() << " = MemoryDef(";
George Burgess IVaa283d82018-06-14 19:55:53 +00002077 printID(UO);
2078 OS << ")";
2079
2080 if (isOptimized()) {
2081 OS << "->";
2082 printID(getOptimized());
2083
2084 if (Optional<AliasResult> AR = getOptimizedAccessType())
2085 OS << " " << *AR;
2086 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002087}
2088
2089void MemoryPhi::print(raw_ostream &OS) const {
2090 bool First = true;
2091 OS << getID() << " = MemoryPhi(";
2092 for (const auto &Op : operands()) {
2093 BasicBlock *BB = getIncomingBlock(Op);
2094 MemoryAccess *MA = cast<MemoryAccess>(Op);
2095 if (!First)
2096 OS << ',';
2097 else
2098 First = false;
2099
2100 OS << '{';
2101 if (BB->hasName())
2102 OS << BB->getName();
2103 else
2104 BB->printAsOperand(OS, false);
2105 OS << ',';
2106 if (unsigned ID = MA->getID())
2107 OS << ID;
2108 else
2109 OS << LiveOnEntryStr;
2110 OS << '}';
2111 }
2112 OS << ')';
2113}
2114
George Burgess IVe1100f52016-02-02 22:46:49 +00002115void MemoryUse::print(raw_ostream &OS) const {
2116 MemoryAccess *UO = getDefiningAccess();
2117 OS << "MemoryUse(";
2118 if (UO && UO->getID())
2119 OS << UO->getID();
2120 else
2121 OS << LiveOnEntryStr;
2122 OS << ')';
George Burgess IVaa283d82018-06-14 19:55:53 +00002123
2124 if (Optional<AliasResult> AR = getOptimizedAccessType())
2125 OS << " " << *AR;
George Burgess IVe1100f52016-02-02 22:46:49 +00002126}
2127
2128void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00002129// Cannot completely remove virtual function even in release mode.
Aaron Ballman615eb472017-10-15 14:32:27 +00002130#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
George Burgess IVe1100f52016-02-02 22:46:49 +00002131 print(dbgs());
2132 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00002133#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00002134}
2135
Chad Rosier232e29e2016-07-06 21:20:47 +00002136char MemorySSAPrinterLegacyPass::ID = 0;
2137
2138MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2139 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2140}
2141
2142void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2143 AU.setPreservesAll();
2144 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00002145}
2146
2147bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2148 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2149 MSSA.print(dbgs());
2150 if (VerifyMemorySSA)
2151 MSSA.verifyMemorySSA();
2152 return false;
2153}
2154
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002155AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00002156
Daniel Berlin1e98c042016-09-26 17:22:54 +00002157MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2158 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00002159 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2160 auto &AA = AM.getResult<AAManager>(F);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002161 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002162}
2163
Geoff Berryb96d3b22016-06-01 21:30:40 +00002164PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2165 FunctionAnalysisManager &AM) {
2166 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00002167 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00002168
2169 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00002170}
2171
Geoff Berryb96d3b22016-06-01 21:30:40 +00002172PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2173 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00002174 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002175
2176 return PreservedAnalyses::all();
2177}
2178
2179char MemorySSAWrapperPass::ID = 0;
2180
2181MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2182 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2183}
2184
2185void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2186
2187void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002188 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002189 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2190 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00002191}
2192
Geoff Berryb96d3b22016-06-01 21:30:40 +00002193bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2194 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2195 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2196 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002197 return false;
2198}
2199
Geoff Berryb96d3b22016-06-01 21:30:40 +00002200void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00002201
Geoff Berryb96d3b22016-06-01 21:30:40 +00002202void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002203 MSSA->print(OS);
2204}
2205
George Burgess IVe1100f52016-02-02 22:46:49 +00002206MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2207
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002208/// Walk the use-def chains starting at \p StartingAccess and find
George Burgess IVe1100f52016-02-02 22:46:49 +00002209/// the MemoryAccess that actually clobbers Loc.
2210///
2211/// \returns our clobbering memory access
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002212MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
George Burgess IV013fd732016-10-28 19:22:46 +00002213 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002214 if (isa<MemoryPhi>(StartingAccess))
2215 return StartingAccess;
2216
2217 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2218 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2219 return StartingUseOrDef;
2220
2221 Instruction *I = StartingUseOrDef->getMemoryInst();
2222
2223 // Conservatively, fences are always clobbers, so don't perform the walk if we
2224 // hit a fence.
Chandler Carruth363ac682019-01-07 05:42:51 +00002225 if (!isa<CallBase>(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002226 return StartingUseOrDef;
2227
2228 UpwardsMemoryQuery Q;
2229 Q.OriginalAccess = StartingUseOrDef;
2230 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002231 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002232 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002233
George Burgess IVe1100f52016-02-02 22:46:49 +00002234 // Unlike the other function, do not walk to the def of a def, because we are
2235 // handed something we already believe is the clobbering access.
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002236 // We never set SkipSelf to true in Q in this method.
George Burgess IVe1100f52016-02-02 22:46:49 +00002237 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2238 ? StartingUseOrDef->getDefiningAccess()
2239 : StartingUseOrDef;
2240
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002241 MemoryAccess *Clobber = Walker.findClobber(DefiningAccess, Q);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002242 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2243 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2244 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2245 LLVM_DEBUG(dbgs() << *Clobber << "\n");
George Burgess IVe1100f52016-02-02 22:46:49 +00002246 return Clobber;
2247}
2248
2249MemoryAccess *
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002250MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(MemoryAccess *MA,
2251 bool SkipSelf) {
George Burgess IV400ae402016-07-20 19:51:34 +00002252 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2253 // If this is a MemoryPhi, we can't do anything.
2254 if (!StartingAccess)
2255 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002256
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002257 bool IsOptimized = false;
2258
Daniel Berlincd2deac2016-10-20 20:13:45 +00002259 // If this is an already optimized use or def, return the optimized result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002260 // Note: Currently, we store the optimized def result in a separate field,
2261 // since we can't use the defining access.
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002262 if (StartingAccess->isOptimized()) {
2263 if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2264 return StartingAccess->getOptimized();
2265 IsOptimized = true;
2266 }
Daniel Berlincd2deac2016-10-20 20:13:45 +00002267
George Burgess IV400ae402016-07-20 19:51:34 +00002268 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV44477c62018-03-11 04:16:12 +00002269 // We can't sanely do anything with a fence, since they conservatively clobber
2270 // all memory, and have no locations to get pointers from to try to
2271 // disambiguate.
Chandler Carruth363ac682019-01-07 05:42:51 +00002272 if (!isa<CallBase>(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002273 return StartingAccess;
2274
Alina Sbirleab4d088d2018-11-13 21:12:49 +00002275 UpwardsMemoryQuery Q(I, StartingAccess);
2276
George Burgess IV024f3d22016-08-03 19:57:02 +00002277 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2278 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
George Burgess IV44477c62018-03-11 04:16:12 +00002279 StartingAccess->setOptimized(LiveOnEntry);
2280 StartingAccess->setOptimizedAccessType(None);
George Burgess IV024f3d22016-08-03 19:57:02 +00002281 return LiveOnEntry;
2282 }
2283
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002284 MemoryAccess *OptimizedAccess;
2285 if (!IsOptimized) {
2286 // Start with the thing we already think clobbers this location
2287 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
George Burgess IVe1100f52016-02-02 22:46:49 +00002288
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002289 // At this point, DefiningAccess may be the live on entry def.
2290 // If it is, we will not get a better result.
2291 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2292 StartingAccess->setOptimized(DefiningAccess);
2293 StartingAccess->setOptimizedAccessType(None);
2294 return DefiningAccess;
2295 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002296
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002297 OptimizedAccess = Walker.findClobber(DefiningAccess, Q);
2298 StartingAccess->setOptimized(OptimizedAccess);
2299 if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2300 StartingAccess->setOptimizedAccessType(None);
2301 else if (Q.AR == MustAlias)
2302 StartingAccess->setOptimizedAccessType(MustAlias);
2303 } else
2304 OptimizedAccess = StartingAccess->getOptimized();
2305
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002306 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002307 LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2308 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2309 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002310
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002311 MemoryAccess *Result;
2312 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2313 isa<MemoryDef>(StartingAccess)) {
2314 assert(isa<MemoryDef>(Q.OriginalAccess));
2315 Q.SkipSelfAccess = true;
2316 Result = Walker.findClobber(OptimizedAccess, Q);
2317 } else
2318 Result = OptimizedAccess;
2319
2320 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2321 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
George Burgess IVe1100f52016-02-02 22:46:49 +00002322
2323 return Result;
2324}
2325
George Burgess IVe1100f52016-02-02 22:46:49 +00002326MemoryAccess *
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002327MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2328 return Walker->getClobberingMemoryAccessBase(MA, false);
2329}
2330
2331MemoryAccess *
2332MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA,
2333 const MemoryLocation &Loc) {
2334 return Walker->getClobberingMemoryAccessBase(MA, Loc);
2335}
2336
2337MemoryAccess *
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00002338MemorySSA::SkipSelfWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2339 return Walker->getClobberingMemoryAccessBase(MA, true);
2340}
2341
2342MemoryAccess *
2343MemorySSA::SkipSelfWalker::getClobberingMemoryAccess(MemoryAccess *MA,
2344 const MemoryLocation &Loc) {
2345 return Walker->getClobberingMemoryAccessBase(MA, Loc);
2346}
2347
2348MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002349DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002350 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2351 return Use->getDefiningAccess();
2352 return MA;
2353}
2354
2355MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002356 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002357 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2358 return Use->getDefiningAccess();
2359 return StartingAccess;
2360}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002361
2362void MemoryPhi::deleteMe(DerivedUser *Self) {
2363 delete static_cast<MemoryPhi *>(Self);
2364}
2365
2366void MemoryDef::deleteMe(DerivedUser *Self) {
2367 delete static_cast<MemoryDef *>(Self);
2368}
2369
2370void MemoryUse::deleteMe(DerivedUser *Self) {
2371 delete static_cast<MemoryUse *>(Self);
2372}