blob: 483bea2a9a2d7de23b990dccec160a79dc4d26ad [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
277The next two types of linkage are targeted for Microsoft Windows
278platform only. They are designed to support importing (exporting)
279symbols from (to) DLLs (Dynamic Link Libraries).
280
281``dllimport``
282 "``dllimport``" linkage causes the compiler to reference a function
283 or variable via a global pointer to a pointer that is set up by the
284 DLL exporting the symbol. On Microsoft Windows targets, the pointer
285 name is formed by combining ``__imp_`` and the function or variable
286 name.
287``dllexport``
288 "``dllexport``" linkage causes the compiler to provide a global
289 pointer to a pointer in a DLL, so that it can be referenced with the
290 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
291 name is formed by combining ``__imp_`` and the function or variable
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000292 name. Since this linkage exists for defining a dll interface, the
293 compiler, assembler and linker know it is externally referenced and
294 must refrain from deleting the symbol.
Sean Silvab084af42012-12-07 10:36:55 +0000295
Sean Silvab084af42012-12-07 10:36:55 +0000296It is illegal for a function *declaration* to have any linkage type
297other than ``external``, ``dllimport`` or ``extern_weak``.
298
Sean Silvab084af42012-12-07 10:36:55 +0000299.. _callingconv:
300
301Calling Conventions
302-------------------
303
304LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
305:ref:`invokes <i_invoke>` can all have an optional calling convention
306specified for the call. The calling convention of any pair of dynamic
307caller/callee must match, or the behavior of the program is undefined.
308The following calling conventions are supported by LLVM, and more may be
309added in the future:
310
311"``ccc``" - The C calling convention
312 This calling convention (the default if no other calling convention
313 is specified) matches the target C calling conventions. This calling
314 convention supports varargs function calls and tolerates some
315 mismatch in the declared prototype and implemented declaration of
316 the function (as does normal C).
317"``fastcc``" - The fast calling convention
318 This calling convention attempts to make calls as fast as possible
319 (e.g. by passing things in registers). This calling convention
320 allows the target to use whatever tricks it wants to produce fast
321 code for the target, without having to conform to an externally
322 specified ABI (Application Binary Interface). `Tail calls can only
323 be optimized when this, the GHC or the HiPE convention is
324 used. <CodeGenerator.html#id80>`_ This calling convention does not
325 support varargs and requires the prototype of all callees to exactly
326 match the prototype of the function definition.
327"``coldcc``" - The cold calling convention
328 This calling convention attempts to make code in the caller as
329 efficient as possible under the assumption that the call is not
330 commonly executed. As such, these calls often preserve all registers
331 so that the call does not break any live ranges in the caller side.
332 This calling convention does not support varargs and requires the
333 prototype of all callees to exactly match the prototype of the
334 function definition.
335"``cc 10``" - GHC convention
336 This calling convention has been implemented specifically for use by
337 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
338 It passes everything in registers, going to extremes to achieve this
339 by disabling callee save registers. This calling convention should
340 not be used lightly but only for specific situations such as an
341 alternative to the *register pinning* performance technique often
342 used when implementing functional programming languages. At the
343 moment only X86 supports this convention and it has the following
344 limitations:
345
346 - On *X86-32* only supports up to 4 bit type parameters. No
347 floating point types are supported.
348 - On *X86-64* only supports up to 10 bit type parameters and 6
349 floating point parameters.
350
351 This calling convention supports `tail call
352 optimization <CodeGenerator.html#id80>`_ but requires both the
353 caller and callee are using it.
354"``cc 11``" - The HiPE calling convention
355 This calling convention has been implemented specifically for use by
356 the `High-Performance Erlang
357 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
358 native code compiler of the `Ericsson's Open Source Erlang/OTP
359 system <http://www.erlang.org/download.shtml>`_. It uses more
360 registers for argument passing than the ordinary C calling
361 convention and defines no callee-saved registers. The calling
362 convention properly supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires that both the
364 caller and the callee use it. It uses a *register pinning*
365 mechanism, similar to GHC's convention, for keeping frequently
366 accessed runtime components pinned to specific hardware registers.
367 At the moment only X86 supports this convention (both 32 and 64
368 bit).
369"``cc <n>``" - Numbered convention
370 Any calling convention may be specified by number, allowing
371 target-specific calling conventions to be used. Target specific
372 calling conventions start at 64.
373
374More calling conventions can be added/defined on an as-needed basis, to
375support Pascal conventions or any other well-known target-independent
376convention.
377
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000378.. _visibilitystyles:
379
Sean Silvab084af42012-12-07 10:36:55 +0000380Visibility Styles
381-----------------
382
383All Global Variables and Functions have one of the following visibility
384styles:
385
386"``default``" - Default style
387 On targets that use the ELF object file format, default visibility
388 means that the declaration is visible to other modules and, in
389 shared libraries, means that the declared entity may be overridden.
390 On Darwin, default visibility means that the declaration is visible
391 to other modules. Default visibility corresponds to "external
392 linkage" in the language.
393"``hidden``" - Hidden style
394 Two declarations of an object with hidden visibility refer to the
395 same object if they are in the same shared object. Usually, hidden
396 visibility indicates that the symbol will not be placed into the
397 dynamic symbol table, so no other module (executable or shared
398 library) can reference it directly.
399"``protected``" - Protected style
400 On ELF, protected visibility indicates that the symbol will be
401 placed in the dynamic symbol table, but that references within the
402 defining module will bind to the local symbol. That is, the symbol
403 cannot be overridden by another module.
404
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000405.. _namedtypes:
406
Sean Silvab084af42012-12-07 10:36:55 +0000407Named Types
408-----------
409
410LLVM IR allows you to specify name aliases for certain types. This can
411make it easier to read the IR and make the IR more condensed
412(particularly when recursive types are involved). An example of a name
413specification is:
414
415.. code-block:: llvm
416
417 %mytype = type { %mytype*, i32 }
418
419You may give a name to any :ref:`type <typesystem>` except
420":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
421expected with the syntax "%mytype".
422
423Note that type names are aliases for the structural type that they
424indicate, and that you can therefore specify multiple names for the same
425type. This often leads to confusing behavior when dumping out a .ll
426file. Since LLVM IR uses structural typing, the name is not part of the
427type. When printing out LLVM IR, the printer will pick *one name* to
428render all types of a particular shape. This means that if you have code
429where two different source types end up having the same LLVM type, that
430the dumper will sometimes print the "wrong" or unexpected type. This is
431an important design point and isn't going to change.
432
433.. _globalvars:
434
435Global Variables
436----------------
437
438Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000439instead of run-time.
440
441Global variables definitions must be initialized, may have an explicit section
442to be placed in, and may have an optional explicit alignment specified.
443
444Global variables in other translation units can also be declared, in which
445case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000446
447A variable may be defined as ``thread_local``, which means that it will
448not be shared by threads (each thread will have a separated copy of the
449variable). Not all targets support thread-local variables. Optionally, a
450TLS model may be specified:
451
452``localdynamic``
453 For variables that are only used within the current shared library.
454``initialexec``
455 For variables in modules that will not be loaded dynamically.
456``localexec``
457 For variables defined in the executable and only used within it.
458
459The models correspond to the ELF TLS models; see `ELF Handling For
460Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
461more information on under which circumstances the different models may
462be used. The target may choose a different TLS model if the specified
463model is not supported, or if a better choice of model can be made.
464
Michael Gottesman006039c2013-01-31 05:48:48 +0000465A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000466the contents of the variable will **never** be modified (enabling better
467optimization, allowing the global data to be placed in the read-only
468section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000469initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000470variable.
471
472LLVM explicitly allows *declarations* of global variables to be marked
473constant, even if the final definition of the global is not. This
474capability can be used to enable slightly better optimization of the
475program, but requires the language definition to guarantee that
476optimizations based on the 'constantness' are valid for the translation
477units that do not include the definition.
478
479As SSA values, global variables define pointer values that are in scope
480(i.e. they dominate) all basic blocks in the program. Global variables
481always define a pointer to their "content" type because they describe a
482region of memory, and all memory objects in LLVM are accessed through
483pointers.
484
485Global variables can be marked with ``unnamed_addr`` which indicates
486that the address is not significant, only the content. Constants marked
487like this can be merged with other constants if they have the same
488initializer. Note that a constant with significant address *can* be
489merged with a ``unnamed_addr`` constant, the result being a constant
490whose address is significant.
491
492A global variable may be declared to reside in a target-specific
493numbered address space. For targets that support them, address spaces
494may affect how optimizations are performed and/or what target
495instructions are used to access the variable. The default address space
496is zero. The address space qualifier must precede any other attributes.
497
498LLVM allows an explicit section to be specified for globals. If the
499target supports it, it will emit globals to the section specified.
500
Michael Gottesmane743a302013-02-04 03:22:00 +0000501By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000502variables defined within the module are not modified from their
503initial values before the start of the global initializer. This is
504true even for variables potentially accessible from outside the
505module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000506``@llvm.used`` or dllexported variables. This assumption may be suppressed
507by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000508
Sean Silvab084af42012-12-07 10:36:55 +0000509An explicit alignment may be specified for a global, which must be a
510power of 2. If not present, or if the alignment is set to zero, the
511alignment of the global is set by the target to whatever it feels
512convenient. If an explicit alignment is specified, the global is forced
513to have exactly that alignment. Targets and optimizers are not allowed
514to over-align the global if the global has an assigned section. In this
515case, the extra alignment could be observable: for example, code could
516assume that the globals are densely packed in their section and try to
517iterate over them as an array, alignment padding would break this
518iteration.
519
520For example, the following defines a global in a numbered address space
521with an initializer, section, and alignment:
522
523.. code-block:: llvm
524
525 @G = addrspace(5) constant float 1.0, section "foo", align 4
526
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000527The following example just declares a global variable
528
529.. code-block:: llvm
530
531 @G = external global i32
532
Sean Silvab084af42012-12-07 10:36:55 +0000533The following example defines a thread-local global with the
534``initialexec`` TLS model:
535
536.. code-block:: llvm
537
538 @G = thread_local(initialexec) global i32 0, align 4
539
540.. _functionstructure:
541
542Functions
543---------
544
545LLVM function definitions consist of the "``define``" keyword, an
546optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
547style <visibility>`, an optional :ref:`calling convention <callingconv>`,
548an optional ``unnamed_addr`` attribute, a return type, an optional
549:ref:`parameter attribute <paramattrs>` for the return type, a function
550name, a (possibly empty) argument list (each with optional :ref:`parameter
551attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
552an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000553collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
554curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000555
556LLVM function declarations consist of the "``declare``" keyword, an
557optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
558style <visibility>`, an optional :ref:`calling convention <callingconv>`,
559an optional ``unnamed_addr`` attribute, a return type, an optional
560:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000561name, a possibly empty list of arguments, an optional alignment, an optional
562:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000563
Bill Wendling6822ecb2013-10-27 05:09:12 +0000564A function definition contains a list of basic blocks, forming the CFG (Control
565Flow Graph) for the function. Each basic block may optionally start with a label
566(giving the basic block a symbol table entry), contains a list of instructions,
567and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
568function return). If an explicit label is not provided, a block is assigned an
569implicit numbered label, using the next value from the same counter as used for
570unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
571entry block does not have an explicit label, it will be assigned label "%0",
572then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000573
574The first basic block in a function is special in two ways: it is
575immediately executed on entrance to the function, and it is not allowed
576to have predecessor basic blocks (i.e. there can not be any branches to
577the entry block of a function). Because the block can have no
578predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
579
580LLVM allows an explicit section to be specified for functions. If the
581target supports it, it will emit functions to the section specified.
582
583An explicit alignment may be specified for a function. If not present,
584or if the alignment is set to zero, the alignment of the function is set
585by the target to whatever it feels convenient. If an explicit alignment
586is specified, the function is forced to have at least that much
587alignment. All alignments must be a power of 2.
588
589If the ``unnamed_addr`` attribute is given, the address is know to not
590be significant and two identical functions can be merged.
591
592Syntax::
593
594 define [linkage] [visibility]
595 [cconv] [ret attrs]
596 <ResultType> @<FunctionName> ([argument list])
597 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000598 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000599
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000600.. _langref_aliases:
601
Sean Silvab084af42012-12-07 10:36:55 +0000602Aliases
603-------
604
605Aliases act as "second name" for the aliasee value (which can be either
606function, global variable, another alias or bitcast of global value).
607Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
608:ref:`visibility style <visibility>`.
609
610Syntax::
611
612 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
613
Rafael Espindola65785492013-10-07 13:57:59 +0000614The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000615``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000616``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000617might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000618alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000619
Sean Silvab084af42012-12-07 10:36:55 +0000620.. _namedmetadatastructure:
621
622Named Metadata
623--------------
624
625Named metadata is a collection of metadata. :ref:`Metadata
626nodes <metadata>` (but not metadata strings) are the only valid
627operands for a named metadata.
628
629Syntax::
630
631 ; Some unnamed metadata nodes, which are referenced by the named metadata.
632 !0 = metadata !{metadata !"zero"}
633 !1 = metadata !{metadata !"one"}
634 !2 = metadata !{metadata !"two"}
635 ; A named metadata.
636 !name = !{!0, !1, !2}
637
638.. _paramattrs:
639
640Parameter Attributes
641--------------------
642
643The return type and each parameter of a function type may have a set of
644*parameter attributes* associated with them. Parameter attributes are
645used to communicate additional information about the result or
646parameters of a function. Parameter attributes are considered to be part
647of the function, not of the function type, so functions with different
648parameter attributes can have the same function type.
649
650Parameter attributes are simple keywords that follow the type specified.
651If multiple parameter attributes are needed, they are space separated.
652For example:
653
654.. code-block:: llvm
655
656 declare i32 @printf(i8* noalias nocapture, ...)
657 declare i32 @atoi(i8 zeroext)
658 declare signext i8 @returns_signed_char()
659
660Note that any attributes for the function result (``nounwind``,
661``readonly``) come immediately after the argument list.
662
663Currently, only the following parameter attributes are defined:
664
665``zeroext``
666 This indicates to the code generator that the parameter or return
667 value should be zero-extended to the extent required by the target's
668 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
669 the caller (for a parameter) or the callee (for a return value).
670``signext``
671 This indicates to the code generator that the parameter or return
672 value should be sign-extended to the extent required by the target's
673 ABI (which is usually 32-bits) by the caller (for a parameter) or
674 the callee (for a return value).
675``inreg``
676 This indicates that this parameter or return value should be treated
677 in a special target-dependent fashion during while emitting code for
678 a function call or return (usually, by putting it in a register as
679 opposed to memory, though some targets use it to distinguish between
680 two different kinds of registers). Use of this attribute is
681 target-specific.
682``byval``
683 This indicates that the pointer parameter should really be passed by
684 value to the function. The attribute implies that a hidden copy of
685 the pointee is made between the caller and the callee, so the callee
686 is unable to modify the value in the caller. This attribute is only
687 valid on LLVM pointer arguments. It is generally used to pass
688 structs and arrays by value, but is also valid on pointers to
689 scalars. The copy is considered to belong to the caller not the
690 callee (for example, ``readonly`` functions should not write to
691 ``byval`` parameters). This is not a valid attribute for return
692 values.
693
694 The byval attribute also supports specifying an alignment with the
695 align attribute. It indicates the alignment of the stack slot to
696 form and the known alignment of the pointer specified to the call
697 site. If the alignment is not specified, then the code generator
698 makes a target-specific assumption.
699
700``sret``
701 This indicates that the pointer parameter specifies the address of a
702 structure that is the return value of the function in the source
703 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000704 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000705 not to trap and to be properly aligned. This may only be applied to
706 the first parameter. This is not a valid attribute for return
707 values.
708``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000709 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000710 the argument or return value do not alias pointer values which are
711 not *based* on it, ignoring certain "irrelevant" dependencies. For a
712 call to the parent function, dependencies between memory references
713 from before or after the call and from those during the call are
714 "irrelevant" to the ``noalias`` keyword for the arguments and return
715 value used in that call. The caller shares the responsibility with
716 the callee for ensuring that these requirements are met. For further
717 details, please see the discussion of the NoAlias response in `alias
718 analysis <AliasAnalysis.html#MustMayNo>`_.
719
720 Note that this definition of ``noalias`` is intentionally similar
721 to the definition of ``restrict`` in C99 for function arguments,
722 though it is slightly weaker.
723
724 For function return values, C99's ``restrict`` is not meaningful,
725 while LLVM's ``noalias`` is.
726``nocapture``
727 This indicates that the callee does not make any copies of the
728 pointer that outlive the callee itself. This is not a valid
729 attribute for return values.
730
731.. _nest:
732
733``nest``
734 This indicates that the pointer parameter can be excised using the
735 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000736 attribute for return values and can only be applied to one parameter.
737
738``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000739 This indicates that the function always returns the argument as its return
740 value. This is an optimization hint to the code generator when generating
741 the caller, allowing tail call optimization and omission of register saves
742 and restores in some cases; it is not checked or enforced when generating
743 the callee. The parameter and the function return type must be valid
744 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
745 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000746
747.. _gc:
748
749Garbage Collector Names
750-----------------------
751
752Each function may specify a garbage collector name, which is simply a
753string:
754
755.. code-block:: llvm
756
757 define void @f() gc "name" { ... }
758
759The compiler declares the supported values of *name*. Specifying a
760collector which will cause the compiler to alter its output in order to
761support the named garbage collection algorithm.
762
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000763.. _prefixdata:
764
765Prefix Data
766-----------
767
768Prefix data is data associated with a function which the code generator
769will emit immediately before the function body. The purpose of this feature
770is to allow frontends to associate language-specific runtime metadata with
771specific functions and make it available through the function pointer while
772still allowing the function pointer to be called. To access the data for a
773given function, a program may bitcast the function pointer to a pointer to
774the constant's type. This implies that the IR symbol points to the start
775of the prefix data.
776
777To maintain the semantics of ordinary function calls, the prefix data must
778have a particular format. Specifically, it must begin with a sequence of
779bytes which decode to a sequence of machine instructions, valid for the
780module's target, which transfer control to the point immediately succeeding
781the prefix data, without performing any other visible action. This allows
782the inliner and other passes to reason about the semantics of the function
783definition without needing to reason about the prefix data. Obviously this
784makes the format of the prefix data highly target dependent.
785
Peter Collingbourne213358a2013-09-23 20:14:21 +0000786Prefix data is laid out as if it were an initializer for a global variable
787of the prefix data's type. No padding is automatically placed between the
788prefix data and the function body. If padding is required, it must be part
789of the prefix data.
790
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000791A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
792which encodes the ``nop`` instruction:
793
794.. code-block:: llvm
795
796 define void @f() prefix i8 144 { ... }
797
798Generally prefix data can be formed by encoding a relative branch instruction
799which skips the metadata, as in this example of valid prefix data for the
800x86_64 architecture, where the first two bytes encode ``jmp .+10``:
801
802.. code-block:: llvm
803
804 %0 = type <{ i8, i8, i8* }>
805
806 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
807
808A function may have prefix data but no body. This has similar semantics
809to the ``available_externally`` linkage in that the data may be used by the
810optimizers but will not be emitted in the object file.
811
Bill Wendling63b88192013-02-06 06:52:58 +0000812.. _attrgrp:
813
814Attribute Groups
815----------------
816
817Attribute groups are groups of attributes that are referenced by objects within
818the IR. They are important for keeping ``.ll`` files readable, because a lot of
819functions will use the same set of attributes. In the degenerative case of a
820``.ll`` file that corresponds to a single ``.c`` file, the single attribute
821group will capture the important command line flags used to build that file.
822
823An attribute group is a module-level object. To use an attribute group, an
824object references the attribute group's ID (e.g. ``#37``). An object may refer
825to more than one attribute group. In that situation, the attributes from the
826different groups are merged.
827
828Here is an example of attribute groups for a function that should always be
829inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
830
831.. code-block:: llvm
832
833 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000834 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000835
836 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000837 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000838
839 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
840 define void @f() #0 #1 { ... }
841
Sean Silvab084af42012-12-07 10:36:55 +0000842.. _fnattrs:
843
844Function Attributes
845-------------------
846
847Function attributes are set to communicate additional information about
848a function. Function attributes are considered to be part of the
849function, not of the function type, so functions with different function
850attributes can have the same function type.
851
852Function attributes are simple keywords that follow the type specified.
853If multiple attributes are needed, they are space separated. For
854example:
855
856.. code-block:: llvm
857
858 define void @f() noinline { ... }
859 define void @f() alwaysinline { ... }
860 define void @f() alwaysinline optsize { ... }
861 define void @f() optsize { ... }
862
Sean Silvab084af42012-12-07 10:36:55 +0000863``alignstack(<n>)``
864 This attribute indicates that, when emitting the prologue and
865 epilogue, the backend should forcibly align the stack pointer.
866 Specify the desired alignment, which must be a power of two, in
867 parentheses.
868``alwaysinline``
869 This attribute indicates that the inliner should attempt to inline
870 this function into callers whenever possible, ignoring any active
871 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000872``builtin``
873 This indicates that the callee function at a call site should be
874 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000875 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000876 direct calls to functions which are declared with the ``nobuiltin``
877 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000878``cold``
879 This attribute indicates that this function is rarely called. When
880 computing edge weights, basic blocks post-dominated by a cold
881 function call are also considered to be cold; and, thus, given low
882 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000883``inlinehint``
884 This attribute indicates that the source code contained a hint that
885 inlining this function is desirable (such as the "inline" keyword in
886 C/C++). It is just a hint; it imposes no requirements on the
887 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000888``minsize``
889 This attribute suggests that optimization passes and code generator
890 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000891 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000892 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000893``naked``
894 This attribute disables prologue / epilogue emission for the
895 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000896``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000897 This indicates that the callee function at a call site is not recognized as
898 a built-in function. LLVM will retain the original call and not replace it
899 with equivalent code based on the semantics of the built-in function, unless
900 the call site uses the ``builtin`` attribute. This is valid at call sites
901 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +0000902``noduplicate``
903 This attribute indicates that calls to the function cannot be
904 duplicated. A call to a ``noduplicate`` function may be moved
905 within its parent function, but may not be duplicated within
906 its parent function.
907
908 A function containing a ``noduplicate`` call may still
909 be an inlining candidate, provided that the call is not
910 duplicated by inlining. That implies that the function has
911 internal linkage and only has one call site, so the original
912 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000913``noimplicitfloat``
914 This attributes disables implicit floating point instructions.
915``noinline``
916 This attribute indicates that the inliner should never inline this
917 function in any situation. This attribute may not be used together
918 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +0000919``nonlazybind``
920 This attribute suppresses lazy symbol binding for the function. This
921 may make calls to the function faster, at the cost of extra program
922 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +0000923``noredzone``
924 This attribute indicates that the code generator should not use a
925 red zone, even if the target-specific ABI normally permits it.
926``noreturn``
927 This function attribute indicates that the function never returns
928 normally. This produces undefined behavior at runtime if the
929 function ever does dynamically return.
930``nounwind``
931 This function attribute indicates that the function never returns
932 with an unwind or exceptional control flow. If the function does
933 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000934``optnone``
935 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000936 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000937 exception of interprocedural optimization passes.
938 This attribute cannot be used together with the ``alwaysinline``
939 attribute; this attribute is also incompatible
940 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000941
Paul Robinsondcbe35b2013-11-18 21:44:03 +0000942 This attribute requires the ``noinline`` attribute to be specified on
943 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000944 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +0000945 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +0000946``optsize``
947 This attribute suggests that optimization passes and code generator
948 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000949 and otherwise do optimizations specifically to reduce code size as
950 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +0000951``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000952 On a function, this attribute indicates that the function computes its
953 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +0000954 without dereferencing any pointer arguments or otherwise accessing
955 any mutable state (e.g. memory, control registers, etc) visible to
956 caller functions. It does not write through any pointer arguments
957 (including ``byval`` arguments) and never changes any state visible
958 to callers. This means that it cannot unwind exceptions by calling
959 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000960
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000961 On an argument, this attribute indicates that the function does not
962 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +0000963 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +0000964``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000965 On a function, this attribute indicates that the function does not write
966 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +0000967 modify any state (e.g. memory, control registers, etc) visible to
968 caller functions. It may dereference pointer arguments and read
969 state that may be set in the caller. A readonly function always
970 returns the same value (or unwinds an exception identically) when
971 called with the same set of arguments and global state. It cannot
972 unwind an exception by calling the ``C++`` exception throwing
973 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000974
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000975 On an argument, this attribute indicates that the function does not write
976 through this pointer argument, even though it may write to the memory that
977 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +0000978``returns_twice``
979 This attribute indicates that this function can return twice. The C
980 ``setjmp`` is an example of such a function. The compiler disables
981 some optimizations (like tail calls) in the caller of these
982 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +0000983``sanitize_address``
984 This attribute indicates that AddressSanitizer checks
985 (dynamic address safety analysis) are enabled for this function.
986``sanitize_memory``
987 This attribute indicates that MemorySanitizer checks (dynamic detection
988 of accesses to uninitialized memory) are enabled for this function.
989``sanitize_thread``
990 This attribute indicates that ThreadSanitizer checks
991 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +0000992``ssp``
993 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000994 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +0000995 placed on the stack before the local variables that's checked upon
996 return from the function to see if it has been overwritten. A
997 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000998 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +0000999
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001000 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1001 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1002 - Calls to alloca() with variable sizes or constant sizes greater than
1003 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001004
1005 If a function that has an ``ssp`` attribute is inlined into a
1006 function that doesn't have an ``ssp`` attribute, then the resulting
1007 function will have an ``ssp`` attribute.
1008``sspreq``
1009 This attribute indicates that the function should *always* emit a
1010 stack smashing protector. This overrides the ``ssp`` function
1011 attribute.
1012
1013 If a function that has an ``sspreq`` attribute is inlined into a
1014 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001015 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1016 an ``sspreq`` attribute.
1017``sspstrong``
1018 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001019 protector. This attribute causes a strong heuristic to be used when
1020 determining if a function needs stack protectors. The strong heuristic
1021 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001022
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001023 - Arrays of any size and type
1024 - Aggregates containing an array of any size and type.
1025 - Calls to alloca().
1026 - Local variables that have had their address taken.
1027
1028 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001029
1030 If a function that has an ``sspstrong`` attribute is inlined into a
1031 function that doesn't have an ``sspstrong`` attribute, then the
1032 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001033``uwtable``
1034 This attribute indicates that the ABI being targeted requires that
1035 an unwind table entry be produce for this function even if we can
1036 show that no exceptions passes by it. This is normally the case for
1037 the ELF x86-64 abi, but it can be disabled for some compilation
1038 units.
Sean Silvab084af42012-12-07 10:36:55 +00001039
1040.. _moduleasm:
1041
1042Module-Level Inline Assembly
1043----------------------------
1044
1045Modules may contain "module-level inline asm" blocks, which corresponds
1046to the GCC "file scope inline asm" blocks. These blocks are internally
1047concatenated by LLVM and treated as a single unit, but may be separated
1048in the ``.ll`` file if desired. The syntax is very simple:
1049
1050.. code-block:: llvm
1051
1052 module asm "inline asm code goes here"
1053 module asm "more can go here"
1054
1055The strings can contain any character by escaping non-printable
1056characters. The escape sequence used is simply "\\xx" where "xx" is the
1057two digit hex code for the number.
1058
1059The inline asm code is simply printed to the machine code .s file when
1060assembly code is generated.
1061
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001062.. _langref_datalayout:
1063
Sean Silvab084af42012-12-07 10:36:55 +00001064Data Layout
1065-----------
1066
1067A module may specify a target specific data layout string that specifies
1068how data is to be laid out in memory. The syntax for the data layout is
1069simply:
1070
1071.. code-block:: llvm
1072
1073 target datalayout = "layout specification"
1074
1075The *layout specification* consists of a list of specifications
1076separated by the minus sign character ('-'). Each specification starts
1077with a letter and may include other information after the letter to
1078define some aspect of the data layout. The specifications accepted are
1079as follows:
1080
1081``E``
1082 Specifies that the target lays out data in big-endian form. That is,
1083 the bits with the most significance have the lowest address
1084 location.
1085``e``
1086 Specifies that the target lays out data in little-endian form. That
1087 is, the bits with the least significance have the lowest address
1088 location.
1089``S<size>``
1090 Specifies the natural alignment of the stack in bits. Alignment
1091 promotion of stack variables is limited to the natural stack
1092 alignment to avoid dynamic stack realignment. The stack alignment
1093 must be a multiple of 8-bits. If omitted, the natural stack
1094 alignment defaults to "unspecified", which does not prevent any
1095 alignment promotions.
1096``p[n]:<size>:<abi>:<pref>``
1097 This specifies the *size* of a pointer and its ``<abi>`` and
1098 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1099 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1100 preceding ``:`` should be omitted too. The address space, ``n`` is
1101 optional, and if not specified, denotes the default address space 0.
1102 The value of ``n`` must be in the range [1,2^23).
1103``i<size>:<abi>:<pref>``
1104 This specifies the alignment for an integer type of a given bit
1105 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1106``v<size>:<abi>:<pref>``
1107 This specifies the alignment for a vector type of a given bit
1108 ``<size>``.
1109``f<size>:<abi>:<pref>``
1110 This specifies the alignment for a floating point type of a given bit
1111 ``<size>``. Only values of ``<size>`` that are supported by the target
1112 will work. 32 (float) and 64 (double) are supported on all targets; 80
1113 or 128 (different flavors of long double) are also supported on some
1114 targets.
1115``a<size>:<abi>:<pref>``
1116 This specifies the alignment for an aggregate type of a given bit
1117 ``<size>``.
1118``s<size>:<abi>:<pref>``
1119 This specifies the alignment for a stack object of a given bit
1120 ``<size>``.
1121``n<size1>:<size2>:<size3>...``
1122 This specifies a set of native integer widths for the target CPU in
1123 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1124 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1125 this set are considered to support most general arithmetic operations
1126 efficiently.
1127
1128When constructing the data layout for a given target, LLVM starts with a
1129default set of specifications which are then (possibly) overridden by
1130the specifications in the ``datalayout`` keyword. The default
1131specifications are given in this list:
1132
1133- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001134- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1135- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1136 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001137- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001138- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1139- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1140- ``i16:16:16`` - i16 is 16-bit aligned
1141- ``i32:32:32`` - i32 is 32-bit aligned
1142- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1143 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001144- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001145- ``f32:32:32`` - float is 32-bit aligned
1146- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001147- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001148- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1149- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001150- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001151
1152When LLVM is determining the alignment for a given type, it uses the
1153following rules:
1154
1155#. If the type sought is an exact match for one of the specifications,
1156 that specification is used.
1157#. If no match is found, and the type sought is an integer type, then
1158 the smallest integer type that is larger than the bitwidth of the
1159 sought type is used. If none of the specifications are larger than
1160 the bitwidth then the largest integer type is used. For example,
1161 given the default specifications above, the i7 type will use the
1162 alignment of i8 (next largest) while both i65 and i256 will use the
1163 alignment of i64 (largest specified).
1164#. If no match is found, and the type sought is a vector type, then the
1165 largest vector type that is smaller than the sought vector type will
1166 be used as a fall back. This happens because <128 x double> can be
1167 implemented in terms of 64 <2 x double>, for example.
1168
1169The function of the data layout string may not be what you expect.
1170Notably, this is not a specification from the frontend of what alignment
1171the code generator should use.
1172
1173Instead, if specified, the target data layout is required to match what
1174the ultimate *code generator* expects. This string is used by the
1175mid-level optimizers to improve code, and this only works if it matches
1176what the ultimate code generator uses. If you would like to generate IR
1177that does not embed this target-specific detail into the IR, then you
1178don't have to specify the string. This will disable some optimizations
1179that require precise layout information, but this also prevents those
1180optimizations from introducing target specificity into the IR.
1181
Bill Wendling5cc90842013-10-18 23:41:25 +00001182.. _langref_triple:
1183
1184Target Triple
1185-------------
1186
1187A module may specify a target triple string that describes the target
1188host. The syntax for the target triple is simply:
1189
1190.. code-block:: llvm
1191
1192 target triple = "x86_64-apple-macosx10.7.0"
1193
1194The *target triple* string consists of a series of identifiers delimited
1195by the minus sign character ('-'). The canonical forms are:
1196
1197::
1198
1199 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1200 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1201
1202This information is passed along to the backend so that it generates
1203code for the proper architecture. It's possible to override this on the
1204command line with the ``-mtriple`` command line option.
1205
Sean Silvab084af42012-12-07 10:36:55 +00001206.. _pointeraliasing:
1207
1208Pointer Aliasing Rules
1209----------------------
1210
1211Any memory access must be done through a pointer value associated with
1212an address range of the memory access, otherwise the behavior is
1213undefined. Pointer values are associated with address ranges according
1214to the following rules:
1215
1216- A pointer value is associated with the addresses associated with any
1217 value it is *based* on.
1218- An address of a global variable is associated with the address range
1219 of the variable's storage.
1220- The result value of an allocation instruction is associated with the
1221 address range of the allocated storage.
1222- A null pointer in the default address-space is associated with no
1223 address.
1224- An integer constant other than zero or a pointer value returned from
1225 a function not defined within LLVM may be associated with address
1226 ranges allocated through mechanisms other than those provided by
1227 LLVM. Such ranges shall not overlap with any ranges of addresses
1228 allocated by mechanisms provided by LLVM.
1229
1230A pointer value is *based* on another pointer value according to the
1231following rules:
1232
1233- A pointer value formed from a ``getelementptr`` operation is *based*
1234 on the first operand of the ``getelementptr``.
1235- The result value of a ``bitcast`` is *based* on the operand of the
1236 ``bitcast``.
1237- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1238 values that contribute (directly or indirectly) to the computation of
1239 the pointer's value.
1240- The "*based* on" relationship is transitive.
1241
1242Note that this definition of *"based"* is intentionally similar to the
1243definition of *"based"* in C99, though it is slightly weaker.
1244
1245LLVM IR does not associate types with memory. The result type of a
1246``load`` merely indicates the size and alignment of the memory from
1247which to load, as well as the interpretation of the value. The first
1248operand type of a ``store`` similarly only indicates the size and
1249alignment of the store.
1250
1251Consequently, type-based alias analysis, aka TBAA, aka
1252``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1253:ref:`Metadata <metadata>` may be used to encode additional information
1254which specialized optimization passes may use to implement type-based
1255alias analysis.
1256
1257.. _volatile:
1258
1259Volatile Memory Accesses
1260------------------------
1261
1262Certain memory accesses, such as :ref:`load <i_load>`'s,
1263:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1264marked ``volatile``. The optimizers must not change the number of
1265volatile operations or change their order of execution relative to other
1266volatile operations. The optimizers *may* change the order of volatile
1267operations relative to non-volatile operations. This is not Java's
1268"volatile" and has no cross-thread synchronization behavior.
1269
Andrew Trick89fc5a62013-01-30 21:19:35 +00001270IR-level volatile loads and stores cannot safely be optimized into
1271llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1272flagged volatile. Likewise, the backend should never split or merge
1273target-legal volatile load/store instructions.
1274
Andrew Trick7e6f9282013-01-31 00:49:39 +00001275.. admonition:: Rationale
1276
1277 Platforms may rely on volatile loads and stores of natively supported
1278 data width to be executed as single instruction. For example, in C
1279 this holds for an l-value of volatile primitive type with native
1280 hardware support, but not necessarily for aggregate types. The
1281 frontend upholds these expectations, which are intentionally
1282 unspecified in the IR. The rules above ensure that IR transformation
1283 do not violate the frontend's contract with the language.
1284
Sean Silvab084af42012-12-07 10:36:55 +00001285.. _memmodel:
1286
1287Memory Model for Concurrent Operations
1288--------------------------------------
1289
1290The LLVM IR does not define any way to start parallel threads of
1291execution or to register signal handlers. Nonetheless, there are
1292platform-specific ways to create them, and we define LLVM IR's behavior
1293in their presence. This model is inspired by the C++0x memory model.
1294
1295For a more informal introduction to this model, see the :doc:`Atomics`.
1296
1297We define a *happens-before* partial order as the least partial order
1298that
1299
1300- Is a superset of single-thread program order, and
1301- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1302 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1303 techniques, like pthread locks, thread creation, thread joining,
1304 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1305 Constraints <ordering>`).
1306
1307Note that program order does not introduce *happens-before* edges
1308between a thread and signals executing inside that thread.
1309
1310Every (defined) read operation (load instructions, memcpy, atomic
1311loads/read-modify-writes, etc.) R reads a series of bytes written by
1312(defined) write operations (store instructions, atomic
1313stores/read-modify-writes, memcpy, etc.). For the purposes of this
1314section, initialized globals are considered to have a write of the
1315initializer which is atomic and happens before any other read or write
1316of the memory in question. For each byte of a read R, R\ :sub:`byte`
1317may see any write to the same byte, except:
1318
1319- If write\ :sub:`1` happens before write\ :sub:`2`, and
1320 write\ :sub:`2` happens before R\ :sub:`byte`, then
1321 R\ :sub:`byte` does not see write\ :sub:`1`.
1322- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1323 R\ :sub:`byte` does not see write\ :sub:`3`.
1324
1325Given that definition, R\ :sub:`byte` is defined as follows:
1326
1327- If R is volatile, the result is target-dependent. (Volatile is
1328 supposed to give guarantees which can support ``sig_atomic_t`` in
1329 C/C++, and may be used for accesses to addresses which do not behave
1330 like normal memory. It does not generally provide cross-thread
1331 synchronization.)
1332- Otherwise, if there is no write to the same byte that happens before
1333 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1334- Otherwise, if R\ :sub:`byte` may see exactly one write,
1335 R\ :sub:`byte` returns the value written by that write.
1336- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1337 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1338 Memory Ordering Constraints <ordering>` section for additional
1339 constraints on how the choice is made.
1340- Otherwise R\ :sub:`byte` returns ``undef``.
1341
1342R returns the value composed of the series of bytes it read. This
1343implies that some bytes within the value may be ``undef`` **without**
1344the entire value being ``undef``. Note that this only defines the
1345semantics of the operation; it doesn't mean that targets will emit more
1346than one instruction to read the series of bytes.
1347
1348Note that in cases where none of the atomic intrinsics are used, this
1349model places only one restriction on IR transformations on top of what
1350is required for single-threaded execution: introducing a store to a byte
1351which might not otherwise be stored is not allowed in general.
1352(Specifically, in the case where another thread might write to and read
1353from an address, introducing a store can change a load that may see
1354exactly one write into a load that may see multiple writes.)
1355
1356.. _ordering:
1357
1358Atomic Memory Ordering Constraints
1359----------------------------------
1360
1361Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1362:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1363:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1364an ordering parameter that determines which other atomic instructions on
1365the same address they *synchronize with*. These semantics are borrowed
1366from Java and C++0x, but are somewhat more colloquial. If these
1367descriptions aren't precise enough, check those specs (see spec
1368references in the :doc:`atomics guide <Atomics>`).
1369:ref:`fence <i_fence>` instructions treat these orderings somewhat
1370differently since they don't take an address. See that instruction's
1371documentation for details.
1372
1373For a simpler introduction to the ordering constraints, see the
1374:doc:`Atomics`.
1375
1376``unordered``
1377 The set of values that can be read is governed by the happens-before
1378 partial order. A value cannot be read unless some operation wrote
1379 it. This is intended to provide a guarantee strong enough to model
1380 Java's non-volatile shared variables. This ordering cannot be
1381 specified for read-modify-write operations; it is not strong enough
1382 to make them atomic in any interesting way.
1383``monotonic``
1384 In addition to the guarantees of ``unordered``, there is a single
1385 total order for modifications by ``monotonic`` operations on each
1386 address. All modification orders must be compatible with the
1387 happens-before order. There is no guarantee that the modification
1388 orders can be combined to a global total order for the whole program
1389 (and this often will not be possible). The read in an atomic
1390 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1391 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1392 order immediately before the value it writes. If one atomic read
1393 happens before another atomic read of the same address, the later
1394 read must see the same value or a later value in the address's
1395 modification order. This disallows reordering of ``monotonic`` (or
1396 stronger) operations on the same address. If an address is written
1397 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1398 read that address repeatedly, the other threads must eventually see
1399 the write. This corresponds to the C++0x/C1x
1400 ``memory_order_relaxed``.
1401``acquire``
1402 In addition to the guarantees of ``monotonic``, a
1403 *synchronizes-with* edge may be formed with a ``release`` operation.
1404 This is intended to model C++'s ``memory_order_acquire``.
1405``release``
1406 In addition to the guarantees of ``monotonic``, if this operation
1407 writes a value which is subsequently read by an ``acquire``
1408 operation, it *synchronizes-with* that operation. (This isn't a
1409 complete description; see the C++0x definition of a release
1410 sequence.) This corresponds to the C++0x/C1x
1411 ``memory_order_release``.
1412``acq_rel`` (acquire+release)
1413 Acts as both an ``acquire`` and ``release`` operation on its
1414 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1415``seq_cst`` (sequentially consistent)
1416 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1417 operation which only reads, ``release`` for an operation which only
1418 writes), there is a global total order on all
1419 sequentially-consistent operations on all addresses, which is
1420 consistent with the *happens-before* partial order and with the
1421 modification orders of all the affected addresses. Each
1422 sequentially-consistent read sees the last preceding write to the
1423 same address in this global order. This corresponds to the C++0x/C1x
1424 ``memory_order_seq_cst`` and Java volatile.
1425
1426.. _singlethread:
1427
1428If an atomic operation is marked ``singlethread``, it only *synchronizes
1429with* or participates in modification and seq\_cst total orderings with
1430other operations running in the same thread (for example, in signal
1431handlers).
1432
1433.. _fastmath:
1434
1435Fast-Math Flags
1436---------------
1437
1438LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1439:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1440:ref:`frem <i_frem>`) have the following flags that can set to enable
1441otherwise unsafe floating point operations
1442
1443``nnan``
1444 No NaNs - Allow optimizations to assume the arguments and result are not
1445 NaN. Such optimizations are required to retain defined behavior over
1446 NaNs, but the value of the result is undefined.
1447
1448``ninf``
1449 No Infs - Allow optimizations to assume the arguments and result are not
1450 +/-Inf. Such optimizations are required to retain defined behavior over
1451 +/-Inf, but the value of the result is undefined.
1452
1453``nsz``
1454 No Signed Zeros - Allow optimizations to treat the sign of a zero
1455 argument or result as insignificant.
1456
1457``arcp``
1458 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1459 argument rather than perform division.
1460
1461``fast``
1462 Fast - Allow algebraically equivalent transformations that may
1463 dramatically change results in floating point (e.g. reassociate). This
1464 flag implies all the others.
1465
1466.. _typesystem:
1467
1468Type System
1469===========
1470
1471The LLVM type system is one of the most important features of the
1472intermediate representation. Being typed enables a number of
1473optimizations to be performed on the intermediate representation
1474directly, without having to do extra analyses on the side before the
1475transformation. A strong type system makes it easier to read the
1476generated code and enables novel analyses and transformations that are
1477not feasible to perform on normal three address code representations.
1478
Rafael Espindola08013342013-12-07 19:34:20 +00001479.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001480
Rafael Espindola08013342013-12-07 19:34:20 +00001481Void Type
1482---------
Sean Silvab084af42012-12-07 10:36:55 +00001483
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001484:Overview:
1485
Rafael Espindola08013342013-12-07 19:34:20 +00001486
1487The void type does not represent any value and has no size.
1488
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001489:Syntax:
1490
Rafael Espindola08013342013-12-07 19:34:20 +00001491
1492::
1493
1494 void
Sean Silvab084af42012-12-07 10:36:55 +00001495
1496
Rafael Espindola08013342013-12-07 19:34:20 +00001497.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001498
Rafael Espindola08013342013-12-07 19:34:20 +00001499Function Type
1500-------------
Sean Silvab084af42012-12-07 10:36:55 +00001501
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001502:Overview:
1503
Sean Silvab084af42012-12-07 10:36:55 +00001504
Rafael Espindola08013342013-12-07 19:34:20 +00001505The function type can be thought of as a function signature. It consists of a
1506return type and a list of formal parameter types. The return type of a function
1507type is a void type or first class type --- except for :ref:`label <t_label>`
1508and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001509
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001510:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001511
Rafael Espindola08013342013-12-07 19:34:20 +00001512::
Sean Silvab084af42012-12-07 10:36:55 +00001513
Rafael Espindola08013342013-12-07 19:34:20 +00001514 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001515
Rafael Espindola08013342013-12-07 19:34:20 +00001516...where '``<parameter list>``' is a comma-separated list of type
1517specifiers. Optionally, the parameter list may include a type ``...``, which
1518indicates that the function takes a variable number of arguments. Variable
1519argument functions can access their arguments with the :ref:`variable argument
1520handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1521except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001522
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001523:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001524
Rafael Espindola08013342013-12-07 19:34:20 +00001525+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1526| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1527+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1528| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1529+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1530| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1531+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1532| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1533+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1534
1535.. _t_firstclass:
1536
1537First Class Types
1538-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001539
1540The :ref:`first class <t_firstclass>` types are perhaps the most important.
1541Values of these types are the only ones which can be produced by
1542instructions.
1543
Rafael Espindola08013342013-12-07 19:34:20 +00001544.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001545
Rafael Espindola08013342013-12-07 19:34:20 +00001546Single Value Types
1547^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001548
Rafael Espindola08013342013-12-07 19:34:20 +00001549These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001550
1551.. _t_integer:
1552
1553Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001554""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001555
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001556:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001557
1558The integer type is a very simple type that simply specifies an
1559arbitrary bit width for the integer type desired. Any bit width from 1
1560bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1561
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001562:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001563
1564::
1565
1566 iN
1567
1568The number of bits the integer will occupy is specified by the ``N``
1569value.
1570
1571Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001572*********
Sean Silvab084af42012-12-07 10:36:55 +00001573
1574+----------------+------------------------------------------------+
1575| ``i1`` | a single-bit integer. |
1576+----------------+------------------------------------------------+
1577| ``i32`` | a 32-bit integer. |
1578+----------------+------------------------------------------------+
1579| ``i1942652`` | a really big integer of over 1 million bits. |
1580+----------------+------------------------------------------------+
1581
1582.. _t_floating:
1583
1584Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001585""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001586
1587.. list-table::
1588 :header-rows: 1
1589
1590 * - Type
1591 - Description
1592
1593 * - ``half``
1594 - 16-bit floating point value
1595
1596 * - ``float``
1597 - 32-bit floating point value
1598
1599 * - ``double``
1600 - 64-bit floating point value
1601
1602 * - ``fp128``
1603 - 128-bit floating point value (112-bit mantissa)
1604
1605 * - ``x86_fp80``
1606 - 80-bit floating point value (X87)
1607
1608 * - ``ppc_fp128``
1609 - 128-bit floating point value (two 64-bits)
1610
1611.. _t_x86mmx:
1612
1613X86mmx Type
Rafael Espindola08013342013-12-07 19:34:20 +00001614"""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001615
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001616:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001617
1618The x86mmx type represents a value held in an MMX register on an x86
1619machine. The operations allowed on it are quite limited: parameters and
1620return values, load and store, and bitcast. User-specified MMX
1621instructions are represented as intrinsic or asm calls with arguments
1622and/or results of this type. There are no arrays, vectors or constants
1623of this type.
1624
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001625:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001626
1627::
1628
1629 x86mmx
1630
Sean Silvab084af42012-12-07 10:36:55 +00001631
Rafael Espindola08013342013-12-07 19:34:20 +00001632.. _t_pointer:
1633
1634Pointer Type
1635""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001636
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001637:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001638
Rafael Espindola08013342013-12-07 19:34:20 +00001639The pointer type is used to specify memory locations. Pointers are
1640commonly used to reference objects in memory.
1641
1642Pointer types may have an optional address space attribute defining the
1643numbered address space where the pointed-to object resides. The default
1644address space is number zero. The semantics of non-zero address spaces
1645are target-specific.
1646
1647Note that LLVM does not permit pointers to void (``void*``) nor does it
1648permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001649
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001650:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001651
1652::
1653
Rafael Espindola08013342013-12-07 19:34:20 +00001654 <type> *
1655
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001656:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001657
1658+-------------------------+--------------------------------------------------------------------------------------------------------------+
1659| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1660+-------------------------+--------------------------------------------------------------------------------------------------------------+
1661| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1662+-------------------------+--------------------------------------------------------------------------------------------------------------+
1663| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1664+-------------------------+--------------------------------------------------------------------------------------------------------------+
1665
1666.. _t_vector:
1667
1668Vector Type
1669"""""""""""
1670
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001671:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001672
1673A vector type is a simple derived type that represents a vector of
1674elements. Vector types are used when multiple primitive data are
1675operated in parallel using a single instruction (SIMD). A vector type
1676requires a size (number of elements) and an underlying primitive data
1677type. Vector types are considered :ref:`first class <t_firstclass>`.
1678
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001679:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001680
1681::
1682
1683 < <# elements> x <elementtype> >
1684
1685The number of elements is a constant integer value larger than 0;
1686elementtype may be any integer or floating point type, or a pointer to
1687these types. Vectors of size zero are not allowed.
1688
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001689:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001690
1691+-------------------+--------------------------------------------------+
1692| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1693+-------------------+--------------------------------------------------+
1694| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1695+-------------------+--------------------------------------------------+
1696| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1697+-------------------+--------------------------------------------------+
1698| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1699+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001700
1701.. _t_label:
1702
1703Label Type
1704^^^^^^^^^^
1705
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001706:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001707
1708The label type represents code labels.
1709
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001710:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001711
1712::
1713
1714 label
1715
1716.. _t_metadata:
1717
1718Metadata Type
1719^^^^^^^^^^^^^
1720
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001721:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001722
1723The metadata type represents embedded metadata. No derived types may be
1724created from metadata except for :ref:`function <t_function>` arguments.
1725
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001726:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001727
1728::
1729
1730 metadata
1731
Sean Silvab084af42012-12-07 10:36:55 +00001732.. _t_aggregate:
1733
1734Aggregate Types
1735^^^^^^^^^^^^^^^
1736
1737Aggregate Types are a subset of derived types that can contain multiple
1738member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1739aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1740aggregate types.
1741
1742.. _t_array:
1743
1744Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001745""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001746
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001747:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001748
1749The array type is a very simple derived type that arranges elements
1750sequentially in memory. The array type requires a size (number of
1751elements) and an underlying data type.
1752
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001753:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001754
1755::
1756
1757 [<# elements> x <elementtype>]
1758
1759The number of elements is a constant integer value; ``elementtype`` may
1760be any type with a size.
1761
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001762:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001763
1764+------------------+--------------------------------------+
1765| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1766+------------------+--------------------------------------+
1767| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1768+------------------+--------------------------------------+
1769| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1770+------------------+--------------------------------------+
1771
1772Here are some examples of multidimensional arrays:
1773
1774+-----------------------------+----------------------------------------------------------+
1775| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1776+-----------------------------+----------------------------------------------------------+
1777| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1778+-----------------------------+----------------------------------------------------------+
1779| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1780+-----------------------------+----------------------------------------------------------+
1781
1782There is no restriction on indexing beyond the end of the array implied
1783by a static type (though there are restrictions on indexing beyond the
1784bounds of an allocated object in some cases). This means that
1785single-dimension 'variable sized array' addressing can be implemented in
1786LLVM with a zero length array type. An implementation of 'pascal style
1787arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1788example.
1789
Sean Silvab084af42012-12-07 10:36:55 +00001790.. _t_struct:
1791
1792Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001793""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001794
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001795:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001796
1797The structure type is used to represent a collection of data members
1798together in memory. The elements of a structure may be any type that has
1799a size.
1800
1801Structures in memory are accessed using '``load``' and '``store``' by
1802getting a pointer to a field with the '``getelementptr``' instruction.
1803Structures in registers are accessed using the '``extractvalue``' and
1804'``insertvalue``' instructions.
1805
1806Structures may optionally be "packed" structures, which indicate that
1807the alignment of the struct is one byte, and that there is no padding
1808between the elements. In non-packed structs, padding between field types
1809is inserted as defined by the DataLayout string in the module, which is
1810required to match what the underlying code generator expects.
1811
1812Structures can either be "literal" or "identified". A literal structure
1813is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1814identified types are always defined at the top level with a name.
1815Literal types are uniqued by their contents and can never be recursive
1816or opaque since there is no way to write one. Identified types can be
1817recursive, can be opaqued, and are never uniqued.
1818
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001819:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001820
1821::
1822
1823 %T1 = type { <type list> } ; Identified normal struct type
1824 %T2 = type <{ <type list> }> ; Identified packed struct type
1825
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001826:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001827
1828+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1829| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1830+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001831| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001832+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1833| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1834+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1835
1836.. _t_opaque:
1837
1838Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001839""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001840
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001841:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001842
1843Opaque structure types are used to represent named structure types that
1844do not have a body specified. This corresponds (for example) to the C
1845notion of a forward declared structure.
1846
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001847:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001848
1849::
1850
1851 %X = type opaque
1852 %52 = type opaque
1853
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001854:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001855
1856+--------------+-------------------+
1857| ``opaque`` | An opaque type. |
1858+--------------+-------------------+
1859
Sean Silvab084af42012-12-07 10:36:55 +00001860Constants
1861=========
1862
1863LLVM has several different basic types of constants. This section
1864describes them all and their syntax.
1865
1866Simple Constants
1867----------------
1868
1869**Boolean constants**
1870 The two strings '``true``' and '``false``' are both valid constants
1871 of the ``i1`` type.
1872**Integer constants**
1873 Standard integers (such as '4') are constants of the
1874 :ref:`integer <t_integer>` type. Negative numbers may be used with
1875 integer types.
1876**Floating point constants**
1877 Floating point constants use standard decimal notation (e.g.
1878 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1879 hexadecimal notation (see below). The assembler requires the exact
1880 decimal value of a floating-point constant. For example, the
1881 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1882 decimal in binary. Floating point constants must have a :ref:`floating
1883 point <t_floating>` type.
1884**Null pointer constants**
1885 The identifier '``null``' is recognized as a null pointer constant
1886 and must be of :ref:`pointer type <t_pointer>`.
1887
1888The one non-intuitive notation for constants is the hexadecimal form of
1889floating point constants. For example, the form
1890'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1891than) '``double 4.5e+15``'. The only time hexadecimal floating point
1892constants are required (and the only time that they are generated by the
1893disassembler) is when a floating point constant must be emitted but it
1894cannot be represented as a decimal floating point number in a reasonable
1895number of digits. For example, NaN's, infinities, and other special
1896values are represented in their IEEE hexadecimal format so that assembly
1897and disassembly do not cause any bits to change in the constants.
1898
1899When using the hexadecimal form, constants of types half, float, and
1900double are represented using the 16-digit form shown above (which
1901matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001902must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001903precision, respectively. Hexadecimal format is always used for long
1904double, and there are three forms of long double. The 80-bit format used
1905by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1906128-bit format used by PowerPC (two adjacent doubles) is represented by
1907``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00001908represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1909will only work if they match the long double format on your target.
1910The IEEE 16-bit format (half precision) is represented by ``0xH``
1911followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1912(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00001913
1914There are no constants of type x86mmx.
1915
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001916.. _complexconstants:
1917
Sean Silvab084af42012-12-07 10:36:55 +00001918Complex Constants
1919-----------------
1920
1921Complex constants are a (potentially recursive) combination of simple
1922constants and smaller complex constants.
1923
1924**Structure constants**
1925 Structure constants are represented with notation similar to
1926 structure type definitions (a comma separated list of elements,
1927 surrounded by braces (``{}``)). For example:
1928 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1929 "``@G = external global i32``". Structure constants must have
1930 :ref:`structure type <t_struct>`, and the number and types of elements
1931 must match those specified by the type.
1932**Array constants**
1933 Array constants are represented with notation similar to array type
1934 definitions (a comma separated list of elements, surrounded by
1935 square brackets (``[]``)). For example:
1936 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1937 :ref:`array type <t_array>`, and the number and types of elements must
1938 match those specified by the type.
1939**Vector constants**
1940 Vector constants are represented with notation similar to vector
1941 type definitions (a comma separated list of elements, surrounded by
1942 less-than/greater-than's (``<>``)). For example:
1943 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1944 must have :ref:`vector type <t_vector>`, and the number and types of
1945 elements must match those specified by the type.
1946**Zero initialization**
1947 The string '``zeroinitializer``' can be used to zero initialize a
1948 value to zero of *any* type, including scalar and
1949 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1950 having to print large zero initializers (e.g. for large arrays) and
1951 is always exactly equivalent to using explicit zero initializers.
1952**Metadata node**
1953 A metadata node is a structure-like constant with :ref:`metadata
1954 type <t_metadata>`. For example:
1955 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1956 constants that are meant to be interpreted as part of the
1957 instruction stream, metadata is a place to attach additional
1958 information such as debug info.
1959
1960Global Variable and Function Addresses
1961--------------------------------------
1962
1963The addresses of :ref:`global variables <globalvars>` and
1964:ref:`functions <functionstructure>` are always implicitly valid
1965(link-time) constants. These constants are explicitly referenced when
1966the :ref:`identifier for the global <identifiers>` is used and always have
1967:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1968file:
1969
1970.. code-block:: llvm
1971
1972 @X = global i32 17
1973 @Y = global i32 42
1974 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1975
1976.. _undefvalues:
1977
1978Undefined Values
1979----------------
1980
1981The string '``undef``' can be used anywhere a constant is expected, and
1982indicates that the user of the value may receive an unspecified
1983bit-pattern. Undefined values may be of any type (other than '``label``'
1984or '``void``') and be used anywhere a constant is permitted.
1985
1986Undefined values are useful because they indicate to the compiler that
1987the program is well defined no matter what value is used. This gives the
1988compiler more freedom to optimize. Here are some examples of
1989(potentially surprising) transformations that are valid (in pseudo IR):
1990
1991.. code-block:: llvm
1992
1993 %A = add %X, undef
1994 %B = sub %X, undef
1995 %C = xor %X, undef
1996 Safe:
1997 %A = undef
1998 %B = undef
1999 %C = undef
2000
2001This is safe because all of the output bits are affected by the undef
2002bits. Any output bit can have a zero or one depending on the input bits.
2003
2004.. code-block:: llvm
2005
2006 %A = or %X, undef
2007 %B = and %X, undef
2008 Safe:
2009 %A = -1
2010 %B = 0
2011 Unsafe:
2012 %A = undef
2013 %B = undef
2014
2015These logical operations have bits that are not always affected by the
2016input. For example, if ``%X`` has a zero bit, then the output of the
2017'``and``' operation will always be a zero for that bit, no matter what
2018the corresponding bit from the '``undef``' is. As such, it is unsafe to
2019optimize or assume that the result of the '``and``' is '``undef``'.
2020However, it is safe to assume that all bits of the '``undef``' could be
20210, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2022all the bits of the '``undef``' operand to the '``or``' could be set,
2023allowing the '``or``' to be folded to -1.
2024
2025.. code-block:: llvm
2026
2027 %A = select undef, %X, %Y
2028 %B = select undef, 42, %Y
2029 %C = select %X, %Y, undef
2030 Safe:
2031 %A = %X (or %Y)
2032 %B = 42 (or %Y)
2033 %C = %Y
2034 Unsafe:
2035 %A = undef
2036 %B = undef
2037 %C = undef
2038
2039This set of examples shows that undefined '``select``' (and conditional
2040branch) conditions can go *either way*, but they have to come from one
2041of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2042both known to have a clear low bit, then ``%A`` would have to have a
2043cleared low bit. However, in the ``%C`` example, the optimizer is
2044allowed to assume that the '``undef``' operand could be the same as
2045``%Y``, allowing the whole '``select``' to be eliminated.
2046
2047.. code-block:: llvm
2048
2049 %A = xor undef, undef
2050
2051 %B = undef
2052 %C = xor %B, %B
2053
2054 %D = undef
2055 %E = icmp lt %D, 4
2056 %F = icmp gte %D, 4
2057
2058 Safe:
2059 %A = undef
2060 %B = undef
2061 %C = undef
2062 %D = undef
2063 %E = undef
2064 %F = undef
2065
2066This example points out that two '``undef``' operands are not
2067necessarily the same. This can be surprising to people (and also matches
2068C semantics) where they assume that "``X^X``" is always zero, even if
2069``X`` is undefined. This isn't true for a number of reasons, but the
2070short answer is that an '``undef``' "variable" can arbitrarily change
2071its value over its "live range". This is true because the variable
2072doesn't actually *have a live range*. Instead, the value is logically
2073read from arbitrary registers that happen to be around when needed, so
2074the value is not necessarily consistent over time. In fact, ``%A`` and
2075``%C`` need to have the same semantics or the core LLVM "replace all
2076uses with" concept would not hold.
2077
2078.. code-block:: llvm
2079
2080 %A = fdiv undef, %X
2081 %B = fdiv %X, undef
2082 Safe:
2083 %A = undef
2084 b: unreachable
2085
2086These examples show the crucial difference between an *undefined value*
2087and *undefined behavior*. An undefined value (like '``undef``') is
2088allowed to have an arbitrary bit-pattern. This means that the ``%A``
2089operation can be constant folded to '``undef``', because the '``undef``'
2090could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2091However, in the second example, we can make a more aggressive
2092assumption: because the ``undef`` is allowed to be an arbitrary value,
2093we are allowed to assume that it could be zero. Since a divide by zero
2094has *undefined behavior*, we are allowed to assume that the operation
2095does not execute at all. This allows us to delete the divide and all
2096code after it. Because the undefined operation "can't happen", the
2097optimizer can assume that it occurs in dead code.
2098
2099.. code-block:: llvm
2100
2101 a: store undef -> %X
2102 b: store %X -> undef
2103 Safe:
2104 a: <deleted>
2105 b: unreachable
2106
2107These examples reiterate the ``fdiv`` example: a store *of* an undefined
2108value can be assumed to not have any effect; we can assume that the
2109value is overwritten with bits that happen to match what was already
2110there. However, a store *to* an undefined location could clobber
2111arbitrary memory, therefore, it has undefined behavior.
2112
2113.. _poisonvalues:
2114
2115Poison Values
2116-------------
2117
2118Poison values are similar to :ref:`undef values <undefvalues>`, however
2119they also represent the fact that an instruction or constant expression
2120which cannot evoke side effects has nevertheless detected a condition
2121which results in undefined behavior.
2122
2123There is currently no way of representing a poison value in the IR; they
2124only exist when produced by operations such as :ref:`add <i_add>` with
2125the ``nsw`` flag.
2126
2127Poison value behavior is defined in terms of value *dependence*:
2128
2129- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2130- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2131 their dynamic predecessor basic block.
2132- Function arguments depend on the corresponding actual argument values
2133 in the dynamic callers of their functions.
2134- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2135 instructions that dynamically transfer control back to them.
2136- :ref:`Invoke <i_invoke>` instructions depend on the
2137 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2138 call instructions that dynamically transfer control back to them.
2139- Non-volatile loads and stores depend on the most recent stores to all
2140 of the referenced memory addresses, following the order in the IR
2141 (including loads and stores implied by intrinsics such as
2142 :ref:`@llvm.memcpy <int_memcpy>`.)
2143- An instruction with externally visible side effects depends on the
2144 most recent preceding instruction with externally visible side
2145 effects, following the order in the IR. (This includes :ref:`volatile
2146 operations <volatile>`.)
2147- An instruction *control-depends* on a :ref:`terminator
2148 instruction <terminators>` if the terminator instruction has
2149 multiple successors and the instruction is always executed when
2150 control transfers to one of the successors, and may not be executed
2151 when control is transferred to another.
2152- Additionally, an instruction also *control-depends* on a terminator
2153 instruction if the set of instructions it otherwise depends on would
2154 be different if the terminator had transferred control to a different
2155 successor.
2156- Dependence is transitive.
2157
2158Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2159with the additional affect that any instruction which has a *dependence*
2160on a poison value has undefined behavior.
2161
2162Here are some examples:
2163
2164.. code-block:: llvm
2165
2166 entry:
2167 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2168 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2169 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2170 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2171
2172 store i32 %poison, i32* @g ; Poison value stored to memory.
2173 %poison2 = load i32* @g ; Poison value loaded back from memory.
2174
2175 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2176
2177 %narrowaddr = bitcast i32* @g to i16*
2178 %wideaddr = bitcast i32* @g to i64*
2179 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2180 %poison4 = load i64* %wideaddr ; Returns a poison value.
2181
2182 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2183 br i1 %cmp, label %true, label %end ; Branch to either destination.
2184
2185 true:
2186 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2187 ; it has undefined behavior.
2188 br label %end
2189
2190 end:
2191 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2192 ; Both edges into this PHI are
2193 ; control-dependent on %cmp, so this
2194 ; always results in a poison value.
2195
2196 store volatile i32 0, i32* @g ; This would depend on the store in %true
2197 ; if %cmp is true, or the store in %entry
2198 ; otherwise, so this is undefined behavior.
2199
2200 br i1 %cmp, label %second_true, label %second_end
2201 ; The same branch again, but this time the
2202 ; true block doesn't have side effects.
2203
2204 second_true:
2205 ; No side effects!
2206 ret void
2207
2208 second_end:
2209 store volatile i32 0, i32* @g ; This time, the instruction always depends
2210 ; on the store in %end. Also, it is
2211 ; control-equivalent to %end, so this is
2212 ; well-defined (ignoring earlier undefined
2213 ; behavior in this example).
2214
2215.. _blockaddress:
2216
2217Addresses of Basic Blocks
2218-------------------------
2219
2220``blockaddress(@function, %block)``
2221
2222The '``blockaddress``' constant computes the address of the specified
2223basic block in the specified function, and always has an ``i8*`` type.
2224Taking the address of the entry block is illegal.
2225
2226This value only has defined behavior when used as an operand to the
2227':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2228against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002229undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002230no label is equal to the null pointer. This may be passed around as an
2231opaque pointer sized value as long as the bits are not inspected. This
2232allows ``ptrtoint`` and arithmetic to be performed on these values so
2233long as the original value is reconstituted before the ``indirectbr``
2234instruction.
2235
2236Finally, some targets may provide defined semantics when using the value
2237as the operand to an inline assembly, but that is target specific.
2238
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002239.. _constantexprs:
2240
Sean Silvab084af42012-12-07 10:36:55 +00002241Constant Expressions
2242--------------------
2243
2244Constant expressions are used to allow expressions involving other
2245constants to be used as constants. Constant expressions may be of any
2246:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2247that does not have side effects (e.g. load and call are not supported).
2248The following is the syntax for constant expressions:
2249
2250``trunc (CST to TYPE)``
2251 Truncate a constant to another type. The bit size of CST must be
2252 larger than the bit size of TYPE. Both types must be integers.
2253``zext (CST to TYPE)``
2254 Zero extend a constant to another type. The bit size of CST must be
2255 smaller than the bit size of TYPE. Both types must be integers.
2256``sext (CST to TYPE)``
2257 Sign extend a constant to another type. The bit size of CST must be
2258 smaller than the bit size of TYPE. Both types must be integers.
2259``fptrunc (CST to TYPE)``
2260 Truncate a floating point constant to another floating point type.
2261 The size of CST must be larger than the size of TYPE. Both types
2262 must be floating point.
2263``fpext (CST to TYPE)``
2264 Floating point extend a constant to another type. The size of CST
2265 must be smaller or equal to the size of TYPE. Both types must be
2266 floating point.
2267``fptoui (CST to TYPE)``
2268 Convert a floating point constant to the corresponding unsigned
2269 integer constant. TYPE must be a scalar or vector integer type. CST
2270 must be of scalar or vector floating point type. Both CST and TYPE
2271 must be scalars, or vectors of the same number of elements. If the
2272 value won't fit in the integer type, the results are undefined.
2273``fptosi (CST to TYPE)``
2274 Convert a floating point constant to the corresponding signed
2275 integer constant. TYPE must be a scalar or vector integer type. CST
2276 must be of scalar or vector floating point type. Both CST and TYPE
2277 must be scalars, or vectors of the same number of elements. If the
2278 value won't fit in the integer type, the results are undefined.
2279``uitofp (CST to TYPE)``
2280 Convert an unsigned integer constant to the corresponding floating
2281 point constant. TYPE must be a scalar or vector floating point type.
2282 CST must be of scalar or vector integer type. Both CST and TYPE must
2283 be scalars, or vectors of the same number of elements. If the value
2284 won't fit in the floating point type, the results are undefined.
2285``sitofp (CST to TYPE)``
2286 Convert a signed integer constant to the corresponding floating
2287 point constant. TYPE must be a scalar or vector floating point type.
2288 CST must be of scalar or vector integer type. Both CST and TYPE must
2289 be scalars, or vectors of the same number of elements. If the value
2290 won't fit in the floating point type, the results are undefined.
2291``ptrtoint (CST to TYPE)``
2292 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002293 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002294 pointer type. The ``CST`` value is zero extended, truncated, or
2295 unchanged to make it fit in ``TYPE``.
2296``inttoptr (CST to TYPE)``
2297 Convert an integer constant to a pointer constant. TYPE must be a
2298 pointer type. CST must be of integer type. The CST value is zero
2299 extended, truncated, or unchanged to make it fit in a pointer size.
2300 This one is *really* dangerous!
2301``bitcast (CST to TYPE)``
2302 Convert a constant, CST, to another TYPE. The constraints of the
2303 operands are the same as those for the :ref:`bitcast
2304 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002305``addrspacecast (CST to TYPE)``
2306 Convert a constant pointer or constant vector of pointer, CST, to another
2307 TYPE in a different address space. The constraints of the operands are the
2308 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002309``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2310 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2311 constants. As with the :ref:`getelementptr <i_getelementptr>`
2312 instruction, the index list may have zero or more indexes, which are
2313 required to make sense for the type of "CSTPTR".
2314``select (COND, VAL1, VAL2)``
2315 Perform the :ref:`select operation <i_select>` on constants.
2316``icmp COND (VAL1, VAL2)``
2317 Performs the :ref:`icmp operation <i_icmp>` on constants.
2318``fcmp COND (VAL1, VAL2)``
2319 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2320``extractelement (VAL, IDX)``
2321 Perform the :ref:`extractelement operation <i_extractelement>` on
2322 constants.
2323``insertelement (VAL, ELT, IDX)``
2324 Perform the :ref:`insertelement operation <i_insertelement>` on
2325 constants.
2326``shufflevector (VEC1, VEC2, IDXMASK)``
2327 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2328 constants.
2329``extractvalue (VAL, IDX0, IDX1, ...)``
2330 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2331 constants. The index list is interpreted in a similar manner as
2332 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2333 least one index value must be specified.
2334``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2335 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2336 The index list is interpreted in a similar manner as indices in a
2337 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2338 value must be specified.
2339``OPCODE (LHS, RHS)``
2340 Perform the specified operation of the LHS and RHS constants. OPCODE
2341 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2342 binary <bitwiseops>` operations. The constraints on operands are
2343 the same as those for the corresponding instruction (e.g. no bitwise
2344 operations on floating point values are allowed).
2345
2346Other Values
2347============
2348
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002349.. _inlineasmexprs:
2350
Sean Silvab084af42012-12-07 10:36:55 +00002351Inline Assembler Expressions
2352----------------------------
2353
2354LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2355Inline Assembly <moduleasm>`) through the use of a special value. This
2356value represents the inline assembler as a string (containing the
2357instructions to emit), a list of operand constraints (stored as a
2358string), a flag that indicates whether or not the inline asm expression
2359has side effects, and a flag indicating whether the function containing
2360the asm needs to align its stack conservatively. An example inline
2361assembler expression is:
2362
2363.. code-block:: llvm
2364
2365 i32 (i32) asm "bswap $0", "=r,r"
2366
2367Inline assembler expressions may **only** be used as the callee operand
2368of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2369Thus, typically we have:
2370
2371.. code-block:: llvm
2372
2373 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2374
2375Inline asms with side effects not visible in the constraint list must be
2376marked as having side effects. This is done through the use of the
2377'``sideeffect``' keyword, like so:
2378
2379.. code-block:: llvm
2380
2381 call void asm sideeffect "eieio", ""()
2382
2383In some cases inline asms will contain code that will not work unless
2384the stack is aligned in some way, such as calls or SSE instructions on
2385x86, yet will not contain code that does that alignment within the asm.
2386The compiler should make conservative assumptions about what the asm
2387might contain and should generate its usual stack alignment code in the
2388prologue if the '``alignstack``' keyword is present:
2389
2390.. code-block:: llvm
2391
2392 call void asm alignstack "eieio", ""()
2393
2394Inline asms also support using non-standard assembly dialects. The
2395assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2396the inline asm is using the Intel dialect. Currently, ATT and Intel are
2397the only supported dialects. An example is:
2398
2399.. code-block:: llvm
2400
2401 call void asm inteldialect "eieio", ""()
2402
2403If multiple keywords appear the '``sideeffect``' keyword must come
2404first, the '``alignstack``' keyword second and the '``inteldialect``'
2405keyword last.
2406
2407Inline Asm Metadata
2408^^^^^^^^^^^^^^^^^^^
2409
2410The call instructions that wrap inline asm nodes may have a
2411"``!srcloc``" MDNode attached to it that contains a list of constant
2412integers. If present, the code generator will use the integer as the
2413location cookie value when report errors through the ``LLVMContext``
2414error reporting mechanisms. This allows a front-end to correlate backend
2415errors that occur with inline asm back to the source code that produced
2416it. For example:
2417
2418.. code-block:: llvm
2419
2420 call void asm sideeffect "something bad", ""(), !srcloc !42
2421 ...
2422 !42 = !{ i32 1234567 }
2423
2424It is up to the front-end to make sense of the magic numbers it places
2425in the IR. If the MDNode contains multiple constants, the code generator
2426will use the one that corresponds to the line of the asm that the error
2427occurs on.
2428
2429.. _metadata:
2430
2431Metadata Nodes and Metadata Strings
2432-----------------------------------
2433
2434LLVM IR allows metadata to be attached to instructions in the program
2435that can convey extra information about the code to the optimizers and
2436code generator. One example application of metadata is source-level
2437debug information. There are two metadata primitives: strings and nodes.
2438All metadata has the ``metadata`` type and is identified in syntax by a
2439preceding exclamation point ('``!``').
2440
2441A metadata string is a string surrounded by double quotes. It can
2442contain any character by escaping non-printable characters with
2443"``\xx``" where "``xx``" is the two digit hex code. For example:
2444"``!"test\00"``".
2445
2446Metadata nodes are represented with notation similar to structure
2447constants (a comma separated list of elements, surrounded by braces and
2448preceded by an exclamation point). Metadata nodes can have any values as
2449their operand. For example:
2450
2451.. code-block:: llvm
2452
2453 !{ metadata !"test\00", i32 10}
2454
2455A :ref:`named metadata <namedmetadatastructure>` is a collection of
2456metadata nodes, which can be looked up in the module symbol table. For
2457example:
2458
2459.. code-block:: llvm
2460
2461 !foo = metadata !{!4, !3}
2462
2463Metadata can be used as function arguments. Here ``llvm.dbg.value``
2464function is using two metadata arguments:
2465
2466.. code-block:: llvm
2467
2468 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2469
2470Metadata can be attached with an instruction. Here metadata ``!21`` is
2471attached to the ``add`` instruction using the ``!dbg`` identifier:
2472
2473.. code-block:: llvm
2474
2475 %indvar.next = add i64 %indvar, 1, !dbg !21
2476
2477More information about specific metadata nodes recognized by the
2478optimizers and code generator is found below.
2479
2480'``tbaa``' Metadata
2481^^^^^^^^^^^^^^^^^^^
2482
2483In LLVM IR, memory does not have types, so LLVM's own type system is not
2484suitable for doing TBAA. Instead, metadata is added to the IR to
2485describe a type system of a higher level language. This can be used to
2486implement typical C/C++ TBAA, but it can also be used to implement
2487custom alias analysis behavior for other languages.
2488
2489The current metadata format is very simple. TBAA metadata nodes have up
2490to three fields, e.g.:
2491
2492.. code-block:: llvm
2493
2494 !0 = metadata !{ metadata !"an example type tree" }
2495 !1 = metadata !{ metadata !"int", metadata !0 }
2496 !2 = metadata !{ metadata !"float", metadata !0 }
2497 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2498
2499The first field is an identity field. It can be any value, usually a
2500metadata string, which uniquely identifies the type. The most important
2501name in the tree is the name of the root node. Two trees with different
2502root node names are entirely disjoint, even if they have leaves with
2503common names.
2504
2505The second field identifies the type's parent node in the tree, or is
2506null or omitted for a root node. A type is considered to alias all of
2507its descendants and all of its ancestors in the tree. Also, a type is
2508considered to alias all types in other trees, so that bitcode produced
2509from multiple front-ends is handled conservatively.
2510
2511If the third field is present, it's an integer which if equal to 1
2512indicates that the type is "constant" (meaning
2513``pointsToConstantMemory`` should return true; see `other useful
2514AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2515
2516'``tbaa.struct``' Metadata
2517^^^^^^^^^^^^^^^^^^^^^^^^^^
2518
2519The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2520aggregate assignment operations in C and similar languages, however it
2521is defined to copy a contiguous region of memory, which is more than
2522strictly necessary for aggregate types which contain holes due to
2523padding. Also, it doesn't contain any TBAA information about the fields
2524of the aggregate.
2525
2526``!tbaa.struct`` metadata can describe which memory subregions in a
2527memcpy are padding and what the TBAA tags of the struct are.
2528
2529The current metadata format is very simple. ``!tbaa.struct`` metadata
2530nodes are a list of operands which are in conceptual groups of three.
2531For each group of three, the first operand gives the byte offset of a
2532field in bytes, the second gives its size in bytes, and the third gives
2533its tbaa tag. e.g.:
2534
2535.. code-block:: llvm
2536
2537 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2538
2539This describes a struct with two fields. The first is at offset 0 bytes
2540with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2541and has size 4 bytes and has tbaa tag !2.
2542
2543Note that the fields need not be contiguous. In this example, there is a
25444 byte gap between the two fields. This gap represents padding which
2545does not carry useful data and need not be preserved.
2546
2547'``fpmath``' Metadata
2548^^^^^^^^^^^^^^^^^^^^^
2549
2550``fpmath`` metadata may be attached to any instruction of floating point
2551type. It can be used to express the maximum acceptable error in the
2552result of that instruction, in ULPs, thus potentially allowing the
2553compiler to use a more efficient but less accurate method of computing
2554it. ULP is defined as follows:
2555
2556 If ``x`` is a real number that lies between two finite consecutive
2557 floating-point numbers ``a`` and ``b``, without being equal to one
2558 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2559 distance between the two non-equal finite floating-point numbers
2560 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2561
2562The metadata node shall consist of a single positive floating point
2563number representing the maximum relative error, for example:
2564
2565.. code-block:: llvm
2566
2567 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2568
2569'``range``' Metadata
2570^^^^^^^^^^^^^^^^^^^^
2571
2572``range`` metadata may be attached only to loads of integer types. It
2573expresses the possible ranges the loaded value is in. The ranges are
2574represented with a flattened list of integers. The loaded value is known
2575to be in the union of the ranges defined by each consecutive pair. Each
2576pair has the following properties:
2577
2578- The type must match the type loaded by the instruction.
2579- The pair ``a,b`` represents the range ``[a,b)``.
2580- Both ``a`` and ``b`` are constants.
2581- The range is allowed to wrap.
2582- The range should not represent the full or empty set. That is,
2583 ``a!=b``.
2584
2585In addition, the pairs must be in signed order of the lower bound and
2586they must be non-contiguous.
2587
2588Examples:
2589
2590.. code-block:: llvm
2591
2592 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2593 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2594 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2595 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2596 ...
2597 !0 = metadata !{ i8 0, i8 2 }
2598 !1 = metadata !{ i8 255, i8 2 }
2599 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2600 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2601
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002602'``llvm.loop``'
2603^^^^^^^^^^^^^^^
2604
2605It is sometimes useful to attach information to loop constructs. Currently,
2606loop metadata is implemented as metadata attached to the branch instruction
2607in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002608guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002609specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002610
2611The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002612itself to avoid merging it with any other identifier metadata, e.g.,
2613during module linkage or function inlining. That is, each loop should refer
2614to their own identification metadata even if they reside in separate functions.
2615The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002616constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002617
2618.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002619
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002620 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002621 !1 = metadata !{ metadata !1 }
2622
Paul Redmond5fdf8362013-05-28 20:00:34 +00002623The loop identifier metadata can be used to specify additional per-loop
2624metadata. Any operands after the first operand can be treated as user-defined
2625metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2626by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002627
Paul Redmond5fdf8362013-05-28 20:00:34 +00002628.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002629
Paul Redmond5fdf8362013-05-28 20:00:34 +00002630 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2631 ...
2632 !0 = metadata !{ metadata !0, metadata !1 }
2633 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002634
2635'``llvm.mem``'
2636^^^^^^^^^^^^^^^
2637
2638Metadata types used to annotate memory accesses with information helpful
2639for optimizations are prefixed with ``llvm.mem``.
2640
2641'``llvm.mem.parallel_loop_access``' Metadata
2642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2643
2644For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002645the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002646also all of the memory accessing instructions in the loop body need to be
2647marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2648is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002649the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002650converted to sequential loops due to optimization passes that are unaware of
2651the parallel semantics and that insert new memory instructions to the loop
2652body.
2653
2654Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002655both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002656metadata types that refer to the same loop identifier metadata.
2657
2658.. code-block:: llvm
2659
2660 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002661 ...
2662 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2663 ...
2664 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2665 ...
2666 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002667
2668 for.end:
2669 ...
2670 !0 = metadata !{ metadata !0 }
2671
2672It is also possible to have nested parallel loops. In that case the
2673memory accesses refer to a list of loop identifier metadata nodes instead of
2674the loop identifier metadata node directly:
2675
2676.. code-block:: llvm
2677
2678 outer.for.body:
2679 ...
2680
2681 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002682 ...
2683 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2684 ...
2685 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2686 ...
2687 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002688
2689 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002690 ...
2691 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2692 ...
2693 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2694 ...
2695 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002696
2697 outer.for.end: ; preds = %for.body
2698 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002699 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2700 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2701 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002702
Paul Redmond5fdf8362013-05-28 20:00:34 +00002703'``llvm.vectorizer``'
2704^^^^^^^^^^^^^^^^^^^^^
2705
2706Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2707vectorization parameters such as vectorization factor and unroll factor.
2708
2709``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2710loop identification metadata.
2711
2712'``llvm.vectorizer.unroll``' Metadata
2713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2714
2715This metadata instructs the loop vectorizer to unroll the specified
2716loop exactly ``N`` times.
2717
2718The first operand is the string ``llvm.vectorizer.unroll`` and the second
2719operand is an integer specifying the unroll factor. For example:
2720
2721.. code-block:: llvm
2722
2723 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2724
2725Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2726loop.
2727
2728If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2729determined automatically.
2730
2731'``llvm.vectorizer.width``' Metadata
2732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2733
Paul Redmondeccbb322013-05-30 17:22:46 +00002734This metadata sets the target width of the vectorizer to ``N``. Without
2735this metadata, the vectorizer will choose a width automatically.
2736Regardless of this metadata, the vectorizer will only vectorize loops if
2737it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002738
2739The first operand is the string ``llvm.vectorizer.width`` and the second
2740operand is an integer specifying the width. For example:
2741
2742.. code-block:: llvm
2743
2744 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2745
2746Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2747loop.
2748
2749If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2750automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002751
Sean Silvab084af42012-12-07 10:36:55 +00002752Module Flags Metadata
2753=====================
2754
2755Information about the module as a whole is difficult to convey to LLVM's
2756subsystems. The LLVM IR isn't sufficient to transmit this information.
2757The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002758this. These flags are in the form of key / value pairs --- much like a
2759dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002760look it up.
2761
2762The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2763Each triplet has the following form:
2764
2765- The first element is a *behavior* flag, which specifies the behavior
2766 when two (or more) modules are merged together, and it encounters two
2767 (or more) metadata with the same ID. The supported behaviors are
2768 described below.
2769- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002770 metadata. Each module may only have one flag entry for each unique ID (not
2771 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002772- The third element is the value of the flag.
2773
2774When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002775``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2776each unique metadata ID string, there will be exactly one entry in the merged
2777modules ``llvm.module.flags`` metadata table, and the value for that entry will
2778be determined by the merge behavior flag, as described below. The only exception
2779is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002780
2781The following behaviors are supported:
2782
2783.. list-table::
2784 :header-rows: 1
2785 :widths: 10 90
2786
2787 * - Value
2788 - Behavior
2789
2790 * - 1
2791 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002792 Emits an error if two values disagree, otherwise the resulting value
2793 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002794
2795 * - 2
2796 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002797 Emits a warning if two values disagree. The result value will be the
2798 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002799
2800 * - 3
2801 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002802 Adds a requirement that another module flag be present and have a
2803 specified value after linking is performed. The value must be a
2804 metadata pair, where the first element of the pair is the ID of the
2805 module flag to be restricted, and the second element of the pair is
2806 the value the module flag should be restricted to. This behavior can
2807 be used to restrict the allowable results (via triggering of an
2808 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002809
2810 * - 4
2811 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002812 Uses the specified value, regardless of the behavior or value of the
2813 other module. If both modules specify **Override**, but the values
2814 differ, an error will be emitted.
2815
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002816 * - 5
2817 - **Append**
2818 Appends the two values, which are required to be metadata nodes.
2819
2820 * - 6
2821 - **AppendUnique**
2822 Appends the two values, which are required to be metadata
2823 nodes. However, duplicate entries in the second list are dropped
2824 during the append operation.
2825
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002826It is an error for a particular unique flag ID to have multiple behaviors,
2827except in the case of **Require** (which adds restrictions on another metadata
2828value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002829
2830An example of module flags:
2831
2832.. code-block:: llvm
2833
2834 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2835 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2836 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2837 !3 = metadata !{ i32 3, metadata !"qux",
2838 metadata !{
2839 metadata !"foo", i32 1
2840 }
2841 }
2842 !llvm.module.flags = !{ !0, !1, !2, !3 }
2843
2844- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2845 if two or more ``!"foo"`` flags are seen is to emit an error if their
2846 values are not equal.
2847
2848- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2849 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002850 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002851
2852- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2853 behavior if two or more ``!"qux"`` flags are seen is to emit a
2854 warning if their values are not equal.
2855
2856- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2857
2858 ::
2859
2860 metadata !{ metadata !"foo", i32 1 }
2861
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002862 The behavior is to emit an error if the ``llvm.module.flags`` does not
2863 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2864 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002865
2866Objective-C Garbage Collection Module Flags Metadata
2867----------------------------------------------------
2868
2869On the Mach-O platform, Objective-C stores metadata about garbage
2870collection in a special section called "image info". The metadata
2871consists of a version number and a bitmask specifying what types of
2872garbage collection are supported (if any) by the file. If two or more
2873modules are linked together their garbage collection metadata needs to
2874be merged rather than appended together.
2875
2876The Objective-C garbage collection module flags metadata consists of the
2877following key-value pairs:
2878
2879.. list-table::
2880 :header-rows: 1
2881 :widths: 30 70
2882
2883 * - Key
2884 - Value
2885
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002886 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002887 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002888
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002889 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002890 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002891 always 0.
2892
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002893 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002894 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002895 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2896 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2897 Objective-C ABI version 2.
2898
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002899 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002900 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002901 not. Valid values are 0, for no garbage collection, and 2, for garbage
2902 collection supported.
2903
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002904 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002905 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002906 If present, its value must be 6. This flag requires that the
2907 ``Objective-C Garbage Collection`` flag have the value 2.
2908
2909Some important flag interactions:
2910
2911- If a module with ``Objective-C Garbage Collection`` set to 0 is
2912 merged with a module with ``Objective-C Garbage Collection`` set to
2913 2, then the resulting module has the
2914 ``Objective-C Garbage Collection`` flag set to 0.
2915- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2916 merged with a module with ``Objective-C GC Only`` set to 6.
2917
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002918Automatic Linker Flags Module Flags Metadata
2919--------------------------------------------
2920
2921Some targets support embedding flags to the linker inside individual object
2922files. Typically this is used in conjunction with language extensions which
2923allow source files to explicitly declare the libraries they depend on, and have
2924these automatically be transmitted to the linker via object files.
2925
2926These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002927using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002928to be ``AppendUnique``, and the value for the key is expected to be a metadata
2929node which should be a list of other metadata nodes, each of which should be a
2930list of metadata strings defining linker options.
2931
2932For example, the following metadata section specifies two separate sets of
2933linker options, presumably to link against ``libz`` and the ``Cocoa``
2934framework::
2935
Michael Liaoa7699082013-03-06 18:24:34 +00002936 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002937 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00002938 metadata !{ metadata !"-lz" },
2939 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002940 !llvm.module.flags = !{ !0 }
2941
2942The metadata encoding as lists of lists of options, as opposed to a collapsed
2943list of options, is chosen so that the IR encoding can use multiple option
2944strings to specify e.g., a single library, while still having that specifier be
2945preserved as an atomic element that can be recognized by a target specific
2946assembly writer or object file emitter.
2947
2948Each individual option is required to be either a valid option for the target's
2949linker, or an option that is reserved by the target specific assembly writer or
2950object file emitter. No other aspect of these options is defined by the IR.
2951
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002952.. _intrinsicglobalvariables:
2953
Sean Silvab084af42012-12-07 10:36:55 +00002954Intrinsic Global Variables
2955==========================
2956
2957LLVM has a number of "magic" global variables that contain data that
2958affect code generation or other IR semantics. These are documented here.
2959All globals of this sort should have a section specified as
2960"``llvm.metadata``". This section and all globals that start with
2961"``llvm.``" are reserved for use by LLVM.
2962
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002963.. _gv_llvmused:
2964
Sean Silvab084af42012-12-07 10:36:55 +00002965The '``llvm.used``' Global Variable
2966-----------------------------------
2967
Rafael Espindola74f2e462013-04-22 14:58:02 +00002968The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00002969:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00002970pointers to named global variables, functions and aliases which may optionally
2971have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00002972use of it is:
2973
2974.. code-block:: llvm
2975
2976 @X = global i8 4
2977 @Y = global i32 123
2978
2979 @llvm.used = appending global [2 x i8*] [
2980 i8* @X,
2981 i8* bitcast (i32* @Y to i8*)
2982 ], section "llvm.metadata"
2983
Rafael Espindola74f2e462013-04-22 14:58:02 +00002984If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2985and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00002986symbol that it cannot see (which is why they have to be named). For example, if
2987a variable has internal linkage and no references other than that from the
2988``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
2989references from inline asms and other things the compiler cannot "see", and
2990corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00002991
2992On some targets, the code generator must emit a directive to the
2993assembler or object file to prevent the assembler and linker from
2994molesting the symbol.
2995
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002996.. _gv_llvmcompilerused:
2997
Sean Silvab084af42012-12-07 10:36:55 +00002998The '``llvm.compiler.used``' Global Variable
2999--------------------------------------------
3000
3001The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3002directive, except that it only prevents the compiler from touching the
3003symbol. On targets that support it, this allows an intelligent linker to
3004optimize references to the symbol without being impeded as it would be
3005by ``@llvm.used``.
3006
3007This is a rare construct that should only be used in rare circumstances,
3008and should not be exposed to source languages.
3009
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003010.. _gv_llvmglobalctors:
3011
Sean Silvab084af42012-12-07 10:36:55 +00003012The '``llvm.global_ctors``' Global Variable
3013-------------------------------------------
3014
3015.. code-block:: llvm
3016
3017 %0 = type { i32, void ()* }
3018 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3019
3020The ``@llvm.global_ctors`` array contains a list of constructor
3021functions and associated priorities. The functions referenced by this
3022array will be called in ascending order of priority (i.e. lowest first)
3023when the module is loaded. The order of functions with the same priority
3024is not defined.
3025
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003026.. _llvmglobaldtors:
3027
Sean Silvab084af42012-12-07 10:36:55 +00003028The '``llvm.global_dtors``' Global Variable
3029-------------------------------------------
3030
3031.. code-block:: llvm
3032
3033 %0 = type { i32, void ()* }
3034 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3035
3036The ``@llvm.global_dtors`` array contains a list of destructor functions
3037and associated priorities. The functions referenced by this array will
3038be called in descending order of priority (i.e. highest first) when the
3039module is loaded. The order of functions with the same priority is not
3040defined.
3041
3042Instruction Reference
3043=====================
3044
3045The LLVM instruction set consists of several different classifications
3046of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3047instructions <binaryops>`, :ref:`bitwise binary
3048instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3049:ref:`other instructions <otherops>`.
3050
3051.. _terminators:
3052
3053Terminator Instructions
3054-----------------------
3055
3056As mentioned :ref:`previously <functionstructure>`, every basic block in a
3057program ends with a "Terminator" instruction, which indicates which
3058block should be executed after the current block is finished. These
3059terminator instructions typically yield a '``void``' value: they produce
3060control flow, not values (the one exception being the
3061':ref:`invoke <i_invoke>`' instruction).
3062
3063The terminator instructions are: ':ref:`ret <i_ret>`',
3064':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3065':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3066':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3067
3068.. _i_ret:
3069
3070'``ret``' Instruction
3071^^^^^^^^^^^^^^^^^^^^^
3072
3073Syntax:
3074"""""""
3075
3076::
3077
3078 ret <type> <value> ; Return a value from a non-void function
3079 ret void ; Return from void function
3080
3081Overview:
3082"""""""""
3083
3084The '``ret``' instruction is used to return control flow (and optionally
3085a value) from a function back to the caller.
3086
3087There are two forms of the '``ret``' instruction: one that returns a
3088value and then causes control flow, and one that just causes control
3089flow to occur.
3090
3091Arguments:
3092""""""""""
3093
3094The '``ret``' instruction optionally accepts a single argument, the
3095return value. The type of the return value must be a ':ref:`first
3096class <t_firstclass>`' type.
3097
3098A function is not :ref:`well formed <wellformed>` if it it has a non-void
3099return type and contains a '``ret``' instruction with no return value or
3100a return value with a type that does not match its type, or if it has a
3101void return type and contains a '``ret``' instruction with a return
3102value.
3103
3104Semantics:
3105""""""""""
3106
3107When the '``ret``' instruction is executed, control flow returns back to
3108the calling function's context. If the caller is a
3109":ref:`call <i_call>`" instruction, execution continues at the
3110instruction after the call. If the caller was an
3111":ref:`invoke <i_invoke>`" instruction, execution continues at the
3112beginning of the "normal" destination block. If the instruction returns
3113a value, that value shall set the call or invoke instruction's return
3114value.
3115
3116Example:
3117""""""""
3118
3119.. code-block:: llvm
3120
3121 ret i32 5 ; Return an integer value of 5
3122 ret void ; Return from a void function
3123 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3124
3125.. _i_br:
3126
3127'``br``' Instruction
3128^^^^^^^^^^^^^^^^^^^^
3129
3130Syntax:
3131"""""""
3132
3133::
3134
3135 br i1 <cond>, label <iftrue>, label <iffalse>
3136 br label <dest> ; Unconditional branch
3137
3138Overview:
3139"""""""""
3140
3141The '``br``' instruction is used to cause control flow to transfer to a
3142different basic block in the current function. There are two forms of
3143this instruction, corresponding to a conditional branch and an
3144unconditional branch.
3145
3146Arguments:
3147""""""""""
3148
3149The conditional branch form of the '``br``' instruction takes a single
3150'``i1``' value and two '``label``' values. The unconditional form of the
3151'``br``' instruction takes a single '``label``' value as a target.
3152
3153Semantics:
3154""""""""""
3155
3156Upon execution of a conditional '``br``' instruction, the '``i1``'
3157argument is evaluated. If the value is ``true``, control flows to the
3158'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3159to the '``iffalse``' ``label`` argument.
3160
3161Example:
3162""""""""
3163
3164.. code-block:: llvm
3165
3166 Test:
3167 %cond = icmp eq i32 %a, %b
3168 br i1 %cond, label %IfEqual, label %IfUnequal
3169 IfEqual:
3170 ret i32 1
3171 IfUnequal:
3172 ret i32 0
3173
3174.. _i_switch:
3175
3176'``switch``' Instruction
3177^^^^^^^^^^^^^^^^^^^^^^^^
3178
3179Syntax:
3180"""""""
3181
3182::
3183
3184 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3185
3186Overview:
3187"""""""""
3188
3189The '``switch``' instruction is used to transfer control flow to one of
3190several different places. It is a generalization of the '``br``'
3191instruction, allowing a branch to occur to one of many possible
3192destinations.
3193
3194Arguments:
3195""""""""""
3196
3197The '``switch``' instruction uses three parameters: an integer
3198comparison value '``value``', a default '``label``' destination, and an
3199array of pairs of comparison value constants and '``label``'s. The table
3200is not allowed to contain duplicate constant entries.
3201
3202Semantics:
3203""""""""""
3204
3205The ``switch`` instruction specifies a table of values and destinations.
3206When the '``switch``' instruction is executed, this table is searched
3207for the given value. If the value is found, control flow is transferred
3208to the corresponding destination; otherwise, control flow is transferred
3209to the default destination.
3210
3211Implementation:
3212"""""""""""""""
3213
3214Depending on properties of the target machine and the particular
3215``switch`` instruction, this instruction may be code generated in
3216different ways. For example, it could be generated as a series of
3217chained conditional branches or with a lookup table.
3218
3219Example:
3220""""""""
3221
3222.. code-block:: llvm
3223
3224 ; Emulate a conditional br instruction
3225 %Val = zext i1 %value to i32
3226 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3227
3228 ; Emulate an unconditional br instruction
3229 switch i32 0, label %dest [ ]
3230
3231 ; Implement a jump table:
3232 switch i32 %val, label %otherwise [ i32 0, label %onzero
3233 i32 1, label %onone
3234 i32 2, label %ontwo ]
3235
3236.. _i_indirectbr:
3237
3238'``indirectbr``' Instruction
3239^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3240
3241Syntax:
3242"""""""
3243
3244::
3245
3246 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3247
3248Overview:
3249"""""""""
3250
3251The '``indirectbr``' instruction implements an indirect branch to a
3252label within the current function, whose address is specified by
3253"``address``". Address must be derived from a
3254:ref:`blockaddress <blockaddress>` constant.
3255
3256Arguments:
3257""""""""""
3258
3259The '``address``' argument is the address of the label to jump to. The
3260rest of the arguments indicate the full set of possible destinations
3261that the address may point to. Blocks are allowed to occur multiple
3262times in the destination list, though this isn't particularly useful.
3263
3264This destination list is required so that dataflow analysis has an
3265accurate understanding of the CFG.
3266
3267Semantics:
3268""""""""""
3269
3270Control transfers to the block specified in the address argument. All
3271possible destination blocks must be listed in the label list, otherwise
3272this instruction has undefined behavior. This implies that jumps to
3273labels defined in other functions have undefined behavior as well.
3274
3275Implementation:
3276"""""""""""""""
3277
3278This is typically implemented with a jump through a register.
3279
3280Example:
3281""""""""
3282
3283.. code-block:: llvm
3284
3285 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3286
3287.. _i_invoke:
3288
3289'``invoke``' Instruction
3290^^^^^^^^^^^^^^^^^^^^^^^^
3291
3292Syntax:
3293"""""""
3294
3295::
3296
3297 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3298 to label <normal label> unwind label <exception label>
3299
3300Overview:
3301"""""""""
3302
3303The '``invoke``' instruction causes control to transfer to a specified
3304function, with the possibility of control flow transfer to either the
3305'``normal``' label or the '``exception``' label. If the callee function
3306returns with the "``ret``" instruction, control flow will return to the
3307"normal" label. If the callee (or any indirect callees) returns via the
3308":ref:`resume <i_resume>`" instruction or other exception handling
3309mechanism, control is interrupted and continued at the dynamically
3310nearest "exception" label.
3311
3312The '``exception``' label is a `landing
3313pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3314'``exception``' label is required to have the
3315":ref:`landingpad <i_landingpad>`" instruction, which contains the
3316information about the behavior of the program after unwinding happens,
3317as its first non-PHI instruction. The restrictions on the
3318"``landingpad``" instruction's tightly couples it to the "``invoke``"
3319instruction, so that the important information contained within the
3320"``landingpad``" instruction can't be lost through normal code motion.
3321
3322Arguments:
3323""""""""""
3324
3325This instruction requires several arguments:
3326
3327#. The optional "cconv" marker indicates which :ref:`calling
3328 convention <callingconv>` the call should use. If none is
3329 specified, the call defaults to using C calling conventions.
3330#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3331 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3332 are valid here.
3333#. '``ptr to function ty``': shall be the signature of the pointer to
3334 function value being invoked. In most cases, this is a direct
3335 function invocation, but indirect ``invoke``'s are just as possible,
3336 branching off an arbitrary pointer to function value.
3337#. '``function ptr val``': An LLVM value containing a pointer to a
3338 function to be invoked.
3339#. '``function args``': argument list whose types match the function
3340 signature argument types and parameter attributes. All arguments must
3341 be of :ref:`first class <t_firstclass>` type. If the function signature
3342 indicates the function accepts a variable number of arguments, the
3343 extra arguments can be specified.
3344#. '``normal label``': the label reached when the called function
3345 executes a '``ret``' instruction.
3346#. '``exception label``': the label reached when a callee returns via
3347 the :ref:`resume <i_resume>` instruction or other exception handling
3348 mechanism.
3349#. The optional :ref:`function attributes <fnattrs>` list. Only
3350 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3351 attributes are valid here.
3352
3353Semantics:
3354""""""""""
3355
3356This instruction is designed to operate as a standard '``call``'
3357instruction in most regards. The primary difference is that it
3358establishes an association with a label, which is used by the runtime
3359library to unwind the stack.
3360
3361This instruction is used in languages with destructors to ensure that
3362proper cleanup is performed in the case of either a ``longjmp`` or a
3363thrown exception. Additionally, this is important for implementation of
3364'``catch``' clauses in high-level languages that support them.
3365
3366For the purposes of the SSA form, the definition of the value returned
3367by the '``invoke``' instruction is deemed to occur on the edge from the
3368current block to the "normal" label. If the callee unwinds then no
3369return value is available.
3370
3371Example:
3372""""""""
3373
3374.. code-block:: llvm
3375
3376 %retval = invoke i32 @Test(i32 15) to label %Continue
3377 unwind label %TestCleanup ; {i32}:retval set
3378 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3379 unwind label %TestCleanup ; {i32}:retval set
3380
3381.. _i_resume:
3382
3383'``resume``' Instruction
3384^^^^^^^^^^^^^^^^^^^^^^^^
3385
3386Syntax:
3387"""""""
3388
3389::
3390
3391 resume <type> <value>
3392
3393Overview:
3394"""""""""
3395
3396The '``resume``' instruction is a terminator instruction that has no
3397successors.
3398
3399Arguments:
3400""""""""""
3401
3402The '``resume``' instruction requires one argument, which must have the
3403same type as the result of any '``landingpad``' instruction in the same
3404function.
3405
3406Semantics:
3407""""""""""
3408
3409The '``resume``' instruction resumes propagation of an existing
3410(in-flight) exception whose unwinding was interrupted with a
3411:ref:`landingpad <i_landingpad>` instruction.
3412
3413Example:
3414""""""""
3415
3416.. code-block:: llvm
3417
3418 resume { i8*, i32 } %exn
3419
3420.. _i_unreachable:
3421
3422'``unreachable``' Instruction
3423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3424
3425Syntax:
3426"""""""
3427
3428::
3429
3430 unreachable
3431
3432Overview:
3433"""""""""
3434
3435The '``unreachable``' instruction has no defined semantics. This
3436instruction is used to inform the optimizer that a particular portion of
3437the code is not reachable. This can be used to indicate that the code
3438after a no-return function cannot be reached, and other facts.
3439
3440Semantics:
3441""""""""""
3442
3443The '``unreachable``' instruction has no defined semantics.
3444
3445.. _binaryops:
3446
3447Binary Operations
3448-----------------
3449
3450Binary operators are used to do most of the computation in a program.
3451They require two operands of the same type, execute an operation on
3452them, and produce a single value. The operands might represent multiple
3453data, as is the case with the :ref:`vector <t_vector>` data type. The
3454result value has the same type as its operands.
3455
3456There are several different binary operators:
3457
3458.. _i_add:
3459
3460'``add``' Instruction
3461^^^^^^^^^^^^^^^^^^^^^
3462
3463Syntax:
3464"""""""
3465
3466::
3467
3468 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3469 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3470 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3471 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3472
3473Overview:
3474"""""""""
3475
3476The '``add``' instruction returns the sum of its two operands.
3477
3478Arguments:
3479""""""""""
3480
3481The two arguments to the '``add``' instruction must be
3482:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3483arguments must have identical types.
3484
3485Semantics:
3486""""""""""
3487
3488The value produced is the integer sum of the two operands.
3489
3490If the sum has unsigned overflow, the result returned is the
3491mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3492the result.
3493
3494Because LLVM integers use a two's complement representation, this
3495instruction is appropriate for both signed and unsigned integers.
3496
3497``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3498respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3499result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3500unsigned and/or signed overflow, respectively, occurs.
3501
3502Example:
3503""""""""
3504
3505.. code-block:: llvm
3506
3507 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3508
3509.. _i_fadd:
3510
3511'``fadd``' Instruction
3512^^^^^^^^^^^^^^^^^^^^^^
3513
3514Syntax:
3515"""""""
3516
3517::
3518
3519 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3520
3521Overview:
3522"""""""""
3523
3524The '``fadd``' instruction returns the sum of its two operands.
3525
3526Arguments:
3527""""""""""
3528
3529The two arguments to the '``fadd``' instruction must be :ref:`floating
3530point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3531Both arguments must have identical types.
3532
3533Semantics:
3534""""""""""
3535
3536The value produced is the floating point sum of the two operands. This
3537instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3538which are optimization hints to enable otherwise unsafe floating point
3539optimizations:
3540
3541Example:
3542""""""""
3543
3544.. code-block:: llvm
3545
3546 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3547
3548'``sub``' Instruction
3549^^^^^^^^^^^^^^^^^^^^^
3550
3551Syntax:
3552"""""""
3553
3554::
3555
3556 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3557 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3558 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3559 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3560
3561Overview:
3562"""""""""
3563
3564The '``sub``' instruction returns the difference of its two operands.
3565
3566Note that the '``sub``' instruction is used to represent the '``neg``'
3567instruction present in most other intermediate representations.
3568
3569Arguments:
3570""""""""""
3571
3572The two arguments to the '``sub``' instruction must be
3573:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3574arguments must have identical types.
3575
3576Semantics:
3577""""""""""
3578
3579The value produced is the integer difference of the two operands.
3580
3581If the difference has unsigned overflow, the result returned is the
3582mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3583the result.
3584
3585Because LLVM integers use a two's complement representation, this
3586instruction is appropriate for both signed and unsigned integers.
3587
3588``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3589respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3590result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3591unsigned and/or signed overflow, respectively, occurs.
3592
3593Example:
3594""""""""
3595
3596.. code-block:: llvm
3597
3598 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3599 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3600
3601.. _i_fsub:
3602
3603'``fsub``' Instruction
3604^^^^^^^^^^^^^^^^^^^^^^
3605
3606Syntax:
3607"""""""
3608
3609::
3610
3611 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3612
3613Overview:
3614"""""""""
3615
3616The '``fsub``' instruction returns the difference of its two operands.
3617
3618Note that the '``fsub``' instruction is used to represent the '``fneg``'
3619instruction present in most other intermediate representations.
3620
3621Arguments:
3622""""""""""
3623
3624The two arguments to the '``fsub``' instruction must be :ref:`floating
3625point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3626Both arguments must have identical types.
3627
3628Semantics:
3629""""""""""
3630
3631The value produced is the floating point difference of the two operands.
3632This instruction can also take any number of :ref:`fast-math
3633flags <fastmath>`, which are optimization hints to enable otherwise
3634unsafe floating point optimizations:
3635
3636Example:
3637""""""""
3638
3639.. code-block:: llvm
3640
3641 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3642 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3643
3644'``mul``' Instruction
3645^^^^^^^^^^^^^^^^^^^^^
3646
3647Syntax:
3648"""""""
3649
3650::
3651
3652 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3653 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3654 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3655 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3656
3657Overview:
3658"""""""""
3659
3660The '``mul``' instruction returns the product of its two operands.
3661
3662Arguments:
3663""""""""""
3664
3665The two arguments to the '``mul``' instruction must be
3666:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3667arguments must have identical types.
3668
3669Semantics:
3670""""""""""
3671
3672The value produced is the integer product of the two operands.
3673
3674If the result of the multiplication has unsigned overflow, the result
3675returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3676bit width of the result.
3677
3678Because LLVM integers use a two's complement representation, and the
3679result is the same width as the operands, this instruction returns the
3680correct result for both signed and unsigned integers. If a full product
3681(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3682sign-extended or zero-extended as appropriate to the width of the full
3683product.
3684
3685``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3686respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3687result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3688unsigned and/or signed overflow, respectively, occurs.
3689
3690Example:
3691""""""""
3692
3693.. code-block:: llvm
3694
3695 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3696
3697.. _i_fmul:
3698
3699'``fmul``' Instruction
3700^^^^^^^^^^^^^^^^^^^^^^
3701
3702Syntax:
3703"""""""
3704
3705::
3706
3707 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3708
3709Overview:
3710"""""""""
3711
3712The '``fmul``' instruction returns the product of its two operands.
3713
3714Arguments:
3715""""""""""
3716
3717The two arguments to the '``fmul``' instruction must be :ref:`floating
3718point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3719Both arguments must have identical types.
3720
3721Semantics:
3722""""""""""
3723
3724The value produced is the floating point product of the two operands.
3725This instruction can also take any number of :ref:`fast-math
3726flags <fastmath>`, which are optimization hints to enable otherwise
3727unsafe floating point optimizations:
3728
3729Example:
3730""""""""
3731
3732.. code-block:: llvm
3733
3734 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3735
3736'``udiv``' Instruction
3737^^^^^^^^^^^^^^^^^^^^^^
3738
3739Syntax:
3740"""""""
3741
3742::
3743
3744 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3745 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3746
3747Overview:
3748"""""""""
3749
3750The '``udiv``' instruction returns the quotient of its two operands.
3751
3752Arguments:
3753""""""""""
3754
3755The two arguments to the '``udiv``' instruction must be
3756:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3757arguments must have identical types.
3758
3759Semantics:
3760""""""""""
3761
3762The value produced is the unsigned integer quotient of the two operands.
3763
3764Note that unsigned integer division and signed integer division are
3765distinct operations; for signed integer division, use '``sdiv``'.
3766
3767Division by zero leads to undefined behavior.
3768
3769If the ``exact`` keyword is present, the result value of the ``udiv`` is
3770a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3771such, "((a udiv exact b) mul b) == a").
3772
3773Example:
3774""""""""
3775
3776.. code-block:: llvm
3777
3778 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3779
3780'``sdiv``' Instruction
3781^^^^^^^^^^^^^^^^^^^^^^
3782
3783Syntax:
3784"""""""
3785
3786::
3787
3788 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3789 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3790
3791Overview:
3792"""""""""
3793
3794The '``sdiv``' instruction returns the quotient of its two operands.
3795
3796Arguments:
3797""""""""""
3798
3799The two arguments to the '``sdiv``' instruction must be
3800:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3801arguments must have identical types.
3802
3803Semantics:
3804""""""""""
3805
3806The value produced is the signed integer quotient of the two operands
3807rounded towards zero.
3808
3809Note that signed integer division and unsigned integer division are
3810distinct operations; for unsigned integer division, use '``udiv``'.
3811
3812Division by zero leads to undefined behavior. Overflow also leads to
3813undefined behavior; this is a rare case, but can occur, for example, by
3814doing a 32-bit division of -2147483648 by -1.
3815
3816If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3817a :ref:`poison value <poisonvalues>` if the result would be rounded.
3818
3819Example:
3820""""""""
3821
3822.. code-block:: llvm
3823
3824 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3825
3826.. _i_fdiv:
3827
3828'``fdiv``' Instruction
3829^^^^^^^^^^^^^^^^^^^^^^
3830
3831Syntax:
3832"""""""
3833
3834::
3835
3836 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3837
3838Overview:
3839"""""""""
3840
3841The '``fdiv``' instruction returns the quotient of its two operands.
3842
3843Arguments:
3844""""""""""
3845
3846The two arguments to the '``fdiv``' instruction must be :ref:`floating
3847point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3848Both arguments must have identical types.
3849
3850Semantics:
3851""""""""""
3852
3853The value produced is the floating point quotient of the two operands.
3854This instruction can also take any number of :ref:`fast-math
3855flags <fastmath>`, which are optimization hints to enable otherwise
3856unsafe floating point optimizations:
3857
3858Example:
3859""""""""
3860
3861.. code-block:: llvm
3862
3863 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3864
3865'``urem``' Instruction
3866^^^^^^^^^^^^^^^^^^^^^^
3867
3868Syntax:
3869"""""""
3870
3871::
3872
3873 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3874
3875Overview:
3876"""""""""
3877
3878The '``urem``' instruction returns the remainder from the unsigned
3879division of its two arguments.
3880
3881Arguments:
3882""""""""""
3883
3884The two arguments to the '``urem``' instruction must be
3885:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3886arguments must have identical types.
3887
3888Semantics:
3889""""""""""
3890
3891This instruction returns the unsigned integer *remainder* of a division.
3892This instruction always performs an unsigned division to get the
3893remainder.
3894
3895Note that unsigned integer remainder and signed integer remainder are
3896distinct operations; for signed integer remainder, use '``srem``'.
3897
3898Taking the remainder of a division by zero leads to undefined behavior.
3899
3900Example:
3901""""""""
3902
3903.. code-block:: llvm
3904
3905 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3906
3907'``srem``' Instruction
3908^^^^^^^^^^^^^^^^^^^^^^
3909
3910Syntax:
3911"""""""
3912
3913::
3914
3915 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3916
3917Overview:
3918"""""""""
3919
3920The '``srem``' instruction returns the remainder from the signed
3921division of its two operands. This instruction can also take
3922:ref:`vector <t_vector>` versions of the values in which case the elements
3923must be integers.
3924
3925Arguments:
3926""""""""""
3927
3928The two arguments to the '``srem``' instruction must be
3929:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3930arguments must have identical types.
3931
3932Semantics:
3933""""""""""
3934
3935This instruction returns the *remainder* of a division (where the result
3936is either zero or has the same sign as the dividend, ``op1``), not the
3937*modulo* operator (where the result is either zero or has the same sign
3938as the divisor, ``op2``) of a value. For more information about the
3939difference, see `The Math
3940Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3941table of how this is implemented in various languages, please see
3942`Wikipedia: modulo
3943operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3944
3945Note that signed integer remainder and unsigned integer remainder are
3946distinct operations; for unsigned integer remainder, use '``urem``'.
3947
3948Taking the remainder of a division by zero leads to undefined behavior.
3949Overflow also leads to undefined behavior; this is a rare case, but can
3950occur, for example, by taking the remainder of a 32-bit division of
3951-2147483648 by -1. (The remainder doesn't actually overflow, but this
3952rule lets srem be implemented using instructions that return both the
3953result of the division and the remainder.)
3954
3955Example:
3956""""""""
3957
3958.. code-block:: llvm
3959
3960 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3961
3962.. _i_frem:
3963
3964'``frem``' Instruction
3965^^^^^^^^^^^^^^^^^^^^^^
3966
3967Syntax:
3968"""""""
3969
3970::
3971
3972 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3973
3974Overview:
3975"""""""""
3976
3977The '``frem``' instruction returns the remainder from the division of
3978its two operands.
3979
3980Arguments:
3981""""""""""
3982
3983The two arguments to the '``frem``' instruction must be :ref:`floating
3984point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3985Both arguments must have identical types.
3986
3987Semantics:
3988""""""""""
3989
3990This instruction returns the *remainder* of a division. The remainder
3991has the same sign as the dividend. This instruction can also take any
3992number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3993to enable otherwise unsafe floating point optimizations:
3994
3995Example:
3996""""""""
3997
3998.. code-block:: llvm
3999
4000 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4001
4002.. _bitwiseops:
4003
4004Bitwise Binary Operations
4005-------------------------
4006
4007Bitwise binary operators are used to do various forms of bit-twiddling
4008in a program. They are generally very efficient instructions and can
4009commonly be strength reduced from other instructions. They require two
4010operands of the same type, execute an operation on them, and produce a
4011single value. The resulting value is the same type as its operands.
4012
4013'``shl``' Instruction
4014^^^^^^^^^^^^^^^^^^^^^
4015
4016Syntax:
4017"""""""
4018
4019::
4020
4021 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4022 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4023 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4024 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4025
4026Overview:
4027"""""""""
4028
4029The '``shl``' instruction returns the first operand shifted to the left
4030a specified number of bits.
4031
4032Arguments:
4033""""""""""
4034
4035Both arguments to the '``shl``' instruction must be the same
4036:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4037'``op2``' is treated as an unsigned value.
4038
4039Semantics:
4040""""""""""
4041
4042The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4043where ``n`` is the width of the result. If ``op2`` is (statically or
4044dynamically) negative or equal to or larger than the number of bits in
4045``op1``, the result is undefined. If the arguments are vectors, each
4046vector element of ``op1`` is shifted by the corresponding shift amount
4047in ``op2``.
4048
4049If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4050value <poisonvalues>` if it shifts out any non-zero bits. If the
4051``nsw`` keyword is present, then the shift produces a :ref:`poison
4052value <poisonvalues>` if it shifts out any bits that disagree with the
4053resultant sign bit. As such, NUW/NSW have the same semantics as they
4054would if the shift were expressed as a mul instruction with the same
4055nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4056
4057Example:
4058""""""""
4059
4060.. code-block:: llvm
4061
4062 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4063 <result> = shl i32 4, 2 ; yields {i32}: 16
4064 <result> = shl i32 1, 10 ; yields {i32}: 1024
4065 <result> = shl i32 1, 32 ; undefined
4066 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4067
4068'``lshr``' Instruction
4069^^^^^^^^^^^^^^^^^^^^^^
4070
4071Syntax:
4072"""""""
4073
4074::
4075
4076 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4077 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4078
4079Overview:
4080"""""""""
4081
4082The '``lshr``' instruction (logical shift right) returns the first
4083operand shifted to the right a specified number of bits with zero fill.
4084
4085Arguments:
4086""""""""""
4087
4088Both arguments to the '``lshr``' instruction must be the same
4089:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4090'``op2``' is treated as an unsigned value.
4091
4092Semantics:
4093""""""""""
4094
4095This instruction always performs a logical shift right operation. The
4096most significant bits of the result will be filled with zero bits after
4097the shift. If ``op2`` is (statically or dynamically) equal to or larger
4098than the number of bits in ``op1``, the result is undefined. If the
4099arguments are vectors, each vector element of ``op1`` is shifted by the
4100corresponding shift amount in ``op2``.
4101
4102If the ``exact`` keyword is present, the result value of the ``lshr`` is
4103a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4104non-zero.
4105
4106Example:
4107""""""""
4108
4109.. code-block:: llvm
4110
4111 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4112 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4113 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004114 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004115 <result> = lshr i32 1, 32 ; undefined
4116 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4117
4118'``ashr``' Instruction
4119^^^^^^^^^^^^^^^^^^^^^^
4120
4121Syntax:
4122"""""""
4123
4124::
4125
4126 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4127 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4128
4129Overview:
4130"""""""""
4131
4132The '``ashr``' instruction (arithmetic shift right) returns the first
4133operand shifted to the right a specified number of bits with sign
4134extension.
4135
4136Arguments:
4137""""""""""
4138
4139Both arguments to the '``ashr``' instruction must be the same
4140:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4141'``op2``' is treated as an unsigned value.
4142
4143Semantics:
4144""""""""""
4145
4146This instruction always performs an arithmetic shift right operation,
4147The most significant bits of the result will be filled with the sign bit
4148of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4149than the number of bits in ``op1``, the result is undefined. If the
4150arguments are vectors, each vector element of ``op1`` is shifted by the
4151corresponding shift amount in ``op2``.
4152
4153If the ``exact`` keyword is present, the result value of the ``ashr`` is
4154a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4155non-zero.
4156
4157Example:
4158""""""""
4159
4160.. code-block:: llvm
4161
4162 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4163 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4164 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4165 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4166 <result> = ashr i32 1, 32 ; undefined
4167 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4168
4169'``and``' Instruction
4170^^^^^^^^^^^^^^^^^^^^^
4171
4172Syntax:
4173"""""""
4174
4175::
4176
4177 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4178
4179Overview:
4180"""""""""
4181
4182The '``and``' instruction returns the bitwise logical and of its two
4183operands.
4184
4185Arguments:
4186""""""""""
4187
4188The two arguments to the '``and``' instruction must be
4189:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4190arguments must have identical types.
4191
4192Semantics:
4193""""""""""
4194
4195The truth table used for the '``and``' instruction is:
4196
4197+-----+-----+-----+
4198| In0 | In1 | Out |
4199+-----+-----+-----+
4200| 0 | 0 | 0 |
4201+-----+-----+-----+
4202| 0 | 1 | 0 |
4203+-----+-----+-----+
4204| 1 | 0 | 0 |
4205+-----+-----+-----+
4206| 1 | 1 | 1 |
4207+-----+-----+-----+
4208
4209Example:
4210""""""""
4211
4212.. code-block:: llvm
4213
4214 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4215 <result> = and i32 15, 40 ; yields {i32}:result = 8
4216 <result> = and i32 4, 8 ; yields {i32}:result = 0
4217
4218'``or``' Instruction
4219^^^^^^^^^^^^^^^^^^^^
4220
4221Syntax:
4222"""""""
4223
4224::
4225
4226 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4227
4228Overview:
4229"""""""""
4230
4231The '``or``' instruction returns the bitwise logical inclusive or of its
4232two operands.
4233
4234Arguments:
4235""""""""""
4236
4237The two arguments to the '``or``' instruction must be
4238:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4239arguments must have identical types.
4240
4241Semantics:
4242""""""""""
4243
4244The truth table used for the '``or``' instruction is:
4245
4246+-----+-----+-----+
4247| In0 | In1 | Out |
4248+-----+-----+-----+
4249| 0 | 0 | 0 |
4250+-----+-----+-----+
4251| 0 | 1 | 1 |
4252+-----+-----+-----+
4253| 1 | 0 | 1 |
4254+-----+-----+-----+
4255| 1 | 1 | 1 |
4256+-----+-----+-----+
4257
4258Example:
4259""""""""
4260
4261::
4262
4263 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4264 <result> = or i32 15, 40 ; yields {i32}:result = 47
4265 <result> = or i32 4, 8 ; yields {i32}:result = 12
4266
4267'``xor``' Instruction
4268^^^^^^^^^^^^^^^^^^^^^
4269
4270Syntax:
4271"""""""
4272
4273::
4274
4275 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4276
4277Overview:
4278"""""""""
4279
4280The '``xor``' instruction returns the bitwise logical exclusive or of
4281its two operands. The ``xor`` is used to implement the "one's
4282complement" operation, which is the "~" operator in C.
4283
4284Arguments:
4285""""""""""
4286
4287The two arguments to the '``xor``' instruction must be
4288:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4289arguments must have identical types.
4290
4291Semantics:
4292""""""""""
4293
4294The truth table used for the '``xor``' instruction is:
4295
4296+-----+-----+-----+
4297| In0 | In1 | Out |
4298+-----+-----+-----+
4299| 0 | 0 | 0 |
4300+-----+-----+-----+
4301| 0 | 1 | 1 |
4302+-----+-----+-----+
4303| 1 | 0 | 1 |
4304+-----+-----+-----+
4305| 1 | 1 | 0 |
4306+-----+-----+-----+
4307
4308Example:
4309""""""""
4310
4311.. code-block:: llvm
4312
4313 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4314 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4315 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4316 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4317
4318Vector Operations
4319-----------------
4320
4321LLVM supports several instructions to represent vector operations in a
4322target-independent manner. These instructions cover the element-access
4323and vector-specific operations needed to process vectors effectively.
4324While LLVM does directly support these vector operations, many
4325sophisticated algorithms will want to use target-specific intrinsics to
4326take full advantage of a specific target.
4327
4328.. _i_extractelement:
4329
4330'``extractelement``' Instruction
4331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4332
4333Syntax:
4334"""""""
4335
4336::
4337
4338 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4339
4340Overview:
4341"""""""""
4342
4343The '``extractelement``' instruction extracts a single scalar element
4344from a vector at a specified index.
4345
4346Arguments:
4347""""""""""
4348
4349The first operand of an '``extractelement``' instruction is a value of
4350:ref:`vector <t_vector>` type. The second operand is an index indicating
4351the position from which to extract the element. The index may be a
4352variable.
4353
4354Semantics:
4355""""""""""
4356
4357The result is a scalar of the same type as the element type of ``val``.
4358Its value is the value at position ``idx`` of ``val``. If ``idx``
4359exceeds the length of ``val``, the results are undefined.
4360
4361Example:
4362""""""""
4363
4364.. code-block:: llvm
4365
4366 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4367
4368.. _i_insertelement:
4369
4370'``insertelement``' Instruction
4371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4372
4373Syntax:
4374"""""""
4375
4376::
4377
4378 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4379
4380Overview:
4381"""""""""
4382
4383The '``insertelement``' instruction inserts a scalar element into a
4384vector at a specified index.
4385
4386Arguments:
4387""""""""""
4388
4389The first operand of an '``insertelement``' instruction is a value of
4390:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4391type must equal the element type of the first operand. The third operand
4392is an index indicating the position at which to insert the value. The
4393index may be a variable.
4394
4395Semantics:
4396""""""""""
4397
4398The result is a vector of the same type as ``val``. Its element values
4399are those of ``val`` except at position ``idx``, where it gets the value
4400``elt``. If ``idx`` exceeds the length of ``val``, the results are
4401undefined.
4402
4403Example:
4404""""""""
4405
4406.. code-block:: llvm
4407
4408 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4409
4410.. _i_shufflevector:
4411
4412'``shufflevector``' Instruction
4413^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4414
4415Syntax:
4416"""""""
4417
4418::
4419
4420 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4421
4422Overview:
4423"""""""""
4424
4425The '``shufflevector``' instruction constructs a permutation of elements
4426from two input vectors, returning a vector with the same element type as
4427the input and length that is the same as the shuffle mask.
4428
4429Arguments:
4430""""""""""
4431
4432The first two operands of a '``shufflevector``' instruction are vectors
4433with the same type. The third argument is a shuffle mask whose element
4434type is always 'i32'. The result of the instruction is a vector whose
4435length is the same as the shuffle mask and whose element type is the
4436same as the element type of the first two operands.
4437
4438The shuffle mask operand is required to be a constant vector with either
4439constant integer or undef values.
4440
4441Semantics:
4442""""""""""
4443
4444The elements of the two input vectors are numbered from left to right
4445across both of the vectors. The shuffle mask operand specifies, for each
4446element of the result vector, which element of the two input vectors the
4447result element gets. The element selector may be undef (meaning "don't
4448care") and the second operand may be undef if performing a shuffle from
4449only one vector.
4450
4451Example:
4452""""""""
4453
4454.. code-block:: llvm
4455
4456 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4457 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4458 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4459 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4460 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4461 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4462 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4463 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4464
4465Aggregate Operations
4466--------------------
4467
4468LLVM supports several instructions for working with
4469:ref:`aggregate <t_aggregate>` values.
4470
4471.. _i_extractvalue:
4472
4473'``extractvalue``' Instruction
4474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4475
4476Syntax:
4477"""""""
4478
4479::
4480
4481 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4482
4483Overview:
4484"""""""""
4485
4486The '``extractvalue``' instruction extracts the value of a member field
4487from an :ref:`aggregate <t_aggregate>` value.
4488
4489Arguments:
4490""""""""""
4491
4492The first operand of an '``extractvalue``' instruction is a value of
4493:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4494constant indices to specify which value to extract in a similar manner
4495as indices in a '``getelementptr``' instruction.
4496
4497The major differences to ``getelementptr`` indexing are:
4498
4499- Since the value being indexed is not a pointer, the first index is
4500 omitted and assumed to be zero.
4501- At least one index must be specified.
4502- Not only struct indices but also array indices must be in bounds.
4503
4504Semantics:
4505""""""""""
4506
4507The result is the value at the position in the aggregate specified by
4508the index operands.
4509
4510Example:
4511""""""""
4512
4513.. code-block:: llvm
4514
4515 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4516
4517.. _i_insertvalue:
4518
4519'``insertvalue``' Instruction
4520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4521
4522Syntax:
4523"""""""
4524
4525::
4526
4527 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4528
4529Overview:
4530"""""""""
4531
4532The '``insertvalue``' instruction inserts a value into a member field in
4533an :ref:`aggregate <t_aggregate>` value.
4534
4535Arguments:
4536""""""""""
4537
4538The first operand of an '``insertvalue``' instruction is a value of
4539:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4540a first-class value to insert. The following operands are constant
4541indices indicating the position at which to insert the value in a
4542similar manner as indices in a '``extractvalue``' instruction. The value
4543to insert must have the same type as the value identified by the
4544indices.
4545
4546Semantics:
4547""""""""""
4548
4549The result is an aggregate of the same type as ``val``. Its value is
4550that of ``val`` except that the value at the position specified by the
4551indices is that of ``elt``.
4552
4553Example:
4554""""""""
4555
4556.. code-block:: llvm
4557
4558 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4559 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4560 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4561
4562.. _memoryops:
4563
4564Memory Access and Addressing Operations
4565---------------------------------------
4566
4567A key design point of an SSA-based representation is how it represents
4568memory. In LLVM, no memory locations are in SSA form, which makes things
4569very simple. This section describes how to read, write, and allocate
4570memory in LLVM.
4571
4572.. _i_alloca:
4573
4574'``alloca``' Instruction
4575^^^^^^^^^^^^^^^^^^^^^^^^
4576
4577Syntax:
4578"""""""
4579
4580::
4581
4582 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4583
4584Overview:
4585"""""""""
4586
4587The '``alloca``' instruction allocates memory on the stack frame of the
4588currently executing function, to be automatically released when this
4589function returns to its caller. The object is always allocated in the
4590generic address space (address space zero).
4591
4592Arguments:
4593""""""""""
4594
4595The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4596bytes of memory on the runtime stack, returning a pointer of the
4597appropriate type to the program. If "NumElements" is specified, it is
4598the number of elements allocated, otherwise "NumElements" is defaulted
4599to be one. If a constant alignment is specified, the value result of the
4600allocation is guaranteed to be aligned to at least that boundary. If not
4601specified, or if zero, the target can choose to align the allocation on
4602any convenient boundary compatible with the type.
4603
4604'``type``' may be any sized type.
4605
4606Semantics:
4607""""""""""
4608
4609Memory is allocated; a pointer is returned. The operation is undefined
4610if there is insufficient stack space for the allocation. '``alloca``'d
4611memory is automatically released when the function returns. The
4612'``alloca``' instruction is commonly used to represent automatic
4613variables that must have an address available. When the function returns
4614(either with the ``ret`` or ``resume`` instructions), the memory is
4615reclaimed. Allocating zero bytes is legal, but the result is undefined.
4616The order in which memory is allocated (ie., which way the stack grows)
4617is not specified.
4618
4619Example:
4620""""""""
4621
4622.. code-block:: llvm
4623
4624 %ptr = alloca i32 ; yields {i32*}:ptr
4625 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4626 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4627 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4628
4629.. _i_load:
4630
4631'``load``' Instruction
4632^^^^^^^^^^^^^^^^^^^^^^
4633
4634Syntax:
4635"""""""
4636
4637::
4638
4639 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4640 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4641 !<index> = !{ i32 1 }
4642
4643Overview:
4644"""""""""
4645
4646The '``load``' instruction is used to read from memory.
4647
4648Arguments:
4649""""""""""
4650
Eli Bendersky239a78b2013-04-17 20:17:08 +00004651The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004652from which to load. The pointer must point to a :ref:`first
4653class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4654then the optimizer is not allowed to modify the number or order of
4655execution of this ``load`` with other :ref:`volatile
4656operations <volatile>`.
4657
4658If the ``load`` is marked as ``atomic``, it takes an extra
4659:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4660``release`` and ``acq_rel`` orderings are not valid on ``load``
4661instructions. Atomic loads produce :ref:`defined <memmodel>` results
4662when they may see multiple atomic stores. The type of the pointee must
4663be an integer type whose bit width is a power of two greater than or
4664equal to eight and less than or equal to a target-specific size limit.
4665``align`` must be explicitly specified on atomic loads, and the load has
4666undefined behavior if the alignment is not set to a value which is at
4667least the size in bytes of the pointee. ``!nontemporal`` does not have
4668any defined semantics for atomic loads.
4669
4670The optional constant ``align`` argument specifies the alignment of the
4671operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004672or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004673alignment for the target. It is the responsibility of the code emitter
4674to ensure that the alignment information is correct. Overestimating the
4675alignment results in undefined behavior. Underestimating the alignment
4676may produce less efficient code. An alignment of 1 is always safe.
4677
4678The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004679metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004680``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004681metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004682that this load is not expected to be reused in the cache. The code
4683generator may select special instructions to save cache bandwidth, such
4684as the ``MOVNT`` instruction on x86.
4685
4686The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004687metadata name ``<index>`` corresponding to a metadata node with no
4688entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004689instruction tells the optimizer and code generator that this load
4690address points to memory which does not change value during program
4691execution. The optimizer may then move this load around, for example, by
4692hoisting it out of loops using loop invariant code motion.
4693
4694Semantics:
4695""""""""""
4696
4697The location of memory pointed to is loaded. If the value being loaded
4698is of scalar type then the number of bytes read does not exceed the
4699minimum number of bytes needed to hold all bits of the type. For
4700example, loading an ``i24`` reads at most three bytes. When loading a
4701value of a type like ``i20`` with a size that is not an integral number
4702of bytes, the result is undefined if the value was not originally
4703written using a store of the same type.
4704
4705Examples:
4706"""""""""
4707
4708.. code-block:: llvm
4709
4710 %ptr = alloca i32 ; yields {i32*}:ptr
4711 store i32 3, i32* %ptr ; yields {void}
4712 %val = load i32* %ptr ; yields {i32}:val = i32 3
4713
4714.. _i_store:
4715
4716'``store``' Instruction
4717^^^^^^^^^^^^^^^^^^^^^^^
4718
4719Syntax:
4720"""""""
4721
4722::
4723
4724 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4725 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4726
4727Overview:
4728"""""""""
4729
4730The '``store``' instruction is used to write to memory.
4731
4732Arguments:
4733""""""""""
4734
Eli Benderskyca380842013-04-17 17:17:20 +00004735There are two arguments to the ``store`` instruction: a value to store
4736and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004737operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004738the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004739then the optimizer is not allowed to modify the number or order of
4740execution of this ``store`` with other :ref:`volatile
4741operations <volatile>`.
4742
4743If the ``store`` is marked as ``atomic``, it takes an extra
4744:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4745``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4746instructions. Atomic loads produce :ref:`defined <memmodel>` results
4747when they may see multiple atomic stores. The type of the pointee must
4748be an integer type whose bit width is a power of two greater than or
4749equal to eight and less than or equal to a target-specific size limit.
4750``align`` must be explicitly specified on atomic stores, and the store
4751has undefined behavior if the alignment is not set to a value which is
4752at least the size in bytes of the pointee. ``!nontemporal`` does not
4753have any defined semantics for atomic stores.
4754
Eli Benderskyca380842013-04-17 17:17:20 +00004755The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004756operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004757or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004758alignment for the target. It is the responsibility of the code emitter
4759to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004760alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004761alignment may produce less efficient code. An alignment of 1 is always
4762safe.
4763
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004764The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004765name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004766value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004767tells the optimizer and code generator that this load is not expected to
4768be reused in the cache. The code generator may select special
4769instructions to save cache bandwidth, such as the MOVNT instruction on
4770x86.
4771
4772Semantics:
4773""""""""""
4774
Eli Benderskyca380842013-04-17 17:17:20 +00004775The contents of memory are updated to contain ``<value>`` at the
4776location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004777of scalar type then the number of bytes written does not exceed the
4778minimum number of bytes needed to hold all bits of the type. For
4779example, storing an ``i24`` writes at most three bytes. When writing a
4780value of a type like ``i20`` with a size that is not an integral number
4781of bytes, it is unspecified what happens to the extra bits that do not
4782belong to the type, but they will typically be overwritten.
4783
4784Example:
4785""""""""
4786
4787.. code-block:: llvm
4788
4789 %ptr = alloca i32 ; yields {i32*}:ptr
4790 store i32 3, i32* %ptr ; yields {void}
4791 %val = load i32* %ptr ; yields {i32}:val = i32 3
4792
4793.. _i_fence:
4794
4795'``fence``' Instruction
4796^^^^^^^^^^^^^^^^^^^^^^^
4797
4798Syntax:
4799"""""""
4800
4801::
4802
4803 fence [singlethread] <ordering> ; yields {void}
4804
4805Overview:
4806"""""""""
4807
4808The '``fence``' instruction is used to introduce happens-before edges
4809between operations.
4810
4811Arguments:
4812""""""""""
4813
4814'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4815defines what *synchronizes-with* edges they add. They can only be given
4816``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4817
4818Semantics:
4819""""""""""
4820
4821A fence A which has (at least) ``release`` ordering semantics
4822*synchronizes with* a fence B with (at least) ``acquire`` ordering
4823semantics if and only if there exist atomic operations X and Y, both
4824operating on some atomic object M, such that A is sequenced before X, X
4825modifies M (either directly or through some side effect of a sequence
4826headed by X), Y is sequenced before B, and Y observes M. This provides a
4827*happens-before* dependency between A and B. Rather than an explicit
4828``fence``, one (but not both) of the atomic operations X or Y might
4829provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4830still *synchronize-with* the explicit ``fence`` and establish the
4831*happens-before* edge.
4832
4833A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4834``acquire`` and ``release`` semantics specified above, participates in
4835the global program order of other ``seq_cst`` operations and/or fences.
4836
4837The optional ":ref:`singlethread <singlethread>`" argument specifies
4838that the fence only synchronizes with other fences in the same thread.
4839(This is useful for interacting with signal handlers.)
4840
4841Example:
4842""""""""
4843
4844.. code-block:: llvm
4845
4846 fence acquire ; yields {void}
4847 fence singlethread seq_cst ; yields {void}
4848
4849.. _i_cmpxchg:
4850
4851'``cmpxchg``' Instruction
4852^^^^^^^^^^^^^^^^^^^^^^^^^
4853
4854Syntax:
4855"""""""
4856
4857::
4858
4859 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4860
4861Overview:
4862"""""""""
4863
4864The '``cmpxchg``' instruction is used to atomically modify memory. It
4865loads a value in memory and compares it to a given value. If they are
4866equal, it stores a new value into the memory.
4867
4868Arguments:
4869""""""""""
4870
4871There are three arguments to the '``cmpxchg``' instruction: an address
4872to operate on, a value to compare to the value currently be at that
4873address, and a new value to place at that address if the compared values
4874are equal. The type of '<cmp>' must be an integer type whose bit width
4875is a power of two greater than or equal to eight and less than or equal
4876to a target-specific size limit. '<cmp>' and '<new>' must have the same
4877type, and the type of '<pointer>' must be a pointer to that type. If the
4878``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4879to modify the number or order of execution of this ``cmpxchg`` with
4880other :ref:`volatile operations <volatile>`.
4881
4882The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4883synchronizes with other atomic operations.
4884
4885The optional "``singlethread``" argument declares that the ``cmpxchg``
4886is only atomic with respect to code (usually signal handlers) running in
4887the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4888respect to all other code in the system.
4889
4890The pointer passed into cmpxchg must have alignment greater than or
4891equal to the size in memory of the operand.
4892
4893Semantics:
4894""""""""""
4895
4896The contents of memory at the location specified by the '``<pointer>``'
4897operand is read and compared to '``<cmp>``'; if the read value is the
4898equal, '``<new>``' is written. The original value at the location is
4899returned.
4900
4901A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4902of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4903atomic load with an ordering parameter determined by dropping any
4904``release`` part of the ``cmpxchg``'s ordering.
4905
4906Example:
4907""""""""
4908
4909.. code-block:: llvm
4910
4911 entry:
4912 %orig = atomic load i32* %ptr unordered ; yields {i32}
4913 br label %loop
4914
4915 loop:
4916 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4917 %squared = mul i32 %cmp, %cmp
4918 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4919 %success = icmp eq i32 %cmp, %old
4920 br i1 %success, label %done, label %loop
4921
4922 done:
4923 ...
4924
4925.. _i_atomicrmw:
4926
4927'``atomicrmw``' Instruction
4928^^^^^^^^^^^^^^^^^^^^^^^^^^^
4929
4930Syntax:
4931"""""""
4932
4933::
4934
4935 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4936
4937Overview:
4938"""""""""
4939
4940The '``atomicrmw``' instruction is used to atomically modify memory.
4941
4942Arguments:
4943""""""""""
4944
4945There are three arguments to the '``atomicrmw``' instruction: an
4946operation to apply, an address whose value to modify, an argument to the
4947operation. The operation must be one of the following keywords:
4948
4949- xchg
4950- add
4951- sub
4952- and
4953- nand
4954- or
4955- xor
4956- max
4957- min
4958- umax
4959- umin
4960
4961The type of '<value>' must be an integer type whose bit width is a power
4962of two greater than or equal to eight and less than or equal to a
4963target-specific size limit. The type of the '``<pointer>``' operand must
4964be a pointer to that type. If the ``atomicrmw`` is marked as
4965``volatile``, then the optimizer is not allowed to modify the number or
4966order of execution of this ``atomicrmw`` with other :ref:`volatile
4967operations <volatile>`.
4968
4969Semantics:
4970""""""""""
4971
4972The contents of memory at the location specified by the '``<pointer>``'
4973operand are atomically read, modified, and written back. The original
4974value at the location is returned. The modification is specified by the
4975operation argument:
4976
4977- xchg: ``*ptr = val``
4978- add: ``*ptr = *ptr + val``
4979- sub: ``*ptr = *ptr - val``
4980- and: ``*ptr = *ptr & val``
4981- nand: ``*ptr = ~(*ptr & val)``
4982- or: ``*ptr = *ptr | val``
4983- xor: ``*ptr = *ptr ^ val``
4984- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4985- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4986- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4987 comparison)
4988- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4989 comparison)
4990
4991Example:
4992""""""""
4993
4994.. code-block:: llvm
4995
4996 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4997
4998.. _i_getelementptr:
4999
5000'``getelementptr``' Instruction
5001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5002
5003Syntax:
5004"""""""
5005
5006::
5007
5008 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5009 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5010 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5011
5012Overview:
5013"""""""""
5014
5015The '``getelementptr``' instruction is used to get the address of a
5016subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5017address calculation only and does not access memory.
5018
5019Arguments:
5020""""""""""
5021
5022The first argument is always a pointer or a vector of pointers, and
5023forms the basis of the calculation. The remaining arguments are indices
5024that indicate which of the elements of the aggregate object are indexed.
5025The interpretation of each index is dependent on the type being indexed
5026into. The first index always indexes the pointer value given as the
5027first argument, the second index indexes a value of the type pointed to
5028(not necessarily the value directly pointed to, since the first index
5029can be non-zero), etc. The first type indexed into must be a pointer
5030value, subsequent types can be arrays, vectors, and structs. Note that
5031subsequent types being indexed into can never be pointers, since that
5032would require loading the pointer before continuing calculation.
5033
5034The type of each index argument depends on the type it is indexing into.
5035When indexing into a (optionally packed) structure, only ``i32`` integer
5036**constants** are allowed (when using a vector of indices they must all
5037be the **same** ``i32`` integer constant). When indexing into an array,
5038pointer or vector, integers of any width are allowed, and they are not
5039required to be constant. These integers are treated as signed values
5040where relevant.
5041
5042For example, let's consider a C code fragment and how it gets compiled
5043to LLVM:
5044
5045.. code-block:: c
5046
5047 struct RT {
5048 char A;
5049 int B[10][20];
5050 char C;
5051 };
5052 struct ST {
5053 int X;
5054 double Y;
5055 struct RT Z;
5056 };
5057
5058 int *foo(struct ST *s) {
5059 return &s[1].Z.B[5][13];
5060 }
5061
5062The LLVM code generated by Clang is:
5063
5064.. code-block:: llvm
5065
5066 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5067 %struct.ST = type { i32, double, %struct.RT }
5068
5069 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5070 entry:
5071 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5072 ret i32* %arrayidx
5073 }
5074
5075Semantics:
5076""""""""""
5077
5078In the example above, the first index is indexing into the
5079'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5080= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5081indexes into the third element of the structure, yielding a
5082'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5083structure. The third index indexes into the second element of the
5084structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5085dimensions of the array are subscripted into, yielding an '``i32``'
5086type. The '``getelementptr``' instruction returns a pointer to this
5087element, thus computing a value of '``i32*``' type.
5088
5089Note that it is perfectly legal to index partially through a structure,
5090returning a pointer to an inner element. Because of this, the LLVM code
5091for the given testcase is equivalent to:
5092
5093.. code-block:: llvm
5094
5095 define i32* @foo(%struct.ST* %s) {
5096 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5097 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5098 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5099 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5100 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5101 ret i32* %t5
5102 }
5103
5104If the ``inbounds`` keyword is present, the result value of the
5105``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5106pointer is not an *in bounds* address of an allocated object, or if any
5107of the addresses that would be formed by successive addition of the
5108offsets implied by the indices to the base address with infinitely
5109precise signed arithmetic are not an *in bounds* address of that
5110allocated object. The *in bounds* addresses for an allocated object are
5111all the addresses that point into the object, plus the address one byte
5112past the end. In cases where the base is a vector of pointers the
5113``inbounds`` keyword applies to each of the computations element-wise.
5114
5115If the ``inbounds`` keyword is not present, the offsets are added to the
5116base address with silently-wrapping two's complement arithmetic. If the
5117offsets have a different width from the pointer, they are sign-extended
5118or truncated to the width of the pointer. The result value of the
5119``getelementptr`` may be outside the object pointed to by the base
5120pointer. The result value may not necessarily be used to access memory
5121though, even if it happens to point into allocated storage. See the
5122:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5123information.
5124
5125The getelementptr instruction is often confusing. For some more insight
5126into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5127
5128Example:
5129""""""""
5130
5131.. code-block:: llvm
5132
5133 ; yields [12 x i8]*:aptr
5134 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5135 ; yields i8*:vptr
5136 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5137 ; yields i8*:eptr
5138 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5139 ; yields i32*:iptr
5140 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5141
5142In cases where the pointer argument is a vector of pointers, each index
5143must be a vector with the same number of elements. For example:
5144
5145.. code-block:: llvm
5146
5147 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5148
5149Conversion Operations
5150---------------------
5151
5152The instructions in this category are the conversion instructions
5153(casting) which all take a single operand and a type. They perform
5154various bit conversions on the operand.
5155
5156'``trunc .. to``' Instruction
5157^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5158
5159Syntax:
5160"""""""
5161
5162::
5163
5164 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5165
5166Overview:
5167"""""""""
5168
5169The '``trunc``' instruction truncates its operand to the type ``ty2``.
5170
5171Arguments:
5172""""""""""
5173
5174The '``trunc``' instruction takes a value to trunc, and a type to trunc
5175it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5176of the same number of integers. The bit size of the ``value`` must be
5177larger than the bit size of the destination type, ``ty2``. Equal sized
5178types are not allowed.
5179
5180Semantics:
5181""""""""""
5182
5183The '``trunc``' instruction truncates the high order bits in ``value``
5184and converts the remaining bits to ``ty2``. Since the source size must
5185be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5186It will always truncate bits.
5187
5188Example:
5189""""""""
5190
5191.. code-block:: llvm
5192
5193 %X = trunc i32 257 to i8 ; yields i8:1
5194 %Y = trunc i32 123 to i1 ; yields i1:true
5195 %Z = trunc i32 122 to i1 ; yields i1:false
5196 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5197
5198'``zext .. to``' Instruction
5199^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5200
5201Syntax:
5202"""""""
5203
5204::
5205
5206 <result> = zext <ty> <value> to <ty2> ; yields ty2
5207
5208Overview:
5209"""""""""
5210
5211The '``zext``' instruction zero extends its operand to type ``ty2``.
5212
5213Arguments:
5214""""""""""
5215
5216The '``zext``' instruction takes a value to cast, and a type to cast it
5217to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5218the same number of integers. The bit size of the ``value`` must be
5219smaller than the bit size of the destination type, ``ty2``.
5220
5221Semantics:
5222""""""""""
5223
5224The ``zext`` fills the high order bits of the ``value`` with zero bits
5225until it reaches the size of the destination type, ``ty2``.
5226
5227When zero extending from i1, the result will always be either 0 or 1.
5228
5229Example:
5230""""""""
5231
5232.. code-block:: llvm
5233
5234 %X = zext i32 257 to i64 ; yields i64:257
5235 %Y = zext i1 true to i32 ; yields i32:1
5236 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5237
5238'``sext .. to``' Instruction
5239^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5240
5241Syntax:
5242"""""""
5243
5244::
5245
5246 <result> = sext <ty> <value> to <ty2> ; yields ty2
5247
5248Overview:
5249"""""""""
5250
5251The '``sext``' sign extends ``value`` to the type ``ty2``.
5252
5253Arguments:
5254""""""""""
5255
5256The '``sext``' instruction takes a value to cast, and a type to cast it
5257to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5258the same number of integers. The bit size of the ``value`` must be
5259smaller than the bit size of the destination type, ``ty2``.
5260
5261Semantics:
5262""""""""""
5263
5264The '``sext``' instruction performs a sign extension by copying the sign
5265bit (highest order bit) of the ``value`` until it reaches the bit size
5266of the type ``ty2``.
5267
5268When sign extending from i1, the extension always results in -1 or 0.
5269
5270Example:
5271""""""""
5272
5273.. code-block:: llvm
5274
5275 %X = sext i8 -1 to i16 ; yields i16 :65535
5276 %Y = sext i1 true to i32 ; yields i32:-1
5277 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5278
5279'``fptrunc .. to``' Instruction
5280^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5281
5282Syntax:
5283"""""""
5284
5285::
5286
5287 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5288
5289Overview:
5290"""""""""
5291
5292The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5293
5294Arguments:
5295""""""""""
5296
5297The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5298value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5299The size of ``value`` must be larger than the size of ``ty2``. This
5300implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5301
5302Semantics:
5303""""""""""
5304
5305The '``fptrunc``' instruction truncates a ``value`` from a larger
5306:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5307point <t_floating>` type. If the value cannot fit within the
5308destination type, ``ty2``, then the results are undefined.
5309
5310Example:
5311""""""""
5312
5313.. code-block:: llvm
5314
5315 %X = fptrunc double 123.0 to float ; yields float:123.0
5316 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5317
5318'``fpext .. to``' Instruction
5319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5320
5321Syntax:
5322"""""""
5323
5324::
5325
5326 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5327
5328Overview:
5329"""""""""
5330
5331The '``fpext``' extends a floating point ``value`` to a larger floating
5332point value.
5333
5334Arguments:
5335""""""""""
5336
5337The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5338``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5339to. The source type must be smaller than the destination type.
5340
5341Semantics:
5342""""""""""
5343
5344The '``fpext``' instruction extends the ``value`` from a smaller
5345:ref:`floating point <t_floating>` type to a larger :ref:`floating
5346point <t_floating>` type. The ``fpext`` cannot be used to make a
5347*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5348*no-op cast* for a floating point cast.
5349
5350Example:
5351""""""""
5352
5353.. code-block:: llvm
5354
5355 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5356 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5357
5358'``fptoui .. to``' Instruction
5359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5360
5361Syntax:
5362"""""""
5363
5364::
5365
5366 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5367
5368Overview:
5369"""""""""
5370
5371The '``fptoui``' converts a floating point ``value`` to its unsigned
5372integer equivalent of type ``ty2``.
5373
5374Arguments:
5375""""""""""
5376
5377The '``fptoui``' instruction takes a value to cast, which must be a
5378scalar or vector :ref:`floating point <t_floating>` value, and a type to
5379cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5380``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5381type with the same number of elements as ``ty``
5382
5383Semantics:
5384""""""""""
5385
5386The '``fptoui``' instruction converts its :ref:`floating
5387point <t_floating>` operand into the nearest (rounding towards zero)
5388unsigned integer value. If the value cannot fit in ``ty2``, the results
5389are undefined.
5390
5391Example:
5392""""""""
5393
5394.. code-block:: llvm
5395
5396 %X = fptoui double 123.0 to i32 ; yields i32:123
5397 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5398 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5399
5400'``fptosi .. to``' Instruction
5401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5402
5403Syntax:
5404"""""""
5405
5406::
5407
5408 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5409
5410Overview:
5411"""""""""
5412
5413The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5414``value`` to type ``ty2``.
5415
5416Arguments:
5417""""""""""
5418
5419The '``fptosi``' instruction takes a value to cast, which must be a
5420scalar or vector :ref:`floating point <t_floating>` value, and a type to
5421cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5422``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5423type with the same number of elements as ``ty``
5424
5425Semantics:
5426""""""""""
5427
5428The '``fptosi``' instruction converts its :ref:`floating
5429point <t_floating>` operand into the nearest (rounding towards zero)
5430signed integer value. If the value cannot fit in ``ty2``, the results
5431are undefined.
5432
5433Example:
5434""""""""
5435
5436.. code-block:: llvm
5437
5438 %X = fptosi double -123.0 to i32 ; yields i32:-123
5439 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5440 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5441
5442'``uitofp .. to``' Instruction
5443^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5444
5445Syntax:
5446"""""""
5447
5448::
5449
5450 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5451
5452Overview:
5453"""""""""
5454
5455The '``uitofp``' instruction regards ``value`` as an unsigned integer
5456and converts that value to the ``ty2`` type.
5457
5458Arguments:
5459""""""""""
5460
5461The '``uitofp``' instruction takes a value to cast, which must be a
5462scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5463``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5464``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5465type with the same number of elements as ``ty``
5466
5467Semantics:
5468""""""""""
5469
5470The '``uitofp``' instruction interprets its operand as an unsigned
5471integer quantity and converts it to the corresponding floating point
5472value. If the value cannot fit in the floating point value, the results
5473are undefined.
5474
5475Example:
5476""""""""
5477
5478.. code-block:: llvm
5479
5480 %X = uitofp i32 257 to float ; yields float:257.0
5481 %Y = uitofp i8 -1 to double ; yields double:255.0
5482
5483'``sitofp .. to``' Instruction
5484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5485
5486Syntax:
5487"""""""
5488
5489::
5490
5491 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5492
5493Overview:
5494"""""""""
5495
5496The '``sitofp``' instruction regards ``value`` as a signed integer and
5497converts that value to the ``ty2`` type.
5498
5499Arguments:
5500""""""""""
5501
5502The '``sitofp``' instruction takes a value to cast, which must be a
5503scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5504``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5505``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5506type with the same number of elements as ``ty``
5507
5508Semantics:
5509""""""""""
5510
5511The '``sitofp``' instruction interprets its operand as a signed integer
5512quantity and converts it to the corresponding floating point value. If
5513the value cannot fit in the floating point value, the results are
5514undefined.
5515
5516Example:
5517""""""""
5518
5519.. code-block:: llvm
5520
5521 %X = sitofp i32 257 to float ; yields float:257.0
5522 %Y = sitofp i8 -1 to double ; yields double:-1.0
5523
5524.. _i_ptrtoint:
5525
5526'``ptrtoint .. to``' Instruction
5527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5528
5529Syntax:
5530"""""""
5531
5532::
5533
5534 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5535
5536Overview:
5537"""""""""
5538
5539The '``ptrtoint``' instruction converts the pointer or a vector of
5540pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5541
5542Arguments:
5543""""""""""
5544
5545The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5546a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5547type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5548a vector of integers type.
5549
5550Semantics:
5551""""""""""
5552
5553The '``ptrtoint``' instruction converts ``value`` to integer type
5554``ty2`` by interpreting the pointer value as an integer and either
5555truncating or zero extending that value to the size of the integer type.
5556If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5557``value`` is larger than ``ty2`` then a truncation is done. If they are
5558the same size, then nothing is done (*no-op cast*) other than a type
5559change.
5560
5561Example:
5562""""""""
5563
5564.. code-block:: llvm
5565
5566 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5567 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5568 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5569
5570.. _i_inttoptr:
5571
5572'``inttoptr .. to``' Instruction
5573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5574
5575Syntax:
5576"""""""
5577
5578::
5579
5580 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5581
5582Overview:
5583"""""""""
5584
5585The '``inttoptr``' instruction converts an integer ``value`` to a
5586pointer type, ``ty2``.
5587
5588Arguments:
5589""""""""""
5590
5591The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5592cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5593type.
5594
5595Semantics:
5596""""""""""
5597
5598The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5599applying either a zero extension or a truncation depending on the size
5600of the integer ``value``. If ``value`` is larger than the size of a
5601pointer then a truncation is done. If ``value`` is smaller than the size
5602of a pointer then a zero extension is done. If they are the same size,
5603nothing is done (*no-op cast*).
5604
5605Example:
5606""""""""
5607
5608.. code-block:: llvm
5609
5610 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5611 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5612 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5613 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5614
5615.. _i_bitcast:
5616
5617'``bitcast .. to``' Instruction
5618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5619
5620Syntax:
5621"""""""
5622
5623::
5624
5625 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5626
5627Overview:
5628"""""""""
5629
5630The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5631changing any bits.
5632
5633Arguments:
5634""""""""""
5635
5636The '``bitcast``' instruction takes a value to cast, which must be a
5637non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005638also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5639bit sizes of ``value`` and the destination type, ``ty2``, must be
5640identical. If the source type is a pointer, the destination type must
5641also be a pointer of the same size. This instruction supports bitwise
5642conversion of vectors to integers and to vectors of other types (as
5643long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005644
5645Semantics:
5646""""""""""
5647
Matt Arsenault24b49c42013-07-31 17:49:08 +00005648The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5649is always a *no-op cast* because no bits change with this
5650conversion. The conversion is done as if the ``value`` had been stored
5651to memory and read back as type ``ty2``. Pointer (or vector of
5652pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005653pointers) types with the same address space through this instruction.
5654To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5655or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005656
5657Example:
5658""""""""
5659
5660.. code-block:: llvm
5661
5662 %X = bitcast i8 255 to i8 ; yields i8 :-1
5663 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5664 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5665 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5666
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005667.. _i_addrspacecast:
5668
5669'``addrspacecast .. to``' Instruction
5670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5671
5672Syntax:
5673"""""""
5674
5675::
5676
5677 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5678
5679Overview:
5680"""""""""
5681
5682The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5683address space ``n`` to type ``pty2`` in address space ``m``.
5684
5685Arguments:
5686""""""""""
5687
5688The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5689to cast and a pointer type to cast it to, which must have a different
5690address space.
5691
5692Semantics:
5693""""""""""
5694
5695The '``addrspacecast``' instruction converts the pointer value
5696``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005697value modification, depending on the target and the address space
5698pair. Pointer conversions within the same address space must be
5699performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005700conversion is legal then both result and operand refer to the same memory
5701location.
5702
5703Example:
5704""""""""
5705
5706.. code-block:: llvm
5707
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005708 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5709 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5710 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005711
Sean Silvab084af42012-12-07 10:36:55 +00005712.. _otherops:
5713
5714Other Operations
5715----------------
5716
5717The instructions in this category are the "miscellaneous" instructions,
5718which defy better classification.
5719
5720.. _i_icmp:
5721
5722'``icmp``' Instruction
5723^^^^^^^^^^^^^^^^^^^^^^
5724
5725Syntax:
5726"""""""
5727
5728::
5729
5730 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5731
5732Overview:
5733"""""""""
5734
5735The '``icmp``' instruction returns a boolean value or a vector of
5736boolean values based on comparison of its two integer, integer vector,
5737pointer, or pointer vector operands.
5738
5739Arguments:
5740""""""""""
5741
5742The '``icmp``' instruction takes three operands. The first operand is
5743the condition code indicating the kind of comparison to perform. It is
5744not a value, just a keyword. The possible condition code are:
5745
5746#. ``eq``: equal
5747#. ``ne``: not equal
5748#. ``ugt``: unsigned greater than
5749#. ``uge``: unsigned greater or equal
5750#. ``ult``: unsigned less than
5751#. ``ule``: unsigned less or equal
5752#. ``sgt``: signed greater than
5753#. ``sge``: signed greater or equal
5754#. ``slt``: signed less than
5755#. ``sle``: signed less or equal
5756
5757The remaining two arguments must be :ref:`integer <t_integer>` or
5758:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5759must also be identical types.
5760
5761Semantics:
5762""""""""""
5763
5764The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5765code given as ``cond``. The comparison performed always yields either an
5766:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5767
5768#. ``eq``: yields ``true`` if the operands are equal, ``false``
5769 otherwise. No sign interpretation is necessary or performed.
5770#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5771 otherwise. No sign interpretation is necessary or performed.
5772#. ``ugt``: interprets the operands as unsigned values and yields
5773 ``true`` if ``op1`` is greater than ``op2``.
5774#. ``uge``: interprets the operands as unsigned values and yields
5775 ``true`` if ``op1`` is greater than or equal to ``op2``.
5776#. ``ult``: interprets the operands as unsigned values and yields
5777 ``true`` if ``op1`` is less than ``op2``.
5778#. ``ule``: interprets the operands as unsigned values and yields
5779 ``true`` if ``op1`` is less than or equal to ``op2``.
5780#. ``sgt``: interprets the operands as signed values and yields ``true``
5781 if ``op1`` is greater than ``op2``.
5782#. ``sge``: interprets the operands as signed values and yields ``true``
5783 if ``op1`` is greater than or equal to ``op2``.
5784#. ``slt``: interprets the operands as signed values and yields ``true``
5785 if ``op1`` is less than ``op2``.
5786#. ``sle``: interprets the operands as signed values and yields ``true``
5787 if ``op1`` is less than or equal to ``op2``.
5788
5789If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5790are compared as if they were integers.
5791
5792If the operands are integer vectors, then they are compared element by
5793element. The result is an ``i1`` vector with the same number of elements
5794as the values being compared. Otherwise, the result is an ``i1``.
5795
5796Example:
5797""""""""
5798
5799.. code-block:: llvm
5800
5801 <result> = icmp eq i32 4, 5 ; yields: result=false
5802 <result> = icmp ne float* %X, %X ; yields: result=false
5803 <result> = icmp ult i16 4, 5 ; yields: result=true
5804 <result> = icmp sgt i16 4, 5 ; yields: result=false
5805 <result> = icmp ule i16 -4, 5 ; yields: result=false
5806 <result> = icmp sge i16 4, 5 ; yields: result=false
5807
5808Note that the code generator does not yet support vector types with the
5809``icmp`` instruction.
5810
5811.. _i_fcmp:
5812
5813'``fcmp``' Instruction
5814^^^^^^^^^^^^^^^^^^^^^^
5815
5816Syntax:
5817"""""""
5818
5819::
5820
5821 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5822
5823Overview:
5824"""""""""
5825
5826The '``fcmp``' instruction returns a boolean value or vector of boolean
5827values based on comparison of its operands.
5828
5829If the operands are floating point scalars, then the result type is a
5830boolean (:ref:`i1 <t_integer>`).
5831
5832If the operands are floating point vectors, then the result type is a
5833vector of boolean with the same number of elements as the operands being
5834compared.
5835
5836Arguments:
5837""""""""""
5838
5839The '``fcmp``' instruction takes three operands. The first operand is
5840the condition code indicating the kind of comparison to perform. It is
5841not a value, just a keyword. The possible condition code are:
5842
5843#. ``false``: no comparison, always returns false
5844#. ``oeq``: ordered and equal
5845#. ``ogt``: ordered and greater than
5846#. ``oge``: ordered and greater than or equal
5847#. ``olt``: ordered and less than
5848#. ``ole``: ordered and less than or equal
5849#. ``one``: ordered and not equal
5850#. ``ord``: ordered (no nans)
5851#. ``ueq``: unordered or equal
5852#. ``ugt``: unordered or greater than
5853#. ``uge``: unordered or greater than or equal
5854#. ``ult``: unordered or less than
5855#. ``ule``: unordered or less than or equal
5856#. ``une``: unordered or not equal
5857#. ``uno``: unordered (either nans)
5858#. ``true``: no comparison, always returns true
5859
5860*Ordered* means that neither operand is a QNAN while *unordered* means
5861that either operand may be a QNAN.
5862
5863Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5864point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5865type. They must have identical types.
5866
5867Semantics:
5868""""""""""
5869
5870The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5871condition code given as ``cond``. If the operands are vectors, then the
5872vectors are compared element by element. Each comparison performed
5873always yields an :ref:`i1 <t_integer>` result, as follows:
5874
5875#. ``false``: always yields ``false``, regardless of operands.
5876#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5877 is equal to ``op2``.
5878#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5879 is greater than ``op2``.
5880#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5881 is greater than or equal to ``op2``.
5882#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5883 is less than ``op2``.
5884#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5885 is less than or equal to ``op2``.
5886#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5887 is not equal to ``op2``.
5888#. ``ord``: yields ``true`` if both operands are not a QNAN.
5889#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5890 equal to ``op2``.
5891#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5892 greater than ``op2``.
5893#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5894 greater than or equal to ``op2``.
5895#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5896 less than ``op2``.
5897#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5898 less than or equal to ``op2``.
5899#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5900 not equal to ``op2``.
5901#. ``uno``: yields ``true`` if either operand is a QNAN.
5902#. ``true``: always yields ``true``, regardless of operands.
5903
5904Example:
5905""""""""
5906
5907.. code-block:: llvm
5908
5909 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5910 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5911 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5912 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5913
5914Note that the code generator does not yet support vector types with the
5915``fcmp`` instruction.
5916
5917.. _i_phi:
5918
5919'``phi``' Instruction
5920^^^^^^^^^^^^^^^^^^^^^
5921
5922Syntax:
5923"""""""
5924
5925::
5926
5927 <result> = phi <ty> [ <val0>, <label0>], ...
5928
5929Overview:
5930"""""""""
5931
5932The '``phi``' instruction is used to implement the φ node in the SSA
5933graph representing the function.
5934
5935Arguments:
5936""""""""""
5937
5938The type of the incoming values is specified with the first type field.
5939After this, the '``phi``' instruction takes a list of pairs as
5940arguments, with one pair for each predecessor basic block of the current
5941block. Only values of :ref:`first class <t_firstclass>` type may be used as
5942the value arguments to the PHI node. Only labels may be used as the
5943label arguments.
5944
5945There must be no non-phi instructions between the start of a basic block
5946and the PHI instructions: i.e. PHI instructions must be first in a basic
5947block.
5948
5949For the purposes of the SSA form, the use of each incoming value is
5950deemed to occur on the edge from the corresponding predecessor block to
5951the current block (but after any definition of an '``invoke``'
5952instruction's return value on the same edge).
5953
5954Semantics:
5955""""""""""
5956
5957At runtime, the '``phi``' instruction logically takes on the value
5958specified by the pair corresponding to the predecessor basic block that
5959executed just prior to the current block.
5960
5961Example:
5962""""""""
5963
5964.. code-block:: llvm
5965
5966 Loop: ; Infinite loop that counts from 0 on up...
5967 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5968 %nextindvar = add i32 %indvar, 1
5969 br label %Loop
5970
5971.. _i_select:
5972
5973'``select``' Instruction
5974^^^^^^^^^^^^^^^^^^^^^^^^
5975
5976Syntax:
5977"""""""
5978
5979::
5980
5981 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5982
5983 selty is either i1 or {<N x i1>}
5984
5985Overview:
5986"""""""""
5987
5988The '``select``' instruction is used to choose one value based on a
5989condition, without branching.
5990
5991Arguments:
5992""""""""""
5993
5994The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5995values indicating the condition, and two values of the same :ref:`first
5996class <t_firstclass>` type. If the val1/val2 are vectors and the
5997condition is a scalar, then entire vectors are selected, not individual
5998elements.
5999
6000Semantics:
6001""""""""""
6002
6003If the condition is an i1 and it evaluates to 1, the instruction returns
6004the first value argument; otherwise, it returns the second value
6005argument.
6006
6007If the condition is a vector of i1, then the value arguments must be
6008vectors of the same size, and the selection is done element by element.
6009
6010Example:
6011""""""""
6012
6013.. code-block:: llvm
6014
6015 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6016
6017.. _i_call:
6018
6019'``call``' Instruction
6020^^^^^^^^^^^^^^^^^^^^^^
6021
6022Syntax:
6023"""""""
6024
6025::
6026
6027 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6028
6029Overview:
6030"""""""""
6031
6032The '``call``' instruction represents a simple function call.
6033
6034Arguments:
6035""""""""""
6036
6037This instruction requires several arguments:
6038
6039#. The optional "tail" marker indicates that the callee function does
6040 not access any allocas or varargs in the caller. Note that calls may
6041 be marked "tail" even if they do not occur before a
6042 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6043 function call is eligible for tail call optimization, but `might not
6044 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6045 The code generator may optimize calls marked "tail" with either 1)
6046 automatic `sibling call
6047 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6048 callee have matching signatures, or 2) forced tail call optimization
6049 when the following extra requirements are met:
6050
6051 - Caller and callee both have the calling convention ``fastcc``.
6052 - The call is in tail position (ret immediately follows call and ret
6053 uses value of call or is void).
6054 - Option ``-tailcallopt`` is enabled, or
6055 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6056 - `Platform specific constraints are
6057 met. <CodeGenerator.html#tailcallopt>`_
6058
6059#. The optional "cconv" marker indicates which :ref:`calling
6060 convention <callingconv>` the call should use. If none is
6061 specified, the call defaults to using C calling conventions. The
6062 calling convention of the call must match the calling convention of
6063 the target function, or else the behavior is undefined.
6064#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6065 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6066 are valid here.
6067#. '``ty``': the type of the call instruction itself which is also the
6068 type of the return value. Functions that return no value are marked
6069 ``void``.
6070#. '``fnty``': shall be the signature of the pointer to function value
6071 being invoked. The argument types must match the types implied by
6072 this signature. This type can be omitted if the function is not
6073 varargs and if the function type does not return a pointer to a
6074 function.
6075#. '``fnptrval``': An LLVM value containing a pointer to a function to
6076 be invoked. In most cases, this is a direct function invocation, but
6077 indirect ``call``'s are just as possible, calling an arbitrary pointer
6078 to function value.
6079#. '``function args``': argument list whose types match the function
6080 signature argument types and parameter attributes. All arguments must
6081 be of :ref:`first class <t_firstclass>` type. If the function signature
6082 indicates the function accepts a variable number of arguments, the
6083 extra arguments can be specified.
6084#. The optional :ref:`function attributes <fnattrs>` list. Only
6085 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6086 attributes are valid here.
6087
6088Semantics:
6089""""""""""
6090
6091The '``call``' instruction is used to cause control flow to transfer to
6092a specified function, with its incoming arguments bound to the specified
6093values. Upon a '``ret``' instruction in the called function, control
6094flow continues with the instruction after the function call, and the
6095return value of the function is bound to the result argument.
6096
6097Example:
6098""""""""
6099
6100.. code-block:: llvm
6101
6102 %retval = call i32 @test(i32 %argc)
6103 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6104 %X = tail call i32 @foo() ; yields i32
6105 %Y = tail call fastcc i32 @foo() ; yields i32
6106 call void %foo(i8 97 signext)
6107
6108 %struct.A = type { i32, i8 }
6109 %r = call %struct.A @foo() ; yields { 32, i8 }
6110 %gr = extractvalue %struct.A %r, 0 ; yields i32
6111 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6112 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6113 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6114
6115llvm treats calls to some functions with names and arguments that match
6116the standard C99 library as being the C99 library functions, and may
6117perform optimizations or generate code for them under that assumption.
6118This is something we'd like to change in the future to provide better
6119support for freestanding environments and non-C-based languages.
6120
6121.. _i_va_arg:
6122
6123'``va_arg``' Instruction
6124^^^^^^^^^^^^^^^^^^^^^^^^
6125
6126Syntax:
6127"""""""
6128
6129::
6130
6131 <resultval> = va_arg <va_list*> <arglist>, <argty>
6132
6133Overview:
6134"""""""""
6135
6136The '``va_arg``' instruction is used to access arguments passed through
6137the "variable argument" area of a function call. It is used to implement
6138the ``va_arg`` macro in C.
6139
6140Arguments:
6141""""""""""
6142
6143This instruction takes a ``va_list*`` value and the type of the
6144argument. It returns a value of the specified argument type and
6145increments the ``va_list`` to point to the next argument. The actual
6146type of ``va_list`` is target specific.
6147
6148Semantics:
6149""""""""""
6150
6151The '``va_arg``' instruction loads an argument of the specified type
6152from the specified ``va_list`` and causes the ``va_list`` to point to
6153the next argument. For more information, see the variable argument
6154handling :ref:`Intrinsic Functions <int_varargs>`.
6155
6156It is legal for this instruction to be called in a function which does
6157not take a variable number of arguments, for example, the ``vfprintf``
6158function.
6159
6160``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6161function <intrinsics>` because it takes a type as an argument.
6162
6163Example:
6164""""""""
6165
6166See the :ref:`variable argument processing <int_varargs>` section.
6167
6168Note that the code generator does not yet fully support va\_arg on many
6169targets. Also, it does not currently support va\_arg with aggregate
6170types on any target.
6171
6172.. _i_landingpad:
6173
6174'``landingpad``' Instruction
6175^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6176
6177Syntax:
6178"""""""
6179
6180::
6181
6182 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6183 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6184
6185 <clause> := catch <type> <value>
6186 <clause> := filter <array constant type> <array constant>
6187
6188Overview:
6189"""""""""
6190
6191The '``landingpad``' instruction is used by `LLVM's exception handling
6192system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006193is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006194code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6195defines values supplied by the personality function (``pers_fn``) upon
6196re-entry to the function. The ``resultval`` has the type ``resultty``.
6197
6198Arguments:
6199""""""""""
6200
6201This instruction takes a ``pers_fn`` value. This is the personality
6202function associated with the unwinding mechanism. The optional
6203``cleanup`` flag indicates that the landing pad block is a cleanup.
6204
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006205A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006206contains the global variable representing the "type" that may be caught
6207or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6208clause takes an array constant as its argument. Use
6209"``[0 x i8**] undef``" for a filter which cannot throw. The
6210'``landingpad``' instruction must contain *at least* one ``clause`` or
6211the ``cleanup`` flag.
6212
6213Semantics:
6214""""""""""
6215
6216The '``landingpad``' instruction defines the values which are set by the
6217personality function (``pers_fn``) upon re-entry to the function, and
6218therefore the "result type" of the ``landingpad`` instruction. As with
6219calling conventions, how the personality function results are
6220represented in LLVM IR is target specific.
6221
6222The clauses are applied in order from top to bottom. If two
6223``landingpad`` instructions are merged together through inlining, the
6224clauses from the calling function are appended to the list of clauses.
6225When the call stack is being unwound due to an exception being thrown,
6226the exception is compared against each ``clause`` in turn. If it doesn't
6227match any of the clauses, and the ``cleanup`` flag is not set, then
6228unwinding continues further up the call stack.
6229
6230The ``landingpad`` instruction has several restrictions:
6231
6232- A landing pad block is a basic block which is the unwind destination
6233 of an '``invoke``' instruction.
6234- A landing pad block must have a '``landingpad``' instruction as its
6235 first non-PHI instruction.
6236- There can be only one '``landingpad``' instruction within the landing
6237 pad block.
6238- A basic block that is not a landing pad block may not include a
6239 '``landingpad``' instruction.
6240- All '``landingpad``' instructions in a function must have the same
6241 personality function.
6242
6243Example:
6244""""""""
6245
6246.. code-block:: llvm
6247
6248 ;; A landing pad which can catch an integer.
6249 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6250 catch i8** @_ZTIi
6251 ;; A landing pad that is a cleanup.
6252 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6253 cleanup
6254 ;; A landing pad which can catch an integer and can only throw a double.
6255 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6256 catch i8** @_ZTIi
6257 filter [1 x i8**] [@_ZTId]
6258
6259.. _intrinsics:
6260
6261Intrinsic Functions
6262===================
6263
6264LLVM supports the notion of an "intrinsic function". These functions
6265have well known names and semantics and are required to follow certain
6266restrictions. Overall, these intrinsics represent an extension mechanism
6267for the LLVM language that does not require changing all of the
6268transformations in LLVM when adding to the language (or the bitcode
6269reader/writer, the parser, etc...).
6270
6271Intrinsic function names must all start with an "``llvm.``" prefix. This
6272prefix is reserved in LLVM for intrinsic names; thus, function names may
6273not begin with this prefix. Intrinsic functions must always be external
6274functions: you cannot define the body of intrinsic functions. Intrinsic
6275functions may only be used in call or invoke instructions: it is illegal
6276to take the address of an intrinsic function. Additionally, because
6277intrinsic functions are part of the LLVM language, it is required if any
6278are added that they be documented here.
6279
6280Some intrinsic functions can be overloaded, i.e., the intrinsic
6281represents a family of functions that perform the same operation but on
6282different data types. Because LLVM can represent over 8 million
6283different integer types, overloading is used commonly to allow an
6284intrinsic function to operate on any integer type. One or more of the
6285argument types or the result type can be overloaded to accept any
6286integer type. Argument types may also be defined as exactly matching a
6287previous argument's type or the result type. This allows an intrinsic
6288function which accepts multiple arguments, but needs all of them to be
6289of the same type, to only be overloaded with respect to a single
6290argument or the result.
6291
6292Overloaded intrinsics will have the names of its overloaded argument
6293types encoded into its function name, each preceded by a period. Only
6294those types which are overloaded result in a name suffix. Arguments
6295whose type is matched against another type do not. For example, the
6296``llvm.ctpop`` function can take an integer of any width and returns an
6297integer of exactly the same integer width. This leads to a family of
6298functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6299``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6300overloaded, and only one type suffix is required. Because the argument's
6301type is matched against the return type, it does not require its own
6302name suffix.
6303
6304To learn how to add an intrinsic function, please see the `Extending
6305LLVM Guide <ExtendingLLVM.html>`_.
6306
6307.. _int_varargs:
6308
6309Variable Argument Handling Intrinsics
6310-------------------------------------
6311
6312Variable argument support is defined in LLVM with the
6313:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6314functions. These functions are related to the similarly named macros
6315defined in the ``<stdarg.h>`` header file.
6316
6317All of these functions operate on arguments that use a target-specific
6318value type "``va_list``". The LLVM assembly language reference manual
6319does not define what this type is, so all transformations should be
6320prepared to handle these functions regardless of the type used.
6321
6322This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6323variable argument handling intrinsic functions are used.
6324
6325.. code-block:: llvm
6326
6327 define i32 @test(i32 %X, ...) {
6328 ; Initialize variable argument processing
6329 %ap = alloca i8*
6330 %ap2 = bitcast i8** %ap to i8*
6331 call void @llvm.va_start(i8* %ap2)
6332
6333 ; Read a single integer argument
6334 %tmp = va_arg i8** %ap, i32
6335
6336 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6337 %aq = alloca i8*
6338 %aq2 = bitcast i8** %aq to i8*
6339 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6340 call void @llvm.va_end(i8* %aq2)
6341
6342 ; Stop processing of arguments.
6343 call void @llvm.va_end(i8* %ap2)
6344 ret i32 %tmp
6345 }
6346
6347 declare void @llvm.va_start(i8*)
6348 declare void @llvm.va_copy(i8*, i8*)
6349 declare void @llvm.va_end(i8*)
6350
6351.. _int_va_start:
6352
6353'``llvm.va_start``' Intrinsic
6354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6355
6356Syntax:
6357"""""""
6358
6359::
6360
Nick Lewycky04f6de02013-09-11 22:04:52 +00006361 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006362
6363Overview:
6364"""""""""
6365
6366The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6367subsequent use by ``va_arg``.
6368
6369Arguments:
6370""""""""""
6371
6372The argument is a pointer to a ``va_list`` element to initialize.
6373
6374Semantics:
6375""""""""""
6376
6377The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6378available in C. In a target-dependent way, it initializes the
6379``va_list`` element to which the argument points, so that the next call
6380to ``va_arg`` will produce the first variable argument passed to the
6381function. Unlike the C ``va_start`` macro, this intrinsic does not need
6382to know the last argument of the function as the compiler can figure
6383that out.
6384
6385'``llvm.va_end``' Intrinsic
6386^^^^^^^^^^^^^^^^^^^^^^^^^^^
6387
6388Syntax:
6389"""""""
6390
6391::
6392
6393 declare void @llvm.va_end(i8* <arglist>)
6394
6395Overview:
6396"""""""""
6397
6398The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6399initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6400
6401Arguments:
6402""""""""""
6403
6404The argument is a pointer to a ``va_list`` to destroy.
6405
6406Semantics:
6407""""""""""
6408
6409The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6410available in C. In a target-dependent way, it destroys the ``va_list``
6411element to which the argument points. Calls to
6412:ref:`llvm.va_start <int_va_start>` and
6413:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6414``llvm.va_end``.
6415
6416.. _int_va_copy:
6417
6418'``llvm.va_copy``' Intrinsic
6419^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6420
6421Syntax:
6422"""""""
6423
6424::
6425
6426 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6427
6428Overview:
6429"""""""""
6430
6431The '``llvm.va_copy``' intrinsic copies the current argument position
6432from the source argument list to the destination argument list.
6433
6434Arguments:
6435""""""""""
6436
6437The first argument is a pointer to a ``va_list`` element to initialize.
6438The second argument is a pointer to a ``va_list`` element to copy from.
6439
6440Semantics:
6441""""""""""
6442
6443The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6444available in C. In a target-dependent way, it copies the source
6445``va_list`` element into the destination ``va_list`` element. This
6446intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6447arbitrarily complex and require, for example, memory allocation.
6448
6449Accurate Garbage Collection Intrinsics
6450--------------------------------------
6451
6452LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6453(GC) requires the implementation and generation of these intrinsics.
6454These intrinsics allow identification of :ref:`GC roots on the
6455stack <int_gcroot>`, as well as garbage collector implementations that
6456require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6457Front-ends for type-safe garbage collected languages should generate
6458these intrinsics to make use of the LLVM garbage collectors. For more
6459details, see `Accurate Garbage Collection with
6460LLVM <GarbageCollection.html>`_.
6461
6462The garbage collection intrinsics only operate on objects in the generic
6463address space (address space zero).
6464
6465.. _int_gcroot:
6466
6467'``llvm.gcroot``' Intrinsic
6468^^^^^^^^^^^^^^^^^^^^^^^^^^^
6469
6470Syntax:
6471"""""""
6472
6473::
6474
6475 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6476
6477Overview:
6478"""""""""
6479
6480The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6481the code generator, and allows some metadata to be associated with it.
6482
6483Arguments:
6484""""""""""
6485
6486The first argument specifies the address of a stack object that contains
6487the root pointer. The second pointer (which must be either a constant or
6488a global value address) contains the meta-data to be associated with the
6489root.
6490
6491Semantics:
6492""""""""""
6493
6494At runtime, a call to this intrinsic stores a null pointer into the
6495"ptrloc" location. At compile-time, the code generator generates
6496information to allow the runtime to find the pointer at GC safe points.
6497The '``llvm.gcroot``' intrinsic may only be used in a function which
6498:ref:`specifies a GC algorithm <gc>`.
6499
6500.. _int_gcread:
6501
6502'``llvm.gcread``' Intrinsic
6503^^^^^^^^^^^^^^^^^^^^^^^^^^^
6504
6505Syntax:
6506"""""""
6507
6508::
6509
6510 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6511
6512Overview:
6513"""""""""
6514
6515The '``llvm.gcread``' intrinsic identifies reads of references from heap
6516locations, allowing garbage collector implementations that require read
6517barriers.
6518
6519Arguments:
6520""""""""""
6521
6522The second argument is the address to read from, which should be an
6523address allocated from the garbage collector. The first object is a
6524pointer to the start of the referenced object, if needed by the language
6525runtime (otherwise null).
6526
6527Semantics:
6528""""""""""
6529
6530The '``llvm.gcread``' intrinsic has the same semantics as a load
6531instruction, but may be replaced with substantially more complex code by
6532the garbage collector runtime, as needed. The '``llvm.gcread``'
6533intrinsic may only be used in a function which :ref:`specifies a GC
6534algorithm <gc>`.
6535
6536.. _int_gcwrite:
6537
6538'``llvm.gcwrite``' Intrinsic
6539^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6540
6541Syntax:
6542"""""""
6543
6544::
6545
6546 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6547
6548Overview:
6549"""""""""
6550
6551The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6552locations, allowing garbage collector implementations that require write
6553barriers (such as generational or reference counting collectors).
6554
6555Arguments:
6556""""""""""
6557
6558The first argument is the reference to store, the second is the start of
6559the object to store it to, and the third is the address of the field of
6560Obj to store to. If the runtime does not require a pointer to the
6561object, Obj may be null.
6562
6563Semantics:
6564""""""""""
6565
6566The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6567instruction, but may be replaced with substantially more complex code by
6568the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6569intrinsic may only be used in a function which :ref:`specifies a GC
6570algorithm <gc>`.
6571
6572Code Generator Intrinsics
6573-------------------------
6574
6575These intrinsics are provided by LLVM to expose special features that
6576may only be implemented with code generator support.
6577
6578'``llvm.returnaddress``' Intrinsic
6579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6580
6581Syntax:
6582"""""""
6583
6584::
6585
6586 declare i8 *@llvm.returnaddress(i32 <level>)
6587
6588Overview:
6589"""""""""
6590
6591The '``llvm.returnaddress``' intrinsic attempts to compute a
6592target-specific value indicating the return address of the current
6593function or one of its callers.
6594
6595Arguments:
6596""""""""""
6597
6598The argument to this intrinsic indicates which function to return the
6599address for. Zero indicates the calling function, one indicates its
6600caller, etc. The argument is **required** to be a constant integer
6601value.
6602
6603Semantics:
6604""""""""""
6605
6606The '``llvm.returnaddress``' intrinsic either returns a pointer
6607indicating the return address of the specified call frame, or zero if it
6608cannot be identified. The value returned by this intrinsic is likely to
6609be incorrect or 0 for arguments other than zero, so it should only be
6610used for debugging purposes.
6611
6612Note that calling this intrinsic does not prevent function inlining or
6613other aggressive transformations, so the value returned may not be that
6614of the obvious source-language caller.
6615
6616'``llvm.frameaddress``' Intrinsic
6617^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6618
6619Syntax:
6620"""""""
6621
6622::
6623
6624 declare i8* @llvm.frameaddress(i32 <level>)
6625
6626Overview:
6627"""""""""
6628
6629The '``llvm.frameaddress``' intrinsic attempts to return the
6630target-specific frame pointer value for the specified stack frame.
6631
6632Arguments:
6633""""""""""
6634
6635The argument to this intrinsic indicates which function to return the
6636frame pointer for. Zero indicates the calling function, one indicates
6637its caller, etc. The argument is **required** to be a constant integer
6638value.
6639
6640Semantics:
6641""""""""""
6642
6643The '``llvm.frameaddress``' intrinsic either returns a pointer
6644indicating the frame address of the specified call frame, or zero if it
6645cannot be identified. The value returned by this intrinsic is likely to
6646be incorrect or 0 for arguments other than zero, so it should only be
6647used for debugging purposes.
6648
6649Note that calling this intrinsic does not prevent function inlining or
6650other aggressive transformations, so the value returned may not be that
6651of the obvious source-language caller.
6652
6653.. _int_stacksave:
6654
6655'``llvm.stacksave``' Intrinsic
6656^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6657
6658Syntax:
6659"""""""
6660
6661::
6662
6663 declare i8* @llvm.stacksave()
6664
6665Overview:
6666"""""""""
6667
6668The '``llvm.stacksave``' intrinsic is used to remember the current state
6669of the function stack, for use with
6670:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6671implementing language features like scoped automatic variable sized
6672arrays in C99.
6673
6674Semantics:
6675""""""""""
6676
6677This intrinsic returns a opaque pointer value that can be passed to
6678:ref:`llvm.stackrestore <int_stackrestore>`. When an
6679``llvm.stackrestore`` intrinsic is executed with a value saved from
6680``llvm.stacksave``, it effectively restores the state of the stack to
6681the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6682practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6683were allocated after the ``llvm.stacksave`` was executed.
6684
6685.. _int_stackrestore:
6686
6687'``llvm.stackrestore``' Intrinsic
6688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6689
6690Syntax:
6691"""""""
6692
6693::
6694
6695 declare void @llvm.stackrestore(i8* %ptr)
6696
6697Overview:
6698"""""""""
6699
6700The '``llvm.stackrestore``' intrinsic is used to restore the state of
6701the function stack to the state it was in when the corresponding
6702:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6703useful for implementing language features like scoped automatic variable
6704sized arrays in C99.
6705
6706Semantics:
6707""""""""""
6708
6709See the description for :ref:`llvm.stacksave <int_stacksave>`.
6710
6711'``llvm.prefetch``' Intrinsic
6712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6713
6714Syntax:
6715"""""""
6716
6717::
6718
6719 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6720
6721Overview:
6722"""""""""
6723
6724The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6725insert a prefetch instruction if supported; otherwise, it is a noop.
6726Prefetches have no effect on the behavior of the program but can change
6727its performance characteristics.
6728
6729Arguments:
6730""""""""""
6731
6732``address`` is the address to be prefetched, ``rw`` is the specifier
6733determining if the fetch should be for a read (0) or write (1), and
6734``locality`` is a temporal locality specifier ranging from (0) - no
6735locality, to (3) - extremely local keep in cache. The ``cache type``
6736specifies whether the prefetch is performed on the data (1) or
6737instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6738arguments must be constant integers.
6739
6740Semantics:
6741""""""""""
6742
6743This intrinsic does not modify the behavior of the program. In
6744particular, prefetches cannot trap and do not produce a value. On
6745targets that support this intrinsic, the prefetch can provide hints to
6746the processor cache for better performance.
6747
6748'``llvm.pcmarker``' Intrinsic
6749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6750
6751Syntax:
6752"""""""
6753
6754::
6755
6756 declare void @llvm.pcmarker(i32 <id>)
6757
6758Overview:
6759"""""""""
6760
6761The '``llvm.pcmarker``' intrinsic is a method to export a Program
6762Counter (PC) in a region of code to simulators and other tools. The
6763method is target specific, but it is expected that the marker will use
6764exported symbols to transmit the PC of the marker. The marker makes no
6765guarantees that it will remain with any specific instruction after
6766optimizations. It is possible that the presence of a marker will inhibit
6767optimizations. The intended use is to be inserted after optimizations to
6768allow correlations of simulation runs.
6769
6770Arguments:
6771""""""""""
6772
6773``id`` is a numerical id identifying the marker.
6774
6775Semantics:
6776""""""""""
6777
6778This intrinsic does not modify the behavior of the program. Backends
6779that do not support this intrinsic may ignore it.
6780
6781'``llvm.readcyclecounter``' Intrinsic
6782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6783
6784Syntax:
6785"""""""
6786
6787::
6788
6789 declare i64 @llvm.readcyclecounter()
6790
6791Overview:
6792"""""""""
6793
6794The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6795counter register (or similar low latency, high accuracy clocks) on those
6796targets that support it. On X86, it should map to RDTSC. On Alpha, it
6797should map to RPCC. As the backing counters overflow quickly (on the
6798order of 9 seconds on alpha), this should only be used for small
6799timings.
6800
6801Semantics:
6802""""""""""
6803
6804When directly supported, reading the cycle counter should not modify any
6805memory. Implementations are allowed to either return a application
6806specific value or a system wide value. On backends without support, this
6807is lowered to a constant 0.
6808
Tim Northoverbc933082013-05-23 19:11:20 +00006809Note that runtime support may be conditional on the privilege-level code is
6810running at and the host platform.
6811
Sean Silvab084af42012-12-07 10:36:55 +00006812Standard C Library Intrinsics
6813-----------------------------
6814
6815LLVM provides intrinsics for a few important standard C library
6816functions. These intrinsics allow source-language front-ends to pass
6817information about the alignment of the pointer arguments to the code
6818generator, providing opportunity for more efficient code generation.
6819
6820.. _int_memcpy:
6821
6822'``llvm.memcpy``' Intrinsic
6823^^^^^^^^^^^^^^^^^^^^^^^^^^^
6824
6825Syntax:
6826"""""""
6827
6828This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6829integer bit width and for different address spaces. Not all targets
6830support all bit widths however.
6831
6832::
6833
6834 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6835 i32 <len>, i32 <align>, i1 <isvolatile>)
6836 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6837 i64 <len>, i32 <align>, i1 <isvolatile>)
6838
6839Overview:
6840"""""""""
6841
6842The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6843source location to the destination location.
6844
6845Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6846intrinsics do not return a value, takes extra alignment/isvolatile
6847arguments and the pointers can be in specified address spaces.
6848
6849Arguments:
6850""""""""""
6851
6852The first argument is a pointer to the destination, the second is a
6853pointer to the source. The third argument is an integer argument
6854specifying the number of bytes to copy, the fourth argument is the
6855alignment of the source and destination locations, and the fifth is a
6856boolean indicating a volatile access.
6857
6858If the call to this intrinsic has an alignment value that is not 0 or 1,
6859then the caller guarantees that both the source and destination pointers
6860are aligned to that boundary.
6861
6862If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6863a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6864very cleanly specified and it is unwise to depend on it.
6865
6866Semantics:
6867""""""""""
6868
6869The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6870source location to the destination location, which are not allowed to
6871overlap. It copies "len" bytes of memory over. If the argument is known
6872to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006873argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006874
6875'``llvm.memmove``' Intrinsic
6876^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6877
6878Syntax:
6879"""""""
6880
6881This is an overloaded intrinsic. You can use llvm.memmove on any integer
6882bit width and for different address space. Not all targets support all
6883bit widths however.
6884
6885::
6886
6887 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6888 i32 <len>, i32 <align>, i1 <isvolatile>)
6889 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6890 i64 <len>, i32 <align>, i1 <isvolatile>)
6891
6892Overview:
6893"""""""""
6894
6895The '``llvm.memmove.*``' intrinsics move a block of memory from the
6896source location to the destination location. It is similar to the
6897'``llvm.memcpy``' intrinsic but allows the two memory locations to
6898overlap.
6899
6900Note that, unlike the standard libc function, the ``llvm.memmove.*``
6901intrinsics do not return a value, takes extra alignment/isvolatile
6902arguments and the pointers can be in specified address spaces.
6903
6904Arguments:
6905""""""""""
6906
6907The first argument is a pointer to the destination, the second is a
6908pointer to the source. The third argument is an integer argument
6909specifying the number of bytes to copy, the fourth argument is the
6910alignment of the source and destination locations, and the fifth is a
6911boolean indicating a volatile access.
6912
6913If the call to this intrinsic has an alignment value that is not 0 or 1,
6914then the caller guarantees that the source and destination pointers are
6915aligned to that boundary.
6916
6917If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6918is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6919not very cleanly specified and it is unwise to depend on it.
6920
6921Semantics:
6922""""""""""
6923
6924The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6925source location to the destination location, which may overlap. It
6926copies "len" bytes of memory over. If the argument is known to be
6927aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00006928otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006929
6930'``llvm.memset.*``' Intrinsics
6931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6932
6933Syntax:
6934"""""""
6935
6936This is an overloaded intrinsic. You can use llvm.memset on any integer
6937bit width and for different address spaces. However, not all targets
6938support all bit widths.
6939
6940::
6941
6942 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6943 i32 <len>, i32 <align>, i1 <isvolatile>)
6944 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6945 i64 <len>, i32 <align>, i1 <isvolatile>)
6946
6947Overview:
6948"""""""""
6949
6950The '``llvm.memset.*``' intrinsics fill a block of memory with a
6951particular byte value.
6952
6953Note that, unlike the standard libc function, the ``llvm.memset``
6954intrinsic does not return a value and takes extra alignment/volatile
6955arguments. Also, the destination can be in an arbitrary address space.
6956
6957Arguments:
6958""""""""""
6959
6960The first argument is a pointer to the destination to fill, the second
6961is the byte value with which to fill it, the third argument is an
6962integer argument specifying the number of bytes to fill, and the fourth
6963argument is the known alignment of the destination location.
6964
6965If the call to this intrinsic has an alignment value that is not 0 or 1,
6966then the caller guarantees that the destination pointer is aligned to
6967that boundary.
6968
6969If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6970a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6971very cleanly specified and it is unwise to depend on it.
6972
6973Semantics:
6974""""""""""
6975
6976The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6977at the destination location. If the argument is known to be aligned to
6978some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00006979it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006980
6981'``llvm.sqrt.*``' Intrinsic
6982^^^^^^^^^^^^^^^^^^^^^^^^^^^
6983
6984Syntax:
6985"""""""
6986
6987This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6988floating point or vector of floating point type. Not all targets support
6989all types however.
6990
6991::
6992
6993 declare float @llvm.sqrt.f32(float %Val)
6994 declare double @llvm.sqrt.f64(double %Val)
6995 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6996 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6997 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6998
6999Overview:
7000"""""""""
7001
7002The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7003returning the same value as the libm '``sqrt``' functions would. Unlike
7004``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7005negative numbers other than -0.0 (which allows for better optimization,
7006because there is no need to worry about errno being set).
7007``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7008
7009Arguments:
7010""""""""""
7011
7012The argument and return value are floating point numbers of the same
7013type.
7014
7015Semantics:
7016""""""""""
7017
7018This function returns the sqrt of the specified operand if it is a
7019nonnegative floating point number.
7020
7021'``llvm.powi.*``' Intrinsic
7022^^^^^^^^^^^^^^^^^^^^^^^^^^^
7023
7024Syntax:
7025"""""""
7026
7027This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7028floating point or vector of floating point type. Not all targets support
7029all types however.
7030
7031::
7032
7033 declare float @llvm.powi.f32(float %Val, i32 %power)
7034 declare double @llvm.powi.f64(double %Val, i32 %power)
7035 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7036 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7037 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7038
7039Overview:
7040"""""""""
7041
7042The '``llvm.powi.*``' intrinsics return the first operand raised to the
7043specified (positive or negative) power. The order of evaluation of
7044multiplications is not defined. When a vector of floating point type is
7045used, the second argument remains a scalar integer value.
7046
7047Arguments:
7048""""""""""
7049
7050The second argument is an integer power, and the first is a value to
7051raise to that power.
7052
7053Semantics:
7054""""""""""
7055
7056This function returns the first value raised to the second power with an
7057unspecified sequence of rounding operations.
7058
7059'``llvm.sin.*``' Intrinsic
7060^^^^^^^^^^^^^^^^^^^^^^^^^^
7061
7062Syntax:
7063"""""""
7064
7065This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7066floating point or vector of floating point type. Not all targets support
7067all types however.
7068
7069::
7070
7071 declare float @llvm.sin.f32(float %Val)
7072 declare double @llvm.sin.f64(double %Val)
7073 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7074 declare fp128 @llvm.sin.f128(fp128 %Val)
7075 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7076
7077Overview:
7078"""""""""
7079
7080The '``llvm.sin.*``' intrinsics return the sine of the operand.
7081
7082Arguments:
7083""""""""""
7084
7085The argument and return value are floating point numbers of the same
7086type.
7087
7088Semantics:
7089""""""""""
7090
7091This function returns the sine of the specified operand, returning the
7092same values as the libm ``sin`` functions would, and handles error
7093conditions in the same way.
7094
7095'``llvm.cos.*``' Intrinsic
7096^^^^^^^^^^^^^^^^^^^^^^^^^^
7097
7098Syntax:
7099"""""""
7100
7101This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7102floating point or vector of floating point type. Not all targets support
7103all types however.
7104
7105::
7106
7107 declare float @llvm.cos.f32(float %Val)
7108 declare double @llvm.cos.f64(double %Val)
7109 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7110 declare fp128 @llvm.cos.f128(fp128 %Val)
7111 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7112
7113Overview:
7114"""""""""
7115
7116The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7117
7118Arguments:
7119""""""""""
7120
7121The argument and return value are floating point numbers of the same
7122type.
7123
7124Semantics:
7125""""""""""
7126
7127This function returns the cosine of the specified operand, returning the
7128same values as the libm ``cos`` functions would, and handles error
7129conditions in the same way.
7130
7131'``llvm.pow.*``' Intrinsic
7132^^^^^^^^^^^^^^^^^^^^^^^^^^
7133
7134Syntax:
7135"""""""
7136
7137This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7138floating point or vector of floating point type. Not all targets support
7139all types however.
7140
7141::
7142
7143 declare float @llvm.pow.f32(float %Val, float %Power)
7144 declare double @llvm.pow.f64(double %Val, double %Power)
7145 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7146 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7147 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7148
7149Overview:
7150"""""""""
7151
7152The '``llvm.pow.*``' intrinsics return the first operand raised to the
7153specified (positive or negative) power.
7154
7155Arguments:
7156""""""""""
7157
7158The second argument is a floating point power, and the first is a value
7159to raise to that power.
7160
7161Semantics:
7162""""""""""
7163
7164This function returns the first value raised to the second power,
7165returning the same values as the libm ``pow`` functions would, and
7166handles error conditions in the same way.
7167
7168'``llvm.exp.*``' Intrinsic
7169^^^^^^^^^^^^^^^^^^^^^^^^^^
7170
7171Syntax:
7172"""""""
7173
7174This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7175floating point or vector of floating point type. Not all targets support
7176all types however.
7177
7178::
7179
7180 declare float @llvm.exp.f32(float %Val)
7181 declare double @llvm.exp.f64(double %Val)
7182 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7183 declare fp128 @llvm.exp.f128(fp128 %Val)
7184 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7185
7186Overview:
7187"""""""""
7188
7189The '``llvm.exp.*``' intrinsics perform the exp function.
7190
7191Arguments:
7192""""""""""
7193
7194The argument and return value are floating point numbers of the same
7195type.
7196
7197Semantics:
7198""""""""""
7199
7200This function returns the same values as the libm ``exp`` functions
7201would, and handles error conditions in the same way.
7202
7203'``llvm.exp2.*``' Intrinsic
7204^^^^^^^^^^^^^^^^^^^^^^^^^^^
7205
7206Syntax:
7207"""""""
7208
7209This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7210floating point or vector of floating point type. Not all targets support
7211all types however.
7212
7213::
7214
7215 declare float @llvm.exp2.f32(float %Val)
7216 declare double @llvm.exp2.f64(double %Val)
7217 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7218 declare fp128 @llvm.exp2.f128(fp128 %Val)
7219 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7220
7221Overview:
7222"""""""""
7223
7224The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7225
7226Arguments:
7227""""""""""
7228
7229The argument and return value are floating point numbers of the same
7230type.
7231
7232Semantics:
7233""""""""""
7234
7235This function returns the same values as the libm ``exp2`` functions
7236would, and handles error conditions in the same way.
7237
7238'``llvm.log.*``' Intrinsic
7239^^^^^^^^^^^^^^^^^^^^^^^^^^
7240
7241Syntax:
7242"""""""
7243
7244This is an overloaded intrinsic. You can use ``llvm.log`` on any
7245floating point or vector of floating point type. Not all targets support
7246all types however.
7247
7248::
7249
7250 declare float @llvm.log.f32(float %Val)
7251 declare double @llvm.log.f64(double %Val)
7252 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7253 declare fp128 @llvm.log.f128(fp128 %Val)
7254 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7255
7256Overview:
7257"""""""""
7258
7259The '``llvm.log.*``' intrinsics perform the log function.
7260
7261Arguments:
7262""""""""""
7263
7264The argument and return value are floating point numbers of the same
7265type.
7266
7267Semantics:
7268""""""""""
7269
7270This function returns the same values as the libm ``log`` functions
7271would, and handles error conditions in the same way.
7272
7273'``llvm.log10.*``' Intrinsic
7274^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7275
7276Syntax:
7277"""""""
7278
7279This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7280floating point or vector of floating point type. Not all targets support
7281all types however.
7282
7283::
7284
7285 declare float @llvm.log10.f32(float %Val)
7286 declare double @llvm.log10.f64(double %Val)
7287 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7288 declare fp128 @llvm.log10.f128(fp128 %Val)
7289 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7290
7291Overview:
7292"""""""""
7293
7294The '``llvm.log10.*``' intrinsics perform the log10 function.
7295
7296Arguments:
7297""""""""""
7298
7299The argument and return value are floating point numbers of the same
7300type.
7301
7302Semantics:
7303""""""""""
7304
7305This function returns the same values as the libm ``log10`` functions
7306would, and handles error conditions in the same way.
7307
7308'``llvm.log2.*``' Intrinsic
7309^^^^^^^^^^^^^^^^^^^^^^^^^^^
7310
7311Syntax:
7312"""""""
7313
7314This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7315floating point or vector of floating point type. Not all targets support
7316all types however.
7317
7318::
7319
7320 declare float @llvm.log2.f32(float %Val)
7321 declare double @llvm.log2.f64(double %Val)
7322 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7323 declare fp128 @llvm.log2.f128(fp128 %Val)
7324 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7325
7326Overview:
7327"""""""""
7328
7329The '``llvm.log2.*``' intrinsics perform the log2 function.
7330
7331Arguments:
7332""""""""""
7333
7334The argument and return value are floating point numbers of the same
7335type.
7336
7337Semantics:
7338""""""""""
7339
7340This function returns the same values as the libm ``log2`` functions
7341would, and handles error conditions in the same way.
7342
7343'``llvm.fma.*``' Intrinsic
7344^^^^^^^^^^^^^^^^^^^^^^^^^^
7345
7346Syntax:
7347"""""""
7348
7349This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7350floating point or vector of floating point type. Not all targets support
7351all types however.
7352
7353::
7354
7355 declare float @llvm.fma.f32(float %a, float %b, float %c)
7356 declare double @llvm.fma.f64(double %a, double %b, double %c)
7357 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7358 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7359 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7360
7361Overview:
7362"""""""""
7363
7364The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7365operation.
7366
7367Arguments:
7368""""""""""
7369
7370The argument and return value are floating point numbers of the same
7371type.
7372
7373Semantics:
7374""""""""""
7375
7376This function returns the same values as the libm ``fma`` functions
7377would.
7378
7379'``llvm.fabs.*``' Intrinsic
7380^^^^^^^^^^^^^^^^^^^^^^^^^^^
7381
7382Syntax:
7383"""""""
7384
7385This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7386floating point or vector of floating point type. Not all targets support
7387all types however.
7388
7389::
7390
7391 declare float @llvm.fabs.f32(float %Val)
7392 declare double @llvm.fabs.f64(double %Val)
7393 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7394 declare fp128 @llvm.fabs.f128(fp128 %Val)
7395 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7396
7397Overview:
7398"""""""""
7399
7400The '``llvm.fabs.*``' intrinsics return the absolute value of the
7401operand.
7402
7403Arguments:
7404""""""""""
7405
7406The argument and return value are floating point numbers of the same
7407type.
7408
7409Semantics:
7410""""""""""
7411
7412This function returns the same values as the libm ``fabs`` functions
7413would, and handles error conditions in the same way.
7414
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007415'``llvm.copysign.*``' Intrinsic
7416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7417
7418Syntax:
7419"""""""
7420
7421This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7422floating point or vector of floating point type. Not all targets support
7423all types however.
7424
7425::
7426
7427 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7428 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7429 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7430 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7431 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7432
7433Overview:
7434"""""""""
7435
7436The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7437first operand and the sign of the second operand.
7438
7439Arguments:
7440""""""""""
7441
7442The arguments and return value are floating point numbers of the same
7443type.
7444
7445Semantics:
7446""""""""""
7447
7448This function returns the same values as the libm ``copysign``
7449functions would, and handles error conditions in the same way.
7450
Sean Silvab084af42012-12-07 10:36:55 +00007451'``llvm.floor.*``' Intrinsic
7452^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7453
7454Syntax:
7455"""""""
7456
7457This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7458floating point or vector of floating point type. Not all targets support
7459all types however.
7460
7461::
7462
7463 declare float @llvm.floor.f32(float %Val)
7464 declare double @llvm.floor.f64(double %Val)
7465 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7466 declare fp128 @llvm.floor.f128(fp128 %Val)
7467 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7468
7469Overview:
7470"""""""""
7471
7472The '``llvm.floor.*``' intrinsics return the floor of the operand.
7473
7474Arguments:
7475""""""""""
7476
7477The argument and return value are floating point numbers of the same
7478type.
7479
7480Semantics:
7481""""""""""
7482
7483This function returns the same values as the libm ``floor`` functions
7484would, and handles error conditions in the same way.
7485
7486'``llvm.ceil.*``' Intrinsic
7487^^^^^^^^^^^^^^^^^^^^^^^^^^^
7488
7489Syntax:
7490"""""""
7491
7492This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7493floating point or vector of floating point type. Not all targets support
7494all types however.
7495
7496::
7497
7498 declare float @llvm.ceil.f32(float %Val)
7499 declare double @llvm.ceil.f64(double %Val)
7500 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7501 declare fp128 @llvm.ceil.f128(fp128 %Val)
7502 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7503
7504Overview:
7505"""""""""
7506
7507The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7508
7509Arguments:
7510""""""""""
7511
7512The argument and return value are floating point numbers of the same
7513type.
7514
7515Semantics:
7516""""""""""
7517
7518This function returns the same values as the libm ``ceil`` functions
7519would, and handles error conditions in the same way.
7520
7521'``llvm.trunc.*``' Intrinsic
7522^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7523
7524Syntax:
7525"""""""
7526
7527This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7528floating point or vector of floating point type. Not all targets support
7529all types however.
7530
7531::
7532
7533 declare float @llvm.trunc.f32(float %Val)
7534 declare double @llvm.trunc.f64(double %Val)
7535 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7536 declare fp128 @llvm.trunc.f128(fp128 %Val)
7537 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7538
7539Overview:
7540"""""""""
7541
7542The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7543nearest integer not larger in magnitude than the operand.
7544
7545Arguments:
7546""""""""""
7547
7548The argument and return value are floating point numbers of the same
7549type.
7550
7551Semantics:
7552""""""""""
7553
7554This function returns the same values as the libm ``trunc`` functions
7555would, and handles error conditions in the same way.
7556
7557'``llvm.rint.*``' Intrinsic
7558^^^^^^^^^^^^^^^^^^^^^^^^^^^
7559
7560Syntax:
7561"""""""
7562
7563This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7564floating point or vector of floating point type. Not all targets support
7565all types however.
7566
7567::
7568
7569 declare float @llvm.rint.f32(float %Val)
7570 declare double @llvm.rint.f64(double %Val)
7571 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7572 declare fp128 @llvm.rint.f128(fp128 %Val)
7573 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7574
7575Overview:
7576"""""""""
7577
7578The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7579nearest integer. It may raise an inexact floating-point exception if the
7580operand isn't an integer.
7581
7582Arguments:
7583""""""""""
7584
7585The argument and return value are floating point numbers of the same
7586type.
7587
7588Semantics:
7589""""""""""
7590
7591This function returns the same values as the libm ``rint`` functions
7592would, and handles error conditions in the same way.
7593
7594'``llvm.nearbyint.*``' Intrinsic
7595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7596
7597Syntax:
7598"""""""
7599
7600This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7601floating point or vector of floating point type. Not all targets support
7602all types however.
7603
7604::
7605
7606 declare float @llvm.nearbyint.f32(float %Val)
7607 declare double @llvm.nearbyint.f64(double %Val)
7608 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7609 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7610 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7611
7612Overview:
7613"""""""""
7614
7615The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7616nearest integer.
7617
7618Arguments:
7619""""""""""
7620
7621The argument and return value are floating point numbers of the same
7622type.
7623
7624Semantics:
7625""""""""""
7626
7627This function returns the same values as the libm ``nearbyint``
7628functions would, and handles error conditions in the same way.
7629
Hal Finkel171817e2013-08-07 22:49:12 +00007630'``llvm.round.*``' Intrinsic
7631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7632
7633Syntax:
7634"""""""
7635
7636This is an overloaded intrinsic. You can use ``llvm.round`` on any
7637floating point or vector of floating point type. Not all targets support
7638all types however.
7639
7640::
7641
7642 declare float @llvm.round.f32(float %Val)
7643 declare double @llvm.round.f64(double %Val)
7644 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7645 declare fp128 @llvm.round.f128(fp128 %Val)
7646 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7647
7648Overview:
7649"""""""""
7650
7651The '``llvm.round.*``' intrinsics returns the operand rounded to the
7652nearest integer.
7653
7654Arguments:
7655""""""""""
7656
7657The argument and return value are floating point numbers of the same
7658type.
7659
7660Semantics:
7661""""""""""
7662
7663This function returns the same values as the libm ``round``
7664functions would, and handles error conditions in the same way.
7665
Sean Silvab084af42012-12-07 10:36:55 +00007666Bit Manipulation Intrinsics
7667---------------------------
7668
7669LLVM provides intrinsics for a few important bit manipulation
7670operations. These allow efficient code generation for some algorithms.
7671
7672'``llvm.bswap.*``' Intrinsics
7673^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7674
7675Syntax:
7676"""""""
7677
7678This is an overloaded intrinsic function. You can use bswap on any
7679integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7680
7681::
7682
7683 declare i16 @llvm.bswap.i16(i16 <id>)
7684 declare i32 @llvm.bswap.i32(i32 <id>)
7685 declare i64 @llvm.bswap.i64(i64 <id>)
7686
7687Overview:
7688"""""""""
7689
7690The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7691values with an even number of bytes (positive multiple of 16 bits).
7692These are useful for performing operations on data that is not in the
7693target's native byte order.
7694
7695Semantics:
7696""""""""""
7697
7698The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7699and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7700intrinsic returns an i32 value that has the four bytes of the input i32
7701swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7702returned i32 will have its bytes in 3, 2, 1, 0 order. The
7703``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7704concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7705respectively).
7706
7707'``llvm.ctpop.*``' Intrinsic
7708^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7709
7710Syntax:
7711"""""""
7712
7713This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7714bit width, or on any vector with integer elements. Not all targets
7715support all bit widths or vector types, however.
7716
7717::
7718
7719 declare i8 @llvm.ctpop.i8(i8 <src>)
7720 declare i16 @llvm.ctpop.i16(i16 <src>)
7721 declare i32 @llvm.ctpop.i32(i32 <src>)
7722 declare i64 @llvm.ctpop.i64(i64 <src>)
7723 declare i256 @llvm.ctpop.i256(i256 <src>)
7724 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7725
7726Overview:
7727"""""""""
7728
7729The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7730in a value.
7731
7732Arguments:
7733""""""""""
7734
7735The only argument is the value to be counted. The argument may be of any
7736integer type, or a vector with integer elements. The return type must
7737match the argument type.
7738
7739Semantics:
7740""""""""""
7741
7742The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7743each element of a vector.
7744
7745'``llvm.ctlz.*``' Intrinsic
7746^^^^^^^^^^^^^^^^^^^^^^^^^^^
7747
7748Syntax:
7749"""""""
7750
7751This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7752integer bit width, or any vector whose elements are integers. Not all
7753targets support all bit widths or vector types, however.
7754
7755::
7756
7757 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7758 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7759 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7760 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7761 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7762 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7763
7764Overview:
7765"""""""""
7766
7767The '``llvm.ctlz``' family of intrinsic functions counts the number of
7768leading zeros in a variable.
7769
7770Arguments:
7771""""""""""
7772
7773The first argument is the value to be counted. This argument may be of
7774any integer type, or a vectory with integer element type. The return
7775type must match the first argument type.
7776
7777The second argument must be a constant and is a flag to indicate whether
7778the intrinsic should ensure that a zero as the first argument produces a
7779defined result. Historically some architectures did not provide a
7780defined result for zero values as efficiently, and many algorithms are
7781now predicated on avoiding zero-value inputs.
7782
7783Semantics:
7784""""""""""
7785
7786The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7787zeros in a variable, or within each element of the vector. If
7788``src == 0`` then the result is the size in bits of the type of ``src``
7789if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7790``llvm.ctlz(i32 2) = 30``.
7791
7792'``llvm.cttz.*``' Intrinsic
7793^^^^^^^^^^^^^^^^^^^^^^^^^^^
7794
7795Syntax:
7796"""""""
7797
7798This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7799integer bit width, or any vector of integer elements. Not all targets
7800support all bit widths or vector types, however.
7801
7802::
7803
7804 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7805 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7806 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7807 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7808 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7809 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7810
7811Overview:
7812"""""""""
7813
7814The '``llvm.cttz``' family of intrinsic functions counts the number of
7815trailing zeros.
7816
7817Arguments:
7818""""""""""
7819
7820The first argument is the value to be counted. This argument may be of
7821any integer type, or a vectory with integer element type. The return
7822type must match the first argument type.
7823
7824The second argument must be a constant and is a flag to indicate whether
7825the intrinsic should ensure that a zero as the first argument produces a
7826defined result. Historically some architectures did not provide a
7827defined result for zero values as efficiently, and many algorithms are
7828now predicated on avoiding zero-value inputs.
7829
7830Semantics:
7831""""""""""
7832
7833The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7834zeros in a variable, or within each element of a vector. If ``src == 0``
7835then the result is the size in bits of the type of ``src`` if
7836``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7837``llvm.cttz(2) = 1``.
7838
7839Arithmetic with Overflow Intrinsics
7840-----------------------------------
7841
7842LLVM provides intrinsics for some arithmetic with overflow operations.
7843
7844'``llvm.sadd.with.overflow.*``' Intrinsics
7845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7846
7847Syntax:
7848"""""""
7849
7850This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7851on any integer bit width.
7852
7853::
7854
7855 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7856 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7857 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7858
7859Overview:
7860"""""""""
7861
7862The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7863a signed addition of the two arguments, and indicate whether an overflow
7864occurred during the signed summation.
7865
7866Arguments:
7867""""""""""
7868
7869The arguments (%a and %b) and the first element of the result structure
7870may be of integer types of any bit width, but they must have the same
7871bit width. The second element of the result structure must be of type
7872``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7873addition.
7874
7875Semantics:
7876""""""""""
7877
7878The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007879a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007880first element of which is the signed summation, and the second element
7881of which is a bit specifying if the signed summation resulted in an
7882overflow.
7883
7884Examples:
7885"""""""""
7886
7887.. code-block:: llvm
7888
7889 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7890 %sum = extractvalue {i32, i1} %res, 0
7891 %obit = extractvalue {i32, i1} %res, 1
7892 br i1 %obit, label %overflow, label %normal
7893
7894'``llvm.uadd.with.overflow.*``' Intrinsics
7895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7896
7897Syntax:
7898"""""""
7899
7900This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7901on any integer bit width.
7902
7903::
7904
7905 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7906 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7907 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7908
7909Overview:
7910"""""""""
7911
7912The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7913an unsigned addition of the two arguments, and indicate whether a carry
7914occurred during the unsigned summation.
7915
7916Arguments:
7917""""""""""
7918
7919The arguments (%a and %b) and the first element of the result structure
7920may be of integer types of any bit width, but they must have the same
7921bit width. The second element of the result structure must be of type
7922``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7923addition.
7924
7925Semantics:
7926""""""""""
7927
7928The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007929an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007930first element of which is the sum, and the second element of which is a
7931bit specifying if the unsigned summation resulted in a carry.
7932
7933Examples:
7934"""""""""
7935
7936.. code-block:: llvm
7937
7938 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7939 %sum = extractvalue {i32, i1} %res, 0
7940 %obit = extractvalue {i32, i1} %res, 1
7941 br i1 %obit, label %carry, label %normal
7942
7943'``llvm.ssub.with.overflow.*``' Intrinsics
7944^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7945
7946Syntax:
7947"""""""
7948
7949This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7950on any integer bit width.
7951
7952::
7953
7954 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7955 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7956 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7957
7958Overview:
7959"""""""""
7960
7961The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7962a signed subtraction of the two arguments, and indicate whether an
7963overflow occurred during the signed subtraction.
7964
7965Arguments:
7966""""""""""
7967
7968The arguments (%a and %b) and the first element of the result structure
7969may be of integer types of any bit width, but they must have the same
7970bit width. The second element of the result structure must be of type
7971``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7972subtraction.
7973
7974Semantics:
7975""""""""""
7976
7977The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007978a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007979first element of which is the subtraction, and the second element of
7980which is a bit specifying if the signed subtraction resulted in an
7981overflow.
7982
7983Examples:
7984"""""""""
7985
7986.. code-block:: llvm
7987
7988 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7989 %sum = extractvalue {i32, i1} %res, 0
7990 %obit = extractvalue {i32, i1} %res, 1
7991 br i1 %obit, label %overflow, label %normal
7992
7993'``llvm.usub.with.overflow.*``' Intrinsics
7994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7995
7996Syntax:
7997"""""""
7998
7999This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8000on any integer bit width.
8001
8002::
8003
8004 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8005 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8006 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8007
8008Overview:
8009"""""""""
8010
8011The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8012an unsigned subtraction of the two arguments, and indicate whether an
8013overflow occurred during the unsigned subtraction.
8014
8015Arguments:
8016""""""""""
8017
8018The arguments (%a and %b) and the first element of the result structure
8019may be of integer types of any bit width, but they must have the same
8020bit width. The second element of the result structure must be of type
8021``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8022subtraction.
8023
8024Semantics:
8025""""""""""
8026
8027The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008028an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008029the first element of which is the subtraction, and the second element of
8030which is a bit specifying if the unsigned subtraction resulted in an
8031overflow.
8032
8033Examples:
8034"""""""""
8035
8036.. code-block:: llvm
8037
8038 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8039 %sum = extractvalue {i32, i1} %res, 0
8040 %obit = extractvalue {i32, i1} %res, 1
8041 br i1 %obit, label %overflow, label %normal
8042
8043'``llvm.smul.with.overflow.*``' Intrinsics
8044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8045
8046Syntax:
8047"""""""
8048
8049This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8050on any integer bit width.
8051
8052::
8053
8054 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8055 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8056 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8057
8058Overview:
8059"""""""""
8060
8061The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8062a signed multiplication of the two arguments, and indicate whether an
8063overflow occurred during the signed multiplication.
8064
8065Arguments:
8066""""""""""
8067
8068The arguments (%a and %b) and the first element of the result structure
8069may be of integer types of any bit width, but they must have the same
8070bit width. The second element of the result structure must be of type
8071``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8072multiplication.
8073
8074Semantics:
8075""""""""""
8076
8077The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008078a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008079the first element of which is the multiplication, and the second element
8080of which is a bit specifying if the signed multiplication resulted in an
8081overflow.
8082
8083Examples:
8084"""""""""
8085
8086.. code-block:: llvm
8087
8088 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8089 %sum = extractvalue {i32, i1} %res, 0
8090 %obit = extractvalue {i32, i1} %res, 1
8091 br i1 %obit, label %overflow, label %normal
8092
8093'``llvm.umul.with.overflow.*``' Intrinsics
8094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8095
8096Syntax:
8097"""""""
8098
8099This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8100on any integer bit width.
8101
8102::
8103
8104 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8105 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8106 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8107
8108Overview:
8109"""""""""
8110
8111The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8112a unsigned multiplication of the two arguments, and indicate whether an
8113overflow occurred during the unsigned multiplication.
8114
8115Arguments:
8116""""""""""
8117
8118The arguments (%a and %b) and the first element of the result structure
8119may be of integer types of any bit width, but they must have the same
8120bit width. The second element of the result structure must be of type
8121``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8122multiplication.
8123
8124Semantics:
8125""""""""""
8126
8127The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008128an unsigned multiplication of the two arguments. They return a structure ---
8129the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008130element of which is a bit specifying if the unsigned multiplication
8131resulted in an overflow.
8132
8133Examples:
8134"""""""""
8135
8136.. code-block:: llvm
8137
8138 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8139 %sum = extractvalue {i32, i1} %res, 0
8140 %obit = extractvalue {i32, i1} %res, 1
8141 br i1 %obit, label %overflow, label %normal
8142
8143Specialised Arithmetic Intrinsics
8144---------------------------------
8145
8146'``llvm.fmuladd.*``' Intrinsic
8147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8148
8149Syntax:
8150"""""""
8151
8152::
8153
8154 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8155 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8156
8157Overview:
8158"""""""""
8159
8160The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008161expressions that can be fused if the code generator determines that (a) the
8162target instruction set has support for a fused operation, and (b) that the
8163fused operation is more efficient than the equivalent, separate pair of mul
8164and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008165
8166Arguments:
8167""""""""""
8168
8169The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8170multiplicands, a and b, and an addend c.
8171
8172Semantics:
8173""""""""""
8174
8175The expression:
8176
8177::
8178
8179 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8180
8181is equivalent to the expression a \* b + c, except that rounding will
8182not be performed between the multiplication and addition steps if the
8183code generator fuses the operations. Fusion is not guaranteed, even if
8184the target platform supports it. If a fused multiply-add is required the
8185corresponding llvm.fma.\* intrinsic function should be used instead.
8186
8187Examples:
8188"""""""""
8189
8190.. code-block:: llvm
8191
8192 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8193
8194Half Precision Floating Point Intrinsics
8195----------------------------------------
8196
8197For most target platforms, half precision floating point is a
8198storage-only format. This means that it is a dense encoding (in memory)
8199but does not support computation in the format.
8200
8201This means that code must first load the half-precision floating point
8202value as an i16, then convert it to float with
8203:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8204then be performed on the float value (including extending to double
8205etc). To store the value back to memory, it is first converted to float
8206if needed, then converted to i16 with
8207:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8208i16 value.
8209
8210.. _int_convert_to_fp16:
8211
8212'``llvm.convert.to.fp16``' Intrinsic
8213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8214
8215Syntax:
8216"""""""
8217
8218::
8219
8220 declare i16 @llvm.convert.to.fp16(f32 %a)
8221
8222Overview:
8223"""""""""
8224
8225The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8226from single precision floating point format to half precision floating
8227point format.
8228
8229Arguments:
8230""""""""""
8231
8232The intrinsic function contains single argument - the value to be
8233converted.
8234
8235Semantics:
8236""""""""""
8237
8238The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8239from single precision floating point format to half precision floating
8240point format. The return value is an ``i16`` which contains the
8241converted number.
8242
8243Examples:
8244"""""""""
8245
8246.. code-block:: llvm
8247
8248 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8249 store i16 %res, i16* @x, align 2
8250
8251.. _int_convert_from_fp16:
8252
8253'``llvm.convert.from.fp16``' Intrinsic
8254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8255
8256Syntax:
8257"""""""
8258
8259::
8260
8261 declare f32 @llvm.convert.from.fp16(i16 %a)
8262
8263Overview:
8264"""""""""
8265
8266The '``llvm.convert.from.fp16``' intrinsic function performs a
8267conversion from half precision floating point format to single precision
8268floating point format.
8269
8270Arguments:
8271""""""""""
8272
8273The intrinsic function contains single argument - the value to be
8274converted.
8275
8276Semantics:
8277""""""""""
8278
8279The '``llvm.convert.from.fp16``' intrinsic function performs a
8280conversion from half single precision floating point format to single
8281precision floating point format. The input half-float value is
8282represented by an ``i16`` value.
8283
8284Examples:
8285"""""""""
8286
8287.. code-block:: llvm
8288
8289 %a = load i16* @x, align 2
8290 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8291
8292Debugger Intrinsics
8293-------------------
8294
8295The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8296prefix), are described in the `LLVM Source Level
8297Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8298document.
8299
8300Exception Handling Intrinsics
8301-----------------------------
8302
8303The LLVM exception handling intrinsics (which all start with
8304``llvm.eh.`` prefix), are described in the `LLVM Exception
8305Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8306
8307.. _int_trampoline:
8308
8309Trampoline Intrinsics
8310---------------------
8311
8312These intrinsics make it possible to excise one parameter, marked with
8313the :ref:`nest <nest>` attribute, from a function. The result is a
8314callable function pointer lacking the nest parameter - the caller does
8315not need to provide a value for it. Instead, the value to use is stored
8316in advance in a "trampoline", a block of memory usually allocated on the
8317stack, which also contains code to splice the nest value into the
8318argument list. This is used to implement the GCC nested function address
8319extension.
8320
8321For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8322then the resulting function pointer has signature ``i32 (i32, i32)*``.
8323It can be created as follows:
8324
8325.. code-block:: llvm
8326
8327 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8328 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8329 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8330 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8331 %fp = bitcast i8* %p to i32 (i32, i32)*
8332
8333The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8334``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8335
8336.. _int_it:
8337
8338'``llvm.init.trampoline``' Intrinsic
8339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8340
8341Syntax:
8342"""""""
8343
8344::
8345
8346 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8347
8348Overview:
8349"""""""""
8350
8351This fills the memory pointed to by ``tramp`` with executable code,
8352turning it into a trampoline.
8353
8354Arguments:
8355""""""""""
8356
8357The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8358pointers. The ``tramp`` argument must point to a sufficiently large and
8359sufficiently aligned block of memory; this memory is written to by the
8360intrinsic. Note that the size and the alignment are target-specific -
8361LLVM currently provides no portable way of determining them, so a
8362front-end that generates this intrinsic needs to have some
8363target-specific knowledge. The ``func`` argument must hold a function
8364bitcast to an ``i8*``.
8365
8366Semantics:
8367""""""""""
8368
8369The block of memory pointed to by ``tramp`` is filled with target
8370dependent code, turning it into a function. Then ``tramp`` needs to be
8371passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8372be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8373function's signature is the same as that of ``func`` with any arguments
8374marked with the ``nest`` attribute removed. At most one such ``nest``
8375argument is allowed, and it must be of pointer type. Calling the new
8376function is equivalent to calling ``func`` with the same argument list,
8377but with ``nval`` used for the missing ``nest`` argument. If, after
8378calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8379modified, then the effect of any later call to the returned function
8380pointer is undefined.
8381
8382.. _int_at:
8383
8384'``llvm.adjust.trampoline``' Intrinsic
8385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8386
8387Syntax:
8388"""""""
8389
8390::
8391
8392 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8393
8394Overview:
8395"""""""""
8396
8397This performs any required machine-specific adjustment to the address of
8398a trampoline (passed as ``tramp``).
8399
8400Arguments:
8401""""""""""
8402
8403``tramp`` must point to a block of memory which already has trampoline
8404code filled in by a previous call to
8405:ref:`llvm.init.trampoline <int_it>`.
8406
8407Semantics:
8408""""""""""
8409
8410On some architectures the address of the code to be executed needs to be
8411different to the address where the trampoline is actually stored. This
8412intrinsic returns the executable address corresponding to ``tramp``
8413after performing the required machine specific adjustments. The pointer
8414returned can then be :ref:`bitcast and executed <int_trampoline>`.
8415
8416Memory Use Markers
8417------------------
8418
8419This class of intrinsics exists to information about the lifetime of
8420memory objects and ranges where variables are immutable.
8421
8422'``llvm.lifetime.start``' Intrinsic
8423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8424
8425Syntax:
8426"""""""
8427
8428::
8429
8430 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8431
8432Overview:
8433"""""""""
8434
8435The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8436object's lifetime.
8437
8438Arguments:
8439""""""""""
8440
8441The first argument is a constant integer representing the size of the
8442object, or -1 if it is variable sized. The second argument is a pointer
8443to the object.
8444
8445Semantics:
8446""""""""""
8447
8448This intrinsic indicates that before this point in the code, the value
8449of the memory pointed to by ``ptr`` is dead. This means that it is known
8450to never be used and has an undefined value. A load from the pointer
8451that precedes this intrinsic can be replaced with ``'undef'``.
8452
8453'``llvm.lifetime.end``' Intrinsic
8454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8455
8456Syntax:
8457"""""""
8458
8459::
8460
8461 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8462
8463Overview:
8464"""""""""
8465
8466The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8467object's lifetime.
8468
8469Arguments:
8470""""""""""
8471
8472The first argument is a constant integer representing the size of the
8473object, or -1 if it is variable sized. The second argument is a pointer
8474to the object.
8475
8476Semantics:
8477""""""""""
8478
8479This intrinsic indicates that after this point in the code, the value of
8480the memory pointed to by ``ptr`` is dead. This means that it is known to
8481never be used and has an undefined value. Any stores into the memory
8482object following this intrinsic may be removed as dead.
8483
8484'``llvm.invariant.start``' Intrinsic
8485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8486
8487Syntax:
8488"""""""
8489
8490::
8491
8492 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8493
8494Overview:
8495"""""""""
8496
8497The '``llvm.invariant.start``' intrinsic specifies that the contents of
8498a memory object will not change.
8499
8500Arguments:
8501""""""""""
8502
8503The first argument is a constant integer representing the size of the
8504object, or -1 if it is variable sized. The second argument is a pointer
8505to the object.
8506
8507Semantics:
8508""""""""""
8509
8510This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8511the return value, the referenced memory location is constant and
8512unchanging.
8513
8514'``llvm.invariant.end``' Intrinsic
8515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8516
8517Syntax:
8518"""""""
8519
8520::
8521
8522 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8523
8524Overview:
8525"""""""""
8526
8527The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8528memory object are mutable.
8529
8530Arguments:
8531""""""""""
8532
8533The first argument is the matching ``llvm.invariant.start`` intrinsic.
8534The second argument is a constant integer representing the size of the
8535object, or -1 if it is variable sized and the third argument is a
8536pointer to the object.
8537
8538Semantics:
8539""""""""""
8540
8541This intrinsic indicates that the memory is mutable again.
8542
8543General Intrinsics
8544------------------
8545
8546This class of intrinsics is designed to be generic and has no specific
8547purpose.
8548
8549'``llvm.var.annotation``' Intrinsic
8550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8551
8552Syntax:
8553"""""""
8554
8555::
8556
8557 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8558
8559Overview:
8560"""""""""
8561
8562The '``llvm.var.annotation``' intrinsic.
8563
8564Arguments:
8565""""""""""
8566
8567The first argument is a pointer to a value, the second is a pointer to a
8568global string, the third is a pointer to a global string which is the
8569source file name, and the last argument is the line number.
8570
8571Semantics:
8572""""""""""
8573
8574This intrinsic allows annotation of local variables with arbitrary
8575strings. This can be useful for special purpose optimizations that want
8576to look for these annotations. These have no other defined use; they are
8577ignored by code generation and optimization.
8578
Michael Gottesman88d18832013-03-26 00:34:27 +00008579'``llvm.ptr.annotation.*``' Intrinsic
8580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8581
8582Syntax:
8583"""""""
8584
8585This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8586pointer to an integer of any width. *NOTE* you must specify an address space for
8587the pointer. The identifier for the default address space is the integer
8588'``0``'.
8589
8590::
8591
8592 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8593 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8594 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8595 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8596 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8597
8598Overview:
8599"""""""""
8600
8601The '``llvm.ptr.annotation``' intrinsic.
8602
8603Arguments:
8604""""""""""
8605
8606The first argument is a pointer to an integer value of arbitrary bitwidth
8607(result of some expression), the second is a pointer to a global string, the
8608third is a pointer to a global string which is the source file name, and the
8609last argument is the line number. It returns the value of the first argument.
8610
8611Semantics:
8612""""""""""
8613
8614This intrinsic allows annotation of a pointer to an integer with arbitrary
8615strings. This can be useful for special purpose optimizations that want to look
8616for these annotations. These have no other defined use; they are ignored by code
8617generation and optimization.
8618
Sean Silvab084af42012-12-07 10:36:55 +00008619'``llvm.annotation.*``' Intrinsic
8620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8621
8622Syntax:
8623"""""""
8624
8625This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8626any integer bit width.
8627
8628::
8629
8630 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8631 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8632 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8633 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8634 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8635
8636Overview:
8637"""""""""
8638
8639The '``llvm.annotation``' intrinsic.
8640
8641Arguments:
8642""""""""""
8643
8644The first argument is an integer value (result of some expression), the
8645second is a pointer to a global string, the third is a pointer to a
8646global string which is the source file name, and the last argument is
8647the line number. It returns the value of the first argument.
8648
8649Semantics:
8650""""""""""
8651
8652This intrinsic allows annotations to be put on arbitrary expressions
8653with arbitrary strings. This can be useful for special purpose
8654optimizations that want to look for these annotations. These have no
8655other defined use; they are ignored by code generation and optimization.
8656
8657'``llvm.trap``' Intrinsic
8658^^^^^^^^^^^^^^^^^^^^^^^^^
8659
8660Syntax:
8661"""""""
8662
8663::
8664
8665 declare void @llvm.trap() noreturn nounwind
8666
8667Overview:
8668"""""""""
8669
8670The '``llvm.trap``' intrinsic.
8671
8672Arguments:
8673""""""""""
8674
8675None.
8676
8677Semantics:
8678""""""""""
8679
8680This intrinsic is lowered to the target dependent trap instruction. If
8681the target does not have a trap instruction, this intrinsic will be
8682lowered to a call of the ``abort()`` function.
8683
8684'``llvm.debugtrap``' Intrinsic
8685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8686
8687Syntax:
8688"""""""
8689
8690::
8691
8692 declare void @llvm.debugtrap() nounwind
8693
8694Overview:
8695"""""""""
8696
8697The '``llvm.debugtrap``' intrinsic.
8698
8699Arguments:
8700""""""""""
8701
8702None.
8703
8704Semantics:
8705""""""""""
8706
8707This intrinsic is lowered to code which is intended to cause an
8708execution trap with the intention of requesting the attention of a
8709debugger.
8710
8711'``llvm.stackprotector``' Intrinsic
8712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8713
8714Syntax:
8715"""""""
8716
8717::
8718
8719 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8720
8721Overview:
8722"""""""""
8723
8724The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8725onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8726is placed on the stack before local variables.
8727
8728Arguments:
8729""""""""""
8730
8731The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8732The first argument is the value loaded from the stack guard
8733``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8734enough space to hold the value of the guard.
8735
8736Semantics:
8737""""""""""
8738
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008739This intrinsic causes the prologue/epilogue inserter to force the position of
8740the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8741to ensure that if a local variable on the stack is overwritten, it will destroy
8742the value of the guard. When the function exits, the guard on the stack is
8743checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8744different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8745calling the ``__stack_chk_fail()`` function.
8746
8747'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008749
8750Syntax:
8751"""""""
8752
8753::
8754
8755 declare void @llvm.stackprotectorcheck(i8** <guard>)
8756
8757Overview:
8758"""""""""
8759
8760The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008761created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008762``__stack_chk_fail()`` function.
8763
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008764Arguments:
8765""""""""""
8766
8767The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8768the variable ``@__stack_chk_guard``.
8769
8770Semantics:
8771""""""""""
8772
8773This intrinsic is provided to perform the stack protector check by comparing
8774``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8775values do not match call the ``__stack_chk_fail()`` function.
8776
8777The reason to provide this as an IR level intrinsic instead of implementing it
8778via other IR operations is that in order to perform this operation at the IR
8779level without an intrinsic, one would need to create additional basic blocks to
8780handle the success/failure cases. This makes it difficult to stop the stack
8781protector check from disrupting sibling tail calls in Codegen. With this
8782intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008783codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008784
Sean Silvab084af42012-12-07 10:36:55 +00008785'``llvm.objectsize``' Intrinsic
8786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8787
8788Syntax:
8789"""""""
8790
8791::
8792
8793 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8794 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8795
8796Overview:
8797"""""""""
8798
8799The ``llvm.objectsize`` intrinsic is designed to provide information to
8800the optimizers to determine at compile time whether a) an operation
8801(like memcpy) will overflow a buffer that corresponds to an object, or
8802b) that a runtime check for overflow isn't necessary. An object in this
8803context means an allocation of a specific class, structure, array, or
8804other object.
8805
8806Arguments:
8807""""""""""
8808
8809The ``llvm.objectsize`` intrinsic takes two arguments. The first
8810argument is a pointer to or into the ``object``. The second argument is
8811a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8812or -1 (if false) when the object size is unknown. The second argument
8813only accepts constants.
8814
8815Semantics:
8816""""""""""
8817
8818The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8819the size of the object concerned. If the size cannot be determined at
8820compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8821on the ``min`` argument).
8822
8823'``llvm.expect``' Intrinsic
8824^^^^^^^^^^^^^^^^^^^^^^^^^^^
8825
8826Syntax:
8827"""""""
8828
8829::
8830
8831 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8832 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8833
8834Overview:
8835"""""""""
8836
8837The ``llvm.expect`` intrinsic provides information about expected (the
8838most probable) value of ``val``, which can be used by optimizers.
8839
8840Arguments:
8841""""""""""
8842
8843The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8844a value. The second argument is an expected value, this needs to be a
8845constant value, variables are not allowed.
8846
8847Semantics:
8848""""""""""
8849
8850This intrinsic is lowered to the ``val``.
8851
8852'``llvm.donothing``' Intrinsic
8853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8854
8855Syntax:
8856"""""""
8857
8858::
8859
8860 declare void @llvm.donothing() nounwind readnone
8861
8862Overview:
8863"""""""""
8864
8865The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8866only intrinsic that can be called with an invoke instruction.
8867
8868Arguments:
8869""""""""""
8870
8871None.
8872
8873Semantics:
8874""""""""""
8875
8876This intrinsic does nothing, and it's removed by optimizers and ignored
8877by codegen.