blob: 586786d29e945eab6a18c5f4fc40949bdaa10302 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Chandler Carruth705b1852015-01-31 03:43:40 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000083 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000084 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000085 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000086 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000087 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000088 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Wei Mi062c7442015-05-06 17:12:25 +000098unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
99 // If the loop will not be vectorized, don't interleave the loop.
100 // Let regular unroll to unroll the loop, which saves the overflow
101 // check and memory check cost.
102 if (VF == 1)
103 return 1;
104
Nadav Rotemb696c362013-01-09 01:15:42 +0000105 if (ST->isAtom())
106 return 1;
107
108 // Sandybridge and Haswell have multiple execution ports and pipelined
109 // vector units.
110 if (ST->hasAVX())
111 return 4;
112
113 return 2;
114}
115
Chandler Carruth93205eb2015-08-05 18:08:10 +0000116int X86TTIImpl::getArithmeticInstrCost(
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000117 unsigned Opcode, Type *Ty,
118 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
119 TTI::OperandValueProperties Opd1PropInfo,
120 TTI::OperandValueProperties Opd2PropInfo,
121 ArrayRef<const Value *> Args) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000122 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000123 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000124
125 int ISD = TLI->InstructionOpcodeToISD(Opcode);
126 assert(ISD && "Invalid opcode");
127
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000128 static const CostTblEntry SLMCostTable[] = {
129 { ISD::MUL, MVT::v4i32, 11 }, // pmulld
130 { ISD::MUL, MVT::v8i16, 2 }, // pmullw
131 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
132 { ISD::FMUL, MVT::f64, 2 }, // mulsd
133 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
134 { ISD::FMUL, MVT::v4f32, 2 }, // mulps
135 { ISD::FDIV, MVT::f32, 17 }, // divss
136 { ISD::FDIV, MVT::v4f32, 39 }, // divps
137 { ISD::FDIV, MVT::f64, 32 }, // divsd
138 { ISD::FDIV, MVT::v2f64, 69 }, // divpd
139 { ISD::FADD, MVT::v2f64, 2 }, // addpd
140 { ISD::FSUB, MVT::v2f64, 2 }, // subpd
141 // v2i64/v4i64 mul is custom lowered as a series of long
142 // multiplies(3), shifts(3) and adds(2).
143 // slm muldq version throughput is 2
144 { ISD::MUL, MVT::v2i64, 11 },
145 };
146
147 if (ST->isSLM()) {
148 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
149 // Check if the operands can be shrinked into a smaller datatype.
150 bool Op1Signed = false;
151 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
152 bool Op2Signed = false;
153 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
154
155 bool signedMode = Op1Signed | Op2Signed;
156 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
157
158 if (OpMinSize <= 7)
159 return LT.first * 3; // pmullw/sext
160 if (!signedMode && OpMinSize <= 8)
161 return LT.first * 3; // pmullw/zext
162 if (OpMinSize <= 15)
163 return LT.first * 5; // pmullw/pmulhw/pshuf
164 if (!signedMode && OpMinSize <= 16)
165 return LT.first * 5; // pmullw/pmulhw/pshuf
166 }
167 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
168 LT.second)) {
169 return LT.first * Entry->Cost;
170 }
171 }
172
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000173 if (ISD == ISD::SDIV &&
174 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
175 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
176 // On X86, vector signed division by constants power-of-two are
177 // normally expanded to the sequence SRA + SRL + ADD + SRA.
178 // The OperandValue properties many not be same as that of previous
179 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000180 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
181 Op2Info, TargetTransformInfo::OP_None,
182 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000183 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
184 TargetTransformInfo::OP_None,
185 TargetTransformInfo::OP_None);
186 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
187 TargetTransformInfo::OP_None,
188 TargetTransformInfo::OP_None);
189
190 return Cost;
191 }
192
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000193 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000194 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
195 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
196 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
197
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000198 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
199 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
200 };
201
202 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
203 ST->hasBWI()) {
204 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
205 LT.second))
206 return LT.first * Entry->Cost;
207 }
208
209 static const CostTblEntry AVX512UniformConstCostTable[] = {
210 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
211 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
212 };
213
214 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
215 ST->hasAVX512()) {
216 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
217 LT.second))
218 return LT.first * Entry->Cost;
219 }
220
Craig Topper4b275762015-10-28 04:02:12 +0000221 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000222 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
223 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
224 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
225
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000226 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
227
Benjamin Kramer7c372272014-04-26 14:53:05 +0000228 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
229 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
230 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
231 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
232 };
233
234 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
235 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000236 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
237 LT.second))
238 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000239 }
240
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000241 static const CostTblEntry SSE2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000242 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
243 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
244 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
245
246 { ISD::SHL, MVT::v32i8, 4 }, // 2*(psllw + pand).
247 { ISD::SRL, MVT::v32i8, 4 }, // 2*(psrlw + pand).
248 { ISD::SRA, MVT::v32i8, 8 }, // 2*(psrlw, pand, pxor, psubb).
249
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000250 { ISD::SDIV, MVT::v16i16, 12 }, // pmulhw sequence
251 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
252 { ISD::UDIV, MVT::v16i16, 12 }, // pmulhuw sequence
253 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
254 { ISD::SDIV, MVT::v8i32, 38 }, // pmuludq sequence
255 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
256 { ISD::UDIV, MVT::v8i32, 30 }, // pmuludq sequence
257 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
258 };
259
260 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
261 ST->hasSSE2()) {
262 // pmuldq sequence.
263 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
264 return LT.first * 30;
265 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
266 return LT.first * 15;
267
268 if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
269 LT.second))
270 return LT.first * Entry->Cost;
271 }
272
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000273 static const CostTblEntry AVX2UniformCostTable[] = {
274 // Uniform splats are cheaper for the following instructions.
275 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
276 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
277 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
278 };
279
280 if (ST->hasAVX2() &&
281 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
282 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
283 if (const auto *Entry =
284 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
285 return LT.first * Entry->Cost;
286 }
287
288 static const CostTblEntry SSE2UniformCostTable[] = {
289 // Uniform splats are cheaper for the following instructions.
290 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
291 { ISD::SHL, MVT::v4i32, 1 }, // pslld
292 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
293
294 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
295 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
296 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
297
298 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
299 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
300 };
301
302 if (ST->hasSSE2() &&
303 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
304 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
305 if (const auto *Entry =
306 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
307 return LT.first * Entry->Cost;
308 }
309
Simon Pilgrim820e1322016-10-27 15:27:00 +0000310 static const CostTblEntry AVX512DQCostTable[] = {
311 { ISD::MUL, MVT::v2i64, 1 },
312 { ISD::MUL, MVT::v4i64, 1 },
313 { ISD::MUL, MVT::v8i64, 1 }
314 };
315
316 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000317 if (ST->hasDQI())
318 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000319 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000320
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000321 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrima4109d62017-01-07 17:54:10 +0000322 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
323 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
324 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
325
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000326 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
327 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
328 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
329
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000330 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
331 { ISD::SDIV, MVT::v64i8, 64*20 },
332 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000333 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000334 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000335 };
336
337 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000338 if (ST->hasBWI())
339 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000340 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000341
Craig Topper4b275762015-10-28 04:02:12 +0000342 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000343 { ISD::SHL, MVT::v16i32, 1 },
344 { ISD::SRL, MVT::v16i32, 1 },
345 { ISD::SRA, MVT::v16i32, 1 },
346 { ISD::SHL, MVT::v8i64, 1 },
347 { ISD::SRL, MVT::v8i64, 1 },
348 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000349
Simon Pilgrimd8333372017-01-06 11:12:53 +0000350 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
351 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
352 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
353 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
354
355 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
356 { ISD::SDIV, MVT::v16i32, 16*20 },
357 { ISD::SDIV, MVT::v8i64, 8*20 },
358 { ISD::UDIV, MVT::v16i32, 16*20 },
359 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000360 };
361
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000362 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000363 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
364 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000365
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000366 static const CostTblEntry AVX2ShiftCostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000367 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
368 // customize them to detect the cases where shift amount is a scalar one.
369 { ISD::SHL, MVT::v4i32, 1 },
370 { ISD::SRL, MVT::v4i32, 1 },
371 { ISD::SRA, MVT::v4i32, 1 },
372 { ISD::SHL, MVT::v8i32, 1 },
373 { ISD::SRL, MVT::v8i32, 1 },
374 { ISD::SRA, MVT::v8i32, 1 },
375 { ISD::SHL, MVT::v2i64, 1 },
376 { ISD::SRL, MVT::v2i64, 1 },
377 { ISD::SHL, MVT::v4i64, 1 },
378 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000379 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000380
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000381 // Look for AVX2 lowering tricks.
382 if (ST->hasAVX2()) {
383 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
384 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
385 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
386 // On AVX2, a packed v16i16 shift left by a constant build_vector
387 // is lowered into a vector multiply (vpmullw).
388 return LT.first;
389
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000390 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000391 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000392 }
393
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000394 static const CostTblEntry XOPShiftCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000395 // 128bit shifts take 1cy, but right shifts require negation beforehand.
396 { ISD::SHL, MVT::v16i8, 1 },
397 { ISD::SRL, MVT::v16i8, 2 },
398 { ISD::SRA, MVT::v16i8, 2 },
399 { ISD::SHL, MVT::v8i16, 1 },
400 { ISD::SRL, MVT::v8i16, 2 },
401 { ISD::SRA, MVT::v8i16, 2 },
402 { ISD::SHL, MVT::v4i32, 1 },
403 { ISD::SRL, MVT::v4i32, 2 },
404 { ISD::SRA, MVT::v4i32, 2 },
405 { ISD::SHL, MVT::v2i64, 1 },
406 { ISD::SRL, MVT::v2i64, 2 },
407 { ISD::SRA, MVT::v2i64, 2 },
408 // 256bit shifts require splitting if AVX2 didn't catch them above.
409 { ISD::SHL, MVT::v32i8, 2 },
410 { ISD::SRL, MVT::v32i8, 4 },
411 { ISD::SRA, MVT::v32i8, 4 },
412 { ISD::SHL, MVT::v16i16, 2 },
413 { ISD::SRL, MVT::v16i16, 4 },
414 { ISD::SRA, MVT::v16i16, 4 },
415 { ISD::SHL, MVT::v8i32, 2 },
416 { ISD::SRL, MVT::v8i32, 4 },
417 { ISD::SRA, MVT::v8i32, 4 },
418 { ISD::SHL, MVT::v4i64, 2 },
419 { ISD::SRL, MVT::v4i64, 4 },
420 { ISD::SRA, MVT::v4i64, 4 },
421 };
422
423 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000424 if (ST->hasXOP())
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000425 if (const auto *Entry = CostTableLookup(XOPShiftCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000426 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000427
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000428 static const CostTblEntry SSE2UniformShiftCostTable[] = {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000429 // Uniform splats are cheaper for the following instructions.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000430 { ISD::SHL, MVT::v16i16, 2 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000431 { ISD::SHL, MVT::v8i32, 2 }, // pslld
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000432 { ISD::SHL, MVT::v4i64, 2 }, // psllq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000433
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000434 { ISD::SRL, MVT::v16i16, 2 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000435 { ISD::SRL, MVT::v8i32, 2 }, // psrld.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000436 { ISD::SRL, MVT::v4i64, 2 }, // psrlq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000437
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000438 { ISD::SRA, MVT::v16i16, 2 }, // psraw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000439 { ISD::SRA, MVT::v8i32, 2 }, // psrad.
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000440 { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000441 { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000442 };
443
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000444 if (ST->hasSSE2() &&
445 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
446 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000447 if (const auto *Entry =
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000448 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000449 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000450 }
451
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000452 if (ISD == ISD::SHL &&
453 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000454 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000455 // Vector shift left by non uniform constant can be lowered
Simon Pilgrime70644d2017-01-07 21:33:00 +0000456 // into vector multiply.
457 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
458 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000459 ISD = ISD::MUL;
460 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000461
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000462 static const CostTblEntry AVX2CostTable[] = {
463 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
464 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
465
466 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
467 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
468
469 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
470 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
471 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
472 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
473
474 { ISD::SUB, MVT::v32i8, 1 }, // psubb
475 { ISD::ADD, MVT::v32i8, 1 }, // paddb
476 { ISD::SUB, MVT::v16i16, 1 }, // psubw
477 { ISD::ADD, MVT::v16i16, 1 }, // paddw
478 { ISD::SUB, MVT::v8i32, 1 }, // psubd
479 { ISD::ADD, MVT::v8i32, 1 }, // paddd
480 { ISD::SUB, MVT::v4i64, 1 }, // psubq
481 { ISD::ADD, MVT::v4i64, 1 }, // paddq
482
483 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
484 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
485 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
486 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
487 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
488
489 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
490 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
491 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
492 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
493 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
494 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
495 };
496
497 // Look for AVX2 lowering tricks for custom cases.
498 if (ST->hasAVX2())
499 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
500 return LT.first * Entry->Cost;
501
Simon Pilgrim100eae12017-01-07 17:03:51 +0000502 static const CostTblEntry AVX1CostTable[] = {
503 // We don't have to scalarize unsupported ops. We can issue two half-sized
504 // operations and we only need to extract the upper YMM half.
505 // Two ops + 1 extract + 1 insert = 4.
Simon Pilgrim72599712017-01-07 18:19:25 +0000506 { ISD::MUL, MVT::v16i16, 4 },
507 { ISD::MUL, MVT::v8i32, 4 },
508 { ISD::SUB, MVT::v32i8, 4 },
509 { ISD::ADD, MVT::v32i8, 4 },
510 { ISD::SUB, MVT::v16i16, 4 },
511 { ISD::ADD, MVT::v16i16, 4 },
512 { ISD::SUB, MVT::v8i32, 4 },
513 { ISD::ADD, MVT::v8i32, 4 },
514 { ISD::SUB, MVT::v4i64, 4 },
515 { ISD::ADD, MVT::v4i64, 4 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000516
517 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
518 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
519 // Because we believe v4i64 to be a legal type, we must also include the
520 // extract+insert in the cost table. Therefore, the cost here is 18
521 // instead of 8.
Simon Pilgrim72599712017-01-07 18:19:25 +0000522 { ISD::MUL, MVT::v4i64, 18 },
523
524 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
525
526 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
527 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
528 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
529 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
530 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
531 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
532
533 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
534 { ISD::SDIV, MVT::v32i8, 32*20 },
535 { ISD::SDIV, MVT::v16i16, 16*20 },
536 { ISD::SDIV, MVT::v8i32, 8*20 },
537 { ISD::SDIV, MVT::v4i64, 4*20 },
538 { ISD::UDIV, MVT::v32i8, 32*20 },
539 { ISD::UDIV, MVT::v16i16, 16*20 },
540 { ISD::UDIV, MVT::v8i32, 8*20 },
541 { ISD::UDIV, MVT::v4i64, 4*20 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000542 };
543
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000544 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000545 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
546 return LT.first * Entry->Cost;
547
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000548 static const CostTblEntry SSE42CostTable[] = {
549 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
550 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
551 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
552 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
553 };
554
555 if (ST->hasSSE42())
556 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
557 return LT.first * Entry->Cost;
558
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000559 static const CostTblEntry SSE41CostTable[] = {
560 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
561 { ISD::SHL, MVT::v32i8, 2*11 }, // pblendvb sequence.
562 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
563 { ISD::SHL, MVT::v16i16, 2*14 }, // pblendvb sequence.
Simon Pilgrim9681c402017-01-07 22:27:43 +0000564 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
565 { ISD::SHL, MVT::v8i32, 2*4 }, // pslld/paddd/cvttps2dq/pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000566
567 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
568 { ISD::SRL, MVT::v32i8, 2*12 }, // pblendvb sequence.
569 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
570 { ISD::SRL, MVT::v16i16, 2*14 }, // pblendvb sequence.
571 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
572 { ISD::SRL, MVT::v8i32, 2*11 }, // Shift each lane + blend.
573
574 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
575 { ISD::SRA, MVT::v32i8, 2*24 }, // pblendvb sequence.
576 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
577 { ISD::SRA, MVT::v16i16, 2*14 }, // pblendvb sequence.
578 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
579 { ISD::SRA, MVT::v8i32, 2*12 }, // Shift each lane + blend.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000580
581 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000582 };
583
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000584 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000585 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
586 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000587
Craig Topper4b275762015-10-28 04:02:12 +0000588 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000589 // We don't correctly identify costs of casts because they are marked as
590 // custom.
Simon Pilgrim59656802015-06-11 07:46:37 +0000591 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
592 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
593 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000594 { ISD::SHL, MVT::v8i32, 2*2*5 }, // We optimized this using mul.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000595 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000596 { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000597
598 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
599 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
600 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000601 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000602 { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000603
604 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
605 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
606 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000607 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000608 { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000609
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000610 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
Simon Pilgrime70644d2017-01-07 21:33:00 +0000611 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000612 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
Simon Pilgrima8bf9752017-01-05 19:01:50 +0000613 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000614
Alexey Bataevd07c7312016-10-31 12:10:53 +0000615 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
616 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
617 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
618 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
619
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000620 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000621 // in the process we will often end up having to spilling regular
622 // registers. The overhead of division is going to dominate most kernels
623 // anyways so try hard to prevent vectorization of division - it is
624 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
625 // to hide "20 cycles" for each lane.
626 { ISD::SDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000627 { ISD::SDIV, MVT::v8i16, 8*20 },
628 { ISD::SDIV, MVT::v4i32, 4*20 },
629 { ISD::SDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000630 { ISD::UDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000631 { ISD::UDIV, MVT::v8i16, 8*20 },
632 { ISD::UDIV, MVT::v4i32, 4*20 },
633 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000634 };
635
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000636 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000637 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
638 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000639
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000640 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000641 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
642 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
643 };
644
645 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000646 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000647 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000648
Chandler Carruth664e3542013-01-07 01:37:14 +0000649 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000650 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000651}
652
Chandler Carruth93205eb2015-08-05 18:08:10 +0000653int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
654 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000655 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
656 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
657 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000658
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000659 // For Broadcasts we are splatting the first element from the first input
660 // register, so only need to reference that input and all the output
661 // registers are the same.
662 if (Kind == TTI::SK_Broadcast)
663 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000664
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000665 // We are going to permute multiple sources and the result will be in multiple
666 // destinations. Providing an accurate cost only for splits where the element
667 // type remains the same.
668 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
669 MVT LegalVT = LT.second;
670 if (LegalVT.getVectorElementType().getSizeInBits() ==
671 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
672 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000673
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000674 unsigned VecTySize = DL.getTypeStoreSize(Tp);
675 unsigned LegalVTSize = LegalVT.getStoreSize();
676 // Number of source vectors after legalization:
677 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
678 // Number of destination vectors after legalization:
679 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000680
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000681 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
682 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000683
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000684 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
685 return NumOfShuffles *
686 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
687 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000688
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000689 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
690 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000691
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000692 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
693 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000694 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000695 int NumOfDests = LT.first;
696 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000697 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000698 }
699
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000700 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
701 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
702 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
703
704 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
705 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
706
707 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
708 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
709 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
710 };
711
712 if (ST->hasVBMI())
713 if (const auto *Entry =
714 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
715 return LT.first * Entry->Cost;
716
717 static const CostTblEntry AVX512BWShuffleTbl[] = {
718 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
719 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
720
721 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
722 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000723 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000724
725 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
726 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
727 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
728 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
729 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
730
731 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
732 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
733 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
734 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
735 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
736 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
737 };
738
739 if (ST->hasBWI())
740 if (const auto *Entry =
741 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
742 return LT.first * Entry->Cost;
743
744 static const CostTblEntry AVX512ShuffleTbl[] = {
745 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
746 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
747 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
748 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
749
750 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
751 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
752 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
753 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
754
755 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
756 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
757 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
758 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
759 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
760 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
761 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
762 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
763 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
764 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
765 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
766 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
767 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
768
769 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
770 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
771 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
772 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
773 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
774 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
775 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
776 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
777 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
778 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
779 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
780 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
781 };
782
783 if (ST->hasAVX512())
784 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
785 return LT.first * Entry->Cost;
786
787 static const CostTblEntry AVX2ShuffleTbl[] = {
788 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
789 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
790 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
791 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
792 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
793 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
794
795 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
796 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
797 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
798 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
799 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
800 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
801
802 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
803 { TTI::SK_Alternate, MVT::v32i8, 1 } // vpblendvb
804 };
805
806 if (ST->hasAVX2())
807 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
808 return LT.first * Entry->Cost;
809
810 static const CostTblEntry AVX1ShuffleTbl[] = {
811 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
812 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
813 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
814 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
815 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
816 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
817
818 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
819 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
820 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
821 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
822 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
823 // + vinsertf128
824 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
825 // + vinsertf128
826
827 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
828 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
829 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
830 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
831 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
832 { TTI::SK_Alternate, MVT::v32i8, 3 } // vpand + vpandn + vpor
833 };
834
835 if (ST->hasAVX())
836 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
837 return LT.first * Entry->Cost;
838
839 static const CostTblEntry SSE41ShuffleTbl[] = {
840 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
841 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
842 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
843 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
844 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
845 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
846 };
847
848 if (ST->hasSSE41())
849 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
850 return LT.first * Entry->Cost;
851
852 static const CostTblEntry SSSE3ShuffleTbl[] = {
853 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
854 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
855
856 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
857 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
858
859 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pshufb + pshufb + por
860 { TTI::SK_Alternate, MVT::v16i8, 3 } // pshufb + pshufb + por
861 };
862
863 if (ST->hasSSSE3())
864 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
865 return LT.first * Entry->Cost;
866
867 static const CostTblEntry SSE2ShuffleTbl[] = {
868 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
869 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
870 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
871 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
872 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
873
874 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
875 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
876 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
877 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
878 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
879 // + 2*pshufd + 2*unpck + packus
880
881 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
882 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
883 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
884 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
885 { TTI::SK_Alternate, MVT::v16i8, 3 } // pand + pandn + por
886 };
887
888 if (ST->hasSSE2())
889 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
890 return LT.first * Entry->Cost;
891
892 static const CostTblEntry SSE1ShuffleTbl[] = {
893 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
894 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
895 { TTI::SK_Alternate, MVT::v4f32, 2 } // 2*shufps
896 };
897
898 if (ST->hasSSE1())
899 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
900 return LT.first * Entry->Cost;
901
Chandler Carruth705b1852015-01-31 03:43:40 +0000902 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000903}
904
Chandler Carruth93205eb2015-08-05 18:08:10 +0000905int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000906 int ISD = TLI->InstructionOpcodeToISD(Opcode);
907 assert(ISD && "Invalid opcode");
908
Cong Hou59898d82015-12-11 00:31:39 +0000909 // FIXME: Need a better design of the cost table to handle non-simple types of
910 // potential massive combinations (elem_num x src_type x dst_type).
911
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000912 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000913 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
914 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000915 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
916 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000917 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
918 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
919
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000920 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000921 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000922 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000923 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000924 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000925 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000926
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000927 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000928 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000929 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000930 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000931 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000932 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
933
934 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
935 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
936 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
937 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
938 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
939 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000940 };
941
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000942 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
943 // 256-bit wide vectors.
944
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000945 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000946 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
947 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
948 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000949
950 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
951 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
952 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
953 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000954
955 // v16i1 -> v16i32 - load + broadcast
956 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
957 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000958 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
959 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
960 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
961 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000962 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
963 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000964 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
965 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000966
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000967 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000968 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000969 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000970 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000971 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000972 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
973 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000974 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000975 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
976 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000977
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000978 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000979 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000980 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000981 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
982 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
983 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
984 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000985 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000986 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
987 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
988 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
989 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000990 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000991 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000992 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
993 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
994 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
995 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
996 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000997 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000998 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
999 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
1000 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
1001
1002 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1003 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1004 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
1005 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001006 };
1007
Craig Topper4b275762015-10-28 04:02:12 +00001008 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001009 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1010 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001011 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1012 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001013 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
1014 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001015 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1016 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1017 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1018 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001019 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1020 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001021 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1022 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001023 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1024 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1025
1026 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
1027 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
1028 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
1029 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
1030 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
1031 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001032
1033 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
1034 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +00001035
1036 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001037 };
1038
Craig Topper4b275762015-10-28 04:02:12 +00001039 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001040 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1041 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001042 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1043 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001044 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
1045 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001046 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
1047 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1048 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1049 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001050 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
1051 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001052 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1053 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001054 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1055 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1056
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001057 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1058 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1059 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001060 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1061 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1062 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001063 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001064
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001065 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001066 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001067 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1068 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001069 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001070 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1071 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001072 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001073 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1074 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001075 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001076 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001077
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001078 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001079 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001080 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1081 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001082 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001083 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1084 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001085 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001086 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001087 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001088 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001089 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001090 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001091 // The generic code to compute the scalar overhead is currently broken.
1092 // Workaround this limitation by estimating the scalarization overhead
1093 // here. We have roughly 10 instructions per scalar element.
1094 // Multiply that by the vector width.
1095 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001096 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1097 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1098 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1099 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001100
Renato Goline1fb0592013-01-20 20:57:20 +00001101 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001102 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001103 // This node is expanded into scalarized operations but BasicTTI is overly
1104 // optimistic estimating its cost. It computes 3 per element (one
1105 // vector-extract, one scalar conversion and one vector-insert). The
1106 // problem is that the inserts form a read-modify-write chain so latency
1107 // should be factored in too. Inflating the cost per element by 1.
1108 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001109 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001110
1111 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1112 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001113 };
1114
Cong Hou59898d82015-12-11 00:31:39 +00001115 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001116 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1117 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001118 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1119 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1120 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1121 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001122
Cong Hou59898d82015-12-11 00:31:39 +00001123 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1124 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001125 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1126 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1127 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1128 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1129 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1130 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1131 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1132 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1133 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1134 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1135 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1136 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1137 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1138 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1139 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1140 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001141
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001142 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1143 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1144 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001145 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001146 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001147 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001148 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1149
Cong Hou59898d82015-12-11 00:31:39 +00001150 };
1151
1152 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001153 // These are somewhat magic numbers justified by looking at the output of
1154 // Intel's IACA, running some kernels and making sure when we take
1155 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001156 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001157 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1158 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1159 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001160 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001161 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1162 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1163 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001164
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001165 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1166 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1167 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1168 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1169 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1170 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1171 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1172 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001173
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001174 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1175
Cong Hou59898d82015-12-11 00:31:39 +00001176 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1177 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001178 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1179 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1180 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1181 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1182 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1183 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1184 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1185 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1186 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1187 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1188 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1189 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1190 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1191 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1192 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1193 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1194 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1195 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1196 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001197 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001198 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1199 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001200
Cong Hou59898d82015-12-11 00:31:39 +00001201 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001202 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1203 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1204 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1205 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1206 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1207 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1208 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1209 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001210 };
1211
Chandler Carruth93205eb2015-08-05 18:08:10 +00001212 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1213 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001214
1215 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001216 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001217 LTDest.second, LTSrc.second))
1218 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001219 }
1220
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001221 EVT SrcTy = TLI->getValueType(DL, Src);
1222 EVT DstTy = TLI->getValueType(DL, Dst);
1223
1224 // The function getSimpleVT only handles simple value types.
1225 if (!SrcTy.isSimple() || !DstTy.isSimple())
1226 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1227
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001228 if (ST->hasDQI())
1229 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1230 DstTy.getSimpleVT(),
1231 SrcTy.getSimpleVT()))
1232 return Entry->Cost;
1233
1234 if (ST->hasAVX512())
1235 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1236 DstTy.getSimpleVT(),
1237 SrcTy.getSimpleVT()))
1238 return Entry->Cost;
1239
Tim Northoverf0e21612014-02-06 18:18:36 +00001240 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001241 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1242 DstTy.getSimpleVT(),
1243 SrcTy.getSimpleVT()))
1244 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001245 }
1246
Chandler Carruth664e3542013-01-07 01:37:14 +00001247 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001248 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1249 DstTy.getSimpleVT(),
1250 SrcTy.getSimpleVT()))
1251 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001252 }
1253
Cong Hou59898d82015-12-11 00:31:39 +00001254 if (ST->hasSSE41()) {
1255 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1256 DstTy.getSimpleVT(),
1257 SrcTy.getSimpleVT()))
1258 return Entry->Cost;
1259 }
1260
1261 if (ST->hasSSE2()) {
1262 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1263 DstTy.getSimpleVT(),
1264 SrcTy.getSimpleVT()))
1265 return Entry->Cost;
1266 }
1267
Chandler Carruth705b1852015-01-31 03:43:40 +00001268 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001269}
1270
Chandler Carruth93205eb2015-08-05 18:08:10 +00001271int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001272 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001273 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001274
1275 MVT MTy = LT.second;
1276
1277 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1278 assert(ISD && "Invalid opcode");
1279
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001280 static const CostTblEntry SSE2CostTbl[] = {
1281 { ISD::SETCC, MVT::v2i64, 8 },
1282 { ISD::SETCC, MVT::v4i32, 1 },
1283 { ISD::SETCC, MVT::v8i16, 1 },
1284 { ISD::SETCC, MVT::v16i8, 1 },
1285 };
1286
Craig Topper4b275762015-10-28 04:02:12 +00001287 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001288 { ISD::SETCC, MVT::v2f64, 1 },
1289 { ISD::SETCC, MVT::v4f32, 1 },
1290 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001291 };
1292
Craig Topper4b275762015-10-28 04:02:12 +00001293 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001294 { ISD::SETCC, MVT::v4f64, 1 },
1295 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001296 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001297 { ISD::SETCC, MVT::v4i64, 4 },
1298 { ISD::SETCC, MVT::v8i32, 4 },
1299 { ISD::SETCC, MVT::v16i16, 4 },
1300 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001301 };
1302
Craig Topper4b275762015-10-28 04:02:12 +00001303 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001304 { ISD::SETCC, MVT::v4i64, 1 },
1305 { ISD::SETCC, MVT::v8i32, 1 },
1306 { ISD::SETCC, MVT::v16i16, 1 },
1307 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001308 };
1309
Craig Topper4b275762015-10-28 04:02:12 +00001310 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001311 { ISD::SETCC, MVT::v8i64, 1 },
1312 { ISD::SETCC, MVT::v16i32, 1 },
1313 { ISD::SETCC, MVT::v8f64, 1 },
1314 { ISD::SETCC, MVT::v16f32, 1 },
1315 };
1316
Craig Topperee0c8592015-10-27 04:14:24 +00001317 if (ST->hasAVX512())
1318 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1319 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001320
Craig Topperee0c8592015-10-27 04:14:24 +00001321 if (ST->hasAVX2())
1322 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1323 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001324
Craig Topperee0c8592015-10-27 04:14:24 +00001325 if (ST->hasAVX())
1326 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1327 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001328
Craig Topperee0c8592015-10-27 04:14:24 +00001329 if (ST->hasSSE42())
1330 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1331 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001332
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001333 if (ST->hasSSE2())
1334 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1335 return LT.first * Entry->Cost;
1336
Chandler Carruth705b1852015-01-31 03:43:40 +00001337 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001338}
1339
Simon Pilgrim14000b32016-05-24 08:17:50 +00001340int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1341 ArrayRef<Type *> Tys, FastMathFlags FMF) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001342 // Costs should match the codegen from:
1343 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1344 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001345 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001346 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001347 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim14000b32016-05-24 08:17:50 +00001348 static const CostTblEntry XOPCostTbl[] = {
1349 { ISD::BITREVERSE, MVT::v4i64, 4 },
1350 { ISD::BITREVERSE, MVT::v8i32, 4 },
1351 { ISD::BITREVERSE, MVT::v16i16, 4 },
1352 { ISD::BITREVERSE, MVT::v32i8, 4 },
1353 { ISD::BITREVERSE, MVT::v2i64, 1 },
1354 { ISD::BITREVERSE, MVT::v4i32, 1 },
1355 { ISD::BITREVERSE, MVT::v8i16, 1 },
1356 { ISD::BITREVERSE, MVT::v16i8, 1 },
1357 { ISD::BITREVERSE, MVT::i64, 3 },
1358 { ISD::BITREVERSE, MVT::i32, 3 },
1359 { ISD::BITREVERSE, MVT::i16, 3 },
1360 { ISD::BITREVERSE, MVT::i8, 3 }
1361 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001362 static const CostTblEntry AVX2CostTbl[] = {
1363 { ISD::BITREVERSE, MVT::v4i64, 5 },
1364 { ISD::BITREVERSE, MVT::v8i32, 5 },
1365 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001366 { ISD::BITREVERSE, MVT::v32i8, 5 },
1367 { ISD::BSWAP, MVT::v4i64, 1 },
1368 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001369 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001370 { ISD::CTLZ, MVT::v4i64, 23 },
1371 { ISD::CTLZ, MVT::v8i32, 18 },
1372 { ISD::CTLZ, MVT::v16i16, 14 },
1373 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001374 { ISD::CTPOP, MVT::v4i64, 7 },
1375 { ISD::CTPOP, MVT::v8i32, 11 },
1376 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001377 { ISD::CTPOP, MVT::v32i8, 6 },
1378 { ISD::CTTZ, MVT::v4i64, 10 },
1379 { ISD::CTTZ, MVT::v8i32, 14 },
1380 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001381 { ISD::CTTZ, MVT::v32i8, 9 },
1382 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1383 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1384 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1385 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1386 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1387 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001388 };
1389 static const CostTblEntry AVX1CostTbl[] = {
1390 { ISD::BITREVERSE, MVT::v4i64, 10 },
1391 { ISD::BITREVERSE, MVT::v8i32, 10 },
1392 { ISD::BITREVERSE, MVT::v16i16, 10 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001393 { ISD::BITREVERSE, MVT::v32i8, 10 },
1394 { ISD::BSWAP, MVT::v4i64, 4 },
1395 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001396 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001397 { ISD::CTLZ, MVT::v4i64, 46 },
1398 { ISD::CTLZ, MVT::v8i32, 36 },
1399 { ISD::CTLZ, MVT::v16i16, 28 },
1400 { ISD::CTLZ, MVT::v32i8, 18 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001401 { ISD::CTPOP, MVT::v4i64, 14 },
1402 { ISD::CTPOP, MVT::v8i32, 22 },
1403 { ISD::CTPOP, MVT::v16i16, 18 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001404 { ISD::CTPOP, MVT::v32i8, 12 },
1405 { ISD::CTTZ, MVT::v4i64, 20 },
1406 { ISD::CTTZ, MVT::v8i32, 28 },
1407 { ISD::CTTZ, MVT::v16i16, 24 },
1408 { ISD::CTTZ, MVT::v32i8, 18 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001409 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1410 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1411 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1412 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1413 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1414 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1415 };
1416 static const CostTblEntry SSE42CostTbl[] = {
1417 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1418 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001419 };
1420 static const CostTblEntry SSSE3CostTbl[] = {
1421 { ISD::BITREVERSE, MVT::v2i64, 5 },
1422 { ISD::BITREVERSE, MVT::v4i32, 5 },
1423 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001424 { ISD::BITREVERSE, MVT::v16i8, 5 },
1425 { ISD::BSWAP, MVT::v2i64, 1 },
1426 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001427 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001428 { ISD::CTLZ, MVT::v2i64, 23 },
1429 { ISD::CTLZ, MVT::v4i32, 18 },
1430 { ISD::CTLZ, MVT::v8i16, 14 },
1431 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001432 { ISD::CTPOP, MVT::v2i64, 7 },
1433 { ISD::CTPOP, MVT::v4i32, 11 },
1434 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001435 { ISD::CTPOP, MVT::v16i8, 6 },
1436 { ISD::CTTZ, MVT::v2i64, 10 },
1437 { ISD::CTTZ, MVT::v4i32, 14 },
1438 { ISD::CTTZ, MVT::v8i16, 12 },
1439 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001440 };
1441 static const CostTblEntry SSE2CostTbl[] = {
1442 { ISD::BSWAP, MVT::v2i64, 7 },
1443 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001444 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001445 { ISD::CTLZ, MVT::v2i64, 25 },
1446 { ISD::CTLZ, MVT::v4i32, 26 },
1447 { ISD::CTLZ, MVT::v8i16, 20 },
1448 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001449 { ISD::CTPOP, MVT::v2i64, 12 },
1450 { ISD::CTPOP, MVT::v4i32, 15 },
1451 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001452 { ISD::CTPOP, MVT::v16i8, 10 },
1453 { ISD::CTTZ, MVT::v2i64, 14 },
1454 { ISD::CTTZ, MVT::v4i32, 18 },
1455 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001456 { ISD::CTTZ, MVT::v16i8, 13 },
1457 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1458 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1459 };
1460 static const CostTblEntry SSE1CostTbl[] = {
1461 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1462 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001463 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001464
1465 unsigned ISD = ISD::DELETED_NODE;
1466 switch (IID) {
1467 default:
1468 break;
1469 case Intrinsic::bitreverse:
1470 ISD = ISD::BITREVERSE;
1471 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001472 case Intrinsic::bswap:
1473 ISD = ISD::BSWAP;
1474 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001475 case Intrinsic::ctlz:
1476 ISD = ISD::CTLZ;
1477 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001478 case Intrinsic::ctpop:
1479 ISD = ISD::CTPOP;
1480 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001481 case Intrinsic::cttz:
1482 ISD = ISD::CTTZ;
1483 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001484 case Intrinsic::sqrt:
1485 ISD = ISD::FSQRT;
1486 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001487 }
1488
1489 // Legalize the type.
1490 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1491 MVT MTy = LT.second;
1492
1493 // Attempt to lookup cost.
1494 if (ST->hasXOP())
1495 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1496 return LT.first * Entry->Cost;
1497
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001498 if (ST->hasAVX2())
1499 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1500 return LT.first * Entry->Cost;
1501
1502 if (ST->hasAVX())
1503 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1504 return LT.first * Entry->Cost;
1505
Alexey Bataevd07c7312016-10-31 12:10:53 +00001506 if (ST->hasSSE42())
1507 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1508 return LT.first * Entry->Cost;
1509
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001510 if (ST->hasSSSE3())
1511 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1512 return LT.first * Entry->Cost;
1513
Simon Pilgrim356e8232016-06-20 23:08:21 +00001514 if (ST->hasSSE2())
1515 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1516 return LT.first * Entry->Cost;
1517
Alexey Bataevd07c7312016-10-31 12:10:53 +00001518 if (ST->hasSSE1())
1519 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1520 return LT.first * Entry->Cost;
1521
Simon Pilgrim14000b32016-05-24 08:17:50 +00001522 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF);
1523}
1524
1525int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1526 ArrayRef<Value *> Args, FastMathFlags FMF) {
1527 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF);
1528}
1529
Chandler Carruth93205eb2015-08-05 18:08:10 +00001530int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001531 assert(Val->isVectorTy() && "This must be a vector type");
1532
Sanjay Patelaedc3472016-05-25 17:27:54 +00001533 Type *ScalarType = Val->getScalarType();
1534
Chandler Carruth664e3542013-01-07 01:37:14 +00001535 if (Index != -1U) {
1536 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001537 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001538
1539 // This type is legalized to a scalar type.
1540 if (!LT.second.isVector())
1541 return 0;
1542
1543 // The type may be split. Normalize the index to the new type.
1544 unsigned Width = LT.second.getVectorNumElements();
1545 Index = Index % Width;
1546
1547 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001548 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001549 return 0;
1550 }
1551
Sanjay Patelaedc3472016-05-25 17:27:54 +00001552 // Add to the base cost if we know that the extracted element of a vector is
1553 // destined to be moved to and used in the integer register file.
1554 int RegisterFileMoveCost = 0;
1555 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1556 RegisterFileMoveCost = 1;
1557
1558 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001559}
1560
Chandler Carruth93205eb2015-08-05 18:08:10 +00001561int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001562 assert (Ty->isVectorTy() && "Can only scalarize vectors");
Chandler Carruth93205eb2015-08-05 18:08:10 +00001563 int Cost = 0;
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001564
1565 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
1566 if (Insert)
Chandler Carruth705b1852015-01-31 03:43:40 +00001567 Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001568 if (Extract)
Chandler Carruth705b1852015-01-31 03:43:40 +00001569 Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001570 }
1571
1572 return Cost;
1573}
1574
Chandler Carruth93205eb2015-08-05 18:08:10 +00001575int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1576 unsigned AddressSpace) {
Alp Tokerf907b892013-12-05 05:44:44 +00001577 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001578 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1579 unsigned NumElem = VTy->getVectorNumElements();
1580
1581 // Handle a few common cases:
1582 // <3 x float>
1583 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1584 // Cost = 64 bit store + extract + 32 bit store.
1585 return 3;
1586
1587 // <3 x double>
1588 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1589 // Cost = 128 bit store + unpack + 64 bit store.
1590 return 3;
1591
Alp Tokerf907b892013-12-05 05:44:44 +00001592 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001593 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001594 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1595 AddressSpace);
1596 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1597 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001598 return NumElem * Cost + SplitCost;
1599 }
1600 }
1601
Chandler Carruth664e3542013-01-07 01:37:14 +00001602 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001603 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001604 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1605 "Invalid Opcode");
1606
1607 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001608 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001609
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001610 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1611 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1612 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1613 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001614
1615 return Cost;
1616}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001617
Chandler Carruth93205eb2015-08-05 18:08:10 +00001618int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1619 unsigned Alignment,
1620 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001621 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1622 if (!SrcVTy)
1623 // To calculate scalar take the regular cost, without mask
1624 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1625
1626 unsigned NumElem = SrcVTy->getVectorNumElements();
1627 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001628 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001629 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1630 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001631 !isPowerOf2_32(NumElem)) {
1632 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001633 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1634 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001635 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001636 int BranchCost = getCFInstrCost(Instruction::Br);
1637 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001638
Chandler Carruth93205eb2015-08-05 18:08:10 +00001639 int ValueSplitCost = getScalarizationOverhead(
1640 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1641 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001642 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1643 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001644 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1645 }
1646
1647 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001648 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001649 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001650 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001651 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001652 LT.second.getVectorNumElements() == NumElem)
1653 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001654 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1655 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001656
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001657 else if (LT.second.getVectorNumElements() > NumElem) {
1658 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1659 LT.second.getVectorNumElements());
1660 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001661 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001662 }
1663 if (!ST->hasAVX512())
1664 return Cost + LT.first*4; // Each maskmov costs 4
1665
1666 // AVX-512 masked load/store is cheapper
1667 return Cost+LT.first;
1668}
1669
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001670int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1671 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001672 // Address computations in vectorized code with non-consecutive addresses will
1673 // likely result in more instructions compared to scalar code where the
1674 // computation can more often be merged into the index mode. The resulting
1675 // extra micro-ops can significantly decrease throughput.
1676 unsigned NumVectorInstToHideOverhead = 10;
1677
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001678 // Cost modeling of Strided Access Computation is hidden by the indexing
1679 // modes of X86 regardless of the stride value. We dont believe that there
1680 // is a difference between constant strided access in gerenal and constant
1681 // strided value which is less than or equal to 64.
1682 // Even in the case of (loop invariant) stride whose value is not known at
1683 // compile time, the address computation will not incur more than one extra
1684 // ADD instruction.
1685 if (Ty->isVectorTy() && SE) {
1686 if (!BaseT::isStridedAccess(Ptr))
1687 return NumVectorInstToHideOverhead;
1688 if (!BaseT::getConstantStrideStep(SE, Ptr))
1689 return 1;
1690 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001691
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001692 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001693}
Yi Jiang5c343de2013-09-19 17:48:48 +00001694
Chandler Carruth93205eb2015-08-05 18:08:10 +00001695int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1696 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001697
Chandler Carruth93205eb2015-08-05 18:08:10 +00001698 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001699
Yi Jiang5c343de2013-09-19 17:48:48 +00001700 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001701
Yi Jiang5c343de2013-09-19 17:48:48 +00001702 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1703 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001704
1705 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1706 // and make it as the cost.
1707
Craig Topper4b275762015-10-28 04:02:12 +00001708 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001709 { ISD::FADD, MVT::v2f64, 2 },
1710 { ISD::FADD, MVT::v4f32, 4 },
1711 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1712 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1713 { ISD::ADD, MVT::v8i16, 5 },
1714 };
Michael Liao5bf95782014-12-04 05:20:33 +00001715
Craig Topper4b275762015-10-28 04:02:12 +00001716 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001717 { ISD::FADD, MVT::v4f32, 4 },
1718 { ISD::FADD, MVT::v4f64, 5 },
1719 { ISD::FADD, MVT::v8f32, 7 },
1720 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1721 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1722 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1723 { ISD::ADD, MVT::v8i16, 5 },
1724 { ISD::ADD, MVT::v8i32, 5 },
1725 };
1726
Craig Topper4b275762015-10-28 04:02:12 +00001727 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001728 { ISD::FADD, MVT::v2f64, 2 },
1729 { ISD::FADD, MVT::v4f32, 4 },
1730 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1731 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1732 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1733 };
Michael Liao5bf95782014-12-04 05:20:33 +00001734
Craig Topper4b275762015-10-28 04:02:12 +00001735 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001736 { ISD::FADD, MVT::v4f32, 3 },
1737 { ISD::FADD, MVT::v4f64, 3 },
1738 { ISD::FADD, MVT::v8f32, 4 },
1739 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1740 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1741 { ISD::ADD, MVT::v4i64, 3 },
1742 { ISD::ADD, MVT::v8i16, 4 },
1743 { ISD::ADD, MVT::v8i32, 5 },
1744 };
Michael Liao5bf95782014-12-04 05:20:33 +00001745
Yi Jiang5c343de2013-09-19 17:48:48 +00001746 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001747 if (ST->hasAVX())
1748 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1749 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001750
Craig Topperee0c8592015-10-27 04:14:24 +00001751 if (ST->hasSSE42())
1752 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1753 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001754 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001755 if (ST->hasAVX())
1756 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1757 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001758
Craig Topperee0c8592015-10-27 04:14:24 +00001759 if (ST->hasSSE42())
1760 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1761 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001762 }
1763
Chandler Carruth705b1852015-01-31 03:43:40 +00001764 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001765}
1766
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001767/// \brief Calculate the cost of materializing a 64-bit value. This helper
1768/// method might only calculate a fraction of a larger immediate. Therefore it
1769/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001770int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001771 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001772 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001773
1774 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001775 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001776
Chandler Carruth705b1852015-01-31 03:43:40 +00001777 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001778}
1779
Chandler Carruth93205eb2015-08-05 18:08:10 +00001780int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001781 assert(Ty->isIntegerTy());
1782
1783 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1784 if (BitSize == 0)
1785 return ~0U;
1786
Juergen Ributzka43176172014-05-19 21:00:53 +00001787 // Never hoist constants larger than 128bit, because this might lead to
1788 // incorrect code generation or assertions in codegen.
1789 // Fixme: Create a cost model for types larger than i128 once the codegen
1790 // issues have been fixed.
1791 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001792 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001793
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001794 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001795 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001796
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001797 // Sign-extend all constants to a multiple of 64-bit.
1798 APInt ImmVal = Imm;
1799 if (BitSize & 0x3f)
1800 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1801
1802 // Split the constant into 64-bit chunks and calculate the cost for each
1803 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001804 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001805 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1806 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1807 int64_t Val = Tmp.getSExtValue();
1808 Cost += getIntImmCost(Val);
1809 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001810 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001811 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001812}
1813
Chandler Carruth93205eb2015-08-05 18:08:10 +00001814int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1815 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001816 assert(Ty->isIntegerTy());
1817
1818 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001819 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1820 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001821 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001822 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001823
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001824 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001825 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001826 default:
1827 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001828 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001829 // Always hoist the base address of a GetElementPtr. This prevents the
1830 // creation of new constants for every base constant that gets constant
1831 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001832 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001833 return 2 * TTI::TCC_Basic;
1834 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001835 case Instruction::Store:
1836 ImmIdx = 0;
1837 break;
Craig Topper074e8452015-12-20 18:41:54 +00001838 case Instruction::ICmp:
1839 // This is an imperfect hack to prevent constant hoisting of
1840 // compares that might be trying to check if a 64-bit value fits in
1841 // 32-bits. The backend can optimize these cases using a right shift by 32.
1842 // Ideally we would check the compare predicate here. There also other
1843 // similar immediates the backend can use shifts for.
1844 if (Idx == 1 && Imm.getBitWidth() == 64) {
1845 uint64_t ImmVal = Imm.getZExtValue();
1846 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1847 return TTI::TCC_Free;
1848 }
1849 ImmIdx = 1;
1850 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00001851 case Instruction::And:
1852 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1853 // by using a 32-bit operation with implicit zero extension. Detect such
1854 // immediates here as the normal path expects bit 31 to be sign extended.
1855 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1856 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00001857 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001858 case Instruction::Add:
1859 case Instruction::Sub:
1860 case Instruction::Mul:
1861 case Instruction::UDiv:
1862 case Instruction::SDiv:
1863 case Instruction::URem:
1864 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001865 case Instruction::Or:
1866 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001867 ImmIdx = 1;
1868 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001869 // Always return TCC_Free for the shift value of a shift instruction.
1870 case Instruction::Shl:
1871 case Instruction::LShr:
1872 case Instruction::AShr:
1873 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001874 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001875 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001876 case Instruction::Trunc:
1877 case Instruction::ZExt:
1878 case Instruction::SExt:
1879 case Instruction::IntToPtr:
1880 case Instruction::PtrToInt:
1881 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001882 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001883 case Instruction::Call:
1884 case Instruction::Select:
1885 case Instruction::Ret:
1886 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001887 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001888 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001889
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001890 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001891 int NumConstants = (BitSize + 63) / 64;
1892 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00001893 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00001894 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00001895 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001896 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001897
Chandler Carruth705b1852015-01-31 03:43:40 +00001898 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001899}
1900
Chandler Carruth93205eb2015-08-05 18:08:10 +00001901int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1902 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001903 assert(Ty->isIntegerTy());
1904
1905 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001906 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1907 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001908 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001909 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001910
1911 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001912 default:
1913 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001914 case Intrinsic::sadd_with_overflow:
1915 case Intrinsic::uadd_with_overflow:
1916 case Intrinsic::ssub_with_overflow:
1917 case Intrinsic::usub_with_overflow:
1918 case Intrinsic::smul_with_overflow:
1919 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001920 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00001921 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001922 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001923 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001924 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001925 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001926 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001927 case Intrinsic::experimental_patchpoint_void:
1928 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001929 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001930 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001931 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001932 }
Chandler Carruth705b1852015-01-31 03:43:40 +00001933 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001934}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00001935
Elena Demikhovsky54946982015-12-28 20:10:59 +00001936// Return an average cost of Gather / Scatter instruction, maybe improved later
1937int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1938 unsigned Alignment, unsigned AddressSpace) {
1939
1940 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1941 unsigned VF = SrcVTy->getVectorNumElements();
1942
1943 // Try to reduce index size from 64 bit (default for GEP)
1944 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1945 // operation will use 16 x 64 indices which do not fit in a zmm and needs
1946 // to split. Also check that the base pointer is the same for all lanes,
1947 // and that there's at most one variable index.
1948 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1949 unsigned IndexSize = DL.getPointerSizeInBits();
1950 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1951 if (IndexSize < 64 || !GEP)
1952 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001953
Elena Demikhovsky54946982015-12-28 20:10:59 +00001954 unsigned NumOfVarIndices = 0;
1955 Value *Ptrs = GEP->getPointerOperand();
1956 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
1957 return IndexSize;
1958 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
1959 if (isa<Constant>(GEP->getOperand(i)))
1960 continue;
1961 Type *IndxTy = GEP->getOperand(i)->getType();
1962 if (IndxTy->isVectorTy())
1963 IndxTy = IndxTy->getVectorElementType();
1964 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
1965 !isa<SExtInst>(GEP->getOperand(i))) ||
1966 ++NumOfVarIndices > 1)
1967 return IndexSize; // 64
1968 }
1969 return (unsigned)32;
1970 };
1971
1972
1973 // Trying to reduce IndexSize to 32 bits for vector 16.
1974 // By default the IndexSize is equal to pointer size.
1975 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
1976 DL.getPointerSizeInBits();
1977
Mehdi Amini867e9142016-04-14 04:36:40 +00001978 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001979 IndexSize), VF);
1980 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
1981 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
1982 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
1983 if (SplitFactor > 1) {
1984 // Handle splitting of vector of pointers
1985 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
1986 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
1987 AddressSpace);
1988 }
1989
1990 // The gather / scatter cost is given by Intel architects. It is a rough
1991 // number since we are looking at one instruction in a time.
1992 const int GSOverhead = 2;
1993 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1994 Alignment, AddressSpace);
1995}
1996
1997/// Return the cost of full scalarization of gather / scatter operation.
1998///
1999/// Opcode - Load or Store instruction.
2000/// SrcVTy - The type of the data vector that should be gathered or scattered.
2001/// VariableMask - The mask is non-constant at compile time.
2002/// Alignment - Alignment for one element.
2003/// AddressSpace - pointer[s] address space.
2004///
2005int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
2006 bool VariableMask, unsigned Alignment,
2007 unsigned AddressSpace) {
2008 unsigned VF = SrcVTy->getVectorNumElements();
2009
2010 int MaskUnpackCost = 0;
2011 if (VariableMask) {
2012 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00002013 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002014 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
2015 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00002016 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002017 nullptr);
2018 int BranchCost = getCFInstrCost(Instruction::Br);
2019 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
2020 }
2021
2022 // The cost of the scalar loads/stores.
2023 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2024 Alignment, AddressSpace);
2025
2026 int InsertExtractCost = 0;
2027 if (Opcode == Instruction::Load)
2028 for (unsigned i = 0; i < VF; ++i)
2029 // Add the cost of inserting each scalar load into the vector
2030 InsertExtractCost +=
2031 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
2032 else
2033 for (unsigned i = 0; i < VF; ++i)
2034 // Add the cost of extracting each element out of the data vector
2035 InsertExtractCost +=
2036 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
2037
2038 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
2039}
2040
2041/// Calculate the cost of Gather / Scatter operation
2042int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
2043 Value *Ptr, bool VariableMask,
2044 unsigned Alignment) {
2045 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2046 unsigned VF = SrcVTy->getVectorNumElements();
2047 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2048 if (!PtrTy && Ptr->getType()->isVectorTy())
2049 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2050 assert(PtrTy && "Unexpected type for Ptr argument");
2051 unsigned AddressSpace = PtrTy->getAddressSpace();
2052
2053 bool Scalarize = false;
2054 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2055 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2056 Scalarize = true;
2057 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2058 // Vector-4 of gather/scatter instruction does not exist on KNL.
2059 // We can extend it to 8 elements, but zeroing upper bits of
2060 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002061 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2062 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00002063 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2064 Scalarize = true;
2065
2066 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002067 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2068 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002069
2070 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2071}
2072
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002073bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2074 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002075 int DataWidth = isa<PointerType>(ScalarTy) ?
2076 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002077
Igor Bregerf44b79d2016-08-02 09:15:28 +00002078 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2079 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002080}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002081
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002082bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2083 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002084}
2085
Elena Demikhovsky09285852015-10-25 15:37:55 +00002086bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2087 // This function is called now in two cases: from the Loop Vectorizer
2088 // and from the Scalarizer.
2089 // When the Loop Vectorizer asks about legality of the feature,
2090 // the vectorization factor is not calculated yet. The Loop Vectorizer
2091 // sends a scalar type and the decision is based on the width of the
2092 // scalar element.
2093 // Later on, the cost model will estimate usage this intrinsic based on
2094 // the vector type.
2095 // The Scalarizer asks again about legality. It sends a vector type.
2096 // In this case we can reject non-power-of-2 vectors.
2097 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2098 return false;
2099 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002100 int DataWidth = isa<PointerType>(ScalarTy) ?
2101 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002102
2103 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002104 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002105}
2106
2107bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2108 return isLegalMaskedGather(DataType);
2109}
2110
Eric Christopherd566fb12015-07-29 22:09:48 +00002111bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2112 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002113 const TargetMachine &TM = getTLI()->getTargetMachine();
2114
2115 // Work this as a subsetting of subtarget features.
2116 const FeatureBitset &CallerBits =
2117 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2118 const FeatureBitset &CalleeBits =
2119 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2120
2121 // FIXME: This is likely too limiting as it will include subtarget features
2122 // that we might not care about for inlining, but it is conservatively
2123 // correct.
2124 return (CallerBits & CalleeBits) == CalleeBits;
2125}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002126
2127bool X86TTIImpl::enableInterleavedAccessVectorization() {
2128 // TODO: We expect this to be beneficial regardless of arch,
2129 // but there are currently some unexplained performance artifacts on Atom.
2130 // As a temporary solution, disable on Atom.
2131 return !(ST->isAtom() || ST->isSLM());
2132}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002133
2134// Get estimation for interleaved load/store operations and strided load.
2135// \p Indices contains indices for strided load.
2136// \p Factor - the factor of interleaving.
2137// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2138int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2139 unsigned Factor,
2140 ArrayRef<unsigned> Indices,
2141 unsigned Alignment,
2142 unsigned AddressSpace) {
2143
2144 // VecTy for interleave memop is <VF*Factor x Elt>.
2145 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2146 // VecTy = <12 x i32>.
2147
2148 // Calculate the number of memory operations (NumOfMemOps), required
2149 // for load/store the VecTy.
2150 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2151 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2152 unsigned LegalVTSize = LegalVT.getStoreSize();
2153 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2154
2155 // Get the cost of one memory operation.
2156 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2157 LegalVT.getVectorNumElements());
2158 unsigned MemOpCost =
2159 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2160
2161 if (Opcode == Instruction::Load) {
2162 // Kind of shuffle depends on number of loaded values.
2163 // If we load the entire data in one register, we can use a 1-src shuffle.
2164 // Otherwise, we'll merge 2 sources in each operation.
2165 TTI::ShuffleKind ShuffleKind =
2166 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2167
2168 unsigned ShuffleCost =
2169 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2170
2171 unsigned NumOfLoadsInInterleaveGrp =
2172 Indices.size() ? Indices.size() : Factor;
2173 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2174 VecTy->getVectorNumElements() / Factor);
2175 unsigned NumOfResults =
2176 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2177 NumOfLoadsInInterleaveGrp;
2178
2179 // About a half of the loads may be folded in shuffles when we have only
2180 // one result. If we have more than one result, we do not fold loads at all.
2181 unsigned NumOfUnfoldedLoads =
2182 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2183
2184 // Get a number of shuffle operations per result.
2185 unsigned NumOfShufflesPerResult =
2186 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2187
2188 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2189 // When we have more than one destination, we need additional instructions
2190 // to keep sources.
2191 unsigned NumOfMoves = 0;
2192 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2193 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2194
2195 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2196 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2197
2198 return Cost;
2199 }
2200
2201 // Store.
2202 assert(Opcode == Instruction::Store &&
2203 "Expected Store Instruction at this point");
2204
2205 // There is no strided stores meanwhile. And store can't be folded in
2206 // shuffle.
2207 unsigned NumOfSources = Factor; // The number of values to be merged.
2208 unsigned ShuffleCost =
2209 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2210 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2211
2212 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2213 // We need additional instructions to keep sources.
2214 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2215 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2216 NumOfMoves;
2217 return Cost;
2218}
2219
2220int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2221 unsigned Factor,
2222 ArrayRef<unsigned> Indices,
2223 unsigned Alignment,
2224 unsigned AddressSpace) {
2225 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2226 RequiresBW = false;
2227 Type *EltTy = VecTy->getVectorElementType();
2228 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2229 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2230 return true;
2231 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2232 RequiresBW = true;
2233 return true;
2234 }
2235 return false;
2236 };
2237 bool RequiresBW;
2238 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2239 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2240 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2241 Alignment, AddressSpace);
2242 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2243 Alignment, AddressSpace);
2244}