blob: 7a201bc3baa659a7aa648509add19f6cbaba73f0 [file] [log] [blame]
Eugene Zelenko32a40562017-09-11 23:00:48 +00001//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
Brendon Cahoon254f8892016-07-29 16:44:44 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11//
12// Software pipelining (SWP) is an instruction scheduling technique for loops
Roorda, Jan-Willem20a0e552018-03-06 16:26:01 +000013// that overlap loop iterations and exploits ILP via a compiler transformation.
Brendon Cahoon254f8892016-07-29 16:44:44 +000014//
15// Swing Modulo Scheduling is an implementation of software pipelining
16// that generates schedules that are near optimal in terms of initiation
17// interval, register requirements, and stage count. See the papers:
18//
19// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
21// Conference on Parallel Architectures and Compilation Techiniques.
22//
23// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25// Transactions on Computers, Vol. 50, No. 3, 2001.
26//
27// "An Implementation of Swing Modulo Scheduling With Extensions for
28// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29// Urbana-Chambpain, 2005.
30//
31//
32// The SMS algorithm consists of three main steps after computing the minimal
33// initiation interval (MII).
34// 1) Analyze the dependence graph and compute information about each
35// instruction in the graph.
36// 2) Order the nodes (instructions) by priority based upon the heuristics
37// described in the algorithm.
38// 3) Attempt to schedule the nodes in the specified order using the MII.
39//
40// This SMS implementation is a target-independent back-end pass. When enabled,
41// the pass runs just prior to the register allocation pass, while the machine
42// IR is in SSA form. If software pipelining is successful, then the original
43// loop is replaced by the optimized loop. The optimized loop contains one or
44// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45// the instructions cannot be scheduled in a given MII, we increase the MII by
46// one and try again.
47//
48// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49// represent loop carried dependences in the DAG as order edges to the Phi
50// nodes. We also perform several passes over the DAG to eliminate unnecessary
51// edges that inhibit the ability to pipeline. The implementation uses the
52// DFAPacketizer class to compute the minimum initiation interval and the check
53// where an instruction may be inserted in the pipelined schedule.
54//
55// In order for the SMS pass to work, several target specific hooks need to be
56// implemented to get information about the loop structure and to rewrite
57// instructions.
58//
59//===----------------------------------------------------------------------===//
60
Eugene Zelenkocdc71612016-08-11 17:20:18 +000061#include "llvm/ADT/ArrayRef.h"
62#include "llvm/ADT/BitVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000063#include "llvm/ADT/DenseMap.h"
64#include "llvm/ADT/MapVector.h"
65#include "llvm/ADT/PriorityQueue.h"
66#include "llvm/ADT/SetVector.h"
67#include "llvm/ADT/SmallPtrSet.h"
68#include "llvm/ADT/SmallSet.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000069#include "llvm/ADT/SmallVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000070#include "llvm/ADT/Statistic.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000071#include "llvm/ADT/iterator_range.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000072#include "llvm/Analysis/AliasAnalysis.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000073#include "llvm/Analysis/MemoryLocation.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000074#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/CodeGen/DFAPacketizer.h"
Matthias Braunf8422972017-12-13 02:51:04 +000076#include "llvm/CodeGen/LiveIntervals.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000077#include "llvm/CodeGen/MachineBasicBlock.h"
78#include "llvm/CodeGen/MachineDominators.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000079#include "llvm/CodeGen/MachineFunction.h"
80#include "llvm/CodeGen/MachineFunctionPass.h"
81#include "llvm/CodeGen/MachineInstr.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000082#include "llvm/CodeGen/MachineInstrBuilder.h"
83#include "llvm/CodeGen/MachineLoopInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000084#include "llvm/CodeGen/MachineMemOperand.h"
85#include "llvm/CodeGen/MachineOperand.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000086#include "llvm/CodeGen/MachineRegisterInfo.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000087#include "llvm/CodeGen/RegisterClassInfo.h"
88#include "llvm/CodeGen/RegisterPressure.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000089#include "llvm/CodeGen/ScheduleDAG.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000090#include "llvm/CodeGen/ScheduleDAGInstrs.h"
Krzysztof Parzyszek88391242016-12-22 19:21:20 +000091#include "llvm/CodeGen/ScheduleDAGMutation.h"
David Blaikie3f833ed2017-11-08 01:01:31 +000092#include "llvm/CodeGen/TargetInstrInfo.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000093#include "llvm/CodeGen/TargetOpcodes.h"
94#include "llvm/CodeGen/TargetRegisterInfo.h"
95#include "llvm/CodeGen/TargetSubtargetInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000096#include "llvm/IR/Attributes.h"
97#include "llvm/IR/DebugLoc.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +000098#include "llvm/IR/Function.h"
99#include "llvm/MC/LaneBitmask.h"
100#include "llvm/MC/MCInstrDesc.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000101#include "llvm/MC/MCInstrItineraries.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000102#include "llvm/MC/MCRegisterInfo.h"
103#include "llvm/Pass.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000104#include "llvm/Support/CommandLine.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000105#include "llvm/Support/Compiler.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000106#include "llvm/Support/Debug.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000107#include "llvm/Support/MathExtras.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000108#include "llvm/Support/raw_ostream.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000109#include <algorithm>
110#include <cassert>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000111#include <climits>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000112#include <cstdint>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000113#include <deque>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000114#include <functional>
115#include <iterator>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000116#include <map>
Eugene Zelenko32a40562017-09-11 23:00:48 +0000117#include <memory>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000118#include <tuple>
119#include <utility>
120#include <vector>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000121
122using namespace llvm;
123
124#define DEBUG_TYPE "pipeliner"
125
126STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
127STATISTIC(NumPipelined, "Number of loops software pipelined");
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000128STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
Brendon Cahoon254f8892016-07-29 16:44:44 +0000129
130/// A command line option to turn software pipelining on or off.
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000131static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
132 cl::ZeroOrMore,
133 cl::desc("Enable Software Pipelining"));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000134
135/// A command line option to enable SWP at -Os.
136static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
137 cl::desc("Enable SWP at Os."), cl::Hidden,
138 cl::init(false));
139
140/// A command line argument to limit minimum initial interval for pipelining.
141static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000142 cl::desc("Size limit for the MII."),
Brendon Cahoon254f8892016-07-29 16:44:44 +0000143 cl::Hidden, cl::init(27));
144
145/// A command line argument to limit the number of stages in the pipeline.
146static cl::opt<int>
147 SwpMaxStages("pipeliner-max-stages",
148 cl::desc("Maximum stages allowed in the generated scheduled."),
149 cl::Hidden, cl::init(3));
150
151/// A command line option to disable the pruning of chain dependences due to
152/// an unrelated Phi.
153static cl::opt<bool>
154 SwpPruneDeps("pipeliner-prune-deps",
155 cl::desc("Prune dependences between unrelated Phi nodes."),
156 cl::Hidden, cl::init(true));
157
158/// A command line option to disable the pruning of loop carried order
159/// dependences.
160static cl::opt<bool>
161 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
162 cl::desc("Prune loop carried order dependences."),
163 cl::Hidden, cl::init(true));
164
165#ifndef NDEBUG
166static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
167#endif
168
169static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
170 cl::ReallyHidden, cl::init(false),
171 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
172
173namespace {
174
175class NodeSet;
176class SMSchedule;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000177
178/// The main class in the implementation of the target independent
179/// software pipeliner pass.
180class MachinePipeliner : public MachineFunctionPass {
181public:
182 MachineFunction *MF = nullptr;
183 const MachineLoopInfo *MLI = nullptr;
184 const MachineDominatorTree *MDT = nullptr;
185 const InstrItineraryData *InstrItins;
186 const TargetInstrInfo *TII = nullptr;
187 RegisterClassInfo RegClassInfo;
188
189#ifndef NDEBUG
190 static int NumTries;
191#endif
Eugene Zelenko32a40562017-09-11 23:00:48 +0000192
Brendon Cahoon254f8892016-07-29 16:44:44 +0000193 /// Cache the target analysis information about the loop.
194 struct LoopInfo {
195 MachineBasicBlock *TBB = nullptr;
196 MachineBasicBlock *FBB = nullptr;
197 SmallVector<MachineOperand, 4> BrCond;
198 MachineInstr *LoopInductionVar = nullptr;
199 MachineInstr *LoopCompare = nullptr;
200 };
201 LoopInfo LI;
202
203 static char ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000204
Brendon Cahoon254f8892016-07-29 16:44:44 +0000205 MachinePipeliner() : MachineFunctionPass(ID) {
206 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
207 }
208
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000209 bool runOnMachineFunction(MachineFunction &MF) override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000210
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000211 void getAnalysisUsage(AnalysisUsage &AU) const override {
Brendon Cahoon254f8892016-07-29 16:44:44 +0000212 AU.addRequired<AAResultsWrapperPass>();
213 AU.addPreserved<AAResultsWrapperPass>();
214 AU.addRequired<MachineLoopInfo>();
215 AU.addRequired<MachineDominatorTree>();
216 AU.addRequired<LiveIntervals>();
217 MachineFunctionPass::getAnalysisUsage(AU);
218 }
219
220private:
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000221 void preprocessPhiNodes(MachineBasicBlock &B);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000222 bool canPipelineLoop(MachineLoop &L);
223 bool scheduleLoop(MachineLoop &L);
224 bool swingModuloScheduler(MachineLoop &L);
225};
226
227/// This class builds the dependence graph for the instructions in a loop,
228/// and attempts to schedule the instructions using the SMS algorithm.
229class SwingSchedulerDAG : public ScheduleDAGInstrs {
230 MachinePipeliner &Pass;
231 /// The minimum initiation interval between iterations for this schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000232 unsigned MII = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000233 /// Set to true if a valid pipelined schedule is found for the loop.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000234 bool Scheduled = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000235 MachineLoop &Loop;
236 LiveIntervals &LIS;
237 const RegisterClassInfo &RegClassInfo;
238
239 /// A toplogical ordering of the SUnits, which is needed for changing
240 /// dependences and iterating over the SUnits.
241 ScheduleDAGTopologicalSort Topo;
242
243 struct NodeInfo {
Eugene Zelenko32a40562017-09-11 23:00:48 +0000244 int ASAP = 0;
245 int ALAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000246 int ZeroLatencyDepth = 0;
247 int ZeroLatencyHeight = 0;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000248
249 NodeInfo() = default;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000250 };
251 /// Computed properties for each node in the graph.
252 std::vector<NodeInfo> ScheduleInfo;
253
254 enum OrderKind { BottomUp = 0, TopDown = 1 };
255 /// Computed node ordering for scheduling.
256 SetVector<SUnit *> NodeOrder;
257
Eugene Zelenko32a40562017-09-11 23:00:48 +0000258 using NodeSetType = SmallVector<NodeSet, 8>;
259 using ValueMapTy = DenseMap<unsigned, unsigned>;
260 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
261 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000262
263 /// Instructions to change when emitting the final schedule.
264 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
265
266 /// We may create a new instruction, so remember it because it
267 /// must be deleted when the pass is finished.
268 SmallPtrSet<MachineInstr *, 4> NewMIs;
269
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000270 /// Ordered list of DAG postprocessing steps.
271 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
272
Brendon Cahoon254f8892016-07-29 16:44:44 +0000273 /// Helper class to implement Johnson's circuit finding algorithm.
274 class Circuits {
275 std::vector<SUnit> &SUnits;
276 SetVector<SUnit *> Stack;
277 BitVector Blocked;
278 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
279 SmallVector<SmallVector<int, 4>, 16> AdjK;
280 unsigned NumPaths;
281 static unsigned MaxPaths;
282
283 public:
284 Circuits(std::vector<SUnit> &SUs)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000285 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {}
286
Brendon Cahoon254f8892016-07-29 16:44:44 +0000287 /// Reset the data structures used in the circuit algorithm.
288 void reset() {
289 Stack.clear();
290 Blocked.reset();
291 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
292 NumPaths = 0;
293 }
Eugene Zelenko32a40562017-09-11 23:00:48 +0000294
Brendon Cahoon254f8892016-07-29 16:44:44 +0000295 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
296 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
297 void unblock(int U);
298 };
299
300public:
301 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
302 const RegisterClassInfo &rci)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000303 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
304 RegClassInfo(rci), Topo(SUnits, &ExitSU) {
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000305 P.MF->getSubtarget().getSMSMutations(Mutations);
306 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000307
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000308 void schedule() override;
309 void finishBlock() override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000310
311 /// Return true if the loop kernel has been scheduled.
312 bool hasNewSchedule() { return Scheduled; }
313
314 /// Return the earliest time an instruction may be scheduled.
315 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
316
317 /// Return the latest time an instruction my be scheduled.
318 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
319
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000320 /// The mobility function, which the number of slots in which
Brendon Cahoon254f8892016-07-29 16:44:44 +0000321 /// an instruction may be scheduled.
322 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
323
324 /// The depth, in the dependence graph, for a node.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +0000325 unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000326
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000327 /// The maximum unweighted length of a path from an arbitrary node to the
328 /// given node in which each edge has latency 0
329 int getZeroLatencyDepth(SUnit *Node) {
330 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
331 }
332
Brendon Cahoon254f8892016-07-29 16:44:44 +0000333 /// The height, in the dependence graph, for a node.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +0000334 unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000335
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000336 /// The maximum unweighted length of a path from the given node to an
337 /// arbitrary node in which each edge has latency 0
338 int getZeroLatencyHeight(SUnit *Node) {
339 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
340 }
341
Brendon Cahoon254f8892016-07-29 16:44:44 +0000342 /// Return true if the dependence is a back-edge in the data dependence graph.
343 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
344 /// using an anti dependence from a Phi to an instruction.
345 bool isBackedge(SUnit *Source, const SDep &Dep) {
346 if (Dep.getKind() != SDep::Anti)
347 return false;
348 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
349 }
350
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +0000351 bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000352
Brendon Cahoon254f8892016-07-29 16:44:44 +0000353 /// The distance function, which indicates that operation V of iteration I
354 /// depends on operations U of iteration I-distance.
355 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
356 // Instructions that feed a Phi have a distance of 1. Computing larger
357 // values for arrays requires data dependence information.
358 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
359 return 1;
360 return 0;
361 }
362
363 /// Set the Minimum Initiation Interval for this schedule attempt.
364 void setMII(unsigned mii) { MII = mii; }
365
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +0000366 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
367
368 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000369
370 /// Return the new base register that was stored away for the changed
371 /// instruction.
372 unsigned getInstrBaseReg(SUnit *SU) {
373 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
374 InstrChanges.find(SU);
375 if (It != InstrChanges.end())
376 return It->second.first;
377 return 0;
378 }
379
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000380 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
381 Mutations.push_back(std::move(Mutation));
382 }
383
Brendon Cahoon254f8892016-07-29 16:44:44 +0000384private:
385 void addLoopCarriedDependences(AliasAnalysis *AA);
386 void updatePhiDependences();
387 void changeDependences();
388 unsigned calculateResMII();
389 unsigned calculateRecMII(NodeSetType &RecNodeSets);
390 void findCircuits(NodeSetType &NodeSets);
391 void fuseRecs(NodeSetType &NodeSets);
392 void removeDuplicateNodes(NodeSetType &NodeSets);
393 void computeNodeFunctions(NodeSetType &NodeSets);
394 void registerPressureFilter(NodeSetType &NodeSets);
395 void colocateNodeSets(NodeSetType &NodeSets);
396 void checkNodeSets(NodeSetType &NodeSets);
397 void groupRemainingNodes(NodeSetType &NodeSets);
398 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
399 SetVector<SUnit *> &NodesAdded);
400 void computeNodeOrder(NodeSetType &NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000401 void checkValidNodeOrder(const NodeSetType &Circuits) const;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000402 bool schedulePipeline(SMSchedule &Schedule);
403 void generatePipelinedLoop(SMSchedule &Schedule);
404 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
405 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
406 MBBVectorTy &PrologBBs);
407 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
408 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
409 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
410 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
411 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
412 SMSchedule &Schedule, ValueMapTy *VRMap,
413 InstrMapTy &InstrMap, unsigned LastStageNum,
414 unsigned CurStageNum, bool IsLast);
415 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
416 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
417 SMSchedule &Schedule, ValueMapTy *VRMap,
418 InstrMapTy &InstrMap, unsigned LastStageNum,
419 unsigned CurStageNum, bool IsLast);
420 void removeDeadInstructions(MachineBasicBlock *KernelBB,
421 MBBVectorTy &EpilogBBs);
422 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
423 SMSchedule &Schedule);
424 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
425 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
426 ValueMapTy *VRMap);
427 bool computeDelta(MachineInstr &MI, unsigned &Delta);
428 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
429 unsigned Num);
430 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
431 unsigned InstStageNum);
432 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
433 unsigned InstStageNum,
434 SMSchedule &Schedule);
435 void updateInstruction(MachineInstr *NewMI, bool LastDef,
436 unsigned CurStageNum, unsigned InstStageNum,
437 SMSchedule &Schedule, ValueMapTy *VRMap);
438 MachineInstr *findDefInLoop(unsigned Reg);
439 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
440 unsigned LoopStage, ValueMapTy *VRMap,
441 MachineBasicBlock *BB);
442 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
443 SMSchedule &Schedule, ValueMapTy *VRMap,
444 InstrMapTy &InstrMap);
445 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
446 InstrMapTy &InstrMap, unsigned CurStageNum,
447 unsigned PhiNum, MachineInstr *Phi,
448 unsigned OldReg, unsigned NewReg,
449 unsigned PrevReg = 0);
450 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
451 unsigned &OffsetPos, unsigned &NewBase,
452 int64_t &NewOffset);
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000453 void postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000454};
455
456/// A NodeSet contains a set of SUnit DAG nodes with additional information
457/// that assigns a priority to the set.
458class NodeSet {
459 SetVector<SUnit *> Nodes;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000460 bool HasRecurrence = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000461 unsigned RecMII = 0;
462 int MaxMOV = 0;
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +0000463 unsigned MaxDepth = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000464 unsigned Colocate = 0;
465 SUnit *ExceedPressure = nullptr;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000466 unsigned Latency = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000467
468public:
Eugene Zelenko32a40562017-09-11 23:00:48 +0000469 using iterator = SetVector<SUnit *>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000470
Eugene Zelenko32a40562017-09-11 23:00:48 +0000471 NodeSet() = default;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000472 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
473 Latency = 0;
474 for (unsigned i = 0, e = Nodes.size(); i < e; ++i)
475 for (const SDep &Succ : Nodes[i]->Succs)
476 if (Nodes.count(Succ.getSUnit()))
477 Latency += Succ.getLatency();
478 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000479
480 bool insert(SUnit *SU) { return Nodes.insert(SU); }
481
482 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
483
484 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
485 return Nodes.remove_if(P);
486 }
487
488 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
489
490 bool hasRecurrence() { return HasRecurrence; };
491
492 unsigned size() const { return Nodes.size(); }
493
494 bool empty() const { return Nodes.empty(); }
495
496 SUnit *getNode(unsigned i) const { return Nodes[i]; };
497
498 void setRecMII(unsigned mii) { RecMII = mii; };
499
500 void setColocate(unsigned c) { Colocate = c; };
501
502 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
503
504 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
505
506 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
507
508 int getRecMII() { return RecMII; }
509
510 /// Summarize node functions for the entire node set.
511 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
512 for (SUnit *SU : *this) {
513 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
514 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
515 }
516 }
517
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +0000518 unsigned getLatency() { return Latency; }
519
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +0000520 unsigned getMaxDepth() { return MaxDepth; }
521
Brendon Cahoon254f8892016-07-29 16:44:44 +0000522 void clear() {
523 Nodes.clear();
524 RecMII = 0;
525 HasRecurrence = false;
526 MaxMOV = 0;
527 MaxDepth = 0;
528 Colocate = 0;
529 ExceedPressure = nullptr;
530 }
531
532 operator SetVector<SUnit *> &() { return Nodes; }
533
534 /// Sort the node sets by importance. First, rank them by recurrence MII,
535 /// then by mobility (least mobile done first), and finally by depth.
536 /// Each node set may contain a colocate value which is used as the first
537 /// tie breaker, if it's set.
538 bool operator>(const NodeSet &RHS) const {
539 if (RecMII == RHS.RecMII) {
540 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
541 return Colocate < RHS.Colocate;
542 if (MaxMOV == RHS.MaxMOV)
543 return MaxDepth > RHS.MaxDepth;
544 return MaxMOV < RHS.MaxMOV;
545 }
546 return RecMII > RHS.RecMII;
547 }
548
549 bool operator==(const NodeSet &RHS) const {
550 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
551 MaxDepth == RHS.MaxDepth;
552 }
553
554 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
555
556 iterator begin() { return Nodes.begin(); }
557 iterator end() { return Nodes.end(); }
558
559 void print(raw_ostream &os) const {
560 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
561 << " depth " << MaxDepth << " col " << Colocate << "\n";
562 for (const auto &I : Nodes)
563 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
564 os << "\n";
565 }
566
Aaron Ballman615eb472017-10-15 14:32:27 +0000567#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Matthias Braun8c209aa2017-01-28 02:02:38 +0000568 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
569#endif
Brendon Cahoon254f8892016-07-29 16:44:44 +0000570};
571
572/// This class repesents the scheduled code. The main data structure is a
573/// map from scheduled cycle to instructions. During scheduling, the
574/// data structure explicitly represents all stages/iterations. When
575/// the algorithm finshes, the schedule is collapsed into a single stage,
576/// which represents instructions from different loop iterations.
577///
578/// The SMS algorithm allows negative values for cycles, so the first cycle
579/// in the schedule is the smallest cycle value.
580class SMSchedule {
581private:
582 /// Map from execution cycle to instructions.
583 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
584
585 /// Map from instruction to execution cycle.
586 std::map<SUnit *, int> InstrToCycle;
587
588 /// Map for each register and the max difference between its uses and def.
589 /// The first element in the pair is the max difference in stages. The
590 /// second is true if the register defines a Phi value and loop value is
591 /// scheduled before the Phi.
592 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
593
594 /// Keep track of the first cycle value in the schedule. It starts
595 /// as zero, but the algorithm allows negative values.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000596 int FirstCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000597
598 /// Keep track of the last cycle value in the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000599 int LastCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000600
601 /// The initiation interval (II) for the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000602 int InitiationInterval = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000603
604 /// Target machine information.
605 const TargetSubtargetInfo &ST;
606
607 /// Virtual register information.
608 MachineRegisterInfo &MRI;
609
Benjamin Kramer3f6260c2017-02-16 20:26:51 +0000610 std::unique_ptr<DFAPacketizer> Resources;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000611
612public:
613 SMSchedule(MachineFunction *mf)
614 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
Eugene Zelenko32a40562017-09-11 23:00:48 +0000615 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
Brendon Cahoon254f8892016-07-29 16:44:44 +0000616
Brendon Cahoon254f8892016-07-29 16:44:44 +0000617 void reset() {
618 ScheduledInstrs.clear();
619 InstrToCycle.clear();
620 RegToStageDiff.clear();
621 FirstCycle = 0;
622 LastCycle = 0;
623 InitiationInterval = 0;
624 }
625
626 /// Set the initiation interval for this schedule.
627 void setInitiationInterval(int ii) { InitiationInterval = ii; }
628
629 /// Return the first cycle in the completed schedule. This
630 /// can be a negative value.
631 int getFirstCycle() const { return FirstCycle; }
632
633 /// Return the last cycle in the finalized schedule.
634 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
635
636 /// Return the cycle of the earliest scheduled instruction in the dependence
637 /// chain.
638 int earliestCycleInChain(const SDep &Dep);
639
640 /// Return the cycle of the latest scheduled instruction in the dependence
641 /// chain.
642 int latestCycleInChain(const SDep &Dep);
643
644 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
645 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
646 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
647
648 /// Iterators for the cycle to instruction map.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000649 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
650 using const_sched_iterator =
651 DenseMap<int, std::deque<SUnit *>>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000652
653 /// Return true if the instruction is scheduled at the specified stage.
654 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
655 return (stageScheduled(SU) == (int)StageNum);
656 }
657
658 /// Return the stage for a scheduled instruction. Return -1 if
659 /// the instruction has not been scheduled.
660 int stageScheduled(SUnit *SU) const {
661 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
662 if (it == InstrToCycle.end())
663 return -1;
664 return (it->second - FirstCycle) / InitiationInterval;
665 }
666
667 /// Return the cycle for a scheduled instruction. This function normalizes
668 /// the first cycle to be 0.
669 unsigned cycleScheduled(SUnit *SU) const {
670 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
671 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
672 return (it->second - FirstCycle) % InitiationInterval;
673 }
674
675 /// Return the maximum stage count needed for this schedule.
676 unsigned getMaxStageCount() {
677 return (LastCycle - FirstCycle) / InitiationInterval;
678 }
679
680 /// Return the max. number of stages/iterations that can occur between a
681 /// register definition and its uses.
682 unsigned getStagesForReg(int Reg, unsigned CurStage) {
683 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
684 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
685 return 1;
686 return Stages.first;
687 }
688
689 /// The number of stages for a Phi is a little different than other
690 /// instructions. The minimum value computed in RegToStageDiff is 1
691 /// because we assume the Phi is needed for at least 1 iteration.
692 /// This is not the case if the loop value is scheduled prior to the
693 /// Phi in the same stage. This function returns the number of stages
694 /// or iterations needed between the Phi definition and any uses.
695 unsigned getStagesForPhi(int Reg) {
696 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
697 if (Stages.second)
698 return Stages.first;
699 return Stages.first - 1;
700 }
701
702 /// Return the instructions that are scheduled at the specified cycle.
703 std::deque<SUnit *> &getInstructions(int cycle) {
704 return ScheduledInstrs[cycle];
705 }
706
707 bool isValidSchedule(SwingSchedulerDAG *SSD);
708 void finalizeSchedule(SwingSchedulerDAG *SSD);
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +0000709 void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000710 std::deque<SUnit *> &Insts);
711 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
712 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
713 MachineOperand &MO);
714 void print(raw_ostream &os) const;
715 void dump() const;
716};
717
718} // end anonymous namespace
719
720unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
721char MachinePipeliner::ID = 0;
722#ifndef NDEBUG
723int MachinePipeliner::NumTries = 0;
724#endif
725char &llvm::MachinePipelinerID = MachinePipeliner::ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000726
Matthias Braun1527baa2017-05-25 21:26:32 +0000727INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000728 "Modulo Software Pipelining", false, false)
729INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
730INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
731INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
732INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
Matthias Braun1527baa2017-05-25 21:26:32 +0000733INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000734 "Modulo Software Pipelining", false, false)
735
736/// The "main" function for implementing Swing Modulo Scheduling.
737bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
Matthias Braunf1caa282017-12-15 22:22:58 +0000738 if (skipFunction(mf.getFunction()))
Brendon Cahoon254f8892016-07-29 16:44:44 +0000739 return false;
740
741 if (!EnableSWP)
742 return false;
743
Matthias Braunf1caa282017-12-15 22:22:58 +0000744 if (mf.getFunction().getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +0000745 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
Brendon Cahoon254f8892016-07-29 16:44:44 +0000746 !EnableSWPOptSize.getPosition())
747 return false;
748
749 MF = &mf;
750 MLI = &getAnalysis<MachineLoopInfo>();
751 MDT = &getAnalysis<MachineDominatorTree>();
752 TII = MF->getSubtarget().getInstrInfo();
753 RegClassInfo.runOnMachineFunction(*MF);
754
755 for (auto &L : *MLI)
756 scheduleLoop(*L);
757
758 return false;
759}
760
761/// Attempt to perform the SMS algorithm on the specified loop. This function is
762/// the main entry point for the algorithm. The function identifies candidate
763/// loops, calculates the minimum initiation interval, and attempts to schedule
764/// the loop.
765bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
766 bool Changed = false;
767 for (auto &InnerLoop : L)
768 Changed |= scheduleLoop(*InnerLoop);
769
770#ifndef NDEBUG
771 // Stop trying after reaching the limit (if any).
772 int Limit = SwpLoopLimit;
773 if (Limit >= 0) {
774 if (NumTries >= SwpLoopLimit)
775 return Changed;
776 NumTries++;
777 }
778#endif
779
780 if (!canPipelineLoop(L))
781 return Changed;
782
783 ++NumTrytoPipeline;
784
785 Changed = swingModuloScheduler(L);
786
787 return Changed;
788}
789
790/// Return true if the loop can be software pipelined. The algorithm is
791/// restricted to loops with a single basic block. Make sure that the
792/// branch in the loop can be analyzed.
793bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
794 if (L.getNumBlocks() != 1)
795 return false;
796
797 // Check if the branch can't be understood because we can't do pipelining
798 // if that's the case.
799 LI.TBB = nullptr;
800 LI.FBB = nullptr;
801 LI.BrCond.clear();
802 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
803 return false;
804
805 LI.LoopInductionVar = nullptr;
806 LI.LoopCompare = nullptr;
807 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
808 return false;
809
810 if (!L.getLoopPreheader())
811 return false;
812
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000813 // Remove any subregisters from inputs to phi nodes.
814 preprocessPhiNodes(*L.getHeader());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000815 return true;
816}
817
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000818void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
819 MachineRegisterInfo &MRI = MF->getRegInfo();
820 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
821
822 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
823 MachineOperand &DefOp = PI.getOperand(0);
824 assert(DefOp.getSubReg() == 0);
825 auto *RC = MRI.getRegClass(DefOp.getReg());
826
827 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
828 MachineOperand &RegOp = PI.getOperand(i);
829 if (RegOp.getSubReg() == 0)
830 continue;
831
832 // If the operand uses a subregister, replace it with a new register
833 // without subregisters, and generate a copy to the new register.
834 unsigned NewReg = MRI.createVirtualRegister(RC);
835 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
836 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
837 const DebugLoc &DL = PredB.findDebugLoc(At);
838 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
839 .addReg(RegOp.getReg(), getRegState(RegOp),
840 RegOp.getSubReg());
841 Slots.insertMachineInstrInMaps(*Copy);
842 RegOp.setReg(NewReg);
843 RegOp.setSubReg(0);
844 }
845 }
846}
847
Brendon Cahoon254f8892016-07-29 16:44:44 +0000848/// The SMS algorithm consists of the following main steps:
849/// 1. Computation and analysis of the dependence graph.
850/// 2. Ordering of the nodes (instructions).
851/// 3. Attempt to Schedule the loop.
852bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
853 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
854
855 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
856
857 MachineBasicBlock *MBB = L.getHeader();
858 // The kernel should not include any terminator instructions. These
859 // will be added back later.
860 SMS.startBlock(MBB);
861
862 // Compute the number of 'real' instructions in the basic block by
863 // ignoring terminators.
864 unsigned size = MBB->size();
865 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
866 E = MBB->instr_end();
867 I != E; ++I, --size)
868 ;
869
870 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
871 SMS.schedule();
872 SMS.exitRegion();
873
874 SMS.finishBlock();
875 return SMS.hasNewSchedule();
876}
877
878/// We override the schedule function in ScheduleDAGInstrs to implement the
879/// scheduling part of the Swing Modulo Scheduling algorithm.
880void SwingSchedulerDAG::schedule() {
881 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
882 buildSchedGraph(AA);
883 addLoopCarriedDependences(AA);
884 updatePhiDependences();
885 Topo.InitDAGTopologicalSorting();
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000886 postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000887 changeDependences();
888 DEBUG({
889 for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
890 SUnits[su].dumpAll(this);
891 });
892
893 NodeSetType NodeSets;
894 findCircuits(NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000895 NodeSetType Circuits = NodeSets;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000896
897 // Calculate the MII.
898 unsigned ResMII = calculateResMII();
899 unsigned RecMII = calculateRecMII(NodeSets);
900
901 fuseRecs(NodeSets);
902
903 // This flag is used for testing and can cause correctness problems.
904 if (SwpIgnoreRecMII)
905 RecMII = 0;
906
907 MII = std::max(ResMII, RecMII);
908 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
909 << ")\n");
910
911 // Can't schedule a loop without a valid MII.
912 if (MII == 0)
913 return;
914
915 // Don't pipeline large loops.
916 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
917 return;
918
919 computeNodeFunctions(NodeSets);
920
921 registerPressureFilter(NodeSets);
922
923 colocateNodeSets(NodeSets);
924
925 checkNodeSets(NodeSets);
926
927 DEBUG({
928 for (auto &I : NodeSets) {
929 dbgs() << " Rec NodeSet ";
930 I.dump();
931 }
932 });
933
934 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
935
936 groupRemainingNodes(NodeSets);
937
938 removeDuplicateNodes(NodeSets);
939
940 DEBUG({
941 for (auto &I : NodeSets) {
942 dbgs() << " NodeSet ";
943 I.dump();
944 }
945 });
946
947 computeNodeOrder(NodeSets);
948
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000949 // check for node order issues
950 checkValidNodeOrder(Circuits);
951
Brendon Cahoon254f8892016-07-29 16:44:44 +0000952 SMSchedule Schedule(Pass.MF);
953 Scheduled = schedulePipeline(Schedule);
954
955 if (!Scheduled)
956 return;
957
958 unsigned numStages = Schedule.getMaxStageCount();
959 // No need to generate pipeline if there are no overlapped iterations.
960 if (numStages == 0)
961 return;
962
963 // Check that the maximum stage count is less than user-defined limit.
964 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
965 return;
966
967 generatePipelinedLoop(Schedule);
968 ++NumPipelined;
969}
970
971/// Clean up after the software pipeliner runs.
972void SwingSchedulerDAG::finishBlock() {
973 for (MachineInstr *I : NewMIs)
974 MF.DeleteMachineInstr(I);
975 NewMIs.clear();
976
977 // Call the superclass.
978 ScheduleDAGInstrs::finishBlock();
979}
980
981/// Return the register values for the operands of a Phi instruction.
982/// This function assume the instruction is a Phi.
983static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
984 unsigned &InitVal, unsigned &LoopVal) {
985 assert(Phi.isPHI() && "Expecting a Phi.");
986
987 InitVal = 0;
988 LoopVal = 0;
989 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
990 if (Phi.getOperand(i + 1).getMBB() != Loop)
991 InitVal = Phi.getOperand(i).getReg();
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +0000992 else
Brendon Cahoon254f8892016-07-29 16:44:44 +0000993 LoopVal = Phi.getOperand(i).getReg();
994
995 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
996}
997
998/// Return the Phi register value that comes from the incoming block.
999static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
1000 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
1001 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
1002 return Phi.getOperand(i).getReg();
1003 return 0;
1004}
1005
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +00001006/// Return the Phi register value that comes the loop block.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001007static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
1008 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
1009 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
1010 return Phi.getOperand(i).getReg();
1011 return 0;
1012}
1013
1014/// Return true if SUb can be reached from SUa following the chain edges.
1015static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
1016 SmallPtrSet<SUnit *, 8> Visited;
1017 SmallVector<SUnit *, 8> Worklist;
1018 Worklist.push_back(SUa);
1019 while (!Worklist.empty()) {
1020 const SUnit *SU = Worklist.pop_back_val();
1021 for (auto &SI : SU->Succs) {
1022 SUnit *SuccSU = SI.getSUnit();
1023 if (SI.getKind() == SDep::Order) {
1024 if (Visited.count(SuccSU))
1025 continue;
1026 if (SuccSU == SUb)
1027 return true;
1028 Worklist.push_back(SuccSU);
1029 Visited.insert(SuccSU);
1030 }
1031 }
1032 }
1033 return false;
1034}
1035
1036/// Return true if the instruction causes a chain between memory
1037/// references before and after it.
1038static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
1039 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
1040 (MI.hasOrderedMemoryRef() &&
Justin Lebard98cf002016-09-10 01:03:20 +00001041 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001042}
1043
1044/// Return the underlying objects for the memory references of an instruction.
1045/// This function calls the code in ValueTracking, but first checks that the
1046/// instruction has a memory operand.
1047static void getUnderlyingObjects(MachineInstr *MI,
1048 SmallVectorImpl<Value *> &Objs,
1049 const DataLayout &DL) {
1050 if (!MI->hasOneMemOperand())
1051 return;
1052 MachineMemOperand *MM = *MI->memoperands_begin();
1053 if (!MM->getValue())
1054 return;
1055 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001056 for (Value *V : Objs) {
1057 if (!isIdentifiedObject(V)) {
1058 Objs.clear();
1059 return;
1060 }
1061 Objs.push_back(V);
1062 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001063}
1064
1065/// Add a chain edge between a load and store if the store can be an
1066/// alias of the load on a subsequent iteration, i.e., a loop carried
1067/// dependence. This code is very similar to the code in ScheduleDAGInstrs
1068/// but that code doesn't create loop carried dependences.
1069void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
1070 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001071 Value *UnknownValue =
1072 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001073 for (auto &SU : SUnits) {
1074 MachineInstr &MI = *SU.getInstr();
1075 if (isDependenceBarrier(MI, AA))
1076 PendingLoads.clear();
1077 else if (MI.mayLoad()) {
1078 SmallVector<Value *, 4> Objs;
1079 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001080 if (Objs.empty())
1081 Objs.push_back(UnknownValue);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001082 for (auto V : Objs) {
1083 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1084 SUs.push_back(&SU);
1085 }
1086 } else if (MI.mayStore()) {
1087 SmallVector<Value *, 4> Objs;
1088 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001089 if (Objs.empty())
1090 Objs.push_back(UnknownValue);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001091 for (auto V : Objs) {
1092 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1093 PendingLoads.find(V);
1094 if (I == PendingLoads.end())
1095 continue;
1096 for (auto Load : I->second) {
1097 if (isSuccOrder(Load, &SU))
1098 continue;
1099 MachineInstr &LdMI = *Load->getInstr();
1100 // First, perform the cheaper check that compares the base register.
1101 // If they are the same and the load offset is less than the store
1102 // offset, then mark the dependence as loop carried potentially.
1103 unsigned BaseReg1, BaseReg2;
1104 int64_t Offset1, Offset2;
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001105 if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) &&
1106 TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1107 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1108 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1109 "What happened to the chain edge?");
1110 SDep Dep(Load, SDep::Barrier);
1111 Dep.setLatency(1);
1112 SU.addPred(Dep);
1113 continue;
1114 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001115 }
1116 // Second, the more expensive check that uses alias analysis on the
1117 // base registers. If they alias, and the load offset is less than
1118 // the store offset, the mark the dependence as loop carried.
1119 if (!AA) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001120 SDep Dep(Load, SDep::Barrier);
1121 Dep.setLatency(1);
1122 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001123 continue;
1124 }
1125 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1126 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1127 if (!MMO1->getValue() || !MMO2->getValue()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001128 SDep Dep(Load, SDep::Barrier);
1129 Dep.setLatency(1);
1130 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001131 continue;
1132 }
1133 if (MMO1->getValue() == MMO2->getValue() &&
1134 MMO1->getOffset() <= MMO2->getOffset()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001135 SDep Dep(Load, SDep::Barrier);
1136 Dep.setLatency(1);
1137 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001138 continue;
1139 }
1140 AliasResult AAResult = AA->alias(
1141 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1142 MMO1->getAAInfo()),
1143 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1144 MMO2->getAAInfo()));
1145
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001146 if (AAResult != NoAlias) {
1147 SDep Dep(Load, SDep::Barrier);
1148 Dep.setLatency(1);
1149 SU.addPred(Dep);
1150 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001151 }
1152 }
1153 }
1154 }
1155}
1156
1157/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1158/// processes dependences for PHIs. This function adds true dependences
1159/// from a PHI to a use, and a loop carried dependence from the use to the
1160/// PHI. The loop carried dependence is represented as an anti dependence
1161/// edge. This function also removes chain dependences between unrelated
1162/// PHIs.
1163void SwingSchedulerDAG::updatePhiDependences() {
1164 SmallVector<SDep, 4> RemoveDeps;
1165 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1166
1167 // Iterate over each DAG node.
1168 for (SUnit &I : SUnits) {
1169 RemoveDeps.clear();
1170 // Set to true if the instruction has an operand defined by a Phi.
1171 unsigned HasPhiUse = 0;
1172 unsigned HasPhiDef = 0;
1173 MachineInstr *MI = I.getInstr();
1174 // Iterate over each operand, and we process the definitions.
1175 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1176 MOE = MI->operands_end();
1177 MOI != MOE; ++MOI) {
1178 if (!MOI->isReg())
1179 continue;
1180 unsigned Reg = MOI->getReg();
1181 if (MOI->isDef()) {
1182 // If the register is used by a Phi, then create an anti dependence.
1183 for (MachineRegisterInfo::use_instr_iterator
1184 UI = MRI.use_instr_begin(Reg),
1185 UE = MRI.use_instr_end();
1186 UI != UE; ++UI) {
1187 MachineInstr *UseMI = &*UI;
1188 SUnit *SU = getSUnit(UseMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001189 if (SU != nullptr && UseMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001190 if (!MI->isPHI()) {
1191 SDep Dep(SU, SDep::Anti, Reg);
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001192 Dep.setLatency(1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001193 I.addPred(Dep);
1194 } else {
1195 HasPhiDef = Reg;
1196 // Add a chain edge to a dependent Phi that isn't an existing
1197 // predecessor.
1198 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1199 I.addPred(SDep(SU, SDep::Barrier));
1200 }
1201 }
1202 }
1203 } else if (MOI->isUse()) {
1204 // If the register is defined by a Phi, then create a true dependence.
1205 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001206 if (DefMI == nullptr)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001207 continue;
1208 SUnit *SU = getSUnit(DefMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001209 if (SU != nullptr && DefMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001210 if (!MI->isPHI()) {
1211 SDep Dep(SU, SDep::Data, Reg);
1212 Dep.setLatency(0);
1213 ST.adjustSchedDependency(SU, &I, Dep);
1214 I.addPred(Dep);
1215 } else {
1216 HasPhiUse = Reg;
1217 // Add a chain edge to a dependent Phi that isn't an existing
1218 // predecessor.
1219 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1220 I.addPred(SDep(SU, SDep::Barrier));
1221 }
1222 }
1223 }
1224 }
1225 // Remove order dependences from an unrelated Phi.
1226 if (!SwpPruneDeps)
1227 continue;
1228 for (auto &PI : I.Preds) {
1229 MachineInstr *PMI = PI.getSUnit()->getInstr();
1230 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1231 if (I.getInstr()->isPHI()) {
1232 if (PMI->getOperand(0).getReg() == HasPhiUse)
1233 continue;
1234 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1235 continue;
1236 }
1237 RemoveDeps.push_back(PI);
1238 }
1239 }
1240 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1241 I.removePred(RemoveDeps[i]);
1242 }
1243}
1244
1245/// Iterate over each DAG node and see if we can change any dependences
1246/// in order to reduce the recurrence MII.
1247void SwingSchedulerDAG::changeDependences() {
1248 // See if an instruction can use a value from the previous iteration.
1249 // If so, we update the base and offset of the instruction and change
1250 // the dependences.
1251 for (SUnit &I : SUnits) {
1252 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1253 int64_t NewOffset = 0;
1254 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1255 NewOffset))
1256 continue;
1257
1258 // Get the MI and SUnit for the instruction that defines the original base.
1259 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1260 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1261 if (!DefMI)
1262 continue;
1263 SUnit *DefSU = getSUnit(DefMI);
1264 if (!DefSU)
1265 continue;
1266 // Get the MI and SUnit for the instruction that defins the new base.
1267 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1268 if (!LastMI)
1269 continue;
1270 SUnit *LastSU = getSUnit(LastMI);
1271 if (!LastSU)
1272 continue;
1273
1274 if (Topo.IsReachable(&I, LastSU))
1275 continue;
1276
1277 // Remove the dependence. The value now depends on a prior iteration.
1278 SmallVector<SDep, 4> Deps;
1279 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1280 ++P)
1281 if (P->getSUnit() == DefSU)
1282 Deps.push_back(*P);
1283 for (int i = 0, e = Deps.size(); i != e; i++) {
1284 Topo.RemovePred(&I, Deps[i].getSUnit());
1285 I.removePred(Deps[i]);
1286 }
1287 // Remove the chain dependence between the instructions.
1288 Deps.clear();
1289 for (auto &P : LastSU->Preds)
1290 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1291 Deps.push_back(P);
1292 for (int i = 0, e = Deps.size(); i != e; i++) {
1293 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1294 LastSU->removePred(Deps[i]);
1295 }
1296
1297 // Add a dependence between the new instruction and the instruction
1298 // that defines the new base.
1299 SDep Dep(&I, SDep::Anti, NewBase);
1300 LastSU->addPred(Dep);
1301
1302 // Remember the base and offset information so that we can update the
1303 // instruction during code generation.
1304 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1305 }
1306}
1307
1308namespace {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001309
Brendon Cahoon254f8892016-07-29 16:44:44 +00001310// FuncUnitSorter - Comparison operator used to sort instructions by
1311// the number of functional unit choices.
1312struct FuncUnitSorter {
1313 const InstrItineraryData *InstrItins;
1314 DenseMap<unsigned, unsigned> Resources;
1315
Eugene Zelenko32a40562017-09-11 23:00:48 +00001316 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1317
Brendon Cahoon254f8892016-07-29 16:44:44 +00001318 // Compute the number of functional unit alternatives needed
1319 // at each stage, and take the minimum value. We prioritize the
1320 // instructions by the least number of choices first.
1321 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1322 unsigned schedClass = Inst->getDesc().getSchedClass();
1323 unsigned min = UINT_MAX;
1324 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1325 *IE = InstrItins->endStage(schedClass);
1326 IS != IE; ++IS) {
1327 unsigned funcUnits = IS->getUnits();
1328 unsigned numAlternatives = countPopulation(funcUnits);
1329 if (numAlternatives < min) {
1330 min = numAlternatives;
1331 F = funcUnits;
1332 }
1333 }
1334 return min;
1335 }
1336
1337 // Compute the critical resources needed by the instruction. This
1338 // function records the functional units needed by instructions that
1339 // must use only one functional unit. We use this as a tie breaker
1340 // for computing the resource MII. The instrutions that require
1341 // the same, highly used, functional unit have high priority.
1342 void calcCriticalResources(MachineInstr &MI) {
1343 unsigned SchedClass = MI.getDesc().getSchedClass();
1344 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1345 *IE = InstrItins->endStage(SchedClass);
1346 IS != IE; ++IS) {
1347 unsigned FuncUnits = IS->getUnits();
1348 if (countPopulation(FuncUnits) == 1)
1349 Resources[FuncUnits]++;
1350 }
1351 }
1352
Brendon Cahoon254f8892016-07-29 16:44:44 +00001353 /// Return true if IS1 has less priority than IS2.
1354 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1355 unsigned F1 = 0, F2 = 0;
1356 unsigned MFUs1 = minFuncUnits(IS1, F1);
1357 unsigned MFUs2 = minFuncUnits(IS2, F2);
1358 if (MFUs1 == 1 && MFUs2 == 1)
1359 return Resources.lookup(F1) < Resources.lookup(F2);
1360 return MFUs1 > MFUs2;
1361 }
1362};
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001363
1364} // end anonymous namespace
Brendon Cahoon254f8892016-07-29 16:44:44 +00001365
1366/// Calculate the resource constrained minimum initiation interval for the
1367/// specified loop. We use the DFA to model the resources needed for
1368/// each instruction, and we ignore dependences. A different DFA is created
1369/// for each cycle that is required. When adding a new instruction, we attempt
1370/// to add it to each existing DFA, until a legal space is found. If the
1371/// instruction cannot be reserved in an existing DFA, we create a new one.
1372unsigned SwingSchedulerDAG::calculateResMII() {
1373 SmallVector<DFAPacketizer *, 8> Resources;
1374 MachineBasicBlock *MBB = Loop.getHeader();
1375 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1376
1377 // Sort the instructions by the number of available choices for scheduling,
1378 // least to most. Use the number of critical resources as the tie breaker.
1379 FuncUnitSorter FUS =
1380 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1381 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1382 E = MBB->getFirstTerminator();
1383 I != E; ++I)
1384 FUS.calcCriticalResources(*I);
1385 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1386 FuncUnitOrder(FUS);
1387
1388 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1389 E = MBB->getFirstTerminator();
1390 I != E; ++I)
1391 FuncUnitOrder.push(&*I);
1392
1393 while (!FuncUnitOrder.empty()) {
1394 MachineInstr *MI = FuncUnitOrder.top();
1395 FuncUnitOrder.pop();
1396 if (TII->isZeroCost(MI->getOpcode()))
1397 continue;
1398 // Attempt to reserve the instruction in an existing DFA. At least one
1399 // DFA is needed for each cycle.
1400 unsigned NumCycles = getSUnit(MI)->Latency;
1401 unsigned ReservedCycles = 0;
1402 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1403 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1404 for (unsigned C = 0; C < NumCycles; ++C)
1405 while (RI != RE) {
1406 if ((*RI++)->canReserveResources(*MI)) {
1407 ++ReservedCycles;
1408 break;
1409 }
1410 }
1411 // Start reserving resources using existing DFAs.
1412 for (unsigned C = 0; C < ReservedCycles; ++C) {
1413 --RI;
1414 (*RI)->reserveResources(*MI);
1415 }
1416 // Add new DFAs, if needed, to reserve resources.
1417 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1418 DFAPacketizer *NewResource =
1419 TII->CreateTargetScheduleState(MF.getSubtarget());
1420 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1421 NewResource->reserveResources(*MI);
1422 Resources.push_back(NewResource);
1423 }
1424 }
1425 int Resmii = Resources.size();
1426 // Delete the memory for each of the DFAs that were created earlier.
1427 for (DFAPacketizer *RI : Resources) {
1428 DFAPacketizer *D = RI;
1429 delete D;
1430 }
1431 Resources.clear();
1432 return Resmii;
1433}
1434
1435/// Calculate the recurrence-constrainted minimum initiation interval.
1436/// Iterate over each circuit. Compute the delay(c) and distance(c)
1437/// for each circuit. The II needs to satisfy the inequality
1438/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1439/// II that satistifies the inequality, and the RecMII is the maximum
1440/// of those values.
1441unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1442 unsigned RecMII = 0;
1443
1444 for (NodeSet &Nodes : NodeSets) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00001445 if (Nodes.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001446 continue;
1447
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00001448 unsigned Delay = Nodes.getLatency();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001449 unsigned Distance = 1;
1450
1451 // ii = ceil(delay / distance)
1452 unsigned CurMII = (Delay + Distance - 1) / Distance;
1453 Nodes.setRecMII(CurMII);
1454 if (CurMII > RecMII)
1455 RecMII = CurMII;
1456 }
1457
1458 return RecMII;
1459}
1460
1461/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1462/// but we do this to find the circuits, and then change them back.
1463static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1464 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1465 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1466 SUnit *SU = &SUnits[i];
1467 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1468 IP != EP; ++IP) {
1469 if (IP->getKind() != SDep::Anti)
1470 continue;
1471 DepsAdded.push_back(std::make_pair(SU, *IP));
1472 }
1473 }
1474 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1475 E = DepsAdded.end();
1476 I != E; ++I) {
1477 // Remove this anti dependency and add one in the reverse direction.
1478 SUnit *SU = I->first;
1479 SDep &D = I->second;
1480 SUnit *TargetSU = D.getSUnit();
1481 unsigned Reg = D.getReg();
1482 unsigned Lat = D.getLatency();
1483 SU->removePred(D);
1484 SDep Dep(SU, SDep::Anti, Reg);
1485 Dep.setLatency(Lat);
1486 TargetSU->addPred(Dep);
1487 }
1488}
1489
1490/// Create the adjacency structure of the nodes in the graph.
1491void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1492 SwingSchedulerDAG *DAG) {
1493 BitVector Added(SUnits.size());
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001494 DenseMap<int, int> OutputDeps;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001495 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1496 Added.reset();
1497 // Add any successor to the adjacency matrix and exclude duplicates.
1498 for (auto &SI : SUnits[i].Succs) {
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001499 // Only create a back-edge on the first and last nodes of a dependence
1500 // chain. This records any chains and adds them later.
1501 if (SI.getKind() == SDep::Output) {
1502 int N = SI.getSUnit()->NodeNum;
1503 int BackEdge = i;
1504 auto Dep = OutputDeps.find(BackEdge);
1505 if (Dep != OutputDeps.end()) {
1506 BackEdge = Dep->second;
1507 OutputDeps.erase(Dep);
1508 }
1509 OutputDeps[N] = BackEdge;
1510 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001511 // Do not process a boundary node and a back-edge is processed only
1512 // if it goes to a Phi.
1513 if (SI.getSUnit()->isBoundaryNode() ||
1514 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1515 continue;
1516 int N = SI.getSUnit()->NodeNum;
1517 if (!Added.test(N)) {
1518 AdjK[i].push_back(N);
1519 Added.set(N);
1520 }
1521 }
1522 // A chain edge between a store and a load is treated as a back-edge in the
1523 // adjacency matrix.
1524 for (auto &PI : SUnits[i].Preds) {
1525 if (!SUnits[i].getInstr()->mayStore() ||
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001526 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001527 continue;
1528 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1529 int N = PI.getSUnit()->NodeNum;
1530 if (!Added.test(N)) {
1531 AdjK[i].push_back(N);
1532 Added.set(N);
1533 }
1534 }
1535 }
1536 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001537 // Add back-eges in the adjacency matrix for the output dependences.
1538 for (auto &OD : OutputDeps)
1539 if (!Added.test(OD.second)) {
1540 AdjK[OD.first].push_back(OD.second);
1541 Added.set(OD.second);
1542 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001543}
1544
1545/// Identify an elementary circuit in the dependence graph starting at the
1546/// specified node.
1547bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1548 bool HasBackedge) {
1549 SUnit *SV = &SUnits[V];
1550 bool F = false;
1551 Stack.insert(SV);
1552 Blocked.set(V);
1553
1554 for (auto W : AdjK[V]) {
1555 if (NumPaths > MaxPaths)
1556 break;
1557 if (W < S)
1558 continue;
1559 if (W == S) {
1560 if (!HasBackedge)
1561 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1562 F = true;
1563 ++NumPaths;
1564 break;
1565 } else if (!Blocked.test(W)) {
1566 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1567 F = true;
1568 }
1569 }
1570
1571 if (F)
1572 unblock(V);
1573 else {
1574 for (auto W : AdjK[V]) {
1575 if (W < S)
1576 continue;
1577 if (B[W].count(SV) == 0)
1578 B[W].insert(SV);
1579 }
1580 }
1581 Stack.pop_back();
1582 return F;
1583}
1584
1585/// Unblock a node in the circuit finding algorithm.
1586void SwingSchedulerDAG::Circuits::unblock(int U) {
1587 Blocked.reset(U);
1588 SmallPtrSet<SUnit *, 4> &BU = B[U];
1589 while (!BU.empty()) {
1590 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1591 assert(SI != BU.end() && "Invalid B set.");
1592 SUnit *W = *SI;
1593 BU.erase(W);
1594 if (Blocked.test(W->NodeNum))
1595 unblock(W->NodeNum);
1596 }
1597}
1598
1599/// Identify all the elementary circuits in the dependence graph using
1600/// Johnson's circuit algorithm.
1601void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1602 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1603 // but we do this to find the circuits, and then change them back.
1604 swapAntiDependences(SUnits);
1605
1606 Circuits Cir(SUnits);
1607 // Create the adjacency structure.
1608 Cir.createAdjacencyStructure(this);
1609 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1610 Cir.reset();
1611 Cir.circuit(i, i, NodeSets);
1612 }
1613
1614 // Change the dependences back so that we've created a DAG again.
1615 swapAntiDependences(SUnits);
1616}
1617
1618/// Return true for DAG nodes that we ignore when computing the cost functions.
1619/// We ignore the back-edge recurrence in order to avoid unbounded recurison
1620/// in the calculation of the ASAP, ALAP, etc functions.
1621static bool ignoreDependence(const SDep &D, bool isPred) {
1622 if (D.isArtificial())
1623 return true;
1624 return D.getKind() == SDep::Anti && isPred;
1625}
1626
1627/// Compute several functions need to order the nodes for scheduling.
1628/// ASAP - Earliest time to schedule a node.
1629/// ALAP - Latest time to schedule a node.
1630/// MOV - Mobility function, difference between ALAP and ASAP.
1631/// D - Depth of each node.
1632/// H - Height of each node.
1633void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001634 ScheduleInfo.resize(SUnits.size());
1635
1636 DEBUG({
1637 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1638 E = Topo.end();
1639 I != E; ++I) {
1640 SUnit *SU = &SUnits[*I];
1641 SU->dump(this);
1642 }
1643 });
1644
1645 int maxASAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001646 // Compute ASAP and ZeroLatencyDepth.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001647 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1648 E = Topo.end();
1649 I != E; ++I) {
1650 int asap = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001651 int zeroLatencyDepth = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001652 SUnit *SU = &SUnits[*I];
1653 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1654 EP = SU->Preds.end();
1655 IP != EP; ++IP) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001656 SUnit *pred = IP->getSUnit();
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001657 if (IP->getLatency() == 0)
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001658 zeroLatencyDepth =
1659 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001660 if (ignoreDependence(*IP, true))
1661 continue;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001662 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00001663 getDistance(pred, SU, *IP) * MII));
1664 }
1665 maxASAP = std::max(maxASAP, asap);
1666 ScheduleInfo[*I].ASAP = asap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001667 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001668 }
1669
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001670 // Compute ALAP, ZeroLatencyHeight, and MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001671 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1672 E = Topo.rend();
1673 I != E; ++I) {
1674 int alap = maxASAP;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001675 int zeroLatencyHeight = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001676 SUnit *SU = &SUnits[*I];
1677 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1678 ES = SU->Succs.end();
1679 IS != ES; ++IS) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001680 SUnit *succ = IS->getSUnit();
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001681 if (IS->getLatency() == 0)
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001682 zeroLatencyHeight =
1683 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001684 if (ignoreDependence(*IS, true))
1685 continue;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001686 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00001687 getDistance(SU, succ, *IS) * MII));
1688 }
1689
1690 ScheduleInfo[*I].ALAP = alap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001691 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001692 }
1693
1694 // After computing the node functions, compute the summary for each node set.
1695 for (NodeSet &I : NodeSets)
1696 I.computeNodeSetInfo(this);
1697
1698 DEBUG({
1699 for (unsigned i = 0; i < SUnits.size(); i++) {
1700 dbgs() << "\tNode " << i << ":\n";
1701 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1702 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1703 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1704 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1705 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001706 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1707 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
Brendon Cahoon254f8892016-07-29 16:44:44 +00001708 }
1709 });
1710}
1711
1712/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1713/// as the predecessors of the elements of NodeOrder that are not also in
1714/// NodeOrder.
1715static bool pred_L(SetVector<SUnit *> &NodeOrder,
1716 SmallSetVector<SUnit *, 8> &Preds,
1717 const NodeSet *S = nullptr) {
1718 Preds.clear();
1719 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1720 I != E; ++I) {
1721 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1722 PI != PE; ++PI) {
1723 if (S && S->count(PI->getSUnit()) == 0)
1724 continue;
1725 if (ignoreDependence(*PI, true))
1726 continue;
1727 if (NodeOrder.count(PI->getSUnit()) == 0)
1728 Preds.insert(PI->getSUnit());
1729 }
1730 // Back-edges are predecessors with an anti-dependence.
1731 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1732 ES = (*I)->Succs.end();
1733 IS != ES; ++IS) {
1734 if (IS->getKind() != SDep::Anti)
1735 continue;
1736 if (S && S->count(IS->getSUnit()) == 0)
1737 continue;
1738 if (NodeOrder.count(IS->getSUnit()) == 0)
1739 Preds.insert(IS->getSUnit());
1740 }
1741 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001742 return !Preds.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001743}
1744
1745/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1746/// as the successors of the elements of NodeOrder that are not also in
1747/// NodeOrder.
1748static bool succ_L(SetVector<SUnit *> &NodeOrder,
1749 SmallSetVector<SUnit *, 8> &Succs,
1750 const NodeSet *S = nullptr) {
1751 Succs.clear();
1752 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1753 I != E; ++I) {
1754 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1755 SI != SE; ++SI) {
1756 if (S && S->count(SI->getSUnit()) == 0)
1757 continue;
1758 if (ignoreDependence(*SI, false))
1759 continue;
1760 if (NodeOrder.count(SI->getSUnit()) == 0)
1761 Succs.insert(SI->getSUnit());
1762 }
1763 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1764 PE = (*I)->Preds.end();
1765 PI != PE; ++PI) {
1766 if (PI->getKind() != SDep::Anti)
1767 continue;
1768 if (S && S->count(PI->getSUnit()) == 0)
1769 continue;
1770 if (NodeOrder.count(PI->getSUnit()) == 0)
1771 Succs.insert(PI->getSUnit());
1772 }
1773 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001774 return !Succs.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001775}
1776
1777/// Return true if there is a path from the specified node to any of the nodes
1778/// in DestNodes. Keep track and return the nodes in any path.
1779static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1780 SetVector<SUnit *> &DestNodes,
1781 SetVector<SUnit *> &Exclude,
1782 SmallPtrSet<SUnit *, 8> &Visited) {
1783 if (Cur->isBoundaryNode())
1784 return false;
1785 if (Exclude.count(Cur) != 0)
1786 return false;
1787 if (DestNodes.count(Cur) != 0)
1788 return true;
1789 if (!Visited.insert(Cur).second)
1790 return Path.count(Cur) != 0;
1791 bool FoundPath = false;
1792 for (auto &SI : Cur->Succs)
1793 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1794 for (auto &PI : Cur->Preds)
1795 if (PI.getKind() == SDep::Anti)
1796 FoundPath |=
1797 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1798 if (FoundPath)
1799 Path.insert(Cur);
1800 return FoundPath;
1801}
1802
1803/// Return true if Set1 is a subset of Set2.
1804template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1805 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1806 if (Set2.count(*I) == 0)
1807 return false;
1808 return true;
1809}
1810
1811/// Compute the live-out registers for the instructions in a node-set.
1812/// The live-out registers are those that are defined in the node-set,
1813/// but not used. Except for use operands of Phis.
1814static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1815 NodeSet &NS) {
1816 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1817 MachineRegisterInfo &MRI = MF.getRegInfo();
1818 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1819 SmallSet<unsigned, 4> Uses;
1820 for (SUnit *SU : NS) {
1821 const MachineInstr *MI = SU->getInstr();
1822 if (MI->isPHI())
1823 continue;
Matthias Braunfc371552016-10-24 21:36:43 +00001824 for (const MachineOperand &MO : MI->operands())
1825 if (MO.isReg() && MO.isUse()) {
1826 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001827 if (TargetRegisterInfo::isVirtualRegister(Reg))
1828 Uses.insert(Reg);
1829 else if (MRI.isAllocatable(Reg))
1830 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1831 Uses.insert(*Units);
1832 }
1833 }
1834 for (SUnit *SU : NS)
Matthias Braunfc371552016-10-24 21:36:43 +00001835 for (const MachineOperand &MO : SU->getInstr()->operands())
1836 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1837 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001838 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1839 if (!Uses.count(Reg))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001840 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1841 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001842 } else if (MRI.isAllocatable(Reg)) {
1843 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1844 if (!Uses.count(*Units))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001845 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1846 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001847 }
1848 }
1849 RPTracker.addLiveRegs(LiveOutRegs);
1850}
1851
1852/// A heuristic to filter nodes in recurrent node-sets if the register
1853/// pressure of a set is too high.
1854void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1855 for (auto &NS : NodeSets) {
1856 // Skip small node-sets since they won't cause register pressure problems.
1857 if (NS.size() <= 2)
1858 continue;
1859 IntervalPressure RecRegPressure;
1860 RegPressureTracker RecRPTracker(RecRegPressure);
1861 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1862 computeLiveOuts(MF, RecRPTracker, NS);
1863 RecRPTracker.closeBottom();
1864
1865 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1866 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
1867 return A->NodeNum > B->NodeNum;
1868 });
1869
1870 for (auto &SU : SUnits) {
1871 // Since we're computing the register pressure for a subset of the
1872 // instructions in a block, we need to set the tracker for each
1873 // instruction in the node-set. The tracker is set to the instruction
1874 // just after the one we're interested in.
1875 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1876 RecRPTracker.setPos(std::next(CurInstI));
1877
1878 RegPressureDelta RPDelta;
1879 ArrayRef<PressureChange> CriticalPSets;
1880 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1881 CriticalPSets,
1882 RecRegPressure.MaxSetPressure);
1883 if (RPDelta.Excess.isValid()) {
1884 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1885 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1886 << ":" << RPDelta.Excess.getUnitInc());
1887 NS.setExceedPressure(SU);
1888 break;
1889 }
1890 RecRPTracker.recede();
1891 }
1892 }
1893}
1894
1895/// A heuristic to colocate node sets that have the same set of
1896/// successors.
1897void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1898 unsigned Colocate = 0;
1899 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1900 NodeSet &N1 = NodeSets[i];
1901 SmallSetVector<SUnit *, 8> S1;
1902 if (N1.empty() || !succ_L(N1, S1))
1903 continue;
1904 for (int j = i + 1; j < e; ++j) {
1905 NodeSet &N2 = NodeSets[j];
1906 if (N1.compareRecMII(N2) != 0)
1907 continue;
1908 SmallSetVector<SUnit *, 8> S2;
1909 if (N2.empty() || !succ_L(N2, S2))
1910 continue;
1911 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1912 N1.setColocate(++Colocate);
1913 N2.setColocate(Colocate);
1914 break;
1915 }
1916 }
1917 }
1918}
1919
1920/// Check if the existing node-sets are profitable. If not, then ignore the
1921/// recurrent node-sets, and attempt to schedule all nodes together. This is
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001922/// a heuristic. If the MII is large and all the recurrent node-sets are small,
1923/// then it's best to try to schedule all instructions together instead of
1924/// starting with the recurrent node-sets.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001925void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1926 // Look for loops with a large MII.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001927 if (MII < 17)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001928 return;
1929 // Check if the node-set contains only a simple add recurrence.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001930 for (auto &NS : NodeSets) {
1931 if (NS.getRecMII() > 2)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001932 return;
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001933 if (NS.getMaxDepth() > MII)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001934 return;
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001935 }
1936 NodeSets.clear();
1937 DEBUG(dbgs() << "Clear recurrence node-sets\n");
1938 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001939}
1940
1941/// Add the nodes that do not belong to a recurrence set into groups
1942/// based upon connected componenets.
1943void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1944 SetVector<SUnit *> NodesAdded;
1945 SmallPtrSet<SUnit *, 8> Visited;
1946 // Add the nodes that are on a path between the previous node sets and
1947 // the current node set.
1948 for (NodeSet &I : NodeSets) {
1949 SmallSetVector<SUnit *, 8> N;
1950 // Add the nodes from the current node set to the previous node set.
1951 if (succ_L(I, N)) {
1952 SetVector<SUnit *> Path;
1953 for (SUnit *NI : N) {
1954 Visited.clear();
1955 computePath(NI, Path, NodesAdded, I, Visited);
1956 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001957 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001958 I.insert(Path.begin(), Path.end());
1959 }
1960 // Add the nodes from the previous node set to the current node set.
1961 N.clear();
1962 if (succ_L(NodesAdded, N)) {
1963 SetVector<SUnit *> Path;
1964 for (SUnit *NI : N) {
1965 Visited.clear();
1966 computePath(NI, Path, I, NodesAdded, Visited);
1967 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001968 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001969 I.insert(Path.begin(), Path.end());
1970 }
1971 NodesAdded.insert(I.begin(), I.end());
1972 }
1973
1974 // Create a new node set with the connected nodes of any successor of a node
1975 // in a recurrent set.
1976 NodeSet NewSet;
1977 SmallSetVector<SUnit *, 8> N;
1978 if (succ_L(NodesAdded, N))
1979 for (SUnit *I : N)
1980 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001981 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001982 NodeSets.push_back(NewSet);
1983
1984 // Create a new node set with the connected nodes of any predecessor of a node
1985 // in a recurrent set.
1986 NewSet.clear();
1987 if (pred_L(NodesAdded, N))
1988 for (SUnit *I : N)
1989 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001990 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001991 NodeSets.push_back(NewSet);
1992
1993 // Create new nodes sets with the connected nodes any any remaining node that
1994 // has no predecessor.
1995 for (unsigned i = 0; i < SUnits.size(); ++i) {
1996 SUnit *SU = &SUnits[i];
1997 if (NodesAdded.count(SU) == 0) {
1998 NewSet.clear();
1999 addConnectedNodes(SU, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00002000 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00002001 NodeSets.push_back(NewSet);
2002 }
2003 }
2004}
2005
2006/// Add the node to the set, and add all is its connected nodes to the set.
2007void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
2008 SetVector<SUnit *> &NodesAdded) {
2009 NewSet.insert(SU);
2010 NodesAdded.insert(SU);
2011 for (auto &SI : SU->Succs) {
2012 SUnit *Successor = SI.getSUnit();
2013 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
2014 addConnectedNodes(Successor, NewSet, NodesAdded);
2015 }
2016 for (auto &PI : SU->Preds) {
2017 SUnit *Predecessor = PI.getSUnit();
2018 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
2019 addConnectedNodes(Predecessor, NewSet, NodesAdded);
2020 }
2021}
2022
2023/// Return true if Set1 contains elements in Set2. The elements in common
2024/// are returned in a different container.
2025static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
2026 SmallSetVector<SUnit *, 8> &Result) {
2027 Result.clear();
2028 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
2029 SUnit *SU = Set1[i];
2030 if (Set2.count(SU) != 0)
2031 Result.insert(SU);
2032 }
2033 return !Result.empty();
2034}
2035
2036/// Merge the recurrence node sets that have the same initial node.
2037void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
2038 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2039 ++I) {
2040 NodeSet &NI = *I;
2041 for (NodeSetType::iterator J = I + 1; J != E;) {
2042 NodeSet &NJ = *J;
2043 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
2044 if (NJ.compareRecMII(NI) > 0)
2045 NI.setRecMII(NJ.getRecMII());
2046 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
2047 ++NII)
2048 I->insert(*NII);
2049 NodeSets.erase(J);
2050 E = NodeSets.end();
2051 } else {
2052 ++J;
2053 }
2054 }
2055 }
2056}
2057
2058/// Remove nodes that have been scheduled in previous NodeSets.
2059void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
2060 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2061 ++I)
2062 for (NodeSetType::iterator J = I + 1; J != E;) {
2063 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
2064
Eugene Zelenko32a40562017-09-11 23:00:48 +00002065 if (J->empty()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002066 NodeSets.erase(J);
2067 E = NodeSets.end();
2068 } else {
2069 ++J;
2070 }
2071 }
2072}
2073
Brendon Cahoon254f8892016-07-29 16:44:44 +00002074/// Compute an ordered list of the dependence graph nodes, which
2075/// indicates the order that the nodes will be scheduled. This is a
2076/// two-level algorithm. First, a partial order is created, which
2077/// consists of a list of sets ordered from highest to lowest priority.
2078void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2079 SmallSetVector<SUnit *, 8> R;
2080 NodeOrder.clear();
2081
2082 for (auto &Nodes : NodeSets) {
2083 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
2084 OrderKind Order;
2085 SmallSetVector<SUnit *, 8> N;
2086 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
2087 R.insert(N.begin(), N.end());
2088 Order = BottomUp;
2089 DEBUG(dbgs() << " Bottom up (preds) ");
2090 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
2091 R.insert(N.begin(), N.end());
2092 Order = TopDown;
2093 DEBUG(dbgs() << " Top down (succs) ");
2094 } else if (isIntersect(N, Nodes, R)) {
2095 // If some of the successors are in the existing node-set, then use the
2096 // top-down ordering.
2097 Order = TopDown;
2098 DEBUG(dbgs() << " Top down (intersect) ");
2099 } else if (NodeSets.size() == 1) {
2100 for (auto &N : Nodes)
2101 if (N->Succs.size() == 0)
2102 R.insert(N);
2103 Order = BottomUp;
2104 DEBUG(dbgs() << " Bottom up (all) ");
2105 } else {
2106 // Find the node with the highest ASAP.
2107 SUnit *maxASAP = nullptr;
2108 for (SUnit *SU : Nodes) {
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00002109 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
2110 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002111 maxASAP = SU;
2112 }
2113 R.insert(maxASAP);
2114 Order = BottomUp;
2115 DEBUG(dbgs() << " Bottom up (default) ");
2116 }
2117
2118 while (!R.empty()) {
2119 if (Order == TopDown) {
2120 // Choose the node with the maximum height. If more than one, choose
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00002121 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002122 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002123 while (!R.empty()) {
2124 SUnit *maxHeight = nullptr;
2125 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002126 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002127 maxHeight = I;
2128 else if (getHeight(I) == getHeight(maxHeight) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002129 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002130 maxHeight = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002131 else if (getHeight(I) == getHeight(maxHeight) &&
2132 getZeroLatencyHeight(I) ==
2133 getZeroLatencyHeight(maxHeight) &&
2134 getMOV(I) < getMOV(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002135 maxHeight = I;
2136 }
2137 NodeOrder.insert(maxHeight);
2138 DEBUG(dbgs() << maxHeight->NodeNum << " ");
2139 R.remove(maxHeight);
2140 for (const auto &I : maxHeight->Succs) {
2141 if (Nodes.count(I.getSUnit()) == 0)
2142 continue;
2143 if (NodeOrder.count(I.getSUnit()) != 0)
2144 continue;
2145 if (ignoreDependence(I, false))
2146 continue;
2147 R.insert(I.getSUnit());
2148 }
2149 // Back-edges are predecessors with an anti-dependence.
2150 for (const auto &I : maxHeight->Preds) {
2151 if (I.getKind() != SDep::Anti)
2152 continue;
2153 if (Nodes.count(I.getSUnit()) == 0)
2154 continue;
2155 if (NodeOrder.count(I.getSUnit()) != 0)
2156 continue;
2157 R.insert(I.getSUnit());
2158 }
2159 }
2160 Order = BottomUp;
2161 DEBUG(dbgs() << "\n Switching order to bottom up ");
2162 SmallSetVector<SUnit *, 8> N;
2163 if (pred_L(NodeOrder, N, &Nodes))
2164 R.insert(N.begin(), N.end());
2165 } else {
2166 // Choose the node with the maximum depth. If more than one, choose
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002167 // the node with the maximum ZeroLatencyDepth. If still more than one,
2168 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002169 while (!R.empty()) {
2170 SUnit *maxDepth = nullptr;
2171 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002172 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002173 maxDepth = I;
2174 else if (getDepth(I) == getDepth(maxDepth) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002175 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002176 maxDepth = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002177 else if (getDepth(I) == getDepth(maxDepth) &&
2178 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
2179 getMOV(I) < getMOV(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002180 maxDepth = I;
2181 }
2182 NodeOrder.insert(maxDepth);
2183 DEBUG(dbgs() << maxDepth->NodeNum << " ");
2184 R.remove(maxDepth);
2185 if (Nodes.isExceedSU(maxDepth)) {
2186 Order = TopDown;
2187 R.clear();
2188 R.insert(Nodes.getNode(0));
2189 break;
2190 }
2191 for (const auto &I : maxDepth->Preds) {
2192 if (Nodes.count(I.getSUnit()) == 0)
2193 continue;
2194 if (NodeOrder.count(I.getSUnit()) != 0)
2195 continue;
Brendon Cahoon254f8892016-07-29 16:44:44 +00002196 R.insert(I.getSUnit());
2197 }
2198 // Back-edges are predecessors with an anti-dependence.
2199 for (const auto &I : maxDepth->Succs) {
2200 if (I.getKind() != SDep::Anti)
2201 continue;
2202 if (Nodes.count(I.getSUnit()) == 0)
2203 continue;
2204 if (NodeOrder.count(I.getSUnit()) != 0)
2205 continue;
2206 R.insert(I.getSUnit());
2207 }
2208 }
2209 Order = TopDown;
2210 DEBUG(dbgs() << "\n Switching order to top down ");
2211 SmallSetVector<SUnit *, 8> N;
2212 if (succ_L(NodeOrder, N, &Nodes))
2213 R.insert(N.begin(), N.end());
2214 }
2215 }
2216 DEBUG(dbgs() << "\nDone with Nodeset\n");
2217 }
2218
2219 DEBUG({
2220 dbgs() << "Node order: ";
2221 for (SUnit *I : NodeOrder)
2222 dbgs() << " " << I->NodeNum << " ";
2223 dbgs() << "\n";
2224 });
2225}
2226
2227/// Process the nodes in the computed order and create the pipelined schedule
2228/// of the instructions, if possible. Return true if a schedule is found.
2229bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00002230 if (NodeOrder.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00002231 return false;
2232
2233 bool scheduleFound = false;
2234 // Keep increasing II until a valid schedule is found.
2235 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2236 Schedule.reset();
2237 Schedule.setInitiationInterval(II);
2238 DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2239
2240 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2241 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2242 do {
2243 SUnit *SU = *NI;
2244
2245 // Compute the schedule time for the instruction, which is based
2246 // upon the scheduled time for any predecessors/successors.
2247 int EarlyStart = INT_MIN;
2248 int LateStart = INT_MAX;
2249 // These values are set when the size of the schedule window is limited
2250 // due to chain dependences.
2251 int SchedEnd = INT_MAX;
2252 int SchedStart = INT_MIN;
2253 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2254 II, this);
2255 DEBUG({
2256 dbgs() << "Inst (" << SU->NodeNum << ") ";
2257 SU->getInstr()->dump();
2258 dbgs() << "\n";
2259 });
2260 DEBUG({
2261 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2262 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2263 });
2264
2265 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2266 SchedStart > LateStart)
2267 scheduleFound = false;
2268 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2269 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2270 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2271 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2272 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2273 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2274 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2275 SchedEnd =
2276 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2277 // When scheduling a Phi it is better to start at the late cycle and go
2278 // backwards. The default order may insert the Phi too far away from
2279 // its first dependence.
2280 if (SU->getInstr()->isPHI())
2281 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2282 else
2283 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2284 } else {
2285 int FirstCycle = Schedule.getFirstCycle();
2286 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2287 FirstCycle + getASAP(SU) + II - 1, II);
2288 }
2289 // Even if we find a schedule, make sure the schedule doesn't exceed the
2290 // allowable number of stages. We keep trying if this happens.
2291 if (scheduleFound)
2292 if (SwpMaxStages > -1 &&
2293 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2294 scheduleFound = false;
2295
2296 DEBUG({
2297 if (!scheduleFound)
2298 dbgs() << "\tCan't schedule\n";
2299 });
2300 } while (++NI != NE && scheduleFound);
2301
2302 // If a schedule is found, check if it is a valid schedule too.
2303 if (scheduleFound)
2304 scheduleFound = Schedule.isValidSchedule(this);
2305 }
2306
2307 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
2308
2309 if (scheduleFound)
2310 Schedule.finalizeSchedule(this);
2311 else
2312 Schedule.reset();
2313
2314 return scheduleFound && Schedule.getMaxStageCount() > 0;
2315}
2316
2317/// Given a schedule for the loop, generate a new version of the loop,
2318/// and replace the old version. This function generates a prolog
2319/// that contains the initial iterations in the pipeline, and kernel
2320/// loop, and the epilogue that contains the code for the final
2321/// iterations.
2322void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2323 // Create a new basic block for the kernel and add it to the CFG.
2324 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2325
2326 unsigned MaxStageCount = Schedule.getMaxStageCount();
2327
2328 // Remember the registers that are used in different stages. The index is
2329 // the iteration, or stage, that the instruction is scheduled in. This is
2330 // a map between register names in the orignal block and the names created
2331 // in each stage of the pipelined loop.
2332 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2333 InstrMapTy InstrMap;
2334
2335 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2336 // Generate the prolog instructions that set up the pipeline.
2337 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2338 MF.insert(BB->getIterator(), KernelBB);
2339
2340 // Rearrange the instructions to generate the new, pipelined loop,
2341 // and update register names as needed.
2342 for (int Cycle = Schedule.getFirstCycle(),
2343 LastCycle = Schedule.getFinalCycle();
2344 Cycle <= LastCycle; ++Cycle) {
2345 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2346 // This inner loop schedules each instruction in the cycle.
2347 for (SUnit *CI : CycleInstrs) {
2348 if (CI->getInstr()->isPHI())
2349 continue;
2350 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2351 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2352 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2353 KernelBB->push_back(NewMI);
2354 InstrMap[NewMI] = CI->getInstr();
2355 }
2356 }
2357
2358 // Copy any terminator instructions to the new kernel, and update
2359 // names as needed.
2360 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2361 E = BB->instr_end();
2362 I != E; ++I) {
2363 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2364 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2365 KernelBB->push_back(NewMI);
2366 InstrMap[NewMI] = &*I;
2367 }
2368
2369 KernelBB->transferSuccessors(BB);
2370 KernelBB->replaceSuccessor(BB, KernelBB);
2371
2372 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2373 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2374 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2375 InstrMap, MaxStageCount, MaxStageCount, false);
2376
2377 DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2378
2379 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2380 // Generate the epilog instructions to complete the pipeline.
2381 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2382 PrologBBs);
2383
2384 // We need this step because the register allocation doesn't handle some
2385 // situations well, so we insert copies to help out.
2386 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2387
2388 // Remove dead instructions due to loop induction variables.
2389 removeDeadInstructions(KernelBB, EpilogBBs);
2390
2391 // Add branches between prolog and epilog blocks.
2392 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2393
2394 // Remove the original loop since it's no longer referenced.
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002395 for (auto &I : *BB)
2396 LIS.RemoveMachineInstrFromMaps(I);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002397 BB->clear();
2398 BB->eraseFromParent();
2399
2400 delete[] VRMap;
2401}
2402
2403/// Generate the pipeline prolog code.
2404void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2405 MachineBasicBlock *KernelBB,
2406 ValueMapTy *VRMap,
2407 MBBVectorTy &PrologBBs) {
2408 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
Eugene Zelenko32a40562017-09-11 23:00:48 +00002409 assert(PreheaderBB != nullptr &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002410 "Need to add code to handle loops w/o preheader");
2411 MachineBasicBlock *PredBB = PreheaderBB;
2412 InstrMapTy InstrMap;
2413
2414 // Generate a basic block for each stage, not including the last stage,
2415 // which will be generated in the kernel. Each basic block may contain
2416 // instructions from multiple stages/iterations.
2417 for (unsigned i = 0; i < LastStage; ++i) {
2418 // Create and insert the prolog basic block prior to the original loop
2419 // basic block. The original loop is removed later.
2420 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2421 PrologBBs.push_back(NewBB);
2422 MF.insert(BB->getIterator(), NewBB);
2423 NewBB->transferSuccessors(PredBB);
2424 PredBB->addSuccessor(NewBB);
2425 PredBB = NewBB;
2426
2427 // Generate instructions for each appropriate stage. Process instructions
2428 // in original program order.
2429 for (int StageNum = i; StageNum >= 0; --StageNum) {
2430 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2431 BBE = BB->getFirstTerminator();
2432 BBI != BBE; ++BBI) {
2433 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2434 if (BBI->isPHI())
2435 continue;
2436 MachineInstr *NewMI =
2437 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2438 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2439 VRMap);
2440 NewBB->push_back(NewMI);
2441 InstrMap[NewMI] = &*BBI;
2442 }
2443 }
2444 }
2445 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2446 DEBUG({
2447 dbgs() << "prolog:\n";
2448 NewBB->dump();
2449 });
2450 }
2451
2452 PredBB->replaceSuccessor(BB, KernelBB);
2453
2454 // Check if we need to remove the branch from the preheader to the original
2455 // loop, and replace it with a branch to the new loop.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002456 unsigned numBranches = TII->removeBranch(*PreheaderBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002457 if (numBranches) {
2458 SmallVector<MachineOperand, 0> Cond;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002459 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002460 }
2461}
2462
2463/// Generate the pipeline epilog code. The epilog code finishes the iterations
2464/// that were started in either the prolog or the kernel. We create a basic
2465/// block for each stage that needs to complete.
2466void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2467 MachineBasicBlock *KernelBB,
2468 ValueMapTy *VRMap,
2469 MBBVectorTy &EpilogBBs,
2470 MBBVectorTy &PrologBBs) {
2471 // We need to change the branch from the kernel to the first epilog block, so
2472 // this call to analyze branch uses the kernel rather than the original BB.
2473 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2474 SmallVector<MachineOperand, 4> Cond;
2475 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2476 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2477 if (checkBranch)
2478 return;
2479
2480 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2481 if (*LoopExitI == KernelBB)
2482 ++LoopExitI;
2483 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2484 MachineBasicBlock *LoopExitBB = *LoopExitI;
2485
2486 MachineBasicBlock *PredBB = KernelBB;
2487 MachineBasicBlock *EpilogStart = LoopExitBB;
2488 InstrMapTy InstrMap;
2489
2490 // Generate a basic block for each stage, not including the last stage,
2491 // which was generated for the kernel. Each basic block may contain
2492 // instructions from multiple stages/iterations.
2493 int EpilogStage = LastStage + 1;
2494 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2495 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2496 EpilogBBs.push_back(NewBB);
2497 MF.insert(BB->getIterator(), NewBB);
2498
2499 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2500 NewBB->addSuccessor(LoopExitBB);
2501
2502 if (EpilogStart == LoopExitBB)
2503 EpilogStart = NewBB;
2504
2505 // Add instructions to the epilog depending on the current block.
2506 // Process instructions in original program order.
2507 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2508 for (auto &BBI : *BB) {
2509 if (BBI.isPHI())
2510 continue;
2511 MachineInstr *In = &BBI;
2512 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
Krzysztof Parzyszek785b6ce2018-03-26 15:45:55 +00002513 // Instructions with memoperands in the epilog are updated with
2514 // conservative values.
2515 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002516 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2517 NewBB->push_back(NewMI);
2518 InstrMap[NewMI] = In;
2519 }
2520 }
2521 }
2522 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2523 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2524 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2525 InstrMap, LastStage, EpilogStage, i == 1);
2526 PredBB = NewBB;
2527
2528 DEBUG({
2529 dbgs() << "epilog:\n";
2530 NewBB->dump();
2531 });
2532 }
2533
2534 // Fix any Phi nodes in the loop exit block.
2535 for (MachineInstr &MI : *LoopExitBB) {
2536 if (!MI.isPHI())
2537 break;
2538 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2539 MachineOperand &MO = MI.getOperand(i);
2540 if (MO.getMBB() == BB)
2541 MO.setMBB(PredBB);
2542 }
2543 }
2544
2545 // Create a branch to the new epilog from the kernel.
2546 // Remove the original branch and add a new branch to the epilog.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002547 TII->removeBranch(*KernelBB);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002548 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002549 // Add a branch to the loop exit.
2550 if (EpilogBBs.size() > 0) {
2551 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2552 SmallVector<MachineOperand, 4> Cond1;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002553 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002554 }
2555}
2556
2557/// Replace all uses of FromReg that appear outside the specified
2558/// basic block with ToReg.
2559static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2560 MachineBasicBlock *MBB,
2561 MachineRegisterInfo &MRI,
2562 LiveIntervals &LIS) {
2563 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2564 E = MRI.use_end();
2565 I != E;) {
2566 MachineOperand &O = *I;
2567 ++I;
2568 if (O.getParent()->getParent() != MBB)
2569 O.setReg(ToReg);
2570 }
2571 if (!LIS.hasInterval(ToReg))
2572 LIS.createEmptyInterval(ToReg);
2573}
2574
2575/// Return true if the register has a use that occurs outside the
2576/// specified loop.
2577static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2578 MachineRegisterInfo &MRI) {
2579 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2580 E = MRI.use_end();
2581 I != E; ++I)
2582 if (I->getParent()->getParent() != BB)
2583 return true;
2584 return false;
2585}
2586
2587/// Generate Phis for the specific block in the generated pipelined code.
2588/// This function looks at the Phis from the original code to guide the
2589/// creation of new Phis.
2590void SwingSchedulerDAG::generateExistingPhis(
2591 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2592 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2593 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2594 bool IsLast) {
Simon Pilgrim6bdc7552017-03-31 10:59:37 +00002595 // Compute the stage number for the initial value of the Phi, which
Brendon Cahoon254f8892016-07-29 16:44:44 +00002596 // comes from the prolog. The prolog to use depends on to which kernel/
2597 // epilog that we're adding the Phi.
2598 unsigned PrologStage = 0;
2599 unsigned PrevStage = 0;
2600 bool InKernel = (LastStageNum == CurStageNum);
2601 if (InKernel) {
2602 PrologStage = LastStageNum - 1;
2603 PrevStage = CurStageNum;
2604 } else {
2605 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2606 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2607 }
2608
2609 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2610 BBE = BB->getFirstNonPHI();
2611 BBI != BBE; ++BBI) {
2612 unsigned Def = BBI->getOperand(0).getReg();
2613
2614 unsigned InitVal = 0;
2615 unsigned LoopVal = 0;
2616 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2617
2618 unsigned PhiOp1 = 0;
2619 // The Phi value from the loop body typically is defined in the loop, but
2620 // not always. So, we need to check if the value is defined in the loop.
2621 unsigned PhiOp2 = LoopVal;
2622 if (VRMap[LastStageNum].count(LoopVal))
2623 PhiOp2 = VRMap[LastStageNum][LoopVal];
2624
2625 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2626 int LoopValStage =
2627 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2628 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2629 if (NumStages == 0) {
2630 // We don't need to generate a Phi anymore, but we need to rename any uses
2631 // of the Phi value.
2632 unsigned NewReg = VRMap[PrevStage][LoopVal];
2633 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
Krzysztof Parzyszek16e66f52018-03-26 16:41:36 +00002634 Def, InitVal, NewReg);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002635 if (VRMap[CurStageNum].count(LoopVal))
2636 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2637 }
2638 // Adjust the number of Phis needed depending on the number of prologs left,
Krzysztof Parzyszek3f72a6b2018-03-26 16:37:55 +00002639 // and the distance from where the Phi is first scheduled. The number of
2640 // Phis cannot exceed the number of prolog stages. Each stage can
2641 // potentially define two values.
2642 unsigned MaxPhis = PrologStage + 2;
2643 if (!InKernel && (int)PrologStage <= LoopValStage)
2644 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
2645 unsigned NumPhis = std::min(NumStages, MaxPhis);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002646
2647 unsigned NewReg = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00002648 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2649 // In the epilog, we may need to look back one stage to get the correct
2650 // Phi name because the epilog and prolog blocks execute the same stage.
2651 // The correct name is from the previous block only when the Phi has
2652 // been completely scheduled prior to the epilog, and Phi value is not
2653 // needed in multiple stages.
2654 int StageDiff = 0;
2655 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2656 NumPhis == 1)
2657 StageDiff = 1;
2658 // Adjust the computations below when the phi and the loop definition
2659 // are scheduled in different stages.
2660 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2661 StageDiff = StageScheduled - LoopValStage;
2662 for (unsigned np = 0; np < NumPhis; ++np) {
2663 // If the Phi hasn't been scheduled, then use the initial Phi operand
2664 // value. Otherwise, use the scheduled version of the instruction. This
2665 // is a little complicated when a Phi references another Phi.
2666 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2667 PhiOp1 = InitVal;
2668 // Check if the Phi has already been scheduled in a prolog stage.
2669 else if (PrologStage >= AccessStage + StageDiff + np &&
2670 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2671 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2672 // Check if the Phi has already been scheduled, but the loop intruction
2673 // is either another Phi, or doesn't occur in the loop.
2674 else if (PrologStage >= AccessStage + StageDiff + np) {
2675 // If the Phi references another Phi, we need to examine the other
2676 // Phi to get the correct value.
2677 PhiOp1 = LoopVal;
2678 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2679 int Indirects = 1;
2680 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2681 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2682 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2683 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2684 else
2685 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2686 InstOp1 = MRI.getVRegDef(PhiOp1);
2687 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2688 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2689 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2690 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2691 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2692 break;
2693 }
2694 ++Indirects;
2695 }
2696 } else
2697 PhiOp1 = InitVal;
2698 // If this references a generated Phi in the kernel, get the Phi operand
2699 // from the incoming block.
2700 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2701 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2702 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2703
2704 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2705 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2706 // In the epilog, a map lookup is needed to get the value from the kernel,
2707 // or previous epilog block. How is does this depends on if the
2708 // instruction is scheduled in the previous block.
2709 if (!InKernel) {
2710 int StageDiffAdj = 0;
2711 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2712 StageDiffAdj = StageScheduled - LoopValStage;
2713 // Use the loop value defined in the kernel, unless the kernel
2714 // contains the last definition of the Phi.
2715 if (np == 0 && PrevStage == LastStageNum &&
2716 (StageScheduled != 0 || LoopValStage != 0) &&
2717 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2718 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2719 // Use the value defined by the Phi. We add one because we switch
2720 // from looking at the loop value to the Phi definition.
2721 else if (np > 0 && PrevStage == LastStageNum &&
2722 VRMap[PrevStage - np + 1].count(Def))
2723 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2724 // Use the loop value defined in the kernel.
2725 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2726 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2727 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2728 // Use the value defined by the Phi, unless we're generating the first
2729 // epilog and the Phi refers to a Phi in a different stage.
2730 else if (VRMap[PrevStage - np].count(Def) &&
2731 (!LoopDefIsPhi || PrevStage != LastStageNum))
2732 PhiOp2 = VRMap[PrevStage - np][Def];
2733 }
2734
2735 // Check if we can reuse an existing Phi. This occurs when a Phi
2736 // references another Phi, and the other Phi is scheduled in an
2737 // earlier stage. We can try to reuse an existing Phi up until the last
2738 // stage of the current Phi.
Krzysztof Parzyszek55cb49862018-03-26 16:10:48 +00002739 if (LoopDefIsPhi && (int)(PrologStage - np) >= StageScheduled) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002740 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2741 int StageDiff = (StageScheduled - LoopValStage);
2742 LVNumStages -= StageDiff;
Krzysztof Parzyszek3a0a15a2018-03-26 15:58:16 +00002743 // Make sure the loop value Phi has been processed already.
2744 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002745 NewReg = PhiOp2;
2746 unsigned ReuseStage = CurStageNum;
2747 if (Schedule.isLoopCarried(this, *PhiInst))
2748 ReuseStage -= LVNumStages;
2749 // Check if the Phi to reuse has been generated yet. If not, then
2750 // there is nothing to reuse.
Krzysztof Parzyszek55cb49862018-03-26 16:10:48 +00002751 if (VRMap[ReuseStage - np].count(LoopVal)) {
2752 NewReg = VRMap[ReuseStage - np][LoopVal];
Brendon Cahoon254f8892016-07-29 16:44:44 +00002753
2754 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2755 &*BBI, Def, NewReg);
2756 // Update the map with the new Phi name.
2757 VRMap[CurStageNum - np][Def] = NewReg;
2758 PhiOp2 = NewReg;
2759 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2760 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2761
2762 if (IsLast && np == NumPhis - 1)
2763 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2764 continue;
2765 }
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00002766 } else if (InKernel && StageDiff > 0 &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002767 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2768 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2769 }
2770
2771 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2772 NewReg = MRI.createVirtualRegister(RC);
2773
2774 MachineInstrBuilder NewPhi =
2775 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2776 TII->get(TargetOpcode::PHI), NewReg);
2777 NewPhi.addReg(PhiOp1).addMBB(BB1);
2778 NewPhi.addReg(PhiOp2).addMBB(BB2);
2779 if (np == 0)
2780 InstrMap[NewPhi] = &*BBI;
2781
2782 // We define the Phis after creating the new pipelined code, so
2783 // we need to rename the Phi values in scheduled instructions.
2784
2785 unsigned PrevReg = 0;
2786 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2787 PrevReg = VRMap[PrevStage - np][LoopVal];
2788 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2789 Def, NewReg, PrevReg);
2790 // If the Phi has been scheduled, use the new name for rewriting.
2791 if (VRMap[CurStageNum - np].count(Def)) {
2792 unsigned R = VRMap[CurStageNum - np][Def];
2793 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2794 R, NewReg);
2795 }
2796
2797 // Check if we need to rename any uses that occurs after the loop. The
2798 // register to replace depends on whether the Phi is scheduled in the
2799 // epilog.
2800 if (IsLast && np == NumPhis - 1)
2801 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2802
2803 // In the kernel, a dependent Phi uses the value from this Phi.
2804 if (InKernel)
2805 PhiOp2 = NewReg;
2806
2807 // Update the map with the new Phi name.
2808 VRMap[CurStageNum - np][Def] = NewReg;
2809 }
2810
2811 while (NumPhis++ < NumStages) {
2812 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2813 &*BBI, Def, NewReg, 0);
2814 }
2815
2816 // Check if we need to rename a Phi that has been eliminated due to
2817 // scheduling.
2818 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2819 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2820 }
2821}
2822
2823/// Generate Phis for the specified block in the generated pipelined code.
2824/// These are new Phis needed because the definition is scheduled after the
2825/// use in the pipelened sequence.
2826void SwingSchedulerDAG::generatePhis(
2827 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2828 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2829 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2830 bool IsLast) {
2831 // Compute the stage number that contains the initial Phi value, and
2832 // the Phi from the previous stage.
2833 unsigned PrologStage = 0;
2834 unsigned PrevStage = 0;
2835 unsigned StageDiff = CurStageNum - LastStageNum;
2836 bool InKernel = (StageDiff == 0);
2837 if (InKernel) {
2838 PrologStage = LastStageNum - 1;
2839 PrevStage = CurStageNum;
2840 } else {
2841 PrologStage = LastStageNum - StageDiff;
2842 PrevStage = LastStageNum + StageDiff - 1;
2843 }
2844
2845 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2846 BBE = BB->instr_end();
2847 BBI != BBE; ++BBI) {
2848 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2849 MachineOperand &MO = BBI->getOperand(i);
2850 if (!MO.isReg() || !MO.isDef() ||
2851 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2852 continue;
2853
2854 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2855 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2856 unsigned Def = MO.getReg();
2857 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2858 // An instruction scheduled in stage 0 and is used after the loop
2859 // requires a phi in the epilog for the last definition from either
2860 // the kernel or prolog.
2861 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2862 hasUseAfterLoop(Def, BB, MRI))
2863 NumPhis = 1;
2864 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2865 continue;
2866
2867 unsigned PhiOp2 = VRMap[PrevStage][Def];
2868 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2869 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2870 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2871 // The number of Phis can't exceed the number of prolog stages. The
2872 // prolog stage number is zero based.
2873 if (NumPhis > PrologStage + 1 - StageScheduled)
2874 NumPhis = PrologStage + 1 - StageScheduled;
2875 for (unsigned np = 0; np < NumPhis; ++np) {
2876 unsigned PhiOp1 = VRMap[PrologStage][Def];
2877 if (np <= PrologStage)
2878 PhiOp1 = VRMap[PrologStage - np][Def];
2879 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2880 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2881 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2882 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2883 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2884 }
2885 if (!InKernel)
2886 PhiOp2 = VRMap[PrevStage - np][Def];
2887
2888 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2889 unsigned NewReg = MRI.createVirtualRegister(RC);
2890
2891 MachineInstrBuilder NewPhi =
2892 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2893 TII->get(TargetOpcode::PHI), NewReg);
2894 NewPhi.addReg(PhiOp1).addMBB(BB1);
2895 NewPhi.addReg(PhiOp2).addMBB(BB2);
2896 if (np == 0)
2897 InstrMap[NewPhi] = &*BBI;
2898
2899 // Rewrite uses and update the map. The actions depend upon whether
2900 // we generating code for the kernel or epilog blocks.
2901 if (InKernel) {
2902 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2903 &*BBI, PhiOp1, NewReg);
2904 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2905 &*BBI, PhiOp2, NewReg);
2906
2907 PhiOp2 = NewReg;
2908 VRMap[PrevStage - np - 1][Def] = NewReg;
2909 } else {
2910 VRMap[CurStageNum - np][Def] = NewReg;
2911 if (np == NumPhis - 1)
2912 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2913 &*BBI, Def, NewReg);
2914 }
2915 if (IsLast && np == NumPhis - 1)
2916 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2917 }
2918 }
2919 }
2920}
2921
2922/// Remove instructions that generate values with no uses.
2923/// Typically, these are induction variable operations that generate values
2924/// used in the loop itself. A dead instruction has a definition with
2925/// no uses, or uses that occur in the original loop only.
2926void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2927 MBBVectorTy &EpilogBBs) {
2928 // For each epilog block, check that the value defined by each instruction
2929 // is used. If not, delete it.
2930 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2931 MBE = EpilogBBs.rend();
2932 MBB != MBE; ++MBB)
2933 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2934 ME = (*MBB)->instr_rend();
2935 MI != ME;) {
2936 // From DeadMachineInstructionElem. Don't delete inline assembly.
2937 if (MI->isInlineAsm()) {
2938 ++MI;
2939 continue;
2940 }
2941 bool SawStore = false;
2942 // Check if it's safe to remove the instruction due to side effects.
2943 // We can, and want to, remove Phis here.
2944 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2945 ++MI;
2946 continue;
2947 }
2948 bool used = true;
2949 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2950 MOE = MI->operands_end();
2951 MOI != MOE; ++MOI) {
2952 if (!MOI->isReg() || !MOI->isDef())
2953 continue;
2954 unsigned reg = MOI->getReg();
Krzysztof Parzyszekb9b75b82018-03-26 15:53:23 +00002955 // Assume physical registers are used, unless they are marked dead.
2956 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
2957 used = !MOI->isDead();
2958 if (used)
2959 break;
2960 continue;
2961 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00002962 unsigned realUses = 0;
2963 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2964 EI = MRI.use_end();
2965 UI != EI; ++UI) {
2966 // Check if there are any uses that occur only in the original
2967 // loop. If so, that's not a real use.
2968 if (UI->getParent()->getParent() != BB) {
2969 realUses++;
2970 used = true;
2971 break;
2972 }
2973 }
2974 if (realUses > 0)
2975 break;
2976 used = false;
2977 }
2978 if (!used) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002979 LIS.RemoveMachineInstrFromMaps(*MI);
Duncan P. N. Exon Smith5c001c32016-08-30 00:13:12 +00002980 MI++->eraseFromParent();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002981 continue;
2982 }
2983 ++MI;
2984 }
2985 // In the kernel block, check if we can remove a Phi that generates a value
2986 // used in an instruction removed in the epilog block.
2987 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2988 BBE = KernelBB->getFirstNonPHI();
2989 BBI != BBE;) {
2990 MachineInstr *MI = &*BBI;
2991 ++BBI;
2992 unsigned reg = MI->getOperand(0).getReg();
2993 if (MRI.use_begin(reg) == MRI.use_end()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002994 LIS.RemoveMachineInstrFromMaps(*MI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002995 MI->eraseFromParent();
2996 }
2997 }
2998}
2999
3000/// For loop carried definitions, we split the lifetime of a virtual register
3001/// that has uses past the definition in the next iteration. A copy with a new
3002/// virtual register is inserted before the definition, which helps with
3003/// generating a better register assignment.
3004///
3005/// v1 = phi(a, v2) v1 = phi(a, v2)
3006/// v2 = phi(b, v3) v2 = phi(b, v3)
3007/// v3 = .. v4 = copy v1
3008/// .. = V1 v3 = ..
3009/// .. = v4
3010void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
3011 MBBVectorTy &EpilogBBs,
3012 SMSchedule &Schedule) {
3013 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Bob Wilson90ecac02018-01-04 02:58:15 +00003014 for (auto &PHI : KernelBB->phis()) {
3015 unsigned Def = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003016 // Check for any Phi definition that used as an operand of another Phi
3017 // in the same block.
3018 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
3019 E = MRI.use_instr_end();
3020 I != E; ++I) {
3021 if (I->isPHI() && I->getParent() == KernelBB) {
3022 // Get the loop carried definition.
Bob Wilson90ecac02018-01-04 02:58:15 +00003023 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003024 if (!LCDef)
3025 continue;
3026 MachineInstr *MI = MRI.getVRegDef(LCDef);
3027 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
3028 continue;
3029 // Search through the rest of the block looking for uses of the Phi
3030 // definition. If one occurs, then split the lifetime.
3031 unsigned SplitReg = 0;
3032 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
3033 KernelBB->instr_end()))
3034 if (BBJ.readsRegister(Def)) {
3035 // We split the lifetime when we find the first use.
3036 if (SplitReg == 0) {
3037 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
3038 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
3039 TII->get(TargetOpcode::COPY), SplitReg)
3040 .addReg(Def);
3041 }
3042 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
3043 }
3044 if (!SplitReg)
3045 continue;
3046 // Search through each of the epilog blocks for any uses to be renamed.
3047 for (auto &Epilog : EpilogBBs)
3048 for (auto &I : *Epilog)
3049 if (I.readsRegister(Def))
3050 I.substituteRegister(Def, SplitReg, 0, *TRI);
3051 break;
3052 }
3053 }
3054 }
3055}
3056
3057/// Remove the incoming block from the Phis in a basic block.
3058static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
3059 for (MachineInstr &MI : *BB) {
3060 if (!MI.isPHI())
3061 break;
3062 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
3063 if (MI.getOperand(i + 1).getMBB() == Incoming) {
3064 MI.RemoveOperand(i + 1);
3065 MI.RemoveOperand(i);
3066 break;
3067 }
3068 }
3069}
3070
3071/// Create branches from each prolog basic block to the appropriate epilog
3072/// block. These edges are needed if the loop ends before reaching the
3073/// kernel.
3074void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
3075 MachineBasicBlock *KernelBB,
3076 MBBVectorTy &EpilogBBs,
3077 SMSchedule &Schedule, ValueMapTy *VRMap) {
3078 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
3079 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
3080 MachineInstr *Cmp = Pass.LI.LoopCompare;
3081 MachineBasicBlock *LastPro = KernelBB;
3082 MachineBasicBlock *LastEpi = KernelBB;
3083
3084 // Start from the blocks connected to the kernel and work "out"
3085 // to the first prolog and the last epilog blocks.
3086 SmallVector<MachineInstr *, 4> PrevInsts;
3087 unsigned MaxIter = PrologBBs.size() - 1;
3088 unsigned LC = UINT_MAX;
3089 unsigned LCMin = UINT_MAX;
3090 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
3091 // Add branches to the prolog that go to the corresponding
3092 // epilog, and the fall-thru prolog/kernel block.
3093 MachineBasicBlock *Prolog = PrologBBs[j];
3094 MachineBasicBlock *Epilog = EpilogBBs[i];
3095 // We've executed one iteration, so decrement the loop count and check for
3096 // the loop end.
3097 SmallVector<MachineOperand, 4> Cond;
3098 // Check if the LOOP0 has already been removed. If so, then there is no need
3099 // to reduce the trip count.
3100 if (LC != 0)
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003101 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003102 MaxIter);
3103
3104 // Record the value of the first trip count, which is used to determine if
3105 // branches and blocks can be removed for constant trip counts.
3106 if (LCMin == UINT_MAX)
3107 LCMin = LC;
3108
3109 unsigned numAdded = 0;
3110 if (TargetRegisterInfo::isVirtualRegister(LC)) {
3111 Prolog->addSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003112 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003113 } else if (j >= LCMin) {
3114 Prolog->addSuccessor(Epilog);
3115 Prolog->removeSuccessor(LastPro);
3116 LastEpi->removeSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003117 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003118 removePhis(Epilog, LastEpi);
3119 // Remove the blocks that are no longer referenced.
3120 if (LastPro != LastEpi) {
3121 LastEpi->clear();
3122 LastEpi->eraseFromParent();
3123 }
3124 LastPro->clear();
3125 LastPro->eraseFromParent();
3126 } else {
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003127 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003128 removePhis(Epilog, Prolog);
3129 }
3130 LastPro = Prolog;
3131 LastEpi = Epilog;
3132 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3133 E = Prolog->instr_rend();
3134 I != E && numAdded > 0; ++I, --numAdded)
3135 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3136 }
3137}
3138
3139/// Return true if we can compute the amount the instruction changes
3140/// during each iteration. Set Delta to the amount of the change.
3141bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3142 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3143 unsigned BaseReg;
3144 int64_t Offset;
3145 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3146 return false;
3147
3148 MachineRegisterInfo &MRI = MF.getRegInfo();
3149 // Check if there is a Phi. If so, get the definition in the loop.
3150 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3151 if (BaseDef && BaseDef->isPHI()) {
3152 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3153 BaseDef = MRI.getVRegDef(BaseReg);
3154 }
3155 if (!BaseDef)
3156 return false;
3157
3158 int D = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003159 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003160 return false;
3161
3162 Delta = D;
3163 return true;
3164}
3165
3166/// Update the memory operand with a new offset when the pipeliner
Justin Lebarcf56e922016-08-12 23:58:19 +00003167/// generates a new copy of the instruction that refers to a
Brendon Cahoon254f8892016-07-29 16:44:44 +00003168/// different memory location.
3169void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3170 MachineInstr &OldMI, unsigned Num) {
3171 if (Num == 0)
3172 return;
3173 // If the instruction has memory operands, then adjust the offset
3174 // when the instruction appears in different stages.
3175 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3176 if (NumRefs == 0)
3177 return;
3178 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3179 unsigned Refs = 0;
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003180 for (MachineMemOperand *MMO : NewMI.memoperands()) {
Justin Lebaradbf09e2016-09-11 01:38:58 +00003181 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
3182 (!MMO->getValue())) {
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003183 NewMemRefs[Refs++] = MMO;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003184 continue;
3185 }
3186 unsigned Delta;
Krzysztof Parzyszek785b6ce2018-03-26 15:45:55 +00003187 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003188 int64_t AdjOffset = Delta * Num;
3189 NewMemRefs[Refs++] =
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003190 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
Krzysztof Parzyszek2d790172018-02-27 22:40:52 +00003191 } else {
3192 NewMI.dropMemRefs();
3193 return;
3194 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003195 }
3196 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3197}
3198
3199/// Clone the instruction for the new pipelined loop and update the
3200/// memory operands, if needed.
3201MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3202 unsigned CurStageNum,
3203 unsigned InstStageNum) {
3204 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3205 // Check for tied operands in inline asm instructions. This should be handled
3206 // elsewhere, but I'm not sure of the best solution.
3207 if (OldMI->isInlineAsm())
3208 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3209 const auto &MO = OldMI->getOperand(i);
3210 if (MO.isReg() && MO.isUse())
3211 break;
3212 unsigned UseIdx;
3213 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3214 NewMI->tieOperands(i, UseIdx);
3215 }
3216 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3217 return NewMI;
3218}
3219
3220/// Clone the instruction for the new pipelined loop. If needed, this
3221/// function updates the instruction using the values saved in the
3222/// InstrChanges structure.
3223MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3224 unsigned CurStageNum,
3225 unsigned InstStageNum,
3226 SMSchedule &Schedule) {
3227 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3228 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3229 InstrChanges.find(getSUnit(OldMI));
3230 if (It != InstrChanges.end()) {
3231 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3232 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003233 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003234 return nullptr;
3235 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3236 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3237 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3238 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3239 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3240 }
3241 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3242 return NewMI;
3243}
3244
3245/// Update the machine instruction with new virtual registers. This
3246/// function may change the defintions and/or uses.
3247void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3248 unsigned CurStageNum,
3249 unsigned InstrStageNum,
3250 SMSchedule &Schedule,
3251 ValueMapTy *VRMap) {
3252 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3253 MachineOperand &MO = NewMI->getOperand(i);
3254 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3255 continue;
3256 unsigned reg = MO.getReg();
3257 if (MO.isDef()) {
3258 // Create a new virtual register for the definition.
3259 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3260 unsigned NewReg = MRI.createVirtualRegister(RC);
3261 MO.setReg(NewReg);
3262 VRMap[CurStageNum][reg] = NewReg;
3263 if (LastDef)
3264 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3265 } else if (MO.isUse()) {
3266 MachineInstr *Def = MRI.getVRegDef(reg);
3267 // Compute the stage that contains the last definition for instruction.
3268 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3269 unsigned StageNum = CurStageNum;
3270 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3271 // Compute the difference in stages between the defintion and the use.
3272 unsigned StageDiff = (InstrStageNum - DefStageNum);
3273 // Make an adjustment to get the last definition.
3274 StageNum -= StageDiff;
3275 }
3276 if (VRMap[StageNum].count(reg))
3277 MO.setReg(VRMap[StageNum][reg]);
3278 }
3279 }
3280}
3281
3282/// Return the instruction in the loop that defines the register.
3283/// If the definition is a Phi, then follow the Phi operand to
3284/// the instruction in the loop.
3285MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3286 SmallPtrSet<MachineInstr *, 8> Visited;
3287 MachineInstr *Def = MRI.getVRegDef(Reg);
3288 while (Def->isPHI()) {
3289 if (!Visited.insert(Def).second)
3290 break;
3291 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3292 if (Def->getOperand(i + 1).getMBB() == BB) {
3293 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3294 break;
3295 }
3296 }
3297 return Def;
3298}
3299
3300/// Return the new name for the value from the previous stage.
3301unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3302 unsigned LoopVal, unsigned LoopStage,
3303 ValueMapTy *VRMap,
3304 MachineBasicBlock *BB) {
3305 unsigned PrevVal = 0;
3306 if (StageNum > PhiStage) {
3307 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3308 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3309 // The name is defined in the previous stage.
3310 PrevVal = VRMap[StageNum - 1][LoopVal];
3311 else if (VRMap[StageNum].count(LoopVal))
3312 // The previous name is defined in the current stage when the instruction
3313 // order is swapped.
3314 PrevVal = VRMap[StageNum][LoopVal];
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00003315 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003316 // The loop value hasn't yet been scheduled.
3317 PrevVal = LoopVal;
3318 else if (StageNum == PhiStage + 1)
3319 // The loop value is another phi, which has not been scheduled.
3320 PrevVal = getInitPhiReg(*LoopInst, BB);
3321 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3322 // The loop value is another phi, which has been scheduled.
3323 PrevVal =
3324 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3325 LoopStage, VRMap, BB);
3326 }
3327 return PrevVal;
3328}
3329
3330/// Rewrite the Phi values in the specified block to use the mappings
3331/// from the initial operand. Once the Phi is scheduled, we switch
3332/// to using the loop value instead of the Phi value, so those names
3333/// do not need to be rewritten.
3334void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3335 unsigned StageNum,
3336 SMSchedule &Schedule,
3337 ValueMapTy *VRMap,
3338 InstrMapTy &InstrMap) {
Bob Wilson90ecac02018-01-04 02:58:15 +00003339 for (auto &PHI : BB->phis()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003340 unsigned InitVal = 0;
3341 unsigned LoopVal = 0;
Bob Wilson90ecac02018-01-04 02:58:15 +00003342 getPhiRegs(PHI, BB, InitVal, LoopVal);
3343 unsigned PhiDef = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003344
3345 unsigned PhiStage =
3346 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3347 unsigned LoopStage =
3348 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3349 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3350 if (NumPhis > StageNum)
3351 NumPhis = StageNum;
3352 for (unsigned np = 0; np <= NumPhis; ++np) {
3353 unsigned NewVal =
3354 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3355 if (!NewVal)
3356 NewVal = InitVal;
Bob Wilson90ecac02018-01-04 02:58:15 +00003357 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003358 PhiDef, NewVal);
3359 }
3360 }
3361}
3362
3363/// Rewrite a previously scheduled instruction to use the register value
3364/// from the new instruction. Make sure the instruction occurs in the
3365/// basic block, and we don't change the uses in the new instruction.
3366void SwingSchedulerDAG::rewriteScheduledInstr(
3367 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3368 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3369 unsigned NewReg, unsigned PrevReg) {
3370 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3371 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3372 // Rewrite uses that have been scheduled already to use the new
3373 // Phi register.
3374 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3375 EI = MRI.use_end();
3376 UI != EI;) {
3377 MachineOperand &UseOp = *UI;
3378 MachineInstr *UseMI = UseOp.getParent();
3379 ++UI;
3380 if (UseMI->getParent() != BB)
3381 continue;
3382 if (UseMI->isPHI()) {
3383 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3384 continue;
3385 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3386 continue;
3387 }
3388 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3389 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3390 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3391 int StageSched = Schedule.stageScheduled(OrigMISU);
3392 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3393 unsigned ReplaceReg = 0;
3394 // This is the stage for the scheduled instruction.
3395 if (StagePhi == StageSched && Phi->isPHI()) {
3396 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3397 if (PrevReg && InProlog)
3398 ReplaceReg = PrevReg;
3399 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3400 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3401 ReplaceReg = PrevReg;
3402 else
3403 ReplaceReg = NewReg;
3404 }
3405 // The scheduled instruction occurs before the scheduled Phi, and the
3406 // Phi is not loop carried.
3407 if (!InProlog && StagePhi + 1 == StageSched &&
3408 !Schedule.isLoopCarried(this, *Phi))
3409 ReplaceReg = NewReg;
3410 if (StagePhi > StageSched && Phi->isPHI())
3411 ReplaceReg = NewReg;
3412 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3413 ReplaceReg = NewReg;
3414 if (ReplaceReg) {
3415 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3416 UseOp.setReg(ReplaceReg);
3417 }
3418 }
3419}
3420
3421/// Check if we can change the instruction to use an offset value from the
3422/// previous iteration. If so, return true and set the base and offset values
3423/// so that we can rewrite the load, if necessary.
3424/// v1 = Phi(v0, v3)
3425/// v2 = load v1, 0
3426/// v3 = post_store v1, 4, x
3427/// This function enables the load to be rewritten as v2 = load v3, 4.
3428bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3429 unsigned &BasePos,
3430 unsigned &OffsetPos,
3431 unsigned &NewBase,
3432 int64_t &Offset) {
3433 // Get the load instruction.
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003434 if (TII->isPostIncrement(*MI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003435 return false;
3436 unsigned BasePosLd, OffsetPosLd;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003437 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003438 return false;
3439 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3440
3441 // Look for the Phi instruction.
Justin Bognerfdf9bf42017-10-10 23:50:49 +00003442 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003443 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3444 if (!Phi || !Phi->isPHI())
3445 return false;
3446 // Get the register defined in the loop block.
3447 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3448 if (!PrevReg)
3449 return false;
3450
3451 // Check for the post-increment load/store instruction.
3452 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3453 if (!PrevDef || PrevDef == MI)
3454 return false;
3455
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003456 if (!TII->isPostIncrement(*PrevDef))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003457 return false;
3458
3459 unsigned BasePos1 = 0, OffsetPos1 = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003460 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003461 return false;
3462
Krzysztof Parzyszek40df8a22018-03-26 16:17:06 +00003463 // Make sure that the instructions do not access the same memory location in
3464 // the next iteration.
Brendon Cahoon254f8892016-07-29 16:44:44 +00003465 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3466 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
Krzysztof Parzyszek40df8a22018-03-26 16:17:06 +00003467 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3468 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
3469 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
3470 MF.DeleteMachineInstr(NewMI);
3471 if (!Disjoint)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003472 return false;
3473
3474 // Set the return value once we determine that we return true.
3475 BasePos = BasePosLd;
3476 OffsetPos = OffsetPosLd;
3477 NewBase = PrevReg;
3478 Offset = StoreOffset;
3479 return true;
3480}
3481
3482/// Apply changes to the instruction if needed. The changes are need
3483/// to improve the scheduling and depend up on the final schedule.
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003484void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3485 SMSchedule &Schedule) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003486 SUnit *SU = getSUnit(MI);
3487 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3488 InstrChanges.find(SU);
3489 if (It != InstrChanges.end()) {
3490 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3491 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003492 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003493 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003494 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3495 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3496 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3497 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3498 int BaseStageNum = Schedule.stageScheduled(SU);
3499 int BaseCycleNum = Schedule.cycleScheduled(SU);
3500 if (BaseStageNum < DefStageNum) {
3501 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3502 int OffsetDiff = DefStageNum - BaseStageNum;
3503 if (DefCycleNum < BaseCycleNum) {
3504 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3505 if (OffsetDiff > 0)
3506 --OffsetDiff;
3507 }
3508 int64_t NewOffset =
3509 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3510 NewMI->getOperand(OffsetPos).setImm(NewOffset);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003511 SU->setInstr(NewMI);
3512 MISUnitMap[NewMI] = SU;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003513 NewMIs.insert(NewMI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003514 }
3515 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003516}
3517
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003518/// Return true for an order or output dependence that is loop carried
3519/// potentially. A dependence is loop carried if the destination defines a valu
3520/// that may be used or defined by the source in a subsequent iteration.
3521bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
3522 bool isSucc) {
3523 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
3524 Dep.isArtificial())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003525 return false;
3526
3527 if (!SwpPruneLoopCarried)
3528 return true;
3529
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003530 if (Dep.getKind() == SDep::Output)
3531 return true;
3532
Brendon Cahoon254f8892016-07-29 16:44:44 +00003533 MachineInstr *SI = Source->getInstr();
3534 MachineInstr *DI = Dep.getSUnit()->getInstr();
3535 if (!isSucc)
3536 std::swap(SI, DI);
3537 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3538
3539 // Assume ordered loads and stores may have a loop carried dependence.
3540 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3541 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3542 return true;
3543
3544 // Only chain dependences between a load and store can be loop carried.
3545 if (!DI->mayStore() || !SI->mayLoad())
3546 return false;
3547
3548 unsigned DeltaS, DeltaD;
3549 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3550 return true;
3551
3552 unsigned BaseRegS, BaseRegD;
3553 int64_t OffsetS, OffsetD;
3554 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3555 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3556 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3557 return true;
3558
3559 if (BaseRegS != BaseRegD)
3560 return true;
3561
Krzysztof Parzyszek8c07d0c2018-03-26 16:58:40 +00003562 // Check that the base register is incremented by a constant value for each
3563 // iteration.
3564 MachineInstr *Def = MRI.getVRegDef(BaseRegS);
3565 if (!Def || !Def->isPHI())
3566 return true;
3567 unsigned InitVal = 0;
3568 unsigned LoopVal = 0;
3569 getPhiRegs(*Def, BB, InitVal, LoopVal);
3570 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
3571 int D = 0;
3572 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
3573 return true;
3574
Brendon Cahoon254f8892016-07-29 16:44:44 +00003575 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3576 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3577
3578 // This is the main test, which checks the offset values and the loop
3579 // increment value to determine if the accesses may be loop carried.
3580 if (OffsetS >= OffsetD)
3581 return OffsetS + AccessSizeS > DeltaS;
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +00003582 else
Brendon Cahoon254f8892016-07-29 16:44:44 +00003583 return OffsetD + AccessSizeD > DeltaD;
3584
3585 return true;
3586}
3587
Krzysztof Parzyszek88391242016-12-22 19:21:20 +00003588void SwingSchedulerDAG::postprocessDAG() {
3589 for (auto &M : Mutations)
3590 M->apply(this);
3591}
3592
Brendon Cahoon254f8892016-07-29 16:44:44 +00003593/// Try to schedule the node at the specified StartCycle and continue
3594/// until the node is schedule or the EndCycle is reached. This function
3595/// returns true if the node is scheduled. This routine may search either
3596/// forward or backward for a place to insert the instruction based upon
3597/// the relative values of StartCycle and EndCycle.
3598bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3599 bool forward = true;
3600 if (StartCycle > EndCycle)
3601 forward = false;
3602
3603 // The terminating condition depends on the direction.
3604 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3605 for (int curCycle = StartCycle; curCycle != termCycle;
3606 forward ? ++curCycle : --curCycle) {
3607
3608 // Add the already scheduled instructions at the specified cycle to the DFA.
3609 Resources->clearResources();
3610 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3611 checkCycle <= LastCycle; checkCycle += II) {
3612 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3613
3614 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3615 E = cycleInstrs.end();
3616 I != E; ++I) {
3617 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3618 continue;
3619 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3620 "These instructions have already been scheduled.");
3621 Resources->reserveResources(*(*I)->getInstr());
3622 }
3623 }
3624 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3625 Resources->canReserveResources(*SU->getInstr())) {
3626 DEBUG({
3627 dbgs() << "\tinsert at cycle " << curCycle << " ";
3628 SU->getInstr()->dump();
3629 });
3630
3631 ScheduledInstrs[curCycle].push_back(SU);
3632 InstrToCycle.insert(std::make_pair(SU, curCycle));
3633 if (curCycle > LastCycle)
3634 LastCycle = curCycle;
3635 if (curCycle < FirstCycle)
3636 FirstCycle = curCycle;
3637 return true;
3638 }
3639 DEBUG({
3640 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3641 SU->getInstr()->dump();
3642 });
3643 }
3644 return false;
3645}
3646
3647// Return the cycle of the earliest scheduled instruction in the chain.
3648int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3649 SmallPtrSet<SUnit *, 8> Visited;
3650 SmallVector<SDep, 8> Worklist;
3651 Worklist.push_back(Dep);
3652 int EarlyCycle = INT_MAX;
3653 while (!Worklist.empty()) {
3654 const SDep &Cur = Worklist.pop_back_val();
3655 SUnit *PrevSU = Cur.getSUnit();
3656 if (Visited.count(PrevSU))
3657 continue;
3658 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3659 if (it == InstrToCycle.end())
3660 continue;
3661 EarlyCycle = std::min(EarlyCycle, it->second);
3662 for (const auto &PI : PrevSU->Preds)
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003663 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003664 Worklist.push_back(PI);
3665 Visited.insert(PrevSU);
3666 }
3667 return EarlyCycle;
3668}
3669
3670// Return the cycle of the latest scheduled instruction in the chain.
3671int SMSchedule::latestCycleInChain(const SDep &Dep) {
3672 SmallPtrSet<SUnit *, 8> Visited;
3673 SmallVector<SDep, 8> Worklist;
3674 Worklist.push_back(Dep);
3675 int LateCycle = INT_MIN;
3676 while (!Worklist.empty()) {
3677 const SDep &Cur = Worklist.pop_back_val();
3678 SUnit *SuccSU = Cur.getSUnit();
3679 if (Visited.count(SuccSU))
3680 continue;
3681 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3682 if (it == InstrToCycle.end())
3683 continue;
3684 LateCycle = std::max(LateCycle, it->second);
3685 for (const auto &SI : SuccSU->Succs)
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003686 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003687 Worklist.push_back(SI);
3688 Visited.insert(SuccSU);
3689 }
3690 return LateCycle;
3691}
3692
3693/// If an instruction has a use that spans multiple iterations, then
3694/// return true. These instructions are characterized by having a back-ege
3695/// to a Phi, which contains a reference to another Phi.
3696static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3697 for (auto &P : SU->Preds)
3698 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3699 for (auto &S : P.getSUnit()->Succs)
Krzysztof Parzyszekb9b75b82018-03-26 15:53:23 +00003700 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003701 return P.getSUnit();
3702 return nullptr;
3703}
3704
3705/// Compute the scheduling start slot for the instruction. The start slot
3706/// depends on any predecessor or successor nodes scheduled already.
3707void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3708 int *MinEnd, int *MaxStart, int II,
3709 SwingSchedulerDAG *DAG) {
3710 // Iterate over each instruction that has been scheduled already. The start
3711 // slot computuation depends on whether the previously scheduled instruction
3712 // is a predecessor or successor of the specified instruction.
3713 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3714
3715 // Iterate over each instruction in the current cycle.
3716 for (SUnit *I : getInstructions(cycle)) {
3717 // Because we're processing a DAG for the dependences, we recognize
3718 // the back-edge in recurrences by anti dependences.
3719 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3720 const SDep &Dep = SU->Preds[i];
3721 if (Dep.getSUnit() == I) {
3722 if (!DAG->isBackedge(SU, Dep)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003723 int EarlyStart = cycle + Dep.getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00003724 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3725 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003726 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003727 int End = earliestCycleInChain(Dep) + (II - 1);
3728 *MinEnd = std::min(*MinEnd, End);
3729 }
3730 } else {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003731 int LateStart = cycle - Dep.getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00003732 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3733 *MinLateStart = std::min(*MinLateStart, LateStart);
3734 }
3735 }
3736 // For instruction that requires multiple iterations, make sure that
3737 // the dependent instruction is not scheduled past the definition.
3738 SUnit *BE = multipleIterations(I, DAG);
3739 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3740 !SU->isPred(I))
3741 *MinLateStart = std::min(*MinLateStart, cycle);
3742 }
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00003743 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003744 if (SU->Succs[i].getSUnit() == I) {
3745 const SDep &Dep = SU->Succs[i];
3746 if (!DAG->isBackedge(SU, Dep)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003747 int LateStart = cycle - Dep.getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00003748 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3749 *MinLateStart = std::min(*MinLateStart, LateStart);
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003750 if (DAG->isLoopCarriedDep(SU, Dep)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003751 int Start = latestCycleInChain(Dep) + 1 - II;
3752 *MaxStart = std::max(*MaxStart, Start);
3753 }
3754 } else {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003755 int EarlyStart = cycle + Dep.getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00003756 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3757 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3758 }
3759 }
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00003760 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003761 }
3762 }
3763}
3764
3765/// Order the instructions within a cycle so that the definitions occur
3766/// before the uses. Returns true if the instruction is added to the start
3767/// of the list, or false if added to the end.
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003768void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003769 std::deque<SUnit *> &Insts) {
3770 MachineInstr *MI = SU->getInstr();
3771 bool OrderBeforeUse = false;
3772 bool OrderAfterDef = false;
3773 bool OrderBeforeDef = false;
3774 unsigned MoveDef = 0;
3775 unsigned MoveUse = 0;
3776 int StageInst1 = stageScheduled(SU);
3777
3778 unsigned Pos = 0;
3779 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3780 ++I, ++Pos) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003781 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3782 MachineOperand &MO = MI->getOperand(i);
3783 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3784 continue;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003785
Brendon Cahoon254f8892016-07-29 16:44:44 +00003786 unsigned Reg = MO.getReg();
3787 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003788 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003789 if (MI->getOperand(BasePos).getReg() == Reg)
3790 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3791 Reg = NewReg;
3792 bool Reads, Writes;
3793 std::tie(Reads, Writes) =
3794 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3795 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3796 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003797 if (MoveUse == 0)
3798 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003799 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3800 // Add the instruction after the scheduled instruction.
3801 OrderAfterDef = true;
3802 MoveDef = Pos;
3803 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3804 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3805 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003806 if (MoveUse == 0)
3807 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003808 } else {
3809 OrderAfterDef = true;
3810 MoveDef = Pos;
3811 }
3812 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3813 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003814 if (MoveUse == 0)
3815 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003816 if (MoveUse != 0) {
3817 OrderAfterDef = true;
3818 MoveDef = Pos - 1;
3819 }
3820 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3821 // Add the instruction before the scheduled instruction.
3822 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003823 if (MoveUse == 0)
3824 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003825 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3826 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003827 if (MoveUse == 0) {
3828 OrderBeforeDef = true;
3829 MoveUse = Pos;
3830 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003831 }
3832 }
3833 // Check for order dependences between instructions. Make sure the source
3834 // is ordered before the destination.
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003835 for (auto &S : SU->Succs) {
3836 if (S.getSUnit() != *I)
3837 continue;
3838 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3839 OrderBeforeUse = true;
3840 if (Pos < MoveUse)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003841 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003842 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003843 }
3844 for (auto &P : SU->Preds) {
3845 if (P.getSUnit() != *I)
3846 continue;
3847 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3848 OrderAfterDef = true;
3849 MoveDef = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003850 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003851 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003852 }
3853
3854 // A circular dependence.
3855 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3856 OrderBeforeUse = false;
3857
3858 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3859 // to a loop-carried dependence.
3860 if (OrderBeforeDef)
3861 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3862
3863 // The uncommon case when the instruction order needs to be updated because
3864 // there is both a use and def.
3865 if (OrderBeforeUse && OrderAfterDef) {
3866 SUnit *UseSU = Insts.at(MoveUse);
3867 SUnit *DefSU = Insts.at(MoveDef);
3868 if (MoveUse > MoveDef) {
3869 Insts.erase(Insts.begin() + MoveUse);
3870 Insts.erase(Insts.begin() + MoveDef);
3871 } else {
3872 Insts.erase(Insts.begin() + MoveDef);
3873 Insts.erase(Insts.begin() + MoveUse);
3874 }
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003875 orderDependence(SSD, UseSU, Insts);
3876 orderDependence(SSD, SU, Insts);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003877 orderDependence(SSD, DefSU, Insts);
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003878 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003879 }
3880 // Put the new instruction first if there is a use in the list. Otherwise,
3881 // put it at the end of the list.
3882 if (OrderBeforeUse)
3883 Insts.push_front(SU);
3884 else
3885 Insts.push_back(SU);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003886}
3887
3888/// Return true if the scheduled Phi has a loop carried operand.
3889bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3890 if (!Phi.isPHI())
3891 return false;
3892 assert(Phi.isPHI() && "Expecing a Phi.");
3893 SUnit *DefSU = SSD->getSUnit(&Phi);
3894 unsigned DefCycle = cycleScheduled(DefSU);
3895 int DefStage = stageScheduled(DefSU);
3896
3897 unsigned InitVal = 0;
3898 unsigned LoopVal = 0;
3899 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3900 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3901 if (!UseSU)
3902 return true;
3903 if (UseSU->getInstr()->isPHI())
3904 return true;
3905 unsigned LoopCycle = cycleScheduled(UseSU);
3906 int LoopStage = stageScheduled(UseSU);
Simon Pilgrim3d8482a2016-11-14 10:40:23 +00003907 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003908}
3909
3910/// Return true if the instruction is a definition that is loop carried
3911/// and defines the use on the next iteration.
3912/// v1 = phi(v2, v3)
3913/// (Def) v3 = op v1
3914/// (MO) = v1
3915/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3916/// register.
3917bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3918 MachineInstr *Def, MachineOperand &MO) {
3919 if (!MO.isReg())
3920 return false;
3921 if (Def->isPHI())
3922 return false;
3923 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3924 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3925 return false;
3926 if (!isLoopCarried(SSD, *Phi))
3927 return false;
3928 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3929 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3930 MachineOperand &DMO = Def->getOperand(i);
3931 if (!DMO.isReg() || !DMO.isDef())
3932 continue;
3933 if (DMO.getReg() == LoopReg)
3934 return true;
3935 }
3936 return false;
3937}
3938
3939// Check if the generated schedule is valid. This function checks if
3940// an instruction that uses a physical register is scheduled in a
3941// different stage than the definition. The pipeliner does not handle
3942// physical register values that may cross a basic block boundary.
3943bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003944 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3945 SUnit &SU = SSD->SUnits[i];
3946 if (!SU.hasPhysRegDefs)
3947 continue;
3948 int StageDef = stageScheduled(&SU);
3949 assert(StageDef != -1 && "Instruction should have been scheduled.");
3950 for (auto &SI : SU.Succs)
3951 if (SI.isAssignedRegDep())
Simon Pilgrimb39236b2016-07-29 18:57:32 +00003952 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003953 if (stageScheduled(SI.getSUnit()) != StageDef)
3954 return false;
3955 }
3956 return true;
3957}
3958
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003959/// A property of the node order in swing-modulo-scheduling is
3960/// that for nodes outside circuits the following holds:
3961/// none of them is scheduled after both a successor and a
3962/// predecessor.
3963/// The method below checks whether the property is met.
3964/// If not, debug information is printed and statistics information updated.
3965/// Note that we do not use an assert statement.
3966/// The reason is that although an invalid node oder may prevent
3967/// the pipeliner from finding a pipelined schedule for arbitrary II,
3968/// it does not lead to the generation of incorrect code.
3969void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3970
3971 // a sorted vector that maps each SUnit to its index in the NodeOrder
3972 typedef std::pair<SUnit *, unsigned> UnitIndex;
3973 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3974
3975 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3976 Indices.push_back(std::make_pair(NodeOrder[i], i));
3977
3978 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3979 return std::get<0>(i1) < std::get<0>(i2);
3980 };
3981
3982 // sort, so that we can perform a binary search
3983 std::sort(Indices.begin(), Indices.end(), CompareKey);
3984
3985 bool Valid = true;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00003986 (void)Valid;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003987 // for each SUnit in the NodeOrder, check whether
3988 // it appears after both a successor and a predecessor
3989 // of the SUnit. If this is the case, and the SUnit
3990 // is not part of circuit, then the NodeOrder is not
3991 // valid.
3992 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3993 SUnit *SU = NodeOrder[i];
3994 unsigned Index = i;
3995
3996 bool PredBefore = false;
3997 bool SuccBefore = false;
3998
3999 SUnit *Succ;
4000 SUnit *Pred;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00004001 (void)Succ;
4002 (void)Pred;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00004003
4004 for (SDep &PredEdge : SU->Preds) {
4005 SUnit *PredSU = PredEdge.getSUnit();
4006 unsigned PredIndex =
4007 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
4008 std::make_pair(PredSU, 0), CompareKey));
4009 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
4010 PredBefore = true;
4011 Pred = PredSU;
4012 break;
4013 }
4014 }
4015
4016 for (SDep &SuccEdge : SU->Succs) {
4017 SUnit *SuccSU = SuccEdge.getSUnit();
4018 unsigned SuccIndex =
4019 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
4020 std::make_pair(SuccSU, 0), CompareKey));
4021 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
4022 SuccBefore = true;
4023 Succ = SuccSU;
4024 break;
4025 }
4026 }
4027
4028 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
4029 // instructions in circuits are allowed to be scheduled
4030 // after both a successor and predecessor.
4031 bool InCircuit = std::any_of(
4032 Circuits.begin(), Circuits.end(),
4033 [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
4034 if (InCircuit)
4035 DEBUG(dbgs() << "In a circuit, predecessor ";);
4036 else {
4037 Valid = false;
4038 NumNodeOrderIssues++;
4039 DEBUG(dbgs() << "Predecessor ";);
4040 }
4041 DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
4042 << " are scheduled before node " << SU->NodeNum << "\n";);
4043 }
4044 }
4045
4046 DEBUG({
4047 if (!Valid)
4048 dbgs() << "Invalid node order found!\n";
4049 });
4050}
4051
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004052/// Attempt to fix the degenerate cases when the instruction serialization
4053/// causes the register lifetimes to overlap. For example,
4054/// p' = store_pi(p, b)
4055/// = load p, offset
4056/// In this case p and p' overlap, which means that two registers are needed.
4057/// Instead, this function changes the load to use p' and updates the offset.
4058void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
4059 unsigned OverlapReg = 0;
4060 unsigned NewBaseReg = 0;
4061 for (SUnit *SU : Instrs) {
4062 MachineInstr *MI = SU->getInstr();
4063 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4064 const MachineOperand &MO = MI->getOperand(i);
4065 // Look for an instruction that uses p. The instruction occurs in the
4066 // same cycle but occurs later in the serialized order.
4067 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
4068 // Check that the instruction appears in the InstrChanges structure,
4069 // which contains instructions that can have the offset updated.
4070 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
4071 InstrChanges.find(SU);
4072 if (It != InstrChanges.end()) {
4073 unsigned BasePos, OffsetPos;
4074 // Update the base register and adjust the offset.
4075 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
Krzysztof Parzyszek12bdcab2017-10-11 15:59:51 +00004076 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
4077 NewMI->getOperand(BasePos).setReg(NewBaseReg);
4078 int64_t NewOffset =
4079 MI->getOperand(OffsetPos).getImm() - It->second.second;
4080 NewMI->getOperand(OffsetPos).setImm(NewOffset);
4081 SU->setInstr(NewMI);
4082 MISUnitMap[NewMI] = SU;
4083 NewMIs.insert(NewMI);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004084 }
4085 }
4086 OverlapReg = 0;
4087 NewBaseReg = 0;
4088 break;
4089 }
4090 // Look for an instruction of the form p' = op(p), which uses and defines
4091 // two virtual registers that get allocated to the same physical register.
4092 unsigned TiedUseIdx = 0;
4093 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
4094 // OverlapReg is p in the example above.
4095 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
4096 // NewBaseReg is p' in the example above.
4097 NewBaseReg = MI->getOperand(i).getReg();
4098 break;
4099 }
4100 }
4101 }
4102}
4103
Brendon Cahoon254f8892016-07-29 16:44:44 +00004104/// After the schedule has been formed, call this function to combine
4105/// the instructions from the different stages/cycles. That is, this
4106/// function creates a schedule that represents a single iteration.
4107void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
4108 // Move all instructions to the first stage from later stages.
4109 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4110 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
4111 ++stage) {
4112 std::deque<SUnit *> &cycleInstrs =
4113 ScheduledInstrs[cycle + (stage * InitiationInterval)];
4114 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
4115 E = cycleInstrs.rend();
4116 I != E; ++I)
4117 ScheduledInstrs[cycle].push_front(*I);
4118 }
4119 }
4120 // Iterate over the definitions in each instruction, and compute the
4121 // stage difference for each use. Keep the maximum value.
4122 for (auto &I : InstrToCycle) {
4123 int DefStage = stageScheduled(I.first);
4124 MachineInstr *MI = I.first->getInstr();
4125 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4126 MachineOperand &Op = MI->getOperand(i);
4127 if (!Op.isReg() || !Op.isDef())
4128 continue;
4129
4130 unsigned Reg = Op.getReg();
4131 unsigned MaxDiff = 0;
4132 bool PhiIsSwapped = false;
4133 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
4134 EI = MRI.use_end();
4135 UI != EI; ++UI) {
4136 MachineOperand &UseOp = *UI;
4137 MachineInstr *UseMI = UseOp.getParent();
4138 SUnit *SUnitUse = SSD->getSUnit(UseMI);
4139 int UseStage = stageScheduled(SUnitUse);
4140 unsigned Diff = 0;
4141 if (UseStage != -1 && UseStage >= DefStage)
4142 Diff = UseStage - DefStage;
4143 if (MI->isPHI()) {
4144 if (isLoopCarried(SSD, *MI))
4145 ++Diff;
4146 else
4147 PhiIsSwapped = true;
4148 }
4149 MaxDiff = std::max(Diff, MaxDiff);
4150 }
4151 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
4152 }
4153 }
4154
4155 // Erase all the elements in the later stages. Only one iteration should
4156 // remain in the scheduled list, and it contains all the instructions.
4157 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
4158 ScheduledInstrs.erase(cycle);
4159
4160 // Change the registers in instruction as specified in the InstrChanges
4161 // map. We need to use the new registers to create the correct order.
4162 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
4163 SUnit *SU = &SSD->SUnits[i];
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004164 SSD->applyInstrChange(SU->getInstr(), *this);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004165 }
4166
4167 // Reorder the instructions in each cycle to fix and improve the
4168 // generated code.
4169 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
4170 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004171 std::deque<SUnit *> newOrderPhi;
Brendon Cahoon254f8892016-07-29 16:44:44 +00004172 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4173 SUnit *SU = cycleInstrs[i];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004174 if (SU->getInstr()->isPHI())
4175 newOrderPhi.push_back(SU);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004176 }
4177 std::deque<SUnit *> newOrderI;
Brendon Cahoon254f8892016-07-29 16:44:44 +00004178 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4179 SUnit *SU = cycleInstrs[i];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004180 if (!SU->getInstr()->isPHI())
Brendon Cahoon254f8892016-07-29 16:44:44 +00004181 orderDependence(SSD, SU, newOrderI);
4182 }
4183 // Replace the old order with the new order.
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004184 cycleInstrs.swap(newOrderPhi);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004185 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004186 SSD->fixupRegisterOverlaps(cycleInstrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004187 }
4188
4189 DEBUG(dump(););
4190}
4191
Aaron Ballman615eb472017-10-15 14:32:27 +00004192#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Brendon Cahoon254f8892016-07-29 16:44:44 +00004193/// Print the schedule information to the given output.
4194void SMSchedule::print(raw_ostream &os) const {
4195 // Iterate over each cycle.
4196 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4197 // Iterate over each instruction in the cycle.
4198 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
4199 for (SUnit *CI : cycleInstrs->second) {
4200 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
4201 os << "(" << CI->NodeNum << ") ";
4202 CI->getInstr()->print(os);
4203 os << "\n";
4204 }
4205 }
4206}
4207
4208/// Utility function used for debugging to print the schedule.
Matthias Braun8c209aa2017-01-28 02:02:38 +00004209LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
4210#endif